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ABSTRACT OF THE DISSERTATION

Coon Amplitudes and Their Generalizations

by

Nicholas Parker Geiser

Doctor of Philosophy in Physics
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Professor Eric D’Hoker, Chair

In this dissertation we describe several recent advancements in the study of Coon amplitudes.

In the first chapter, we detail the properties of the Veneziano, Virasoro, and Coon ampli-

tudes. These tree-level four-point scattering amplitudes may be written as infinite products

with an infinite sequence of simple poles. Our approach for the Coon amplitude uses the

mathematical theory of q-analysis. We interpret the Coon amplitude as a q-deformation of

the Veneziano amplitude for all q ≥ 0 and discover a new transcendental structure in its

low-energy expansion. We show that there is no analogous q-deformation of the Virasoro

amplitude.

In the second chapter, we analyze so-called generalized Veneziano and generalized Vira-

soro amplitudes. Under some physical assumptions, we find that their spectra must satisfy

an over-determined set of non-linear recursion relations. The recursion relation for the gen-

eralized Veneziano amplitudes can be solved analytically and yields a two-parameter family

which includes the Veneziano amplitude, the one-parameter family of Coon amplitudes, and

a larger two-parameter family of amplitudes with an infinite tower of spins at each mass

level. In the generalized Virasoro case, the only consistent solution is the string spectrum.
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CHAPTER 1

Infinite product amplitudes: Veneziano, Virasoro, and

Coon

1.1 Introduction

This chapter is based on [GL22]. In this chapter, we shall detail the properties of the

Veneziano [Ven68], Virasoro [Vir69], and Coon [Coo69] amplitudes with zero Regge inter-

cept.1 These amplitudes describe the tree-level scattering of four massless particles and may

be written as infinite products with an infinite sequence of simple poles. For each ampli-

tude, we shall discuss its unitarity, high-energy behavior, low-energy expansion, and number

theoretic properties. We shall synthesize these properties in a unified manner to facilitate

comparison between the amplitudes.

Two of these amplitudes are well-known. The Veneziano amplitude describes the scat-

tering of four open strings. The Virasoro amplitude describes the scattering of four closed

strings. The lesser-known Coon amplitude is a one-parameter deformation of the Veneziano

amplitude with a real deformation parameter q ≥ 0. At q = 0, the Coon amplitude re-

duces to a field theory amplitude. At q = 1, the Coon amplitude is equal to the Veneziano

amplitude.

Our approach for the Coon amplitude uses the mathematical theory of q-deformations,

1For simplicity we only consider the scattering of four massless bosonic states. In this case, the tree-level
open and closed superstring amplitudes respectively reduce to the Veneziano and Virasoro amplitudes with
zero intercept.
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or q-analysis. Using a well-established q-deformation of the gamma function, we write a new

single formula (1.34) for the Coon amplitude valid for all q ≥ 0. Previously, the Coon ampli-

tude with q < 1 and the Coon amplitude with q > 1 were considered as distinct [BC76]. Our

calculations confirm and extend the recent analysis of the Coon amplitude with q < 1 [FT22]

to all q ≥ 0. Moreover, we compute a compact formula (1.46) for the low-energy expansion of

the Coon amplitude and discover a novel transcendental structure analogous to the number

theoretic structure of the low-energy expansions of the Veneziano and Virasoro amplitudes.

As a function of q, the Coon amplitude demonstrates a subtle interplay between the

properties of unitarity and meromorphicity (in the Mandelstam variables). For 0 < q < 1,

the Coon amplitude is unitary and non-meromorphic with an accumulation point spectrum.2

For q > 1, the Coon amplitude is non-unitary and meromorphic with no accumulation point.

Only the Veneziano amplitude at q = 1 is unitary and meromorphic with no accumulation

point.

In any case, the Coon amplitude is a fruitful example for the study of general scattering

amplitudes [CKS17, HLR21, Mai22, FT22, HR22]. While there is yet no definitive field

theory or string worldsheet realization of the Coon amplitude, accumulation point spectra

like those exhibited by the Coon amplitude with q < 1 have been recently found in a

stringy setup involving open strings ending on a D-brane [MR22]. Similar accumulation

point spectra have also appeared in recent amplitude studies [CKS17, Rid21, HLR21, BKZ21,

HR22, MR22]. Famously, the hydrogen atom has energy levels En = −13.6 eV/n2 with an

accumulation point at E∞ = 0.

In both this chapter and in chapter 2 (based on [GL23]), we show that there is no

naive q-deformation of the Virasoro amplitude or Virasoro-Coon amplitude analogous to our

interpretation of the Coon amplitude as a q-deformed Veneziano amplitude. In this chapter,

we attempt and fail to construct a q-deformed Virasoro amplitude using functions from q-

2A theory has an accumulation point spectrum if for some finite M2 > 0, the number of particles with
mass m2 < M2 is infinite.
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analysis. Our assumptions include crossing symmetry and polynomial residues on the same

sequence of poles as the Coon amplitude.

In chapter 2, we revisit this question by analyzing so-called generalized Veneziano and

generalized Virasoro amplitudes, which are defined by generalizing the infinite product rep-

resentations of the Veneziano and Virasoro amplitudes, respectively. Our procedure is an

extension and clarification of Coon’s original argument [Coo69] and related work [FN95]

in which we search for tree-level amplitudes with an infinite product form. We again as-

sume crossing symmetry, but we now demand physical residues on an a priori unspecified

sequence of poles λn. In other words, we do not assume the mass spectrum (while we do

assume the mass spectrum in our search for a q-deformed Virasoro amplitude here). Under

these assumptions, we find that the poles λn must satisfy an over-determined set of non-linear

recursion relations. The recursion relations for the generalized Veneziano amplitudes can be

solved analytically. In the generalized Virasoro case, we numerically demonstrate that the

only consistent solution to these recursion relations is the string spectrum. The Veneziano,

Virasoro, and Coon amplitudes detailed here are in fact the healthiest amplitudes we find

in [GL23]. This conclusion strengthens our present findings.

There may also be a simple physical argument for the non-existence of a Virasoro analog

of the Coon amplitude. We recall that accumulation point spectra were recently found in

a stringy setup involving open strings ending on a D-brane [MR22]. If accumulation point

spectra in string theory generically require open strings, then there may be no consistent

q-deformed Virasoro amplitude with an accumulation point for q < 1 since the Virasoro

amplitude at q = 1 describes the scattering of closed strings. These ideas are speculative

and worthy of future research.

Our approach is part of the modern S-matrix bootstrap program, which attempts to con-

struct general amplitudes which satisfy various physical properties such as unitarity, crossing,

and analyticity without relying on an underlying dynamical theory [CSZ21]. The modern

S-matrix bootstrap is a revival of an old approach [ELO66] which predates modern quantum

3



field theory (QFT) and attempts to constrain the space of physical theories, including those

which may not be describable by QFT.

1.1.1 Conventions

We only consider tree-level scattering amplitudes for four massless particles in d ≥ 3 space-

time dimensions. Such amplitudes have simple poles only. In a unitary theory, the residues

of these poles equal finite sums of Gegenbauer polynomials,

C
( d−3

2
)

j (cos θ) (1.1)

with positive coefficients. The positivity of these coefficients encodes the unitarity of the

theory. The Mandelstam variables for this process are,

s = −(p1 + p2)
2 = 4E2 ≥ 0

t = −(p1 + p4)
2 = −2E2(1− cos θ) ≤ 0

u = −(p1 + p3)
2 = −2E2(1 + cos θ) ≤ 0 (1.2)

and satisfy the mass-shell relation s + t + u = 0. Here E and θ are the center-of-mass

energy and scattering angle, respectively, and the inequalities refer to the physical scattering

regime. Since s-channel and t-channel Feynman diagrams correspond to the same cyclic

ordering, color-ordered amplitudes (e.g. gluon amplitudes) will have only s-channel and

t-channel poles and shall be denoted by A(s, t). Amplitudes with poles in all three channels

(e.g. graviton amplitudes) shall be denoted by A(s, t, u). We use units in which the lowest

massive state of any particular theory has mass m2 = 1. In open (closed) string theory, this

choice corresponds to α′ = 1 (α′ = 4).

1.1.2 Outline

In section 1.2, section 1.3, and section 1.4 we discuss the properties of the Veneziano, Vi-

rasoro, and Coon amplitudes, respectively. In section 1.5, we attempt and fail to construct

4



a Virasoro-Coon amplitude by q-deforming the Virasoro amplitude. Three additional sec-

tions contain various technical details. In section 1.6, we review some properties of the

gamma function. In section 1.7, we review some properties of the Gegenbauer polynomials.

In section 1.8, we derive the low-energy expansion of the Coon amplitude.

1.2 The Veneziano amplitude

The Veneziano amplitude was discovered in 1968 [Ven68] and describes the scattering of four

open strings. More recently, the Veneziano amplitude has been revisited in the context of

the modern S-matrix bootstrap program [CKS17, GW19, HLR21, AHH21, Mai22, AEH22].

In d ≤ 10 dimensions, the Veneziano amplitude is a physically-admissible UV-completion

of the tree-level four-point amplitude of maximally supersymmetric Yang-Mills field theory.

The color-stripped tree-level field theory amplitude which describes the scattering of any

four massless particles in the Yang–Mills supermultiplet is given by,

ASYM = P4
1

st
(1.3)

where P4 is a kinematic prefactor which is determined by maximal supersymmetry and

which contains the information about the particular states being scattered. For the four-

gluon amplitude, schematically P4 = F 4 where F is the linearized field strength. The second

factor 1
st
is symmetric in (s, t) and is a meromorphic function with simple poles from massless

particle exchange in the s-channel and t-channel. In the high-energy Regge limit s → ∞

with fixed polarizations and fixed t < 0, the prefactor P4 ∝ s2, and the amplitude diverges

as ASYM ∝ s.

In tree-level open superstring theory, the color-stripped amplitude which describes the

scattering process (1.3) is given by,

Aopen = P4AVen(s, t) (1.4)

5



where AVen is the Veneziano amplitude,

AVen(s, t) =
Γ(−s)Γ(−t)

Γ(1− s− t)
(1.5)

Like the corresponding field theory factor, the Veneziano amplitude is symmetric in (s, t)

and is a meromorphic function with simple poles only. We may explicitly exhibit these poles

using the infinite product representation (1.66) of the gamma function to write,

AVen(s, t) =
1

st

∏
n≥1

n2 − n(s+ t)

(s− n)(t− n)
(1.6)

The infinite sequence of massive poles at s = 1, 2, . . . correspond to excited stringy states.

1.2.1 Unitarity

The kinematic prefactor P4 which appears in both the field theory amplitude (1.3) and the

open superstring amplitude (1.4) has a positive expansion on the Gegenbauer polynomials in

d ≤ 10 dimensions [AEH22, HR22]. It remains then to check the unitarity of the Veneziano

amplitude itself. On the massless s-channel pole, P4 ∝ t2, and the residue of the Veneziano

amplitude agrees with field theory,

Res
s=0

AVen(s, t) = Res
s=0

1

st
=

1

t
=⇒ Res

s=0
Aopen ∝ t (1.7)

indicating the exchange of a massless spin-1 state, the gluon. The residue of each massive

pole at s = N ≥ 1 is a degree-(N − 1) polynomial in t,

Res
s=N

AVen(s, t) =
1

N !
(t+ 1)(t+ 2) · · · (t+N − 1) (1.8)

indicating the exchange of states with mass m2 = N and spins j ≤ N + 1. These residues

may be expanded in terms of Gegenbauer polynomials using the identities in section 1.7,

Res
s=N

AVen(s, t) =
N−1∑
j=0

cN,j C
( d−3

2
)

j

(
1 + 2t

N

)
(1.9)

6



with the first few coefficients given by,

c1,0 = 1 c2,0 = 0 c3,0 =
10−d

24(d−1)

c2,1 =
1

2(d−3)
c3,1 = 0

c3,2 =
3

4(d−1)(d−3)
(1.10)

The coefficient c3,0 is negative for d > 10, indicating the non-unitarity of the superstring

above its critical dimension d = 10. These coefficients were recently studied in d = 4 [Mai22]

and were recently shown to be positive for all d ≤ 6 [AEH22]. The unitarity of super-

string theory in d ≤ 10 (and thus the positivity of the cN,j) is known from the no-ghost

theorem [Bro72, GT72, Tho85], but there is yet no direct proof that cN,j > 0 for all d ≤ 10.

1.2.2 High-energy

The high-energy behavior of the Veneziano amplitude may be calculated using Stirling’s

formula (1.68). In the Regge limit of large |s| ≫ 1 with phase 0 < arg(s) < 2π (to avoid the

poles of the gamma function) and fixed t < 0, we find,

AVen(s, t)
|s|→∞∼ (−s)t−1 Γ(−t)

(
1 +O(s−1)

)
(1.11)

Compared to field theory, the extra exponent t softens the UV behavior. For any scattered

states with fixed polarizations, there is a range of fixed t < 0 such that lim|s|→∞Aopen = 0

while this limit diverges in the corresponding field theory amplitude.

1.2.3 Low-energy

At leading order in the low-energy expansion |s|, |t| ≪ 1, the Veneziano amplitude reproduces

field theory. At higher order, stringy corrections to field theory are given in terms of Riemann

7



zeta-values. Using the Taylor expansion for the gamma function (1.67), we find,

AVen(s, t) =
1

st
exp

∑
k≥2

ζ(k)

k

[
sk + tk − (s+ t)k

]
=

1

st
− ζ(2)− ζ(3) (s+ t)− ζ(4) (s2 + 1

4
st+ t2) + · · · (1.12)

The Veneziano amplitude exhibits a remarkable property called uniform transcendentality,

meaning each term in its low-energy expansion may be assigned the same transcenden-

tal weight. If we assign weight k to the zeta-value ζ(k) (the standard number theoretic

assignment) and weight −1 to the Mandelstam variables, then each term in (1.12) has tran-

scendental weight two. Uniform transcendentality is in fact a general property of tree-level

superstring amplitudes [SS13], and the transcendental structure of one-loop superstring am-

plitudes is under active study [DG19, DG22]. In comparison, non-trivial transcendental

structure in field theory only arises from loop integrals [KL03, BF09, ABC12, BDD19].

1.3 The Virasoro amplitude

The Virasoro amplitude was discovered in 1969 [Vir69] and describes the scattering of four

closed strings. Like the Veneziano amplitude, the Virasoro amplitude has also been recently

revisited in the context of the modern S-matrix bootstrap program [GW19, AHH21, AEH22].

In d ≤ 10 dimensions, the Virasoro amplitude is a physically-admissible UV-completion

of the tree-level four-point amplitude of maximal supergravity. The tree-level field theory

amplitude which describes the scattering of any four massless particles in the supergravity

multiplet is given by,

ASG = P8

(
− 1

stu

)
(1.13)

where P8 is a kinematic prefactor which is determined by maximal supersymmetry and which

contains the information about the particular states being scattered. For the four-graviton

amplitude, schematically P8 = R4 where R is the linearized Riemann curvature. The second

8



factor − 1
stu

is symmetric in (s, t, u) and contains poles from massless particle exchange in

the s-channel, t-channel, and u-channel. In the high-energy Regge limit s → ∞ with fixed

polarizations and fixed t < 0, the prefactor P8 ∝ s4, and the amplitude diverges as ASG ∝ s2.

In tree-level closed superstring theory, the amplitude which describes the scattering pro-

cess (1.13) is given by,

Aclosed = P8AVir(s, t, u) (1.14)

where AVir is the Virasoro amplitude,

AVir(s, t, u) =
Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)
(1.15)

Like the corresponding field theory factor, the Virasoro amplitude is symmetric in (s, t, u)

and is a meromorphic function with simple poles only. We may explicitly exhibit these poles

using the infinite product representation (1.66) of the gamma function to write,

AVir(s, t, u) = − 1

stu

∏
n≥1

−n3 − n(st+ tu+ us)− stu

(s− n)(t− n)(u− n)
(1.16)

The infinite sequence of massive poles at s = 1, 2, . . . correspond to excited stringy states.

1.3.1 Unitarity

The kinematic prefactor P8 which appears in both the field theory amplitude (1.13) and the

closed superstring amplitude (1.14) has a positive expansion on the Gegenbauer polynomials

in d ≤ 10 dimensions [AEH22, HR22]. It remains then to check the unitarity of the Virasoro

amplitude itself. On the massless s-channel pole, P8 ∝ t4, and the residue of the Virasoro

amplitude agrees with field theory,

Res
s=0

AVir(s, t,−s− t) = Res
s=0

1

st(s+ t)
=

1

t2
=⇒ Res

s=0
Aclosed ∝ t2 (1.17)

9



indicating the exchange of a massless spin-2 state, the graviton. The residue of each massive

pole at s = N ≥ 1 is a degree-(2N − 2) polynomial in t, indicating the exchange of states

with mass m2 = N and spins j ≤ 2N + 2. In fact, the residues of the Virasoro amplitude

equal the residues of the Veneziano amplitude (1.8) squared,

Res
s=N

AVir(s, t,−s− t) =
{ 1

N !
(t+ 1)(t+ 2) · · · (t+N − 1)

}2

=
{
Res
s=N

AVen(s, t)
}2

(1.18)

These residues may be expanded in terms of Gegenbauer polynomials using the identities

in section 1.7,

Res
s=N

AVir(s, t,−s− t) =
2N−2∑
j=0

cN,j C
( d−3

2
)

j

(
1 + 2t

N

)
(1.19)

with the first few coefficients given by,

c1,0 = 1 c2,0 =
1

4(d−1)
c3,0 =

224−18d+d2

576(d+1)(d−1)

c2,1 = 0 c3,1 = 0

c2,2 =
1

2(d−1)(d−3)
c3,2 =

24−d
16(d+3)(d−1)(d−3)

c3,3 = 0

c3,4 =
27

8(d+3)(d+1)(d−1)(d−3)
(1.20)

The positivity of these coefficients below the critical dimension follows indirectly from the

no-ghost theorem [Bro72, GT72, Tho85], but there is yet no direct proof that cN,j > 0 for

all d ≤ 10.

1.3.2 High-energy

The high-energy behavior of the Virasoro amplitude may be calculated using Stirling’s for-

mula (1.68). In the Regge limit of large |s| ≫ 1 with phase 0 < arg(s) < π (to avoid the

poles of the gamma function) and fixed t < 0, we find,

AVir(s, t,−s− t)
|s|→∞∼ (−s)t−1 st−1 Γ(−t)

Γ(1 + t)

(
1 +O(s−1)

)
(1.21)
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Compared to field theory, the extra exponent 2t softens the UV behavior. For any scattered

states with fixed polarizations, there is a range of fixed t < 0 such that lim|s|→∞ Aclosed = 0

while this limit diverges in the corresponding field theory amplitude.

1.3.3 Low-energy

At leading order in the low-energy expansion |s|, |t|, |u| ≪ 1, the Virasoro amplitude repro-

duces field theory. At higher order, the stringy corrections to field theory are given in terms

of Riemann zeta-values. Using the Taylor expansion for the gamma function (1.67), we find,

AVir(s, t, u) = − 1

stu
exp

∑
k≥1

2 ζ(2k + 1)

2k + 1
(s2k+1 + t2k+1 + u2k+1)

= − 1

stu
− 2 ζ(3)− ζ(5) (s2 + t2 + u2) + · · · (1.22)

Like the Veneziano amplitude (1.12), the low-energy expansion of the Virasoro amplitude

exhibits uniform transcendentality. If we assign weight k to ζ(k) and weight −1 to the

Mandelstam variables, then each term in (1.22) has transcendental weight three.

Furthermore, we note that only odd zeta-values occur in (1.22) while both even and

odd zeta-values occurred in the low-energy expansion of the Veneziano amplitude (1.12).

This discrepancy between the Veneziano and Virasoro amplitudes may be described by the

so-called single-valued map, which maps the (motivic) zeta-values ζ(k) to the single-valued

zeta-values ζsv(k), defined by,

ζsv(2k) = 0 ζsv(2k + 1) = 2 ζ(2k + 1) (1.23)

The single-valued zeta-values are so-called because they descend from single-valued versions

of the multi-valued polylogarithm functions Lik(z), which evaluate to the Riemann zeta

function at z = 1,

Lik(z) =
∑
n≥1

zn

nk
−−→
z→1

ζ(k) =
∑
n≥1

1

nk
(1.24)
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Comparing (1.12) and (1.22), we see that the Veneziano amplitude becomes the Virasoro

amplitude under the single-valued map acting term-by-term on the low-energy expansion,

(st)AVen −→
sv

(−stu)AVir (1.25)

General tree-level open and closed superstring amplitudes are in fact related by the single-

valued map [SS13, Bro14, Sti14, ST14, BD21a, SS19, VZ18, BD21b], encoding a deep number

theoretical relationship between the open and closed superstrings, and thus between gauge

theories and theories of gravity.

Both the single-valued map (1.25) and the residue relation (1.18) are manifestations of

another relationship between open and closed superstring amplitudes. The Kawai-Lewellen-

Tye (KLT) relations [KLT86] express tree-level closed superstring amplitudes as bilinears

of tree-level open superstring amplitudes. Informally, the closed superstring is equal to the

open superstring squared. The four-point KLT relation is,

AVir(s, t, u) = AVen(s, t)SKLT AVen(s, t) (1.26)

where SKLT is the KLT kernel,

SKLT =
sin(πs) sin(πt)

π sin
(
π(s+ t)

) (1.27)

This expression for SKLT follows from the definition of the Veneziano amplitude (1.5), the

definition of the Virasoro amplitude (1.15), and the reflection formula for the gamma func-

tion (1.65). In the field theory (low-energy) limit, the KLT relations are known as the double

copy between gauge theory and gravity [BCJ10, BCC19].

1.4 The Coon amplitude

The Coon amplitude was discovered in 1969 as a generalization of the Veneziano amplitude

with non-linear Regge trajectories [Coo69]. The subsequent studies of the Coon amplitude

were phenomenologically motivated. A concise survey of this early literature is given in

12



a (quite difficult to find) 1989 review [Rom89] (which cites an expanded but unpublished

pre-print [Rom88] which we could not locate). Around this time, the Coon amplitude was

revisited in the broader context of string theory [Rom89, FN95]. Most recently, the Coon am-

plitude has reappeared in the modern S-matrix bootstrap program [CKS17, Rid21, HLR21,

Mai22, FT22, HR22, MR22].

The Coon amplitude Aq is a one-parameter deformation of the Veneziano amplitude with

a real deformation parameter q ≥ 0. To construct a full four-point scattering amplitude, we

replace AVen in the open superstring amplitude (1.4) with Aq to describe the scattering of

four massless states in a putative q-deformed string theory,

Aq-strings = P4Aq(s, t) (1.28)

This deformation may be understood using the mathematical theory of q-deformations or

q-analogs, also known as q-analysis.

1.4.1 q-analysis

In mathematics, a q-analog of a theorem, function, identity, or expression is a generalization

involving a deformation parameter q that returns the original mathematical object in the

limit q → 1. Many special functions and differential equations have well-studied q-analogs

dating back to the nineteenth century [GR04]. For our purposes, we shall only need a few

q-ingredients. We first define the q-integers [n]q by,

[n]q =
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1 −−→

q→1
n (1.29)

where the second equality holds for n ≥ 1.

In passing from the Veneziano amplitude (1.5) to the Coon amplitude, we shall replace

the linear Regge trajectory α(s) = s that appears in the arguments of the gamma functions

with a non-linear deformation αq(s) that satisfies αq([n]q) = n. The q-deformed Regge

13



trajectory is thus,

αq(s) =
ln
(
1 + (q − 1)s

)
ln q

(1.30)

This Regge trajectory becomes linear as limq→1 αq(s) = s.

The gamma functions in the Veneziano amplitude (1.5) are themselves replaced by the

so-called q-gamma function, which is defined for complex q by [GR04],

Γq(z) =


(1− q)1−z

∏
n≥0

1− q+n+1

1− q+n+z
|q| < 1

q
z(z−1)

2 (q − 1)1−z
∏
n≥0

1− q−n−1

1− q−n−z
|q| > 1

(1.31)

The q-gamma function obeys a functional equation analogous to Γ(z + 1) = z Γ(z),

Γq(z + 1) =
1− qz

1− q
Γq(z) (1.32)

and becomes the ordinary gamma function as limq→1± Γq(z) = Γ(z). Many properties of

the gamma function have precise q-analogs. For instance, the asymptotic behavior of the

q-gamma function is given by a q-analog of Stirling’s formula [Moa84],

ln Γq(z)
|qz |→0∼ (z − 1

2
) ln

1− qz

1− q
+

Li2(1− qz)

ln q
+ 1

2
ln(2π) + Cq +O

(
qz
)

(1.33)

which is valid for small |qz| ≪ 1. Here Li2(z) is the dilogarithm and Cq is a known q-

dependent constant.

1.4.2 q-deformed Veneziano

In terms of these q-ingredients, the Coon amplitude for all q ≥ 0 is given by,

Aq(s, t) = qαq(s)αq(t)−αq(s)−αq(t)
Γq

(
−αq(s)

)
Γq

(
−αq(t)

)
Γq

(
1− αq(s)− αq(t)

) (1.34)

Our conventions for the Coon amplitude differ from the older literature by an overall normal-

ization but are chosen so that its leading low-energy behavior is 1
st
(1 +O(s, t)) to facilitate
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comparison to the Veneziano amplitude. Clearly, limq→1Aq = AVen. Moreover, our single

formula contains both the Coon amplitude with q < 1 and the Coon amplitude with q > 1,

which were previously considered as distinct [BC76]. However, many properties of the Coon

amplitude, including its meromorphicity as a function of the Mandelstam variables, are ob-

scured in the form (1.34). The prefactor qαq(s)αq(t) is explicitly non-meromorphic, but we

shall soon see that it is perfectly natural.

Using the definition of q-gamma function, we may write the Coon amplitude in terms of

one convergent infinite product for q < 1 and another for q > 1,

Aq(s, t) = qαq(s)αq(t) Θ(1− q)
1

st

∏
n≥1

(1− q−αq(s)−αq(t)+n)(1− q+n)

(1− q−αq(s)+n)(1− q−αq(t)+n)

+ Θ(q − 1)
1

st

∏
n≥1

(1− q+αq(s)+αq(t)−n)(1− q−n)

(1− q+αq(s)−n)(1− q+αq(t)−n)
(1.35)

where the step function is defined by Θ(x ≥ 0) = 1 and Θ(x < 0) = 0. This form is nice

because the infinite product of each of the four factors in either infinite product separately

converges. Moreover, for q > 1, the non-meromorphic prefactor qαq(s)αq(t) has canceled

against similar non-meromorphic factors in the q-gamma functions.

We may further massage (1.35) into a form with just one infinite product for all q ≥ 0

times a piecewise q-dependent prefactor,

Aq(s, t) =

{
q

ln(1+(q−1)s)
ln q

ln(1+(q−1)t)
ln q Θ(1− q) + Θ(q − 1)

}
× 1

st

∏
n≥1

(
1−qn

1−q

)2 − (
1−qn

1−q

)
(s+ t) + (1− qn)st(

s− 1−qn

1−q

)(
t− 1−qn

1−q

) (1.36)

We must take care with this expression because the infinite products of the numerator and

denominator do not separately converge. In this form, we see that the Coon amplitude

with q > 0 has an infinite sequence of simple poles in both the s-channel and t-channel.

These poles occur at the q-integers,

[n]q =
1− qn

1− q
(1.37)
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for integer n ≥ 0. For q = 0, the infinite product is just
∏

n≥1 1 = 1. For 0 < q < 1, the

poles tend to an accumulation point at 1
1−q

. For q ≥ 1, the poles tend to infinity, and q = 1

reproduces the string spectrum.

Like the Veneziano amplitude, the Coon amplitude is symmetric in (s, t) and has simple

poles only. For q ≥ 1, the Coon amplitude is meromorphic, but for q < 1, the Coon amplitude

as written in (1.36) has an explicit non-meromorphic factor qαq(s)αq(t) with branch cuts in the

complex s-plane and t-plane starting at the accumulation point 1
q−1

. In the limits q → 0 and

q → 1−, this non-meromorphic prefactor becomes qαq(s)αq(t) → 1, and the Coon amplitude

reproduces the field theory and Veneziano amplitudes, respectively,

Aq(s, t) −−→
q→0

1

st

Aq(s, t) −−→
q→1

AVen(s, t) (1.38)

1.4.3 Unitarity

To compute the residues of the Coon amplitude, we shall manipulate the form (1.35) with

manifestly convergent infinite products. The algebra is tedious but straightforward. The

residue of the massless pole agrees with field theory for all q ≥ 0,

Res
s=0

Aq(s, t) = Res
s=0

1

st
=

1

t
(1.39)

For q > 0, the residue of the massive pole at s = [N ]q with N ≥ 1 is a degree-(N − 1)

polynomial in t, indicating the exchange of states with mass m2 = [N ]q and spins j ≤ N +1,

Res
s=[N ]q

Aq(s, t) = qN
N∏

n=1

1(
1−qn

1−q

) N−1∏
n=1

(
qn t+ 1−qn

1−q

)
(1.40)

On the poles, the non-meromorphic factor qαq([N ]q)αq(t) = (1 + (q − 1)t)N ensures that the

residues are polynomials in t for q < 1. In any case, these residues may be expanded in

terms of Gegenbauer polynomials using the identities in section 1.7,

Res
s=[N ]q

Aq(s, t) =
N−1∑
j=0

cN,j C
( d−3

2
)

j

(
1 + 2t

[N ]q

)
(1.41)
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with the first few coefficients given by,

c1,0 = q

c2,0 =
q2(1−q)(2+q)

2(1+q)

c2,1 =
q3

2(d−3)

c3,0 =
q3[4(d−1)+2q(d−1)−6q2(d−1)−q3(5d−6)−2q4(d−2)+3dq5+2dq6+dq7]

4(d−1)(1+q)(1+q+q2)

c3,1 =
q4(1−q)(1+3q+2q2+q3)

2(d−3)(1+q)

c3,2 =
q6(1+q+q2)

2(d−1)(d−3)(1+q)
(1.42)

For q > 1, the coefficient c2,0 is negative in any number of dimensions, indicating non-

unitarity. The non-unitarity of the Coon amplitude with q > 1 has been known since the

early 1970s [BC71]. The unitarity of the Coon amplitude with q < 1 is more subtle. This case

was studied in the 1990s [FN95] and again more recently [FT22]. The most recent numerical

studies indicate that the Coon amplitude with q < 1 is unitary below some q-dependent

critical dimension [FT22]. This critical dimension is d = 10 in the limit q → 1 and d = ∞

in the limit q → 0 .

Although the Coon amplitude with q < 1 may be unitary, it is non-meromorphic due to

the factor qαq(s)αq(t). As we discussed above, this explicit non-meromorphic factor is necessary

for the Coon amplitude to have polynomial residues. The Coon amplitude with q < 1 also

has an accumulation point of poles at 1
1−q

. By definition, meromorphic functions can only

have isolated poles. Thus, the infinite product itself is non-meromorphic even without the

explicit non-meromorphic factor.

For q > 1 the situation is reversed. There the Coon amplitude is meromorphic with no

accumulation point, but it is non-unitary. Only the Veneziano amplitude at q = 1 is both

meromorphic and unitary.
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1.4.4 High-energy

The high-energy behavior of the Coon amplitude may be calculated using the q-analog of

Stirling’s formula (1.33). In the Regge limit with fixed t < 0 and large |s| ≫ 1 with phase

0 < arg(s) < 2π (to avoid the poles of the q-gamma function as well as the branch cut

for 0 < q < 1), we find,

Aq(s, t)
|s|→∞∼ (−s)αq(t)−1 Γq

(
−αq(t)

)
(q − 1)t+ 1

[
1 +O

(
(q − 1)−1s−1

)]
(1.43)

which agrees with the Regge limit (1.11) of the Veneziano amplitude as q → 1 (ignoring the

subtlety that the small parameter blows up at q = 1). For both 0 < q < 1 and q > 1,

the exponent αq(t) = ln(1 + (q − 1)t)/ ln q can be made arbitrarily large and negative as a

function of t < 0. For any scattered states with fixed polarizations, there is thus a range

of fixed t < 0 such that lim|s|→∞ Aq-strings = 0 while this limit diverges in the corresponding

field theory amplitude.

1.4.5 Low-energy

The low-energy expansion of the Coon amplitude with q < 1 was recently studied [FT22].

Here we extend that result to all q ≥ 0. The details of our calculation are given in section 1.8.

Like the Veneziano amplitude, the Coon amplitude reproduces field theory at leading

order. At higher order and for all q > 0, corrections to field theory are given in terms of the

q-deformation Lik(z; q) of the polylogarithm Lik(z), which evaluates to the Riemann zeta

function ζ(k) at q = z = 1 [Sch01],

Lik(z; q) =
∑
n≥1

zn(
1−qn

1−q

)k −−→
q→1

Lik(z) =
∑
n≥1

zn

nk
−−→
z→1

ζ(k) =
∑
n≥1

1

nk
(1.44)

The low-energy expansion includes in particular the q-deformed polylogarithms Lik(q
j; q)

with integers k > j ≥ 1. For all q ≥ 0, the defining sums for these special functions are
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absolutely convergent and finite,

Lik(q
j; q) =

∑
n≥1

qnj(
1−qn

1−q

)k ≤



qj

1− qj
q < 1

ζ(k) q = 1

qj

1− qj−k
q > 1

(1.45)

For q < 1, there is also a contribution from the non-meromorphic factor qαq(s)αq(t) which

appears in (1.35) and (1.36). In total we find,

Aq(s, t) =
1

st
exp

∑
ℓ1,ℓ2≥1

{
Θ(1− q)

(1− q)ℓ1+ℓ2

ℓ1ℓ2 ln q
−

ℓmin∑
j=1

dj;ℓ1,ℓ2 Liℓ1+ℓ2(q
j; q)

}
sℓ1tℓ2 (1.46)

=
1

st
−

[
Li2(q; q)−Θ(1− q) (1−q)2

ln q

]
−
[
Li3(q; q)−Θ(1− q) (1−q)3

2 ln q

]
(s+ t) + · · ·

where ℓmin = min(ℓ1, ℓ2) and dj;ℓ1,ℓ2 is the following rational number,

dj;ℓ1,ℓ2 =

ℓmin∑
i=j

(ℓ1 + ℓ2 − i− 1)!

(ℓ1 − i)!(ℓ2 − i)!(i− j)!j!
(−)i−j (1.47)

The limit q → 1 reproduces the low-energy expansion of the Veneziano amplitude (1.12)

since Liℓ1+ℓ2(1; 1) = ζ(ℓ1 + ℓ2) and,

ℓmin∑
j=1

dj;ℓ1,ℓ2 =
1

ℓ1 + ℓ2

(
ℓ1 + ℓ2

ℓ1

)
(1.48)

for positive integers ℓ1, ℓ2.

The q-deformed polylogarithms, like the usual polylogarithms and the Riemann zeta-

values, may be assigned a transcendental weight. If we assign weight k to Lik(q
j; q), then we

must assign weight one to the factor (1− q) since,

(1− q) Lik(q
j; q) = Lik+1(q

j; q)− Lik+1(q
j+1; q) (1.49)

Under these assignments, each side of this equation has weight k+1. If we assign weight −1

to the Mandelstam variables as we did in the low-energy expansions of the Veneziano and

19



Virasoro amplitudes, then each term in the low-energy expansion of the Coon amplitude

with q ≥ 1 has uniform transcendental weight two, just like the Veneziano amplitude (1.12).

For q < 1, the transcendental structure is not as clear. In this case, the argument of the

exponential (which should have transcendental weight zero) includes the terms,

1

ℓ1ℓ2 ln q
(1− q)ℓ1+ℓ2 sℓ1tℓ2 (1.50)

The factor (1 − q)ℓ1+ℓ2 sℓ1tℓ2 has weight zero under our previous assignments, but it is cus-

tomary to assign weight one to logarithms. After all, the logarithm is just the weight-one

polylogarithm,

Li1(z) = − ln(1− z) (1.51)

so that (1.50) naively has transcendental weight −1 rather than weight zero.

We are not, however, out of luck. We may write the reciprocal 1/ℓ1ℓ2 in terms of finite

harmonic sums,

H1(k) =
k−1∑
n=1

1

n
=⇒ 1

ℓ1ℓ2
= H1(ℓ1ℓ2 + 1)−H1(ℓ1ℓ2) (1.52)

We then assign transcendental weight one to the finite harmonic sums so that (1.50) has

weight zero. This assignment is delicate. One should think of H1(k) not as its value for a

single k (which is a rational number whose natural transcendental weight assignment is zero)

but instead as a function of k to be inserted into an infinite series in k. For instance, H1(k)

occurs in this manner in the double zeta-value ζ(ℓ, 1),

ζ(ℓ, 1) =
∑

n1>n2≥1

1

nℓ
1n2

=
∑
n≥2

H1(n)

nℓ
(1.53)

The standard weight assignments of ζ(ℓ) and ζ(ℓ, 1) are ℓ and ℓ + 1, respectively, which

justifies assigning weight one to the function H1(k). This assignment of non-zero transcen-

dental weight to finite harmonic sums is familiar to the low-energy expansion of one-loop
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superstring amplitudes [DG19, DG22] and to loop amplitudes in N = 4 supersymmetric

quantum field theory [KL03, BF09].

Under these assignments, each term in the low-energy expansion of the Coon amplitude

for all q ≥ 0 has uniform transcendental weight two, in perfect analogy with the low-energy

expansion of the Veneziano amplitude (1.12). For q ≥ 1, the subtleties involving ln q and

finite harmonic sums can be ignored.

1.5 The Virasoro-Coon amplitude?

In this section, we shall attempt to construct a q-deformed Virasoro or Virasoro-Coon am-

plitude in analogy with our interpretation of the Coon amplitude as a q-deformed Veneziano

amplitude. Specifically, we shall try to construct an amplitude Aq-Vir(s, t, u) with the follow-

ing properties:

• (s, t, u) crossing symmetry

• simple poles in each channel only at the q-integers [n]q with n ≥ 0

• polynomial residues on the massive poles

• the field theory amplitude at q = 0 and the Virasoro amplitude at q = 1,

Aq-Vir(s, t, u) −−→
q→0

− 1

stu

Aq-Vir(s, t, u) −−→
q→1

AVir(s, t, u) (1.54)

• the low-energy expansion − 1
stu

(
1 +O(s, t, u)

)
We shall first consider the location of the poles. For q ̸= 1, a convergent infinite product

which contains our desired sequence of poles in each channel is,∏
n≥0

1(
1− q̂ n−αq(s)

)(
1− q̂ n−αq(t)

)(
1− q̂ n−αq(u)

) (1.55)
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where q̂ = min(q, q−1). This infinite product, and thus Aq-Vir, is proportional to the following

product of three q-gamma functions,

Γq

(
−αq(s)

)
Γq

(
−αq(t)

)
Γq

(
−αq(u)

)
(1.56)

If we are to have a polynomial residue on each massive s-channel pole, then the infinite

product of t-channel poles from Γq

(
−αq(t)

)
must be canceled by an infinite product of

zeroes. This cancellation can only be achieved by a function proportional to the ratio,

Γq

(
−αq(t)

)
Γq

(
1− αq(s)− αq(t)

) (1.57)

The Coon amplitude achieves polynomial residues through the same cancellation. The fur-

ther requirement that Aq-Vir = − 1
stu

at low-energy implies that all but t−1 should be canceled

from Γq

(
−αq(t)

)
on the massless pole at s = 0 for all q ≥ 0. We may satisfy this condition

by multiplying (1.57) by q−αq(t). Demanding (s, t, u) symmetry, we find that Aq-Vir must be

proportional to,

q−δq(s,t,u)
Γq

(
−αq(s)

)
Γq

(
−αq(t)

)
Γq

(
−αq(u)

)
Γq

(
1− αq(t)− αq(u)

)
Γq

(
1− αq(u)− αq(s)

)
Γq

(
1− αq(s)− αq(t)

) (1.58)

where δq(s, t, u) = αq(s) + αq(t) + αq(u). At q = 1, this expression reproduces the Virasoro

amplitude as desired.

Now on each massive s-channel pole, the factor 1/Γq

(
1 − αq(t) − αq(u)

)
contributes an

infinite product of zeroes in t, spoiling the polynomial residue. These zeroes do not appear

if q = 0 or q = 1 because αq(s) + αq(t) + αq(u) = 0 when q = 0 or q = 1. For general q,

the infinite product of zeroes must be canceled by an infinite product of poles, and this

cancellation can only be achieved by a function proportional to the ratio,

Γq

(
ℓ− δq(s, t, u)

)
Γq

(
1− αq(t)− αq(u)

) (1.59)

for some integer ℓ ≥ 1. While the factor Γq

(
ℓ − δq(s, t, u)

)
cancels the infinite product of

zeroes, it also introduces an infinite number of new poles, spoiling our initial assumption.
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Despite this complication of additional poles, we shall proceed with ℓ = 1. We now have

the following ansatz for Aq-Vir,

q−δq(s,t,u)
Γq

(
−αq(s)

)
Γq

(
−αq(t)

)
Γq

(
−αq(u)

)
Γq

(
1− δq(s, t, u)

)
Γq

(
1− αq(t)− αq(u)

)
Γq

(
1− αq(u)− αq(s)

)
Γq

(
1− αq(s)− αq(t)

) (1.60)

which has the following convergent infinite product form for all q ≥ 0,

− 1

stu

∏
n≥1

(
1− q̂ n−αq(t)−αq(u)

)(
1− q̂ n−αq(u)−αq(s)

)(
1− q̂ n−αq(s)−αq(t)

)(
1− q̂ n

)(
1− q̂ n−αq(s)

)(
1− q̂ n−αq(t)

)(
1− q̂ n−αq(u)

)(
1− q̂ n−δq(s,t,u)

) (1.61)

where again q̂ = min(q, q−1). This ansatz reproduces the field theory amplitude at q = 0 and

the Virasoro amplitude at q = 1. The residues of this ansatz, however, are not polynomials.

Near the massive pole at s = [N ]q, (1.61) becomes,

− 1

[N ]q

1

tu

1(
1− q̂N−αq(s)

) N−1∏
n=1

1(
1− q̂ n−N

) N∏
n=1

(
1− q̂ n−N−αq(t)

)(
1− q̂ n−N−αq(u)

)(
1− q̂ n−N−αq(t)−αq(u)

) (1.62)

After some straightforward algebra, we see that the residue at s = [N ]q is a non-polynomial

rational function of t unless q = 0 or q = 1.

We have thus failed to construct a q-deformed Virasoro amplitude under our stated

assumptions. Therefore, we conclude that there is no amplitude with (s, t, u) symmetry,

simple poles at the q-integers, and polynomial residues. Only the field theory amplitude

at q = 0 (with no massive poles) and the Virasoro amplitude at q = 1 (with poles at the

integers) satisfy our constraints. It seems then that there is no q-deformed Virasoro or

Virasoro-Coon amplitude.

In our companion work [GL23], we revisit this question by analyzing so-called generalized

Virasoro amplitudes, defined by a generalization of the infinite product representation of

the Virasoro amplitude (1.16). In this analysis, we assume (s, t, u) symmetry and demand

physical residues on an a priori unspecified sequence of poles λn. In other words, we do

not assume a given mass spectrum as we have done in our search for a q-deformed Virasoro

amplitude here. We find that the poles λn must satisfy an over-determined set of non-linear

recursion relations. We then numerically demonstrate that the only consistent solution to

these recursion relations is the string spectrum with λn = n.
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1.6 Gamma function

In this section, we shall collect some well-known properties of the gamma function Γ(z). The

gamma function is a meromorphic function with poles at the non-positive integers, defined

by the following integral,

Γ(z) =

∫ ∞

0

dx xz−1e−x (1.63)

The gamma function obeys the functional equation,

Γ(z + 1) = z Γ(z) (1.64)

and the reflection formula,

Γ(z) Γ(1− z) =
π

sin(πz)
(1.65)

A useful infinite product representation of the gamma function is,

Γ(z) =
1

z

∞∏
n=1

(
1 + 1

n

)z
1 + z

n

(1.66)

A Taylor expansion for Γ(1 + z) with |z| < 1 is given by,

ln Γ(1 + z) = −γE z +
∞∑
k=2

ζ(k)

k
(−z)k (1.67)

where γE is the Euler-Mascheroni constant and ζ(k) =
∑∞

n=1 n
−k are Riemann zeta-values.

The asymptotic behavior of the gamma function is given by Stirling’s formula,

ln Γ(z)
|z|→∞∼ (z − 1

2
) ln z − z + 1

2
ln(2π) +O

(
z−1

)
(1.68)

which is valid for large |z| ≫ 1 with phase | arg(z)| < π.

1.7 Gegenbauer polynomials

In this section, we shall review some properties of the Gegenbauer polynomials [Vil68, GR07].

The Gegenbauer polynomials may be defined by a generating function,

1

(1− 2xt+ t2)λ
=

∞∑
j=0

C
(λ)
j (x) tj (1.69)
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or in terms of the hypergeometric function,

C
(λ)
j (x) =

Γ(j+2λ)

Γ(j+1)Γ(2λ) 2F1

(
−j, j + 2λ; λ+ 1

2
; 1

2
(1− x)

)
(1.70)

The first few Gegenbauer polynomials are,

C
(λ)
0 (x) = 1

C
(λ)
1 (x) = 2λx

C
(λ)
2 (x) = −λ+ 2λ(1 + λ)x2

C
(λ)
3 (x) = −2λ(1 + λ)x+ 4

3
λ(1 + λ)(2 + λ)x3 (1.71)

In d ≥ 3 spacetime dimensions, the polynomials C
( d−3

2
)

j (cos θ) diagonalize the Lorentz group

Casimir operator. In d = 3 we must omit the normalization factor Γ(j+2λ)
Γ(j+1)Γ(2λ)

which vanishes.

The case d = 4 reduces to the familiar Legendre polynomials. The Gegenbauer polynomials

obey an orthogonality relationship,

∫ 1

−1

dx (1− x2)λ−
1
2 C

(λ)
j (x)C

(λ)
ℓ (x) =


π

22λ−1(j+λ)

Γ(j+2λ)

Γ(j+1)Γ(λ)2
j = ℓ

0 j ̸= ℓ

(1.72)

and the following integration identity,

∫ 1

−1

dx (1− x2)λ−
1
2 C

(λ)
j (x)xℓ =


Γ(λ+ 1

2
)Γ(j+2λ)Γ(ℓ+1)Γ( ℓ−j+1

2
)

2j Γ(2λ)Γ(j+1)Γ(ℓ−j+1)Γ( ℓ+j
2

+λ+1)
j + ℓ even

0 j + ℓ odd

(1.73)

for integers j, ℓ ≥ 0. These two integrals may be used to write the residues of any tree-level

four-point amplitude in terms of Gegenbauer polynomials. The product of two Gegenbauer

polynomials may be expanded as,

C
(λ)
j1

(x)C
(λ)
j2

(x) =

j1+j2∑
ℓ=|j1−j2|

c
(λ)
j1,j2;ℓ

C
(λ)
ℓ (x) (1.74)

for integers j1, j2 ≥ 0, where,

c
(λ)
j1,j2;ℓ

=


(ℓ+λ) Γ(ℓ+1)Γ(g+2λ)

Γ(λ)2Γ(ℓ+2λ)Γ(g+λ+1)

Γ(g−ℓ+λ)

Γ(g−ℓ+1)

Γ(g−j1+λ)

Γ(g−j1+1)

Γ(g−j2+λ)

Γ(g−j2+1)
j1 + j2 + ℓ even

0 j1 + j2 + ℓ odd

(1.75)

with g = 1
2
(j1 + j2 + ℓ). For d ≥ 4, the coefficients c

( d−3
2

)

j1,j2;ℓ
≥ 0 are non-negative.
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1.8 Deriving the Coon amplitude low-energy expansion

In this section, we shall derive the low-energy expansion (1.46) of the Coon amplitude for all

q ≥ 0. Our starting point is (1.36). The low-energy expansion of the factor qαq(s)αq(t) may

be computed using the Taylor expansion for ln(1− z),

q
ln(1+(q−1)s)

ln q
ln(1+(q−1)t)

ln q = exp
∑

ℓ1,ℓ2≥1

(1− q)ℓ1+ℓ2

ℓ1ℓ2 ln q
sℓ1tℓ2 (1.76)

The low-energy expansion of the infinite product is similarly given by,

∏
n≥1

(
1−qn

1−q

)2 − (
1−qn

1−q

)
(s+ t) + (1− qn)st(

s− 1−qn

1−q

)(
t− 1−qn

1−q

)
= exp

∑
n≥1

∑
k≥1

1

k
(
1−qn

1−q

)k [sk + tk −
(
s+ t+ (q − 1)st

)k]
(1.77)

At this point we cannot interchange the sums over n and k and perform the sum over n

because the resultant q-deformed polylogarithms Lik(1; q) diverge for q < 1. Instead, we

expand the summand using the multinomial theorem and collect powers of s and t to find,

exp
∑
n≥1

∑
ℓ1,ℓ2≥1

ℓmin∑
i=0

(ℓ1 + ℓ2 − i− 1)!

(ℓ1 − i)!(ℓ2 − i)!i!

(−)(qn − 1)i(
1−qn

1−q

)ℓ1+ℓ2
sℓ1tℓ2 (1.78)

where ℓmin = min(ℓ1, ℓ2). We now expand the factor (qn − 1)i and find,

exp
∑
n≥1

∑
ℓ1,ℓ2≥1

ℓmin∑
j=1

dj;ℓ1,ℓ2
(−) qnj(
1−qn

1−q

)ℓ1+ℓ2
sℓ1tℓ2 (1.79)

with the rational numbers dj;ℓ1,ℓ2 defined in (1.47). The j = 0 terms vanish because,

d0;ℓ1,ℓ2 =

ℓmin∑
i=0

(ℓ1 + ℓ2 − i− 1)!

(ℓ1 − i)!(ℓ2 − i)!i!
(−)i = 0 (1.80)

We may now interchange the order of the infinite sums and perform the sum over n because

the resultant q-deformed polylogarithms Lik(q
j; q) are absolutely convergent for all q ≥ 0.

Combining our results, we arrive at (1.46).
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CHAPTER 2

Generalized Veneziano and Virasoro amplitudes

2.1 Introduction

This chapter is based on [GL23]. In this chapter, we shall search for consistent generalizations

of the Veneziano amplitude [Ven68] and the Virasoro amplitude [Vir69] with zero Regge

intercept. For simplicity we shall only consider the scattering of four massless bosonic states,

in which case the tree-level open and closed superstring amplitudes respectively reduce to

the Veneziano and Virasoro amplitudes with zero intercept. Both amplitudes may be written

as infinite products with an infinite number of simple poles.

So-called generalized Veneziano amplitudes and generalized Virasoro amplitudes are de-

fined by modifying these infinite products subject to some general physical constraints. The

name generalized Veneziano amplitude originates in [FN95], and the Coon amplitude [Coo69]

is one well-studied example. In chapter 1 (based on [GL22]), we detail the properties of the

Veneziano, Virasoro, and Coon amplitudes, including their unitarity, high-energy behavior,

low-energy expansion, and number theoretic properties.

Our present procedure is an extension and clarification of Coon’s original argument [Coo69]

and related work [FN95]. These previous studies only considered generalized Veneziano am-

plitudes, but we shall also consider the generalized Virasoro case. In either case, we simply

assume crossing symmetry in the Mandelstam variables and demand physical residues on

an a priori unspecified sequence of poles λn. In other words, we do not assume the mass

spectrum of the theory. Under our assumptions, we find that the poles λn must satisfy an
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over-determined set of non-linear recursion relations. These recursion relations fix all the

subsequent poles in terms of the first three poles and highly constrain the space of generalized

Veneziano and generalized Virasoro amplitudes.

In the generalized Veneziano case, the recursion relations can be solved analytically. The

solutions correspond to the Veneziano amplitude, the one-parameter family of Coon am-

plitudes, and a larger two-parameter family of amplitudes with an infinite tower of spins

at each mass level. This two-parameter family of solutions has been previously identi-

fied [Coo69, FN95] but never systematically studied. Only the one-parameter sub-family of

Coon amplitudes has been studied in detail [FT22, GL22]. In this chapter, we shall system-

atically analyze the entire two-parameter space of generalized Veneziano amplitudes. We

also begin an initial study of the unitarity properties of this space

In the generalized Virasoro case, we numerically demonstrate that the only consistent

solution to the aforementioned recursion relations is the string spectrum. That is, we do not

find any consistent generalized Virasoro amplitudes beyond the Virasoro amplitude itself.

We reached a similar, though less general, conclusion in [GL22] by failing to construct a

generalization of the Virasoro amplitude with the same poles as the Coon amplitude (a

so-called Virasoro-Coon amplitude).

The authors of [CR23] approach this same problem under a different set of assumptions

and reach many of the same conclusions that we reach here, such as the uniqueness of the

Virasoro amplitude. Our work is complementary.

Our approach is part of the modern S-matrix bootstrap program [CSZ21], a revival of an

old approach [ELO66] which attempts to construct general amplitudes which satisfy various

physical properties without relying on an underlying dynamical theory.
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2.1.1 Conventions

In this chapter, we shall only consider crossing-symmetric tree-level scattering amplitudes for

four massless external particles in weakly-coupled theories in d ≥ 3 spacetime dimensions.

We use units in which the lowest massive state of any particular theory has mass m2 = 1.

In open (closed) string theory, this choice corresponds to α′ = 1 (α′ = 4).

2.1.1.1 Kinematics

We shall primarily consider amplitudes stripped of their dependence on the polarizations or

colors of the scattered states, leaving functions A(sij) which depend only on the Mandelstam

variables sij = −(pi + pj)
2,

s = s12 = s34 = 4E2 ≥ 0

t = s14 = s23 = −2E2(1− cos θ) ≤ 0

u = s13 = s24 = −2E2(1 + cos θ) ≤ 0 (2.1)

which satisfy the mass-shell relation s+ t+ u = 0. Here E and θ are the center-of-mass

energy and scattering angle, respectively. The inequalities refer to the physical scattering

regime with real sij.

2.1.1.2 Crossing

Crossing symmetry refers to permutation symmetry in (s, t) or (s, t, u). The Veneziano,

Virasoro, and Coon amplitudes were discovered under the assumption of crossing symmetry,

and we are searching for their generalizations.

Since s-channel and t-channel Feynman diagrams correspond to the same cyclic ordering,

color-ordered amplitudes (e.g. gluon amplitudes) will have only s-channel and t-channel poles

and shall be denoted by A(s, t) to emphasize that they are analytic functions of two complex

variables. For these amplitudes, crossing symmetry is the requirement that A(s, t) = A(t, s).
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Amplitudes with poles in all three channels (e.g. graviton amplitudes) shall be denoted

by A(s, t, u). We shall regard these amplitudes as analytic functions of three complex vari-

ables restricted to the algebraic variety defined by s+t+u = 0. For these amplitudes, crossing

symmetry is the requirement that A(s, t, u) = A(σ(s), σ(t), σ(u)) for any permutation σ of

the variables (s, t, u).

2.1.1.3 Analytic structure

The amplitude A(sij) is an analytic function of the complexified sij with simple poles and

branch cuts dictated by unitarity. At high-energy, we demand that A(sij) → 0 vanishes

as |s| → ∞ with physical t, in analogy with the high-energy behavior of the Veneziano,

Virasoro, and Coon amplitudes [GL22].

Tree-level amplitudes have simple poles at sij = m2
n for each state n which couples to

the external states through the sij-channel. It is often assumed that physical tree-level

amplitudes are meromorphic, i.e. that A(sij) is analytic outside its simple poles with no

branch cuts or other singularities. However, the Coon amplitude with q < 1 provides a

counterexample of a seemingly healthy non-meromorphic tree-level amplitude [FT22, GL22].

In a physical four-point amplitude, the t-channel and u-channel poles should cancel on

each s-channel pole (and vice versa). Typically, the residue of each s-channel pole is then

a polynomial in t (after using the mass-shell relation to eliminate any u-dependence). The

highest power of t in this residue corresponds to the highest-spin state exchanged on that pole.

Non-polynomial residues can in principle result and may be Taylor expanded, corresponding

to the exchange of an infinite tower of spinning states. In any case, the residues of these

poles can be written as a sum of Gegenbauer polynomials and the amplitude may be written

as follows (under the assumption that A(sij) vanishes at high-energy [CKS17]),

A(sij) =
∑
n

1

s−m2
n

∑
j

cn,j C
( d−3

2
)

j (cos θ) (2.2)

In a unitary theory, the partial wave coefficients cn,j > 0 will be positive.
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We shall restrict our discussion to amplitudes with an infinite number of simple poles

(à la Veneziano, Virasoro, and Coon) because the assumptions of crossing symmetry, physical

residues, and thatA(sij) vanishes at high-energy imply that there must be an infinite number

of poles in each channel [CEM16, CKS17]. The argument may be summarized as follows.

A crossing-symmetric tree-level amplitude A(s, t) = A(t, s) may be expanded on either its

s-channel or t-channel poles, leading to the following equality,∑
n

fn(t)

s−m2
n

=
∑
n

fn(s)

t−m2
n

(2.3)

The functions fn(z) must be finite at each z = m2
n because the t-channel poles should cancel

on each s-channel pole. However, the left-hand side of (2.3) can then only produce the

t-channel poles which appear on the right-hand side if the sum over n is infinite.

2.1.1.4 Accumulations points

In this chapter, we shall encounter two distinct notions of accumulation point spectra:

• infinite tower of masses m2
n < λ∞ with finite spin exchange at each mass level

• infinite tower of masses m2
n < λ∞ with infinite spin exchange at each mass level

for some finite accumulation point of masses 0 < λ∞ < ∞.

Finite spin exchange results from a polynomial residue on a given mass pole and corre-

sponds to a finite tower of states at that mass level. The Coon amplitude with q < 1 exhibits

this type of accumulation point spectrum with λ∞ = 1
1−q

. While there is yet no definitive

physical realization of the Coon amplitude, similar accumulation point spectra have been

found in a stringy setup involving open strings ending on a D-brane [MR22]. Most famously,

the hydrogen atom has a spectrum of this type with energy levels En = −13.6 eV/n2 and

an accumulation point at E∞ = 0.

Infinite spin exchange results from a non-polynomial residue on a given mass pole and

is generally considered unphysical. Indeed, sensible quantum field theories are typically
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assumed to have a finite number of particle types below any finite mass. In the case of finite

spin exchange, this assumption only fails at masses m2 ≥ λ∞. In the case of infinite spin

exchange, this assumption fails at all masses above the mass gap. Nevertheless, amplitudes

with infinite spin exchange were recently considered in [HR22]. Moreover, amplitudes with

this type of accumulation point were recently found to have interesting extremal properties

in the context of the EFT-hedron [CV21, AHH21, HLR21, BKZ21].

In any case, amplitudes with either type of accumulation point spectra are not well

understood and are fruitful examples for the study of general scattering amplitudes.

2.1.2 Outline

In section 2.2, we shall briefly review our conventions for the Veneziano, Virasoro, and Coon

amplitudes. In section 2.3, we review some complex analysis and motivate our infinite prod-

uct ansatz for the generalized Veneziano and generalized Virasoro amplitudes. In section 2.4

and section 2.5, we respectively analyze the generalized Veneziano and generalized Virasoro

amplitudes by solving an infinite set of non-linear constraints on their poles λn. Finally,

in section 2.6, we discuss our results and present some questions for future research.

2.2 Veneziano, Virasoro, and Coon amplitudes

The Veneziano, Virasoro, and Coon amplitudes are each tree-level four point amplitudes

with an infinite sequence of simple poles and polynomial residues. A detailed review of

their properties may be found in [GL22]. The Coon amplitude was also recently discussed

in [FT22, CMM22, BDS22]. Here we shall briefly review our conventions and give each

amplitude’s infinite product representation.
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2.2.1 Veneziano

The Veneziano amplitude AVen describes the scattering of four open strings and is a UV-

completion of maximally supersymmetric Yang-Mills field theory. The color-stripped tree-

level field theory amplitude which describes the scattering of any four massless particles in

the Yang–Mills supermultiplet is,

ASYM = P4
1

st
(2.4)

where P4 = O(s, t)2 is a kinematic pre-factor. For the four-gluon amplitude, P4 = F 4 where F

is the linearized field strength. In tree-level open superstring theory, the color-stripped

amplitude which describes the same process is,

Aopen = P4AVen (2.5)

where,

AVen(s, t) =
Γ(−s)Γ(−t)

Γ(1− s− t)
=

1

st

∏
n≥1

(
1− s+t

n

)(
1− s

n

)(
1− t

n

) (2.6)

Like the field theory factor 1
st
, the Veneziano amplitude is symmetric in (s, t) and is a

meromorphic function with simple poles only.

2.2.2 Virasoro

The Virasoro amplitude AVir describes the scattering of four closed strings and is a UV-

completion of maximal supergravity. The tree-level field theory amplitude which describes

the scattering of any four massless particles in the supergravity multiplet is,

ASG = P8

(
− 1

stu

)
(2.7)

where P8 = O(s, t, u)4 is a kinematic pre-factor. For the four-graviton amplitude, P8 = R4

where R is the linearized Riemann curvature. In tree-level closed superstring theory, the
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amplitude which describes the same process is,

Aclosed = P8AVir (2.8)

where,

AVir(s, t, u) =
Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)
= − 1

stu

∏
n≥1

(
1 + st+tu+us

n2 + stu
n3

)(
1− s

n

)(
1− t

n

)(
1− u

n

) (2.9)

Like the field theory factor − 1
stu

, the Virasoro amplitude is symmetric in (s, t, u) and is a

meromorphic function with simple poles only.

2.2.3 Coon

The Coon amplitude Aq is a generalization of the Veneziano amplitude with a real-valued

deformation parameter q ≥ 0. This deformation moves the poles of the Veneziano amplitude

from the integers to the q-integers,

[n]q =
1− qn

1− q
−−→
q→1

n (2.10)

The Coon amplitude may be written as an infinite product with a q-dependent pre-factor,1

Aq(s, t) =

{
q

ln(1+(q−1)s)
ln q

ln(1+(q−1)t)
ln q Θ(1− q) + Θ(q − 1)

}

× 1

st

∏
n≥1

(
1− s+t

[n]q
+ (1− q) st

[n]q

)(
1− s

[n]q

)(
1− t

[n]q

) (2.11)

where the step function is defined by Θ(x ≥ 0) = 1 and Θ(x < 0) = 0. For 0 < q < 1,

the poles tend to an accumulation point at 1
1−q

. For q ≥ 1, the poles tend to infinity. In

the limits q → 0 and q → 1, the Coon amplitude reproduces the field theory factor and the

Veneziano amplitude, respectively,

Aq(s, t) −−→
q→0

1

st

Aq(s, t) −−→
q→1

AVen(s, t) (2.12)

1A more natural expression for the Coon amplitude may be given in terms of a special function called
the q-deformed gamma function [GL22].
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For all q ≥ 0, the Coon amplitude is symmetric in (s, t) with simple poles only, but its mero-

morphicity is subtle. For 0 < q < 1, the pre-factor in (2.11) is explicitly non-meromorphic

with branch cuts at s, t = 1
1−q

. This pre-factor ensures that the Coon amplitude has poly-

nomial residues. For q ≥ 1, there is no pre-factor, and the Coon amplitude is meromorphic.

2.3 Infinite products and Weierstrass factorization

As we have seen in (2.6), (2.9), and (2.11), the Veneziano, Virasoro, and Coon amplitudes

each have an infinite product form. Hence, we shall assume that more general tree-level

scattering amplitudes with an infinite sequence of simple poles may be similarly written as

infinite products. To motivate our ansatz for these generalized Veneziano and generalized

Virasoro amplitudes, we shall first review some complex analysis.

2.3.1 Some complex analysis

Let f : U → C be a function of one complex variable z on an open set U ⊂ C. We first recall

some standard definitions from single-variable complex analysis [FL12].

• f(z) is complex differentiable at a point z0 ∈ U if limz→z0
f(z)−f(z0)

z−z0
exists.

• f(z) is holomorphic on U if it is complex differentiable on U .

• f(z) is meromorphic on U if it is holomorphic on U except for a set of isolated points.

• f(z) is entire if it is holomorphic on the full complex plane.

• f(z) is complex analytic on U if for every z0 ∈ U it can be written as a convergent

power series f(z) =
∑∞

n=0 an (z − z0)
n with an ∈ C.

It is a fundamental theorem of single-variable complex analysis that holomorphicity is

equivalent to complex analyticity, but with tree-level scattering amplitudes in mind, we will

be most interested in meromorphic functions.
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A meromorphic function f(z) may always be written as the ratio of two holomorphic

functions and is characterized by its (possibly infinite) sequence of zeros ζn and poles λn

(counted with multiplicity). If these sequences are finite, then f(z) can be written as,

f(z) = zm eg(z)
∏

n(1− z/ζn)∏
n(1− z/λn)

(2.13)

where |m| ∈ N is the order of the zero or pole at z = 0, g(z) is an entire function (so that the

factor eg(z) has no zeros or poles), and the two finite products run over the non-zero zeros

and poles. We note that each numerator and denominator factor is separately linear in the

variable z. This factorization is a consequence of the fundamental theorem of algebra.

If f(z) is meromorphic but with an infinite number of zeros and poles, it will admit a

similar factorization. In this case, we may formally combine the two finite products in (2.13)

into one infinite product,

f(z) = zm eg(z)
∏
n

(1− z/ζn)

(1− z/λn)
(2.14)

which converges if the zeros ζn and poles λn obey,∑
n

∣∣∣ 1
ζn

− 1

λn

∣∣∣ < ∞ (2.15)

However, the formal product (2.14) need not converge.

A convergent product representation of any function f(z) which is meromorphic on the

full complex plane is given by the Weierstrass factorization theorem [FL12]. To ensure that

this (possibly infinite) product converges, it is written in terms of the so-called elementary

factors Eℓ(z),

Eℓ(z) =


(1− z) ℓ = 0

(1− z) exp
(
z
1
+ z2

2
+ · · ·+ zℓ

ℓ

)
ℓ ≥ 1

(2.16)

Using the elementary factors, it is always possible to find sequences Nn, Dn ∈ N and an

entire function g̃(z) such that,

f(z) = zm eg̃(z)
∏
n

ENn(z/ζn)

EDn(z/λn)
(2.17)
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where again |m| ∈ N is the order of the zero or pole at z = 0. Such a factorization always

exists but is not unique. For any Weierstrass factorization, the pre-factor eg̃(z) will have

neither zeros nor poles.

If, in fact, the formal product (2.14) converges, then the entire functions g(z) and g̃(z)

which appear in (2.14) and the general Weierstrass factorization (2.17) are related by,

exp
(
g(z)− g̃(z)

)
= exp

{∑
n

Nn∑
ℓ=0

(z/ζn)
ℓ

ℓ
−
∑
n

Dn∑
ℓ=0

(z/λn)
ℓ

ℓ

}
(2.18)

where the sums
∑

n are over the non-zero zeros and poles.

For example, the gamma function Γ(z) has the following infinite product representation

in Weierstrass form,

Γ(z) = e−γEz 1

z

∏
n≥1

1(
1 + z/n

)
e−z/n

(2.19)

where γE is the Euler-Mascheroni constant and the denominators are just the elementary

factors E1(−z/n). This infinite product clearly demonstrates the simple poles of the gamma

function at the non-positive integers, but without the factors e−z/n (from the elementary

factors) the product would diverge.

The Weierstrass factorization theorem is no longer applicable if the zeros and poles are

bounded and tend to a common limit point ζ∞ = λ∞ < ∞ because then f(z) is no longer

meromorphic at z = λ∞. In this case, however, we may still factorize the function f(z) in

a form analogous to (2.14). Such a factorization will not need elementary factors because

the elementary factors do not improve the convergence of the infinite product in the case

that ζ∞ = λ∞ < ∞. Moreover, the pre-factor eg(z) in this factorization will have no zeros

or poles of finite order but may have essential singularities, branch points, etc. since in this

case the function f(z) is not meromorphic at z = λ∞.
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2.3.2 Ansatz for infinite product amplitudes

We shall now use the infinite product factorization described above to motivate the ansatz

for our generalized Veneziano and generalized Virasoro amplitudes. While a Weierstrass fac-

torization (2.17) necessarily exists for all meromorphic functions of a single complex variable,

there is no analogous theorem for functions of several complex variables. Moreover, while

tree-level amplitudes are expected to be meromorphic functions of the Mandelstam variables,

this need not be true. The Coon amplitude with q < 1 is non-meromorphic. Thus, we shall

proceed without assuming meromorphicity. Instead, we shall simply write down and analyze

an infinite product ansatz analogous to (2.14).

We begin with the generalized Veneziano case. Our crossing symmetric tree-level gen-

eralized Veneziano amplitude A(s, t) should have an infinite sequence of simple poles λn in

both the s-channel and the t-channel. We shall assume that the leading poles are at s = 0

and t = 0 and that the amplitude reduces to field theory at low-energy,

A(s, t) =
1

st

(
1 +O(s, t)

)
(2.20)

Without loss of generality, we assume the poles are ordered λn > λn−1 and choose λ1 = 1.

These assumptions can always be made true by a relabeling of the poles and a choice of

units. Beyond these assumptions, the poles are wholly unspecified. In addition to its poles,

A(s, t) will have an infinite sequence of t-dependent s-zeros ζn(t) and an identical sequence

of s-dependent t-zeros ζn(s).

Ignoring issues of convergence momentarily, we shall consider the following ansatz which

satisfies these constraints and resembles the infinite product representation of the Veneziano

amplitude (2.6),

A(s, t) = W(s, t)
1

st

∏
n≥1

1− An(s+ t) +Bnst

(1− s/λn)(1− t/λn)
(2.21)

where An and Bn are yet undetermined coefficients and the pre-factor W(s, t) = W(t, s) has

neither zeros nor poles below the largest mass pole, i.e. for |s|, |t| < λ∞ where λ∞ may be
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finite or infinite. The pre-factor W(s, t) is analogous to the pre-factor eg(z) in (2.14) and has

the low-energy behavior W(s, t) = 1+O(s, t). We note that the numerator and denominator

of the infinite product in (2.21) are both separately linear in s and t so that the zeros and

poles in either channel can be written as,

1

s

∏
n≥1

(
1− s/ζn(t)

)
(1− s/λn)

or
1

t

∏
n≥1

(
1− t/ζn(s)

)
(1− t/λn)

(2.22)

with the zeros given by,

ζn(x) =
1 − Anx

An −Bnx
(2.23)

In this form, the amplitude resembles the Weierstrass factorization (2.17) but without the

elementary factors. The formal product in (2.21) converges if the coefficients An and Bn and

the poles λn obey,∑
n≥1

∣∣∣An −
1

λn

∣∣∣ < ∞
∑
n≥1

∣∣∣Bn −
1

λ2
n

∣∣∣ < ∞ (2.24)

We shall return to this ansatz in section 2.4.

We now consider the generalized Virasoro case. Our crossing symmetric tree-level gen-

eralized Virasoro amplitude A(s, t, u) should have an infinite sequence of simple poles λn in

the s-channel, t-channel, and u-channel. We shall again assume that the leading poles are

at s = 0, t = 0, and u = 0 and that the amplitude reduces to field theory at low-energy,

A(s, t, u) = − 1

stu

(
1 +O(s, t, u)

)
(2.25)

Without loss of generality, we assume the poles are ordered λn > λn−1 and choose λ1 = 1.

Beyond these assumptions, the poles are again wholly unspecified.

Again momentarily ignoring issues of convergence, we shall consider the following ansatz

which satisfies these constraints and resembles the infinite product representation of the

Virasoro amplitude (2.9),

A(s, t, u) = W(s, t, u)
(
− 1

stu

)∏
n≥1

1 + An(st+ tu+ us)−Bnstu

(1− s/λn)(1− t/λn)(1− u/λn)
(2.26)
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where An and Bn are yet undetermined coefficients and the (s, t, u)-symmetric pre-factor

W(s, t, u) has neither zeros nor poles below the largest mass pole, i.e. for |s|, |t|, |u| < λ∞

where λ∞ may again be finite or infinite. As before, the pre-factor W(s, t, u) is analogous

to the pre-factor eg(z) in (2.14) and has the low-energy behavior W(s, t, u) = 1 +O(s, t, u).

We note that the numerator and denominator of the infinite product in (2.26) are both

separately linear in s, t, and u. Moreover, there is no term proportional to s+ t+ u in

the numerator because this combination vanishes on-shell for massless external states. The

formal product in (2.26) converges if the coefficients An and Bn and the poles λn obey,

∑
n≥1

∣∣∣An −
1

λ2
n

∣∣∣ < ∞
∑
n≥1

∣∣∣Bn −
1

λ3
n

∣∣∣ < ∞ (2.27)

We shall return to this ansatz in section 2.5.

In both the generalized Veneziano and generalized Virasoro case, demanding that the

t-channel poles cancel on each s-channel pole will enforce strong constraints on the undeter-

mined coefficients An and Bn as well as the poles λn. In the following two sections, we shall

analyze these constraints in detail.

2.4 Generalized Veneziano amplitudes

In this section, we shall systematically analyze our infinite product ansatz (2.21) for the

generalized Veneziano amplitude.

2.4.1 Veneziano truncation

We first recall the infinite product form (2.6) of the Veneziano amplitude, which has simple

poles at each non-negative integer. The residue of the massless s-channel pole is 1/t, and the

residue of each massive pole at s = N is a polynomial of degree-(N − 1) in t. The Veneziano

amplitude achieves these residues because on each s-pole, its zeros cancel the t-poles, leaving
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a finite polynomial in t. This cancellation can be described in terms of the numerator factors,

Nn(s, t) = 1− (s+ t)/n (2.28)

When s = N , each numerator factor NN+n(N, t) = n
N+n

(1− t/n) cancels the t-channel pole

from the factor (1− t/n)−1, and the infinite product truncates. In short, the condition,

NN+n(N, n) = 0 (2.29)

ensures that the Veneziano amplitude has polynomial residues.

2.4.2 Generalized Veneziano truncation

We now return to our generalized Veneziano ansatz (2.21). We shall demand that the zeros

and poles of this amplitude cancel in a similar fashion as those of the Veneziano amplitude.

We first demand that the residue at s = 0 is 1/t so that the amplitude reproduces the

massless spectrum of super Yang-Mills analogously to the Venziano amplitude,

Res
s=0

A(s, t) =
1

t
=⇒ W(0, t)

∏
n≥1

1− Ant

1− t/λn

= 1 (2.30)

which implies that W(0, t) = 1 and An = 1/λn since W(s, t) has neither zeros nor poles. In

other words, the coefficients An are determined by the poles λn.

Next, in analogy with the truncation condition for the Veneziano amplitude (2.29), we

demand that the generalized numerator factor,

Nn(s, t) = 1− An(s+ t) +Bnst (2.31)

obeys the generalized truncation condition,

NN+n(λN , λn) = 0 (2.32)

so that NN+n(λN , t) ∝ (1− t/λn) and the infinite sequence of t-channel poles cancels on each

s-channel pole.2 This truncation condition determines the coefficients Bn in terms of the

2At this point, we are no longer considering the most general possible infinite product amplitude but
are instead working in close analogy with the Veneziano amplitude. A more general truncation condition,
NN+n+α(λN , λn) = 0 for some positive integer α, is considered in [CR23].
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poles λn,

Bn =
λk + λn−k − λn

λnλn−kλk

k = 1, 2, . . . , n− 1 (2.33)

For fixed n ≥ 2, both k and k′ = n− k yield the same equation for Bn so that there are
⌊
n
2

⌋
independent equations for Bn, where ⌊x⌋ is the floor function. The coefficient B1 is left

undetermined, the coefficients B2 and B3 are uniquely determined, and the coefficients Bn

with n ≥ 4 are all over-determined.

This over-determination of the Bn highly constrains the poles. Any sequence of poles λn

must leave the following combination independent of k for all n ≥ 2,

Λn(k) =
λk + λn−k − λn

λn−kλk

(2.34)

We shall refer to these equations as the generalized Veneziano amplitude constraints. The

Veneziano solution λn = n (i.e. the string theory spectrum) solves these constraints with Λn(k) = 0

for all n and k. We shall search for other, more general sequences of poles λn which solve

the generalized Veneziano amplitude constraints.

2.4.3 Generalized Veneziano amplitude constraints

Since Λn(k) must be independent of k, we may fix n ≥ 2 and choose two distinct values

of (k, k′) in the appropriate range to find,

Λn(k) = Λn(k
′) =⇒ λk + λn−k − λn

λn−kλk

=
λk′ + λn−k′ − λn

λn−k′λk′
(2.35)

This equation is a non-linear recursion relation for the poles λn of order max(k, k′) which

determines all the λn with n > max(k, k′) in terms of the lower λn (except for n = k + k′, in

which case the equation is vacuous). Because we are free to choose (k, k′) within the appro-

priate range, the poles λn must solve an infinite set of these non-linear recursion relations.

This system is highly constrained, and there is no guarantee that a general solution (other

than the Veneziano solution) exists!
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It turns out, however, that from (2.35) we can derive a simple first-order recursion relation

which determines all the poles λn with n ≥ 4 in terms of λ1, λ2, and λ3. We consider the

following three equations for fixed n ≥ 4,

Λn(1) = Λn(2) Λn(1) = Λn(3) Λn−1(1) = Λn−1(2) (2.36)

These three equations include the poles λ1, λ2, λ3, λn−3, λn−2, λn−1, and λn, but we may

eliminate λn−3 and λn−2 to find the following first order recursion relation for λn in terms of

only λ1, λ2, λ3, and λn−1,

λn =
aλn−1 + b

cλn−1 + d
(2.37)

where the coefficients a, b, c, and d are given by,

a = λ2(1− 2λ3 + λ2λ3) = (1 + x)(x2 + xy − y)

b = λ2(λ3 − λ2) = (1 + x)y > 0

c = 1 + λ2
2 − λ2 − λ3 = x2 − y

d = λ2(λ3 − λ2) = (1 + x)y > 0 (2.38)

Here we have defined the positive numbers x = λ2 − λ1 = λ2 − 1 > 0 and y = λ3 − λ2 > 0,

using the fact that the poles λn > λn−1 are ordered. The recursion relation (2.37) was derived

for n ≥ 4 but is in fact true for all n ≥ 1 if we define λ0 = 0. For n = 1, 2, 3, (2.37) is only

vacuously true and does not determine λ1, λ2, or λ3. The choice λ1 = 1 simply sets our

units, and the free parameters λ2 and λ3 (or equivalently x and y), define a two-parameter

space of possible solutions in the region x, y > 0. The string spectrum λn = n is at the point

x = y = 1 of this two-parameter space.

2.4.4 Solving the Riccati relation

The recursion relation (2.37) is known as the Riccati recursion relation with constant co-

efficients, and its solutions are well known. An exhaustive study of non-linear recursion

relations of this kind may be found in [KL93].
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Although the Riccati recursion relation (2.37) is generally non-linear, there is a curve

c = x2 − y = 0 in parameter space where it becomes linear,

λn = xλn−1 + 1 (2.39)

and yields the Coon spectrum (relabeling x → q),

λn =
1− qn

1− q
(2.40)

The Coon spectrum reproduces the string spectrum at q = 1 and accounts for all the spectra

reviewed in section 2.2. For q > 1, the poles grow exponentially, and for 0 < q < 1, they

monotonically accumulate to the limit point λ∞ = 1
1−q

.

Beyond these well-studied solutions, there is, however, a much larger space of solutions

to (2.37) with c = x2 − y ̸= 0. In this case, the non-linear first-order recursion relation (2.37)

can be reduced to a linear second-order recursion relation using the following change of

variables,

cλn + d = (a+ d)
zn+1

zn
(2.41)

with the boundary condition z0 = 1. Substituting this expression into (2.37), we find,

zn+2 − zn+1 +Rzn = 0 (2.42)

with the positive coefficient R given by,

R =
ad− bc

(a+ d)2
=

y

(1 + x)(x+ y)
> 0 (2.43)

The solutions of this linear recursion relation are governed by the quadratic equation,

r2 − r +R = 0 (2.44)

whose roots are,

r± =
1±

√
1− 4R

2
(2.45)

We shall separately analyze the cases R ̸= 1
4
and R = 1

4
.
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2.4.4.1 The case R ̸= 1
4

If R ̸= 1
4
, then the roots r+ ̸= r− are distinct and zn is given by,

zn =
z1 − r−
r+ − r−

rn+ +
r+ − z1
r+ − r−

rn− (2.46)

Subsequently, λn is given by,

λn =
(1 + x)(1− pn)

(1− xp)− (1− x/p)pn
(2.47)

with p = r−/r+ so that |p| ≤ 1. We shall refer to these solutions as p-type spectra. These

spectra were first identified in [Coo69] and were later called Möbius trajectories in [FN95].

Our parametrization in terms of p is novel and can be clearly related to the first three mass

levels through the parameters x and y since,

p = p(x, y) =
1−

√
1− 4y/(1 + x)(x+ y)

1 +
√

1− 4y/(1 + x)(x+ y)
(2.48)

When p = x or p = x−1, these spectra reduce to the Coon solution (2.40) with q = p < 1

or q = p−1 > 1, respectively.

The expression (2.47) solves the generalized Veneziano amplitude constraints (2.34) for

all x, y > 0, but the resultant λn will not necessarily be monotonically ordered and positive.

We shall now determine the values of x and y which yield a monotonically increasing sequence

of poles λn.

We first note that R > 1
4
implies that the parameter p = r−/r+ = eiϕ is a phase so that

the λn are periodic as a function of n. These periodic solutions always produce negative

(and thus unphysical) λn. The condition R > 1
4
is equivalent to y > x(1+x)

3−x
, so this region of

parameter space is ruled out.

We now consider 0 < R < 1
4
which corresponds to 0 < y < x(1+x)

3−x
. In this case, the

roots r± are real and positive, so the parameter p is in the range 0 < p < 1. To deter-

mine whether the λn increase monotonically in this region, we shall momentarily treat n as
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a continuous variable so that λn → λ(n) is an analytic function of n with a discrete set of

singularities at the points n = n∗ on the complex n-plane,

n∗ =
ln
(
1−xp
1−x/p

)
ln p

− 2πik

ln p
(2.49)

with k ∈ Z. Since d
dn
λ(n) > 0 for all real n ≥ 0, the function λ(n) can only fail to be

monotonic if there is a singularity n∗ > 0 on the real n-axis such that limn→n∓
∗
λ(n) = ±∞.

From (2.49), we see that there is at most one such singularity with k = 0, which occurs if

and only if,

0 <
1− xp

1− x/p
< 1 (2.50)

We first suppose that (2.50) is satisfied with 1− xp > 0 and 1− x/p > 0, which then im-

plies 1− xp < 1− x/p and thus p > 1. Since 0 < p < 1, we must instead have 1− xp < 0

and 1− x/p < 0. To proceed, we shall separately consider the cases 0 < x < 1 and x ≥ 1.

• For 0 < x < 1, it is not possible to fulfill the condition 1− xp < 0, so the whole re-

gion corresponding to 0 < R < 1
4
and 0 < x < 1 yields monotonically increasing and

positive λn.

• For x ≥ 1, the condition 1− x/p < 0 is always satisfied, but 1− xp < 0 implies,

x >
1

p(x, y)
=⇒

(
x− 1

x+ 1

)2

>
x(1 + x)− (3− x)y

(1 + x)(x+ y)
=⇒ y > x2 (2.51)

Therefore, when either 1 ≤ x < 3 and x2 < y < x(1+x)
3−x

or when x ≥ 3 and y > x2, the

function λ(n) has a singularity at finite n = n∗ > 0 and is not monotonic. Moreover,

in this region, the limit point λ∞ = 1+x
1−xp

< 0 is negative and thus non-physical.

2.4.4.2 The case R = 1
4

If R = 1
4
, then the roots r+ = r− are equal and zn is given by,

zn =
1

2n

(
1 +

1− x

2x
n
)

(2.52)
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Subsequently, λn is given by,

λn =
(1 + x)n

2x+ (1− x)n
(2.53)

We shall refer to these solutions as r-type spectra (where the r is for rational). The expres-

sion (2.53) solves the generalized Veneziano amplitude constraints (2.34) for all x > 0, but

the resultant λn will only be monotonically ordered and positive for 0 < x ≤ 1. When x > 1,

the limit point λ∞ = 1+x
1−x

< 0 is negative and thus non-physical. When x = 1, this solution

reduces to the string spectrum λn = n. Notably, these r-type solutions were not identified

in the previous literature [Coo69, FN95].

2.4.4.3 Summary

We have now fully classified all the monotonically ordered and positive solutions of the

generalized Veneziano amplitude constraints (2.34). These solutions exist in the region of

the xy-plane defined by,{
0 < x < 1 , 0 < y ≤ x(1+x)

3−x

}
∪
{
1 ≤ x , 0 < y ≤ x2

}
(2.54)

where again x = λ2 − λ1 > 0 and y = λ3 − λ2 > 0 are positive parameters which determine

the second and third masses. This region and the various solutions are shown in Figure 2.1.

Notably, all the non-monotonically-ordered solutions to the Riccati equation (2.37), i.e. the

points within the excluded regions of parameter space, yield negative λn and are unphysical.

For completeness, we shall rewrite all the solutions and the ranges of their parameters.

The Coon spectra have one free parameter and are given by,

λn =
1− qn

1− q
0 < q < ∞ (2.55)

where q is related to the parameters x and y by x = q and y = q2. The p-type spectra have

two free parameters and are given by,

λn =
(1 + x)(1− pn)

(1− xp)− (1− x/p)pn
0 < x < ∞ 0 < p < min(1, x−1)

p ̸= x, x−1 (2.56)
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0 1

1

x

y

string spectrum x = y = 1
Coon spectra y = x2

r-type spectra y = x(1 + x)/(3− x)
p-type spectra
unphysical spectra

Figure 2.1: The two-parameter space of solutions to the generalized Veneziano amplitude

constraints. The point x = y = 1 corresponds to the string spectrum. The solid black line

corresponds to the one-parameter subspace of Coon spectra. The dashed black line corre-

sponds to the one-parameter subspace of r-type spectra. The yellow region corresponds to

the two-parameter subspace of p-type spectra. The red region corresponds to unphysical

spectra with negative mass squared.
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where we have excluded p = x, x−1 to avoid double-counting the Coon spectra. Finally, the

r-type spectra have one free parameter and are given by,

λn =
(1 + x)n

2x+ (1− x)n
0 < x < 1 (2.57)

The string spectrum λn = n is located at x = y = 1 in parameter space and can be obtained

by taking various limits of each of these solutions. All of these spectra have a finite accu-

mulation point λ∞, except for the Coon spectra (2.55) with q ≥ 1 (which includes the string

spectrum at q = 1).

Although we derived these solutions from the Riccati relation (2.37), they do in fact

satisfy the full generalized Veneziano amplitude constraints (2.34). For each case, we may

compute Λn(k) and verify that it is independent of k. Since any solution of the generalized

Veneziano amplitude constraints (2.34) necessarily satisfies the Riccati relation (2.37), we

have thus fully solved (2.34). Explicitly, the Λn(k) are given by,

Coon : Λn(k) = 1− q

p-type : Λn(k) =
1

(1 + x)
· (1− xp)2 − (1− x/p)2pn

(1− xp) − (1− x/p) pn

r-type : Λn(k) =
1− x

1 + x
· 4x+ (1− x)n

2x+ (1− x)n
(2.58)

These three expression can be written in a universal form,

Λn(k) =
1

λ∞
+

1

λ−∞
− λn

λ∞λ−∞
(2.59)

where we have defined the (possibly infinite) quantities λ±∞ = limn→±∞ λn. We have,

Coon (q < 1) :
1

λ∞
= 1− q

1

λ−∞
= 0

Coon (q ≥ 1) :
1

λ∞
= 0

1

λ−∞
= 1− q

p-type :
1

λ∞
=

1− xp

1 + x

1

λ−∞
=

1− x/p

1 + x

r-type :
1

λ∞
=

1− x

1 + x

1

λ−∞
=

1− x

1 + x
(2.60)
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When λ∞ is finite, it is of course the limit point of poles. The quantity λ−∞ does not have

a clear physical interpretation but is still useful to define.

Finally, we note that with An = 1/λn and Bn = Λn/λn, all of the solutions we find give

convergent infinite product amplitudes (2.21) satisfying the convergence condition (2.24). As

we noted above, the coefficient B1 is undetermined by our constraints, but we shall choose

B1 = Λ1/λ1 to fit the pattern. This choice will not affect our subsequent analysis.

2.4.5 Polynomial residues?

We derived the spectra above from the generalized Veneziano amplitude constraints (2.34),

which we in turn derived by demanding that the infinite sequence of t-channel poles cancels

on each s-channel pole within our infinite product ansatz (2.21). However, this truncation

condition will not necessarily imply that our generalized Veneziano amplitudes have polyno-

mial residues. With our explicit expressions for the poles λn and the coefficients An and Bn,

we can explicitly compute the residues of (2.21).

We shall denote the Coon amplitudes by Aq(s, t), the p-type amplitudes by Ap(s, t), and

the r-type amplitudes by Ar(s, t). We may then manipulate (2.21) and write each of these

amplitudes in a form such that each factor in its infinite product is manifestly convergent.

For the Coon amplitudes, we have,

Aq(s, t) = Wq(s, t)
1

st

∏
n≥1

(1− q̂n−αq(s)−αq(t))(1− q̂n)

(1− q̂n−αq(s))(1− q̂n−αq(t))

αq(s) =
ln
(
1 + (q − 1)s

)
ln q

(2.61)

where q̂ = min(q, q−1). For the p-type amplitudes, we have,

Ap(s, t) = Wp(s, t)
1

st

∏
n≥1

(1− pn−αp(s)−αp(t))(1− pn)

(1− pn−αp(s))(1− pn−αp(t))

αp(s) =
ln
(

(1+x)−(1−xp)s
(1+x)−(1−x/p)s

)
ln p

(2.62)
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Finally, for the r-type amplitudes, we have,

Ar(s, t) = Wr(s, t)
1

st

∏
n≥1

1−
(
αr(s) + αr(t)

)
/n(

1− αr(s)/n
)(
1− αr(t)/n

)
αr(s) =

2xs

1 + x− (1− x)s
(2.63)

In each case, the functions α(s) are the respective amplitudes’ leading Regge trajectory and

obey α(λN) = N .

For simplicity, we have omitted the exponential factors needed to make the infinite prod-

uct of each factor in (2.63) convergent. As in the infinite product representation for the

Veneziano amplitude (2.6), these factors cancel between the numerator and denominator.

From these expressions, we may simply compute the residues at s = λN for N ≥ 1. We

recall that the residue of the massless pole at s = 0 is 1/t by construction. For the massive

poles, we find the following. For the Coon amplitudes with q ≥ 1, we have,

Res
s=λN

Aq(s, t) = Wq(λN , t)
qN

λN

N−1∏
n=1

(
qn

λn

t+ 1

)
(2.64)

For the Coon amplitudes with q < 1, we have,

Res
s=λN

Aq(s, t) = Wq(λN , t)
qN

λN

1

(1− t/λ∞)N

N−1∏
n=1

(
qn

λn

t+ 1

)
(2.65)

For the p-type amplitudes, we have,

Res
s=λN

Ap(s, t) = Wp(λN , t)
pN

λN

x2(1− p2)2[
p(1− xp)− (p− x)pN

]2
× 1

(1− t/λ∞)N

N−1∏
n=1

(
(1− xp)pn − (1− x/p)

(1 + x)(1− pn)
t+ 1

)
(2.66)

Finally, for the r-type amplitudes, we have,

Res
s=λN

Ar(s, t) = Wr(λN , t)
1

λN

4x2(
2x+ (1− x)N

)2
× 1

(1− t/λ∞)N

N−1∏
n=1

(
2x− (1− x)n

(1 + x)n
t+ 1

)
(2.67)
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Using the quantities λ±∞ defined above, we may write these expressions in the following

universal form,

Res
s=λN

A(s, t) = W(λN , t)
1

λN

(
1− λN

λ∞

)(
1− λN

λ−∞

)
× 1

(1− t/λ∞)N

N−1∏
n=1

[(
1

λn

− 1

λ∞
− 1

λ−∞

)
t+ 1

]
(2.68)

Ignoring for now the W(s, t) pre-factors, only the amplitudes Aq(s, t) with q ≥ 1 have poly-

nomial residues. In other words, the amplitudes with accumulation point spectra all have

non-polynomial residues! In each case, though, the non-polynomial behavior is captured by

the factor (1− t/λ∞)−N which multiplies a degree-(N − 1) polynomial in t.

This, however, is not the end of the story. It may be possible to find a pre-factor W(s, t)

which cancels the non-polynomial factors (1− t/λ∞)−N on each pole. We recall that the

pre-factor obeys W(s, t) = 1 +O(s, t). We must then require W(λN , t) ∝ (1− t/λ∞)N for

all N ≥ 1 to cancel the non-polynomial factors in each residue. A natural guess is sim-

ply W(s, t) = (1− t/λ∞)α(s) for the appropriate Regge trajectory α(s).3 In fact, any pre-

factor W(s, t) which cancels the non-polynomial behavior on every residue must be propor-

tional to this guess, but this guess is not generally crossing symmetric. Only for the Coon

amplitude do we have,

(1− t/λ∞)αq(s) = (1− s/λ∞)αq(t) = qαq(s)αq(t) (2.69)

As described in section 2.2, this pre-factor is explicitly non-meromorphic and introduces

branch cuts beginning at s, t = λ∞ = 1
1−q

. We recall, however, that we explicitly allowed

for such non-meromorphic behavior in the pre-factor of our ansatz (2.21) so long as W(s, t)

had no zeros nor poles in the region |s|, |t| < λ∞. For the p-type and r-type amplitudes, the

crossing-symmetric guessW(s, t) = (1− t/λ∞)α(s)(1− s/λ∞)α(t) adds further non-polynomial

behavior to each residue which cannot be fixed by any other crossing symmetric factor.

3A more general pre-factor is considered in [CR23].
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Hence, we conclude that we can only cancel the non-polynomial residues in the case of the

Coon amplitude with q < 1. We thus take,

Wq<1(s, t) = qαq(s)αq(t) and Wq≥1(s, t) = Wp(s, t) = Wr(s, t) = 1 (2.70)

since there is no way to construct a crossing-symmetric pre-factor which cancels the non-

polynomial behavior of each residue for the p-type and r-type amplitudes.

Of all the spectra which solve the generalized Veneziano amplitude constraints (2.34), only

the Coon spectra (2.40) can be included in an infinite product amplitude with polynomial

residues. Moreover, for q < 1 polynomial residues can only be achieved by introducing the

non-meromorphic pre-factor Wq(s, t) = qαq(s)αq(t).

The other generalized Veneziano amplitudes Ap(s, t) and Ar(s, t) do not have polynomial

residues, but the non-polynomial behavior of their residues is captured by the universal factor

(1− t/λ∞)−N . These residues can be expanded in t for all |t| < λ∞, resulting in infinite spin

exchange on each massive pole as described in section 2.1. By construction, the massless poles

have finite spin exchange with ℓmax = 1 (from the residue 1/t multiplied by the kinematic

pre-factor P4 = O(t2) described in section 2.2).

2.4.6 Unitarity?

Although the non-polynomial residues of Ap(s, t) and Ar(s, t) are novel, these amplitudes

may still be interesting. Amplitudes with non-polynomial residues have appeared in the

context of extremized EFT-hedron bounds [CV21, AHH21]. Moreover, it has been recently

shown that amplitudes with non-polynomial residues may be unitary [HR22]. The unitarity

properties of the Coon amplitudes were also recently studied in [GL22, FT22, CMM22,

BDS22]. Here we shall begin a unitarity analysis of the generalized Veneziano amplitudes.

In a unitary theory, the residue of each pole of the four-point amplitude must have

an expansion on the Gegenbauer polynomials with positive partial wave coefficients. This
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expansion is described in (2.2). Several useful properties of the Gegenbauer polynomials are

listed in the appendix of [GL22]. One particularly useful property is that the product of two

Gegenbauer polynomials has a positive expansion on the Gegenabauer polynomials.

The unitarity properties of a given theory may depend on the number of spacetime di-

mensions d. The Coon amplitudes exhibit a particularly rich dimension-dependence [FT22].

For q > 1, the Coon amplitude is non-unitary in any dimension. For 0 < q ≤ 2
3
, the Coon

amplitude is unitary in any dimension. For 2
3
< q ≤ 1, the Coon amplitude is unitary below a

q-dependent critical dimension dc(q). At q = 1, this critical dimension dc(1) = 10 reproduces

the critical dimension of the superstring. We shall derive similar results for the larger space

of generalized Veneziano amplitudes.

2.4.6.1 Analytic results

We begin with a dimension-agnostic analysis which will provide sufficient but not strictly

necessary conditions for unitarity. We define z = cos θ, where θ is the scattering angle in the

center-of-mass frame, so that t = 1
2
s(z − 1). In terms of z, the residue of the generalized

Veneziano amplitude at the massive pole s = λN is given by,

Res
s=λN

A(s, t) = W
(
λN ,

1
2
λN(z − 1)

) 1

λN

(
1− λN

λ∞

)(
1− λN

λ−∞

)
(2.71)

× 1(
1− 1

2
(z − 1)λN/λ∞

)N N−1∏
n=1

[(
1

λn

− 1

λ∞
− 1

λ−∞

)
λN

2
(z − 1) + 1

]
The z-independent factor,

1

λN

(
1− λN

λ∞

)(
1− λN

λ−∞

)
(2.72)

is always a positive number. The z-dependent factor,

W
(
λN ,

1
2
λN(z − 1)

)(
1− 1

2
(z − 1)λN/λ∞

)N (2.73)

has a positive expansion on the Gegenbauer polynomials since positive powers of z have a

positive expansion on the Gegenbauer polynomials [GL22]. In the case of the Coon amplitude
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(for any q), this factor simply equals one. In all other cases, the factor W(s, t) = 1, and we

may use the binomial theorem to write,

1(
1− 1

2
(z − 1)λN/λ∞

)N =

(
1 +

λN

2λ∞

)−N ∞∑
k=0

(
N + k − 1

k

)(
λN

λN + 2λ∞

)k

zk (2.74)

which is a sum of powers of z with manifestly positive coefficients. It remains to study the

polynomial part of the residue,

N−1∏
n=1

[(
1

λn

− 1

λ∞
− 1

λ−∞

)
λN

2
z −

(
1

λn

− 1

λ∞
− 1

λ−∞

)
λN

2
+ 1

]
(2.75)

This factor will be a sum of powers of z with manifestly positive coefficients if,

1

λn

− 1

λ∞
− 1

λ−∞
≥ 0 and

(
1

λn

− 1

λ∞
− 1

λ−∞

)
λN

2
≤ 1 (2.76)

for n = 1, 2, . . . , N − 1 for each N ≥ 1. Because the poles are ordered λn > λn−1, these

conditions are satisfied for all n at fixed N if,

1

λN−1

− 1

λ∞
− 1

λ−∞
≥ 0 and

(
1− 1

λ∞
− 1

λ−∞

)
λN

2
≤ 1 (2.77)

where we have used λ1 = 1. These conditions are in turn satisfied for all N if,

1

λ∞
− 1

λ∞
− 1

λ−∞
≥ 0 and

(
1− 1

λ∞
− 1

λ−∞

)
λ∞

2
≤ 1 (2.78)

Rearranging, we find,

1

λ−∞
≤ 0 and

3

λ∞
+

1

λ−∞
≥ 1 (2.79)

We have carefully written these conditions in terms of the reciprocals 1/λ∞ and 1/λ−∞ since

λ∞ or λ−∞ may be infinite.

The conditions (2.79) are satisfied as follows. For the Coon amplitudes with q < 1, the

first condition is trivially satisfied since 1/λ−∞ = 0, leaving only the second condition,

Coon (q < 1) : 3(1− q) ≥ 1 =⇒ q ≤ 2
3

(2.80)
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For the Coon amplitudes with q ≥ 1, we have 1/λ∞ = 0, and the two conditions become,

Coon (q ≥ 1) : 1− q ≤ 0 =⇒ q ≥ 1

1− q ≥ 1 =⇒ q ≤ 0 (2.81)

which is never satisfied. For the p-type amplitudes, the two conditions become,

p-type :
1− x/p

1 + x
≤ 0 =⇒ x ≥ p

3
1− xp

1 + x
+

1− x/p

1 + x
≥ 1 =⇒ x ≤ 3p

1 + p+ 3p2
(2.82)

Finally, for the r-type amplitudes, the two conditions become,

r-type :
1− x

1 + x
≤ 0 =⇒ x ≥ 1

4
1− x

1 + x
≥ 1 =⇒ x ≤ 3

5
(2.83)

which is never satisfied.

In summary, we have found that the Coon amplitudes with 0 < q ≤ 2
3
are unitary in any

dimension, in agreement with [FT22]. Moreover, we have analytically demonstrated that

the p-type generalized Veneziano amplitudes with p ≤ x ≤ 3p/(1 + p+ 3p2) are unitary in

any dimension. These inequalities define a region of parameter space with infinite critical

dimension. In terms of the parameters x and y, the first inequality p ≤ x becomes y ≤ x2

while the second inequality becomes f−(x) ≤ y ≤ f+(x), where,

f±(x) =
x2(6 + x− 3x2 ±

√
9− 6x− 11x2)

9− 3x− 5x2 + 3x3
(2.84)

This infinite critical dimension region is displayed in Figure 2.2.

While the conditions (2.79) are sufficient to prove unitarity in all dimensions, they are

by no means necessary. In general, for a given finite dimension d, the unitary region in the

xy-plane will be larger than the region of infinite critical dimension.
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x
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string spectrum
Coon spectra
r-type spectra
unitary in d ≤ 4
unitary in d ≤ 6
unitary in d ≤ 10
unitary in all d
non-unitary
unphysical spectra

Figure 2.2: The two-parameter space of solutions to the generalized Veneziano amplitude

constraints with unitary regions in various dimensions. The blue region is unitary in all

dimensions and includes the Coon amplitudes with 0 < q ≤ 2
3
. The dark green region is

unitary in d ≤ 10 and includes the Veneziano amplitude at x = y = 1. The middle green

region is unitary in d ≤ 6. The light green region is unitary in d ≤ 4. The blue region was

computed analytically, and the green regions were computed by numerically analyzing the

first few partial wave coefficients cn,j.
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2.4.6.2 Numerical results

To study the regions of parameter space with finite critical dimension, we shall employ

numerical methods to analyze the first few partial wave coefficients. One cannot mathemat-

ically prove unitarity by examining a finite number of partial wave coefficients, but if any of

those coefficients are negative, then the amplitude in question is non-unitary.

In this way, one can find evidence for the critical dimension of the superstring by com-

puting one of the first partial wave coefficients of the Veneziano amplitude, c3,0 ∝ 10− d.

Similarly, one can deduce that the Coon amplitudes with q > 1 are non-unitary by com-

puting the coefficient c2,0 ∝ 1− q [GL22]. In this spirit, we hope to provide some evidence

on the qualitative structure of the unitary regions of parameter space for the generalized

Veneziano amplitudes.

The analytic expressions for the partial wave coefficients cn,j are given by the following

overlap integral against the Gegenbauer polynomials [GL22],

cn,j = N ( d−3
2

)

j

∫ 1

−1

dz (1− z2)
d−4
2 C

( d−3
2

)

j (z)× Res
s=λn

A
(
s, 1

2
s(z − 1)

)
(2.85)

where the residue is given by (2.68) and the normalization is,

N ( d−3
2

)

j = 2d−5(2j + d− 3)
Γ(j + 1)Γ(d−3

2
)2

πΓ(j + d− 3)
(2.86)

The apparent poles in this formula at d = 3 are a remnant of the normalization of the

Gegenbauer polynomials and can be trivially removed by a change in normalization.

For the p-type and r-type amplitudes which exhibit infinite spin exchange, the coefficients

cn,j with n ≥ 1 will generally be non-zero for all spins j ≥ 0. Remarkably, Mathematica can

explicitly compute these integrals in terms of generalized hypergeometric functions. The

expressions are incredibly long, so we shall omit them here. Instead, we shall numerically

examine the region of parameter space where cn,j ≥ 0 for 1 ≤ n ≤ 4 and 0 ≤ j ≤ 3 in several

dimensions, namely d = 4, 6, 10. The unitary regions of parameter space are displayed
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in Figure 2.2. The qualitative structures of these regions do not appreciably change upon

probing larger values of n or j.

As expected, the unitary region in d dimensions envelopes those in d′ > d dimensions,

and they all contain the region of infinite critical dimension. For d ≤ 10 the unitary region

includes the Veneziano amplitude at x = y = 1. The unitary region also appears to contain

some r-type amplitudes, albeit with finite critical dimension. It would be interesting to study

the features of Figure 2.2 in more detail. Perhaps the methods of [GL22, FT22, CMM22,

BDS22] which were used to study the Coon amplitudes could be adapted to study the unitary

properties of generalized Veneziano amplitudes.

2.5 Generalized Virasoro amplitudes

In this section, we shall systematically analyze our infinite product ansatz (2.26) for the

generalized Virasoro amplitude.

2.5.1 Virasoro truncation

We first recall the infinite product form (2.9) of the Virasoro amplitude, which has simple

poles at each non-negative integer. After applying the mass-shell relation s+ t+ u = 0, the

residue of the massless s-channel pole is 1/t2, and the residue of each massive pole at s = N

is a polynomial of degree-(2N − 2) in t. The Virasoro amplitude achieves these residues

because on each s-pole, its zeros cancel the t-poles and u-poles, leaving a finite polynomial

in t. This cancellation can be described in terms of the numerator factors,

Nn(s, t, u) = 1 + (st+ tu+ us)/n2 + stu/n3 (2.87)

When s = N , each numerator factor NN+n(N, t,−N − t) ∝ (1− t/n)(1− u/n) cancels both

the t-channel and u-channel pole factors (1− t/n)−1(1− u/n)−1, and the infinite product
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truncates. In short, the condition,

NN+n(N, n,−N − n) = 0 (2.88)

ensures that the Virasoro amplitude has polynomial residues.

These features bare a striking resemblance to those of the Veneziano amplitude. Hence,

our analysis of the generalized Virasoro amplitude (2.26) will mirror our analysis of the

generalized Veneziano amplitudes in the previous section.

2.5.2 Generalized Virasoro truncation

We now return to our generalized Virasoro ansatz (2.26). We shall demand that the zeros

and poles of this amplitude cancel in a similar fashion as those of the Virasoro amplitude. We

first demand that the residue at s = 0 is 1/t2 so that the amplitude reproduces the massless

spectrum of supergravity analogously to the Virasoro amplitude,

Res
s=0

A(s, t, u) =
1

t2
=⇒ W(0, t,−t)

∏
n≥1

1− Ant
2

1− t2/λ2
n

= 1 (2.89)

which implies that W(0, t,−t) = 1 and An = 1/λ2
n since W(s, t, u) has neither zeros nor

poles. In other words, the coefficients An are again determined by the poles λn.

Next, in analogy with the truncation condition for the Virasoro amplitude (2.88), we

demand that the generalized numerator factor,

Nn(s, t, u) = 1 + An(st+ tu+ us)−Bnstu (2.90)

obeys the generalized truncation condition,

NN+n(λN , λn,−λN − λn) = 0 (2.91)

so that NN+n(λN , t,−λN − t) ∝ (1− t/λn)(1− u/λn) and the infinite sequence of t-poles

and u-poles cancels on each s-channel pole. This truncation condition determines the coef-

ficients Bn in terms of the poles λn,

Bn =
λ2
k + λkλn−k + λ2

n−k − λ2
n

λ2
nλn−kλk(λk + λn−k)

k = 1, 2, . . . , n− 1 (2.92)
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For fixed n ≥ 2, both k and k′ = n− k yield the same equation for Bn so that there are

again
⌊
n
2

⌋
independent equations for Bn. Once more, the coefficient B1 is left undetermined,

the coefficients B2 and B3 are uniquely determined, and the coefficients Bn with n ≥ 4 are

all over-determined.

As in the previous section, this over-determination of the Bn highly constrains the poles.

Any sequence of poles λn must leave the following combination independent of k for all n ≥ 2,

Λn(k) =
λ2
k + λkλn−k + λ2

n−k − λ2
n

λn−kλk(λk + λn−k)
(2.93)

We shall refer to these equations as the generalized Virasoro amplitude constraints. The

Virasoro solution λn = n (i.e. the string theory spectrum) solves these constraints with

Λn(k) = −1/n for all n and k. We shall now search for other, more general sequences of

poles λn which solve the generalized Virasoro amplitude constraints.

2.5.3 Generalized Virasoro amplitude constraints

Since Λn(k) must be independent of k, we may fix n ≥ 2 and choose two distinct values

of (k, ℓ) in the appropriate range to find,

λ2
k + λkλn−k + λ2

n−k − λ2
n

λn−kλk(λk + λn−k)
=

λ2
ℓ + λℓλn−ℓ + λ2

n−ℓ − λ2
n

λn−ℓλℓ(λℓ + λn−ℓ)
(2.94)

We may then solve this equation for λn in terms of λk, λn−k, λℓ, and λn−ℓ,

λn =

√
λkλn−k(λn−k+λk)(λ

2
n−ℓ+λn−ℓλℓ+λ2

ℓ )−λℓλn−ℓ(λn−ℓ+λℓ )(λ
2
n−k+λn−kλk+λ2

k)

λkλn−k(λn−k+λk)−λℓλn−ℓ(λn−ℓ+λℓ)
(2.95)

As in the generalized Veneziano case, the first three poles are free parameters, and (2.95)

determines all the subsequent poles in terms of λ1, λ2, and λ3. We shall again define the

positive numbers x = λ2 − λ1 = λ2 − 1 > 0 and y = λ3 − λ2 > 0, using the fact that the

poles λn > λn−1 are ordered. The choice λ1 = 1 simply sets our units.

For n = 4 and n = 5, there is a unique choice of (k, ℓ) and thus a single equation deter-

mining λ4 = λ4(x, y) and λ5 = λ5(x, y). For n = 6, we can write two different equations
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for λ6 = λ6(x, y). These equations are exceedingly large and include several nested radicals.

Equating these two expressions implicitly defines a curve in the xy-plane. Any solution of

the generalized Virasoro amplitude constraints must be on this curve. We have analyzed

this curve numerically and verified that it passes through x = y = 1. Repeating this process

at n = 7 yields a second curve in the xy-plane, and any solution of the generalized Virasoro

amplitude constraints must again be on this curve. Through a straightforward numerical

analysis, we find that the λ6 and λ7 curves only intersect at x = y = 1, corresponding to the

string spectrum.

In other words, only the string spectrum λn = n satisfies the generalized Virasoro am-

plitude constraints (2.93). Thus, the construction which led to several infinite families of

generalized Veneziano amplitudes fails to yield any new generalizations of the Virasoro am-

plitude. The closed string is highly constrained.

2.6 Discussion

In this chapter, we have systematically analyzed generalizations of both the Veneziano and

Virasoro amplitudes by considering the infinite product ansatz (2.21) and (2.26). Demanding

that the poles cancel on each residue, we arrived at the generalized Veneziano and general-

ized Virasoro amplitude constraints, (2.34) and (2.93), respectively. These constraints are

equivalent to an infinite set of non-linear recursion relations obeyed by the poles of each

amplitude.

In the generalized Veneziano case, we solved the recursion relations analytically by re-

ducing them to the Riccati recursion relation (2.37). The solutions corresponded to the

Veneziano amplitude, the one-parameter family of Coon amplitudes, and a larger two-

parameter family of amplitudes with an infinite tower of spins at each mass level. Of these

generalized Veneziano amplitudes, only the Veneziano and Coon amplitudes have polynomial

residues. We also began an initial study of the unitarity properties of these amplitudes and
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found that a subspace of them, including the Coon amplitudes with 0 < q ≤ 2
3
, are unitary

in any dimension. A larger subspace is unitary with finite critical dimension.

In the generalized Virasoro case, we numerically demonstrated that the only consistent

solution to the generalized Virasoro amplitude constraints is the string spectrum. These

infinitely many constraints did not allow any deviation outside of closed string theory. Our

results are consistent with those of [GL22, CR23].

In future work, it would be interesting to explore where the low-energy expansion coef-

ficients of the generalized Veneziano amplitudes Ap(s, t) and Ar(s, t) lie in relation to the

EFT-hedron [AHH21] and other positivity bounds [CV21]. The low-energy expansion co-

efficients of the Coon amplitudes were recently studied in this context in [FT22, GL22].

It would also be interesting to further study the unitarity properties of these amplitudes.

Further generalizations of this work may study other truncation conditions leading to poly-

nomial residues for our infinite product ansatz. Recent progress in this direction has been

made in [CR23].

Finally, we hope to find a definitive field theory or string theory realization of the Coon

amplitudes or their generalizations. Recently, accumulation point spectra like those ex-

hibited by Coon amplitudes were found in a setup involving open strings ending on a D-

brane [MR22]. Moreover, accumulation point spectra have appeared in various contexts in

the modern S-matrix bootstrap program, so it is imperative to better understand the Coon

amplitudes’ physical origins.
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