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Abstract

We introduce an approach for how spatial reasoning can be
conceived as verbal reasoning. We describe a theory of
how humans construct a mental representation given one-
dimensional spatial relations. In this construction process ob-
jects are inserted in a dynamic structure called a “queue” which
provides an implicit direction. The spatial interpretation of this
direction can be chosen freely. This implies that choices in
the process of constructing a mental representation influence
the result of deductive spatial reasoning. To derive the precise
rules for the construction process we employ the assumption
that humans try to minimize their cognitive effort, and a cost
measure is introduced to judge the efficiency of the construc-
tion process. From this we deduce how the queue should be
constructed. We discuss empirical evidence for this approach
as well as a computational implementation of the construction
process.

Keywords: Verbal Reasoning; Spatial Reasoning; Mental
Models; Cost Function; Computational Framework

Introduction

One dimensional spatial relations like “right of”, “left of”,
“in front”, “behind”, “north of”” have in common that they are
transitive and, thereby, allow us to create a linear order be-
tween objects linked by one of these relations. Let us demon-
strate this by an example. Consider the following two sen-
tences, also called premises.

1. The apple is to the left of the mango.
2. The mango is to the left of the kiwi.

These premises allow us to create a linear order of the ob-
jects named in the premises, apple-mango—kiwi. This order
enables us to draw conclusions about information not directly
given in the premises: we can infer that the apple is to the left
of the kiwi. The ability to infer information about relations
between objects not explicitly yielded by the premises is the
subject of theories about relational reasoning (cf. Johnson-
Laird & Byrne,1991; chapter 5). The bases of such inferences
are internal representations that reflect information conveyed
verbally by the premises. There are several theories on how

this is accomplished. Syntactic-based approaches (Braine &
O’Brien, 1998; Rips, 1994; Hagert, 1984; Henst & Schaeken,
2005) suggest that the reasoning process is based on oper-
ations similar to the syntactic rules of formal logic. A set
of rules is applied to draw inferences from given premises
in order to derive new information implicitly provided by the
premises. Model-based approaches, such as the mental model
theory (MMT) on the other hand, suggest that reasoners in-
fer new information by inspecting a mental model, represent-
ing the “state of affairs”, described by the premises (Johnson-
Laird & Byrne, 1991).

Polk and Newell (1995), however, point out that the deduc-
tion process does not necessarily require deduction-specific
mechanisms to operate on internal representations. Espe-
cially in reasoners that are not specifically trained on de-
ductive reasoning more general cognitive mechanisms might
guide the reasoning process. They introduced a third ap-
proach, called verbal reasoning, that assumes the cognitive
processes in deductive reasoning to be based upon the same
processes as language comprehension and generation. Verbal
reasoning describes reasoning as transformation of verbal in-
formation provided by the premises of an inference problem.
Linguistic skills operate in order to encode and re-encode a
reasoning problem until the conclusion becomes obvious or
until the reasoner gives up. Polk and Newell (1995) hypothe-
size that when task-relevant information is provided verbally,
the crucial role in reasoning is played by the verbal processes
of encoding and re-encoding accordingly and that inferences
follow comparatively easily from the encoded information.

In the following, we sketch how spatial reasoning can be
conceived in Polk and Newell’s framework of verbal reason-
ing, which covers reasoning about relations. In particular,
we propose new theoretical assumptions for the special case
of reasoning with spatial relations. The key assumption is
that the process of constructing a mental representation — a
mental model — from the premises influences deductive spa-
tial reasoning. This implies that the process of encoding the
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spatial information is critical for the result of the spatial rea-
soning process. We discuss empirical evidence as well as a
computational implementation of the process.

A cognitive model

We are proposing a theory on how humans create a mental
model from a set of spatial relations. The theory is based on
the idea of cognitive efficiency, that is humans try to minimize
their cognitive effort, therefore a cost measure is introduced
to judge the efficiency. From this we derive how a mental
model should be constructed. This mental model can then be
used to reason about spatial relations and its properties imply
consequences for the reasoning process.

Basic assumption for the cognitive model

Since we consider arbitrary one-dimensional relations as ba-
sis for the model we assume that models consist of a “queue”
of objects and an interpretation what this queue represents.
The queue describes in which order the objects are aligned
but what this order represents depends on the relation that is
considered. So while the order is implicit the interpretation
of the order is not. The queue is constructed by forming links
between objects. The links signify which objects follow each
other in that ordered arrangement. These links between the
objects are one directional which means that when inspecting
the queue we can move from one object to the next object in
the order but not to the preceding object. To access the queue
one needs to access the first element of the queue. Therefore
the beginning of the queue is marked by a start pointer.

The queue can be accessed from this starting point which is
directed at the first object. From there all other objects in the
mental model can be reached by following the links between
objects.

This amounts to the following assumptions about the
queue:

1. There exist a starting point or first object.

2. Each object is linked to the next object in the linear order.
Only the last object is not linked to other objects.

3. While this structure has an implicit direction, the interpre-
tation of this direction depends on the context.

Mental Cost

We now introduce a cost measure that allows us to judge how
to create the queue efficiently. The main assumption is that
an existing link should not be broken if that is avoidable and
as few new links as possible should be formed to minimize
cognitive work.

So a cost efficient model is one that can be built by a min-
imal number of broken links. Since in the end of the con-
struction process the complete mental model is supposed to
have as many links as objects costs can only be reduced by
altering as few links as possible during the construction pro-
cess. Therefore it is most cost efficient if we can insert new

objects creating just one new link and not changing any ex-
isting links. The only way to accomplish this is by attaching
them at the very end, following the last object in the queue.
So if an object can be inserted at the very end of the queue it
should be inserted there.

The starting point is also considered a link. This is due to
the fact that one has to know how the queue starts in order to
access it. Therefore knowing which object is the first consti-
tutes a link, connecting the start of the queue to that object.

Moving through the queue on the other hand takes very
little cognitive effort as long as we move in the implicit direc-
tion of the queue. Due to the fact that the links only have one
direction moving in the opposite direction through the queue
is impossible.

Construction of mental models from spatial
information

The question now is how a mental model is constructed from
the premises of a reasoning problem. How are objects in-
serted in the queue and where does the cost measure come
into play?

In this process the first premise that is considered has a spe-
cial function and dominating effect on the construction of the
rest of the arrangement. We consider the first premise inde-
pendently of the following premises and postulate the follow-
ing two rules for the construction process.

177 First object inserted in the queue is the starting point of
the queue.

2/P The second object is linked to the first object. The re-
lation between the first and the second object thereby
creates the interpretation of the link and the implicit di-
rection of all the following objects in the queue.

If we know, for example, that the second inserted object is
supposed to be to the right of the first (starting) object, then
the link is interpreted as “to the right”.

When we look again at our example from the introduction
this gives us two options for the first premise: “The apple is to
the left of the mango.” We can choose the apple as the starting
point (marked by the asterisk) and insert the mango second:

apple® — mango

The implicit direction of the queue is interpreted as moving
from the leftmost object to the right. However, if we use the
mango as a starting point (marked by the asterisk) inserting
the apple second we get:

apple < mango*

In this case the implicit direction of the queue is interpreted as
moving from the rightmost object to the left. So even though
the premise describes only one arrangement of fruits there are
two options for representing this arrangement in our queue.
Once the interpretation of the implicit direction of the
queue is fixed by inserting the second object the rest of the
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objects are inserted according to this interpretation. This
amounts to the following options for inserting objects in an
existing queue from the second premise on:

1. The first object of the premise has to be found in the queue.

2(a) If the new object is to be placed behind this object (with
regard to the implicit direction of the queue) it can be
either inserted into the queue directly behind the object
or at any point further to the end of the queue.

(b) If the new object is to be placed in front of the object
(with regard to the implicit direction of the queue) it
can be either inserted into the queue directly in front of
the object or at any point further to the beginning of the
queue.

The question is which of these choices is more cost efficient.
As a cost measure we use primarily the number of links that
need to be formed. If this does not show any difference be-
tween the options the required movement through the queue
is used as an secondary cost measure.

Let us first look at the costs resulting from inserting a new
object into the queue between two objects that are linked. To
insert a new object between two existing objects in the queue
the first object, that was linked to the second object before,
is now linked to the new object. The new object is linked
to the second object. This requires forming two new links. If
the object is inserted at the beginning of the queue the starting
point needs to be redefined which we will consider as creating
a new link.

Using this information we will now judge the cost created
by the insertion options described in 2.(a) and (b). Let us
first look at option (a): If the object is inserted between two
objects of the queue two new links need to be formed. If the
object is inserted at the end of the queue, only one new link
needs to be formed. So in case (a) it is most cost efficient
to insert the object at the very end of the queue. Now we
consider (b): The new object can only be inserted between
two objects or at the starting point of the queue. Since we
consider the starting point a link to the beginning of the queue
both options require two new links to be formed. So it is the
most cost efficient not to move around the queue but to insert
the object directly in front of the found object. Using this
analysis we postulate the following rules:

15 If the new object is to be placed behind an object of the
queue it will be inserted at the end of the queue.

25 If the new object is to be placed in front of an object of
the queue it will be inserted into the queue directly in
front of this object.

If we apply these rules to the second premise of the first ex-
ample we create one of the following two models depending
on the direction of the queue.

apple® — mango — kiwi (1)

apple < mango « kiwi* (2)

While the results look similar, the costs for building these
models differ. In case (1) we were able to use rule 1™, cre-
ating only one more link. In case (2) however, we needed to
redefine the starting point. This resulted in creating two new
links. So the cognitive costs for building the first model are
lower.

Let us look at another example that is not quite as simple:

1. The apple is to the left of the mango.
2. The apple is to the left of the kiwi.

Here the premises describe an indeterminate order: there are
two possible orders of these three fruits: apple-mango—kiwi
and apple—kiwi-mango. So the question is, whether one
of these orders is preferred over the other? Knauff, Rauh,
and Schlieder (1995); Rauh et al. (2005); Jahn, Knauff, and
Johnson-Laird (2007) have empirically shown that such pref-
erences exist in human reasoners.

Since the first premise is the same as in the example with
the determinate order we receive the same two options for
models when applying the rules for the first premise. If we
apply the rules of insertion to the second premise we get one
of the following models.

apple” — mango — kiwi (3)

apple < kiwi «— mango* 4)

Here we see a difference between the two models depending
on the implicit direction of the queue. This is due to the fact
that the arrangement is indeterminate and because the two
queues have opposite interpretations of the implicit direction
different rules are applied to form the queues. There is also
a difference in the cost for building these models. In (3) we
were able to apply rule 17, again creating only one new link.
In (4) we needed to apply rule 27, redefining the starting
point, creating two new links. So the cognitive costs for cre-
ating the last model (4) are higher than the ones for creating
model (3).

Once a model has been constructed it can be used to make
inferences. If we build the model

apple® — mango — kiwi

from the premises of the first example we can answer the
question “’Is the apple to the left of the kiwi?” by finding the
apple in the queue and then moving further down the queue
till we find the kiwi.

Predictions based on the construction process:
From the model we can derive several behavioural predic-

tions:

e If the model is indeterminate (allowing more than one
model) the direction of the queue influences which model
will be built.
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o [t should be easier to infer information that can be obtained
following the implicit direction of the queue than infer in-
formation that require to go against that direction.

e The same mechanism is used for all one dimensional spa-
tial relations, not just in the left/right direction.

Computational implementation and
computational complexity estimation

The model construction process can be easily implemented as
a computer model using the data structure linked list, consist-
ing of nodes containing data and a pointer to the next node
in the list. There is also a start pointer pointing at the first
node of the list. If we compare that to our mental model the
pointers from one node in the list to the next represent the
link between the objects. The data represent the objects. It is
therefore easy to model a queue such as the one we proposed
in a computer program.

Computer science provides standard rules for analysing the
efficiency of algorithms. However, the traditional cost anal-
ysis of the algorithm used to insert objects into a linked list
provides different results than the above cost analysis. This is
because in computational complexity theory every operation
has the same weight. There are no operations that are harder
or easier to perform than other operations.

Let us look again at the possibilities for insertion in an ex-
isting queue from above, 2(a) and (b). Which of these op-
tions is the most cost efficient? When inserting a node behind
a node of the list as in 2(a), and we insert it directly behind
the found node, we have the cost of assigning one pointer and
reassigning another (if not the end of the list). If we move fur-
ther down the list, the costs of moving through the list have
to be added to the costs of assigning pointers and moving one
node down the list costs as much as assigning one pointer. So
inserting a node between two nodes further down the list is al-
ways more expensive than inserting it right behind the found
node. Attaching the node to the end of the list is not a good
idea either: if the end of the list is more than one node away,
the cost of moving through the list and assigning the pointer
will be higher than the cost of just inserting the new node right
behind the found node. And since there is no way of knowing
how far away the last node is, the cost efficient solution is to
insert the new node right behind the found node.

When inserting a node in front of a found node of the list as
in 2(b), the same costs result for inserting the new node right
in front of the node and for inserting it at the beginning of the
list as the starting pointer of the list can always be accessed at
no extra cost. In both cases one pointer needs to be assigned
and one pointer needs to be redirected. If it is inserted at any
other point of the list the costs are higher since we first have
to move to that point from the beginning of the list. So in this
cost analysis it would be most efficient to insert the object
either at the beginning of the list or directly in front of the
found object.

Based on this analysis we derive alternative rules for in-
serting nodes into a list:

19 Tf the new node has to be placed behind a node of the
list it should be inserted into the list directly behind the
node.

24" 1f the new node has to be placed in front of a node of
the list it should be inserted into the list either directly in
front of this node or at the very beginning of the list.

If we apply these rules to the second premise of the second
example we receive the following models.

apple” — kiwi — mango (5)

apple «— mango < kiwi* OR apple « kiwi < mango® (6)

The model (5) was built using rule 14 the models in (6) are
the two options following from rule 2%. The insertion of
the last object has the same computational cost in all three of
these models.

The models also show that rules based on a classic compu-
tational cost measure produce different results than our rules
based on a cognitive cost measure. Model (5) differs from
model (3) above and only one of the models of (6) is similar
to the model (4). Of course this does not mean that a com-
putational model would have to follow the alternative rules.
It can also be implemented using the insertion rules that re-
sulted from the cognitive model.

So one of the questions is whether it is justified to as-
sume that forming a link is more cost intensive than mov-
ing through the queue. If not, the traditional computational
complexity measure might provide better predictions than our
model.

Empirical Evidence

We report an experiment that shows that rules derived from
our cognitive cost measure predict human behaviour better
than the rules derived from the traditional computer science
cost measure. In this experiment we investigated what kind of
mental model participants construct when they are faced with
indeterminate problems that allowed more than one model to
be constructed.

Participants, Materials, Procedure, and Design

Thirty-five participants (3 male; age: M = 22.4; SD = 3.2)
from the University of Giessen had to solve sixteen deter-
minate (like in example 1) and sixteen indeterminate prob-
lems (like in example 2). The three-term problems had two
premises each and we used only the relation “left of”. The
problems were presented to the participants in a random or-
der on a computer screen. Each premise was presented se-
quentially (in a self-paced manner). After having read the
premises a conclusion was presented and the participants
were asked if this conclusion was correct or not. For de-
terminate problems the conclusion was either true or false.
For indeterminate problems we used two different types of
conclusions which could either hold in a model constructed
according to rule 17 or to rule 1.
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Results and Discussion

Separate ANOVAs for the percentage of correct responses
and reaction times of correct responses with the within-
subject factor conclusion acceptance (hits, correct rejec-
tions) and insertion principle (indeterminate/rulel” vs.
indeterminate/rule1%) were calculated, respectively. Level
of significance was 5%.

p>.75

100 ——

90
80

=4

P

e

70
60
50

30
20 -
10

=

N

indeterminate/1ins

7

determinate/valid determinate/invalid indeterminate/1alt

Figure 1: The left two bars show the mean number of correct
responses for the determinate problems. In half of the prob-
lems the correct response was “yes” (hit), in the other half it
was “no” (correct rejection). The right two bars show how
often the participants accepted a conclusion that hold in the
model built by rule 1 or rule 14, respectively. Error bars
indicate standard errors.

ANOVA of the percentage of correct responses yielded a
significant main effect of conclusion acceptance [F(2,32) =
54.79, p < .01]. Percentage of correct responses of determi-
nate/valid and determinate/invalid items did not differ (p >
.75). The high percentage of correct responses for the deter-
minate items (M = 92.19; SD = 11.14) indicate that the par-
ticipants understood the task and were able to perform well.
Because the determinate items were easiest constructed from
the left to the right for both cost functions we assume that they
were indeed constructed from left to right. We also assume
that the indeterminate items were constructed from the left to
the right as well, since the decision has to be made directly
after reading the second premise before knowing whether the
item is determinate or indeterminate. We find a higher per-
centage (t(34) = 5.49; p < .01) of yes-answers for the items
where the conclusion was true if the model was built by rule
15 than for items where the conclusion was true if the model
was built by rule 19 (see Figure 1). This indicates that in-
deed the rules derived from our cognitive cost functions are
more often applied than the alternative rules derived from the
classical computer science cost function.

ANOVA of the reaction times of correct responses also
yielded a significant main effect of conclusion acceptance
[F(2,18) = 4.25, p < .05]. Reaction times for determi-
nate/valid items (M = 3618 ms, SD = 1427) were signif-
icantly lower compared to determinate/invalid items (M =

4887 ms, SD = 2691; r(34) = —4.67; p > .01 ). Re-
action times for indeterminate/rulel™ items (M = 4156
ms, SD = 3066) were significantly lower compared to
indeterminate/rule 1%’ items (M = 5057 ms, SD = 3457,
1(20) = —2.29; p > .05). This implies that conclusions of
the determinate/valid items were easier to confirm than the
ones of the determinate/invalid items and the conclusions of
the indeterminate/rule1” items were easier to accept than the
ones of the indeterminate/rule1?” items. These easier items
were those where the confirmation could easily be made by
following the implicit direction of the queue provided that the
queue was indeed constructed from left to right.

Other evidence

Further evidence for our model comes from the experiments
of Jahn et al. (2007). Their participants inserted an object
to an existing array, as opposed to adding it to one end of
the array, more often for objects that would have been added
to the left end of an array than for entities that would have
been added to the right end of an array (Jahn et al., 2007,
Experiment 2, Table 4). The authors come to the conclusion
that: “Given that the participants constructed arrays from left
to right, they evidently found it easier to add a new entity to
the right-hand end of an array than to the left-hand end of an
array [...].” (Jahn et al., 2007, p. 2081)

For a queue that is constructed from left to right our model
predicts this behaviour, since rule 1™ is applied to the objects
inserted on the right of a reference object and rule 2™ is ap-
plied to objects inserted on the left of a reference object. So
the results of Jahn et al. (2007) confirm the predictions of our
model.

Discussion

We introduced an approach how spatial reasoning can be
modelled as verbal reasoning. The main idea is that the
deduction process does not necessarily require deduction-
specific mechanisms to operate on internal representations.
Instead we assume that a simple order of objects (repre-
sented by words) and some genuine verbal cognitive mech-
anisms might guide the reasoning process. Following Polk
and Newell (1995) we assumed that the cognitive processes
in deductive reasoning can be based upon the same processes
as language comprehension and generation.

From our point of view our approach is a helpful addition
to the long lasting controversy between models and rules in
reasoning (e.g. Johnson-Laird, Byrne, & Schaeken, 1994;
Rips, 1994; Hagert, 1984). In fact, models are often identi-
fied with visuo-spatial processing and rules with linguistic or
sentential mechanisms (e.g. Goel, Buchel, Frith, and Dolan
(2000)). Our study, however, shows that this distinction does
not reflect the actual differences between the two approaches.
In fact, our approach is a model-based approach, because at
no point during the inference process rules of inferences are
used, instead the new information must be derived from the
queue - the model. And our results suggests that such mod-
els can be the basis of verbal reasoning, so no visuo-spatial

1006



process are involved in the inference.

Our work has also shown that the approach and the related
cost measure leads to good predictions about what kind of
model will be created. It predicts behaviour better than the
classical computer science approach to cost calculation. But
there remain some open questions about the cost measure.
One problem of our approach results from the fact that it is
easier to move through the queue than alter the existing links,
no matter how far we have to move. Another possibility is
that if the queue becomes larger there might exist a critical
distance when it requires more mental effort to move this dis-
tance through the queue than altering a link. This would im-
ply that if the queue reaches a certain number of objects, new
objects would not necessarily be attached to the end of the
queue any more.

Another question is whether the starting point of a queue
is really a link like all the other links in the queue. However,
since this link is different concerning its cognitive nature it
might be weaker or stronger than the links between object in
the queue.

A third limitation of our project is that we only used prob-
lems with two premises, although we believe that the pos-
tulated rules also apply if there are more than two premises
and three objects, as long as the premises all contain relations
describing the same dimension. And it is possible to mix re-
lations of the same dimension such as left and right, as done
in many experiments (Jahn et al., 2007; Ragni, Fangmeier,
Webber, & Knauff, 2006).

Finally, we postulate that the implicit direction of a queue
can be chosen freely. But what is this choice based on? In
a behavioural experiment, in which many spatial reasoning
problems need to be solved, subjects are likely to choose the
direction that produces the lowest cost for the items seen so
far. Also, once a choice has been made on which direction
to use, subjects are likely to stick with it. This also keeps
the mental costs low because the tactic used is not constantly
being analysed. Also, when using material with a left-right
dimension as in the examples there seems to be a general pref-
erence for constructing a left to right queue (Jahn et al., 2007;
Rauh et al., 2005; Ragni et al., 2006). This could be a cultural
preference such as reading. Also other orders we see in daily
life are arranged left to right.

Overall, we were able to present some evidence for our
assumption that the process of constructing a “verbal men-
tal model” from premises influences deductive spatial rea-
soning. The chosen interpretation for the implicit direction
of the queue has consequences on what kind of conclusions
can be easily made. And, most importantly, for indeterminate
problems, we can predict which model is preferred over the
other and and which model is more difficult to consider as a
possible interpretation of the premises. While our model can
not necessarily be generalized to other domains of reasoning
we feel that it can describe some aspects of human reason-
ing with spatial relations and that it demonstrates that spatial
reasoning can also be conceived as verbal reasoning.
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