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ABSTRACT OF THE DISSERTATION

Detecting Social Malware and its Ecosystem in Online Social Networks

by

Md Sazzadur Rahman

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2012

Dr. Michalis Faloutsos, Chairperson

Online social networks (OSNs) have become the new vector for cybercrime, and

hackers are finding new ways to propagate spam and malware on these platforms, which

we refer to as social malware. As we show here, social malware cannot be identified

with existing security mechanisms (e.g., URL blacklists), because it exploits different

weaknesses and often has different intentions.

In this dissertation, we show that social malware is prevalent in Facebook,

the largest OSN to date with more then a billion users and develop an efficient and

scalable social malware detection system that takes advantage of the social context of

posts. We deploy this detection system as a Facebook app called MyPageKeeper to

protect Facebook users from social malware. We find that our detection method is both

accurate and efficient. Furthermore, we show that, social malware significantly differs

from traditional email spam or web-based malware.

One of the major factors for enabling social malware is malicious third-party

apps. We show that such malicious apps are also widespread in Facebook. Therefore,

to identify malicious apps, we ask the question: given a Facebook application, can

we determine if it is malicious? Our key contribution in this part is in developing
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FRAppE—Facebook’s Rigorous Application Evaluator—arguably the first tool focused

on detecting malicious apps on Facebook. We identify a set of features that help us

distinguish malicious apps from benign ones. For example, we find that malicious apps

often share names with other apps, and they typically request fewer permissions than

benign apps. Then, leveraging these distinguishing features, we show that FRAppE

can detect malicious apps with 99.5% accuracy, with no false positives and a low false

negative rate (4.1%). Finally, we explore the ecosystem of malicious Facebook apps. We

identify mechanisms these apps use to propagate and find that many apps collude and

support each other.
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Chapter 1

Introduction

The new battleground for cybercrime is Online Social Networks (OSNs),

which provides a new, fertile, and unexplored environment for the dissemination of mal-

ware. Moving beyond spam email, the distribution of malware on OSNs takes the form

of postings and communications between friends. We use the term social malware to

describe parasitic or damaging behavior including identity theft, distribution of mali-

cious URLs, spam, and malicious apps that utilizes OSNs. The use of posts from friends

adds a powerful element in the propagation of social malware: it comes implicitly with

the endorsement of a friend who allegedly posts the information. This new social dimen-

sion adds to the challenges in fighting web-based crime: (a) the techniques employed by

hackers are constantly evolving, and (b) the general public is uninformed, gullible, and

easily enticed into visiting suspicious websites or installing apps with the lure of false

rewards (e.g., free iPads in memory of Steve Jobs [71]). Beyond this being a nuisance,

social malware also enables cyber-crime, with several Facebook scams resulting in loss

of real money for users [27, 30] and malicious Facebook apps harvesting users personal

information while the level of sophistication of the hackers increases [22]. Therefore, it is
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becoming increasingly important to understand social malware better and build better

defenses to protect users from the crime underlying this social malware.

Detecting social malware requires novel approaches since hackers use signif-

icantly different approaches in its distribution compared to email-based spam. For

example, reputation-based filtering [69, 68, 113] is insufficient to detect social malware

received from friends and, as we show later, the keywords used in email spam signif-

icantly differ from those used in social malware. We also find that URL blacklists

designed to detect phishing and malware on the web do not suffice, e.g., because a

large fraction of social malware (26% in our dataset) points to malicious applications

hosted on Facebook. Although such malicious apps are widespread in Facebook, as we

show later, currently there is no commercial service, publicly-available information, or

research-based tool to advise a user about the risks of an app.

In this dissertation, our goal is to detect such malicious and surreptitious ac-

tivities on Facebook by identifying a) malicious posts and b) malicious third-party ap-

plications. Social malware posts typically include at least one embedded URL link, since

without such a link, the posts cannot lure and hurt users or propagate virally. We want

to be able to detect such posts on the walls and news feeds of Facebook users, and

alert users exposed to social malware so that they do not click through on the URLs

included in the posts. Next, we want to detect malicious applications and alert users

once they try to install the app in their profiles. Such malicious applications not only

steal users valuable information (i.e., email, gender, age group and home town), but also

provide a great means to spread social malware on users wall to hackers. For example,

once a malicious app is installed by a victim, it periodically posts victim’s wall with a

URL pointing to itself or other apps for promotion. Finally, we want to investigate the

ecosystem supporting and lunching malicious app attacks in Facebook.
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1.1 Detecting Social Malware in OSN

In this dissertation, we first present the design and implementation of a Facebook ap-

plication, MyPageKeeper [57], that we develop specifically for the purpose of protecting

Facebook users from social malware. Until October 2011, MyPageKeeper had been in-

stalled by more than 12K Facebook users (since its launch in June 2011). By monitoring

the news feeds of these users, we also observe posts on the walls of the 2.4 million friends

of these users. We evaluate MyPageKeeper using a dataset of over 40 million posts that

it inspected during the four month period from June to October 2011.

Our key contributions for detecting social malware can be grouped into three

main thrusts.

• Designing an accurate, efficient, and scalable detection method. In order to

operate MyPageKeeper at scale, but at low cost, the distinguishing characteristic of

our approach is our strident focus on efficiency. Prior solutions for detecting spam

and malware on OSNs (which we describe in detail later) rely on information obtained

either by crawling the URLs included in posts or by performing DNS resolution on

these URLs. In contrast, our social malware classifier relies solely on the social context

associated with each post (e.g., the number of walls and news feeds in which posts with

the same embedded URL are observed, and the similarity of text descriptions across

these posts). Note that this approach means that we do not even resolve shortened

URLs (e.g., using services like bit.ly) into the full URLs that they represent. This

approach maximizes the rate at which we can classify posts, thus reducing the cost of

resources required to support a given population of users.

We employ a Machine Learning classification module using Support Vector Machines

on a carefully selected set of such features that are readily available from the observed
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posts. 97% of posts flagged by our classifier are indeed social malware and it incorrectly

flags only 0.005% of benign posts. Furthermore, it requires an average of only 46 ms

to classify a post.

• Social malware is a new kind of malware. We show that social malware is sig-

nificantly different than traditional email spam or web-based malware. First, URL

blacklists cannot detect social malware effectively. These blacklists identify only 3%

of the malicious posts that MyPageKeeper flags. The inability of website blacklists

to identify social malware is partly due to the fact that a significant fraction of social

malware is hosted on popular blogging domains such as blogspot.com and on Face-

book itself. Specifically, 26% of the flagged posts point to Facebook apps or pages.

Moreover, we also observe a low overlap between the keywords associated with email

based spam and those we find in social malware.

• Quantifying social malware: prevalence and intention. We find that 49% of

our users were exposed to at least one social malware post in four months. We also

identify a new type of parasitic behavior, which we refer to as “Like-as-a-Service”. Its

goal is to artificially boost the number of “Likes” of a Facebook page. With the lure of

games and rewards, several Facebook apps push users to Like the Facebook pages of

say a store or a product, thus artificially inflating their reputation on Facebook. This

further confirms the difference between social malware and other forms of malware

propagation.

1.2 Detecting Malicious Applications in OSN

An important part of identifying social malware is to detect and profile malicious apps,

since, as we show here, a significant fraction of social malware are propagated by such

malicious Facebook applications. In this dissertation, we take the first step towards
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profiling and detecting malicious Facebook apps. Our work asks the following question,

given a Facebook application, can we determine if it is malicious? Our key contribution

in this part is in developing FRAppE—Facebook’s Rigorous Application Evaluator—

arguably the first tool focused on detecting malicious apps on Facebook. To build

FRAppE, we use data from MyPageKeeper that monitors the Facebook profiles of 2.2

million users. We analyze 111,000 apps that made 91 million posts over nine months.

This is arguably the first comprehensive study focusing on malicious Facebook apps that

focuses on quantifying, profiling, and understanding malicious apps, and synthesizes this

information into an effective detection approach.

Our work makes the following key contributions for identifying malicious Face-

book apps:

• Malicious Facebook applications are prevalent; 13% of the observed apps

are malicious. We show that malicious apps are prevalent in Facebook and reach

a large number of users. We find that 13% of apps in our dataset of 111K distinct

apps are malicious. Also, 60% of malicious apps endanger more than 100K users each

by convincing them to follow the links on the posts made by these apps, and 40% of

malicious apps have over 1,000 monthly active users each.

• Malicious and benign app profiles differ significantly. We systematically profile

apps and show that malicious app profiles are significantly different than those of

benign apps. A striking observation is the “laziness” of hackers; many malicious apps

have the same name, as 8% of unique names of malicious apps are each used by

more than 10 different apps (as defined by their app IDs). Overall, we profile apps

based on two classes of features: (a) those that can be obtained on-demand given an

application’s identifier (e.g., the permissions required by the app and the posts in the
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application’s profile page), and (b) others that require a cross-user view to aggregate

information across time and across apps (e.g., the posting behavior of the app and the

similarity of its name to other apps).

• FRAppE can detect malicious apps with 99% accuracy. We develop FRAppE

(Facebook’s Rigorous Application Evaluator) to identify malicious apps either us-

ing only features that can be obtained on-demand or using both on-demand and

aggregation-based app information. FRAppE Lite, which only uses information avail-

able on-demand, can identify malicious apps with 99.0% accuracy, with low false pos-

itives (0.1%) and false negatives (4.4%). By adding aggregation-based information,

FRAppE can detect malicious apps with 99.5% accuracy, with no false positives and

lower false negatives (4.1%).

1.3 Understanding Ecosystem of Malicious Applications

in OSN

Equipped with an accurate classifier for detecting malicious apps, we next analyze how

malicious Facebook apps support each other. Our analysis shows that malicious apps

do not operate in isolation—many malicious apps share the same name, several of them

redirect to the same domain upon installation, etc. Upon deeper investigation, we

identify a worrisome and, at the same time, fascinating trend: malicious apps work

collaboratively in promoting each other. Namely, apps make posts that contain links

to the installation pages of other apps. We use the term AppNets do describe these

colluding groups; we claim that they are for the social world what botnets are for the

world of physical devices.

Our key contributions for understanding AppNets ecosystem are as follows:
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• Malicious apps collude at massive scale. We conduct a forensics investigation on

the malicious app ecosystem to identify and quantify the techniques used to promote

malicious apps. The most interesting result is that apps collude and collaborate at a

massive scale. Apps promote other apps via posts that point to the “promoted” apps.

If we describe the collusion relationship of promoting-promoted apps as a graph, we

find 1,584 promoter apps that promote 3,723 other apps. These apps form large and

highly-dense connected components.

• Hackers often use sophisticated techniques to promote malicious apps.

Hackers use fast-changing indirection: applications posts have URLs that point to

a website, and the website dynamically redirects to many different apps; we find 103

such URLs that point to 4,676 different malicious apps over the course of a month.

These observed behaviors indicate well-organized crime: one hacker controls many

malicious apps, which we will call an AppNet, since they seem a parallel concept to

botnets.

• Malicious hackers impersonate applications. We were surprised to find popular

good apps, such as ‘FarmVille’ and ‘Facebook for iPhone’, posting malicious posts.

On further investigation, we found a lax authentication rule in Facebook that enabled

hackers to make malicious posts appear as though they came from these apps.

1.4 Summary

In summary, our research makes three high-level contributions to the study of OSN

security. First, our work demonstrates the prevalence of social malware in Facebook,

the largest OSN to date. We show that certain machine learning techniques equipped

with social context based features are very effective in identifying social malware. Since

similar social context based features are also available in other OSNs (i.e. Twitter,
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Pinterest), we speculate that our technique is applicable to those OSNs for identifying

social malware. For example, tweets (Twitter posts) include readily available social

context based features such as text, embeded URL, mention, hashtag etc. Similarly,

Pinterest, another leading OSN, provides number of like, comments, repins etc. in each

pin (Pinterest posts).

Second, we show that a significant fraction of social malware are enabled by

malicious third-party apps which are also prevalent in Facebook. We demonstrate that

benign and malicious Facebook apps differ significantly in terms of number of required

permissions or posting behavior. Further, we developed FRAppE to identify malicious

Facebook apps.

Finally, we identify the ecosystem of such malicious apps and show that they

collude at large scale. Malicious hackers use different sophisticated techniques such as

fast-changing indirection to promote malicious apps so that a fraction of such apps can

survive in case others are disabled by Facebook. We made several recommendations to

Facebook and hope that Facebook will benefit from these recommendations for reducing

the menace of hackers on their platform.
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Chapter 2

Indentifying Social Malware

As online social networks (OSNs) are becoming the new epicenter of the web,

hackers are expanding their territory to these services [20]. Anyone using Facebook or

Twitter is likely to be familiar with what we call here social malware: fake, annoying,

possibly damaging posts from friends of the potential victim. The propagation of social

malware takes the form of postings and communications between friends on OSNs.

Users are enticed into visiting suspicious websites or installing apps with the lure of

false rewards (e.g., free iPads in memory of Steve Jobs [71]), and they unwittingly send

the post to their friends, thus enabling a viral spreading. This is exactly where the

power of social malware lies: posts come with the implicit endorsement of the sending

friend. Beyond this being a nuisance, social malware also enables cyber-crime, with

several Facebook scams resulting in loss of real money for users [27, 30].

Defenses against email spam are insufficient for identifying social malware since

reputation-based filtering [69, 68, 113] is insufficient to detect social malware received

from friends and, as we show later, the keywords used in email spam significantly differ

from those used in social malware. We also find that URL blacklists designed to detect
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phishing and malware on the web do not suffice, e.g., because a large fraction of social

malware (26% in our dataset) points to suspicious applications hosted on Facebook.

Finally, though Facebook has its own mechanisms for detecting and removing mal-

ware [118], they seem to be less aggressive either due to what they define as malware or

due to computational limitations.

In this chapter, we present our experience in developing and deploying My-

PageKeeper, a Facebook security app with more than 12K installs and 40 million posts

collected over roughly four months. After users install it, MyPageKeeper monitors their

walls and news feeds, detects and flags malicious posts. MyPageKeeper was officially

launched in June 2011 and attracted significant attention from the electronic and printed

press.

In MyPageKeeper, we set two requirements for a successfully identifying social

malware: (a) accuracy, and (b) low computation. The second requirement makes the

solution deployable in practice: ideally, we want to be able to protect all users in a

non-intrusive online fashion; we want (near) real-time responses at a massive scale.

Prior solutions for detecting spam on OSNs rely on crawling the URLs included in

posts or by performing DNS resolutions on these URLs. However, our approach only

relies on social context readily available in each posts. Our Machine Learning based

classifier takes only 46ms on average to classify a post. The first thought is to reuse all

the security services that exist for email anti-spam and URL blacklists, maintained by

Google and other organizations. However, as we show later, this is not enough: social

malware is different than previous cyber-crime activities and techniques. For example

these blacklists identify only 3% of the malicious posts that MyPageKeeper flags. On

the contrary, 97% of posts flagged by our classifier are indeed social malware and it

incorrectly flags only 0.005% of benign posts.

10



Through the lens of MyPageKeeper, we found that 49% of our users were

exposed to at least one social malware post in four months. We also identify a new type

of parasitic behavior, which we refer to as “Like-as-a-Service”. It lures users with fake

rewards and pushes users to Like the Facebook pages of say a store or a product and

thus artificially boost the number of “Likes” of that Facebook page. These applications,

which offer Likes as a service, presumably get paid on a Pay-per-Like model by the

owners of Facebook pages that make use of their services.

2.1 Social Malware on Facebook

In this section, we provide relevant background about Facebook, and we describe typical

characteristics of social malware found on Facebook.

2.1.1 Facebook Terminology

Facebook is the largest online social network today with over 900 million registered users,

roughly half of whom visit the site daily. Here, we discuss some standard Facebook

terminology relevant to our work.

• Post: a post represents the basic unit of information shared on Facebook. Typical posts

either contain only text (status updates), a URL with an associated text description,

or a photo/album shared by a user. In our work, we focus on posts that contain URLs.

• Wall: a Facebook user’s wall is a page where friends of the user can post messages to

the user. Such messages are called wall posts. Other than to the user herself, posts on

a user’s wall are visible to other users on Facebook determined by the user’s privacy

settings. Typically a user’s wall is made visible to the user’s friends, and in some cases

to friends of friends.
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• News feed: a Facebook user’s news feed page is a summary of the social activity of

the user’s friends on Facebook. For example, a user’s news feed contains posts that

one of the user’s friends may have shared with all of her friends. Facebook continually

updates the news feed of every user and the content of a user’s news feed depends on

when it is queried.

• Like: like is a Facebook widget that is associated with an object such as a post, a

page, or an app. If a user clicks the Like widget associated with an object, the object

will appear in the news feed of the user’s friends and thus allow information about the

object to spread across Facebook. Moreover, the number of Likes (i.e., the number

of users who have clicked the Like widget) received by an object also represents the

reputation or popularity of the object.

• Application: Facebook allows third-party developers to create their own applications

that Facebook users can add. Every time a user visits an application’s page on Face-

book, Facebook dynamically loads the content of the application from a URL, called

the canvas URL, pointing to the application server provided by the application’s de-

veloper. Since content of an application is dynamically loaded every time a user visits

the application’s page on Facebook, the application developer enjoys great control over

content shown in the application page. The Facebook platform uses OAuth 2.0 [10] for

user authentication, application authorization and application authentication. Here,

application authorization ensures that the users grant precise data (e.g., email ad-

dress) and capabilities (e.g., ability to post on the user’s wall) to the applications they

choose to add, and application authentication ensures that a user grants access to her

data to the correct application.
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2.1.2 Social Malware

We start by defining the meaning of social malware. We describe typical character-

istics of social malware and elaborate on how social malware distinguishes itself from

traditional email spam and web malware.

What is social malware? Our intention is to use the term social malware

to encompass all criminal and parasitic behavior in an OSN, including anything that

annoys, hurts, or makes money off of the user. In the context of this dissertation, we

consider a Facebook post as malicious, if it satisfies one of the following conditions:

(1) the post spreads malware and compromises the device of the user, (2) the web

page pointed to by the post requires the user to give away personal information, (3)

the post promises false rewards (e.g., free products), (4) the post is made on a user’s

behalf without the user’s knowledge (typically by having previously lured the user into

providing relevant permissions to a rogue Facebook app), (5) the web page pointed to

by the post requires the user to carry out tasks (e.g., fill out surveys) that help profit the

owner of that website, or (6) the post causes the user to artificially inflate the reputation

of the page (e.g., by forcing the user to ‘Like’ the page). While the first two criteria are

typical malware and phishing, the latter four are distinctive of social malware.

Note that, as with email spam, there can be some ambiguity in the definition

of social malware: a post considered as annoying by one user may be considered useful

by another user. In practice, our ultimate litmus test is the opinion of MyPageKeeper’s

users: if most of them report a post as annoying, we will flag it as such.

How does social malware work? Social malware appears in a Facebook

user’s wall or news feed typically in the form of a post which contains two parts. First,

the post contains a URL , usually obfuscated with a URL shortening service, to a
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webpage that hosts either malicious or spam content. Second, social malware posts

typically contain a catchy text message (e.g. “two free Southwest tickets”) that entice

users to click on the URL included in the post. Optionally, social malware posts also

contain a thumbnail screenshot of the landing page of the URL, also used to entice the

user to click on the link. For example, a purported image of Osama’s corpse is included

in a post that claims to point to a video of his death.

The operation of most social malware epidemics can be associated with two

distinct mechanisms.

a. Propagation mechanism. Once a user follows the embedded URL to the

target website, the post tries to propagate itself through that user. For this, the user

is often asked to complete several steps in order to obtain the fake reward (e.g., “Free

Facebook T-shirt”). These steps involve “Liking” or “sharing” the post, or posting the

social malware on the user’s wall. Thus, the cycle continues with the friends of that

user, who see the post in their news feed. In contrast, users seldom forward email spam

to their friends.

b. Exploitation mechanism. The exploitation often starts after the propa-

gation phase. The hacker attempts either to learn the user’s private information via a

phishing attack [21], to spread malware to user devices, or to make money by “forcing”

a particular user action or response, such as completing a survey for which the hacker

gets paid [49].

Where is social malware hosted? Social malware can be broadly classified

into two categories based on the infrastructure that hosts them.

a. Social malware hosted outside Facebook: in this category, URLs point

to a domain hosted outside Facebook. Since the URL points to a landing page outside

14



App Name Application Message Monthly Active
Users

Free Phone Calls I’m making a Free Call
with the Free Phone
Call Facebook App! ...
I’ll never pay for a
phone call again. Make
your free call at URL

435,392

The App Check if a friend has
deleted you URL

35,216

The App Check if a friend has
deleted you URL

25,778

Table 2.1: Three rogue Facebook applications identified by MyPageKeeper.

the OSN, hackers can directly launch the different kinds of attacks mentioned above

once a user visits the URL in a social malware post. Though several URL blacklists

should be able to flag such URLs, the process of updating these blacklists is too slow to

keep up with the viral propagation of social malware on OSNs [99].

b. Social malware hosted on Facebook: a significant fraction of social

malware is hosted on Facebook itself: the embedded URL points to a Facebook page or

application. Naturally, current blacklists and reputation-based schemes fail to flag such

URLs. Such URLs typically point to the following types of Facebook objects:

• Malicious Facebook applications: rogue applications post catchy messages (e.g.,

“Check who deleted you from your profile”) on the walls of users with a link pointing

to the installation page of the application. Table 2.1 lists three such social malware-

spreading applications in our data. Users are conned into installing the application

to their profile and granting several permissions to it. The application then not only

gets access to that user’s personal information (such as email address, home town,

and high school) but also gains the ability to post on the victim’s wall. As before,

posts on a user’s wall typically appear on the news feeds of the user’s friends, and the
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Page
Name

Message to persuade
‘Like’

No.
of
Likes

Clif Bar Hey there! Looking for
a clif builder’s coupon?
Just like us by click-
ing the button above.
thanks!

79919

FarmVille
Bonus

You can’t claim you you
haven’t clicked on the
like button

94907

Courtesy
Chevrolet

Like our page to play
and have a change to
win!

86287

Greggs The
Bakers

Like us to claim your
voucher

288039

Mobilink
Infinity

Like us for big infinite
fun

26105

Table 2.2: Top five pages identified by MyPageKeeper that persuade users to ‘Like’
them.

propagation cycle repeats. Creating such applications has become easy with ready to

use toolkits starting at $25 [48]. We investigate malicious apps more in Chapters 3

and 4.

• Malicious Facebook events: sometimes hackers create Facebook events that con-

tain a malicious link. One such event is the ‘Get a free Facebook T-Shirt (Sponsored

by Reebok)’ scam. This event page states that 500,000 users will get a free T-shirt

from Facebook. To be one among those 500,000 users, a user must attend the event,

invite her friends to join, and enter her shipping address.

• Malicious Facebook pages: another approach taken by hackers to spread social

malware is to create a Facebook page and post spam links on the page [65]. We also

identified a trend in aggressive marketing by companies that force users to click “Like”

on their Facebook pages to spread their pages as well as increase the reputation of the

page. Table 2.2 lists the top five such Facebook pages, along with the message on the
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Figure 2.1: Application installation process on Facebook.
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Figure 2.2: Architecture of MyPageKeeper.

page and the number of Likes received by these pages.

2.2 MyPageKeeper Architecture

To identify social malware and protect Facebook users from it, we develop MyPage-

Keeper. MyPageKeeper is a Facebook application that continually checks the walls and

news feeds of subscribed users, identifies social malware posts, and alerts the users. We

present our goals in designing MyPageKeeper, and then describe the system architecture

and implementation details.

2.2.1 Goals

We design MyPageKeeper with the following three primary goals in mind.
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1. Accuracy. Our foremost goal is to ensure accurate identification of social

malware. We are faced with the obvious trade-off between missing malware posts (false

negatives), and “crying wolf” too often (false positives). Although one could argue

that minimizing false negatives is more important, users would abandon overly sensitive

detection methods, as recognized by the developers of Facebook’s Immune System [118].

2. Scalability. Our end goal is to have MyPageKeeper provide protection

from social malware for all users on Facebook, not just for a select few. Therefore, the

system must be scalable to easily handle increased load imposed by a growth in the

number of subscribed users.

3. Efficiency. Finally, we seek to minimize our costs in operating MyPage-

Keeper. The period between when a post first becomes visible to a user and the time

it is checked by MyPageKeeper represents the window of vulnerability when the user is

exposed to potential social malware. To minimize the resources necessary to keep this

window of vulnerability short, MyPageKeeper’s techniques for classification of posts

must be efficient.

2.2.2 MyPageKeeper Components

MyPageKeeper consists of six functional modules.

a. User authorization module. We obtain a user’s authorization to check

her wall and news feed through a Facebook application, which we have developed. Once

a user installs the MyPageKeeper application, we obtain the necessary credentials to

access the posts of that user. For alerting the user, we also request permission to access

the user’s email address and to post on the user’s wall and news feed. Figure 2.1 shows

how a Facebook user authorizes an application.
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b. Crawling module. MyPageKeeper periodically collects the posts in every

user’s wall and news feed. As mentioned previously, we currently focus only on posts

that contain a URL. Apart from the URL, each post comprises several other pieces of

information, such as a text message associated with the post, the user who made the

post, number of comments and Likes on the post, and the time when the post was

created.

c. Feature extraction module. To classify a post, MyPageKeeper evaluates

every embedded URL in the post. Our key novelty lies in considering only the social

context (e.g., the text message in the post, and the number of Likes on it) for the

classification of the URL and the related post. Furthermore, we use the fact that we are

observing more than one user, which can help us detect an epidemic spread. We discuss

these features in more detail later in Section 2.2.3.

d. Classification module. The classification module uses a Machine Learn-

ing classifier based on Support Vector Machines, but also utilizes several local and

external whitelists and blacklists that help speed up the process and increase the over-

all accuracy. The classification module receives a URL and the related social context

features extracted in the previous step. Since the classification is our key contribution,

we discuss this in more detail in Section 2.2.3. If a URL is classified as social malware,

all posts containing the URL are labeled as such.

e. Notification module. The notification module notifies all users who have

social malware posts in their wall or news feed. The user can currently specify the

notification mechanism, which can be a combination of emailing the user or posting a

comment on the suspect posts. In the future, we will consider allowing our system to

remove the malicious post automatically, but this can create liabilities in the case of

false positives.
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f. User feedback module. Finally, to improve MyPageKeeper’s ability

to detect social malware, we leverage our user community. We allow users to report

suspicious posts through a convenient user-interface. In such a report, the user can

optionally describe the reason why she considers the post as social malware.

2.2.3 Identification of Social Malware

The key novelty of MyPageKeeper lies in the classification module (summarized in Fig-

ure 2.2). As described earlier, the input to the classification module is a URL and

the related social context features extracted from the posts that contain the URL. Our

classification algorithm operates in two phases, with the expectation that URLs and

related posts that make it through either phase without a match are likely benign and

are treated as such.

Using whitelists and blacklists. To improve the efficiency and accuracy of

our classifier, we use lists of URLs and domains in the following two steps. First, My-

PageKeeper matches every URL against a whitelist of popular reputable domains. We

currently use a whitelist comprising the top 70 domains listed by Quantcast, excluding

domains that host user-contributed content (e.g., OSNs and blogging sites). Any URL

that matches this whitelist is deemed safe, and it is not processed further.

Second, all the URLs that remain are then matched with several URL blacklists

that list domains and URLs that have been identified as responsible for spam, phishing,

or malware. Again, the need to minimize classification latency forces us to only use

blacklists that we can download and match against locally. Such blacklists include those

from Google’s Safe Browsing API [47], Malware Patrol [56], PhishTank [62], APWG [7],

SpamCop [68], joewein [51], and Escrow Fraud [19]. Querying blacklists that are hosted

externally, such as SURBL [72], URIBL [78] and WOT [79], will introduce significant
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latency and increase MyPageKeeper’s latency in detecting social malware, thus inflating

the window of vulnerability. Any URL that matches any of the blacklists that we use is

classified as social malware.

Using machine learning with social context features. All URLs that

do not match the whitelist or any of the blacklists are evaluated using a Support Vec-

tor Machines (SVM) based classifier. SVM is widely and successfully used for binary

classification in security and other disciplines [109, 102] [73]. We train our system with

a batch of manually labeled data, that we gathered over several months prior to the

launch of MyPageKeeper. For every input URL and post, the classifier outputs a binary

decision to indicate whether it is malicious or not. Our SVM classifier uses the following

features.

Spam keyword score. Presence of spam keywords in a post provides a strong

indication that the post is spam. Some examples of such spam keywords are ‘FREE’,

‘Hurry’, ‘Deal’, and ‘Shocked’. To compile a list of such keywords that are distinctive

to social malware, our intuition is to identify those keywords that 1) occur frequently

in social malware posts, and 2) appear with a greater frequency in social malware as

compared to their frequency in benign posts.

We compile such a list of keywords by comparing a dataset of manually iden-

tified social malware posts with a dataset of posts that contain URLs that match

our whitelist (we discuss how to maintain this list of keywords in Section 2.6). We

transform posts in either dataset to a bag of words with their frequency of occur-

rence. We then compute the likelihood ratio p1/p2 for each keyword where p1 =

p(word|socialmalwarepost) and p2 = p(word|benignpost). The likelihood ratio of a

keyword indicates the bias of the keyword appearing more in social malware than in

benign posts. In our current implementation of MyPageKeeper, we have found that
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the use of the 6 keywords with the highest likelihood ratio values among the 100 most

frequently occurring keywords in social malware is sufficient to accurately detect social

malware.

Thereafter, to classify a URL, MyPageKeeper searches all posts that contain

the URL for the presence of these spam keywords and computes a spam keyword score

as the ratio of the number of occurrences of spam keywords across these posts to the

number of posts.

Message similarity. If a post is part of a spam campaign, it usually contains

a text message that is similar to the text in other posts containing the same URL

(e.g., because users propagate the post by simply sharing it). On the other hand, when

different users share the same popular URL, they are likely to include different text

descriptions in their posts. Therefore, greater similarity in the text messages across

all posts containing a URL portends a higher probability that the URL leads to spam.

To capture this intuition, for each URL, we compute a message similarity score that

captures the variance in the text messages across all posts that contain the URL. For

each post, MyPageKeeper sums the ASCII values of the characters in the text message

in the post, and then computes the standard deviation of this sum across all the posts

that contain the URL. If the text descriptions in all posts are similar, the standard

deviation will be low.

News feed post and wall post count. The more successful a spam campaign,

the greater the number of walls and news feeds in which posts corresponding to the

campaign will be seen. Therefore, for each URL, MyPageKeeper computes counts of

the number of wall posts and the number of news feed posts which contained the URL.

Like and comment count. Facebook users can ‘Like’ any post to indicate their

interest or approval. Users can also post comments to follow up on the post, again
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indicating their interest. Users are unlikely to ‘Like’ posts pointing to social malware or

comment on such posts, since they add little value. Therefore, for every URL, MyPage-

Keeper computes counts of the number of Likes and number of comments seen across

all posts that contain the URL.

URL obfuscation. Hackers often try to spread malicious links in an obfuscated

form, e.g., by shortening it with a URL shortening service such as bit.ly or goo.gl.

We store a binary feature with every URL that indicates whether the URL has been

shortened or not; we maintain a list of URL shorteners.

Note that none of the above features by themselves are conclusive evidence

of social malware, and other features could potentially further enhance the classifier

(e.g., we can account for spam keywords such as ‘free’ included in URLs such as http:

//nfljerseyfree.com). However, as we show later in our evaluation, the features that

we currently consider yield high classification accuracy in combination.

2.2.4 Implementing MyPageKeeper

We provide some details on MyPageKeeper’s implementation.

Facebook application. First, we implement the MyPageKeeper Facebook

application using FBML [41]. We implement our application server using Apache (web

server), Django (web framework), and Postgres (database). Once a user installs the

MyPageKeeper app in her profile, Facebook generates a secret access token and forwards

the token to our application server, which we then save in a database. This token is used

by the crawler to crawl the walls and news feeds of subscribed users using the Facebook

open-graph API. If any user deactivates MyPageKeeper from their profile, Facebook

disables this token and notifies our application server, whereupon we stop crawling that

user’s wall and news feed.
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Crawler instances and frequency. We run a set of crawlers in Amazon EC2

instances to periodically crawl the walls and news feeds of MyPageKeeper’s users. The

set of users are partitioned across the crawlers. In our current instantiation, we run one

crawler process for every 1,000 users. Thus, as more users subscribe to MyPageKeeper,

we can easily scale the task of crawling their walls and news feeds by instantiating

more EC2 instances for the task. Our Python-based crawlers use the open-graph API,

incorporating users’ secret access tokens, to crawl posts from Facebook. Once the data

is received in JSON format, the crawlers parse the data and save it in a local Postgres

database.

Currently, as a tradeoff between timeliness of detection and resource costs on

EC2, we instantiate MyPageKeeper to crawl every user’s wall and news feed once every

two hours. Every couple of hours, all of our crawlers start up and each crawler fetches

new posts that were previously not seen for the users assigned to it. Once all crawlers

complete execution, the data from their local databases is migrated to a central database.

Checker instances. Checker modules are used to classify every post as social

malware or benign. Every two hours, the central scheduler forks an appropriate number

of checker modules determined by the number of new URLs crawled since the last round

of checking. Thus, the identification of social malware is also scalable since each checker

module runs on a subset of the pool of URLs. Each checker evaluates the URLs it receives

as input—using a combination of whitelists, blacklists, and a classifier—and saves the

results in a database. We use the libsvm [91] library for SVM based classification. Once

all checker modules complete execution, notifiers are invoked to notify all users who

have posts either on their wall or in their news feed that contain URLs that have been

flagged as social malware.

24



Data Total # distinct URLs

MyPageKeeper users 12,456 -
Friends of MyPageKeeper users 2,370,272 -

News feed posts 38,764,575 29,522,732
Wall posts 1,760,737 1,532,055

User reports 679 333

Table 2.3: Summary of MyPageKeeper data.

Feature F-Score

URL obfuscated? 0.300378

Spam keyword score 0.262220

# of news feed posts 0.173836

Message similarity score 0.131733

# of Likes 0.039895

# of wall posts 0.019857

# of comments 0.006367

Table 2.4: Feature scores used by MyPageKeeper’s classifier.

2.3 Evaluation

Next, we evaluate MyPageKeeper from three perspectives. First, we evaluate the accu-

racy with which it classifies social malware. Second, we determine the contribution of

MyPageKeeper’s social context based classifier in identifying social malware compared

to the URL blacklists that it uses. Lastly, we compare MyPageKeeper’s efficiency with

alternative approaches that would either crawl every URL or at least resolve short URLs

in order to identify social malware.

Table 2.3 summarizes the dataset of Facebook posts on which we conduct our

evaluation. This data is obtained during MyPageKeeper’s operation over a four month

period from 20th June to 19th October, 2011. MyPageKeeper had over 12K users during

this period, who had around 2.37M friends in union. Our data comprises 38.7 million
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Alternative source # of posts

Flagged by blacklist 18,923
Flagged by on.fb.me 2,102

Content deleted by Facebook 3,918
Blacklisted app 1,290
Blacklisted IP 5,827

Domain is deleted 247
Points to app install 4,658

Spamming app 6,547
Manually verified 14,876

True positives 58,388 (97%)
Unknown 1,803 (3%)

Total 60,191

Table 2.5: Validation of social malware flagged by MyPageKeeper classifier.

App
name

Description # of
posts

Sendible Social Media
Management

6,687

iRazoo Search & win! 1,853

4Loot 4Loot lets you
win all sorts
of Loot while
searching the
web

1,891

Table 2.6: Top three spamming applications in our dataset.

and 1.7 million posts that contain URLs from the news feeds and walls of these 12K

users. We consider only those posts that contain URLs since MyPageKeeper currently

checks only such posts. Overall, these 40 million posts contained around 30 million

unique URLs. In addition, we received 679 reports of social malware from 533 distinct

MyPageKeeper users during the four month period, with 333 distinct URLs across these

reports. Though it is hard to make any general claims with regard to representativeness

of our data, we find that several user metrics (e.g., the male-to-female ratio and the

distribution of users across age groups) closely match that of the Facebook user base
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at-large.

2.3.1 Accuracy

As previously mentioned, MyPageKeeper first matches every URL to be checked against

a whitelist. If no match is found, it checks the URL with a set of locally queriable URL

blacklists. Finally, MyPageKeeper applies its social context based classifier learned using

the SVM model. In this process, we assume URL information provided by whitelists

and blacklists to be ground truth, i.e., classification provided by them need not be

independently validated. Therefore, we focus here on validating the social malware

flagged by MyPageKeeper’s classifier based on social context features.

We trained MyPageKeeper’s classifier using a manually verified dataset of

URLs that contain 2,500 positive samples and 5,000 negative samples of social malware

posts; we gathered these samples over several months while developing MyPageKeeper.

Table 2.4 shows the importance of the various features in the SVM classifier learned.

During the course of MyPageKeeper’s operation over four months, we applied the clas-

sifier to check 753,516 unique URLs; these are URLs that do not match the whitelist or

any of the blacklists. Of these URLs, the classifier identified 4,972 URLs, seen across

60,191 posts, as instances of social malware.

It is important to note that when MyPageKeeper sees a URL in multiple posts

over time, the values of the features associated with the URL may change every time it

appears, e.g., the message similarity score associated with the URL can change. How-

ever, once MyPageKeeper classifies a URL as social malware during any of its occur-

rences, it flags all previously seen posts that contain the URL and notifies the corre-

sponding users. Therefore, in evaluating MyPageKeeper’s classifier, URL blacklists, or

MyPageKeeper as a whole, we consider here that a technique classified a particular URL
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as social malware if that URL was flagged by that technique upon any of the URL’s

occurrences. Correspondingly, we consider a URL to have not been classified as social

malware if it was not identified as such during any of its occurrences.

Checking the validity of social malware identified by MyPageKeeper’s classifier

is not straightforward, since there is no ground truth for what represents social malware

and what does not. However, here we attempt to evaluate the positive samples of

social malware identified by MyPageKeeper’s classifier using a combination of a host of

complementary techniques (we later discuss in Section 2.6 the validation of posts that

are deemed safe by MyPageKeeper). To do so, we use an instrumented Firefox browser

to crawl the 4,972 URLs flagged by MyPageKeeper at the end of the four month period

of MyPageKeeper operation. For every URL that we crawl, we record the landing URL,

the IP address and other whois information of the landing domain, and contents of the

landing page. To verify the reputation of every URL, we then apply several techniques

in the order summarized in Table 2.5.

• Blacklisted URLs: first, we check if any of the URLs or the corresponding landing

URLs are found in any URL blacklists. Note that, though we use blacklists in the

operation of MyPageKeeper itself, we use only those that can be stored and queried

locally. Therefore, here we use for validation other external blacklists for which we

have to issue remote queries. Further, even for blacklists used in MyPageKeeper,

they may not identify some instances of social malware when they initially appear

because blacklists have been found to lag in keeping up with the viral propagation

of spam on OSNs [99]. Hence, we check if a URL identified as social malware by

MyPageKeeper’s classifier appeared in any of the blacklists used by MyPageKeeper at

a later point in time, even though it did not appear in any of those blacklists initially
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when MyPageKeeper spotted posts containing that URL.

• Flagged by fb.me URL shortener: many URLs posted on Facebook are shortened using

Facebook’s URL shortener fb.me. When Facebook determines any link shortened

using their service to be unsafe, the corresponding shortened URL thereafter redirects

to Facebook’s home page—facebook.com/home.php—instead of the actual landing

page. Of the URLs flagged by MyPageKeeper’s classifier, we check if those shortened

using Facebook’s URL shortening service redirect to Facebook’s home page.

• Content deleted from Facebook: if Facebook determines any URL hosted under the

facebook.com domain to be unsafe (e.g., the page for a spamming Facebook appli-

cation), it thereafter redirects that URL to facebook.com/4oh4.php. We use this as

another source of information to validate URLs flagged by MyPageKeeper’s classifier.

• Blacklisted apps: if the URLs in posts made by a Facebook app are flagged due to

any of the above reasons, we consider that app to be malicious and declare all other

URLs posted by it as unsafe, thus helping validate some of the URLs declared as social

malware by MyPageKeeper’s classifier.

• Blacklisted IPs: for every URL flagged by any of the above techniques, we record the

IP address when that URL is crawled and blacklist that IP. Of the URLs flagged by

MyPageKeeper’s classifier, we then consider those that lead to one of these blacklisted

IP addresses as correctly classified.

• Domain deleted: malicious domains are often deleted once they are caught serving

malicious content. Therefore, we deem MyPageKeeper’s positive classification of a

URL to be correct if the domain for that URL no longer exists when we attempt to

crawl it.

• Obfuscation of app installation page: posts made by Facebook applications to attract
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users to install them typically include an un-shortened URL pointing to a Facebook

page that contains information about the application. Once a user visits this page,

she can read the application’s description and then click on a link on this page if she

decides to install it. However, posts from some surreptitious applications contained

shortened URLs that directly take the user to a page where they request the user to

grant permissions (e.g., to post on the user’s wall) and install the application. We have

found all instances of such applications to be spamming applications. Therefore, if any

of the URLs flagged by MyPageKeeper’s classifier is a shortened URL that directly

points to the installation page for a Facebook app, we declare that classification correct.

• Spamming app: from our dataset, we manually identified several Facebook applications

that try to spread on Facebook by promising free money to users and make posts that

point to the application page. Once installed by a user, such applications periodically

post on the user’s wall (without requesting the user’s authorization for each post) in

an attempt to further propagate by attracting that user’s friends; Table 2.6 shows

some such applications that frequently appear in our dataset. Any URLs classified as

social malware by MyPageKeeper’s classifier that happen to be posted by one of these

manually identified spamming apps are deemed correct.

• Manual analysis: finally, over the operation of MyPageKeeper during the four months,

we periodically verified a subset of URLs flagged by the classifier. These provide an

additional source of validation.

In all, the union of the above techniques validates that 58,388 out of 60,191

posts declared as social malware by the MyPageKeeper classifier are indeed so. There-

fore, 97% of the social malware identified by MyPageKeeper’s classifier are true positives.

On the other hand, the 1,803 posts incorrectly classified as social malware constitute
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Source # (%) of
URLs

# (%) of
posts

Overlap with classi-
fier (# of URLs)

Google SBA2 221 (6.8%) 378 (0.4%) 0
Phishtank 12 (0.4%) 435 (0.5%) 1
Malware Norm 69 (2.1%) 154 (0.2%) 0
Joewein 240 (7.4%) 652 (0.7%) 11
APWG 56 (1.7%) 569 (0.6%) 0
Spamcop 232 (7.1%) 921 (1.0%) 0

All blacklists 830 (25.6%) 3104 (3.4%) 12

MyPageKeeper
classifier

2405
(74.4%)

89389
(96.6%)

Table 2.7: Comparison of contribution made by blacklists and classifier to MyPage-
Keeper’s identification of social malware during the four month period of operation.

 0

 10

 20

 30

 40

 50

M
PK

R
esolver

C
raw

ler

T
h
ro

u
g
h
p
u
t 

(U
R

L
/s

ec
)

(a) Throughput

10
-2

10
-1

10
0

10
1

10
2

M
PK

R
esolver

C
raw

ler

L
at

en
cy

 (
se

c.
)

(b) Latency

Figure 2.3: Comparison of MyPageKeeper’s throughput and latency in classifying URLs
with a short URL resolver and a crawler-based approach. The height of the box shows
the median, with the whiskers representing 5th and 95th percentiles.

less than 0.005% of the over 40 million posts in our dataset. Note that, though all of

the above techniques could be folded into MyPageKeeper itself to help identify social

malware, we do not do so because all of these techniques require us to crawl a URL in

order to evaluate it; we cannot afford the latency of crawling.
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2.3.2 Comparison with Blacklists

Though we see that the identification of social malware by MyPageKeeper’s classifier

is accurate, the next logical question is: what is the classifier’s contribution to My-

PageKeeper in comparison with URL blacklists? Table 2.7 provides a breakdown of the

URLs and posts classified as social malware by MyPageKeeper during the four month

period under consideration. There are two main takeaways from this table. First, we

see that the classifier finds 74.4% of social malware URLs and 96.6% of social malware

posts identified by MyPageKeeper. Thus, the classifier accounts for a large majority of

social malware identified by MyPageKeeper and is thus critical to the system’s opera-

tion. Second, there is very little overlap between the URLs flagged by blacklists and

those flagged by the classifier. The typically low frequency of occurrence of URLs that

match blacklists is another reason that the classifier’s share of identified social malware

posts is significantly greater than its corresponding share of flagged URLs.

2.3.3 Efficiency

Beyond accuracy, it is critical that MyPageKeeper’s identification of social malware be

efficient, so as to minimize the costs that we need to bear in order to keep the delay

in identifying social malware and alerting users low. The matching of a URL against a

whitelist or a local set of blacklists incurs minimal computational overhead. In addition,

we find that execution of the classifier also imposes minimal delay per URL verified.

To demonstrate the efficiency of MyPageKeeper, we compare the rate at which

it classifies URLs with the classification throughput that two other alternative classes of

approaches would be able to sustain. Our first point of comparison is an approach that

relies only on locally queriable URL whitelists and blacklists but resolves all shortened

URLs into the corresponding complete URL. Our second alternative crawls URLs to
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evaluate them, e.g., using the content on the page or the IP address of the target

website. Figure 2.3(a) compares the throughput of classifying URLs with the three

approaches, using data from two weeks of MyPageKeeper’s execution. We see that

the throughput with MyPageKeeper is almost an order of magnitude greater than the

alternatives, with all three approaches using the same set of resources on EC2. As we

see in Figure 2.3(b), MyPageKeeper’s better performance stems from its lower execution

latency to check an URL; the median classification latency with MyPageKeeper is 48

ms compared to a median of 426 ms when resolving short URLs and 1.9 seconds when

crawling URLs. Thus, we are able to significantly reduce MyPageKeeper’s classification

latency, compared to approaches that need to resolve short URLs or crawl target web

pages, by keeping all of its computation local.

Furthermore, a crawler-based approach will be significantly more expensive

than MyPageKeeper. Thomas et al. [123] found that crawler-based classification of

15 million URLs per day using cloud infrastructure results in an expense of $800/day.

Therefore, we estimate that it would cost approximately $1.5 million/year to handle

Facebook’s workload; 1 million URLs are shared every 20 minutes on Facebook [80].

Since MyPageKeeper’s classification latency is 40 times less than a crawler-based ap-

proach, we estimate that the expense incurred with MyPageKeeper would be at least

40 times lower than a system that classifies URLs by crawling them.

2.4 Analysis of Social Malware

Thus far we described how MyPageKeeper detects social malware efficiently at scale. In

this section, we analyze the social malware that we have found during MyPageKeeper’s
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Figure 2.4: 49% of MyPageKeeper’s 12,456 users were notified of social malware at least
once in four months of MyPageKeeper’s operation.

operation to throw light on characteristics of social malware on Facebook.

2.4.1 Prevalence of Social Malware

49% of MyPageKeeper’s users were exposed to social malware within four

months. First, we analyze the prevalence of social malware on Facebook. To do so, we

define that a user was exposed to a particular social malware post if that post appeared

in her wall or news feed. As shown in Figure 2.4, 49% of MyPageKeeper’s users were

exposed to at least one social malware post during the four month period we consider

here. Though this already indicates the wide reach of social malware on Facebook,

we stress that 49% is only a lower-bound due to a couple of reasons. First, many of

MyPageKeeper’s users subscribed to our application at some time in the midst of the

four month period and therefore, we miss social malware that they were potentially

exposed to prior to them subscribing to MyPageKeeper. Second, Facebook itself detects

and removes posts that it considers as spam or pointing to malware [84, 86, 118]. All

the social malware detected by MyPageKeeper is after such filtering by Facebook.

Given that some users are exposed to more social malware than others, we
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Figure 2.5: Correlation between vulnerability and social degree of exposed users.

analyze if the social degree of a user has any impact on the probability of a user being

exposed to social malware. Figure 2.5 shows the number of social malware notifications

received by MyPageKeeper users as a function of the number of friends they have on

Facebook. We bin users with the number of friends within 10 of each other and plot

the average number of notifications per bin; we consider here only those users who were

subscribed to MyPageKeeper for at least three months. We see that the probability

of users being exposed to social malware is largely independent of their social degree.

This indicates that whether a user is more likely to be exposed to social malware is not

simply a function of how many friends she has, but likely depends on the susceptibility

of those friends to becoming victims of scams and helping propagate them.

We also find that social malware on Facebook is prevalent over time. Figure 2.6

shows the number of social malware notifications sent per day by MyPageKeeper to

its users. We see a consistently large number of notifications going out daily, with

noticeable spikes on a few days. On 11th July 2011, a scam that conned users to complete

surveys with the pretext of fake free products went viral and posts pointing to the scam
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Figure 2.6: No. of social malware notifications per day. On 11th July, 19th Sep, and
3rd Oct, social malware was observed in large scale.

appeared 4,056 times on the walls and news feeds of MyPageKeeper’s users. Two other

scams, that promised ‘Free Facebook shoes’ and conned users to fill out surveys, also

caused MyPageKeeper to send out a large number of notifications on that day. On 19th

Sep. 2011, different variants of the ‘Facebook Free T-Shirt’ scam [21] were spreading on

Facebook and was spotted 2,040 times by MyPageKeeper. On 3rd Oct. 2011, a video

scam was spreading on Facebook and MyPageKeeper observed it in 1,739 posts.

We next analyze the prevalence and impact of social malware from the perspec-

tive of individual social malware links. For each link, we define its “active-time” as the

difference between the first and last times of its occurrence in our dataset. Figure 2.7

shows that we did not see 60% of social malware links beyond one day. Subsequent

posts containing these links may have been filtered by Facebook once it recognized their

spammy or malicious nature, or our dataset may miss those posts due to MyPage-

Keeper’s limited view into Facebook’s 850 million users. Further, we do not attempt

any clustering of links into campaigns here. However, even with these caveats, 20% of

social malware links were seen in multiple posts separated by at least 10 days, suggest-
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Figure 2.7: Active-time of social malware links. 20% of social malware links were
observed more than 10 days apart.

Shortening service % of social malware URLs

bit.ly 21.9%
tinyurl.com 18.8%

goo.gl 5.1%
t.co 3.16%

tiny.cc 1.6%
ow.ly 1.1%

on.fb.me 1.0%
is.gd 0.7%
j.mp 0.4%

0rz.com 0.3%

All shortened URLs 54%

Table 2.8: Top URL shortening services in our social malware dataset.

ing that a significant fraction of social malware eludes Facebook’s detection mechanisms

and lasts on Facebook for significant durations.

2.4.2 Domain Name Characteristics

20% of social malware links are hosted inside Facebook. In the next section

of our analysis, we focus on the domain-level characteristics of social malware links.

First, Table 2.8 shows the top ten URL shortening services used in social malware
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Domain Name % of URLs % of posts

facebook.com 20.7% 26.3%
blogspot.com 6.3% 8.7%
miessass.info 1.9% 3.2%

shurulburul.tk 1.8% 1.2%
tomoday.info 0.8% 0.13%

Table 2.9: Top two-level domains in our social malware dataset.

links observed by MyPageKeeper. In all, shortened URLs account for 54% of social

malware links in our dataset. Our design of MyPageKeeper’s classifier to rely solely on

social context, and to not resolve short URLs, hence makes a significant difference (as

previously seen in the comparison of classification latency).

Further, we find it surprising that a large fraction of social malware links (46%)

are not shortened, given that shortening of URLs enables spammers to obfuscate them.

On further investigation, we find that many Facebook scams such as ‘free iPhone’ and

‘free NFL jersey’ use domain names that clearly state the message of the scam, e.g.,

http://iphonefree5.com/ and http://nfljerseyfree.com/. These URLs are more

likely to elicit higher click-through rates compared to shortened URLs. On the other

hand, most of the shortened URLs were used by malicious or spam applications (e.g.,

‘The App’, ‘Profile Stalker’) that generate shortened URLs pointing to their application’s

installation page. We find that 89% of shortened URLs in our dataset of social malware

links were posted by Facebook applications.

Next, based on our crawl of the social malware links in our dataset, we inspect

the top two-level domains found on the landing pages pointed to by these links. First,

as shown in Table 2.9, we find that a large fraction of social malware (over 20% of

URLs and 26% of posts) is hosted on Facebook itself. Second, a sizeable fraction of

social malware uses sites such as blogspot.com and wordpress.com that enable the
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Figure 2.8: Breakdown of social malware links, when crawled in Nov. 2011, that origi-
nally point to web pages in the facebook.com domain.

spammers to easily create a large number of URLs without going through the hassle

of registering new domains. Further, all of these domains are of good repute and are

unlikely to be flagged by traditional website blacklists.

2.4.3 Analysis of Social Malware Hosted in Facebook

Hackers use numerous channels in Facebook to spread social malware. Given

the large fraction of social malware hosted on Facebook itself, we next analyze this subset

of social malware. First, in early November 2011, we crawled every social malware

link in our dataset that had pointed to a landing page in the facebook.com domain

at the time when MyPageKeeper had initially classified that link as social malware.

Figure 2.8 presents a breakdown of the results of this crawl. If Facebook disables a

URL, it redirects us to facebook.com/home.php. Similarly, if crawling a URL points

us to facebook.com/4oh4, it implies that Facebook has deleted the content at that

URL. Therefore, as seen in Figure 2.8, a large fraction of social malware links that were

originally pointing to Facebook have now been deactivated. However, we also see that
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Figure 2.9: For most social malware links shortened with bit.ly or goo.gl, a large majority
of the clicks came from Facebook.

a significant fraction of these links—over 40%—were still live. Further, the figure shows

that spammers use several different channels, such as applications, events, and pages to

propagate their scams on Facebook. In the figure, ‘App inst’ and ‘App prof’ refer to the

installation and profile pages of Facebook applications, and ‘LaaS’ refers to campaigns

intended to increase the number of Likes on a Facebook page (described in detail in

Section 2.5).

In our dataset, we see 257 distinct social malware links shortened with the

bit.ly and goo.gl URL shorteners that point to landing pages in the facebook.com

domain. Using the APIs [14, 46] offered by these URL shortening services, we computed

the number of clicks recorded for these 257 links in two cases—1) where the Referrer

was Facebook, and 2) where the Referrer was any other domain. Figure 2.9 shows that

Facebook is the dominant platform from which most of these links received most of

their clicks; 80% of links received over 70% of their clicks from Facebook. This seems to

indicate that most social malware hosted on Facebook is propagated solely on Facebook

and tailored for that platform.
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Social malware Likelihood Spam email Likelihood
word ratio word ratio

free 12.1 money 11.5
< 3 ∞ price 26.6

iphone ∞ free 0.08
awesome 31.3 account 9.6

win 24.3 stock 9.7
wow 90.8 address 5.2
hurry 36.8 bank 56.4
omg 332.3 pills ∞

amazing 4.9 viagra ∞
deal 1.9 watch 1.9

Table 2.10: Top keywords from social malware posts and spam emails.
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Figure 2.10: Overlap of keywords between email and Facebook.

2.4.4 Comparison of Social Malware to Email Spam

Social malware keywords exhibit little (10%) overlap with spam email key-

words. As we saw earlier in Section 2.3, spam keyword score is a key feature in My-

PageKeeper’s classifier. Therefore, in the final section of our analysis, we investigate

the overlap in ‘spam keywords’ that we observe in social malware on Facebook with

those seen in another medium targeted by spammers, specifically email. We investigate
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whether spammers use similar keywords on Facebook as they use in email spam.

To perform this analysis, we collected over 17,000 spam emails from [111]. For

Facebook spam, we use 92,493 social malware posts collected by MyPageKeeper. We

transform posts in either dataset to a bag of words with their frequency of occurrence.

Similar to [123], we then compute the log odds ratio for each keyword to determine

its overlap in Facebook social malware and spam email. Here, the log odds ratio for

a keyword is defined by |log(p1q2/p2q1)| where pi is the likelihood of that keyword

appearing in set i and qi = 1− pi. A value of 0 for the log odds ratio indicates that the

keyword is equally likely to appear in both datasets, whereas an infinite ratio indicates

that the keyword appears in only one of the datasets. In Figure 2.10 (infinite values are

omitted), we see only a 10% overlap in spam keywords between email and Facebook.

This indicates that Facebook spam significantly differs from traditional email spam.

Further, Table 2.10 shows the likelihood ratio (defined earlier in Section 2.2.3)

for the top keywords in either dataset. The higher the likelihood ratio of a social

malware keyword, the stronger the bias of the keyword appearing more in Facebook

social malware than in email spam; an infinite ratio implies the keyword exclusively

appears in Facebook social malware. The word ‘omg’ is 332 times more likely to be

used in Facebook social malware than in email spam. On the other hand, words such

as ‘pills’ and ‘viagra’ are restricted solely to email spam.

2.5 Like-as-a-Service

Facebook has now become the premier online destination on the Internet. Over 900

million users, half of whom visit the site daily, spend over 4 hours on the site every
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Like 10 Click 'Like' to 
receive free iPad

Product x

www.facebook.com/pageX

a) User visits a product page
It lures user to click `'Like'

Like 11 Install the app
to play and win!

Product x

www.facebook.com/pageX

b) Like count increases by 1.
Now spammer lures user to 

install the LaaS app

Click here to win

My wall

Click here to win
Click here to win

www.facebook.com/home

c) LaaS app gets permission
to spam user's wall anytime!

Figure 2.11: A representation of how a Like-as-a-service Facebook application collects
Likes for its client’s page and gains access to the user’s wall for spamming. Dotted
region of the page is controlled by the spammer.
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Figure 2.12: Timeline of posts made by the Games LaaS Facebook application seen on
users’ walls and news feeds.

month [24]. To leverage user activity on Facebook, an increasingly large number of

businesses have Facebook pages associated with their products. However, attracting

users to their page is a challenge for any business. One way of doing so is to make users

who visit a Facebook page click the ‘Like’ button on the page. A large number of Likes

has two significant implications. First, the number of Likes associated with a page has

begun to represent the reputation associated with a page, e.g., a higher number of Likes

improves the page’s rank in Bing [12]. Second, a link to the product page appears in

the news feed of the friends of the user who clicked Like on the page, thus enabling the
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Page Name Application Message No. of
Likes

Raging Bid Just got a better score on Raging Bid’s Bouncing
Balls contest and I am now in 12297th place. I
am getting closer to winning a Sony Bravia 3D
HDTV. Who thinks they can beat my score?
Click here to try: URL

168,815

www.WalkerToyota.com DAILY CONTEST UPDATE: I am currently in
7573rd place in Walker Toyota’s Tetris contest.
There is still plenty of time to try and win a
16GB iPad2. Who thinks they can get a better
score than me? Click here to try: URL

136,212

Chip Banks Chevrolet
Buick

DAILY CONTEST UPDATE: I am currently in
310th place in Chip Banks Chevrolet Buick’s
Gem Swap II contest. There is still plenty of
time to try and win a 16GB iPad2. Who thinks
they can get a better score than me? Click here
to try: URL

2,190

Casey Jamerson DAILY CONTEST UPDATE: I am currently in
6234th place in Casey Jamerson Music’s Gem
Swap II contest. There is still plenty of time to
try and win a 16GB iPad2. Who thinks they
can get a better score than me? Click here to
try: URL

47,496

Tara Gray DAILY CONTEST UPDATE: I am currently in
10213th place in Tara Gray’s Gem Swap II con-
test. There is still plenty of time to try and win
a Burma Ruby Ring. Who thinks they can get
a better score than me? Click here to try: URL

231,035

Table 2.11: Five example Facebook pages integrated with the Games LaaS application
to spam users’ walls for propagation.

link to the page to spread on Facebook.

Based on our view of Facebook social malware through the MyPageKeeper

lens, we see an emerging Like-as-a-Service 1 market to help businesses attract users

to their pages. We identify several Facebook apps (e.g., ‘Games’ [45], ‘FanOffer’ [39],

and ‘Latest Promotions’ [53]) which are hired by the owners of Facebook pages to help

increase the number of Likes on their pages. These applications, which offer Likes as

1 Note that ‘Like-as-a-Service‘ differs from ‘Likejacking‘ [54], where users are tricked into clicking the
Like button without them realizing they are doing so, e.g., by enticing the user to click on a Flash video,
within which the Like button is hidden.
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Figure 2.13: # of Likes and comments associated with URLs posted by the Games
Facebook app.

a service, presumably get paid on a ‘Pay-per-Like’ model by the owners of Facebook

pages that make use of their services.

Figure 2.11 shows how a Like-as-a-Service (LaaS) application typically works.

First, a customer of the LaaS application integrates the application into their Facebook

page. When users visit the page, the LaaS application entices the user to click Like on

page. Typically, the reward promised to the user in return for his Like is that the user

can play some games on the page or have a chance of winning free products. However,

once the user clicks Like on the page to access the promised reward, the LaaS application

then demands that the user add the application to his profile in order to proceed further.

In the process of getting the user to add the LaaS application, the application requests

the user to grant permission for it to post on the user’s wall. Once the application

obtains such permissions, it periodically spams the user’s wall with posts that contain

links to the Facebook page of the customer who enrolled the LaaS application for its

services. These posts will appear in the news feeds of the unsuspecting user’s friends,

who in turn may visit the Facebook page and go through the same cycle again. The
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LaaS application thus enables the Facebook pages of its customers to accumulate Likes

and increase their reputation, even though users are clicking Like on these pages with

the promise of false rewards rather than because they like the products advertised on

the page.

Here, we analyze the activity of one such LaaS application—Games [45]. Fig-

ure 2.12 shows that posts made by this application appear regularly in the walls and

news feeds of MyPageKeeper’s users. Even with our small sample of roughly 12K users

from Facebook’s total population of over 850 million users, we see that 40 users have

posts made by Games on their walls, which implies that these users have installed the ap-

plication and granted it permission to make posts on their wall at any time. We also see

that the number of users who installed Games significantly rose around mid-September

2011. Further, from the news feeds of MyPageKeeper users, we see that Games posted

links to as many as 700 Facebook pages on a single day; each link points to the Facebook

page of a different customer of this LaaS application. Table 2.11 shows the posts made

by Games for some of its customers, the variation in text messages across these posts,

and the large number of Likes garnered by the Facebook pages of these customers.

We next analyze the Likes and comments received by 721 URLs posted by the

Games app. As shown in Figure 2.13, we see that over 95% of these URLs have less than

100 Likes and less than 100 comments; this fraction is significantly lesser on a dataset of

randomly chosen 721 URLs from benign posts. However, over 20% of the URLs posted

by the Games app do receive Likes and comments, thus enabling them to propagate on

Facebook. Real users may be unknowingly helping to spreading spam in these cases;

such users have been previously referred to as creepers [118].
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2.6 Discussion

Client-based solution. An alternative to MyPageKeeper’s server-side detection of

social malware would be to identify social malware on client machines. In such an

approach, a client-side tool can classify a post at the instant when the user accesses

the post. However, we choose not to use such an approach for multiple reasons. First,

a server-side solution is more amenable to adoption; it is easier to convince users to

add an app to their Facebook profile than to convince them to download and install an

application or browser extension on their machines. Second, users can access Facebook

from a range of browsers and even from different device types (e.g., mobile phones).

Developing and maintaining client-side tools for all of these platforms is onerous. Finally,

and most importantly, many of the features used by our social malware classifier (e.g.,

message similarity score) fundamentally depend on aggregating information across users.

Therefore, a view of Facebook from the perspective of a single client may be insufficient

to identify social malware accurately.

Estimating false negatives. While we evaluated the accuracy of social mal-

ware identified by MyPageKeeper by cross-validating with other techniques, evaluating

the accuracy of MyPageKeeper’s classifier in cases where it declares a URL safe is much

harder. Not only do we lack ground truth, but since the highly common case is that a

Facebook post is benign, manual verification of a randomly chosen subset of the classi-

fier’s negative outputs is insufficient.

We therefore evaluate whether MyPageKeeper’s classifier misses any social mal-

ware by using data from user-reported samples of social malware. As shown in Table 2.3,

533 distinct MyPageKeeper users have submitted 679 such reports and we have received

333 unique URLs across these reports. Based on manual verification, we find that 296
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of these 333 URLs indeed point to spam or malware. The remaining 37 URLs point

to sites like surveymonkey.com (fill out surveys) and clixsense.com (get paid to view

advertisements), which though abused by spammers have legitimate uses as well. We

suspect that our users did come across social malware, but reported the URL of the

landing page, rather than the URL that they originally found in a social malware post.

Of the 296 instances of true social malware reported by users, MyPageKeeper’s

classifier flagged all but 17 of them, independently of users reporting them to us. This

translates into a false negative rate of 5% for the classifier. However, 16 of these 17 URLs

had been found to match against one of the URL blacklists used by MyPageKeeper.

Thus, the false negative rate for the whole MyPageKeeper system, which combines

blacklists and the classifier to detect social malware, is 0.3%.

Arms race with spammers. Though our current techniques seem to suffice

to accurately identify social malware on Facebook, we speculate here on how spammers

may evolve social malware, given the knowledge of how MyPageKeeper works. One

option for spammers to evade MyPageKeeper is to use different shortened URLs for

a single malicious landing URL. In such cases, MyPageKeeper would consider every

posted shortened URL seperately even though they are all part of the same campaign.

Thus, if any of these shortened URLs does not appear on the walls/news feeds of several

users, MyPageKeeper may fail to flag it. Another option for social malware to evade

MyPageKeeper is for spammers to slow down its rate of propagation; as we found in

Section 2.3.2, MyPageKeeper sometimes misses social malware which is observed only

a few times in our dataset. However, slowing down a social malware epidemic makes

it likely that it will be flagged by other techniques, such as URL blacklists. Moreover,

spammers may often be unable to control how fast a social malware epidemic spreads.

In the case where an epidemic spreads by luring users into installing a Facebook app,
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the spammer can control how often the app posts spam on the user’s wall. However, in

cases where users are asked to ‘Like’ or ‘Share’ a post to access a fake reward, the social

malware is self-propagating and its viral spread cannot be controlled by spammers.

Another option is for spammers to change the keywords that they use in so-

cial malware posts, thus affecting the spam keyword score used by MyPageKeeper’s

classifier. Though spammers are constrained in their choice of keywords by the need

to attract users, some of the keywords may evolve over time as popular colloquial ex-

pressions (e.g., ‘OMG’) change. To evaluate MyPageKeeper’s ability to cope with such

change, we identified the top keywords (those with high likelihood ratio compared to

benign posts among frequently occurring keywords) distinctive to user-reported social

malware posts. We find that the spam keywords that we use in MyPageKeeper’s classifier

(identified from manually identified samples of social malware) match those computed

here. Though this captures data only across four months, MyPageKeeper can similarly

recompute the set of spam keywords over time.

2.7 Summary of Results

In this chapter, we present MyPageKeeper, an efficient and scalable approach to detect

social malware in Facebook. Based on 12K Facebook users and their 2.2M Facebook

friends and 40M posts over four months, we show the following key results in this chapter:

• We show that MyPageKeeper can accurately and efficiently identify social malware

at scale. It’s true positive rate is 97% and false positive rate is 0.005%. Further,

it requires only 46 ms on average to classify a post.

• We found that the reach of social malware is widespread —49% of MyPageKeeper’s

12K users were exposed at least once to social malware within four months, and
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that a significant fraction of social malware is hosted on Facebook itself.

• We also showed that existing defenses, such as URL blacklists, are ill-suited for

identifying social malware, and that social malware significantly differs from email

spam.

• We identified a new trend in aggressive marketing of Facebook pages using “Like-

as-a-Service” applications that spam users to make money based on a “Pay-per-

Like” model.
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Chapter 3

Indentifying Malicious

Applications

Online social networks (OSN) enable and encourage third party applications

(apps) to enhance the user experience on these platforms. Such enhancements include

interesting or entertaining ways of communicating among online friends, and diverse

activities such as playing games or listening to songs. For example, Facebook provides

developers an API [26] that facilitates app integration into the Facebook user-experience.

There are 500K apps available on Facebook [83], and on average, 20M apps are installed

every day [3]. Furthermore, many apps have acquired and maintain a large user-base.

For instance, FarmVille and CityVille apps have 26.5M and 42.8M users to date.

Recently, hackers have started taking advantage of the popularity of this third-

party apps platform and deploying malicious applications [63, 82, 77]. Malicious apps

can provide a lucrative business for hackers, given the popularity of OSNs, with Facebook

leading the way with 900M active users [35]. There are many ways that hackers can

benefit from a malicious app: (a) the app can reach large numbers of users and their
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Figure 3.1: The emergence of AppNets on Facebook. Real snapshot of 770 highly
collaborating apps: an edge between two apps means that one app helped the other
propagate. Average degree (no. of collaborations) is 195!

friends to spread social malware, (b) the app can obtain users’ personal information such

as email address, home town, and gender, and (c) the app can “re-produce” by making

other malicious apps popular. To make matters worse, the deployment of malicious apps

is simplified by ready-to-use toolkits starting at $25 [48]. In other words, there is motive

and opportunity, and as a result, there are many malicious apps spreading on Facebook

every day [70].

Despite the above worrisome trends, today, a user has very limited information

at the time of installing an app on Facebook. In other words, the problem is: given an

app’s identity number (the unique identifier assigned to the app by Facebook), can

we detect if the app is malicious? Currently, there is no commercial service, publicly-

available information, or research-based tool to advise a user about the risks of an app.

As we show in Sec. 3.2, malicious apps are widespread and they easily spread, as an

infected user jeopardizes the safety of all its friends.

So far, the research community has paid little attention to OSN apps specifi-
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cally. Most research related to spam and malware on Facebook has focused on detecting

malicious posts and social spam campaigns [115, 97, 96]. A recent work studies how

app permissions and community ratings correlate to privacy risks of Facebook apps [92].

Finally, there are some community-based feedback-driven efforts to rank applications,

such as Whatapp [81]; though these could be very powerful in the future, so far they

have received little adoption. We discuss previous work in more detail in Chapter 5.2.

In this work, we develop FRAppE, a suite of efficient classification techniques

for identifying whether an app is malicious or not. To build FRAppE, we use data from

MyPageKeeper discussed in Chapter 2. We analyze 111K apps that made 91 million

posts over nine months. This is arguably the first comprehensive study focusing on quan-

tifying, profiling, and understanding malicious apps, and synthesizes this information

into an effective detection approach.

First, we show that malicious apps are rampant in Facebook since we identified

13% of apps in our dataset of 111K distinct apps are malicious. These malicious apps

reach a large number of users. For example, 60% of malicious apps endanger more than

100K users each by convincing them to follow the links on the posts made by these apps,

and 40% of malicious apps have over 1,000 monthly active users each.

Next, we systematically profile both malicious and benign apps and show that

the corresponding profiles differ significantly. For example, malicious apps require fewer

permissions during installation than benign apps and they heavily reuse app names (8%

of unique names of malicious apps are each used by more than 10 different apps) which

is rare for benign apps. We profile apps into two different classes of features: (a)on-

demand features which can be obtained on-demand given an app ID (i.e. app permission

requirement) and (b) aggregation-based features which can be obtained across apps

collected over time (i.e. posting behavior of apps).
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Figure 3.2: Steps involved in hackers using malicious applications to get access tokens
to post malicious content on victims’ walls.

Based on our insight in app profiles, we develop FRAppE (Facebook’s Rigorous

Application Evaluator) to identify malicious apps. We show that, FRAppE Lite, which

only uses information available on-demand, can identify malicious apps with 99.0%

accuracy, with low false positives (0.1%) and false negatives (4.4%). However, by adding

aggregation-based information, FRAppE can detect malicious apps with 99.5% accuracy,

with no false positives and lower false negatives (4.1%).

3.1 Background

In this section, we discuss how applications work on Facebook and outline the datasets

that we use in this chapter. Chapter 2 provides detailed overview of MyPageKeeper,

our primary data source.

3.1.1 Facebook Apps

Facebook enables third-party developers to offer services to its users by means of Face-

book applications. Unlike typical desktop and smartphone applications, installation of

a Facebook application by a user does not involve the user downloading and executing

an application binary. Instead, when a user adds a Facebook application to her profile,
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Dataset Name
# of apps

Benign Malicious

D-Total 111,167

D-Sample 6,273 6,273

D-Summary 6,067 2,528

D-Inst 2,257 491

D-ProfileFeed 3,227 6,063

D-Complete 2,255 487

Table 3.1: Summary of the dataset collected by MyPageKeeper from June 2011 to March
2012.

App ID App name Post count

235597333185870 What Does Your Name Mean? 1006
159474410806928 Free Phone Calls 793
233344430035859 The App 564
296128667112382 WhosStalking? 434
142293182524011 FarmVile 210

Table 3.2: Top malicious apps in D-Sample dataset.

the user grants the application server: (a) permission to access a subset of the infor-

mation listed on the user’s Facebook profile (e.g., the user’s email address), and (b)

permission to perform certain actions on behalf of the user (e.g., the ability to post on

the user’s wall). Facebook grants these permissions to any application by handing an

OAuth 2.0 [10] token to the application server for each user who installs the application.

Thereafter, the application can access the data and perform the explicitly-permitted

actions on behalf of the user. Fig. 3.2 depicts the steps involved in the installation and

operation of a Facebook application.

Operation of malicious applications. Malicious Facebook applications

typically operate as follows.

• Step 1: hackers convince users to install the app, usually with some fake promise (e.g.,

free iPads).
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• Step 2: once a user installs the app, it redirects the user to a web page where the user

is requested to perform tasks, such as completing a survey, again with the lure of fake

rewards.

• Step 3: the app thereafter accesses personal information (e.g., birth date) from the

user’s profile, which the hackers can potentially use to profit.

• Step 4: the app makes malicious posts on behalf of the user to lure the user’s friends

to install the same app (or some other malicious app, as we will see later).

This way the cycle continues with the app or colluding apps reaching more

and more users. Personal information or surveys can be “sold” to third parties [4] to

eventually profit the hackers.

3.1.2 Our Datasets

In the absence of a central directory of Facebook apps 1, the basis of our study is a

dataset obtained from 2.2M Facebook users, who are monitored by MyPageKeeper [57].

Our dataset contains 91 million posts from 2.2 million walls monitored by

MyPageKeeper over nine months from June 2011 to March 2012. These 91 million

posts were made by 111K apps, which forms our initial dataset D-Total, as shown in

Table 3.1. Note that, out of the 144M posts monitored by MyPageKeeper during this

period, here we consider only those posts that included a non-empty “application” field

in the metadata that Facebook associates with every post.

The D-Sample dataset: finding malicious applications. To identify

malicious Facebook applications in our dataset, we start with a simple heuristic: if any

post made by an application was flagged as malicious by MyPageKeeper, we mark the

application as malicious; as we explain later in Section 3.4, we find this to be an effective

1Note that Facebook has deprecated the app directory in 2011, therefore there is no central directory
available for the entire list of Facebook apps [25].
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technique for identifying malicious apps. By applying this heuristic, we identified 6,350

malicious apps. Interestingly, we find that several popular applications such as ‘Facebook

for Android’ were also marked as malicious in this process. This is in fact the result of

hackers exploiting Facebook weaknesses as we describe later in Section 4.3. To avoid such

mis-classifications, we verify applications using a whitelist that is created by considering

the most popular apps and significant manual effort. After whitelisting, we are left with

6,273 malicious applications (D-Sample dataset in Table 3.1). Table 3.2 shows the top

five malicious applications, in terms of number of posts per application.

The D-Sample dataset: including benign applications. To select an

equal number of benign apps from the initial D-Total dataset, we use two criteria: (a)

none of their posts were identified as malicious by MyPageKeeper, and (b) they are

“vetted” by Social Bakers [67], which monitors the ”social marketing success” of apps.

This process yields 5,750 applications, 90% of which have a user rating of at least 3 out

of 5 on Social Bakers. To match the number of malicious apps, we add the top 523

applications in D-Total (in terms of number of posts) and obtain a set of 6,273 benign

applications. The D-Sample dataset (Table 3.1) is the union of these 6,273 benign

applications with the 6,273 malicious applications obtained earlier. The most popular

benign apps are FarmVille, Facebook for iPhone, Mobile, Facebook for Android, and

Zoo World.

For profiling apps, we collect the information for apps that is readily available

through Facebook. We use a crawler based on the Firefox browser instrumented with Se-

lenium [66]. From March to May 2012, we crawl information for every application in our

D-Sample dataset once every week. We collected app summaries and their permissions,

which requires two different crawls as discussed below.

The D-Summary dataset: apps with app summary. We collect app
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summaries through the Facebook Open graph API, which is made available by Facebook

at a URL of the form https://graph.facebook.com/App_ID; Facebook has a unique

identifier for each application. An app summary includes several pieces of information

such as application name, description, company name, profile link, and monthly active

users. If any application has been removed from Facebook, the query results in an

error. We were able to gather the summary for 6,067 benign and 2,528 malicious apps

(D-Summary dataset in Table 3.1). It is easy to understand why malicious apps were

more often removed from Facebook.

The D-Inst dataset: app permissions. We also want to study the permis-

sions that apps request at the time of installation. For every application App ID, we

crawl https://www.facebook.com/apps/application.php?id=App_ID, which usually

redirects to the application’s installation URL. We were able to get the permission set

for 487 malicious and 2,255 benign applications in our dataset. Automatically crawling

the permissions for all apps is not trivial [92], as different apps have different redirection

processes, which are intended for humans and not for crawlers. As expected, the queries

for apps that are removed from Facebook fail here as well.

The D-ProfileFeed: posts on the app profile. Users can make posts on

the profile page of an app, which we can call the profile feed of the app. We collect these

posts using the Open graph API from Facebook. The API returns posts appearing on

the application’s page, with several attributes for each post, such as message, link, and

create time. Of the apps in the D-Sample dataset, we were able to get the posts for

6,063 benign and 3,227 malicious apps. We construct the D-Complete dataset by taking

the intersection of D-Summary, D-Inst, and D-ProfileFeed datasets.

Coverage: while the focus of our study is to highlight the differences between

malicious and benign apps and to develop a sound methodology to detect malicious
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apps, we cannot aim to detect all malicious apps present on Facebook. This is because

MyPageKeeper has a limited view of Facebook data—the view provided by its subscribed

users—and therefore it cannot see all the malicious apps present on Facebook. However,

during the nine month period considered in our study, MyPageKeeper observed posts

from 111K apps, which constitutes a sizeable fraction (over 20%) of the approximately

500K apps present on Facebook [83]. Moreover, since MyPageKeeper monitors posts

from 2.4 million walls on Facebook, any malicious app that affected a large fraction

of Facebook users is likely to be present in our dataset. Therefore, we speculate that

malicious apps missing from our dataset are likely to be those that affected only a small

fraction of users.

Data privacy: our primary source of data in this work is our MyPageKeeper

Facebook application, which has been approved by UCR’s IRB process. In keeping

with Facebook’s policy and IRB requirements, data collected by MyPageKeeper is kept

private, since it crawls posts from the walls and news feeds of users who have explicitly

given it permission to do so at the time of MyPageKeeper installation. In addition, we

also use data obtained via Facebook’s open graph API, which is publicly accessible to

anyone.

3.2 Prevalence of Malicious Apps

The driving motivation for detecting malicious apps stems from the suspicion that a

significant fraction of malicious posts on Facebook are posted by apps. We find that

53% of malicious posts flagged by MyPageKeeper were posted by malicious apps. We

further quantify the prevalence of malicious apps in two different ways.

60% of malicious apps get at least a hundred thousand clicks on

the URLs they post. We quantify the reach of malicious apps by determining the
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number of clicks on the the links included in malicious posts. For each malicious app in

our D-Sample dataset, we identify all bit.ly URLs in posts made by that application.

We focus on bit.ly URLs since bit.ly offers an API [14] for querying the number of

clicks received by every bit.ly link; thus our estimate of the number of clicks received

by every application is strictly a lower bound. On the other hand, each bit.ly link

that we consider here could potentially also have received clicks from other sources on

web (i.e., outside Facebook); thus, for every bit.ly URL, the total number of clicks it

received is an upper bound on the number clicks received via Facebook.

Across the posts made by the 6,273 malicious apps in the D-Sample dataset,

we found that 3,805 of these apps had posted 5,700 bit.ly URLs in total. We queried

bit.ly for the click count of each URL. Fig. 3.3 shows the distribution across malicious

apps of the total number of clicks received by bit.ly links that they had posted. We

see that 60% of malicious apps were able to accumulate over 100K clicks each, with 20%

receiving more than 1M clicks each. The application with the highest number of bit.ly

clicks in this experiment—the ‘What is the sexiest thing about you?’ app—received

1,742,359 clicks.

40% of malicious apps have a median of at least 1000 monthly active

users. We examine the reach of malicious apps by inspecting the number of users that

these applications had. To study this, we use the Monthly Active Users (MAU) metric

provided by Facebook for every application. The number of Monthly Active Users is a

measure of how many unique users are engaged with the application over the last 30 days

in activities such as installing, posting, and liking the app. Fig. 3.4 plots the distribution

of Monthly Active Users of the malicious apps in our D-Summary dataset. For each app,

the median and maximum MAU values over the three months are shown. We see that
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Figure 3.3: Clicks received by bit.ly links posted by malicious apps.

40% of malicious applications had a median MAU of at least 1000 users, while 60%

of malicious applications achieved at least 1000 during the three month observation

period. The top malicious app here—‘Future Teller’—had a maximum MAU of 260,000

and median of 20,000.

3.3 Profiling Applications

Given the significant impact that malicious apps have on Facebook, we next seek to

develop a tool that can identify malicious applications. Towards developing an under-

standing of how to build such a tool, in this section, we compare malicious and benign

apps with respect to various features.

As discussed previously in Section 3.1.2, we crawled Facebook and obtained

several features for every application in our dataset. We divide these features into two

subsets: on-demand features and aggregation-based features. We find that malicious

applications significantly differ from benign applications with respect to both classes of

features.
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Figure 3.4: Median and maximum MAU achieved by malicious apps.

3.3.1 On-demand Features

The on-demand features associated with an application refer to the features that one

can obtain on-demand given the application’s ID. Such metrics include app name, de-

scription, category, company, and required permission set.

3.3.1.1 Application Summary

Malicious apps typically have incomplete application summaries. First, we

compare malicious and benign apps with respect to attributes present in the application’s

summary—app description, company name, and category. Description and company are

free-text attributes, either of which can be at most 140 characters. On the other hand,

category can be selected from a predefined (by Facebook) list such as ‘Games’, ‘News’,

etc. that matches the app functionality best. Application developers can also specify

the company name at the time of app creation. For example, the ‘Mafia Wars’ app

is configured with description as ‘Mafia Wars: Leave a legacy behind’, company as

‘Zynga’, and category as ‘Games’. Fig. 3.5 shows the fraction of malicious and benign
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Figure 3.5: Comparison of apps whether they provide category, company name or de-
scription of the app.

apps in the D-Summary dataset for which these three fields are non-empty. We see that,

while most benign apps specify such information, very rarely malicious apps do so. For

example, only 1.4% of malicious apps have a non-empty description, whereas 93% of

benign apps configure their summary with a description. We find that the benign apps

that do not configure the description parameter are typically less popular (as seen from

their monthly active users).

3.3.1.2 Required Permission Set

97% of malicious apps require only one permission from users. Every Facebook

application requires authorization by a user before the user can use the app. At the

time of installation, every app requests the user to grant it a set of permissions that

it requires. These permissions are chosen from a pool of 64 permissions pre-defined by

Facebook [61]. Example permissions include access to information in the user’s profile

such as gender, email, birthday, and friend list, and permission to post on the user’s

wall.
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We see how malicious and benign apps compare based on the permission set

that they require from users. Fig. 3.6 shows the top five permissions required by both

benign and malicious apps. Most malicious apps in our D-Inst dataset require only

the ‘publish stream’ permission (ability to post on the user’s wall). This permission is

sufficient for making spam posts on behalf of users. In addition, Fig. 3.7 shows that

97% of malicious apps require only one permission, whereas the same fraction for benign

apps is 62%. We believe that this is because users tend not to install apps that require

larger set of permissions; Facebook suggests that application developers do not ask for

more permissions than necessary since there is a strong correlation between the number

of permissions required by an app and the number of users who install it [23]. Therefore,

to maximize the number of victims, malicious apps seem to follow this hypothesis and

require a small set of permissions.

3.3.1.3 Redirect URI

Malicious apps redirect users to domains with poor reputation. In an applica-
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Figure 3.7: Number of permissions requested by every app.

Domains Hosting # of malicious apps

thenamemeans3.com 34
fastfreeupdates.com 53
wikiworldmedia.com 82
technicalyard.com 96
thenamemeans2.com 138

Table 3.3: Top five domains hosting malicious apps in D-Inst dataset.

tion’s installation URL, the ‘redirect URI’ parameter refers to the URL where the user

is redirected to once she installs the app. We extracted the redirect URI parameter from

the installation URL for apps in the D-Inst dataset and queried the trust reputation

scores for these URIs from WOT [79]. Fig. 3.8 shows the corresponding score for both

benign and malicious apps. WOT assigns a score between 0 and 100 for every URI,

and we assign a score of −1 to the domains for which the WOT score is not available.

We see that 80% of malicious apps point to domains for which WOT does not have

any reputation score, and in addition, 95% of malicious apps have a score less than

5. In contrast, we find that 80% of benign apps have redirect URIs pointing to the

apps.facebook.com domain and therefore have higher WOT scores. We speculate that
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Figure 3.8: WOT trust score of the domain that apps redirect to upon installation.

malicious apps redirect users to web pages hosted outside of Facebook so that the same

spam/malicious content, e.g., survey scams, can also be propagated by other means such

as email and Twitter spam.

Furthermore, we found several instances where a single domain hosts the URLs

to which multiple malicious apps redirect upon installation. For example, thenamemeans2.

com hosts the redirect URI for 138 different malicious apps in our D-Inst dataset. Ta-

ble 3.3 shows the top five such domains; these five domains host the content for 83% of

the 491 malicious apps in the D-Inst dataset.

3.3.1.4 Client ID in App Installation URL

78% of malicious apps trick users into installing other apps by using a differ-

ent client ID in their app installation URL. For a Facebook application with ID A,

the application installation URL is https://www.facebook.com/apps/application.

php?id=A. When any user visits this URL, Facebook queries the application server reg-

istered for app A to fetch several parameters, such as the set of permissions required by
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Figure 3.9: Number of posts in app profile page.

the app. Facebook then redirects the user to a URL which encodes these parameters

in the URL. One of the parameters in this URL is the ‘client ID’ parameter. If the

user accepts to install the application, the ID of the application which she will end up

installing is the value of the client ID parameter. Ideally, as described in the Facebook

app developer tutorial [23], this client ID should be identical to the app ID A, whose

installation URL the user originally visited. However, in our D-Inst dataset, we find

that 78% of malicious apps use a client ID that differs from the ID of the original app,

whereas only 1% of benign apps do so. A possible reason for this is to increase the sur-

vivability of apps. As we show later in Chapter. 4, hackers create large sets of malicious

apps with similar names, and when a user visits the installation URL for one of these

apps, the user is randomly redirected to install any one of these apps. This ensures that,

even if one app from the set gets blacklisted, others can still survive and propagate on

Facebook.
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3.3.1.5 Posts in App Profile

97% of malicious apps do not have posts in their profiles. An application’s profile

page presents a forum for users to communicate with the app’s developers (e.g., to post

comments or questions about the app) or vice-versa (e.g., for the app’s developers to post

updates about the application). Typically, an app’s profile page thus accumulates posts

over time. We examine the number of such posts on the profile pages of applications

in our dataset. As discussed earlier in Sec. 3.1.2, we were able to crawl the app profile

pages for 3,227 malicious apps and 6,063 benign apps.

From Fig. 3.9, which shows the distribution of the number of posts found in the

profile pages for benign and malicious apps, we find that 97% of malicious apps do not

have any posts in their profiles. For the remaining 3%, we see that their profile pages

include posts that advertise URLs pointing to phishing scams or other malicious apps.

For example, one of the malicious apps has 150 posts in its profile page and all of those

posts publish URLs pointing to different phishing pages with URLs such as http://

2000forfree.blogspot.com and http://free-offers-sites.blogspot.com/. Thus,

the profile pages of malicious apps either have no posts or are used to advertise malicious

URLs, to which any visitors of the page are exposed.

3.3.2 Aggregation-based Features

Next, we analyze applications with respect to aggregation-based features. Unlike the

features we considered so far, aggregation-based features for an app cannot be obtained

on-demand. Instead, we envision that aggregation-based features are gathered by en-

tities that monitor the posting behavior of several applications across users and across

time. Entities that can do so include Facebook security applications installed by a

large population of users, such as MyPageKeeper, or Facebook itself. Here, we consider
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Figure 3.10: Clustering of apps based on similarity in names.

two aggregation-based features: similarity of app names, and the URLs posted by an

application over time. We compare these features across malicious and benign apps.

3.3.2.1 App Name

87% of malicious apps have an app name identical to that of at least one

other malicious app. An application’s name is configured by the app’s developer at

the time of the app’s creation on Facebook. Since the app ID is the unique identifier for

every application on Facebook, Facebook does not impose any restrictions on app names.

Therefore, although Facebook does warn app developers not to violate the trademark

or other rights of third-parties during app configuration, it is possible to create multiple

apps with the same app name.

We examine the similarity of names across applications. To measure the simi-

larity between two app names, we compute the Damerau-Levenshtein edit distance [94]

between the two names and normalize this distance with the maximum of the lengths
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Figure 3.11: Size of app clusters with identical names.

of the two names. We then apply different thresholds on the similarity scores to cluster

apps in the D-Sample dataset based on their name; we perform this clustering separately

among malicious and benign apps.

Fig. 3.10 shows the ratio of the number of clusters to the number of apps, for

various thresholds of similarity; a similarity threshold of 1 clusters applications that have

identical app names. We see that malicious apps tend to cluster to a significantly larger

extent than benign apps. For example, even when only clustering apps with identical

names (similarity threshold = 1), the number of clusters for malicious apps is less than

one-fifth that of the number of malicious apps, i.e., on average, 5 malicious apps have

the same name. Fig. 3.11 shows that close to 10% of clusters based on identical names

have over 10 malicious apps in each cluster. For example, 627 different malicious apps

have the same name ‘The App’. On the contrary, even with a similarity threshold of

0.7, the number of clusters for benign apps is only 20% lesser than the number of apps.

As a result, as seen in Fig. 3.11, most benign apps have unique names.

Moreover, while most of the clustering of app names for malicious apps occurs
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Figure 3.12: Distribution of external links to post ratio across apps.

even with a similarity threshold of 1, there is some reduction in the number of clusters

with lower thresholds. This is due to hackers attempting to “typo-squat” on the names

of popular benign applications. For example, the malicious application ‘FarmVile’ at-

tempts to take advantage of the popular ‘FarmVille’ app name, whereas the ‘Fortune

Cookie’ malicious application exactly copies the popular ‘Fortune Cookie’ app name.

However, we find that a large majority of malicious apps in our D-Sample dataset show

very little similarity with the 100 most popular benign apps in our dataset. Our data

therefore seems to indicate that hackers creating several apps with the same name to

conduct a campaign is more common than malicious apps typo-squatting on the names

of popular apps.

3.3.2.2 External Link to Post Ratio

Malicious apps often post links pointing to domains outside Facebook, whereas

benign apps rarely do so. Any post on Facebook can optionally include an URL.

Here, we analyze the URLs included in posts made by malicious and benign apps. For
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every app in our D-Sample dataset, we aggregate the posts seen by MyPageKeeper over

our nine month data gathering period and the URLs seen across these posts. We con-

sider every URL pointing to a domain outside of facebook.com as an external link.

We then define a ‘external link to post ratio’ measure for every app as the ratio of the

number of external links posted by the app to the total number of posts made by it.

Fig. 3.12 shows that the external link to post ratios for malicious apps are

significantly higher than those for benign apps. We see that 80% of benign apps do

not post any external links, whereas 40% of malicious apps have one external link on

average per post. This shows that malicious apps often attempt to lead users to web

pages hosted outside Facebook, whereas the links posted by benign apps are almost

always restricted to URLs in the facebook.com domain.

Note that malicious apps could post shortened URLs that point back to Face-

book, thus potentially making our external link counts over-estimates. However, we find

that malicious apps rarely do so. In our D-Sample dataset, we find 5700 bit.ly URLs

(which constitute 92% of all shortened URLs) were posted by malicious apps. bit.ly’s

API allowed us to determine the full URL corresponding to 5197 of these 5700 URLs,

and only 386 of these URLs (< 10%) pointed back to Facebook.

3.4 Detecting Malicious Apps

Having analyzed the differentiating characteristics of malicious and benign apps, we next

use these features to develop efficient classification techniques to identify malicious Face-

book applications. We present two variants of our malicious app classifier—FRAppE

Lite and FRAppE. It is important to note that MyPageKeeper, our source of “ground

truth” data, cannot detect malicious apps; it only detects malicious posts on Facebook.

Though malicious apps are the dominant source of malicious posts, MyPageKeeper is
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Features Source

Is category specified? http://graph.facebook.com/appID

Is company name specified? http://graph.facebook.com/appID

Is description specified? http://graph.facebook.com/appID

Any posts in app profile page? https://graph.facebook.com/AppID/

feed?access_token=

Number of permissions required https://www.facebook.com/apps/

application.php?id=AppID

Is client ID different from app ID? https://www.facebook.com/apps/

application.php?id=AppID

Domain reputation of redirect URI https://www.facebook.com/apps/

application.php?id=AppID and WOT

Table 3.4: List of features used in FRAppE Lite.

agnostic about the source of the posts that it classifies. In contrast, FRAppE Lite and

FRAppE are designed to detect malicious apps. Therefore, given an app ID, MyPage-

Keeper cannot say whether it is malicious or not, whereas FRAppE Lite and FRAppE

can do so.

3.4.1 FRAppE Lite

FRAppE Lite is a lightweight version which makes use of only the application features

available on-demand. Given a specific app ID, FRAppE Lite crawls the on-demand

features for that application and evaluates the application based on these features in

real-time. We envision that FRAppE Lite can be incorporated, for example, into a

browser extension that can evaluate any Facebook application at the time when a user

is considering installing it to her profile.

Table 3.4 lists the features used as input to FRAppE Lite and the source of each

feature. All of these features can be collected on-demand at the time of classification

and do not require prior knowledge about the app being evaluated.

We use the Support Vector Machine (SVM) [91] classifier for classifying ma-
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Training Ratio Accuracy FP FN

1:1 98.5% 0.6% 2.5%
4:1 99.0% 0.1% 4.7%
7:1 99.0% 0.1% 4.4%
10:1 99.5% 0.1% 5.5%

Table 3.5: Cross validation with FRAppE Lite.

licious apps. SVM is widely used for binary classification in security and other dis-

ciplines [109, 102]. The effectiveness of SVM depends on the selection of kernel, the

kernel’s parameters, and soft margin parameter C. We used the default parameter val-

ues in libsvm [91] such as radial basis function as kernel with degree 3, coef0 = 0 and

C = 1 [91]. We use the D-Complete dataset for training and testing the classifier. As

shown earlier in Table 3.1, the D-Complete dataset consists of 487 malicious apps and

2,255 benign apps.

We use 5-fold cross validation on the D-Complete dataset for training and test-

ing FRAppE Lite’s classifier. In 5-fold cross validation, the dataset is randomly divided

into five segments, and we test on each segment independently using the other four seg-

ments for training. We use accuracy, false positive (FP) rate, and false negative (FN)

rate as the three metrics to measure the classifier’s performance. Accuracy is defined as

the ratio of correctly identified apps (i.e., a benign/malicious app is appropriately iden-

tified as benign/malicious) to the total number of apps. False positive (negative) rate

is the fraction of benign (malicious) apps incorrectly classified as malicious (benign).

We conduct four separate experiments with the ratio of benign to malicious

apps varied as 1:1, 4:1, 7:1, and 10:1. In each case, we sample apps at random from the D-

Complete dataset and run a 5-fold cross validation. Table 3.5 shows that, irrespective of

the ratio of benign to malicious apps, the accuracy is above 98.5%. The higher the ratio
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Feature Accuracy FP FN

Category specified? 76.5% 45.8% 1.2%
Company specified? 72.1% 55.0% 0.8%

Description specified? 97.8% 3.3% 1.0%
Posts in profile? 96.9% 4.3% 1.9%

Client ID is same? 88.5% 1.0% 22.0%
WOT trust score 91.9% 13.4% 2.9%
Permission count 73.3% 49.3% 4.1%

Table 3.6: Classification accuracy with individual features.

of benign to malicious apps, the classifier gets trained to minimize false positives, rather

than false negatives, in order to maximize accuracy. However, we note that the false

positive and negative rates are below 0.6% and 5.5% in all cases. The ratio of benign to

malicious apps in our dataset is equal to 7:1; of the 111K apps seen in MyPageKeeper’s

data, 6,273 apps were identified as malicious based on MyPageKeeper’s classification

of posts and an additional 8,051 apps are found to be malicious, as we show later.

Therefore, we can expect FRAppE Lite to offer roughly 99.0% accuracy with 0.1% false

positives and 4.4% false negatives in practice.

To understand the contribution of each of FRAppE Lite’s features towards its

accuracy, we next perform 5-fold cross validation on the D-Complete dataset with only

a single feature at a time. Table 3.6 shows that each of the features by themselves

too result in reasonably high accuracy. The ‘Description’ feature yields the highest

accuracy (97.8%) with low false positives (3.3%) and false negatives (1.0%). On the flip

side, classification based solely on any one of the ‘Category’, ‘Company’, or ‘Permission

count’ features results in a large number of false positives, whereas relying solely on

client IDs yields a high false negative rate.
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Feature Description

App name similarity Is app’s name identical to a known malicious
app?

External link to post ratio Fraction of app’s posts that contain links to
domains outside Facebook

Table 3.7: Additional features used in FRAppE.

3.4.2 FRAppE

Next, we consider FRAppE—a malicious app detector that utilizes our aggregation-

based features in addition to the on-demand features. Table 3.7 shows the two features

that FRAppE uses in addition to those used in FRAppE Lite. Since the aggregation-

based features for an app require a cross-user and cross-app view over time, in contrast

to FRAppE Lite, we envision that FRAppE can be used by Facebook or by third-party

security applications that protect a large population of users.

Here, we again conduct a 5-fold cross validation with the D-Complete dataset

for various ratios of benign to malicious apps. In this case, we find that, with a ratio of

7:1 in benign to malicious apps, FRAppE’s additional features improve the accuracy to

99.5%, as compared to 99.0% with FRAppE Lite. Furthermore, the false negative rate

decreases from 4.4% to 4.1%, and we do not have a single false positive.

3.4.3 Identifying New Malicious Apps

We next train FRAppE’s classifier on the entire D-Sample dataset (for which we have

all the features and the ground truth classification) and use this classifier to identify

new malicious apps. To do so, we apply FRAppE to all the apps in our D-Total dataset

that are not in the D-Sample dataset; for these apps, we lack information as to whether

they are malicious or benign. Of the 98,609 apps that we test in this experiment, 8,144

apps were flagged as malicious by FRAppE.
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Criteria # of apps validated Cumulative

Deleted from Facebook graph 6,591(81%) 6,591 (81%)
App name similarity 6,055(74%) 7,869 (97%)

Post similarity 1,664 (20%) 7,907(97%)
Typosquatting of popular apps 5(0.1%) 7,912(97%)

Manual validation 147 (1.8%) 8051 (98.5%)

Total validated - 8051(98.5%)
Unknown - 93 (1.5%)

Table 3.8: Validation of apps flagged by FRAppE.

Validation. Since we lack ground truth information for these apps flagged as

malicious, we apply a host of complementary techniques to validate FRAppE’s classi-

fication. We next describe these validation techniques; as shown in Table 3.8, we were

able to validate 98.5% of the apps flagged by FRAppE.

Deleted from Facebook graph: Facebook itself monitors its platform for

malicious activities, and it disables and deletes from the Facebook graph malicious apps

that it identifies. If the Facebook API (https://graph.facebook.com/appID) returns

false for a particular app ID, this indicates that the app no longer exists on Facebook;

we consider this to be indicative of blacklisting by Facebook. This technique validates

81% of the malicious apps identified by FRAppE. Note that Facebook’s measures for

detecting malicious apps are however not sufficient; of the 1,464 malicious apps identified

by FRAppE (that were validated by other techniques below) but are still active on

Facebook, 35% have been active on Facebook since over four months with 10% dating

back to over eight months.

App name similarity: if an application’s name exactly matches that of

multiple malicious apps in the D-Sample dataset, that app too is likely to be part of the

same campaign and therefore malicious. On the other hand, we found several malicious

apps using version numbers in their name (e.g., ‘Profile Watchers v4.32’, ‘How long have
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you spent logged in? v8’). Therefore, in addition, if an app name contains a version

number at the end and the rest of its name is identical to multiple known malicious

apps that similarly use version numbers, this too is indicative of the app likely being

malicious.

Posted link similarity: if an URL posted by an app matches the URL posted

by a previously known malicious app, then these apps are likely part of the same spam

campaign, thus validating the former as malicious.

Typosquatting of popular app: if an app’s name is “typosquatting” that

of a popular app, we consider it malicious. For example, we found five apps named

‘FarmVile’, which are seeking to leverage the popularity of ‘FarmVille’.

Manual verification: lastly, for the remaining 232 apps un-verified by the

above techniques, we first cluster them based on name similarity among themselves and

verify one app from each cluster with cluster size greater than 4. For example, we find

83 apps named ‘Past Life’. This enabled us to validate an additional 147 apps marked

as malicious by FRAppE.

Validation of ground truth. Note that some of the above-mentioned tech-

niques also enable us to validate the heuristic we used to identify malicious apps in all

of our datasets: if any post made by an application was flagged as malicious by My-

PageKeeper, we marked the application as malicious. As of October 2012, we find that,

out of the 6273 malicious apps in our D-Sample dataset, 5390 apps have been deleted

from the Facebook graph. An additional 667 apps have an identical name to one of the

5390 deleted apps. Therefore, we believe that the false positive rate in the data that we

use to train FRAppE Lite and FRAppE is at most 2.6%.
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3.5 Discussion

In this section, we discuss potential measures that hackers can take to evade detection

by FRAppE. We also present recommendations to Facebook about changes that they

can make to their API to reduce abuse by hackers.

Robustness of features. Among the various features that we use in our

classification, some can easily be obfuscated by malicious hackers to evade FRAppE

in the future. For example, we showed that, currently, malicious apps often do not

include a category, company, or description in their app summary. However, hackers

can easily fill in this information into the summary of applications that they create

from here on. Similarly, FRAppE leveraged the fact that profile pages of malicious apps

typically have no posts. Hackers can begin making dummy posts in the profile pages

of their applications to obfuscate this feature and avoid detection. Therefore, some of

FRAppE’s features may no longer prove to be useful in the future while others may

require tweaking, e.g., FRAppE may need to analyze the posts seen in an application’s

profile page to test their validity. In any case, the fear of detection by FRAppE will

increase the onus on hackers while creating and maintaining malicious applications.

On the other hand, we argue that several features used by FRAppE, such as

the reputation of redirect URIs, the number of required permissions, and the use of

different client IDs in app installation URLs, are robust to the evolution of hackers. For

example, to evade detection, if malicious app developers were to increase the number of

permissions required, they risk losing potential victims; the number of users that install

an app has been observed to be inversely proportional to the number of permissions

required by the app. Similarly, not using different client IDs in app installation URLs

would limit the ability of hackers to instrument their applications to propagate each
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other. We find that a version of FRAppE that only uses such robust features still yields

an accuracy of 98.2%, with false positive and false negative rates of 0.4% and 3.2% on

a 5-fold cross validation.

Recommendations to Facebook. Our investigations of malicious apps on

Facebook identified two key loopholes in Facebook’s API which hackers take advantage

of. First, as discussed in Sec. 3.3.1.4, malicious apps use a different client ID value in the

app installation URL, thus enabling the propagation and promotion of other malicious

apps. Therefore, we believe that Facebook must enforce that when the installation URL

for an app is accessed, the client ID field in the URL to which the user is redirected

must be identical to the app ID of the original app. We are not aware of any valid uses

of having the client ID differ from the original app ID.

3.6 Summary of Results

In this chapter, we take a first look into malicious Facebook application characteristics

in terms of number of permissions required, app name, number of URLs posted by an

app etc. The key results we presented in this chapter are as follows:

• We show that, a significant number of apps (13%) are deployed by malicious

hackers that affect a large number of Facebook users in terms of higher clickthrough

or monthly active users.

• We show that malicious apps differ significantly from benign apps with respect

to different features. For example, malicious apps are much more likely to share

names with other apps, and they typically request fewer permissions than benign

apps.

• Leveraging our observations, we developed FRAppE, an accurate classifier for
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detecting malicious Facebook applications.
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Chapter 4

Understanding Malicious

Applications’ Ecosystem

Our analysis in Chapter 3 shows that malicious apps are rampant in Facebook

and indicates that they do not operate in isolation. Indeed, we find in this chapter

that malicious apps collude at large scale—many malicious apps share the same name,

several of them redirect to the same domain upon installation, etc. To establish such

collaboration, malicious apps make post containing links to the installation page of other

malicious apps. We use the term AppNets to capture such phenomenon of collaboration.

In this chapter, we conduct a forensics investigation on the malicious app

ecosystem to identify and quantify the techniques used to promote malicious apps. We

find that, malicious hackers often use highly sophisticated mechanism such as fast-

changing indirection for promoting malicious applications. In this approach, malicious

applications post URLs that point to a website, and the website dynamically redirects

to many different app installation pages. We find 103 such URLs that point to 4,676

different malicious apps over the course of a month. Overall, we find 1,584 promoter
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apps that promote 3,723 other apps.

If we describe such collusion relationship of promoting-promoted apps as a

graph, which we call AppNet, we find that apps collude and collaborate at a massive

scale. These apps form large and highly-dense connected components in AppNet. For

example, 25% apps in AppNet have a local clustering larger than 0.74 and 70% of the

apps collude with more than 10 other apps.

We were also surprised to find popular good apps, such as ‘FarmVille’ and

‘Facebook for iPhone’, posting malicious posts. On further investigation, we found a lax

authentication rule in Facebook that enabled hackers to make malicious posts appear

as though they came from these apps.

These observed behaviors indicate well-organized crime: few prolific hacker

groups control many malicious apps. For example, 56% of apps in AppNet are created

by a single hacker group.

Our recommendations to Facebook. The most important message of the

work is that there seems to be a parasitic eco-system of malicious apps within Facebook

that needs to be understood and stopped. However, even this initial work leads to the

following recommendations for Facebook that could potentially also be useful to other

social platforms:

a. Breaking the cycle of app propagation. We recommend that apps

should not be allowed to promote other apps. This is the reason that malicious apps

seem to gain strength by self-propagation.

b. Enforcing stricter app authentication before posting. We recom-

mend a stronger authentication of the identity of an app before a post by that app is

accepted. As we saw, hackers fake the true identify of an app in order to evade detection

and appear more credible to the end user.
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4.1 Background on App Cross-promotion

App promotion happens in two different ways. The promoting app can post a link that

points directly to another app, or it can post a link that points to a redirection URL,

which points dynamically to multiple different apps.

a. Posting direct links to other apps. We found evidence that malicious

apps often promote each other by posting victim’s wall that redirect users to the pro-

motee’s app page. Such post appears to the victim’s friend’s news feed and lures them

to install the promoted app and thereby promotee accumulates more victims. To inves-

tigate the evidence further, We crawled URLs posted by malicious apps and examined

if the landing URL if it corresponds to an app installation page and extracted the app

ID. In this way, we constructed a promoter-promotee relationship We find 692 promoter

apps in our D-Sample dataset from Sec. 3.1 which promoted 1,806 different apps using

direct links.

b. Indirect app promotion. Alternatively, hackers use websites outside

Facebook to have more control and protection in promoting apps. In fact, the operation

here is more sophisticated and it obfuscates information at multiple places. Specifically,

a post made by a malicious app includes a shortened URL and that URL, once resolved,

points to a website outside Facebook [40] This external website forwards users to several

different app installation pages over time.

The use of the indirection mechanism is quite widespread, as it provides a layer

of protection to the apps involved. We identify 103 indirection websites in our dataset

of colluding apps. To identify all the landing websites, for one and a half months from

mid-March to end of April 2012, we follow each indirection website 100 times a day

using an instrumented Firefox browser.
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Promoter 
Apps

Promotee 
Apps

Dual Role 
Apps

1584 apps

3723 apps1024 apps

Figure 4.1: Relationship between collaborating applications

4.2 Analysis

In Sec. 4.1, we show different ways malicious apps promote each-other. In this section,

we analyze app promotion in general to throw light on characteristics on AppNet.

4.2.1 Promotion Graph Characteristics

From the app promotion dataset we collected in Sec. 4.1, we construct a graph having

an undirected edge between any two apps that promote each other via direct or indirect

promotion, i.e., an edge from app1 to app2 if the former promotes the latter. We refer

such graph as ‘Promotion graph’.

4.2.1.1 Different Roles in Promotion Graph

Apps act in different roles for promotion. In ‘Promotion graph’, there are 6,331

malicious apps that engage in collaborative promotion. Among them, 25% are promot-

ers, 58.8% are promotees, and the remaining 16.2% play both roles. Here, when app1

posts a link pointing to app2, we refer to app1 as the promoter and app2 as the promotee.
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Figure 4.2: Local clustering coefficient of apps in the Collaboration graph.

Fig. 4.1 shows this relationship between malicious apps.

4.2.1.2 Connectivity

Promotion graph forms large and densely connected groups. We identified 44

connected components among the 6,331 malicious apps. The top 5 connected compo-

nents have large sizes: 3484, 770, 589, 296, and 247. Upon further analysis of these

components, we find:

• High connectivity: 70% of the apps collude with more than 10 other apps. The maxi-

mum number of collusions that an app is involved in is 417.

• High local density: 25% of the apps have a local clustering coefficient 1 larger than

0.74 as shown in Fig. 4.2.

As an example, in Fig. 4.3, we show the local neighborhood of the “Death

Predictor” app, which has 26 neighbors and has a local clustering coefficient of 0.87.

1Local clustering coefficient for a node is the number of edges among the neighbors of a node over the
maximum possible number of edges among those nodes. Thus, a clique neighborhood has a coefficient
of value 1, while a disconnected neighborhood (the neighbors of the center of a star graph) has a value
of 0.
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Figure 4.3: Example of collusion graph between applications.

Interestingly, 22 of the node’s neighbors share the same name.

4.2.1.3 Degree Distribution

In order to understand the relationship between promoter and promotee apps, we create

a directed graph, where each nodes is an app, and an edge from App1 to App2 means

that App1 promotes App2. Fig. 4.4 shows the in-degree and out-degree distribution of

the graph. We can see that 20% of apps have in-degree or out-degree more than 50

which means these 20% apps have been promoted by at least 50 other apps and each of

them also promotes 50 other apps.

4.2.1.4 Longest Chain in Promotion

AppNet often exhibits large chain of promotion. We are interested in finding the

longest path of promotion in this directed graph. This promotion graph is a directed

cyclic graph and finding a simple path of maximum length in directed cyclic graph

is NP-complete problem [55]. Therefore, we approximate this algorithm by using a

threshold where the algorithm returns after reaching the threshold time. Fig. 4.5 shows

the distribution of longest path starting from different pure promoter apps. We see that

the longest path of promotion is 193 and 40% of pure promoters have longest path at
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Figure 4.4: Degree distribution of apps in promotion graph.

least 20. In such paths, at most 17 distinct app names were used as shown in Fig.4.6

and 40% of the longest paths use at least four different app names. For example, ‘Top

Viewers v5’ promotes ‘Secret Lookers v6’ which in turn promotes ‘Top Lookers v6’. ‘Top

Lookers v6’ then which promotes ‘who Are They? v4’ which in turn promotes ‘Secret

Lurkers v5.73’ and so on.

4.2.1.5 Participating App Names in Promotion Graph

Apps with the same name often are part of the same AppNet. These 103

indirection website were used by 1,936 promoter apps which had only 206 unique app

names. The promotees were 4,676 apps with 273 unique app names. Clearly, there

is a very high re-use of both names and these indirection websites. For example, one

indirection website distributed in posts by the app ‘whats my name means’ points to

the installation page of the apps ‘What ur name implies!!! ’, ‘Name meaning finder ’, and

‘Name meaning ’. Furthermore, 35% of these websites promoted more than 100 different
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Figure 4.5: Longest path length from pure promoters in promotion graph.

applications each. Following the discussion in Sec. 3.3.2.1, it appears that every hacker

reuses the same names for his applications. Since all apps underlying a campaign have

the same name, if any app in the pool gets black listed, others can still survive and carry

on the campaign without being noticed by users.

4.2.2 App Collaboration

In this part, we want to identify the major hacker groups involved for malicious app

collusion. Therefore, we construct ‘Collaboration graph’ which comprises of both ‘Pro-

motion graph’ and ‘Campaign graph’. We defined ‘Promotion graph’ in Sec. 4.2.1. We

define different variations of ‘Campaign graph’ below.

• Posted URL campaign: two apps are part of a campaign if they post a common

URL.

• Hosted domain campaign: two apps are part of a campaign if they redirect to
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Figure 4.6: No. of distinct app names used in longest path from pure promoters in
promotion graph.

same domain once they are installed by victim. We exclude apps.facebook.com

as a redirect domain for such campaigns.

• Promoted URL campaign: two apps are part of a campaign if they are promoted

by same indirection URL.

Table 4.1 shows properties (Avg. clustering coefficient 2, diameter 3 and

GCC 4) of such campaign graphs along with the promotion graph we discussed in

Sec. 4.2.1 It is important to note that the nodes in a campaign form a clique. Next,

we merge all graphs into a single graph to identify the largest connected component.

We found that the largest GCC is 56% with 41 connected component which means 56%

of malicious apps in our corpus are controlled by a single malicious hacker group. The
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Graph #
Nodes

# of
Edges

Avg
clus-
ter-
ing
coef

# of
Con-
nected
comp.

Diameter GCC

Promotion graph 6331 206,983 .3 44 14 55%
Promoted URL campaign 4538 491,528 .92 21 10 66%
Hosted domain campaign 3970 193,061 .99 116 3 10%
Posted URL campaign 866 9,052 0.59 69 10 70%

Table 4.1: Graph properties.

Domain Name # of fast flux URLs hosted

s3.amazonaws.com 27
chinappameu.co.in 23

t.co 7
dlaasta.org.in 4

www.facebook.com 4

Table 4.2: Top five domains abused for fast flux infrastructure.

largest five component sizes are 3617, 781, 645, 296 and 247.

4.2.3 Hosting Infrastructure

We investigate the hosting infrastructure that enables these redirection websites. First,

we find that most of the links in the posts were shortened URLs and 80% of them

were using the bit.ly shortening service. We consider all the bit.ly URLs among our

dataset of indirection links (84 out of 103) and resolve them to the full URL. We find

that one-third of these URLs are hosted on amazonaws.com. Table 4.2 shows the top

five domains that host these indirection websites. We see that malicious hackers use

amazonaws.com significantly.

2Average clustering coef is calculated by taking average of the local clustering coefficient of all nodes
3Diameter is the longest shortest path between two nodes in the graph
4Giant connected component (GCC) is the fraction of nodes comprise the largest connected compo-

nent in the graph
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Figure 4.7: Domain hosting malicious apps.

Domain # of app hosted

atisiokalisana.com 129
tipsyard.com 130
bchuck.info 173

birthdinnmans.co.cc 183
super-dox.co.cc 240

Table 4.3: Top five domain hosting malicious apps.

Next, we analyze the hosting domains of the malicious apps promoted by indi-

rect promotion. We found the activity intense, 20% of domains host at least 50 different

apps, as shown in Fig. 4.7. Table 4.3 shows the name of the top five hosting domains

and the number of apps they host. This shows that, malicious hackers heavily reuse

domains for hosting malicious apps.
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App
name

# of posts Post msg Link in post

FarmVille 9,621,909 WOW I just got 5000 Face-
book Credits for Free

http://

offers5000credit.

blogspot.com

Links 7,650,858 Get your FREE 450 FACE-
BOOK CREDITS

http://

free450offer.

blogspot.com/

Facebook
for iPhone

5,551,422 NFL Playoffs Are Coming!
Show Your Team Support!

http://

SportsJerseyFever.

com/NFL

Mobile 4,208,703 WOW! I Just Got a Recharge
of Rs 500.

http://

ffreerechargeindia.

blogspot.com/

Facebook
for An-
droid

3,912,955 Get Your Free Facebook Sim
Card

http://j.mp/oRzBNU

Table 4.4: Top five popular apps being abused by app piggybacking.

4.3 App Piggybacking

From our dataset, we also discover that hackers have found ways to make malicious

posts appear as if they had been posted by popular apps. To do so, they exploit

weaknesses in Facebook’s API. We call this phenomenon app piggybacking. One of

the ways in which hackers achieve this is by luring users to ‘Share’ a malicious post to get

promised gifts. When the victim tries to share the malicious post, hackers invoke the

Facebook API call http://www.facebook.com/connect/prompt_feed.php?api_key=

POP_APPID, which results in the shared post being made on behalf of the popular app

POP APPID. The vulnerability here is that any one can perform this API call, and

Facebook does not authenticate that the post is indeed being made by the application

whose ID is included in the request. We illustrate the app piggybacking mechanism with

a real example here: [8].

We find instances of app piggybacking in our dataset as follows. For every
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Figure 4.8: Distribution across apps of the fraction of an app’s posts that are malicious.

app that had at least one post marked as malicious by MyPageKeeper, we compute

the fraction of that app’s posts that were flagged by MyPageKeeper. We look for apps

where this ratio is low. In Fig. 4.8, we see that 5% of apps have a malicious posts to all

posts ratio of less than 0.2. For these apps, we manually examine the malicious posts

flagged by MyPageKeeper. Table 4.4 shows the top five most popular apps that we find

among this set.

4.4 Cross-promotion as a Sign of Malicious Intentions

According to Facebook platform policy, cross-promotion of other apps is forbidden [28].

In this chapter, we show that cross-promotion is prevalent for malicious apps. However,

we identified these cross-promoting malicious apps by investigating malicious URLs

flagged by MyPageKeeper. Therefore, it is possible that cross-promotion may hap-

pen with URLs not flagged by MyPageKeeper due to lack of social context. In this

section, we analyze cross-promotion made via posted apps.facebook.com URL and

posted shortened URL nor flagged by MyPageKeeper.
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Graph # Nodes # of Edges # of Connected
comp.

GCC

Malicious cross-
promoting apps

2,052 3,542 22 91%

Unverified cross-
promoting apps

3,026 4,527 370 32%

Table 4.5: Cross-promoting app graph properties.

4.4.1 Data Collection

Cross-promotion via posted apps.facebook.com URL: to investigate app promo-

tion via posted apps.facebook.com links, we collect 41M URLs monitored by MyPage-

Keeper that points to apps.facebook.com/namespace domain and posted by 13, 698

apps. Then we identify corresponding app ID of a namespace from our dataset con-

taining 80K namespace and app ID mapping. In this way, we find the cross-promotion

relationship between promoter and promotee apps. We ignored self promotion where

one app promotes itself. We identified 7,700 cross promoting relations involving 4,782

distinct apps in this way.

Cross-promotion via posted shortened URLs: to investigate app promo-

tion via posted shortened URLs, we collect 5.8M shortened links monitored by MyPage-

Keeper, out of which 65,448 resolves to apps.facebook.com domain. Applying similar

technique as mentioned above, we identified 1,177 cross promoting relations involving

450 distinct apps via shortened URLs.

In total, we found 5,077 distinct apps involved in 8,069 cross promotion via

posted apps.facebook.com or shortened URLs. As per Facebook platform policy, these

5,077 apps are violating policy. Intrigued, we investigate them further.
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Figure 4.9: App distribution of components for unverified cross-promoting apps.

4.4.2 Analyzing Cross-promoting Apps

To identify malicious apps from the 5,077 apps, we compare them with our 14K malicious

apps corpus identified by FRAppE in Chapter 3. We consider both apps in a promoter-

promotee relationship malicious if either of them appear in our malicious app corpus.

In this way, we could identify 2,052 distinct apps as malicious. However, the rest of

the 3,025 apps are not connected to FRAppE detected malicious app corpus. Table 4.5

shows the properties of graphs created from the malicious cross-promoting apps and

unverified cross-promoting apps. As shown in the table, malicious apps are tightly

connected since the largest connected component owns 91% of the apps.

For unverified cross-promoting app graph, the largest five component sizes are:

972, 270, 174, 136 and 103. Fig. 4.9 shows the app distribution for connected components

found in unverified cross-promoting apps. We see that 8% of components have at least

10 apps promoting each other. As shown in Fig. 4.10, 90% and 85%of app has in degree

and out degree not more than one respectively. However, few apps have very high in
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Figure 4.10: Degree distribution of unverified cross-promoting apps.

degree or out degree. For example, the app ’Quiz Whiz’ belongs to a family of quiz apps

and they often promotes each other. Few example apps in this quiz family are: ‘Which

Christmas Character are you?’ and ‘what twilight vampire are you?’.

Next, to find the popularity of these apps in terms of monthly active users

(MAU), we crawl their app summary from Facebook opengraph. We found that, 702

out of 3,026 apps are already deleted from Facebook social graph. Fig. 4.11 shows the

popularity of rest of the 2324 apps in terms of MAU. We found that few apps are very

popular since they have MAU of several millions. For example, two different app ID with

name ‘Daily Horoscope’ promote each other who have 9.7M and 1.4M MAU. Further,

we found that popular games sometimes cross-promote each other. For example, ’Social

Empires’ game was promoted by ‘Trial Madness’ and ‘Social Wars’. We speculate that

they belong to the same company and they often promote each other for increasing user

base.
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Figure 4.11: MAU distribution of unverified cross-promoting apps.

4.5 Summary of Results

In this chapter, we take a first look into malicious Facebook apps ecosystem—how they

support each other. The key results we present in this chapter are as follows:

• We show different promotion strategies such as direct and indirect promotions

malicious apps employ to support each other. Indirect promotion is a very so-

phisticated technique where malicious hackers redirect users to fast changing URL

which randomly takes users to different malicious app installation page.

• We analyze such collusion using graph-based technique and show that such graph

exhibits high density and high local clustering coefficient. The apps in AppNet

often shows promotion path chain as long as 193.

• We demonstrate how malicious hackers abuse Facebook API to piggyback on be-

nign and popular apps to spread malicious posts in Facebook.
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Chapter 5

Related Work

5.1 Indentifying Social Malware

Motivated by the increasing presence of spam and malware on OSNs, there have been

several recent related efforts. Here, we contrast our work with these prior efforts.

Studies of spam on OSNs. Gao et al. [97] analyzed posts on the walls of

3.5 million Facebook users and showed that 10% of links posted on Facebook walls are

spam, with a large majority pointing to phishing sites. They also presented techniques

to identify compromised accounts and spam campaigns. In a similar study on Twitter,

Grier et al. [99] showed that at least 8% of links posted on Twitter are spam while

86% of the involved accounts are compromised. In contrast to this study, Thomas

et al. [122] show that the majority of suspended accounts in Twitter are created by

spammers as opposed to compromised users. All of these efforts however focus on post-

mortem analysis of historical OSN data and are not applicable to MyPageKeeper’s goal

of identifying social malware soon after it appears on a user’s wall or news feed.

Detecting spam accounts. Benevenuto et al. [87] and Yang et al. [129] de-

veloped techniques to identify accounts of spammers on Twitter. Others have proposed a

99



honey-pot based approach [119, 103] to detect spam accounts on OSNs. Yardi et al. [130]

analyzed behavioral patterns among spam accounts in Twitter. Instead of focusing on

accounts created by spammers, MyPageKeeper enables social malware detection on the

walls and news feeds of legitimate Facebook users.

Real-time spam detection in OSNs. Thomas et al. [123] developed Monarch,

a real-time system that crawls URLs submitted from services such as Twitter to deter-

mine whether a URL directs to spam. Monarch relies on the network and domain level

properties of URLs as well as the content of the web pages obtained when URLs are

crawled. Interestingly, Monarch’s classification accuracy is shown to be independent of

the social context on Twitter. MyPageKeeper distinguishes itself from Monarch in sev-

eral ways—1) we study social malware on Facebook, which we see significantly differs in

its characteristics from traditional spam messages, 2) to make MyPageKeeper efficient,

our social malware classifier operates without crawling of links found in posts, and 3)

we find that the use of social context based features is crucial to efficient detection of

social malware. In another study, Gao et al. [96] perform online spam filtering on OSNs

using incremental clustering. Their technique however relies on having the whole social

graph as input, and so, is usable only by the OSN provider. MyPageKeeper instead

relies only on the view of the OSN as seen by MyPageKeeper’s users. Lee et al. [104]

built Warningbird, a system to detect suspicious URLs in Twitter; their system however

relies on following the HTTP redirection chains of URLs, thus making their approach

less efficient than MyPageKeeper.

Wang et al. [126] propose a unified spam detection framework that works across

all OSNs, but they do not have an implementation of such a system in practice. Stein

et al. [118] describe Facebook’s Immune System (FIS), a scalable real-time adversarial

learning system deployed in Facebook to protect users from malicious activities. How-
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ever, Stein et al. provide only a high-level overview about threats to the Facebook

graph and do not provide any analysis of the system. Similarly, other Facebook appli-

cations [16, 58, 13] that defend users against spam and malware are proprietary with no

details available about how they work. Abu-Nimeh et al. [85] analyze the URLs flagged

by one of these applications, Defenseio, but they do not discuss Defenseio’s classification

techniques and their analysis is restricted to that of the hosting infrastructure (country

and ASN) underlying Facebook spam. To the best of our knowledge, we are the first

to provide classification of social malware on Facebook that relies solely on social con-

text based features, thus enabling MyPageKeeper to efficiently detect social malware at

scale.

Social context based email spam. Jagatic et al. [100] discuss how email

phishing attacks can be launched by using publicly available personal information (e.g.,

birthday) from social networks, and Brown et al. [90] analyzed such email spam seen in

practice. However, due to revisions in Facebook’s privacy policy over the last couple of

years, only a user’s friends have access to such information from the user’s profile, thus

making such email spam no longer possible. Further, MyPageKeeper focuses on spam

propagated on Facebook rather than via email.

5.2 Indentifying Malicious Applications

App permission exploitation. Chia et al. [92] investigated the privacy intrusiveness

of Facebook apps and concluded that currently available signals such as community

ratings, popularity, and external ratings such as Web of Trust (WOT) as well as signals

from app developers are not reliable indicators of the privacy risks associated with an

app. Also, in keeping with our observation, they found that popular Facebook apps tend

to request more permissions. They also found that ‘Lookalike’ applications that have
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names similar to popular applications request more permissions than is typical. Based

on a measurement study across 200 Facebook users, Liu et al. [106] showed that privacy

settings in Facebook rarely match users’ expectations.

To address the privacy risks associated with the use of Facebook apps, some

studies [88, 127] propose a new application policy and authentication dialog. Makridakis

et al. [110] use a real application named ‘Photo of the Day’ to demonstrate how mali-

cious apps on Facebook can launch DDoS attacks using the Facebook platform. King

et al. [101] conducted a survey to understand users’ interaction with Facebook apps.

Similarly, Gjoka et al. [98] study the user reach of popular Facebook applications. On

the contrary, we quantify the prevalence of malicious apps, and develop tools to identify

malicious apps that use several features beyond the required permission set.

App rating efforts. Stein et al. [118] describe Facebook’s Immune System

(FIS), a scalable real-time adversarial learning system deployed in Facebook to protect

users from malicious activities. However, Stein et al. provide only a high-level overview

about threats to the Facebook graph and do not provide any analysis of the system.

Furthermore, in an attempt to balance accuracy of detection with low false positives, it

appears that Facebook has recently softened their controls for handling spam apps [32].

Other Facebook applications [16, 58, 13] that defend users against spam and malware

do not provide ratings for apps on Facebook. Whatapp [81] collects community reviews

about apps for security, privacy and openness. However, it has not attracted much

reviews (47 reviews available) to date. To the best of our knowledge, we are the first to

provide a classification of Facebook apps into malicious and benign categories.
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Chapter 6

Conclusion

The emergence of Online Social Networks (OSNs) has opened up new possibili-

ties for the dissemination of malware. As Facebook is becoming the new web, hackers are

expanding their territory to Online Social Networks (OSNs) and spread social malware.

Social malware is a new kind of cyber-threat, which requires novel security approaches.

Cyber-fraud is an immediate and expensive problem that affects people and business

through identity theft, the spread of viruses, and the creation of botnets, all of which

are interconnected manifestations of Internet threats.

In this dissertation, we presented the design and implementation of MyPage-

Keeper, a Facebook application that can accurately and efficiently identify social mal-

ware at scale. Using data from over 12K Facebook users, we found that the reach of

social malware is widespread —49% of MyPageKeeper’s users were exposed at least once

to social malware within four months. We also showed that existing defenses, such as

URL blacklists, are ill-suited for identifying social malware, and that social malware

significantly differs from email spam.

Interestingly, we found that a significant fraction of social malware is hosted
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on Facebook itself in the form of malicious Facebook apps and so on. However, lit-

tle is understood about the characteristics of malicious apps and how they operate.

Therefore, using a large corpus of malicious Facebook apps observed over a nine month

period, we showed that malicious apps differ significantly from benign apps with re-

spect to several features. For example, malicious apps are much more likely to share

names with other apps, and they typically request fewer permissions than benign apps.

Leveraging our observations, we developed FRAppE, an accurate classifier for detecting

malicious Facebook applications. Most interestingly, we highlighted the emergence of

AppNets—large groups of tightly connected applications that promote each other. We

also made few recommendations to Facebook and hope that Facebook will benefit from

these recommendations for reducing the menace of hackers on their platform.
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