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Abstract	
	

Development	and	Application	of	a	Novel	Enhanced	Sampling	Method	and	Bayesian	Analysis	
for	Characterizing	Intrinsically	Disordered	Proteins	

	
by	
	

James	A.	Lincoff	
	

Doctor	of	Philosophy	in	Chemical	Engineering	
	

University	of	California,	Berkeley	
	

Professor	Teresa	Head-Gordon,	Chair	
	

	 Intrinsically	 disordered	 proteins	 (IDPs)	 are	 a	 class	 of	 proteins	with	wide-ranging	
significance	 in	 signaling	 and	 disease	 that	 do	 not	 adopt	 a	 dominant	 folded	 structure	 as	
monomers.	Rather,	 the	 structures	of	 IDPs	 in	 solution	are	best	described	as	 ensembles	of	
conformational	 states	 that	may	 range	 from	 being	 fully	 random	 coil	 to	 partially	 ordered.	
This	 structural	 plasticity	 of	 IDPs	 is	 theorized	 to	 facilitate	 regulation	 of	 their	 interaction	
with	 other	 species,	 as	 in	 signal	 transduction	 or	 aggregation	 of	 IDPs	 into	 ordered	 fibrils.	
Characterizing	 the	 structural	 ensembles	 of	 IDPs	 in	 the	 free,	 solvated	 state	 is	 key	 to	
understanding	the	mechanisms	of	these	interactions,	and	correspondingly	the	role	an	IDP	
species	plays	in	signaling	or	disease.	
	 The	rapid	interconversion	between	conformational	states,	however,	complicates	the	
experimental	 study	 of	 IDPs	 because	 most	 experimental	 signals	 report	 highly	 averaged	
information.	 Computational	modeling	with	 validation	 through	 comparison	 to	 experiment	
has	 therefore	 been	 a	 main	 approach	 to	 characterizing	 IDP	 structure	 and	 dynamics.	 The	
focus	of	my	dissertation	is	on	the	development	of	new	methods	for	computational	study	of	
IDPs,	facilitating	better	and	less	expensive	de	novo	generation	of	IDP	structural	ensembles	
and	improving	the	metrics	used	to	evaluate	the	degree	of	agreement	between	a	simulated	
ensemble	and	a	set	of	experimental	data.	
	 Despite	 vast	 improvements	 in	 computational	 power	 and	 efficiency,	 molecular	
dynamics	 (MD)	 simulations	 of	 IDPs	 for	 generating	 conformational	 ensembles	 are	 still	
limited	 by	 the	 expense	 of	 calculations.	 In	 Chapter	 2	 I	 present	 the	 development	 of	 a	 new	
enhanced	 sampling	method	 –	 temperature	 cool	 walking	 (TCW)	 –	 and	 comparison	 of	 its	
performance	against	a	standard	method	–	temperature	replica	exchange	(TREx).	The	TCW	
method	 accelerates	 the	 rate	 of	 convergence	 to	 the	 equilibrium	 conformational	 ensemble	
with	 increased	 sampling	 acceleration	 relative	 to	 TREx	 at	 greatly	 reduced	 computational	
cost.	
	 The	second	major	limitation	in	MD	is	the	accuracy	of	the	force	field.	Most	classical	
fixed	 charge	 force	 fields	 were	 parameterized	 using	 data	 from	 folded	 proteins,	 and	 have	
been	 thought	 to	 be	 biased	 to	 overly	 collapsed	 and	 structured	 conformations.	 This	 has	
motivated	the	development	of	IDP-tailored	force	fields	that	sample	greater	disorder,	at	the	
potential	 expense	 of	 the	 ability	 to	model	 stabilizing	 interactions	 between	 an	 IDP	 and	 its	
binding	 partners.	 In	 Chapter	 3,	 I	 assess	 to	 what	 degree	 the	 shortcomings	 assigned	 to	
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standard	 force	 fields	 may	 be	 due	 to	 insufficient	 sampling	 by	 characterizing	 the	
performance	 of	 standard	 and	 newly	 modified	 force	 fields	 on	 the	 Alzheimer’s	 peptide	
amyloid-β	using	both	TREx	and	TCW.	We	find	that	with	improved	sampling,	standard	and	
modified	 force	 fields	 produce	 similar	 structural	 ensembles,	 suggesting	 that	 both	 are	
appropriate	 for	 simulation	 of	 the	 disordered	 state.	 In	 Chapter	 4	 I	 present	 preliminary	
results	building	off	of	 this	work	by	characterizing	 the	performance	of	a	polarizable	 force	
field	modeling	a	synthetic	peptide	that	demonstrates	complete	loss	of	helical	content	with	
increasing	 temperature.	 Inclusion	 of	 polarization	 effects	 has	 been	 thought	 to	 be	 key	 for	
accurate	modeling	of	such	multicomponent	systems,	especially	when	there	is	a	shift	in	the	
electrostatic	environment	as	is	the	case	for	the	unfolding	peptide.	Our	early	results,	while	
limited	 by	 current	 lack	 of	 convergence	 for	 tests	 using	 the	 polarizable	 force	 field	 and	
needing	further	confirmation,	match	that	expectation	by	finding	early	evidence	of	greater	
response	to	temperature	by	the	polarizable	force	field	than	fixed	charge	comparators.	
	 The	last	work	presented	here	is	in	the	development	of	new	methods	for	calculating	
the	degree	of	agreement	between	a	simulated	IDP	ensemble	and	experimental	data.	Back-
calculation	 of	 experimental	 data	 from	 structure	 can	 be	 very	 imprecise,	 motivating	 the	
development	in	Chapter	5	of	scoring	formalisms	that	account	for	variable	uncertainties	in	
both	back-calculation	and	experiment	for	diverse	experimental	data	types.	In	summary,	the	
methods	 described	 in	 this	 dissertation	 seek	 to	 improve	 computational	 study	 of	 IDPs	 by	
facilitating	 better,	 less	 expensive	 generation	 of	 IDP	 ensembles	 and	 producing	 more	
informative	metrics	for	evaluating	their	agreement	with	experiment.	
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Chapter	1	
	
Introduction	
		
1.1 Intrinsically	Disordered	Proteins	(IDPs)	
	
Intrinsically	 disordered	 proteins	 (IDPs)	 are	 proteins	 that	 do	 not	 form	 a	 stable	 folded	
structure	in	the	solvated	monomer	state1.	Contrary	to	folded	proteins,	which	tend	toward	a	
single	or	small	set	of	very	closely	related	conformations,	the	structure	of	an	unfolded	IDP	
must	be	described	as	a	structural	ensemble	of	conformational	states2,	3	that	interconvert	on	
the	 ns	 to	ms	 timescale4,	5.	 The	 rapid	 dynamics	 and	 conformational	 flexibility	 of	 IDPs	 are	
theorized	to	play	functional	roles	modulating	the	interaction	of	IDPs	with	their	numerous	
binding	partners6,	such	as	folded	signal	receptors7,	by	driving	the	IDP	to	adopt	more	or	less	
favorable	 conformations	 for	 binding	 with	 particular	 on-off	 rates8.	 The	 identification	 of	
these	functionally	relevant	conformations,	and	their	mechanisms	of	 interaction,	 is	of	high	
interest	due	to	the	role	of	IDPs	when	function	goes	awry	as	in	diseases	such	as	Parkinson’s9	
and	Alzheimer’s10-12	amongst	others13,	14.	
	 The	 conformational	 dynamics	 of	 IDPs,	 however,	 complicate	 their	 structural	
characterization.	 Whereas	 numerous	 techniques	 such	 as	 X-ray	 crystallography15	 or	
cryogenic	electron	microscopy16	are	able	to	fully	resolve	the	dominant	structure	for	folded	
proteins—key	 to	 our	 understanding	 of	 the	 mechanisms	 of	 their	 function—there	 is	 no	
analogous	 single	 experiment	 for	 IDPs	 that	 is	 able	 to	 resolve	 the	 full	 ensemble	 of	
conformational	states.	This	is	because	the	interconversion	between	states	of	an	IDP	is	such	
that	experiments,	depending	on	their	 timescale,	generally	only	report	on	highly	averaged	
properties	of	 IDPs4,	17.	The	characterization	of	an	 IDP	conformational	ensemble	 therefore	
requires	 application	 of	 multiple	 solution	 experiments	 to	 gather	 as	 much	 structural	
information	 as	 is	 possible	 –	 using	 techniques	 such	 as	 nuclear	 magnetic	 resonance	
spectroscopy	 (NMR)18,	19,	 small-angle	 X-ray	 scattering	 (SAXS)20,	 and	 single	molecule	 and	
solution	 Förster	 resonance	 energy	 transfer	 (FRET)21,	22	 –	 in	 combination	with	molecular	
simulation4,	17,	23.	
	 The	 focus	 of	 this	 thesis	 is	 on	 two	 key	 aspects	 of	 the	 computational	 side	 of	 IDP	
ensemble	 characterization:	 efficient	 generation	 of	 accurate	 structural	 ensembles,	 and	
objective	metrics	 for	 differentiating	 between	 simulation	 ensembles	 based	 on	 the	 quality	
and	quantity	 of	 experimental	 data.	 In	Chapter	 2	 I	 describe	 the	 theory,	 development,	 and	
validation	of	a	novel	enhanced	sampling	algorithm	for	the	simulation	of	the	IDP	monomer	
state24,	25.	 I	 apply	 the	method	 in	 Chapter	 3	 to	 the	 simulation	 of	 the	 Alzheimer’s	 peptide	
amyloid-β11,	12,	studying	the	interplay	of	sampling	efficiency	and	force	field	accuracy	among	
standard	 and	 newly	 developed	 fixed	 charge	 models10.	 In	 Chapter	 4	 I	 study	 these	 fixed	
charge	models	alongside	a	polarizable	 force	 field26,	evaluating	 their	ability	 to	capture	 the	
strong	 changes	 in	 conformational	 propensity	 for	 a	 synthetic	 peptide27	 in	 response	 to	
temperature.	 Lastly,	 in	Chapter	5	 I	 describe	 the	 extension	of	 a	Bayesian	 scoring	metric28	
that	 accounts	 for	multiple	 sources	of	uncertainty	 in	 evaluating	 the	 agreement	between	a	
simulated	ensemble	and	a	diverse	array	of	experimental	data	types,	and	its	application	to	
refinement	 of	 IDP	 ensembles.	 Overall,	 this	 thesis	 describes	 the	 development	 and	
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application	of	improved	methods	for	both	the	generation	and	validation	of	IDP	ensembles	
to	facilitate	better	study	of	IDP	structure	and	behavior.	
	
1.2 Structure	Generation	Methods	for	IDP	Ensembles	

	
Several	 approaches,	 spanning	 different	 levels	 of	 structural	 accuracy	 and	 computational	
speed,	 exist	 for	 generating	 conformational	 ensembles	 of	 IDPs.	 Toward	 the	 lower	 end	 of	
accuracy	 but	 with	 extremely	 high	 computational	 efficiency,	 statistical	 random	 coil	
ensembles	 can	 be	 constructed	with	 programs	 such	 as	 TraDES29	 and	 Flexible-Meccano30,	
where	 the	resultant	ensemble	can	be	constructed	 to	match	expected	secondary	structure	
populations	as	derived	from	experiment	or	sequence	analysis.	Such	methods,	however,	do	
not	naturally	incorporate	Boltzmann	statistics,	and	may	not	be	able	to	predict	certain	local	
tertiary	 folding	motifs	 that	 an	 IDP	may	 adopt4.	 Given	 that,	 these	methods	 are	 commonly	
used	 to	 generate	 large	 trial	 ensembles	 of	 conformers	 followed	 by	 heavy	 refinement	 by	
comparison	to	experimental	data31-33.		

Fully	atomistic	molecular	dynamics	(MD)	is	generally	able	to	guarantee	the	highest	
accuracy	of	an	ensemble,	subject	to	the	quality	of	the	potential	energy	surface	used34	and	
the	level	of	sampling	used	to	characterize	it10.	At	the	most	brute	force	level,	ensembles	of	
IDP	conformations	can	be	collected	over	long	independent	standard	MD	trajectories35,	now	
commonly	run	to	μs36-39	timescales	thanks	to	advances	in	computational	efficiency	such	as	
more	 widespread	 use	 of	 GPU	 acceleration40	 and	 numerous	 techniques	 that	 reduce	 the	
amount	of	calculation	required	to	propagate	the	system	forward	in	time41.	Especially	when	
using	standard	MD,	it	is	important	to	conduct	multiple	replicates	of	simulations42	in	order	
to	 ensure	 adequate	 exploration	 of	 conformational	 space,	 as	 individual	 trajectories	 can	
become	trapped	in	local	energy	minima.	Unlike	random	coil	ensemble	generation,	physical	
simulations	 have	 the	 advantage	 of	 generating	 a	 Boltzmann-weighted	 population	 (with	
reweighting	of	the	ensemble	needed	by	some	methods43,	44)	of	conformers	that	matches	the	
energetics	of	 the	true	equilibrium	distribution,	subject	 to	the	accuracy	of	 the	 force	 field34	
and	 extent	 of	 sampling10.	 Similarly,	 coarse-grained	 simulations	 generate	 trajectories	 of	
Boltzmann-weighted	 structures	 at	 lower	 cost	 due	 to	 integrating	 out	 of	 unimportant	
degrees	 of	 freedom,	 though	 at	 potentially	 lower	 structural	 accuracy	 depending	 on	 the	
coarse-graining	method	and	solvent	model	used12.	This	thesis	therefore	focuses	primarily	
on	atomistic	MD-based	methods	for	ensemble	generation.	
	
Development	of	a	Novel	Enhanced	Sampling	Method	
As	opposed	to	proteins	that	stably	fold,	where	the	potential	energy	surface	is	dominated	by	
one	global	minimum	that	drives	the	system	to	that	preferred	fold,	the	energy	landscape	of	
an	 IDP	 in	 the	monomer	 state	 is	 relatively	 flat2,	45.	The	main	problem	encountered	during	
simulation	is	to	ensure	that	the	system	transits	quickly	enough	between	different	potential	
energy	minima	 to	 sample	 the	entire	 conformational	 space	at	 the	appropriate	 levels.	As	a	
result,	though	it	is	possible	to	generate	a	properly	converged	ensemble	with	just	standard	
MD	provided	enough	simulation	time	and	a	diverse	set	of	starting	conditions35,	the	use	of	
enhanced	sampling	methods	in	IDP	simulation	is	itself	fairly	standard22,	46.	
	 Enhanced	sampling	methods	refer	to	the	ability	to	increase	the	sampling	efficiency	
beyond	accessible	MD	time	scales47.	Depending	on	the	enhanced	sampling	method,	 it	can	
require	 greater	 computational	 effort	 than	 a	 single	 standard	MD	 trajectory	 of	 equivalent	
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length,	but	the	key	is	to	validate	that	the	gain	in	rate	of	convergence	exceeds	any	potential	
additional	 cost24.	 Thermodynamically	 based	 enhanced	 sampling	 methods	 preclude	 the	
direct	 extraction	 of	 dynamical	 information	 from	 the	 trajectories,	 but	 do	 generate	
Boltzmann	weighted	 ensembles	 that	 are	 critical	 to	 getting	 IDP	 sub-population	weighting	
correct.	 Such	methods	 include	Replica	Exchange	 (REx)22,	47,	 steered	MD	 that	 incorporates	
experimentally-derived	structural	restraints48,	umbrella	sampling49,	and	accelerated	MD43,	
50,	51.		

Temperature	 replica	 exchange	 (TREx)47	 is	 among	 the	 most	 commonly	 used	
enhanced	sampling	methods	for	IDPs,	given	its	generally	reliable	performance	and	simple	
parallelizability.	 Multiple	 copies	 of	 the	 simulation	 are	 run	 in	 parallel	 each	 at	 a	 different	
temperature.	 This	 temperature	 ladder	 usually	 spans	 a	 roughly	 200	 K	 range	 from	 a	 low	
temperature	 of	 interest,	 commonly	 set	 to	 match	 the	 temperature	 condition	 of	 an	
experiment	 to	which	data	will	 be	 compared11,	 and	a	high	 temperature	of	400-500	K4.	At	
high	temperatures,	the	system	exhibits	little	to	no	trapping	in	any	conformational	minima,	
rapidly	traversing	phase	space.	At	regular	 intervals,	exchanges	to	swap	conformations	up	
and	down	the	ladder	are	attempted	such	that	over	time,	the	low	temperature	replicas	are	
able	 to	 bounce	 between	 distant	 conformational	 minima	 more	 rapidly	 than	 would	 be	
possible	with	standard	MD.	There	are	two	main	drawbacks,	however,	to	TREx.	In	order	to	
maintain	 efficient	 passing	 of	 conformations	 up	 and	 down	 the	 temperature	 ladder,	many	
replicas	at	 tight	 temperature	 spacing	are	needed,	making	 the	method	highly	expensive52.	
Second,	and	stemming	partially	as	a	result	of	this	need	for	many	closely	spaced	replicas,	the	
increase	in	convergence	rate	relative	to	standard	MD	can	be	somewhat	limited24.	
	 In	 Chapter	 2,	 I	 present	 the	 development	 and	 validation	 of	 Temperature	 Cool	
Walking	 (TCW)10,	11,	24,	25,	 a	new	enhanced	sampling	method	 that	 is	designed	 to	overcome	
these	 limitations	 of	 TREx.	 TCW	 is	 formulated	 such	 that,	 rather	 than	 requiring	 massive	
amounts	of	parallel	computational	power	as	for	TREx,	 it	can	be	run	on	single	commercial	
GPUs,	using	a	simulated	annealing-like	protocol	to	enhance	the	rate	of	convergence	of	a	low	
temperature	 walker	 by	 introducing	 conformations	 that	 are	 cooled	 out	 of	 a	 high	
temperature	ensemble.	We	validate	TCW	on	a	model	1-D	potential	surface	and	two	small	
peptides,	 comparing	 in	 each	 case	 to	 optimally	 run	 TREx	 simulations,	 thereby	
demonstrating	the	more	rapid	convergence	and	overall	lower	cost	of	TCW.	
	
1.3 The	Combined	Force	Field-Sampling	Problem	

	
Classical	 fixed	 charge	 force	 fields	 have	 been	 primarily	 parameterized	 to	 reproduce	
behavior	of	folded	proteins53,	and	much	attention	has	been	paid	to	the	possible	limitations	
that	 these	 force	 fields	 have	when	 applied	 to	 IDPs34,	36,	37.	More	 specifically,	many	 groups	
have	noted	that	standard	MD	and	TREx	simulations	of	IDPs	using	these	classical	force	fields	
produce	 conformational	 ensembles	 that	 are	 compact	 or	 exhibit	 too	 much	 folded	
structure37.	As	a	result,	many	reparameterized	versions	of	classical	force	fields	have	been	
recently	developed	to	bias	them	to	more	expanded,	IDP-like	conformations36,	53-55.	
	 In	Chapter	3	 I	present	a	previously	published	study10	of	 the	 interplay	of	 sampling	
method	 and	 force	 field,	 seeking	 to	 elucidate	 to	what	 extent	 the	 shortcomings	 commonly	
attributed	 to	only	 the	 force	 field	may	have	been	due	 to	 insufficient	 sampling	as	well.	We	
find	 that	upon	 improving	 the	rate	of	 sampling	by	shifting	 from	TREx	 to	TCW,	a	 standard	
force	field56,	57	was	as	capable	as	newly	modified	force	fields36,	54,	58	of	matching	most	of	the	
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structural	 features	 predicted	 by	 NMR	 scalar	 coupling	 experiments18,	 22	 and	 exhaustive	
(~200	 μs)	 standard	 MD35.	 The	 newer	 IDP-targeted	 force	 fields	 still	 produce	 somewhat	
more	extended	conformations,	which	may	point	 to	some	overall	 improvement	 if	 they	are	
instead	compared	to	FRET	and	SAXS	data.	
	 However,	some	groups	have	noted	that	the	modifications	made	to	disorder-inducing	
force	 fields	render	 them	incapable	of	maintaining	stable	 folds	 for	other	proteins37,	which	
may	make	 them	 incapable	 of	 capturing	 the	 stabilization	 that	 some	 IDPs	 are	predicted	 to	
undergo	when	undergoing	folding-upon-binding7,	12.	An	optimal	force	field	for	modeling	the	
full	 process	 of	 an	 IDP	 moving	 from	 a	 disordered,	 solvated	 state	 to	 a	 partially	 or	 fully	
structured	bound	state	must	be	able	to	accurately	model	each	of	these	distinct	states.	
	 One	 possible	 avenue	 for	 this	 is	 the	 use	 of	 a	 polarizable	 force	 field26.	 While	
significantly	more	 computationally	 expensive	 than	 classical	 fixed	 charge	 force	 fields,	 the	
much	greater	physical	fidelity	in	the	treatment	of	electrostatics	by	polarizable	force	fields	
has	been	shown	 to	be	 important	 in	accurately	 capturing	many	physical	processes59,	60.	 In	
Chapter	4	I	present	initial	results	evaluating	the	applicability	of	a	polarizable	force	field	to	a	
disordered	 peptide	 at	 high	 temperature	 that	 undergoes	 a	 sharp	 transition	 to	 occupying	
helical	states	at	low	temperatures27,	to	test	whether	a	polarizable	model26	is	better	suited	
to	 the	 modeling	 of	 such	 systems	 that	 transiently	 sample	 a	 wide	 variety	 of	 degrees	 of	
folding.	
	
1.4 Bayesian	Comparison	of	IDP	Ensembles	to	Experimental	Data	
	
IDP	conformational	ensembles	are	evaluated	based	on	their	expected	ability	to	reproduce	a	
range	of	experimental	data4.	The	structural,	and	in	some	cases	dynamical,	information	from	
the	simulation	is	used	to	back-calculate	experimental	signals,	which	are	then	compared	to	
the	actual	experimental	results.	This	process	is	complicated	by	the	uncertainties	involved	
in	both	experiment	and	back-calculation28.	While	an	experiment	may	produce	very	precise	
results	for	the	ensemble-averaged	signals61,	 if	the	back-calculation	process	is	significantly	
less	 precise62,	 multiple	 structurally	 diverse	 ensembles	 could	 produce	 the	 same	 back-
calculated	experimental	data	to	the	point	that	it	is	impossible,	based	on	that	experiment,	to	
validate	 or	 refine	 the	 ensemble28.	 Correspondingly	 many	 experimental	 methods	 lose	
information	on	sub-population	structure	of	an	IDP	due	to	fast	averaging.	
	 In	 Chapter	 5	 I	 describe	 the	 development	 of	 improved	 scoring	 methods	 for	 IDP	
ensembles,	 using	 a	 Bayesian	 analysis	 to	 calculate	 the	 log-likelihood	 of	 a	 structural	
ensemble	 corresponding	 to	 a	 given	 set	 of	 experimental	 results,	 accounting	 for	 the	
uncertainties	in	both	experiment	and	back-calculation.	Having	been	previously	formulated	
in	the	group28	for	chemical	shifts	and	J	couplings	from	NMR,	I	expand	upon	the	method	by	
developing	 scoring	 algorithms	 for	 a	 wider	 variety	 of	 NMR	 data	 including	 nuclear	
Overhauser	 effects	 (NOEs)	 and	 residual	 dipolar	 couplings	 (RDCs)	 as	 well	 as	 FRET	
efficiencies22.	Such	methods	 that	are	able	 to	 test	wide	varieties	of	experimental	data	 that	
report	 on	 various	 different	 aspects	 of	 IDP	 structure,	 with	 the	 ability	 to	 differentiate	
between	 the	 varying	 levels	 of	 certainty	 that	 are	 possible	 for	 each	 experiment	 and	 back-
calculation	pair,	are	key	for	improved	characterization	of	IDP	behavior.	
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Chapter	2	
	
Comparing	Generalized	Ensemble	Methods	for	Sampling	of	
Systems	with	Many	Degrees	of	Freedom*	
	
We	 compare	 two	 standard	 replica	 exchange	 (REx)	 methods	 using	 temperature	 and	
dielectric	 constant	 as	 the	 scaling	 variables	 for	 independent	 replicas,	 against	 two	 new	
corresponding	 enhanced	 sampling	methods	 based	 on	 non-equilibrium	 statistical	 cooling	
(temperature)	 or	 descreening	 (dielectric).	 We	 test	 the	 four	 methods	 on	 a	 rough	 1D	
potential	 as	 well	 as	 for	 alanine	 dipeptide	 in	 water,	 for	 which	 the	 relatively	 small	 phase	
space	allows	for	the	ability	to	define	quantitative	convergence	metrics.	We	show	that	both	
dielectric	methods	are	inferior	to	the	temperature	enhanced	sampling	methods,	and	in	turn	
that	 temperature	 cool	 walking	 (TCW)	 systematically	 outperforms	 the	 standard	
temperature	replica	exchange	(TREx)	method.	We	extend	our	comparisons	of	the	TCW	and	
TREx	methods	to	the	5-residue	met-enkephalin	peptide,	in	which	we	evaluate	the	Kullback-
Leibler	 divergence	 metric	 to	 show	 that	 the	 rate	 of	 convergence	 between	 pairs	 of	
independent	 trajectories	 is	 faster	 for	 TCW	 compared	 to	 TREx.	 Finally	 we	 apply	 the	
temperature	methods	to	the	42-residue	amyloid-β	peptide	in	which	we	find	non-negligible	
differences	 in	 the	 disordered	 ensemble	 using	 TCW	 compared	 to	 standard	 TREx	 for	
simulations	 of	 the	 same	 length,	 highlighting	 the	 difference	 in	 sampling	 capability	 for	
disordered	systems	of	interest.	
	
2.1	Introduction	
	
Enhanced	sampling	refers	to	simulation	methods	that	generate	configurations	that	are	not	
easily	accessed	from	standard	molecular	dynamics	(MD)	trajectories,	but	which	are	needed	
in	 order	 to	 generate	 a	 meaningful	 statistical	 average1.	 The	 popular	 temperature	 replica	
exchange	 method	 (TREx)	 utilizes	 multiple	 replicas	 to	 generate	 configurations	 at	 higher	
temperatures	 to	 facilitate	 jumping	 between	minima	 on	 the	 potential	 energy	 surface	 of	 a	
lower	 target	 temperature	 replica	 of	 interest2-4.	 Hamiltonian	 replica	 exchange	 (HREx)	
operates	under	similar	principles	and	protocols	to	TREx,	but	using	judicious	modification	
of	 the	 Hamiltonian	 to	 increase	 access	 of	 the	 target	 replica	 to	 important	 local	minima5,	6.	
Overall,	the	REx	approaches	have	been	shown	to	improve	sampling	efficiency	by	increasing	
the	rate	of	convergence	of	properties	compared	to	averages	accumulated	over	a	standard	
MD	 trajectory	 at	 the	 target	 temperature	 or	 Hamiltonian7.	 In	 addition,	 they	 have	 the	
attractive	 feature	 that	 tens	 to	 hundreds	 of	 replicas	 can	 be	 run	 in	 parallel	 to	 improve	
computational	efficiency	on	CPUs,	although	REx	is	somewhat	more	cumbersome	on	GPUs.	

	Although	 REx	 approaches	 are	 in	 practice	 an	 improvement	 over	 straight	 MD,	 we	
have	shown	previously	that	in	fact	their	sampling	efficiency	can	be	improved	even	further8.	
Since	 REx	 methods	 rely	 on	 multiple	 intermediate	 replicas	 to	 more	 efficiently	 pass	 trial	
																																																								
*	Reproduced	with	permission	from:	Lincoff,	J.;	Sasmal,	S.;	Head-Gordon,	T.,	Comparing	
Generalized	Ensemble	Methods	for	Sampling	of	Systems	with	Many	Degrees	of	Freedom.	
The	Journal	of	Chemical	Physics.	2016,	145	(17).			
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moves	 to	 the	 target	 replica,	 that	 in	 turn	 can	 lead	 to	 diffusiveness	 in	 the	 exploration	 of	
configuration	space;	i.e.	 in	the	limit	of	an	infinite	number	of	replicas	the	swap	acceptance	
probability	would	be	1,	but	exploration	through	parameter	(temperature	or	forces)	space	
would	become	a	random	walk.	To	address	this	problem,	we	have	previously	introduced	a	
non-equilibrium	 alternative	 to	 TREx	 known	 as	 Temperature	 Cool	Walking	 (TCW)8.	 TCW	
uses	only	one	high	temperature	replica	to	generate	non-local	trial	moves	to	ensure	better	
ergodic	 sampling,	 while	 also	 being	 formulated	 to	 satisfy	 detailed	 balance	 to	 reach	 the	
correct	 limiting	 distribution	 appropriate	 to	 the	 lower	 target	 temperature.	 Furthermore,	
TCW	correctly	weights	the	configuration	exchange	from	high	temperature	at	any	stage	of	
cooling,	 thereby	 finding	 the	 sweet	 spot	 for	 optimal	 overlap	with	 the	 target	 temperature	
distribution	 to	 increase	 the	 acceptance	 rates.	 The	 TCW	 algorithm	 was	 shown	 to	 have	
superior	 sampling	 capabilities	 compared	 to	 TREx	 on	 a	 model	 problem	 of	 a	 rough	 1D	
potential	energy	surface	for	which	ergodicity	metrics	can	be	analytically	quantified8.				

In	 this	work	we	 apply	 TCW	 to	 a	more	 challenging	 set	 of	 applications	 of	 all	 atom	
simulations	of	peptides	of	 increasing	size	 in	explicit	water.	We	demonstrate	 its	efficiency	
and	ability	to	more	rapidly	converge	to	the	proper	limiting	distribution	when	compared	to	
standard	TREx	 as	well	 as	 compared	 to	 two	 altered	Hamiltonian	methods9,	 Coulomb	REx	
(CREx)	 introduced	 by	 Itoh	 and	 Okumura10,	 and	 Dielectric	 Walking	 (DW)	 which	 is	
formulated	 in	 the	 same	 spirit	 as	 the	 original	 TCW	 approach	 but	 using	 the	 dielectric	
constant	 instead	of	 temperature	as	 the	annealing	variable.	 In	Section	2.2	we	describe	 the	
non-equilibrium	TCW	and	DW	methods	 in	some	detail,	and	computational	details	of	each	
simulation	 in	 Section	 2.3.	 In	 Section	 2.4	 we	 present	 the	 results	 of	 the	 various	 methods	
applied	to	a	simple	1D	potential,	as	well	as	the	all-atom	systems	alanine	dipeptide10,	11,	met-
enkephalin12,	and	amyloid-b	peptides13-15,	all	simulated	with	explicit	water,	where	TCW	is	
shown	to	be	superior	to	the	other	methods.	We	conclude	in	Section	2.5	with	a	discussion	
and	summary	of	results.	
	
2.2	Theory	
		
Here	 we	 review	 the	 TCW	 method8	 that	 in	 turn	 helps	 describe	 the	 new	 DW	 method	
introduced	 for	 the	 first	 time	 here,	 in	 which	 variations	 in	 temperature	 are	 replaced	 by	
variations	 in	 the	 dielectric	 constant.	 For	 TCW,	 only	 two	 explicit	 replicas	 are	 defined,	
corresponding	 to	 simultaneously	 propagating	molecular	 dynamics	 (or	Monte	 Carlo)	 at	 a	
high	 temperature	TH	 in	which	better	ergodic	 sampling	 is	ensured,	 in	order	 to	benefit	 the	
sampling	convergence	needed	at	the	target	state	of	low	temperature	TL.	The	TCW	algorithm	
uses	 a	 simulated	 annealing	 protocol	 to	 bring	 a	 trial	 configuration	 from	 the	 high	
temperature	replica	close	enough	to	the	distribution	of	the	low	temperature	space	to	more	
readily	accept	 the	 trial	move.	To	 formulate	an	acceptance	criterion	 that	 satisfies	detailed	
balance,	we	must	perform	an	equal	and	opposite	simulated	annealing	heating	protocol	on	a	
low	temperature	conformation.		

Algorithmically,	we	define	a	jump	probability	pJ	that	defines	the	frequency	at	which	
high	temperature	configurations	will	launch	a	statistical	cooling	run	to	serve	as	trial	moves	
for	 the	 low	 temperature	 replica.	When	a	 random	deviate	 ξ	between	0	and	1	 satisfies	 the	
condition	that	ξ	<	pJ,	the	current	configuration	for	the	high	temperature	replica,	xH,	and	low	
temperature	replica,	xL,	are	stored.	We	continue	to	propagate	the	high	temperature	replica	
during	the	cooling	of	the	configuration	xH	 to	ensure	that,	 in	between	successive	statistical	
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cooling	attempts,	the	high	temperature	replica	has	sufficient	time	to	fully	decorrelate.	We	
then	perform	simulated	annealing	on	the	configuration	xH,	propagating	it	over	a	schedule	of	
intermediate	temperatures	TH-j,	with	j	=	1	through	H–1.		

We	begin	by	capturing	the	probability	for	transitioning	xH	from	TH	to	TH-1,	i.e.	Pcw	(xH	
→	 xH-1),	 by	 propagating	 xH	 at	 this	 new	 temperature	 TH-1	 for	 a	 number	 of	 MD	 steps	 to	
generate	a	configuration	xH-1.	If	we	desired	to	provide	a	trial	move	for	the	low	temperature	
replica	from	the	TH-1	replica,	the	transition	process	for	the	first	step	of	cooling,	Pcw	(xH	⟶	xH-
1)	is	seen	to	simply	be	the	ratio	of	the	Boltzmann	factors	!"#$(&)	for	x=xH	evaluated	at	TH-1	
and	TH.	We	then	capture	the	next	transition	probability	Pcw	(xH-1	→	xH-2)	for	cooling	between	
TH-1	to	TH-2,	by	evolving	xH-1	at	the	lower	temperature	TH-2	to	generate	xH-2,	etc.	Thus	at	any	
point	 in	 the	 cooling	 process,	we	 can	 define	 a	 total	 transition	 probability,	Pcw	(xH	⟶	 xH-j)	
which	in	general	has	the	form:	

	
()* +, → +,". ∝ 	

1234 &23456
123456 &23456

123456 &23457
123457 &23457

⋯ 1237 &236
1236 &236

1236 &2
12 &2

																		(1)	

	
where	 each	(9 +: 	is	 the	 canonical	 Boltzmann	 probability	 of	 the	 configuration	+: 	in	 the	
ensemble	at	temperature	;9 .	

After	 the	 evaluation	 of	 every	 transition	 probability	 to	 the	 temperature	 TH-j,	 we	
generate	 another	 random	deviate	 ξ	 and	 compare	 it	 to	 the	 exchange	probability	pE	at	 the	
temperature	 TH-j.	 If	 the	 random	 deviate	 ξ	 is	 less	 than	 pE,	 we	 must	 similarly	 generate	 a	
transition	 probability	 for	 performing	 the	 reverse	 process,	 i.e.	 heating	 from	 TH-j	 to	 TH	 in	
order	to	satisfy	detailed	balance.	To	do	so,	we	take	the	initial	low	replica	configuration	xL,	
and	evolve	it	using	MD	with	a	temperature	of	TH-j	to	generate	a	configuration	x’H-j.	We	use	
the	notation	x’	 to	describe	 the	 configurations	whose	 temperature	 is	 increased	 from	 their	
original	replica.	The	temperature	of	the	x’H-j	configuration	is	then	increased	to	TH	using	the	
same	schedule	and	process	as	used	 for	cooling,	ultimately	yielding	configuration	x’H.	This	
allows	us	to	define	a	general	transition	probability	for	heating	Pcw	(x’H-j	⟶	x’H):	

	
()* +′,". → +′, ∝ 	

1234 &=23456
123456 &=23456

123456 &=23457
123457 &=23457

⋯ 1237 &=236
1236 &=236

1236 &=2
12 &=2

															(2)	

	
that	allows	us	to	formulate	an	acceptance	criteria	that	satisfies	detailed	balance.	

Before	we	define	the	acceptance	criteria,	we	note	that	we	can	 further	 increase	the	
acceptance	 rate	 by	 defining	 a	 window	 of	 states	 protocol	 that	 evaluates	 transition	
probabilities	 between	 volumes	 of	 phase	 space	 as	 opposed	 to	 points	 in	 phase	 space	 to	
minimize	 “bad”	 fluctuations	 that	 diminish	 acceptance	 rates.	 To	 describe	 the	 window	 of	
states	component,	we	consider	an	intermediate	temperature	TH-j	from	which	we	attempt	to	
impose	the	configuration	xH-j	onto	the	low	temperature	replica.	From	the	cooling	trajectory	
we	accumulate	the	following	window	of	weights	

	

> +,". = 	 !"#$234 &234
(@)

A
BCD 		 	 	 	 				(3)	

	
and	simultaneously	for	the	heating	trajectory	
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> +′,". = 	 !"#$234 &E + !"#$234 &234
G(@)

A
BCH 		 	 	 (4)	

	
where	 the	 indices	k	 through	m	 in	 each	 summation	 refer	 to	 the	 individual	 conformations	
sampled.	The	two	transition	probabilities	in	Eqs.	(1)	and	(2),	as	well	as	the	two	weighting	
factors	 in	 Eqs.	 (3)	 and	 (4),	 are	 combined	 in	 a	 standard	 Metropolis	 acceptance	 rule	 for	
imposing	the	cooled	configuration	xH-j	onto	the	low	temperature	replica,	thus	replacing	the	
original	configuration	xL	
	

IJJ +K → +,". = 	LMN 1,
1234 &Q 1Q &234 1RS &2→&234 T(&234)

1Q &Q 1234 &234 1RS &G234→&G2 T(&G234)
		 							(5)	

	
In	summary,	the	acceptance	rule	has	three	main	parts:	first,	the	simple	Metropolis	criterion	
for	 exchanging	 xL	 with	 xH-j;	 second,	 the	 ratio	 of	 transition	 probabilities	 for	moving	 from	
temperature	TH	to	TH-j	and	the	reverse	process;	and	finally	the	ratio	of	the	window	of	states	
data.		

If	 the	move	 is	 accepted	 based	 on	 Eq.	 (5),	 we	 exit	 the	 cooling	 cycle	 and	 continue	
propagation	of	 the	 two	 replicas,	 after	updating	 the	 configuration	of	 the	 low	 temperature	
replica	to	xH-j.	If	the	move	is	rejected,	we	continue	by	cooling	xH-j	to	the	next	temperature	TH-
j-1	and	continue	through	the	cooling	cycle	until	either	an	exchange	is	accepted	or	the	cooling	
schedule	completes	without	an	exchange,	at	which	point	we	return	to	propagation	of	 the	
two	replicas	until	the	next	CW	cycle	is	attempted.	We	find	it	optimal	to	set	pE	such	that	at	
least	one	exchange	attempt	is	performed	per	CW	cycle,	on	the	order	of	3	–	10%.	Setting	pE	
too	high	 increases	computational	expense,	as	a	new	heating	cycle	must	be	performed	 for	
every	exchange	attempt	during	a	cooling	cycle,	whereas	setting	pE	 too	 low	can	result	 in	a	
waste	 of	 a	 cooling	 trajectory	 if	 insufficient	 exchange	 attempts	 are	 made.	 Note	 that	 the	
window	of	states	weighting	 is	not	necessary	 for	 the	maintenance	of	detailed	balance	and	
does	not	have	to	be	used,	although	we	have	found	it	to	improve	acceptance	rates;	addition	
of	the	window	of	states	protocol	was	found	to	decrease	the	amount	of	annealing	required	
by	25	%	in	the	original	TCW	paper	on	a	simple	1D	potential.8	

Acceptance	ratios	for	TCW	moves	tend	to	increase	with	more	stringent	schedules	of	
the	 simulated	 annealing	 protocol	 used,	 and	 can	 readily	 achieve	 acceptance	 rates	 of	 20	 –	
30%	 or	 greater.	 Depending	 on	 the	 size	 of	 the	 system,	 we	 find	 a	 range	 of	 25	 –	 50	 fs	 of	
annealing	at	each	temperature	in	the	schedule	to	be	sufficient	for	adequately	equilibrating	
configurations	to	the	lower	temperatures	as	they	are	annealed.	Given	this,	and	the	fact	that	
every	 exchange	 results	 in	 imposition	 of	 a	 configuration	 that	 originated	 from	 the	 high	
temperature	replica	on	the	low	temperature	replica	(as	compared	to	REx,	which	requires	
many	successive	exchanges	between	intermediate	replicas	to	“pass”	a	configuration	all	the	
way	from	the	highest	to	the	lowest	temperature),	pJ	can	be	much	lower	in	TCW	than	TREx,	
typically	 around	 0.1	 –	 0.5	 ps-1.	 We	 have	 found	 that	 a	 ratio	 of	 8	 fs	 of	 additional	 high	
temperature	 replica	 propagation	 for	 decorrelation	 per	 1	 fs	 of	 cooling	 gives	 us	 the	 best	
increase	in	rate	of	convergence,	though	lower	ratios	are	also	workable.		

We	emphasize	that	TCW	does	not	perform	a	complete	configuration	“exchange”	as	
in	 standard	 REx	 protocols;	 instead	we	 impose	 the	 annealed	 configuration	 from	 the	 high	
temperature	replica	onto	the	target	replica,	without	imposing	the	configuration	of	the	low	
temperature	 replica	 onto	 the	 high	 temperature	 replica.	 This	 assumes	 that	 the	 high	
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temperature	 replica	 is	 an	 infinite	 reservoir	 of	 configurational	 states	 that	 decorrelate	
rapidly	 on	 the	 timescale	 between	 swap	 attempts.	 As	 we	 will	 see	 this	 is	 a	 good	
approximation	for	TCW,	provided	the	maximum	temperature	is	adequately	high,	but	needs	
to	be	reevaluated	when	the	CW	procedure	is	applied	to	other	system	parameters,	such	as	
modifying	the	Hamiltonian	in	our	DW	method.		

In	 particular,	 what	 we	 have	 outlined	 in	 Eqs.	 (1)-(5)	 for	 TCW	 applies	 to	 a	
modification	where	temperature	is	 fixed,	but	 instead	the	Hamiltonian	changes	to	define	a	
series	 of	 dielectric	 constants	 that	 scales	 the	permanent	 electrostatics	 (DW),	 allowing	 the	
protein	to	exit	minima	and	pass	through	maxima	caused	primarily	by	electrostatic	forces.	
In	this	case,	the	“ergodic	sampling”	replica	could	correspond	to	a	higher	dielectric	than	the	
target	replica,	which	is	decreased	as	we	move	xH	through	annealing	to	xH-j.	Finally	we	can	in	
principle	 also	 combine	 the	 TCW	 and	DW	 approach	 (TCW-DW).	 In	 this	method,	 the	 non-
physical	 replica	 has	 both	 increased	 temperature	 and	 altered	 protein	 dielectric,	 in	which	
both	 decrease	 when	 moving	 the	 configuration	 xH	 to	 xH-j.	 If	 modification	 of	 the	 protein	
dielectric	 is	 indeed	 a	 viable	 way	 to	 increase	 sampling,	 when	 it	 is	 combined	 with	
temperature	 we	 might	 anticipate	 an	 increase	 in	 rate	 of	 convergence	 beyond	 that	 of	
standard	TCW.	

	
2.3	Materials	and	Methods	
	
We	have	implemented	TCW,	DW,	and	TCW-DW	into	the	OpenMM	software	package	so	that	
others	 can	 access	 the	methodology	presented	here;	we	have	 also	 implemented	 the	TREx	
and	CREx	methods	in	OpenMM	in	order	to	facilitate	direct	comparison.	The	methods	have	
been	tested	on	a	number	of	systems	presented	here	including	a	1D	potential8,	16,	as	well	as	
atomistic	simulations	of	alanine	dipeptide10,	11,	the	5-residue	met-enkephalin	peptide17,	and	
the	42-residue	Aβ42	peptide13-15,	all	in	explicit	water.	

Our	first	model	system	is	a	1-dimensional	potential	energy	function	defined	as	
	

U + = VW sin
HW[&
K

H\
WCD 	 																																													(6)	

	
where	the	coefficients	are	chosen	on	the	 interval	 [-1,	1],	and	the	 length	of	 the	simulation	
box	in	reduced	units	is	L	=	10.	The	coefficients	are	the	same	as	used	in	the	original	papers8,	
16,	 but	 are	 given	 in	 Supplementary	 Table	 1	 with	 a	 corresponding	 plot	 of	 the	 potential	
energy	 (Supplementary	 Figure	 1)	 provided	 for	 the	 benefit	 of	 the	 reader.	 For	 this	 simple	
system	we	have	used	 a	 hybrid	Monte	Carlo	 (HMC)	method	 to	propagate	 sampling	 on	 its	
energy	 surface,	which	 is	 described	 in	 the	 original	 TCW	 paper.	 For	 DW	we	 use	 only	 two	
replicas	which	are	propagated	by	HMC	at	values	of	e=30	and	e=1,	and	then	trial	moves	are	
generated	 for	 the	 low	 dielectric	 replica	 using	 a	 (roughly)	 geometric	 schedule	 for	 a	
statistical	unscreening	process	(e=30,	e=29,	e=24,	and	e=1)	and	using	a	similar	geometric	
schedule	for	the	screening	process	(e=1,	e=3,	e=10,	e=30)	needed	for	detailed	balance.	For	
CREx,	we	found	4	replicas	to	be	optimal,	with	a	geometric	schedule	of	dielectrics	replicas	
(e=1,	e=3,	e=10,	e=30).	All	HMC	parameters	and	swap	attempt	rates	that	we	test	for	the	DW	
and	CREx	methods	are	the	same	in	the	comparison,	and	the	DW	and	CREx	methods	differ	
only	in	the	number	and	the	way	in	which	replicas	interact.	
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We	also	consider	three	successively	larger	peptides	in	explicit	water	to	evaluate	the	
TCW,	 DW	 and	 CREx	 methods,	 to	 see	 whether	 they	 actually	 perform	 better	 than	 the	
standard	TREx	protocol.	 For	alanine	dipeptide,	we	use	 the	Amber	 ff99sb	 force	 field18	 for	
the	protein	and	TIP3P	for	 the	water	model19	 to	compare	to	previous	studies10,	11	 that	use	
this	combination	of	force	fields.	For	met-enkephalin,	we	use	the	same	combination	of	force	
field	 and	 water	 model,	 again	 to	 compare	 to	 previous	 studies17.	 For	 Aβ42	 we	 used	 the	
Amber	ff99sb	force	field18	and	TIP4P-Ew	water	model20	since	we	have	published	results13-
15	using	TREx	with	this	force	field	combination.	All	simulations	used	a	1	fs	time	step	with	
SHAKE	 constraints	 to	 freeze	 out	 hydrogen	 vibrations,	 while	 an	 Andersen	 thermostat	
maintained	 the	 temperature.	 Ewald	 was	 used	 for	 calculating	 long-range	 electrostatic	
forces,	with	a	cutoff	of	9.5	Å	for	the	real	space	electrostatics	and	Lennard-Jones	forces.	The	
replica	exchange	attempt	 frequencies	were	once	per	1	ps	 for	 alanine	dipeptide	and	once	
per	 500	 fs	 for	met-enkephalin	 and	 Aβ42.	 For	 alanine	 dipeptide	 and	met-enkephalin,	 we	
used	 the	LEaP	module	 to	prepare	 the	 initial	 extended	 structure	 of	 the	peptide,	 and	 then	
OpenMM	to	solvate	it	within	a	periodic	cube	of	water	appropriate	to	the	system	size	(233	
and	 499	water	molecules	 for	 alanine	 dipeptide	 and	met-enkaphalin	 respectively.)	 Using	
these	starting	states	we	equilibrated	the	temperature	or	dielectric	replicas	for	100	ps,	and	
generated	multiple	independent	production	runs	of	50-100	ns.	For	Aβ42,	we	used	a	pdb	file	
generated	 from	TREx	simulations	previously	run	 in	our	 lab,	and	 it	 includes	 three	sodium	
ions	to	neutralize	charges	on	the	peptide	within	the	box.	The	initial	structure	used	for	Aβ42	
is	shown	in	Supplementary	Figure	2.	

	
2.	4	Results	
	
One-Dimensional	Potential	We	first	consider	the	performance	of	CREx	and	DW	on	a	rough	
one-dimensional	energy	surface,	which	we	have	done	previously	for	TCW	and	TREx.8	This	
simple	model	system	has	proved	useful	 to	confirm	detailed	balance	of	 implemented	code	
and	 to	 measure	 the	 sampling	 efficiency,	 i.e.	 the	 time	 required	 to	 reach	 convergence	 as	
measured	by	the	ergodicity	factor,	c(t)	
	

	 ]H ^ = _+K
\ ` +, ^ − `bcdef + H		 																								 (7)	

	
where		
	

`bcdef + = !+g −hU + i j	 	 	 	 (8)	
	

and	e	is	the	relevant	dielectric	constant	and	Z	is	the	configuration	integral,	and	in	which	the	
exact	probability	distribution	 is	analytically	solvable.	Figure	1	plots	c1D(t)	vs.	 time	for	 the	
1D	case,	in	which	it	is	evident	from	the	much	more	rapid	decrease	of	c1D(t)	to	zero	that	the	
DW	algorithm	converges	more	quickly	to	the	correct	limiting	distribution	compared	to	the	
CREx	method,	and	once	again	illustrates	that	any	replica	exchange	approach	(temperature	
or	 Hamiltonian)	 can	 be	 plagued	 by	 problems	 of	 intermediate	 replicas	 that	 retard	 the	
movement	of	configurations	generated	by	the	most	ergodic	replica	from	reaching	the	target	
replica.		
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Figure	1:	Ergodicity	measure	χ2(t)	versus	number	of	MD	steps	performed	by	the	low-
temperature	walker	for	CREx	(blue)	and	DCW	(green).	
	

Alanine	Dipeptide	We	next	consider	 the	alanine	dipeptide	 in	explicit	 solvent	as	 the	
first	fully	atomistic	test	of	our	TCW	and	DW	approaches,	and	compare	their	performance	to	
TREx	and	CREx.	Given	 the	 relatively	 small	 conformational	 space	defined	by	 the	  f	 and	y	
dihedral	 angles	 of	 the	 dipeptide,	 we	 make	 the	 assumption	 that	 two	 independent	
microsecond	 long	 standard	MD	 trajectories,	 using	 the	 same	 force	 field,	 will	 serve	 as	 an	
exact	benchmark	for	testing	the	rate	of	convergence	of	the	four	sampling	methods,	since	it	
should	 be	 a	 sufficient	 amount	 of	 time	 for	 the	 peptide	 to	 fully	 cover	 its	 conformational	
space.	 A	 good	 first	 test	 of	 the	 different	 enhanced	 sampling	 methods	 is	 to	 access	 the	
relatively	 favorable	 left-handed	α-helix	 (f=	60°,	y=	50°)	 that	must	 overcome	barriers	 of	
~10-15	kBT	from	the	right-handed	α-helix	(f=	60°,	y=	50°),	extended-β	(f=	180°,	y=	180°),	
or	the	polyproline	II	(f=	150°,	y=	150°)	conformations.	This	is	an	interesting	test	case	for	
the	dielectric	methods	in	particular	since	the	barrier	is	electrostatic	in	origin,	i.e.	in	which	
the	two	peptide	oxygens	need	to	come	into	close	contact	to	execute	the	transition.	

For	 TREx	 and	 CREx,	 the	 initial	 spacing	 of	 temperature	 and	 dielectric	 replicas,	
respectively,	were	the	same	as	that	published	in	the	CREx	paper10.	However	we	found	that	
the	 temperature	 replica	 spacing	 was	 non-optimal,	 and	 put	 TREx	 at	 a	 significant	
disadvantage	 compared	 to	 CREx.	 Therefore	we	 adjusted	 the	maximum	 temperature	 and	
replica	 spacings	 to	 obtain	 more	 standard	 acceptance	 rates	 of	 ~20%	 for	 configurational	
exchanges	between	 replicas	using	TREx	 (Supplementary	Table	2).	 In	both	 cases,	 replicas	
were	run	 for	50	ns	each.	For	TCW,	 the	maximum	temperature	was	set	 to	be	 the	same	as	
that	 for	TREx	and	 followed	an	annealing	schedule	 that	was	 largely	 the	same	as	 the	TREx	
replica	 spacings.	 For	 DW,	 the	maximum	 peptide	 dielectric	 was	 not	 the	 same	 as	 that	 for	
CREx,	 which	 was	 infinity,	 but	 instead	 it	 was	 set	 to	 16;	 repeated	 testing	 of	 DW	 did	 not	
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demonstrate	 any	 significant	 difference	 once	 the	maximum	dielectric	was	 set	 at	 or	 above	
this	 value.	 The	 “descreening”	 schedule	 used	 for	 DW	 closely	 followed	 the	 same	 replica	
spacings	used	 in	CREx.	The	 two	 replicas	 for	TCW	and	DW	were	 also	 run	 for	50	ns	 each.	
Replica	spacings	and	all	exchange	probabilities	for	TREx	and	CREx,	as	well	as	cooling	and	
heating	schedules	for	TCW	and	DW,	are	presented	in	Supplementary	Table	2.		

Figure	2	shows	the	free	energy	plots	for	the	alanine	dipeptide	in	which	it	is	evident	
that	 all	 4	methods	 qualitatively	 reproduce	 the	 result	 generated	 from	 the	 exhaustive	MD	
benchmark.	To	measure	the	rate	of	convergence,	 the	Ramachandran	plots	are	discretized	
into	a	73	x	73	grid,	and	the	square	root	of	the	total	sum	of	squared	differences	between	the	
Ramachandran	 free	 energy	 values,	 A,	 of	 the	 enhanced	 sampling	 techniques	 over	 time	
relative	to	our	reference	MD	Ramachandran	plot	is	calculated		

	

	 ]kl ^ = D
m

no ^ − no,pl
H

o 	 	 	 	 (9)	

	
and	normalized	such	that	it	varies	between	0	and	1.	Five	independent	trajectories	of	each	
kind	 of	 enhanced	 sampling	 method	 were	 run	 to	 obtain	 a	 measure	 of	 the	 average	
performance	 for	 the	]kl ^ 	metric	 for	alanine	dipeptide.	Figure	3	shows	 the	convergence	
profile	 over	 the	 50	 ns	 for	 each	method.	 The	 TCW	method	 clearly	 converges	 the	 fastest,	
reproducibly	 dropping	 below	 a	]kl ^ 	value	 of	 0.1	 within	 the	 first	 10	 ns	 of	 simulation,	
while	TREx	 is	 noticeably	more	 slowly	 convergent	 and	variable	between	 trajectories.	The	
DW	and	CREx	methods	are	roughly	competitive	with	each	other,	and	exhibit	significantly	
greater	variance	in	their	rate	of	convergence	depending	on	the	trajectory	compared	to	the	
temperature	 methods.	 We	 attempted	 multiple	 variations	 of	 the	 DW	 protocol,	 including	
shaping	 the	 schedule	 differently,	 or	 having	 both	 replicas	 run	 unperturbed	 but	 have	 the	
peptide	 dielectric	 increase	 and	 then	 decrease	 back	 to	 one	 through	 the	 course	 of	 the	
annealing	schedule.	Neither	resulted	in	improvement	over	the	published	data	here.	We	also	
combined	 DW	 with	 TCW	 to	 see	 if	 the	 additional	 alteration	 of	 the	 temperature	 would	
improve	 the	 rate	 of	 convergence	 relative	 to	 standard	 DW,	 but	 observed	 no	 significant	
improvement	 relative	 to	 TCW.	 We	 determine	 at	 this	 stage	 that	 the	 CREx	 and	 DW	
approaches	are	not	competitive	to	the	temperature	enhanced	sampling	methods,	even	for	
problems	dominated	by	electrostatic	barriers,	and	we	move	forward	on	only	testing	TCW	
and	TREx	on	successively	larger	all-atom	systems.	We	return	to	this	point	in	the	Discussion.	
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(a)	 (b)	

	 	
(c)	 (d)	

	 	
(e)	 	

	

Figure	2:	Ramachandran	free	energy	plots	
for	alanine	dipeptide.	(a)	average	from	2	
independent	1	μs	standard	MD	(b)	TCW,	(c)	
TREx,	(d)	DW,	and	(e)	CREx.	The	color	bar	
indicates	free	energy	values	in	kcals.	
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(a)	 (b)	

	 	
(c)	 (d)	

	 	
	
Figure	 3:	Numerical	 ergodicity	measure	c(t)	 versus	 t	 (in	 units	 of	 the	 number	 of	MD	 steps	
performed	 by	 the	 low-temperature	 walker)	 for	 convergence	 of	 the	 4	 advanced	 sampling	
methods	 to	 the	2	μs	MD	simulations	performed	on	the	alanine	dipeptide	(a)	TCW	(red),	 (B)	
TREx	(black),	(c)	DW	(green)	and	(d)	CRex	(blue).		
	

Met-Enkephalin	We	 next	 compare	 TREx	 and	 TCW	 on	 the	met-enkephalin	 peptide.	
The	temperature	schedule	for	TCW	and	temperatures	and	acceptance	rates	for	exchanges	
between	replicas	for	TREx	are	given	in	Supplementary	Table	2,	and	we	ran	5	independent	
50	ns	trajectories	for	each	method.	Met-enkephalin,	having	many	more	degrees	of	freedom,	
would	be	more	difficult	 to	 fully	 sample	 from	a	standard	MD	trajectory	 to	serve	as	a	gold	
standard	for	convergence.	Instead,	we	measure	the	rate	of	convergence	of	the	independent	
trajectories	 to	 each	 other;	 if	 the	 trajectories	 are	 initiated	 from	 very	 different	 initial	
conditions,	 the	 expectation	 is	 that	 any	 significant	differences	would	 indicate	 that	 a	 given	
method	suffers	from	inferior	sampling	efficiency	over	the	50	ns	period.		

We	begin	with	the	measured	variance	between	different	trajectories	for	free	energy	
values	 generated	 across	 the	 Ramachandran	 plots	 for	 each	 of	 the	 5	 residues	 in	 met-
enkephalin.	However,	since	higher	deviations	are	likely	to	occur	in	the	high-energy	regions	
where	 sampling	 is	 poorer,	 we	 have	 plotted	 a	 normalized	 version	 where	 the	 standard	
deviation	 at	 a	 point	 is	 divided	 by	 the	 average	 free	 energy	 at	 that	 point.	 This	 will	 more	
heavily	 weight	 the	 lower	 free	 energy	 regions	 of	 the	 Ramachandran	 plot,	 and	 thus	 the	
degree	to	which	the	5	independent	trajectories	converge	to	a	stable	free	energy	value	for	
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the	most	important	minima.	Figures	4	and	5	show	the	two	normalized	standard	deviation	
Ramachandran	 plots	 for	 both	 methods	 for	 representative	 residues	 tyrosine-1	 and	
methionine-5,	 respectively;	 all	 additional	 Ramachandran	 plots	 for	 the	 other	 amino	 acids	
are	 available	 in	 the	 supplementary	 material	 (Supplementary	 Figures	 5-7).	 Across	 all	
residues	 for	met-enkephalin	 the	 TREx	methods	 exhibits	 higher	 standard	 deviations	 than	
for	 TCW.	 This	 indicates	 that	 the	 free	 energy	 of	 the	 low	 energy	 basins	 are	 not	 as	 well	
converged	after	50ns	 for	TREx,	whereas	 for	TCW	there	 is	clearly	convergence	 to	a	stable	
free	energy	value	in	each	of	the	basins.		

	
																																													(a)	 	 	 	 	 	 (b)	

	
Figure	 4:	 Normalized	 standard	 deviation	 between	 trajectories	 quantified	 for	 the	
Ramachandran	phi,	psi	angles	for	Tyr-1.	(a)	TREx	and	(b)	TCW.	
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																																												(a)	 	 	 	 	 	 			(b)	

	
Figure	 5:	 Normalized	 standard	 deviation	 between	 trajectories	 quantified	 for	 the	
Ramachandran	phi,	psi	anagles	for	Met-5.	(a)	TREx	and	(b)	TCW.	

We	 can	 also	 get	 a	 better	 sense	 of	 global	 sampling	 of	 the	met-enkephalin	 peptide	
conformations	 using	 a	 principal	 component	 analysis.	 In	 this	 case	 we	 grouped	 all	 five	
trajectories	together	to	generate	an	average	conformation,	center	all	conformations	to	this	
average,	redefine	all	conformations	as	deviations	from	the	average,	and	then	calculate	the	
eigenvectors	 that	 describe	 the	 major	 modes	 of	 the	 collective	 ensemble.	 Each	 individual	
conformation	of	a	given	trajectory	is	then	projected	onto	the	principal	modes,	and	in	Figure	
6	we	plot	these	projections	onto	the	first	principal	component	against	the	projections	onto	
the	 second	 for	 two	 trajectories	 each	 of	 TCW	 and	 TREx.	 All	 additional	 plots	 for	 the	
remaining	trajectories	are	available	in	the	supplementary	material	(Supplementary	Figures	
8	and	9).	While	the	TREx	trajectories	exhibit	very	limited,	localized	sampling	of	a	small	and	
closely	related	group	of	conformations,	conformational	sampling	is	evidently	more	uniform	
in	the	TCW	tests.	Though	TREx	is	likely	identifying	local	minimum	states,	as	evidenced	by	
the	high	probabilities	 for	 certain	 regions,	 the	 strong	disagreement	 over	which	 states	 are	
highly	probable	between	 independent	 trajectories	 indicates	 that	each	trajectory	spends	a	
disproportionate	amount	of	time	trapped	in	a	few	minima.	
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(a)	

	
(b)	

	 	
Figure	 6.	Projection	of	 individual	configurations	onto	the	two	lowest	normal	modes	from	a	
principal	component	analysis.	 Two	 independent	 trajectories	 for	 each	 method	 are	 shown,	
with	the	color	bars	representing	degree	of	sampling	in	the	two-dimensional	space	defined	
by	projection	of	conformations	onto	the	first	two	principal	components.	(a)	TREx	and	(b)	
TCW.	

The	PCA	results	can	also	be	used	to	develop	a	time-dependent	metric	for	the	rate	of	
convergence	 of	 two	 independent	 trajectories	 for	 each	 method.	 The	 Kullback-Leibler	
divergence	(KLD)	quantifies	the	difference	between	two	probability	distributions,	and	we	
use	it	here	to	calculate	the	degree	of	difference	in	the	exploration	of	principal	component	
space	between	pairs	of	independent	trajectories	over	time.	If	two	trajectories	reproducibly	
cover	the	same	regions	in	phase	space,	the	KLD	will	decrease	toward	0.	We	calculated	the	
KLD	 for	 each	 pair	 of	 trajectories,	 monitoring	 their	 overlap	 in	 sampling	 of	 the	 first	 two	
principal	components.		

The	KLD	values	 for	 the	 two	principal	 components	are	plotted	 in	Figure	7.	For	 the	
first	principal	component,	PC-1,	the	greatest	change	occurs	over	the	first	30	ns,	indicating	
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that	much	of	phase	space	is	covered	by	then,	with	steady	convergence	to	the	global	metric	
for	the	remaining	20	ns	(Figure	7a).	The	KLD	metric	converges	faster	for	the	TCW	method,	
decreasing	 to	 a	 final	 value	 of	 about	 0.015	 over	 the	 50	 ns	 sample,	 indicating	 that	 the	
independent	trajectories	are	thus	very	close	to	converging	to	each	other	with	respect	to	PC-
1.	By	contrast,	the	TREx	result	converges	somewhat	more	slowly	in	the	first	30	ns,	and	it	
remains	 at	 a	 higher	 value	 after	 50	 ns	 relative	 to	 TCW,	 indicating	 that	 the	 independent	
trajectories	 for	 TREx	 are	 farther	 from	 convergence	 for	 PC-1	 than	 that	 found	 for	 TCW.	
Similar	behavior	is	evident	for	PC-2	in	which	the	KLD	metric	for	TCW	much	more	rapidly	
attains	lower	values	than	is	observed	for	TREx	(Figure	7b).	

	
																																												(a)																																																																																				(b)	

	 	
	
Figure	7.	Time	to	convergence	to	each	principal	component	for	TCW	(red)	and	TREx	(black).	
(a)	PCA1	and	(b)	PCA2.	

Amyloid-β42	To	 illustrate	 that	 the	 TCW	 method	 is	 computationally	 tractable	 for	
much	larger	and	more	difficult	systems,	we	have	evaluated	the	structural	ensemble	of	the	
Aβ42	 IDP	 in	 explicit	 water.	 Because	 Aβ42	 is	 an	 intrinsically	 disordered	 peptide,	 its	
structural	 ensemble	 requires	 enhanced	 sampling	 techniques.	 We	 have	 previously	 used	
TREx	using	58	replicas,	running	each	replica	out	to	50	ns	across	a	large	number	of	CPUs	to	
take	 advantage	 of	 fine-grained	 parallelization	 of	 energy	 and	 forces,	 to	 create	 two	
independent	structural	ensembles	of	the	Aβ42	peptide13-15.	For	the	Aβ42	peptide	sampling	
reported	here,	we	extended	 these	 two	 independent	TREx	 trajectories	 to	100ns,	 to	which	
we	compare	to	two	independent	100	ns	trajectories	with	TCW	on	a	single	GPU.	Details	of	
the	 replicas	 and	 temperature	 schedule	 are	 reported	 in	 Supplementary	 Table	 3.	 Figure	 8	
compares	the	radius	of	gyration	distribution,	in	which	we	see	that	the	Aβ42	monomer	Rg	is	
more	 extended	 for	 the	 TCW	 ensemble	 than	 that	 observed	 for	 the	 TREx	 ensemble.	
Secondary	structure	propensities	 for	each	residue	are	presented	 in	Figure	9	 in	which	we	
consider	helices	(α,	310,	and	π	in	Figure	9a),	all	β	content	(bridges,	hairpins,	and	sheets	in	
Figure	9b)	as	well	as	all	turn	types	(Figure	9c).	Overall	there	is	a	qualitative	change	in	the	
distribution	of	secondary	structure	propensities,	in	which	there	is	more	localized	regions	of	
helical	 and	 turn	propensities	 and	much	 less	 β	 content	 in	 the	TCW	ensembles,	 consistent	
with	the	Rg	trends.	We	will	report	on	the	comparison	to	recent	NMR	data	obtained	on	Aβ42	
in	a	future	publication.	
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Figure	8.	Probability	distribution	of	radius	of	gyration	of	Aβ42.	Using	TCW	(red)	and	TREx	
(black).	

3.5	Discussion	and	Conclusions	
	
We	 have	 compared	 four	 different	 methods	 for	 their	 ability	 to	 enhance	 sampling	 and	
thereby	increase	the	rate	of	convergence	to	the	limiting	structural	ensemble,	two	which	use	
temperature	 to	 overcome	 conformational	 barriers2,	 8	 and	 two	 that	 alter	 the	 potential	
energy	surface	by	 scaling	 the	electrostatic	 charges10.	We	 first	 tested	 the	methods	on	 two	
simple	systems,	an	analytic	rough	1D	energy	surface	and	an	all-atom	alanine	dipeptide	in	
water	simulation,	of	which	the	relatively	small	phase	space	allows	for	the	ability	to	define	
quantitative	convergence	metrics.	While	the	DW	method	is	shown	to	better	than	CREx	for	
the	 1D	 potential,	 the	 DW	 and	 CREx	 methods	 perform	 poorly	 with	 respect	 to	 the	
temperature	methods	for	the	alanine	dipeptide,	even	though	this	should	be	a	good	case	for	
both	 dielectric-based	 methods	 where	 the	 dominate	 barrier	 is	 electrostatic	 in	 origin.	 In	
essence,	screening	of	electrostatics	merely	gives	rise	to	new	potential	energy	barriers	that	
inhibit	 ergodic	 sampling,	 and	 we	 can	 only	 conclude	 that	 the	 dielectric	 CREx	 and	 DW	
methods	are	far	inferior	to	standard	TREx.	

In	 this	 quantitative	 comparison	 for	 alanine	 dipeptide	 we	 also	 show	 that	 TCW	 is	
superior	to	TREx,	and	this	outcome	was	shown	to	hold	for	met-enkephalin17	based	on	the	
KLD	metric	 that	measures	 the	 convergence	of	 independent	 trajectories	 to	 converge	onto	
the	 two	primary	principal	components	of	 the	peptide.	Lastly,	we	compared	 the	results	of	
TCW	 and	 TREx	 on	 Aβ42,	 the	 Alzheimer’s	 peptide,	 known	 for	 its	 role	 in	 Alzheimer’s	
disease22,	 in	 which	 we	 find	 non-negligible	 differences	 in	 the	 disordered	 ensemble	
compared	to	standard	TREx.		

Finally,	we	consider	the	computational	efficiency	of	the	two	temperature	methods.	
The	TREx	approach	requires	tens	of	replicas	and	a	CPU	cluster	with	a	real	communication	
backbone	 to	perform	swaps	and	can	be	made	highly	efficient	on	CPUs.	By	 contrast,	TCW	
always	 requires	 only	 two	 replicas	 and	 is	 better	 suited	 to	 GPU	 systems.	 In	 order	 to	
disseminate	our	new	enhanced	sampling	approaches	applied	to	complex	systems	such	as	
peptides	 and	 proteins	 in	 water,	 OpenMM23	 codes	 for	 TCW	 and	 DW	 have	 been	 made	
available;	for	comparison,	the	TREx	and	CREx	methods	have	been	made	available	as	well.	
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(a)	

	

(b)	

	

(c)	
	

	

Figure	9:	Propensity	of	the	different	types	of	secondary	structure	for	Aβ42.	β−bridges	or	
β−strands	(a),	helix	(b),	and	turns	(c),	using	TCW	(red)	and	TREx	(black).	
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3.8	Appendix	
	
Supplementary	Table	1:	Coefficients	for	the	one-dimensional	potential	energy	
function.	
	

C1	 -0.466516	 C11	 0.891462	
C2	 -0.834376	 C12	 -0.665239	
C3	 -0.714529	 C13	 0.810546	
C4	 -0.0245586	 C14	 0.198216	
C5	 0.238837	 C15	 -0.816637	
C6	 0.0143649	 C16	 -0.195351	
C7	 0.271003	 C17	 -0.573181	
C8	 -0.374538	 C18	 0.251745	
C9	 0.873564	 C19	 0.647615	
C10	 -0.370258	 C20	 0.201654	
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Supplementary	Table	2:	Replicas	and	exchange	probabilities	for	TREx	and	CREx;	annealing	
schedules	for	TCW	and	DW.	
	

Al
an
in
e	

TREx	Replicas	
T,	(K)	 300.0		 314.5	 331.0	 347.5	 367.0	 387.5	 410.0	 	 	 	

Acc,	%	 20.9	 19.0	 22.5	 18.7	 20.2	 19.9	 	 	 	 	

CREx	Replicas	
Eps	 0.69	 1.00	 1.78	 4.00	 16.00	 Inf.	 	 	 	 	

Acc,	%	 0.09	 0.06	 0.11	 0.16	 0.24	 	 	 	 	 	

TCW	Schedule	
T,	(K)	 300.0		 314.5	 331.0	 347.5	 367.0	 387.5	 410.0	 	

DCW	Schedule	
Eps	 1.00	 1.20	 1.39	 1.54	 1.68	 1.83	 2.04	 2.36	 2.88	 3.67	 4.84	 	

M
et
-E
nk
	

TREx	Replicas	
T,	(K)	 300.0	 310.0	 320.5	 331.5	 342.5	 355.5	 369.5	 384.0	 399.5	 415.5	 432.0	

Acc,	%	 20.2	 20.0	 20.2	 22.6	 18.1	 16.9	 17.9	 17.8	 18.8	 20.1	 	

TCW	Schedule	
T,	(K)	 300.0	 308.0	 317.1	 327.2	 338.2	 349.9	 361.9	 374.0	 386.0	 398.0	 410.0	 425.0	

	

Supplementary	Table	3:	Replicas	and	exchange	probabilities	for	TREx	and	annealing	
schedule	for	TCW	for	Aβ42.	The	annealing	schedule	used	for	TCW	was	identical	to	the	set	of	
TREx	replicas.	
	

Aβ
42
	

TREx	Replicas	
T,	(K)	 287.0	 289.1	 291.2	 293.3	 295.5	 297.6	 299.8	 302.0	 304.2	 306.5	 308.7	 311.0	

Acc,	%	 20.0	 20.0	 19.0	 20.0	 20.0	 21.0	 21.0	 21.0	 21.0	 21.0	 22.0	 20.0	

T,	(K)	 313.3	 315.6	 318.0	 320.3	 322.7	 325.2	 327.6	 330.1	 332.7	 335.3	 337.9	 340.6	

Acc,	%	 23.0	 21.0	 22.0	 22.0	 21.0	 22.0	 22.0	 21.0	 21.0	 20.0	 21.0	 21.0	

T,	(K)	 343.3	 346.0	 348.8	 351.7	 354.5	 357.4	 360.4	 363.4	 366.4	 369.4	 372.6	 375.7	

Acc,	%	 22.0	 20.0	 20.0	 21.0	 21.0	 21.0	 21.0	 21.0	 21.0	 21.0	 20.0	 21.0	

T,	(K)	 378.9	 382.2	 385.4	 388.7	 392.1	 395.5	 398.9	 402.4	 405.9	 409.5	 413.1	 416.8	

Acc,	%	 22.0	 21.0	 21.0	 21.0	 21.0	 21.0	 21.0	 22.0	 21.0	 21.0	 22.0	 22.0	

T	(K)	 420.5	 424.3	 428.1	 431.9	 435.9	 439.8	 443.9	 447.9	 452.0	 456.2	 	 	

Acc,	%	 22.0	 21.0	 22.0	 22.0	 21.0	 22.0	 21.0	 21.0	 23.0	 	 	 	
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Supplementary	 Figure	 1:	One-dimensional	potential	energy	V(x)	versus	position	x	 for	box	
length	 L	 =	 10.	 	 Also	 shown	 in	 the	 plot	 is	 the	 ideal	 distribution	 function	 rexact(x)	 for	
temperatures	of	T*	=	0.1	and	3.0.	The	units	for	the	potential	energy	are	arbitrary.	 	At	T*	=	
0.1	the	distribution	is	sharply	peaked	about	the	four	lowest	minima,	whereas	at	the	higher	
temperature	T*	=	3.0	the	peak	heights	for	these	minima	are	roughly	equal.	
	

	
	
	

	
	

Supplementary	 Figure	 2:	 Starting	 structure	 for	 A�42	 simulations.	 The	 peptide	 is	
represented	as	a	ribbon,	and	residues	are	colored	by	type	to	differentiate	 the	C	terminus	
(red	and	white	striped)	from	the	N	terminus	(white).	
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(a)	

	
(b)	

	

	
Supplementary	 Figure	 3:	Normalized	 standard	deviation	between	 trajectories	 quantified	
for	the	Ramachandran	phi,	psi	angles	for	Gly-2	of	met-enkephalin.	(a)	TCW	and	(b)	TREx.	
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(a)	

	
(b)	
	

	
Supplementary	Figure	4:	Normalized	standard	deviation	between	trajectories	quantified	
for	the	Ramachandran	phi,	psi	angles	for	Gly-3	of	met-enkephalin.	(a)	TCW	and	(b)	TREx.	
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(a)	

	
(b)	

	
	

Supplementary	 Figure	 5:	Normalized	 standard	deviation	between	 trajectories	 quantified	
for	the	Ramachandran	phi,	psi	angles	for	Phe-4	of	met-enkephalin.	(a)	TCW	and	(b)	TREx.	
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(a)	 	 	 	 	 	 	 (b)	

	 	

	(c)	

	

Supplementary	Figure	8:	Principal	component	analysis	tests	for	three	additional	TCW	runs	
(a)	–	(c)	of	met-enkephalin.	
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(a)	 	 	 	 	 	 	 (b)	

	 	

(c)	

	

Supplementary	Figure	9:	Principal	component	analysis	tests	for	three	additional	TREx	runs	
(a)	–	(c)	for	met-enkephalin.	
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Chapter	3	
	
The	Combined	Force	Field-Sampling	Problem	in	Simulations	of	
Disordered	Amyloid-β	Peptides*	
	
Molecular	 dynamics	 simulations	 of	 intrinsically	 disordered	 peptides	 (IDPs)	 can	 provide	
high	 resolution	 structural	 ensembles	 if	 the	 force	 field	 is	 accurate	 enough	 and	 if	 the	
simulation	 sufficiently	 samples	 the	 conformational	 space	 of	 the	 IDP	 with	 the	 correct	
weighting	 of	 sub-populations.	 Here,	 we	 investigate	 the	 combined	 force	 field–sampling	
problem	 by	 testing	 a	 standard	 force	 field	 as	well	 as	 newer	 fixed	 charge	 force	 fields,	 the	
latter	 specifically	 motivated	 for	 better	 description	 of	 unfolded	 states	 and	 IDPs,	 and	
comparing	them	with	a	standard	temperature	replica	exchange	(TREx)	protocol	and	a	non-
equilibrium	 Temperature	 Cool	 Walking	 (TCW)	 sampling	 algorithm.	 The	 force	 field	 and	
sampling	combinations	are	used	to	characterize	the	structural	ensembles	of	the	amyloid-β	
peptides	 Aβ42	 and	 Aβ43,	 which	 should	 both	 be	 random	 coils	 as	 shown	 recently	 by	
experimental	NMR	and	2D	FRET	experiments.	The	results	illustrate	the	key	importance	of	
the	 sampling	 algorithm:	while	 the	 standard	 force	 field	 using	 TREx	 is	 in	 poor	 agreement	
with	 the	 NMR	 J-coupling	 and	 NOE	 and	 2D	 FRET	 data,	 when	 using	 the	 TCW	method	 the	
standard	and	optimized	protein-water	 force	 field	 combinations	demonstrate	 significantly	
improved	 agreement	 with	 the	 same	 experimental	 data,	 with	 the	 TCW	 sampling	method	
producing	qualitatively	different	ensembles	 than	TREx	that	are	 indicative	of	 the	different	
levels	of	sampling	acceleration	for	the	two	methods.	
	
3.1	Introduction	
	
Intrinsically	 disordered	 proteins	 (IDPs)	 are	 a	 class	 of	 biomolecules	 that	 do	 not	 adopt	 a	
well-defined	equilibrium	structure	in	solution,	instead	sampling	an	ensemble	comprised	of	
sub-populations	of	fully	and/or	partially	disordered	structures1,	2.	A	classic	IDP	example	is	
the	amyloid-β	(Aβ)	peptide	associated	with	Alzheimer’s	disease3,	for	which	recent	state-of-
the-art	 solution-based	nuclear	magnetic	 resonance	 (NMR)	 and	 Förster	 resonance	 energy	
transfer	(FRET)	experiments	have	shown	that	the	monomeric	forms	of	the	Aβ40	and	Aβ42	
peptides	are	largely	random	coils4-6.	Roche	and	co-workers	performed	multiple	types	of	J-
coupling	measurements	on	Aβ40	and	Aβ42	to	show	there	were	no	overt	differences	from	
random	 coil	 signatures	 for	 both	 peptides5.	 They	 further	 supported	 this	 result	 with	 very	
high	resolution	nuclear	Overhauser	effect	(NOE)	spectra	that	showed	that	both	Aβ40	and	
Aβ42	are	dominated	by	short	(i,	i+1	contacts)	and	to	a	lesser	extent	medium	range	(i,	i+2	to	
i,	i+4	contacts)	NOEs,	and	thus	any	longer-range	helical	or	β-hairpin	formation	would	only	
be	expected	to	appear	at	 levels	below	the	detection	 limit5.	Conicella	and	Fawzi	employed	
1HN	 and	 15N	 chemical	 shift	 data	 and	 HN-Hα	 J-couplings,	 as	 well	 as	 15N	 R2,	 15N	 R1,	 and	
heteronuclear	15N−1H	NOE	measurements,	to	show	that	there	are	no	structural	differences	
                                                
* Reproduced with permission from: Lincoff, J.*; Sasmal, S.*; Head-Gordon, T., The Combined 
Force Field-Sampling Problem in Simulations of Disordered Amyloid-β	Peptides. J. Chem. 
Phys. 2019, 150 (10). (* denotes equal co-first authors) 
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in	 the	 N-terminus	 and	 central	 hydrophobic	 core	 (CHC)	 between	 the	 Aβ42	 and	 Aβ43	
peptides,	with	only	small	structural	differences	in	the	C-terminus4.	Since	the	two	peptides	
differ	only	by	a	threonine	residue	at	the	C-terminus,	 it	 implies	that	the	Aβ43	monomer	is	
also	largely	random	coil-like	in	structure,	albeit	with	a	greater	propensity	for	aggregation4.	
Finally,	using	single	molecule	and	2D	FRET,	Meng	et	al.	showed	that	both	Aβ40	and	Aβ42	
have	 ensembles	 that	 are	 dominated	 by	 expanded	 conformations	with	 no	 persistent	 sub-
populations	of	secondary	or	tertiary	structure	(i.e.	no	long	helices	or	β	sheets	above	~5-10	
%	population),	in	general	agreement	with	the	NOE	spectra	of	Roche	et	al6.		
	 Computational	techniques	are	often	combined	with	such	experimental	 information	
to	 create	 the	 structural	 ensemble	 and	 to	 characterize	 the	 sub-populations	 of	 an	 IDP	 of	
interest7-10.	 A	 complementary	 approach	 is	 to	 generate	 IDP	 ensembles	 using	 molecular	
dynamics	 (MD)	 simulation	 without	 experimental	 information	 as	 input,	 which	 therefore	
requires	an	accurate	force	field	and	sampling	method	that	can	describe	the	conformational	
substates	of	the	IDP	ensemble.	In	early	simulation	studies	of	IDPs,	research	groups	relied	
on	off-the-shelf	and	pairwise-additive	protein	and	water	force	fields11,	such	as	the	Amber12,	
GROMOS13,	OPLS-AA14,	15	and	CHARMM16	protein	force	fields	in	combination	with	TIP3P17,	
TIP4P18,	 and	TIP4P-Ew19	water	models.	But	 since	 standard	pairwise	 additive	 force	 fields	
are	 parameterized	 using	 mostly	 folded	 protein	 crystallographic	 data20,	 they	 have	 been	
thought	 to	be	 insufficient	 for	modeling	of	 IDPs	because	 they	exhibit	a	bias	 toward	overly	
collapsed	and	ordered	structural	ensembles,	or	poorly	reproduce	the	equilibrium	between	
unfolded	and	native	conditions	for	globular	proteins21-23.	
	 Furthermore,	 multiple	 groups	 have	 shown	 that	 unfolded	 and	 IDP	 structural	
ensembles	 generated	 using	 different	 standard	 force	 fields	 vary	 considerably	 in	 terms	 of	
secondary	structure	content24-27.	For	example,	 in	studies	of	the	Aβ16-22	peptide,	Nguyen	et	
al.	 have	 demonstrated	 that	 Amber99	 predicts	 more	 helical	 structures	 and	 GROMOS9628	
favors	more	β-strand	structures,	whereas	OPLS-AA	demonstrates	no	particular	secondary	
structure	preference24.	As	we	have	discussed	before,	the	quality	of	the	water	model	is	also	
critical	 for	 accurate	 molecular	 simulations	 of	 peptides	 and	 proteins	 by	 balancing	 the	
relative	strengths	of	water-water	and	water-solute	interactions.29	Several	groups	including	
Song	and	co-workers30,	Amini	and	co-workers31,	and	Viet	and	co-workers32	have	conducted	
straight	 MD	 simulations	 on	 Aβ	 peptides	 on	 the	 order	 of	 microseconds	 with	 standard	
protein	 force	 fields	 and	 using	 a	 variety	 of	 three-site	 and	 four-site	 water	 models	 and	
multiple	 starting	 structures.	 Using	 brute	 force	MD,	 Robustelli	 and	 co-workers	 simulated	
Aβ40	using	 a	 single	 30	µs	 trajectory	 of	 a	 standard	 protein	 force	 field	Amber99ffsb-ildn*	
and	TIP3P,	and	found	close	to	90%	β-sheet	structure	in	different	regions	of	the	sequence33.	
In	 general,	 all	 of	 these	 simulations	 produce	 overstructured	 ensembles,	 in	 disagreement	
with	the	experimental	results	of	Roche	et	al.5	and	Meng	et	al.6	for	Aβ	peptides.		One	might	
surmise	 from	 the	 accumulation	of	 evidence	 that	 the	 standard	 force	 fields	 for	 the	protein	
and	water	are	failing	to	describe	disordered	or	unfolded	protein	ensembles.	
	 To	make	better	and	more	uniform	predictions	across	different	IDPs,	as	well	as	more	
accurate	models	for	protein	folding	equilibrium,	a	number	of	research	labs	have	modified	
the	 parameters	 used	 in	 standard	 force	 fields21-23,	 27,	 34,	 35.	 These	 force	 field	modifications	
include	adjusting	the	water-protein	London	dispersion	interactions	to	be	more	favorable21,	
22,	refining	the	peptide	backbone	parameters	to	produce	more	expanded	structures22,	23,	34	
or	reduce	propensity	to	certain	ordered	conformations21,	and/or	changing	the	salt-bridge	
interactions21.	Skepö	and	co-workers,	using	long	MD	simulations,	have	shown	that	some	of	
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these	 modified	 force	 fields	 produce	 better	 agreement	 with	 experimental	 SAXS	 data	 in	
terms	of	radius	of	gyration,	!",	for	the	disordered	Histatin	5	peptide36,	37.	Huang	et	al.	also	
found	 better	 agreement	 with	 the	 SAXS	 profile	 for	 the	 RS	 peptide	 using	 the	 modified	
CHARMM	 force	 field21.	 However,	 Robustelli	 et	 al.	 simulated	 Aβ40	 with	 a	 single	 30	 µs	
trajectory	for	the	recently	modified	A03ws	force	field	by	Best	and	co-workers38,	and	found	
close	to	25-60%	α-helix	in	large		regions	of	the	sequence	that	indicate	that	the	newer	IDP	
force	fields	may	also	be	experiencing	problems33.	
	 The	 other	 important	 and	 often	 not	 enough	 emphasized	 aspect	 of	 generating	 IDP	
structural	 ensembles	 is	 the	 sampling	 technique	 itself.	 Because	 IDPs	have	 a	 relatively	 flat	
energy	 landscape	 with	 many	 local	 minima,	 it	 takes	 substantial	 sampling	 efficiency	 to	
determine	 all	 relevant	 configurations	 with	 the	 correct	 weighting	 of	 multiple	 small	 sub-
populations.	 Enhanced	 sampling	 methods	 are	 therefore	 generally	 applied	 for	 the	
simulation	 of	 IDPs,	 as	 they	 accelerate	 the	 rate	 of	 convergence	 to	 timescales	 that	 are	
significantly	 less	 than	possible	with	 a	brute	 force	MD	simulation39,	 40.	The	most	 common	
enhanced	 sampling	 technique	 used	 in	 the	 IDP	 field	 at	 present	 is	 temperature	 replica	
exchange	 (TREx)	method39-43.	 In	 fact,	 TREx	 simulations	 were	 used	 to	 identify	 perceived	
errors	in	standard	force	fields,	which	led	to	some	of	the	modified	force	fields	developed	to	
improve	modeling	of	unfolded	proteins	and	IDPs26,	27,	38,	44.	
	 However,	a	noted	deficiency	of	TREx	for	large	systems	is	the	diffusiveness	of	barrier	
crossing	 due	 to	many	 closely	 spaced	 intermediate	 replicas,	 when	 energy	 landscapes	 are	
dominated	 by	 entropic	 barriers39,	 45,	 46.	 Several	 alternative	 enhanced	 sampling	 methods	
with	better	performance	than	TREx	have	been	developed	and	applied	to	the	study	of	IDPs,	
including	 replica	 exchange	 with	 solute	 tempering	 (REST)47,	 metadynamics48,	 and	 MD	
combined	 with	 Markov	 State	 Model	 (MSM)	 analysis49.	 More	 specifically,	 Lin	 et	 al.49	
performed	~200	µs	MD	simulations	over	many	initial	conditions,	and	combined	them	with	
MSM	to	reach	even	longer	timescales,	to	characterize	the	Aβ42	structural	ensemble	using	
the	 Amberff99SB	 protein	 force	 field	 and	 the	 TIP3P	water	model.	 Over	 this	much	 longer	
sampling	 timescale	 they	 obtained	 far	 higher	 quantities	 of	 extended,	 largely	 unstructured	
conformations,	 with	 the	 only	 noteworthy	 structural	 component	 being	 ~	 10	 –	 20	 %	
observed	 helical	 content	 between	 residues	 12-18.	While	 there	may	 be	 concerns	 that	 the	
clustering	 protocols	may	 have	 introduced	 error	 in	 secondary	 structure	 populations,	 and	
improved	clustering	methods	are	now	available89,	 it	 is	evident	that	that	the	 full	weighted	
ensemble	based	on	the	MSM	is	equivalent	to	the	raw	α-helix	and	β	propensities	from	their	
production	 MD	 runs	 (as	 seen	 in	 their	 supplementary	 information).	 Thus	 this	 more	
extensive	 sampling	 produced	 a	 significant	 improvement	 in	 generating	 random	 coil	
ensembles	 using	 a	 standard	 peptide-water	 force	 field,	 in	 good	 agreement	 with	 the	
experimental	 results	 of	 Roche	 et	 al.5	 and	Meng	 et	 al.6	 for	 Aβ	 peptides,	 and	 in	 significant	
disagreement	with	previous	shorter	MD	runs33	and	TREx	studies26,	27,	38,	44.		
	 We	 have	 developed	 the	 temperature	 cool	 walking	 (TCW)	 technique46,	 50,	 a	 non-
equilibrium	alternative	to	TREx,	which	uses	only	one	high	temperature	replica	to	generate	
trial	 moves	 for	 the	 target	 temperature	 replica.	 In	 previous	 studies	 we	 have	 shown	 that	
TCW	 converges	 more	 quickly	 to	 the	 proper	 equilibrium	 distribution	 than	 TREx,	 and	 at	
much	lower	computational	expense,	for	a	1D	rough	surface46,	and	for	alanine	dipeptide	and	
met-enkephalin—sufficiently	small	systems	where	well-defined	and	quantitative	metrics	of	
convergence	 are	 available50.	 More	 recently,	 we	 have	 been	 able	 to	 apply	 TCW	 to	 larger	
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systems	such	as	Ab	through	its	implementation	in	OpenMM50,	51.	In	this	work	we	address	
both	 dimensions	 of	 the	 IDP	 problem	 by	 comparing	 different	 combinations	 of	 enhanced	
sampling	 techniques,	 TREx	 and	 TCW,	 and	 protein-water	 force	 fields,	 unmodified	 and	
newly-optimized,	testing	combinations	of	each	on	Aβ42	and	Aβ43.	Again	summarizing	the	
recent	 experiments4-6,	 the	 structural	 ensembles	 of	 Aβ42	 and	 Aβ43	 peptides	 should	 be	
largely	the	same	and	exhibit	no	persistent	structural	ordering	or	long-range	contacts.	Thus,	
one	would	expect	the	computationally	generated	structural	ensembles	to	be	highly	similar	
for	 Aβ42	 and	 Aβ43	 in	 terms	 of	 back-calculations	 to	 experimental	 observables	 such	 as	
chemical	shifts	or	J-couplings4,	5,	and	that	both	peptides	would	display	largely	random	coil	
configurations,	 lacking	stable	populations	of	organized	structures	such	as	b-hairpins	and	
extended	helices,	to	agree	with	reported	NOE4,	5	and	2D	FRET6	data	for	Aβ.		
	 Among	 our	 set	 of	 results,	 we	 attain	 the	 biggest	 improvement	 in	 IDP	 ensemble	
generation	by	switching	the	sampling	method	from	TREx	to	TCW,	since	the	latter	sampling	
algorithm	provides	much	better	agreement	with	the	full	range	of	NMR	J-coupling	and	NOE	
data4,	 5	as	well	as	with	 the	2D	FRET	data4-6,	 compared	 to	 the	same	 force	 fields	simulated	
with	TREx.	More	specifically,	the	unmodified	force	field	when	sampled	with	TCW	yields	Aβ	
ensembles	 that	 are	 largely	 unstructured,	 in	 qualitative	 agreement	 with	 the	 robust	
MD/MSM	simulation49	of	the	Aβ42	peptide	using	a	similar	unmodified	force	field,	with	only	
small	populations	of	structures	containing	longer-range	contacts	at	levels	(~	5-10	%)	that	
would	 be	 undetectable	 by	 the	 NOE	 and	 2D	 FRET	 experiments.	 We	 believe	 that	 the	
presented	 evidence	 supports	 the	 conclusion	 that	 TCW	 is	 more	 capable	 than	 TREx	 of	
sampling	 the	 disordered	 protein	 energy	 landscape,	 and	 is	 in	 support	 of	 recent	 work	 by	
Granata	and	co-workers	that	have	shown	that	disordered	conformations	are	lower	in	free	
energy	 than	ordered	structures52.	Finally,	using	 the	TCW	sampling	protocol,	we	 find	 that	
the	 newly	modified	 force	 fields	 do	 produce	more	 extended	 ensembles	 that	 are	 in	 better	
quantitative	agreement	with	the	2D	FRET	data,	whereas	the	standard	force	field	is	in	better	
quantitative	 agreement	 with	 the	 NMR	 J-coupling	 data.	 We	 conclude	 that	 more	 work	 is	
needed	 in	 regards	 interpreting	 FRET	data6,	 53-57	 and	more	 extensive	 testing	 in	 general	 is	
needed	before	standard	force	fields	are	abandoned	or	more	force	field	changes	are	pursued	
for	IDPs.		

3.2	Materials	and	Methods		
	
Peptide	 Simulations.	The	 starting	 Aβ42	 and	 Aβ43	 configurations	 were	 created	 using	 the	
tleap	module	in	Amber58,	and	the	peptides	were	subsequently	minimized	and	equilibrated	
in	 the	NPT	 ensemble	 at	 1	 bar	 to	 obtain	 the	 correct	 density.	 Structures	 at	 the	 density	 of	
maximum	probability	were	 selected	as	 initial	 structures	 for	production,	producing	boxes	
that	were	approximately	60	Å	on	each	side.	Ewald	summation	was	used	for	the	long-range,	
with	 a	 cutoff	 of	 9.0-9.5	 Å	 for	 the	 real	 space	 electrostatics	 and	 Lennard-Jones	 forces.	
Trajectories	were	analyzed	for	results	at	287	K.	
	 TREx	Simulation	Protocol.	The	Amber14	molecular	dynamics	package58	was	used	to	
perform	100	ns	TREx	simulations	with	58	temperature	replicas	in	the	temperature	range	
287-450	K,	 testing	both	peptides	with	1)	 the	Amber	 ff99SB12	 force	 field	with	TIP4P-Ew19	
water	 and	 2)	 the	 CHARMM36m21	 force	 field	 with	 CHARMM-TIP3P	 water16.	 The	
temperature	schedule	was	chosen	such	that	the	exchange	probability	between	each	pair	of	
replicas	 was	 in	 the	 range	 18-22	 %,	 which	 has	 been	 shown	 to	 be	 optimal	 for	 TREx59.	
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Exchanges	 between	 neighboring	 replicas	 were	 attempted	 every	 0.5	 ps.	 The	 TREx	
simulations	 were	 performed	 in	 the	 NVT	 ensemble	 with	 a	 time	 step	 of	 1	 fs	 and	 with	
constraints	 on	 the	 heavy	 atom	 hydrogen	 bonds.	 A	 Langevin	 thermostat	 was	 used	 to	
maintain	 constant	 temperature.	 Each	 set	 of	 conditions—peptide	 +	 force	 field	 +	 water	
model—was	run	in	duplicate.	The	first	50	ns	of	data	were	discarded	as	equilibration,	with	
the	 last	 50	 ns	 being	 analyzed	 and	 presented,	 averaged	 across	 the	 two	 independent	
simulations.	TREx	simulations	with	this	setup	were	also	attempted	for	the	Amber	ff99SB-
ILDN22,	 60	 force	 field	 with	 TIP4P-D22	 water,	 but	 using	 the	 same	 temperature	 ladder	 and	
simulation	 package	 we	 were	 unable	 to	 obtain	 similar	 exchange	 probabilities	 across	 the	
entire	temperature	span.	As	we	could	not	run	an	optimal	TREx	simulation	with	this	force	
field	combination,	no	data	are	presented	for	this	simulation	setup.	
	 Over	the	last	several	years,	several	groups	have	run	much	longer	TREx	simulations	
for	 IDPs,	on	 the	order	of	750	–	1000	ns,	noting	 that	even	when	optimally	 run,	 structural	
properties	 such	 as	 the	 radius	 of	 gyration	 and	 secondary	 structure	 propensities	 can	 take	
several	 hundred	 ns	 to	 reach	 apparent	 equilibration	 in	 TREx6,	 44,	 61,	 62.	 To	 evaluate	 this	
difference,	we	additionally	performed	one	800	ns	TREx	simulation	each	for	Aβ42	and	Aβ43	
using	Amber	ff99SB	+	TIP4P-Ew	water	using	the	Amber16	molecular	dynamics	package63.	
All	 parameters	were	 kept	 the	 same	 as	 in	 the	 original	 100	ns	TREx	 simulations,	with	 the	
exception	 of	 using	 a	 2	 fs	 timestep	 and	 attempting	 exchanges	 between	 adjacent	 pairs	 of	
replicas	 every	 1	 ps.	 For	 these	 simulations,	 the	 first	 300	 ns	 of	 data	 were	 discarded	 as	
equilibration,	with	 the	 last	500	ns	of	data	at	287	K	analyzed.	Averaging	over	 two	250	ns	
blocks	was	done	to	mimic	the	averaging	over	two	independent	simulations	performed	for	
the	100	ns	TREx	simulations	and	the	TCW	simulations.	
	 TCW	 Protocol.	 The	 TCW	 enhanced	 sampling	 method	 uses	 only	 two	 temperature	
replicas	to	generate	an	equilibrium	ensemble	at	the	target	temperature46,	50.	Starting	with	
expanded	 structures	 at	 the	 high	 temperature,	 sequential	 cooling	 is	 performed	 to	 obtain	
structures	at	 the	 low	temperature	such	that	detailed	balance	 is	satisfied.	The	same	set	of	
maximum	 and	 minimum	 temperatures	 and	 cooling	 schedule	 was	 used	 as	 for	 all	 TREx	
simulations.	Temperature	was	regulated	using	an	Andersen	thermostat.	Trial	moves	were	
initiated	every	8	ps.	The	cooling	rate	was	set	such	that	the	peptides	spent	40	fs	on	average	
at	each	 intermediate	 temperature,	with	 the	 first	 trial	exchange	per	cooling	run	occurring	
after	 having	 annealed	 through	 40	 of	 the	 56	 intermediate	 temperature	 steps	 on	 average.	
Additional	 high	 temperature	 replica	 propagation	 was	 performed	 to	 further	 decorrelate	
subsequent	 configurations,	 at	 a	 ratio	 of	 8:1	 to	 each	 fs	 of	 annealing	 performed.	 TCW	
simulations	were	performed	using	modifications	 to	 the	OpenMM	software	package64	 and	
code	is	available	upon	request	from	the	authors.	TCW	simulations	were	performed	with	the	
1)	 Amber	 ff99SB	 force	 field	 +	 TIP4P-Ew	 water	 model	 2)	 CHARMM36m	 force	 field	 +	
CHARMM-TIP3P	water	and	3)	Amber	ff99SB-ILDN	force	field	+	TIP4P-D	water.	Simulations	
were	run	in	duplicate	for	200	ns,	with	the	first	50	ns	of	each	discarded	as	equilibration,	and	
results	from	the	remaining	150	ns	of	each	simulation	averaged	together.	
	 Trajectory	Analysis.	The	structural	ensembles	were	analyzed	using	both	the	cpptraj65	
module	 of	 Amber	 and	 in-house	 codes.	 Contact	 maps	 were	 generated	 by	 calculating	 the	
fraction	of	structures	where	pairs	of	residues	had	at	least	one	pair	of	heavy	atoms	within	5	
Å	 of	 each	 other.	 The	 DSSP	 criterion	 was	 used	 to	 assign	 secondary	 structures66.	 Details	
about	the	back	calculation	of	NMR	observables	have	been	reported	in	previous	publications	
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by	our	group10,	29,	67,	68,	including	chemical	shifts	from	ShiftX269	and	J-coupling	constants70.	
In	this	work	we	focus	primarily	on	J-couplings	using	the	Karplus	equation	

< $ >	=	< ( cos, ϕ + / cosϕ + 0 >			 	 	 									(1)	

where	 the	 <…>	 denote	 ensemble	 averages.	 We	 calculate	 the	 χ2	 parameter	 from	 the	
simulated	J-coupling	constants	(JHN-Hα)	for	each	ensemble	as	compared	to	experiment,	
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where	 Ji	 is	 the	 scalar	 coupling	 constant	 for	 the	 ith	 residue,	 N	 is	 the	 total	 number	 of	
experimental	 JHN-Hα	 observables,	 subscripts	 sim	 and	 expt	 refer	 to	 the	 simulated	 and	 the	
experimental	 values	 respectively,	 and	 s2	 is	 the	 RMSD	 error	 when	 using	 the	 Karplus	
parameters	 introduced	by	Vögeli	et	 al.71	We	additionally	perform	a	Bayesian	 analysis	 on	
the	 scalar	 couplings,	 Experimental	 Inferential	 Structure	 Determination	 (EISD)72,	 that	
accounts	for	uncertainties	in	the	values	of	the	Karplus	parameters	as	well	as	the	individual	
per-coupling	experimental	uncertainties.	The	relative	magnitudes	of	ensemble	scores	for	a	
peptide	 represent	 the	 relative	 likelihood	 of	 that	 structural	 ensemble	 matching	 the	
experimental	data	against	which	they	are	compared,	with	a	larger	score	corresponding	to	a	
higher	probability.	
	 The	observable	directly	obtained	 in	MD	simulations	of	 the	FRET	experiments,	 the	
efficiency	distribution	E(t),		

DEFGH =
2
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and	its	average	DEFGH ,	is	back-calculated	from	the	simulated	end-to-end	distance,	Ree	of	the	
untagged	peptide	across	the	ensemble,	with	a	Förster	radius	R0	=	5.2	nm	for	the	dye	pair	of	
Alexa	488	and	6476.	As	in	Meng	et	al.,	the	Ree	is	first	calculated	as	the	distance	between	the	
Cα	atoms	of	the	first	and	last	residue	of	each	peptide,	and	then	scaled	up	to	approximate	the	
additional	distance	between	the	two	fluorophores,	relative	to	the	distance	between	the	first	
and	last	residues.		

3.3	Results		
	
We	tested	five	different	force	field-sampling	combinations	for	each	of	the	two	peptides:	(1)	
duplicate	TREx	simulations	using	the	standard	Amber	ff99SB12	protein	force	field	and	the	
TIP4P-Ew19	 water	 model;	 (2)	 duplicate	 TREx	 simulations	 using	 the	 modified	
CHARMM36m21	protein	 force	 field	 and	 the	CHARMM-TIP3P16	water	model;	 (3)	duplicate	
TCW	simulations	using	 the	 standard	Amber	 ff99SB	protein	 force	 field	 and	 the	TIP4P-Ew	
water	 model;	 (4)	 duplicate	 TCW	 simulations	 using	 the	 modified	 CHARMM36m	 protein	
force	field	and	the	CHARMM-TIP3P	water	model;	and	(5)	duplicate	TCW	simulations	using	
the	Amber	ff99SB-ILDN60	protein	force	field	and	the	TIP4P-D22	water	model.		
	 Figure	1	shows	that	the	0.1	µs	TREx	+	Amber	ff99SB	+	TIP4P-Ew	simulations	predict	
that	 both	 peptides	 are	 very	 collapsed,	 as	 evidenced	 by	 their	 contact	 maps	 and	 !"	
distributions,	which	 originate	 from	 the	 abundance	 of	 organized	 backbone	 structure	 that	
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underlie	the	secondary	structure	propensities	(Figure	1	and	Table	1).	In	addition,	the	Aβ42	
and	 Aβ43	 ensembles	 show	 significant	 differences,	 with	 the	 Aβ43	 ensemble	 exhibiting	
increased	α-helical	structure	in	the	central	hydrophobic	cluster	(CHC)	of	residues	16-30,	as	
well	 as	 increases	 in	 the	 turn	 populations	 at	 residues	 36-38	 and	 the	 6-9	 region	 with	 a	
simultaneous	 increase	 in	 the	β	 strand	 formed	by	 residues	3-5	and	10-12,	 structural	 sub-
populations	 that	 are	 greatly	 diminished	 (but	 still	 present)	 in	 the	 Aβ42	 ensemble.	 This	
result	 is	 in	 direct	 contradiction	 with	 results	 reported	 by	 Conicella	 and	 Fawzi4,	 which	
showed	that	there	are	no	major	structural	differences	in	the	N-terminus	and	CHC	region	for	
the	two	peptide	monomers.	
	

	
Figure	 1.	 Comparison	 of	 structural	 properties	 for	 Aβ42	 and	 Aβ43	 using	 the	 force	 field	
Amber99SB	+	TIP4P-Ew	and	using	TREx	simulated	at	0.1	ms	per	replica.	 (a)	Contact	maps;	
(b)	β-strand	and	helix	propensities,	(c)	turn	propensity	and	radius	of	gyration	distribution.	
For	(b)-(d)	blue	 lines	are	 for	Aβ42	and	red	 lines	are	Aβ43	and	represent	 the	average	 for	
two	independent	trajectories.	Error	bars	are	plus	and	minus	one	standard	deviation	of	the	
calculated	propensity	at	the	given	residue	for	the	two	trajectories,	and	generally	represent	
the	degree	of	agreement	between	the	two	trajectories.	

	 When	 using	 the	 same	 TREx	 sampling	 method	 for	 0.1	 µs,	 but	 changing	 to	 the	
CHARMM36m	 +	 CHARMM-TIP3P	 force	 field,	 there	 is	 significant	 reduction	 in	 long-range	
structure	 and	 secondary	 structure	 propensities	 for	 the	 two	 peptides,	 and	 hence	 the	

(a) 

(b) 

(c) 
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ensembles	are	less	collapsed	compared	to	the	standard	force	field	combination	for	the	two	
peptides	(Table	1	and	Figure	S1).	However,	the	TREx	simulations	using	the	newer	protein-
water	force	field	produces	ensembles	that	still	predict	differences	in	the	sub-populations	of	
structure	 for	 both	 Aβ42	 and	 Aβ43	 that	 are	 not	 observed	 in	 experiment,4	 such	 as	 the	
relative	enrichment	in	β	content	for	Aβ42.	The	long-range	structure	evident	in	the	contact	
maps	shown	in	Figure	S1	directly	contradict	the	NOE	data	of	Roche	et	al.,	which	found	no	
evidence	for	long-range	contacts.5	The	large	error	bars	indicate	that	the	two	independent	
trajectories	did	not	converge	to	the	same	result,	a	sign	that	one	or	both	of	the	independent	
trajectories	 were	 stuck	 in	 local	 minima	 on	 the	 0.1	 µs/replica	 timescale	 of	 the	 TREx	
simulation.	We	show	this	data	to	emphasize	the	point	that	TREx	simulations	on	these	non-
converged	 timescales	 were	 used	 to	 identify	 errors	 in	 standard	 force	 fields,	 and	 thus	
informed	the	development	of	modified	force	fields	for	unfolded	proteins	and	IDPs27,	38.	

Since	more	recently	it	has	become	standard	to	perform	TREx	simulations	using	on	
the	order	of	1	µs/per	replica	in	recent	IDP	studies6,	21,	44,	61,	62,	we	conducted	one	additional	
trajectory	 using	 a	 TREx	 simulation	 out	 to	 800	 ns	 per	 replica	 for	 each	 peptide	 using	
Amberff99SB	 +	 TIP4P-Ew,	 with	 the	 resulting	 structural	 data	 in	 Figure	 2.	 Our	 TREx	
simulation	of	 0.8	µs	 is	 generally	 consistent	with	 the	1.0	µs	per	 replica	TREx	 simulations	
performed	 by	 Rosenman	 et	 al.44	 With	 longer	 simulation	 timescales,	 the	 previously	
significant	differences	between	Aβ42	and	Aβ43	are	reduced	to	being	within	statistical	error	
for	 all	 secondary	 structure	 categories.	 While	 there	 is	 a	 clear	 improvement	 in	 some	
structural	 properties	 at	 this	 longer	 timescale	 using	 TREx,	 such	 as	 reduction	 in	 the	
population	of	 α-helices,	 the	β-sheet	propensities	 still	 show	 large	 variability	 of	 ±	20	%	at	
residues	5-6,	19,	and	31.	As	a	result,	their	structural	ensembles	are	in	stark	disagreement	
with	the	available	NMR	and	2D	FRET	data	by	being	too	collapsed	and	highly	structured.	It	is	
therefore	 very	 understandable	 why	 one	 would	 continue	 to	 conclude	 that	 there	 is	 a	
deficiency	in	the	standard	force	fields	based	on	evidence	such	as	Figure	2.		
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Figure	 2.	 Comparison	 of	 structural	 properties	 for	 Aβ42	 and	 Aβ43	 using	 the	 force	 field	
Amberff99sb	+	TIP4P-Ew	and	using	Temperature	Replica	Exchange	(TREx)	simulated	at	0.8	
μs	per	 replica.	 (a)	Contact	maps;	 (b)	β−strand	and	helix	propensities,	 (c)	 turn	propensity	
and	radius	of	gyration	distribution.	For	(b)	and	(c)	blue	 lines	are	Aβ42,	and	red	 lines	are	
Aβ43.	Further	details	are	given	in	Figure	1	caption.	

Furthermore,	 the	 TREx	 +	 Amberff99SB	 +	 TIP4P-Ew	 Ab ensembles	 strongly	
disagree	with	the	Aβ	ensemble	generated	by	Lin	et	al.49	In	their	more	extensive	MD/MSM	
simulation	 they	 found	 negligible	 β-sheet	 content,	 with	 the	 only	 persistent	 secondary	
structure	being	~10-	20	%	α-helical	content	for	residues	12-18.	While	the	MD/MSM	study	
used	 the	 same	 peptide	 force	 field	 as	 in	 this	work	 (Amber	 ff99SB),	 they	 performed	 their	
simulations	with	the	TIP3P	water	model17	 instead	of	TIP4P-Ew,	which	likely	accounts	for	
some	 quantitative	 differences	 in	 the	 Ab ensembles.	 A	 study	 of	 the	 folding	 of	 Trp-cage	
using	Amber	ff99SB	found	that	TIP3P	enriched	sampling	of	helical	content	by	~10	%	and	
reduced	sampling	of	β-sheet	content	by	a	similar	amount	when	compared	to	TIP4P-Ew.73	
These	 relatively	minor	 population	 shifts	 are	 too	 small	 to	 explain	 the	 large	 discrepancies	
between	the	TREx	and	MD/MSM	results,	so	much	of	the	differences	between	the	ensembles	
must	result	from	the	sampling	efficiency.	We	believe	this	demonstrates	that	even	on	the	μs	
timescale,	 TREx	 simulations	 are	 not	 able	 to	 fully	 capture	 the	 structural	 ensemble	 of	 Aβ	
peptides.		

(c)	

(b)	

(a)	
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Figure	3.	Comparison	of	structural	properties	generated	for	Aβ42	and	Aβ43	using	the	force	
field	combination	Amber99SB	+	TIP4P-Ew	and	using	Temperature	Cool	Walking	(TCW).	 (a)	
Contact	 maps;	 (b)	b-strand	 and	 helix	 propensities,	 (c)	 turn	 propensity	 and	 radius	 of	
gyration	distribution.	For	(b)	and	(c)	blue	lines	are	Aβ42,	and	red	lines	are	Aβ43.	Further	
details	are	given	in	Figure	1	caption.	

	 We	next	consider	whether	an	alternative	sampling,	namely	the	TCW	method,	would	
converge	 faster	on	 the	~	0.1-0.2	µs/replica	 timescale	 to	evaluate	 the	different	 force	 field	
combinations	 (Figure	3	and	Table	1).	We	have	established	 in	previous	work	 that	TCW	 is	
superior	 to	 the	 TREx	 approach	 using	 test	 systems	 where	 quantitative	 measures	 of	
convergence	are	available46,	 50.	 In	addition,	Figures	S2	and	S3	show	that	the	TCW	method	
on	the	~	0.2	µs	timescale	reaches	comparable	convergence	to	the	~	0.8	µs	TREx	simulation	
for	 all	 secondary	 structure	 categories.	But	 as	 seen	when	 comparing	Figures	2	 and	3,	 the	
TREx	 and	 TCW	 enhanced	 sampling	 methods	 yield	 very	 different	 Aβ	 peptide	 ensembles	
using	 the	 same	 unmodified	 protein-water	 force	 field	 combination.	 More	 specifically,	 the	
TCW	+	 ff99SB	+	TIP4P-Ew	result	 is	 far	 less	 structured	 than	 that	 found	with	TREx	and	 is	
much	more	similar	to	the	MD/MSM	results	by	Lin	et	al.49	Although	there	are	regions	of	the	
sequence	 that	 exhibit	 larger	 uncertainties	 in	 the	 turn	 population,	 this	 variation	 in	 turn	
content	 suggests	 transient	 sampling	of	 still	 overall	 unstructured	 conformations	 since	 the	
sampling	 of	 β	 and	 helical	 conformations	 is	 consistently	 low,	 rather	 than	 the	 more	

(a) 

(b) 

(c) 
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significant	sampling	of	highly	structured	conformations	seen	in	the	TREx	simulations.	For	
the	unmodified	force	field	combination	using	TCW,	there	is	a	very	small	amount	(~	5-10	%)	
for	the	contact	region	formed	by	residues	16-20	and	30-37	for	both	Aβ42	and	Aβ43.	It	 is	
unlikely	that	the	experimental	NOEs	could	absolutely	rule	out	the	presence	of	such	a	small	
population	 of	 long-range	 structure,	 and	 in	 fact	 the	 simulated	 NOEs	 would	 support	 this	
conclusion	since	the	average	NOE	distance	for	these	residues	would	be	dominated	by	the	~	
90	%	of	the	unstructured	populations.			
	

	
Figure	4.	Comparison	of	structural	properties	generated	for	Aβ42	and	Aβ43	using	the	force	
field	 Amber99SB-ILDN	 +TIP4P-D	 and	 using	 Temperature	 Cool	Walking	 (TCW).	 (a)	 Contact	
maps;	 (b)	 β-strand	 and	 helix	 propensities,	 (c)	 turn	 propensity	 and	 radius	 of	 gyration	
distribution.	For	(b)	and	(c)	blue	lines	are	Aβ42,	and	red	lines	are	Aβ43.	Further	details	are	
given	in	Figure	1	caption.	
	
	 For	 completeness,	 we	 consider	 the	 newer	 force	 fields	 that	 have	 been	 shown	 to	
improve	descriptions	of	IDP	ensembles	using	TREx,	but	now	simulated	with	TCW.	We	first	
consider	the	Amber	ff99SB-ILDN	+	TIP4P-D	combination	(Figure	4),	where	the	force	field	
optimization	is	centered	on	increasing	the	strength	of	attractive	London	dispersion	forces	
on	 the	water	 oxygen	 atoms	 by	 ~	 50	%	 relative	 to	 that	 of	 other	 four-site	water	models.	

(a) 

(b) 

(c) 
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Using	TREx	simulations,	this	has	been	reported	to	produce	less	structured	IDP	ensembles	
by	 increasing	 the	 strength	 of	 protein-water	 attractions	 relative	 to	 protein-protein	
attractions	 using	 standard	 Lennard-Jones	 mixing	 rules22.	 The	 results	 for	 TCW	 shown	 in	
Figure	 4	 also	 confirm	 that	 this	 recently	 introduced	 water	 model	 generally	 reduces	
structural	 order	 and	 maintains	 structural	 similarity	 between	 the	 ensembles	 of	 the	 two	
peptides,	with	<Rg>	~	14.9	Å	and	15.7	Å	for	Aβ42	and	Aβ43,	respectively	(Table	1).	There	is	
again,	as	 in	the	TCW	+	ff99SB	+	TIP4P-Ew	result,	some	variability	 in	the	turn	population,	
suggesting	sampling	of	some	different	unstructured	substates	in	the	different	trajectories,	
but	the	β-sheet	and	α-helical	populations	are	consistently	small.		
	

	
Figure	5.	Comparison	of	structural	properties	generated	for	Aβ42	and	Aβ43	using	the	force	
field	 CHARMM36m	 +	 CHARMM-TIP3P	 and	 using	 Temperature	 Cool	 Walking	 (TCW).	 (a)	
Contact	 maps;	 (b)	 β-strand	 and	 helix	 propensities,	 (c)	 turn	 propensity	 and	 radius	 of	
gyration	distribution.	For	(b)	and	(c)	blue	lines	are	Aβ42,	and	red	lines	are	Aβ43.	Further	
details	are	given	in	Figure	1	caption.	
		

Similar	 structural	 results	 are	 obtained	 for	 the	 CHARMM36m	 +	 CHARMM-TIP3P	
force	 field	 combination	 using	 the	 TCW	 sampling	 method	 (Figure	 5),	 predicting	 more	
expanded	 structures	 as	 evidenced	 by	 a	 shifted	 and	 broader	Rg	 distribution,	with	 <Rg>	~	
15.9-16.4	Å	for	the	two	peptides	(Table	1),	with	no	long-range	contacts	found	using	TREx	
as	 demonstrated	 through	 the	 absence	 of	 secondary	 structure	 signatures	 as	 well	 as	 the	

(a) 

(b) 

(c) 
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contact	 maps,	 in	 agreement	 with	 the	 NOEs	 for	 Aβ42.5,	 6	 Furthermore,	 the	 structural	
ensemble	 of	 the	 Aβ42	 and	 Aβ43	 free	 monomers	 are	 seen	 to	 be	 nearly	 identical,	 in	
agreement	with	the	experimental	results	of	Conicella	and	Fawzi4.		
	
3.4	Experimental	Validation	of	Simulated	Ensembles	
	
In	 order	 to	 better	 validate	 these	 results	 for	 the	 different	 force	 fields,	 and	 to	 better	
understand	the	differences	 found	between	TREx	and	TCW,	we	consider	back-calculations	
of	 the	 NMR	 and	 FRET	 data	 as	 a	 metric	 for	 comparing	 Aβ42	 and	 Aβ43	 ensembles	 to	
experiment	 (Table	 1).	 Unfortunately,	 current	 state-of-the-art	 chemical	 shift	 calculators	
developed	 specifically	 for	 protein	 applications	 have	 large	 associated	 intrinsic	 back-
calculation	errors,	making	quantitative	comparisons	problematic	for	IDPs.	For	example,	the	
RMS	error	for	1HN	chemical	shifts	in	the	SHIFTX2	calculator	is	0.17	ppm69,	which	is	much	
larger	 than	 the	 experimental	 difference	 (<	 0.05	 ppm)	 between	 the	 Aβ42	 and	 Aβ43	
ensembles4.	 Thus,	 chemical	 shifts	 are	 not	 an	 ideal	 metric	 to	 distinguish	 between	 the	
different	simulated	ensembles,	and	as	expected,	the	simulations	are	unable	to	capture	the	
subtle	 differences	 in	 the	 1HN	 chemical	 shifts	 in	 the	 C-terminus	 of	 the	 two	 peptides	
(examples	given	in	Figure	S4)33.		
	 Table	1	shows	the	calculated	χ2	parameter	from	the	simulated	J-coupling	constants	
(JHN-Hα)	 for	 each	 ensemble	 as	 compared	 to	 experiment,	 in	 which	 lower	 values	 of	 the	 χ2	
metric	indicate	better	agreement	with	experimental	J-coupling	constants,	with	values	near	
one	 indistinguishable	 from	the	scalar	coupling	back-calculation	error.	We	compare	to	the	
Roche	et	al.	experimental	dataset5	consisting	of	38	Ji	values	for	Aβ42	and	the	Conicella	and	
Fawzi4	experimental	dataset	consisting	of	22	Ji	values	for	Aβ43.	The	simulated	J-couplings	
from	the	computational	ensembles	support	the	general	conclusion	that	the	TCW	sampling	
method	is	in	better	agreement	with	the	NMR	J-couplings	than	found	for	TREx,	regardless	of	
force	 field	 for	 both	 Aβ42	 and	 Aβ43	 peptides,	 with	 the	 standard	 force	 field	 in	 best	
quantitative	agreement4.	We	note	that	the	χ2	values	appear	to	be	commensurate	with	the	
results	of	Meng	et	al.	for	Aβ42	using	750	ns	TREx	simulations	with	Amber	ff99SBws	(χ2	=	
2.89)	 and	 Amber	 ff03ws	 (χ2	 =	 4.58),	 two	 IDP-optimized	 force	 fields,	 using	 the	 same	
experimental	data	and	set	of	Karplus	parameters.	However	their	χ2	values	include	a	block-
averaging	error	due	 to	variance	within	 the	 trajectories	 that	depresses	 the	value	of	 the	χ2	
(up	to	~	10	%).	We	did	not	apply	this	block	averaging	error	since	this	hides	the	intrinsic	
sampling	problem	we	are	investigating.	
	 The	 conclusion	 that	 the	 TCW	method	 yields	 better	 agreement	with	 J-couplings	 is	
bolstered	when	using	a	Bayesian	analysis	we	have	developed,	the	Experimental	Inferential	
Structure	 Determination	 (EISD)	 method72.	 The	 EISD	 method	 is	 designed	 to	 assess	
agreement	 given	 the	 available	 experimental	 J-coupling	 data	 (as	 well	 as	 chemical	 shifts,	
which	we	ignore	here	given	their	low	predictive	value)	that	takes	into	account	the	intrinsic	
experimental	 and	 back-calculation	 uncertainties,	 through	 optimization.	 In	 this	 case	 the	
optimization	 occurs	within	 the	 variance	 of	 the	 Gaussian	 distributed	model	 for	 the	 back-
calculation	error	for	Karplus	parameters	A,	B	and	C	in	Eq.	(1).	We	analyze	each	ensemble	
with	EISD	against	the	same	set	of	experimental	data	used	for	the	χ2	analysis	and	find	that	
the	 ranking	 of	 the	 ensembles	 does	 not	 change	 from	 the	 χ2	 analysis	 (Table	 1),	 i.e.	 the	
available	J-coupling	data	is	sufficient	for	concluding	that	the	TCW	ensembles	are	in	better	
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agreement	 with	 the	 NMR	 data,	 with	 significant	 better	 agreement	 for	 the	 standard	 force	
field.		
		
Table	1.	Simulated	 properties	 for	 the	 Aβ42	 and	Aβ43	 peptides	 for	 each	 sampling	method-
force	 field	 combination.	 Mean	 and	 standard	 deviation	 averaged	 over	 two	 independent	
trajectories,	except	for	the	0.8	ms	TREx	simulation,	where	block	averaging	over	two	250	ns	
blocks	was	used.	We	noted	a	systematic	shift	in	J-couplings	between	the	two	experimental	
datasets	from	Conicella	and	Fawzi4	and	Roche	et	al.;	we	have	applied	a	-0.4	Hz	shift	to	the	
Aβ43	 Ji	 values	 from	Conicella	and	Fawzi	before	comparison	which	would	bring	 the	Aβ42	
results	in	line	with	each	other,	to	the	simulated	J-couplings.	
	

Peptide	

Sampling	Method	and	Force	Field	Combination	

TREx	(0.1	ms)			
+	

Amberff99SB		
+	TIP4P-Ew	

TREx	(0.1	ms)			
+	

CHARMM36m		
+	CHARMM-

TIP3P	

TREx	(0.8	ms)		
+	

Amberff99SB		
+	TIP4P-Ew	

TCW	(0.2	ms)		
+	

Amberff99SB		
+	TIP4P-Ew	

TCW	(0.2	ms)		
+	

CHARMM36m		
+	CHARMM-

TIP3P	

TCW	(0.2	ms)		
+		

Amber99SB-
ILDN	

+	TIP4P-D	
	 χ2	between	simulated	and	experimental4,	5	J-coupling	constants	

Aβ42	 3.70	 4.65	 3.70		 2.70		 3.01	 2.89	
Aβ43	 4.75	 3.76	 3.65	 2.47	 2.96	 2.71	
	 EISD	Score		

Aβ42	 39.479	 3.858	 40.014	 57.833	 47.741	 54.937	
Aβ43	 23.234	 25.090	 36.530	 47.488	 39.328	 45.338	
	 Mean	and	standard	deviation	of	the	end-to-end-distance,	<Ree>	(in	Å)	

Aβ42	 24.3	±	0.6	 39.3	±	3.0	 20.5	±	1.7	 28.4	±	0.9	 36.8	±	1.3	 33.5	±	7.9	
Aβ43	 26.5	±	3.5	 44.4	±	1.1	 20.3	±	0.7	 29.1	±	2.0	 38.2	±	1.3	 31.9	±	0.9	
	 Mean	and	standard	deviation	of	FRET	efficiences,	<EFRET>		

Aβ42	 0.93	±	0.002	 0.64	±	0.084	 0.96	±	0.007	 0.88	±	0.009	 0.71	±	0.031	 0.77	±	0.150	
Aβ43	 0.92	±	0.049	 0.56	±	0.001	 0.97	±	0.007	 0.87	±	0.034	 0.69	±	0.020	 0.82	±	0.004	
	 Mean	and	standard	deviation	of	the	radius	of	gyration,	<Rg>	(in	Å)		

Aβ42	 12.0	±	0.3	 17.2	±	2.2	 11.3	±	0.0	 12.9	±	0.1	 15.9	±	0.5	 14.9	±	1.6	
Aβ43	 11.8	±	0.6	 17.8	±	0.4	 11.8	±	0.1	 13.2	±	0.4	 16.4	±	0.2	 15.7	±	2.0	

	 		
	 Although	we	do	not	 invoke	a	 full	scale	simulation	of	NOE	data	as	we	have	done	 in	
previous	studies10,	29,	67,	68,	we	can	make	some	qualitative	comparisons	to	the	NOE	data	for	
Aβ425	 using	 the	 contact	maps.	 Clearly	 the	 newer	 force	 fields	 are	 in	 excellent	 agreement	
with	the	NOE	data.	Furthermore,	the	standard	force	field	using	the	TCW	simulations	is	also	
in	good	agreement	with	the	NOE	data,	unlike	the	TREx	simulations	that	contain	a	very	high	
percentage	of	long-range	contacts.	For	the	unmodified	force	field	combination	using	TCW,	
there	is	a	very	small	amount	(~	5-10	%)	for	the	contact	region	formed	by	residues	16-20	
and	30-37	for	both	Aβ42	and	Aβ43,	but	as	we	have	already	stated	above,	it	is	unlikely	that	
the	experimental	NOEs	could	absolutely	rule	out	the	presence	of	such	a	small	population	of	
transient	long-ranged	structure.	
	 Next	 we	 consider	 the	 comparison	 of	 the	 different	 sampling	 and	 force	 field	
combinations	to	2D	FRET	that	have	been	reported	recently	for	Aβ426;	we	again	make	the	
reasonable	 assumption	 that	 FRET	 efficiencies,	 DEFGH ,	 for	 Aβ43	 will	 be	 nearly	 identical	
based	on	the	results	of	Conicella	and	Fawzi4.	In	principle	DEFGH 	should	be	calculated	for	all	
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conformations	 using	 the	 end-to-end	 distance	 between	 the	 dyes	 or	 tags,	!LL
MN" O ,	 i.e.	 the	

simulations	 should	 use	 the	 same	 sequence	 construct	 as	 the	 experiment	 that	 includes	
additional	residues	and	the	chemical	specifics	of	the	covalently	bound	dye	molecules.	The	
possibility	 that	 the	 IDP	 ensemble	will	 be	perturbed	 to	 some	degree	by	 these	 tags,	 as	we	
have	 seen	 previously	 for	 the	 MTSL	 tag	 used	 in	 EPR	 studies51,	 obscures	 the	 means	 to	
compare	!LL

PQMN",	 from	simulation	data	of	untagged	peptides,	with	experimentally	derived	
values	of	!LL

MN".	Hence	a	model	for	the	missing	tags	must	be	developed	to	make	contact	with	
the	2D	FRET	data.		
	 It	 is	useful	 to	consider	the	FRET	model	used	by	Meng	et	al.6	 in	which	the	distance	
between	 the	 dyes	 !LL

MN" O 	is	 implicitly	 accounted	 for	 by	 scaling	 the	 !LL
PQMN"	 with	 an	

approximation	that	the	effect	of	the	dyes	is	equivalent	to	adding	RMN"	additional	residues	to	
the	sequence	length74.	
	

!LL
MN" O = !LL

PQMN" O
3I3>ST

3

U.W
																																											(4)	

	
The	origin	of	 the	scaling	model	used	for	the	missing	tags	(Eq.	(4))	and	value	 for	RMN"	has	
precedent	in	the	literature	from	a	study	by	McCarney	and	co-workers,	who	conducted	1	ns	
standard	MD	 simulations	 on	 a	model	 of	 Alexa	 488	 attached	 to	 a	 single	 cysteine	 residue;	
they	obtained	an	ensemble	average	 that	does	provide	support	 for	RMN"	=	12	 for	a	pair	of	
dyes75.	 However,	 they	 also	 noted	 that	 this	 average	 conceals	 the	 chemical	 nature	 of	 the	
bimodal	distribution,	which	results	from	an	extended	conformation	corresponding	to	RMN"	
~	16,	and	a	collapsed	conformation	due	to	hydrophobic	interactions	between	the	dye	and	
its	 linker,	 with	RMN"	 ~	 4.4.	 While	 McCarney	 et	 al.	 note	 that	 the	 collapsed	 conformation	
would	not	likely	persist	in	experiments	with	sufficient	denaturant	present,	as	is	the	case	in	
many	FRET	studies	including	their	own75,	that	would	not	be	and	is	not	the	case	for	native,	
denaturant-free	 studies,	 as	 in	 the	 experiments	 of	 Meng	 et	 al.	 for	 Aβ426	 that	 study	 the	
peptide	in	more	native-like	conditions.		
	 The	resulting	untagged	peptide	simulations	that	have	been	scaled	using	Eq.	(4)	with	
RMN"=12,	show	a	highly	skewed	distribution	with	a	dominant	peak	at	DEFGH 	=	1	(Figure	6)	
that	 is	 in	 disagreement	 with	 the	 experiment	 which	 is	 peaked	 around	 the	 average	 FRET	
efficiency	of	~0.63	for	Aβ42.	This	same	difference	between	the	experimental	and	simulated	
result	is	also	evident	in	the	supplementary	material	in	Meng	et	al.6	using	the	new	IDP	force	
fields	developed	by	Best	and	co-workers23,	 27,	 38.	The	extremely	high	FRET	efficiency	 is	as	
expected	given	the	relatively	short	 length	of	the	Aβ	peptides	and	the	large	Förster	radius	
for	 the	 dye	 pair	 of	 Alexa	 488	 and	 647,	 i.e.	 per	 Eq.	 (3)	 all	 conformations	with	 the	 scaled	
values	of	!LL

PQMN"	less	than	~40	Å	will	yield	EFRET	~	1.	
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Figure	6.	Simulated	end-to-end	distance	histograms	(left)	and	corresponding	FRET	efficiency	
histograms	using	Eq.	(3)	(right)	for	all	force	field-	sampling	combinations.	For	all	plots,	blue	
bars	are	for	Aβ42	and	red	bars	are	for	Aβ43.	All	simulations	are	for	the	untagged	peptides,	
with	 the	 results	 shown	having	 incorporated	 a	 shift	 to	model	 the	 additional	 residues	 and	
tags.	

	 Even	so,	the	TCW	simulations	using	the	different	force	fields	yield	FRET	efficiencies	
for	Aβ42	of	< DEFGH>	=	0.71	–	0.88	 (Table	1);	 to	 compare	 to	 the	work	of	Meng	et	al.	 for	
Aβ42,	the	range	of	simulated	FRET	efficiencies	they	found	using	two	different	force	fields	
designed	 for	 IDPs	 with	 the	 same	 value	 of	RMN" = 12	gave	 values	 of	DEFGH 	 =	 0.68	 –	 0.83	
which	they	state	 is	 in	good	agreement	with	the	experimental	results.6	By	contrast	the	0.8	
ms	 TREx	 simulation	 using	 a	 standard	 force	 field	 yields	 DEFGH 	 =	 0.96	 –	 0.97.	 Increasing	
RMN"	to	 16	 or	 even	 20	 would	 only	 reduce	 EFRET	 by	 a	 few	 percent,	 hence	 this	 general	
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difference	 between	 sampling	 methods	 would	 remain	 the	 same.	 Among	 the	 TCW	
simulations,	 those	using	modified	force	 fields	produce	values	of	DEFGH 	 that	are	 lower	and	
closer	 to	 the	 experimental	 values	 of	 Meng	 et	 al.,	 consistent	 with	 those	 force	 fields	
producing	more	expanded	ensembles	than	standard	ones.		
	 Given	the	complete	summary	of	the	experimental	validation,	we	also	must	conclude	
that	 the	secondary	structure	propensities	 for	 the	standard	 force	 field	 for	 the	Aβ	peptides	
are	 not	 as	 egregiously	 incorrect	 as	 ascertained	 from	 the	 TREx	 sampling	method	 using	 a	
standard	 0.8	µs	 per	 replica	 simulation.	 There	 is	 no	 question	 that	 the	 newer	 force	 fields	
agree	well	with	the	experimental	data,	but	the	TCW	+	Amber	ff99SB	+	TIP4P-Ew	also	agree	
as	well,	and	in	fact	even	slightly	better	for	the	NMR	J-coupling	χ2	and	EISD	evaluation.	Given	
the	uncertainties	in	the	2D	FRET	models,	we	can	only	conclude	that	the	TCW	simulations	
for	 the	standard	 force	 fields	are	acceptable	based	on	 the	upper	bound	value	 reported	by	
Meng	et	al.	(DEFGH 	=	0.83)6	for	one	of	their	modified	force	fields.	Using	TCW,	the	standard	
force	field	yields	negligible	β-sheet	and	α-helical	content,	and	the	only	observed	long-range	
contacts	are	at	very	 low	population,	and	hence	qualitatively	consistent	with	the	2D	FRET	
and	NOEs	taken	on	the	Aβ42	peptide,	where	the	5-10	%	population	of	long-range	contacts	
will	 likely	 not	 be	 captured	 in	 experiment5,	 6.	 As	 a	 result	 the	 structural	 ensemble	 of	 both	
peptides	 generated	 using	 the	 TCW	 sampling	method	 are	more	 extended	 than	what	 was	
found	under	the	TREx	protocol	for	the	standard	force	field,	with	<Rg>~12.9	-13.2	Å	for	the	
two	peptides	(Table	1).		

3.5	Discussion	
	
Given	the	better	agreement	with	all	of	the	experimental	data	using	the	TCW	protocol	over	
the	TREx	simulations,	we	use	the	TCW	results	to	next	address	the	question	as	to	whether	
the	 new	modified	 force	 fields	 introduce	 a	 genuine	 improvement	 over	 the	 standard	 force	
field.	 One	 assessment	 is	 whether	 the	 force	 fields	 are	 yielding	 structural	 ensembles	
consistent	with	 a	 random	 coil	 ensemble	modeled	 as	 a	 Gaussian	 random	 chain	 or	 a	 self-
avoiding	random	walk	(SARW).	Although	the	Aβ ensemble	using	the standard	force	field	
does	 contain	 a	 small	 amount	 of	 residual	 structure,	 a	 rapidly	 interconverting	unfolded	or	
IDP	ensemble	will	sample	both	extended	and	compact	conformations	containing	regions	of	
secondary	 structure	 seen	 in	 folded	 proteins	 that	 are	 still	 consistent	 with	 a	 random	 coil	
ensemble76.	
	 The	chain	length	scaling	exponents	for	polymer	models	used	to	interpret	SAXS,	NMR	
and	FRET	measurements	for	unfolded	proteins	and	IDPs	have	been	shown	to	be	dependent	
on	sequence	characteristics	such	as	charge	and	hydrophobicity77,	78.	Given	that	Aβ	has	both	
a	 net	 positive	 and	 relatively	 high	 hydrophobicity	 in	 the	 CHC	 region	 of	 its	 sequence,	 the	
scaling	exponent	might	be	expected	to	reduce	to	the	Q-limit	for	this	IDP6,	
	

!" = !URZ 				 	 	 	 	 	 (5)	
	

where	!U		=	2.0	Å	as	given	by	Fitzkee	and	Rose79	and	[	=	0.5	for	the	Q-limit	which	would	
yield	an	<!">	~	13	Å	that	is	consistent	with	the	value	calculated	from	the	unmodified	force	
field	results	simulated	with	TCW	given	in	Table	1.	Under	the	Gaussian	random	coil	model	
we	would	 conclude	 that	 the	modified	 force	 fields	 have	 resulted	 in	 an	 over-correction	by	
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producing	much	more	 expanded	 ensembles	 than	 is	warranted.	However,	 if	we	 assume	 a	
SARW	model	 we	 determine	 a	 larger	 value	 of	 for	!",	 i.e.	 using	 [	 =	 0.54	 -	 0.6	 in	 a	 good	
solvent56	would	yield		<!">	~	15	–	19	Å,	in	better	agreement	with	the	modified	force	fields,	
and	thereby	suggesting	that	the	standard	force	fields	are	in	fact	too	collapsed.	Furthermore,	
for	a	Gaussian	random	chain	we	would	expect	the	following	relationship	to	hold	
	

!" = !LL/ 6				 	 	 	 	 (6)	
	

But	this	correlation	between	!"	and	!LL 	is	poor	given	the	simulated	data	in	Table	1,	except	
for	 the	 TCW	+	 CHARMM36m	+	 CHARMM-TIP3P	 combination,	which	 is	 inconsistent	with	
the	Gaussian	model	based	on	!".		
	 Thus	 we	 view	 polymer	 physics	 models	 and	 analyses	 as	 largely	 inconclusive	 for	
differentiating	the	quality	of	force	fields	for	this	IDP	system	for	several	reasons.	First	is	that	
the	differences	between	the	Gaussian	and	SARW	models	are	better	differentiated	for	much	
longer	polymers	than	the	small	Aβ	peptides	investigated	here.	Furthermore,	Fuertes	et	al.	
have	presented	some	novel	analytical	techniques	on	a	set	of	IDPs	and	denatured	proteins	
using	 a	 variety	 of	 dyes	 and	 denaturant	 conditions	 to	 evaluate	 the	 relationship	 between	
FRET	and	SAXS57.	They	suggest	that	one	should	generally	decouple	!"	 from	!LL ,	and	thus	
avoid	using	a	simple	scaling	law	such	as	Eq.	(6)	that	is	independent	of	peptide	chemistry57.	
Finally,	the	field	is	in	need	of	new	heteropolymer-centric	theoretical	models	that	are	able	to	
capture	 sequence	 details	 to	 extend	 beyond	 simple	 scaling	 laws	 and	 empirical	 relations,	
models	 which	 are	 now	 starting	 to	 be	 developed	 in	 recent	 work	 for	 the	 IDP	 class	 of	
proteins80,	81.	
	 We	next	turn	to	a	more	quantitative	assessment	using	the	2D	FRET	data	to	ascertain	
the	 differences	 in	 force	 fields.	 The	 simulation	 of	 FRET	 efficiencies,	 especially	 for	 IDPs,	
involves	 a	 series	 of	 assumptions	 that	 introduce	 uncertainty	 that	must	 be	 acknowledged	
when	comparing	to	the	FRET	observable	given	the	presence	of	the	fluorescent	dyes.	As	of	
late	2018,	there	is	active	debate	on	the	perturbations	introduced	by	fluorophore	tags53-57.	
Fuertes	 et	 al.54	 assert	 that	 there	 is	 no	 perturbation	 of	 the	 structural	 ensemble	 across	 a	
series	 of	 disordered	 peptides	 upon	 addition	 of	 dye	 labels.	 Part	 of	 the	 basis	 of	 their	
conclusion	is	that	they	did	not	find	significant	shifts	in	the	SAXS	profiles	or	<Rg>	of	tagged	
and	untagged	peptides	at	high	denaturant	conditions57.	If	this	is	the	case,	then	our	2D	FRET	
results	 and	 analysis	 support	 the	 view	 that	 the	 standard	 force	 field	 for	 the	 untagged	
Ab ensembles	and	tags	modeled	using	Eq.	(4)	are	in	adequate	to	good	agreement	with	the	
experiment,	with	the	modified	force	fields	performing	only	slightly	better.		
	 By	contrast,	Riback	et	al.	concluded	that	at	native	conditions	with	no	denaturant,	the	
addition	of	tags	in	FRET	experiments	leads	to	interactions	with	the	IDP	that	will	contribute	
to	FRET	signals	that	overemphasize	its	contraction,	and	thus	artificially	increases	its	FRET	
efficiency	under	denaturant-free	conditions56.	Furthermore,	 the	perturbative	effect	of	 the	
dyes	 was	 seen	 to	 be	 larger	 for	 the	 smaller	 peptides	 in	 their	 experiments,	 where	 the	
addition	of	 labels	 and	 the	 residues	 to	which	 they	 are	bonded	has	 a	 greater	 effect	 on	 the	
mass	and	resulting	dynamics	and	structure	of	the	peptide.	For	example,	the	addition	of	the	
tags	produced	shifts	from	-	0.3	to	+	0.5	nm	in	the	average	Rg	of	the	two	smallest	peptides	
studied,	N49	and	NLS,	which	are	natively	36	and	44	residues56.	Even	the	results	of	Meng	et	
al.	 found	 an	 increase	 in	 EFRET	 upon	 explicit	 representation	 of	 the	 Alexa	 fluorescent	 tags	
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using	a	standard	MD	calculation	for	Aβ426,	which	is	consistent	with	greater	compaction	of	
the	ensemble.	Our	own	recent	work	demonstrated	 that	addition	of	a	hydrophobic	MTSL-
Cys	tag	to	Aβ42	can	perturb	the	structural	ensemble	through	interactions	between	the	dye	
and	the	peptide,	that	in	turn	leads	to	more	a	collapsed	structural	ensemble	compared	to	the	
original	 peptide51.	 The	 simulations	 of	 Fuertes	 et	 al.,	 however,	 modeled	 the	 unlabeled	
peptide	 using	 implicit	 solvent,	 then	 built	 up	 an	 ensemble	 of	 structures	 of	 the	 labeled	
peptide	 by	 stochastically	 adding	 the	 dyes	 to	 the	 unlabeled	 conformers57.	 While	 this	
produces	a	useful	test	for	verifying	that	many	different	values	of	Ree	can	be	obtained	from	
an	ensemble	with	the	same	Rg,	 it	does	not	address	the	potential	phenomenon	of	the	dyes	
affecting	 the	 chain	 dynamics	 and	 structure	 directly.	 If	 the	 tags	 do	 induce	 an	 artificial	
compaction	 of	 the	 ensemble,	 then	 the	 true	 experimental	 ensembles	 would	 be	 more	
expanded	with	even	lower	FRET	efficiencies	than	reported	for	Aβ42.	If	that	is	the	case,	then	
the	standard	force	fields	yield	IDP	ensembles	that	are	in	fact	too	collapsed,	and	force	field	
modifications	are	warranted,	especially	 for	small	Aβ42	and	Aβ43	peptides	studied	 in	this	
work.	

3.6	Conclusions	
	
We	have	 simulated	 the	disordered	 structural	 ensembles	 of	 the	Aβ42	and	Aβ43	peptides,	
which	 according	 to	 recent	 experiments4,	 5,6	 should	 be	 largely	 the	 same	 and	 exhibit	 no	
persistent	 structural	 ordering	 or	 long-range	 contacts.	 But	 two	 types	 of	 error	 can	 occur	
during	computational	studies	of	IDP	structural	ensembles	that	prevent	connections	to	such	
experiments,	namely	statistical	sampling	error	and	systematic	error	in	energy	and	forces.	
Statistical	sampling	error	occurs	when	the	simulations	have	not	been	run	sufficiently	long	
to	 achieve	 convergence,	while	 systematic	 error	 happens	when	 the	 energy	 surface	 of	 the	
peptide-water	 system	 is	 not	 modeled	 with	 accurate	 molecular	 interactions.	 Not	
surprisingly,	 these	two	potential	errors	are	 intertwined,	and	hence	we	have	attempted	to	
consider	 them	 both	 by	 comparing	 two	 sampling	 methods,	 TREx	 and	 TCW,	 as	 well	 as	
comparing	a	standard	protein-water	force	field	and	those	that	have	been	recently	modified	
to	 yield	 better	 modeling	 of	 disordered	 states.	 We	 have	 also	 attempted	 to	 validate	 the	
various	 simulated	 ensembles	 by	 comparing	 to	 recent	 state	 of	 the	 art	NMR	 and	2D	FRET	
experiments4,	5,	6.	
	 While	it	is	starting	to	become	established	that	long	MD	trajectories	of	~100	μs	to	1	
ms	are	often	necessary	to	reveal	force	field	deficiencies11,	49,	simulation	timescales	that	are	
largely	routine	only	on	specialized	hardware	such	as	Anton82	or	Folding@home83,	the	hope	
is	that	better	enhanced	or	accelerated	sampling	methods	might	converge	more	quickly,	i.e.	
with	one	to	two	orders	of	magnitude	less	effort.	In	this	work	we	have	shown	that	even	at	μs	
timescales	there	appear	to	be	limitations	in	the	TREx	sampling	method,	producing	far	more	
structured	ensembles	that	are	in	disagreement	with	NMR	and	2D	FRET	validation	data	on	
Aβ	peptides.	Changing	the	sampling	method	from	TREx	to	TCW	produces	ensembles	 that	
are	qualitatively	in	agreement	with	J-couplings,	NOEs,	and	FRET	efficiencies,	regardless	of	
the	force	field	that	is	simulated.	The	TCW	results	for	Aβ42	are	also	in	very	good	agreement	
with	 the	 very	 long	 sub-millisecond	MD/MSM	 results	 by	 Lin	 and	 co-workers49.	 Thus	 our	
evidence	 has	 shown	 that	 what	 was	 thought	 to	 be	 primarily	 a	 force	 field	 problem	 was	
masked	by	what	is	at	least	in	part	a	problem	of	poor	sampling.	This	work	establishes	that	
the	TCW	method	is	more	effective	than	TREx	when	entropic	barriers	dominate,	and	when	
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applied	 to	 IDPs,	 supports	 the	 recent	 hypothesis	 that	 IDPs	 have	 an	 inverted	 free	 energy	
landscape	 in	 which	 disordered	 conformations	 are	 lower	 in	 free	 energy	 than	 ordered	
structures52.		
	 Sampling	 is	 an	 important	 consideration	 for	 establishing	 the	 transferability	 of	 any	
force	field,	by	demonstrating	that	appropriate	conformational	equilibria	is	reached	across	a	
range	 of	 thermodynamic	 conditions	 in	 order	 to	 describe	 folded	 and	 unfolded	 states	 of	
globular	proteins	as	well	as	IDP	sequences.	For	example,	some	standard	protein	and	water	
force	 field	 combinations	 have	 proven	 robust	 for	 understanding	 mechanistic	 questions	
about	 protein	 folding84,	 which	 requires	 a	 good	 model	 of	 the	 structure	 and	 internal	
dynamics	of	the	unfolded	states	in	addition	to	the	folded	state	of	a	globular	protein85.	But	
historically,	 it	was	the	ability	to	sample	multiple	folding	and	unfolding	events	using	these	
standard	force	fields	which	allowed	them	to	gain	validation	through	direct	comparisons	to	
robust	 folding	experiments86,	 87.	This	work	rescues	some	of	 these	standard	 force	 fields	 in	
the	sense	that	they	require	extensive	sampling	to	definitively	show	whether	they	are	also	
capable	of	simulating	accurate	IDP	ensembles.		
	 The	 modified	 force	 fields	 may	 have	 had	 the	 effect	 of	 inherently	 lowering	 the	
entropic	barriers,	 and	 in	 the	best	 case,	 still	maintaining	 the	 folded-unfolded	 equilibrium.	
However,	 unlike	 the	 case	 of	 protein	 folding,	 experimental	 validation	 is	more	 limited	 and	
underdetermined	 for	 IDPs	 for	 a	 variety	 of	 reasons.	 At	 present	 there	 is	 an	 impedance	
mismatch	 for	 chemical	 shifts	 and	 FRET	 data;	 for	 chemical	 shifts	 the	 fault	 is	 on	 the	
theoretical	side	because	of	the	reduced	capability	to	back-calculate	shifts	from	structure72,	
whereas	for	FRET	measurements	on	very	small	IDPs	there	remains	the	possibility	that	the	
presence	 of	 the	 fluorescent	 tags	 might	 perturb	 the	 IDP	 ensemble	 from	 its	 equilibrium	
state56.	 However,	 the	 impedance	 match	 between	 theory	 and	 experiment	 for	 scalar	
couplings	and	NOEs	have	provided	strong	support	for	the	conclusion	that,	when	simulated	
with	 TCW	 or	 using	 a	 very	 long	 MD/MSM	 simulation,	 the	 Amberff99SB	 +	 TIP4P-Ew,	
CHARMM36m	 +	 CHARMM-TIP3P,	 and	 Amberff99SB-ILDN	 +	 TIP4P-D	 are	 all	 appropriate	
force	fields	for	IDPs.	While	clearly	some	of	the	new	force	field	modifications	can	promote	
more	 expanded	 monomer	 ensembles	 to	 reproduce	 many	 experimental	 IDP	 properties	
more	expediently,	it	is	important	to	remember	that	the	IDP-specific	force	fields38	and	other	
modified	force	fields	may	come	with	their	own	limitations,	such	as	now	manifesting	native	
state	instability33,	thereby	forgoing	the	ability	to	simulate	disorder	to	order	transitions	in	
folding	upon	binding	events	 that	are	part	of	 the	greater	 functional	 repertoire	of	proteins	
with	intrinsic	disorder2.	
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3.9	Appendix	
	

	
Supplementary	Figure	1:	Comparison	of	structural	properties	for	Aβ42	and	Aβ43	using	the	
force	 field	Charmm36m	+	Charmm-TIP3P	and	using	Temperature	Replica	Exchange	 (TREx)	
simulated	at	0.1	μs	per	 replica.	 (a)	Contact	maps;	 (b)	β−strand	and	helix	propensities,	 (c)	
turn	propensity	and	radius	of	gyration	distribution.	For	(b)	and	(c)	blue	lines	are	Aβ42,	and	
red	lines	are	Aβ43.	Further	details	are	given	in	Figure	1	caption.		

	

(a)	

(b)	

(c)	
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Supplementary	Figure	2:	Convergence	of	secondary	structure	propensities	as	a	function	of	
time	using	the	force	field	Amber99SB	+	TIP4P-Ew	with	TREx	simulations	carried	out	to	800	
ns.	 (a)	Aβ42	and	(b)	Aβ43.	Secondary	structure	propensities	are	block-averaged	 in	50	ns	
bins.	 While	 local	 secondary	 structure	 appears	 stable,	 properties	 such	 as	 β-sheet	
populations	are	not	fully	converged.	
	

	
	

Supplementary	Figure	3:	Convergence	of	secondary	structure	propensities	as	a	function	of	
time	using	 the	 force	 field	Amberff99SB	+	TIP4P-Ew	with	Temperature	Cool	Walking	 (TCW)	
simulations	carried	out	to	200	ns.	(a)	Aβ42	(b)	Aβ43.	First	50	ns	discarded	as	equilibration,	
production	segment	of	150	ns	block-averaged	into	10	ns	bins.	Secondary	structure	content	
appears	 stable	over	 course	of	 simulation	with	each	 type	 for	 the	 two	peptides	 fluctuating	
about	a	mean.	
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Supplementary	Figure	4:	Comparison	of	simulated	chemical	shifts	difference	between	the	
Aβ43	and	Aβ42	structural	ensembles	using	different	combinations	of	force	field	and	sampling	
techniques	with	experiments.	The	simulated	values	were	calculated	using	the	SHIFTX2	
calculator.	
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Chapter	4	
	
Modeling	of	α-Helix	Formation	Across	a	Range	of	Temperatures	
by	a	Polarizable	Force	Field	in	Comparison	with	Diverse	Fixed-
Charge	Force	Fields	
	
We	present	initial	results	evaluating	the	ability	of	standard	and	modified	fixed	charge	force	
fields,	 as	 well	 as	 one	 polarizable	 force	 field,	 to	model	 the	 significant	 increase	 in	 α-helix	
content	sampled	by	the	model	(AAQAA)3	with	decreasing	 temperature,	a	commonly	used	
though	 rarely	 perfectly	 modeled	 target	 in	 force	 field	 parameterization.	 This	 testing	 is	
meant	to	evaluate	the	transferability	of	the	different	 force	fields,	 inspired	by	recent	work	
noting	deficiencies	of	standard	fixed	charge	force	fields	in	modeling	disordered	states,	and	
of	 force	 fields	 modified	 to	 induce	 disorder	 in	 modeling	more	 folded	 states.	 Inclusion	 of	
polarization	is	hypothesized	to	improve	modeling	along	the	full	disorder	to	order	spectrum	
due	 to	 the	more	 sophisticated	 treatment	 of	 electrostatics	 than	 fixed	 charge	 force	 fields,	
potentially	leading	the	way	to	a	truly	generalizable	force	field	for	all	proteins	that	may	have	
high	applicability	once	greater	computational	efficiency	for	these	models	 is	achieved.	Our	
initial	 results	 using	 the	 polarizable	 force	 field	 are	 limited	 due	 to	 lack	 of	 convergence	
resulting	from	this	high	computational	expense,	and	as	such	this	work	is	being	continued	in	
the	group.	We	do	nonetheless	confirm	that	most	fixed	charge	models	do	not	demonstrate	
significant	change	across	temperature,	and	find	some	initial	evidence	that	the	polarizable	
model	tested	may,	pending	confirmation	with	more	extensive	testing,	outperform	them.	
	
4.1	Introduction	
	
Simulation	 of	 intrinsically	 disordered	 proteins	 (IDPs)1	 is	 necessary	 for	 their	
characterization	 due	 to	 strong	 time-	 and	 ensemble-averaging	 present	 in	 collection	 of	
experimental	results2,	which	complicates	and	generally	renders	difficult	the	generation	of	a	
fully	 resolved	 conformational	 ensemble	 from	 experiment	 alone3,	 4.	 As	 established	 in	
previous	 chapters,	 however,	 simulation	 of	 IDPs	 is	 not	 without	 its	 own	 model	 and	
methodological	 uncertainties.	 In	 Chapter	 2	we	 describe	 development	 and	 validation	 of	 a	
novel	 enhanced	 sampling	 algorithm,	 temperature	 cool	 walking	 (TCW)5,	 designed	 to	
overcome	limitations	in	computational	cost	and	sampling	efficiency6	of	the	most	commonly	
used	 algorithm	 for	 simulation	 of	 IDPs7,	 8,	 temperature	 replica	 exchange	 (TREx)9.	 Such	
improvement	 in	 sampling	efficiency,	 combined	with	 the	ability	 to	 run	 simulations	 longer	
due	to	lower	cost,	are	key	in	ensuring	that	the	resulting	ensembles	are	properly	converged.	
In	 Chapter	 3	 we	 apply	 TCW10,	 in	 comparison	 to	 TREx,	 to	 studying	 the	 differences	 in	
performance	 between	 a	 standard	 force	 field11,	12	 and	 recently	 developed	 force	 fields13-16	
that	were	modified	to	improve	modeling	of	disordered	states.	Our	findings10	that	the	force	
fields	 were	 not	 as	 divergent	 from	 each	 other	 upon	 improvement	 using	 TCW	 sampling	
suggest	 that	 the	 previously	 identified	 issues	with	 standard	 force	 fields	 producing	 overly	
compact	ensembles	may	have	been	over-estimated	since	the	agreed	better	with	J-coupling	
data,	while	 the	CHARMM36	and	D.E.	Shaw	group	 force	 fields	did	produce	more	extended	
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ensembles	 that	 may	 be	 in	 better	 agreement	 with	 FRET	 experiments.	 This	 continued	
ambiguity	 in	 the	modeling	of	 the	 fully	 solvated	monomer	state	of	 IDPs	has	also	arisen	 in	
characterization	 of	 the	 disorder	 to	 the	 folded	 state	 of	 proteins8.	 In	 fact	 the	 utility	 of	 the	
modified	 force	 fields	 for	 modeling	 partially	 ordered	 IDP	 states	 that	 are	 key	 in	 their	
interaction	 with	 stable	 folded	 receptors17,	 or	 during	 aggregation18	 brings	 into	 question	
whether	any	standard	fixed	charge	force	field	would	be	capable	of	modeling	the	full	range	
of	IDP	behavior.	
	 One	possible	change	in	the	functional	form	used	that	might	improve	modeling	of	the	
disorder-to-order	 transition	 is	 the	 inclusion	 of	 polarization	 physics	 to	 account	 for	 the	
variety	 in	 environmental	 responses19.	 Classical	 force	 fields	 use	 a	 point	 charge	model	 for	
electrostatics.	While	this	model	is	highly	successful	in	many	cases,	it	is	possible	that—as	is	
suggested	by	 the	difficulty	 in	 developing	 a	 general-use	 fixed	 charge	 force	 field8—a	more	
sophisticated	treatment	of	electrostatics	may	be	needed	 in	order	 to	accurately	model	 the	
disorder-to-order	spectrum.	Polarizable	 force	 fields	such	as	 the	AMOEBA19	and	CHARMM	
Drude20	 force	 fields	may,	 albeit	 at	much	 higher	 computational	 expense,	 provide	 the	 key	
improvement	 in	 physical	 accuracy	 because	 they	 are	 formulated	 to	 allow	 for	 the	 charge	
density	 of	 molecules	 to	 change	 and	 respond	 to,	 and	 in	 turn	 affect,	 their	 electrostatic	
environment.	Indeed,	one	study21	of	the	15-residue	synthetic	peptide	(AAQAA)322,	which	is	
often	used	as	a	model	of	increasing	helix	formation	at	lower	temperature23,	found	evidence	
of	 cooperative	 helix	 formation	 using	 the	 CHARMM-Drude	 force	 field	 that	was	 not	 found	
using	 the	 fixed	 charge	 equivalent.	 Our	 own	work24	 on	 the	 disordered	Histatin-5	 peptide	
found	that	the	polarizable	Amoeba	force	field,	run	with	TCW,	better	modeled	the	radius	of	
gyration	distribution	and	secondary	structure	of	the	peptide	than	recently	developed	force	
fields	optimized	for	the	simulation	of	IDPs.	
	 Here	 I	present	preliminary	results	continuing	such	work,	making	use	of	 the	 lower	
computational	 cost	 of	 TCW5,	 10	 relative	 to	 TREx	 or	 long	 MD	 simulations	 to	 investigate	
modeling	of	helix	 formation	by	 two	standard	 force	 fields,	 two	 IDP-optimized	 force	 fields,	
and	 one	 polarizable	 force	 field	 in	 the	 model	 (AAQAA)3	 peptide	 across	 a	 wide	 range	 of	
temperatures.	 We	 compare	 against	 the	 expected	 fraction	 of	 α-helix	 based	 on	 chemical	
shifts	 from	 nuclear	 magnetic	 resonance	 (NMR)	 spectroscopy22,	 in	 which	 the	 synthetic	
peptide	displays	a	strong	response	in	helix	content	with	changing	temperature,	going	from	
no	helix	above	360	K	to	above	50	%	at	280	K.	
	 Our	results	confirm	the	difficulty	in	accurately	modeling	the	helix	formation	of	this	
peptide,	with	 the	 fixed-charge	 force	 fields	 displaying	 no	 increase	 in	 helical	 content	with	
decreasing	 temperature,	 in	 agreement	 with	 other	 simulation	 studies	 on	 the	 same	 and	
similar	 force	 fields8,	25.	While	 the	results	 from	our	simulations	using	 the	polarizable	 force	
field19	 need	 further	 confirmation	with	 longer	 and	 repeated	 simulations,	 our	 initial	 study	
suggests	that—as	has	been	found	with	another	polarizable	force	field21—these	models	may	
be	 better-suited	 to	 the	 modeling	 of	 these	 complex	 processes	 where	 a	 peptide	 samples	
electrostatically	distinct	environments	as	it	undergoes	folding.	
	
4.2	Materials	and	Methods	
	
The	 initial	 fully	 α-helical	 structure	 of	 (AAQAA)3,	 capped	 with	 an	 acetyl	 group	 at	 the	 N-
terminus	and	a	methylamine	group	at	the	C-terminus,	was	created	in	the	tleap11	module	of	
Amber,	and	solvated	in	water	to	produce	a	periodic	box	with	sides	of	length	6.0	nm	using	



	 65	

either	tleap	or	the	web	interface	of	CHARMM-GUI26.	The	force	fields	tested	were	1)	Amber	
ff99SB11	 for	 the	 protein	 with	 TIP4P-Ew12	 water,	 a	 standard	 fixed-charge	 force	 field	
combination	 that	 is	 widely	 used,	 though	 expected	 to	 under-sample	 the	 α-helix	 for	 this	
system25	 2)	 Amber	 ff99SB-ILDN15	 with	 TIP4P-d15	 water,	 a	 recent	 disorder-optimized	
combination	 that	 in	 one	 study	 using	 TREx	 sampled	 negligible	 helical	 content	 across	 all	
temperatures8	 3)	 CHARMM3627	 +	 C-TIP3P14,	 another	 standard	 combination	 that	 has	 in	
various	 studies	 sampled	 12	 %	 α-helix	 at	 300	 K13,	 28	 4)	 CHARMM36m13	 +	 C-TIP3P14,	 a	
modified	version	of	CHARMM36	designed	to	improve	sampling	of	disordered	states	while	
maintaining	a	stable	fold	for	other	systems,	with	observed	α-helix	content	ranging	from	11	
to	 17	 %	 at	 300	 K	 depending	 on	 the	 study8,	 13	 and	 5)	 AMOEBA-1319	 +	 Water0329,	 a	
polarizable	force	field	that	was	shown	to	sample	between	10	and	30	%	α-helix	content	per	
residue	at	303	K19,	albeit	using	much	shorter	TREx	simulations	than	are	now	standard.	
	 All	 production	 simulations	 were	 conducted	 using	 TCW5,	 10	 implemented	 in	
OpenMM30,	 using	 a	 high	 walker	 temperature	 of	 420	 K.	 A	 disadvantage	 of	 TCW	 in	
comparison	 to	 TREx	 is	 that	while	 TREx	 naturally	 leads	 to	 the	 generation	 of	 equilibrium	
ensembles	at	every	simulated	temperature,	TCW	only	does	so	for	the	 low	temperature	of	
interest.	This	is	only	a	burden	for	tests	such	as	these	that	involve	study	of	behavior	across	a	
range	of	temperatures,	as	opposed	to	that	described	in	previous	chapters5,	10.	However,	the	
overall	 cost	 savings	 of	 TCW	are	 still	 apparent,	 and	we	 benefit	 from	 greatly	 reducing	 the	
amount	of	simultaneously	needed	computational	power,	as	each	simulation	can	be	run	on	a	
single	GPU	rather	than	~50.	For	each	force	field,	we	perform	6	different	TCW	simulations,	
with	low	temperatures	of	either	280,	300,	320,	340,	360	or	380	K,	to	generate	ensembles	
that	 span	 the	 variation	 in	 helical	 content	 for	 the	 peptide22.	 Cool	 walking	 exchanges	 are	
initiated	 an	 average	 of	 once	 per	 ns	 of	 low	 temperature	 propagation,	 with	 200	 fs	 of	
annealing	at	each	temperature.	For	each	force	field	and	low	temperature,	the	system	was	
first	equilibrated	in	the	NPT	ensemble	for	1	ns	with	restraints	on	peptide	heavy	atoms	to	
maintain	the	initial	conformation,	and	then	the	restraints	relaxed	from	10	kcal/mol/Å2	to	0	
kcal/mol/Å2	over	100	ps	before	beginning	production	simulations.	
	 Trajectories	were	analyzed	using	the	Amber	program	cpptraj31.	As	is	consistent	with	
the	literature	on	simulations	of	this	system8,	13,	21,	23,	25,	28,	a	residue	was	defined	as	being	in	
an	α-helical	combination	in	a	conformation	if	it	was	in	a	span	of	three	continuous	residues	
all	within	a	defined	(φ,	ψ)	dihedral	range	of	φ	between	-160	and	20°	and	ψ	between	-120	
and	50°.	 This	 definition	has	been	 found	 to	be	 generally	 equivalent	 to	 use	 of	DSSP32.	 The	
helical	 content	 for	 the	 entire	 peptide	 was	 calculated	 as	 the	 average	 of	 the	 per-residue	
helical	content.	These	results	were	compared	to	previous	results	from	the	literature	using	
the	same	force	fields,	and	the	experimentally	predicted	amounts	of	helical	content	based	on	
NMR	chemical	shifts22.	
	
4.3	Results	
	
Simulations	using	 fixed	 charge	 force	 fields	were	 all	 run	 for	 a	minimum	of	 400	ns,	which	
should,	except	potentially	 in	 the	case	of	 the	 lowest	 temperatures,	be	sufficient	 for	decent	
convergence	based	as	estimated	from	previous	work	using	TCW5,	10,	33.	The	α-helix	fractions	
averaged	 across	 the	 peptide	 and	 simulation	 length	 for	 each	 simulation	 are	 reported	 in	
Table	1.	Uncertainties	in	the	helix	fraction	for	fixed-charge	trajectories	were	calculated	as	
the	 standard	 deviation	 in	 the	 cumulative	 average	 calculated	 using	 10	 ns	 blocks	 and	
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discarding	 the	 first	 50	 ns	 as	 equilibration,	 as	 has	 been	 done	 in	 previous	 work	 on	 this	
system28.		

Simulations	 using	 AMOEBA,	 given	 the	much	 higher	 computational	 cost	 of	 using	 a	
polarizable	model19,	were	run	for	100	ns	for	the	lower	temperatures	and	80	ns	for	360	and	
380	 K.	 This	 is	 not	 expected	 to	 be	 fully	 sufficient	 to	 converge.	 A	 very	 rough	 estimate	 of	
behavior	 upon	 better	 convergence	 can	 be	 obtained	 by	 calculating	 the	 change	 in	 helix	
fraction	 for	 the	 fixed-charge	 force	 fields	between	 the	 first	100	ns	and	 the	entirety	of	 the	
simulation,	 as	 shown	 in	 Supplementary	 Table	 1.	 Helix	 fraction	 tends	 overall	 to	 decrease	
upon	changing	from	an	estimate	based	on	the	first	100	ns	relative	to	the	whole	simulation,	
as	expected	given	the	initial	condition.	However,	a	wide	range	of	shifts	is	observed,	with	no	
strong	 trend	 apparent	 over	 either	 temperature	 or	 force	 field,	 except	 for	 slightly	 greater	
variability	for	TIP4P-D	than	the	others.	The	mean	decrease	for	the	fixed-charge	simulations	
is	to	a	helix	fraction	2/3	the	value	of	the	first	100	ns	simulation,	albeit	with	wide	variability.	
	
Table	 1:	 Simulation	 lengths	 and	 ensemble	%	 α-helix	 for	 all	 force	 fields	 and	 temperatures	
studied.	 For	 fixed-charge	 force	 fields,	 uncertainties	 were	 calculated	 as	 the	 standard	
deviation	in	10	ns-blocked	values	of	the	cumulative	average	α-helix	fraction,	discarding	the	
first	 50	 ns.	 For	 AMOEBA,	 given	 the	 short	 simulation	 time,	 no	 time	 was	 discarded	 in	
calculating	 the	 cumulative	 averages	 and	 uncertainties,	 reflecting	 the	 relatively	 lesser	
convergence	and	stability.	
	

Force	Field	
Temperature	(K)	

280	 300	 320	 340	 360	 380	
CHARMM36	+		
C-TIP3P	

Length	(ns)	 800	 900	 900	 900	 450	 500	
%	helix	 4.2	(1.0)	 4.2	(0.66)	 4.0	(0.60)	 4.2	(0.58)	 4.8	(1.5)	 5.2	(0.63)	

CHARMM36m	+		
C-TIP3P	

Length	(ns)	 600	 650	 850	 800	 750	 700	
%	helix	 4.4	(0.84)	 5.8	(0.97)	 4.4	(0.74)	 4.5	(1.9)	 5.0	(1.7)	 4.6	(0.42)	

Amber	ff99SB	+	
TIP4P-Ew	

Length	(ns)	 550	 550	 450	 550	 450	 550	
%	helix	 3.7	(2.4)	 3.7	(0.73)	 3.4	(0.75)	 3.1	(0.46)	 3.1	(0.41)	 3.2	(0.88)	

Amber	ff99SB-
ILDN	+	TIP4P-d	

Length	(ns)	 450	 500	 500	 450	 550	 400	
%	helix	 4.2	(1.4)	 3.9	(0.32)	 3.3	(1.6)	 3.6	(0.53)	 3.8	(0.95)	 2.6	(0.22)	

AMOEBA	+	
Water03	

Length	(ns)	 100	 100	 100	 100	 80	 80	
%	helix	 29	(15)	 5.7	(15)	 6.7	(15)	 6.6	(18)	 7.5	(18)	 1.8	(4.1)	

	
	 Our	 results	 for	 the	 fixed-charge	 force	 fields	 generally	 agree	 with	 the	 literature	
results8,	13,	21,	23,	25,	28	in	trend	for	the	α-helix	fraction,	which	remains	relatively	flat	across	all	
temperatures	for	nearly	all	force	fields	regardless	of	water	model.	We	and	others	find	less	
α-helical	content	with	the	CHARMM36	+	C-TIP3P	and	CHARMM36m	+	C-TIP3P	force	fields	
than	 the	~17%	at	 300K	 reported	 using	 long	 standard	MD13;	 the	DE	 Shaw	group	using	 a	
~20	 μs	 TREx	 simulation	 found	 that	 percentage	 dropped	 to	 12%,	whereas	with	 TCW	we	
find	 it	 to	 be	 4-6%.	 Interestingly,	we	 find	more	 α-helical	 content	 for	 Amber	 ff99SB-ILDN	
with	 TIP4P-D	 than	 found	 with	 a	 previous	 TREx	 simulation	 which	 obtained	 zero	 helix8,	
although	 again	 the	 trends	with	 temperature	 are	 flat.	 Our	 results	 for	 Amber	 ff99SB	with	
TIP4P-Ew	produce	 α-helical	 percentages	 of	 2-4%,	 consistent	with	 previous	 results	 using	
Amber	 ff99SB	 and	 TIP3P,	 a	 similar	 force	 field	 pair25.	 In	 aggregate,	 we	 can	 rule	 out	 the	
sampling	method	used	as	a	systematic	source	of	any	error,	but	appears	to	be	a	problem	for	
all	 fixed	 charge	 force	 fields	 that	 there	 is	 an	 absence	 of	 cooperative	 disorder	 to	 order	
response	over	temperature.		
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At	 the	 time	 of	 the	 completion	 of	 this	 chapter,	 the	 short	 length	 of	 the	 AMOEBA	
simulations	 and	 resulting	 high	 uncertainties	 in	 helical	 content,	 render	 that	 data	
inconclusive	at	present.	
	 	
4.4	Discussion	and	Conclusions	
	
We	have	performed	a	set	of	enhanced	sampling	simulations	using	TCW5,	6,	10	method	on	a	
variety	 of	 fixed	 charge	 and	 polarizable	 force	 fields,	 seeking	 to	 evaluate	 whether	 a	
polarizable	 model19	 can	 at	 least	 qualitatively	 model	 the	 sharp	 increase	 in	 helicity	 as	
temperature	decreases.	Despite	the	computational	efficiency	of	TCW,	we	now	must	grapple	
with	 the	 increased	 computational	 expense	 of	 the	 polarizable	 model,	 highlighting	 the	
importance	 of	 other	 work	 that	 seeks	 to	make	 polarization	 less	 expensive	 in	 simulation,	
such	as	implementation	of	novel	integrators	from	our	lab34-39.	
	 Our	results	confirm	the	findings	in	the	literature	that	many	fixed	charge	force	fields	
cannot	model	 the	 sharp	 increase	 in	 helical	 content	with	 changing	 temperature.	 The	 fact	
that	this	same	result	occurs	across	such	disparate	parameterizations	of	the	same	functional	
forms	 of	 a	 fixed-charge	 model,	 even	 given	 the	 stated	 goal	 of	 developing	 a	 universally	
appropriate	 fixed	 charge	 force	 field	 for	 proteins	 across	 the	 order-to-disorder	 spectrum8,	
the	(AAQAA)3	continues	to	be	a	challenging	system.	In	fact	that	group	eventually	discarded	
(AAQAA)3	as	a	benchmark	given	the	difficulty	in	designing	a	force	field	capable	of	modeling	
both	it	and	the	other	natural	peptide	systems	used.	
	 It	is	likely	that	more	extensive	changes	to	the	functional	form	of	classical	force	fields,	
such	 as	 the	 addition	 of	 polarization,	 may	 be	 necessary	 in	 order	 to	 overcome	 these	
problems.	While	our	simulations	using	the	polarizable	AMOEBA19	are	certainly	not	at	 full	
convergence,	we	find	some	evidence	that	the	temperature	response	for	that	force	field	may	
be	somewhat	stronger	than	that	of	the	fixed-charge	force	fields.	This	needs	to	be	verified	
with	further	simulation	to	produce	better-converged	results,	in	work	that	is	continuing	in	
our	 lab.	This	 suggests,	 along	with	other	 studies	of	polarizable	models21,	24,	 that	while	 the	
computational	expense	remains	a	limiting	factor	in	the	use	of	polarizable	force	fields,	they	
may	 be	 entirely	 appropriate	 and	 perhaps	 even	 most	 capable	 of	 modeling	 the	 complex	
behavior	of	IDPs.	
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4.6	Appendix	
	
Supplementary	Table	1:	Experimentally	derived	%	α-helix	from	chemical	shifts	across	the	
range	of	temperatures.	
	

Temperature	(K)	 %	α-helix	
280	 42	
300	 21	
320	 8.5	
340	 3.5	
360	 0.96	
380	 0.78	

	
Supplementary	Table	2:	Comparison	of	%	α-helix	as	calculated	using	only	the	first	100	ns	of	
simulation	vs.	the	full	simulation	for	fixed	charge	force	fields.	Used	 to	very	roughly	estimate	
how	 the	 amount	 of	 helix	 content	 may	 change	 upon	 extending	 the	 shorter	 AMOEBA	
simulations.	
	

Force	Field	 				%	helix	
Temperature	(K)	

280	 300	 320	 340	 360	 380	
CHARMM36	+	C-
TIP3P	

First	100	ns	 7.0	 7.5	 5.5	 11	 9.0	 8.3	
Full	 4.2	 4.2	 4.0	 4.2	 4.8	 5.2	

CHARMM36m	+	C-
TIP3P	

First	100	ns	 7.2	 14	 6.9	 9.4	 6.8	 5.2	
Full	 4.4	 5.8	 4.4	 4.5	 5.0	 4.6	

Amber	ff99SB	+	
TIP4P-Ew	

First	100	ns	 7.5	 4.7	 5.3	 3.5	 4.6	 6.1	
Full	 3.7	 3.7	 3.4	 3.1	 3.1	 3.2	

Amber	ff99SB-
ILDN	+	TIP4P-d	

First	100	ns	 3.4	 12	 7.2	 6.9	 3.5	 3.4	
Full	 4.2	 3.9	 3.3	 3.6	 3.8	 2.6	
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Chapter	5	
	
A	Bayesian	Method	for	Validating	Conformational	Ensembles	
with	Experimental	Data:	Application	to	Ensemble	Refinement	
for	Intrinsically	Disordered	Proteins	
	
Given	the	difficulties	that	remain	in	guaranteeing	convergence	and	force	field	accuracy	for	
simulation	of	 intrinsically	disordered	proteins	(IDPs),	validation	of	results	by	comparison	
to	experimental	data	is	required.	Back-calculation	methods	for	computing	the	experimental	
signal	expected	from	a	set	of	simulated	structures,	however,	can	be	imprecise	to	the	point	
that	structurally	distinct	ensembles	produce	nearly	identical	back-calculated	experimental	
signals.	Because	of	 this,	 standard	comparison	metrics	 such	as	squared	errors	 that	do	not	
capture	the	effects	of	uncertainty	in	back-calculation	and	experiment	are	not	always	able	to	
distinguish	between	even	very	different	ensembles	of	IDP	conformations.	Here	we	present	
the	 development	 of	 improved	 scoring	 methods,	 based	 on	 the	 experimental	 inferential	
structure	 determination	 (EISD)	 formalism	 previously	 developed	 in	 the	 group	 for	 J	
couplings	 and	 chemical	 shifts,	 for	 a	 wide	 range	 of	 observables	 from	 nuclear	 magnetic	
resonance	 (NMR)	 and	 Förster	 resonance	 energy	 transfer	 (FRET)	 experiments.	 The	 EISD	
method	uses	a	Bayesian	analysis	to	calculate	log-likelihood	scores	of	a	simulated	ensemble	
corresponding	to	set	of	experimental	data	of	various	types,	accounting	for	varying	levels	of	
uncertainty	in	back-calculation	and	experiment	for	each.	We	test	the	ability	of	each	scoring	
metric	 to	 refine	 a	 structural	 ensemble	 for	 the	 disordered	 state	 of	 the	 drkN	 Sh3	 domain,	
demonstrating	the	applicability	of	EISD	in	characterizing	and	refining	IDP	ensembles.	
	
5.1	Introduction	
	
The	utility	of	a	simulated	IDP	conformational	ensemble1,	 2—the	degree	to	which	it	can	be	
trusted	to	faithfully	include	relevant	conformations—is	judged	on	the	extent	to	which	it	can	
be	shown	to	correctly	model	the	structural	information	available	from	experimental	data.	
The	most	 straightforward	 approach	 to	 validating	 an	 IDP	 structural	 ensemble	 is	 to	 back-
calculate	the	experimental	data	from	the	set	of	simulated	conformers,	and	then	quantify	the	
overall	 degree	 of	 agreement	 using	 standard	 global	 comparisons	 such	 as	 squared	 errors,	
figures	of	merit,	and	correlation	coefficients.	
	 Such	standard	comparisons	suffer	 from	a	 lack	of	ability	 to	account	 for	uncertainty	
and	 systematic	 error	 in	 the	 underlying	 experiments	 and	 the	 possible	 inaccuracies	 of	 the	
back-calculation	 methods.	 As	 an	 example,	 chemical	 shifts	 from	 a	 nuclear	 magnetic	
resonance	 (NMR)	 experiment	 can	 be	 measured	 to	 very	 high	 accuracy	 resolved	 to	
differences	of	hundredths	of	ppm	between	related	or	mutated	peptides3.	Back-calculation	
of	chemical	shifts4,	5	from	a	set	simulated	structures,	however,	is	less	accurate	by	orders	of	
magnitude,	to	the	point	of	completely	obscuring	the	experimentally	determined	differences	
(or	 lack	 thereof)	 between	 the	 peptides.	 Thus,	 while	 chemical	 shifts	 are	 an	 extremely	
sensitive	 experimental	 reporter	 of	 IDP	 structure,	 their	 utility	 for	 comparing	 simulated	
ensembles	is	limited	in	ways	unaccounted	for	by	many	standard	evaluation	metrics.	
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	 A	 more	 relevant	 scoring	 method	 that	 does	 account	 for	 sources	 of	 uncertainty	 is	
furthermore	important	given	the	need	to	compare	against	multiple	types	of	experimental	
observables.	In	contrast	to	folded	proteins,	the	structural	characterization	of	IDPs	is	highly	
underdetermined2,	and	structurally	distinct	ensembles	can	be	produced	that	agree	with	the	
same	experimental	signals.	Comparison	to	multiple	types	of	experimental	data	that	report	
on	 different	 aspects	 of	 structure,	 such	 as	 local	 secondary	 structure	 vs.	 overall	 chain	
expansion,	or	that	have	different	signal	responses	to	structural	characteristics,	is	therefore	
desired6.	 Given	 the	 potential	 differences	 in	 the	 level	 of	 uncertainties	 in	 both	 experiment	
and	back-calculation,	there	is	a	need	to	be	able	to	weight	the	relative	importance	of	these	
comparisons.	 An	 ideal	 scoring	 method	 should	 therefore	 have	 at	 least	 the	 following	
capabilities:	

1. Compare	 against	 multiple	 data	 types,	 with	 a	 scoring	 metric	 that	 accounts	 for	
uncertainties	in	both	back-calculation	and	experiment.	

2. Handle	these	comparisons	simultaneously,	to	be	able	to	account	for	the	different	
structural	information	they	provide.	

3. In	 the	 event	 of	 disagreement	 between	 experimental	 restraints,	 weight	 the	
overall	score	more	by	the	experiment	and	back-calculation	methods	with	lower	
uncertainty.	

Our	 group	 has	 previously	 developed	 such	 a	 method,	 experimental	 inferential	
structure	determination	(EISD)7,	and	applied	it	to	chemical	shifts	and	J	couplings.	It	uses	a	
maximum	 likelihood	 estimator	 formalism	 to	 assign	 a	 log	 likelihood	 score	 of	 a	 simulated	
ensemble	matching	an	 input	set	of	experimental	data,	accounting	 for	 the	uncertainties	 in	
both	back-calculation	and	experiment	by	optimizing	over	the	set	of	“nuisance	parameters”	
"	that	are	involved,	which	are	treated	as	Gaussian	random	variables.	EISD	can	be	applied	to	
multiple	 data	 types	 simultaneously	 to	 generate	 an	 aggregated	 probabilistic	 score	 of	 the	
form	

	
#$ % &, "|), * = #$ % & * + #$ % -.|&, "., * % ".|*

/
.01 	 	 (1)	

	
where	#$ % &, "|), * 	is	the	log	likelihood	that	the	ensemble	of	2	conformations	& = 34 401

5 	
and	 values	 of	 "	 correspond	 to	 the	 set	 of	 6	 experimental	 values	 ) = -. .01

/ 	 and	
information	*.	The	structural	prior	% &|* 	can	be	treated	as	either	a	uninformative	prior	or	
a	Boltzmann	prior	to	incorporate	an	energetic	component	to	the	scoring,	as	explored	in	the	
original	EISD	publication7.	Here,	we	use	a	uniform	structural	prior.	The	second	component	
consists	 of	 % -.|&, "., * 	 which	 models	 the	 experimental	 data	 given	 a	 set	 of	 conformers	
where	the	prior	distribution	% ".|* 	is	the	set	of	nuisance	parameters	". 	for	a	restraint	7	is	
modeled	 as	 a	 set	 of	 Gaussian	 random	 variables	 for	 an	 experimental	 or	 back-calculation	
uncertainty.		
	 When	 tested	 on	 globular	 protein	 structures	 to	 distinguish	 the	 native	 state	 from	
misfolded	decoys,	EISD	is	able	to	clearly	distinguish	the	correct	native	state	by	evaluating	
the	degree	of	agreement	with	chemical	shifts	and	J	couplings.	Furthermore,	the	formulation	
of	the	EISD	scoring	metric	has	8(2)	scaling	with	the	number	of	conformations,	allowing	for	
much	more	rapid	scoring	of	large	ensembles	than	other	methods	that	similarly	incorporate	
a	Bayesian	approach8-11.	More	importantly,	EISD	was	able	to	show	that	the	chemical	shifts	



	 73	

and	 scalar	 coupling	 data	 types	 could	 not	 distinguish	 between	 qualitatively	 different	 IDP	
ensembles	 –	 for	 example	 the	 difference	 between	 a	 protein	 in	 a	 good	 vs.	 a	 bad	 solvent	 –	
because	of	the	large	back-calculation	errors	for	chemical	shifts.	An	important	conclusion	of	
the	study	is	that	other	experimental	data	types	and	improved	accuracy	of	back-calculation	
is	needed	to	better	validate	and	differentiate	between	IDP	structural	ensembles.		

Here	 we	 extend	 the	 current	 use	 of	 EISD	 Bayesian	 model	 by	 developing	 scoring	
formalisms	 for	 additional	 experimental	 data	 types:	 homonuclear	 Nuclear	 Overhauser	
Effects	(NOEs)6,	 12,	 13,	paramagnetic	relaxation	enhancements	(PREs)14,	 15,	residual	dipolar	
couplings	 (RDCs)16,	 17,	 and	 hydrodynamic	 radii	 (;<)	 from	NMR18;	 and	 ensemble	 average	
efficiencies	from	Förster	resonance	energy	transfer	(FRET)	experiments19,	20.	
	 Given	the	previous	implementations	of	EISD	for	J	couplings	and	chemical	shifts7,	we	
have	 formulated	a	 full	 implementation	of	a	simple	black	box-style	EISD	scoring	approach	
for	 each	 new	 data	 type,	 demonstrating	 the	 ability	 of	 EISD	 to	 distinguish	 between	 the	
quality	 of	 conformational	 ensembles	 against	 an	 even	wider	 set	 of	 experimental	 data.	We	
then	 describe	 results	 from	 the	 expanded	 EISD	 scoring	 of	 the	 individual	 experimental	
restraint	types,	and	validate	the	ability	of	the	newly	developed	algorithms	to	refine	a	1,700-
conformation	structural	ensemble	of	the	intrinsically	disordered	drkN	Sh3	peptide21	from	
the	Protein	Ensemble	Databank	(PED)22,	23	using	experimental	data	from	the	PED	entry	and	
the	 literature18,	 24.	We	close	this	chapter	with	tests	to	characterize	the	relative	abilities	of	
the	different	experimental	modules	to	refine	the	structural	ensembles,	and	discuss	future	
directions	for	the	EISD	Bayesian	model.	
	 	
5.2	Materials	and	Methods	
	
Experimental	Inferential	Structure	Determination	
The	J	coupling	and	chemical	shift	restraints	 for	which	EISD	scoring	algorithms	have	been	
developed	 illustrate	 two	 general	 ways	 to	 formulate	 the	 scoring	 method	 for	 any	
experimental	 observable.	 For	 J	 couplings,	 we	 explicitly	 optimize	 over	 each	 variable	
parameter	 involved	 in	 back-calculation,	 whereas	 for	 chemical	 shifts	 we	 treat	 the	 back-
calculator	as	a	black	box	and	instead	optimize	over	a	generic	error	parameter.	

For	 J	 couplings,	 in	 particular	 the	 =>5?>@ 	 that	 reports	 on	 the	 ensemble-averaged	
dihedral	angle	A,	the	empirically	fitted	Karplus	equation	is	used	for	back-calculation:	
	

=>5?>@ = B CDE A − 60 I + J CDE A − 60 + K			 	 (2)	
	
For	 every	 individual	 =>5?>@ 	 included	 as	 a	 restraint,	 the	 EISD	 score	 L B, J, K 	 will	
incorporate	 the	 log	 likelihood	 of	 the	 optimal	 instances	 of	 the	 back-calculation	 nuisance	
parameters	B, J,	and	K	and	an	experimental	error	nuisance	parameter	MNO:	
	
L B, J, K = 	 #$ % B; QR, SR + #$ % J; QT, ST + #$ % B; QU, SU + #$ % MNO B, J, K ; 0, SVWX 	

	 	 	 	 	 	 	 	 	 	 	 (3)	
	
where	B, J,	and	K	are	treated	as	Gaussian	random	variables	for	which	the	mean	values	and	
standard	deviations	are	drawn	from	the	work	of	Vuister	and	Bax25.	The	experimental	error	
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MNO B, J, K = ) − B CDE A − 60 I − J CDE A − 60 − K		 	 (4)	
	
is	 the	difference	between	 the	experimental	value,	),	 and	 the	back-calculated	value,	using	
the	 optimal	 instances	 of	B,	J,	 and	K,	 and	 is	 treated	 also	 as	 a	 Gaussian	 random	 variable	
drawn	from	a	distribution	with	mean	0	and	standard	deviation	SVWX 	equal	to	the	reported	
experimental	 uncertainty	 for	 the	 measurement.	 Applying	 the	 maximum	 likelihood	
estimator	approach,	 the	derivatives	of	Equation	(3)	are	taken	with	respect	to	B,	J,	and	K	
and	each	set	to	equal	0.	The	resulting	set	of	 linear	equations	is	solved	to	find	the	optimal	
values	 of	 B,		 J,	 and	 K	 given	 the	 test	 structural	 ensemble,	 experimental	 value,	 and	
experimental	 uncertainty,	which	 are	 then	used	 in	Equation	 (3)	 to	 calculate	 the	 score	 for	
that	restraint.	For	a	set	of	experimental	J	couplings,	the	total	score	is	the	sum	of	the	score	
for	 each	 individual	 restraint.	 In	 this	 way,	 EISD	 incorporates	 both	 the	 uncertainty	 in	 the	
back-calculation—by	weighting	the	score	by	the	variances	in	the	values	of	B,	J,	and	K—and	
in	experiment	for	the	scoring.	

The	approach	for	chemical	shifts	is	different	because	common	back-calculators	such	
as	 SHIFTX25	 and	 SPARTA+4	 incorporate	 their	 own	 internal	 logic	 and	 weighting	 for	 the	
different	components	used	to	back-calculate	chemical	shifts,	 to	the	extent	of	precluding	a	
simple	and	differentiable	mathematical	form.	Instead,	the	back-calculator	is	treated	using	a	
black-box	model	 for	 a	 score	L Y 	 that	 optimizes	 over	 a	 single	 error	 parameter	 for	 back-
calculation	Y	
	

L Y = #$ % Y; 0, SZ + #$ % MNO Y ; 0, SVWX 	 	 	 (5)	
	
where	Y	 is	treated	as	a	Gaussian	random	variable	with	mean	0	and	standard	deviation	SZ 	
equal	to	the	published	RMSD	for	Shiftx25	for	the	relevant	atom	type,	and	the	experimental	
nuisance	parameter		
	

MNO Y = ) − Y − 1

5
D4

5
401 	 	 	 	 	 (6)	

	
is	 the	 difference	 between	 the	 experimental	 shift	 value	 )	 and	 the	 average	 of	 the	 back-
calculated	shifts	D4 	from	each	structure,	accounting	for	Y.	Applying	the	maximum	likelihood	
approach	 here	 produces	 a	 single	 equation	 to	 calculate	 the	 optimal	 value	 of	 Y	 given	 the	
back-calculator	uncertainty,	experimental	uncertainty,	and	experimental	shift	value.		

Though	 it	 is	 less	 nuanced	 than	 the	 approach	 for	 J	 couplings,	 this	 black	 box-style	
approach	 still	 incorporates	 effects	 of	 variation	 in	 the	 experimental	 and	 back-calculation	
uncertainties,	 and	 is	 the	 most	 appropriate	 form	 for	 scoring	 when	 the	 back-calculation	
algorithm	does	not	have	a	readily	differentiable	mathematical	form.	
	
New	EISD	Scoring	Approaches	for	Additional	Experimental	Data	Types	
As	a	proof	of	concept	of	the	ability	of	EISD	to	treat	other	data	types,	we	start	by	developing	
similar	black	box	scoring	approaches	as	has	been	done	for	chemical	shifts,	optimizing	over	
a	generic	error	parameter.		

Nuclear	Overhauser	Effects	(NOEs)	Homonuclear	1H-1H	NOEs	report	on	the	distance	
between	 two	 spins6,	 8,	 12,	with	 the	 intensity	 value	of	 the	NOE	cross-peak	 scaling	with	 the	
distance	to	the	negative	sixth	power	and	signals	generally	being	obtainable	up	to	time-	and	
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ensemble-averaged	 distances	 of	 5	Å.	 Characterization	 of	NOEs	 for	 IDPs	 is	more	 complex	
than	 for	 folded	 proteins	 due	 to	 the	 decreased	 ability	 to	 precisely	 assign	 peak	 values	 to	
specific	 nuclei26.	 Other	 complications	 include	 the	 potential	 for	 signals	 that	 arise	 from	
oligomerization	or	aggregation,	and	the	increased	likelihood	and	role	of	chain	dynamics	in	
spin	 relaxation13.	 Most	 standard	 NMR	 spectroscopy	 analysis	 packages27-29	 convert	 NOE	
intensities	to	distance	restraints	of	varying	tightness	or	strength	between	the	pair	of	atoms,	
or	possible	pairs	of	atoms	if	the	peak	assignment	is	ambiguous.		
	 Back-calculation	of	NOEs	 from	simulation	can	be	done	to	varying	degrees	of	rigor,	
depending	on	whether	or	not	dynamical	 information	is	available	and	incorporated.	When	
the	 conformational	 ensemble	 is	 derived	 from	MD,	 it	 is	 possible	 to	 fully	 incorporate	 the	
dynamical	 effects	 on	 NOEs	 with	 further	 short	 simulations	 from	 each	 conformer	 to	
characterize	the	relevant	correlation	times	of	each6,	12,	13.	These	in	turn	are	used	to	calculate	
per-conformer	 estimates	 of	 the	 spectral	 density	 functions,	 allowing	 fairly	 precise	 back-
calculation	 of	 both	 homonuclear	 1H-1H	 NOEs,	 and	 other	 relaxation	 parameters	 such	 as	
heteronuclear	1H-15N	NOEs	and	relaxation	times.	
	 When	 using	 only	 static	 structures,	 or	 structures	 generated	 with	 statistical	 coil	
models	 and	 other	 such	 techniques	 where	 no	 dynamical	 information	 is	 available,	 direct	
back-calculation	 is	 less	 rigorous.	 The	 key	 parameter	 that	 varies	 per	 structure	 for	
homonuclear	 NOEs,	 the	 hydrogen-hydrogen	 distance,	 is	 sufficient	 to	 estimate	 scaled,	
ensemble-averaged	 values	 of	 the	 peak	 intensity,	 albeit	 lacking	 potential	 variation	 across	
the	 length	of	 the	 chain	 that	might	 result	 from	differences	 in	dynamics.	A	parallel,	 simple	
back-calculation	for	1H-15N	NOEs	and	other	relaxation	parameters	is	far	less	clear	to	define,	
as	 the	 analogous	 key	 distance	 involved,	 the	 amide-proton	 vector,	 does	 not	 vary.	 Rather,	
differences	in	the	values	of	these	relaxation	parameters	are	entirely	based	on	differences	in	
dynamical	 behavior.	 As	 such,	 a	 back-calculation	 that	 could	 model	 differences	 between	
individual	 conformations	 in	 an	 ensemble,	 or	 small	 sets	 of	 conformations	 within	 an	
ensemble,	 would	 require	 a	 way	 to	 estimate	 differences	 in	 either	 per-residue	 or	 per-
structure	 time	 correlation	 functions	 based	 off	 of	 individual	 static	 structures,	 or	 perhaps	
from	 small	 sets	 of	 structures	 by	 attempting	 to	 estimate	 correlation	 or	 transition	 times	
between	structures.	
	 We	 therefore	 focus	 on	 homonuclear	 NOEs,	 as	 reasonable	 back-calculation	 is	
possible	 for	 these	 regardless	 of	 the	 generation	 method	 of	 the	 conformational	 pool.	 The	
intensity	 of	 NOE	 cross-peaks	 is	 proportional	 to	 the	 distance	 to	 the	 inverse	 sixth	 power	
between	 the	 two	 nuclei8,	 and	 could	 therefore	 be	 the	 target	 signal	 for	 back-calculation.	
However,	much	NOE	data	is	reported	as	distance	restraints30,	after	having	been	processed	
with	programs	such	as	NMRPipe27,	XPLOR-NIH29,	or	CYANA28.	Furthermore,	in	many	cases	
distance	 restraints	 are	 further	 binned	 into	 classes	 –	 e.	 g.	 strong	 restraints	 of	 <	 2.5	 Å,	
medium	restraints	<	4	Å,	and	weak	restraints	<	5	Å	–	rather	than	reporting	values	that	are	
directly	proportional	to	the	intensity.	
	 Given	this	common	filtering	into	distance	restraints,	we	take	the	same	approach	to	
back-calculation	 as	 ENSEMBLE21,	 31-33,	 calculating	 the	 ensemble-averaged	 distance	
)[\][	from	the	set	of	2	structures	
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		 	 	 	 (7)	
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incorporating	inverse	sixth	power	ensemble	averaging	over	the	per-structure	distances	-4 .	
We	assign	the	target	experimental	value	)	to	be	the	midpoint	of	the	range	specified	by	the	
restraint,	and	define	the	variance	around	the	target	distance	SVWX 	as	a	fraction	of	the	range,	
which	we	explore	in	the	results	section.	
	 For	every	distance	restraint,	the	EISD	score	is	calculated	using	Equation	(5)	with	the	
experimental	 error	 distribution	 set	 as	 defined	 above,	 and	 the	 experimental	 nuisance	
parameter	MNO	calculated	as	
	

MNO Y = ) − Y − )[\][ 	 	 	 	 (8)	
	
We	 obtain	 rather	 large	 estimates	 of	 the	 experimental	 error,	 such	 that	 the	 estimated	
distribution	 around	 the	 restraint	 value	 is	 fairly	 flat.	 As	 a	 result	 of	 this,	 since	 our	 simple	
back-calculation	is	effectively	just	a	comparison	of	ensemble-averaged	simulation	distances	
to	processed	distance	restraints,	we	set	the	back-calculation	error	to	be	very	small,	0.001	A.	

Paramagnetic	 Relaxation	 Enhancements	 (PREs)	 Similar	 to	 NOEs,	 PREs	 report	 on	
ensemble-	and	time-averaged	distances	to	the	inverse	sixth	power,	with	strong	dynamical	
contributions16,	34.	To	conduct	PRE	experiments,	a	paramagnetic	center	must	be	introduced	
to	the	protein,	such	as	through	covalent	bonding	of	a	spin	label,	commonly	MTSL	for	IDPs.	
The	 experiment	 then	 reports	 differences	 in	 the	 relaxation	 rates	 when	 the	 paramagnetic	
center	is	present	versus	absent,	which	are	converted	to	estimates	of	distances	between	the	
paramagnetic	center	and,	most	commonly,	the	amide	protons	of	each	residue.	PRE	signals	
can	distinguish	between	a	much	 larger	 range	of	distances	 than	NOEs,	 roughly	10	–	25	Å.	
Above	 and	 below	 these	 distances	 there	 is	 no	 longer	 a	 strong	 change	 in	 signal14.	 As	with	
NOEs	again,	PREs	are	often	converted	to	distance	restraints	in	a	very	coarse	manner	based	
on	binning	of	intensity	ratios,	with	generic	long	distance	restraints	constrained	to	a	range	
of	 25	 –	 100	 Å,	 short	 distance	 restraints	 to	 less	 than	 10	 Å,	 and	 a	 set	 of	 medium-range	
distance	 restraints,	 where	 the	 signal	 response	 is	 strongest	 with	 respect	 to	 distance,	
covering	the	middle30.	Multiple	constructs	with	the	tag	at	different	locations	on	the	peptide	
may	be	used	to	provide	several	sets	of	restraints.		

One	 potential	 issue	 with	 PREs	 is	 whether	 the	 chemical	 modification	 of	 system	
induces	different	dynamics,	or	alters	structural	population.	While	folded	proteins	are	fairly	
resistant	 to	perturbation	 from	this	kind	of	structural	modification,	we	have	 found	that	 in	
simulation,	 tagged	 IDPs	 can	 sample	 and	 favor	 non-native	 conformations	 and	 contacts15,	
such	that	a	set	of	experimentally	derived	PRE	restraints	might	possibly	provide	conflicting	
data	 from	 other	 experiments	 that	 do	 not	 so	 perturb	 the	 structural	 ensemble.	 Careful	
selection	of	the	tag	and	its	location	should	be	used	to	minimize	this	potential	for	error.	
	 With	PREs,	the	possibilities	for	back-calculation	and	treatment	are	the	same	as	for	
NOEs.	 The	 simplest	 approach,	 which	 we	 use	 as	 a	 proof-of-concept	 here,	 is	 to	 compare	
ensemble-averaged	distances	 from	simulation	ensembles	to	converted	distance	restraints	
from	PRE	 intensities,	 setting	 the	mean	value	of	 the	restraint	 to	 the	center	of	 the	allowed	
range,	 and	basing	 the	 experimental	 uncertainty	on	 the	 restraint	 range.	We	 therefore	use	
the	same	EISD	scoring	approach	as	well,	comparing	ensemble-averaged	distances	D4 	with	
experimental	 distance	 restraint	 values	 ),	 calculating	 the	 error	 between	 the	 two	 with	
Equation	(8)	and	the	corresponding	EISD	score	with	Equation	(5).	
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Residual	 Dipolar	 Couplings	 (RDCs)	 Dipolar	 couplings	 between	 pairs	 of	 spins	 can	
provide	 useful	 signals	 for	 predicting	 local	 structure,	 upon	 inducing	 partial	 alignment	 of	
molecules	in	solution	with	magnetic	field16,	17.	For	IDPs,	RDCs	resulting	from	the	alignment	
of	the	amide	in	the	peptide	bond	are	the	most	commonly	measured	and	reported.	RDCs	are	
noted	 to	 be	 sensitive	 to	 formation	 of	 secondary	 structure,	 and	 useful	 for	 structure	
refinement	in	combination	with	chemical	shifts.	
	 Back-calculation	 of	 RDCs	 uses	 calculation	 of	 the	 alignment	 tensors	 of	 the	 static	
structure,	which	can	be	done	globally	for	the	entire	peptide	as	in	PALES35,	or	locally	using	
fragments	 of	 the	 peptide	 as	 in	 the	 local	 RDC	 calculator	 from	 Forman-Kay17.	 Local	 back-
calculation	of	RDCs	has	been	shown	 to	be	able	 to	better	model	experimental	RDCs	when	
using	smaller	ensembles	of	structures.	
	 Here,	we	use	the	local	RDC	back-calculator,	with	standard	values	of	parameters,	to	
get	per-conformation	RDCs	D4 	for	the	amide	bond	vector	of	each	residue.	For	EISD	scoring,	
we	take	the	simple	ensemble	average	of	these	RDCs,	calculating	the	experimental	nuisance	
parameter	as	with	chemical	shifts	using	equation	(6)	and	the	EISD	score	with	Equation	(5).	
We	estimate	the	uncertainty	in	back-calculation	error	SZ 	based	on	the	performance	of	the	
test	 set	 of	 peptides	 in	 the	 local	 RDC	 publication17,	 settling	 on	 a	 value	 of	 0.88	 Hz.	 Our	
estimation	is	further	discussed	in	the	Appendix,	summarized	in	Table	S1.	

Hydrodynamic	radius	(;<)	The	hydrodynamic	radius	of	a	molecule	is	the	radius	of	a	
sphere	 that	 would	 have	 the	 same	 diffusion	 coefficient	 as	 the	 molecule.	 It	 can	 be	
experimentally	 determined	 by	 calculating	 the	 translational	 diffusion	 coefficient	 of	 the	
molecule	with	a	technique	such	as	pulsed	field	gradient	NMR18,	and	then	using	the	Stokes-
Einstein	relationship	to	calculate	an	ensemble-averaged	estimate	of	the	;< .	Like	the	radius	
of	gyration	(;f),	the	;<	is	useful	as	a	measure	of	the	overall	degree	of	expansion	of	the	IDP,	
ranging	from	more	globule-like	collapsed	structures	to	fully	extended	random	coil.	
	 We	use	the	program	HYDROPRO36	to	calculate	;< ,	which	takes	static	structures	and	
uses	a	bead-shell	model	to	estimate	hydrodynamic	properties.	HYDROPRO	is	estimated	to	
typically	have	4	%	error	in	the	estimation	of	;< .	
	 For	EISD	scoring,	we	calculate	 the	ensemble-averaged	back-calculated	;<	over	 the	
set	of	candidate	structures,	and	set	the	experimental	error	based	on	the	values	published.	
We	estimate	the	back-calculation	error	by	taking	the	experimental	;<	value	multiplied	by	
the	4	%	error	estimated	by	HYDROPRO.	

Förster	 Resonance	 Energy	 Transfer	 (FRET)	 Efficiency	 FRET19,	 20,	 24	 reports	 on	 long	
range	 distances	 between	 two	 covalently	 bound	 dyes,	 the	 pair	 chosen	 so	 that	 the	
fluorescence	wavelength	of	one	dye,	 the	donor,	matches	 the	excitation	wavelength	of	 the	
other,	the	acceptor.	The	excited	donor	dye	may,	rather	than	fluorescing,	transfer	energy	to	
the	 acceptor	 dye	 with	 a	 dipole-dipole	 coupling,	 such	 that	 the	 relative	 amounts	 of	
fluorescence	 from	 the	 two	 dyes	 can	 be	 related	 to	 the	 efficiency	 of	 energy	 transfer	 g	
between	the	two,	which	in	turn	is	dependent	on	the	distance	hi?R	between	the	donor	and	
acceptor:	
	

g = 1 + hi?R hk e ?1	 	 	 	 (9)	
	
where	hk	 is	the	Förster	radius	of	the	donor-acceptor	pair.	In	an	ensemble	experiment,	the	
average	g	 can	be	used	 to	 generate	 distance	 restraints	 for	 the	 two	 residues	 to	which	 the	
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dyes	 are	 attached,	 with	 multiple	 experiments	 consisting	 of	 different	 FRET	 constructs—
different	pairs	of	dyes,	or	dyes	linked	to	different	residues	on	the	protein—sometimes	used	
to	produce	multiple	restraints.	Commonly	used	fluorophores	can	be	as	large	or	larger	than	
bulky	amino	acid	side	chains,	so	there	is	a	possibility	that,	depending	on	where	the	dye	is	
attached,	 it	might	perturb	 the	 structure	or	dynamics	of	 the	 system,	 as	has	been	 seen	 for	
PREs15.	
	 Ensemble	FRET	efficiencies	can	be	back-calculated	by	simply	taking	the	appropriate	
distance	measurements	 from	 static	 structures,	 calculating	 per-structure	 efficiencies,	 and	
then	averaging	together.	Except	for	the	case	of	studies	that	include	explicit	representation	
of	the	dyes	during	dynamics	or	conformer	generation,	a	model	is	needed	to	account	for	the	
difference	 between	 the	 distance	 between	 the	 two	 residues	 to	 which	 dyes	 would	 be	
attached,	and	the	distance	between	the	dye	centers	themselves.	A	common	approach19	is	to	
treat	 the	 addition	 of	 the	 dyes	 as	 some	 number	 of	 additional	 residues,	 and	 use	 a	 simple	
polymer	model	to	scale	up	the	Cα-Cα	distance	of	the	native	peptide:	
	

hi?R = hU@?U@
5l5m_noWp

5

q
	 	 	 	 	 (10)	

	
where	 hU@?U@ 	 is	 the	 Cα-Cα	 distance,	2	 is	 the	 number	 of	 residues	 between	 the	 relevant	
residues,	2]4rsNt 	 is	 the	 number	 of	 estimated	 additional	 amino	 acids,	 and	 u	 is	 the	 Flory	
scaling	exponent.	
	 For	EISD	scoring,	we	initially	back-calculate	the	individual	FRET	efficiency	of	every	
conformation	 assuming	 mean	 values	 of	 the	 involved	 back-calculation	 parameters	 as	
discussed	in	the	Results	section.	Estimation	of	the	uncertainty	SZ 	in	back-calculation	is	also	
discussed	in	Results.	We	use	a	typical	estimate	of	the	error	in	the	experimental	ensemble	g	
value	of	0.02	for	SVWX ,	and	calculate	the	score	as	before	with	Equation	(5).	
	
Test	Data	for	the	drkN	Sh3	Disordered	Domain	
We	test	the	new	EISD	modules	on	the	unfolded	state	ensemble	of	the	drkN	Sh3	peptide18,	24,	
33,	chosen	because	of	the	wide	variety	of	experimental	data	that	is	available	for	it,	which	has	
made	 it	 popular	 as	 a	 test	 system	 for	 other	 ensemble	 scoring	 and	 refinement	 programs,	
most	notably	ENSEMBLE.	For	structures,	we	use	a	1,700-conformer	ensemble	deposited	by	
the	Forman-Kay	group21	on	the	PED37,	consisting	of	an	aggregated	set	of	best-fit	ensembles	
from	 multiple	 runs	 of	 the	 program	 ENSEMBLE32.	 The	 PED	 deposition	 includes	 a	 set	 of	
experimental	data	we	also	use,	consisting	of	chemical	shifts,	J	couplings,	homonuclear	NOE	
distance	 restraints,	 PRE	distance	 restraints,	 and	RDCs.	We	 additionally	 use	 experimental	
;<18	and	ensemble	FRET	efficiency24	from	other	work	by	Forman-Kay	and	collaborators.	
In	all	cases	we	use	the	full	set	of	restraints	available,	with	the	exception	of	discarding	the	
small	number	of	NOEs	for	which	there	is	ambiguity	in	the	pairs	of	residues	involved.	
	
Sub-Ensemble	Scoring	and	Optimization	using	EISD	
To	characterize	 the	general	agreement	between	the	ensemble	and	the	experimental	data,	
we	 generate	 1,000	 random	 sub-ensembles	 of	 sizes	 2	 =	 2,	 5,	 10,	 25,	 50,	 and	 100,	
demonstrating	 the	 typical	 scoring	 behavior	 for	 each	 data	 type,	 as	 well	 as	 the	 overall	
expected	convergence	to	improved	scores	and	lower	disagreement	with	experiment	as	the	
ensemble	size	increases.	We	allow	the	same	conformation	to	be	selected	for	any	number	of	



	 79	

times	in	any	ensemble,	to	reflect	the	potential	different	weighting	or	sampling	of	different	
conformational	states.	
	 To	provide	a	comparison	against	the	EISD	score	for	any	data	type,	we	also	calculate	
a	restraint	RMSD	
	

;6w) =
i_
xymx?i_

WXz {|
_cd

/
		 	 	 	 (11)	

	
where	for	any	data	type,	we	take	the	set	of	6	restraints	with	experimental	values	)4

NO}	and	
compare	 them	 to	 the	 ensemble-averaged	 back-calculated	 values	 )4[\][ .	 The	 exterior	
brackets	reflect	averaging	over	the	repeated	1,000	ensembles.	There	is	only	one	restraint	
each	for	two	of	the	experimental	data	types,	;<	and	FRET	efficiency	g,	so	we	will	generally	
refer	 to	an	absolute	deviation	 from	 the	 restraint	 for	 these	 two	data	 types	 rather	 than	an	
RMSD.	
	 To	 characterize	 the	 utility	 of	 an	EISD	 score	 as	 a	 target	 value	 for	 optimization,	we	
attempt	to	improve	the	score	of	the	1,000	randomly	sampled	ensembles	for	ensemble	size	
2	 =	 100.	We	use	 a	 simple	direct	maximization,	 performing	10,000	exchange	 attempts	 to	
replace	one	member	conformation	with	another	from	the	total	pool	of	1,700,	accepting	an	
exchange	if	the	new	ensemble	has	a	higher	EISD	score	than	the	previous.	We	perform	the	
optimization	comparing	against	only	a	single	experimental	data	type	at	a	time,	to	allow	for	
characterization	of	the	different	degrees	of	restraining	power	for	each.		

Given	 that	 the	 total	 pool	 of	 1,700	 conformers	 is	 derived	 from	 pre-refined	
ensembles21	 against	 much	 of	 the	 experimental	 data	 used	 here,	 there	 is	 likely	 some	
limitation	to	the	degree	of	improvement	that	is	seen,	relative	to	tests	using	a	pool	of	truly	
random	 coil	 conformations.	 However,	 since	 the	 primary	 goal	 of	 this	 initial	 work	 is	 to	
demonstrate	the	applicability	of	EISD	scoring	to	the	various	new	experimental	data	types	
being	tested,	we	are	satisfied	with	working	within	this	range.	
	
5.3	Results	
	
Full	Ensemble	Characterization	
Having	already	been	refined	against	this	full	set	of	experimental	data,	the	1,700-conformer	
ensemble	in	the	PED	demonstrates	strong	agreement	with	the	full	experimental	dataset,	as	
summarized	 in	 Table	 1	 per	 data	 type	 and	 Supplemental	 Figure	 1	 for	 each	 individual	
restraint.	
	 The	 secondary	 structure	 content	 of	 the	 full	 ensemble	 is	 plotted	 in	 Figure	 1.	
Secondary	 structure	 content	 was	 calculated	 using	 the	 implementation	 of	 the	 DSSP	
algorithm	within	the	AmberTools	program	cpptraj38.	Results	are	not	shown	for	β	content	or	
π	helices,	as	the	full	ensemble	contains	only	negligible	amounts	of	these	structures.	Error	
bars	represent	±	one	standard	deviation	of	per-residue	structure	propensities	among	a	set	
of	1,000	randomly	drawn	sub-ensembles	consisting	of	100	conformers	each.		

The	 full	 ensemble	 is	 largely	 disordered,	 with	 the	main	 structural	 feature	 being	 a	
peak	in	3-10	helix	propensity	around	35	–	40	%	in	residues	16-20.	The	ensemble-averaged	
;f ,	 also	calculated	with	cpptraj38,	 is	18.5	±	0.2	Å,	with	 the	uncertainty	calculated	 in	 the	
same	way	as	for	secondary	structure	propensities.	
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Table	1:	Full	ensemble	restraint	RMSDs	(NOEs,	PREs,	RDCs,	J	couplings,	and	chemical	shifts)	
or	absolute	deviations	(;<	and	FRET	efficiency)	from	experimental	data.	
	

Experimental	data	
type	

Number	of	
restraints	

Restraint	
RMSD	

NOEs	(Å)	 93	 2.21	
PREs	(Å)	 68	 1.82	
RDCs	(Hz)	 28	 0.50	
;<	(Å)	 1	 0.30	
FRET	efficiency	 1	 0.07	
J	couplings	(Hz)	 47	 0.31	
Chemical	shifts	(ppm)	 267	 0.28	

	

	
Figure	1:	Secondary	 structure	propensities	per	 residue	of	 the	 full	 ensemble.	Error	bars	are	
shown	 as	 ±	 one	 standard	 deviation	 for	 the	 secondary	 structure	 propensities	 of	 1,000	
random	sampling	ensembles	of	100	conformers	each.	
	
Testing	of	New	EISD	Modules	in	Single-Mode	Optimization	
NOEs	 For	 NOEs,	 we	 set	 the	 target	 experimental	 value	 to	 be	 the	 mean	 distance	 of	 the	
allowed	restraint	 range.	Each	experimental	 restraint	 for	drkN	Sh3	available	 restrains	 the	
distance	between	the	pair	of	protons	to	less	than	8	or	10	Å21.	The	optimal	distance	for	each,	
then,	 will	 be	 4	 or	 5	 Å.	 The	 remaining	 question	 is	 how	 to	 set	 SVWX .	 Since	 the	 direct	
experimental	measurement,	the	peak	intensity,	has	already	been	thoroughly	converted	and	
scaled,	 we	 cannot	 simply	 use	 the	 ±	 on	 the	 intensity	 value.	 Furthermore,	 the	 conversion	
from	 peak	 intensity	 to	 distance	 restraint	 incorporates	much	 of	 what	 would	 typically	 be	
considered	back-calculation	uncertainty,	as	reflected	in	the	fairly	uniform	and	wide	set	of	
restraints.	
	 We	therefore	test	multiple	values	of	SVWX ,	based	on	dividing	the	restraint	range	by	a	
series	of	integers.	The	resulting	relative	probabilities	of	an	observed	distance,	normalized	
to	the	restraint	value,	are	shown	in	Figure	2.	As	SVWX 	 is	further	restricted,	the	model	more	
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closely	 matches	 one	 intention	 of	 the	 restraint—to	 penalize	 observed	 distances	 that	 are	
outside	of	the	restraint	range.	Smaller	values	of	SVWX ,	however,	also	result	in	a	wide	range	of	
relative	 probabilities	within	 the	 restraint	 range,	 and	might	 result	 in	 too	 strong	 of	 a	 bias	
toward	 the	middle	of	 the	 range.	Conversely,	 larger	values	of	SVWX 	more	closely	match	 the	
expectation	 that	 all	 distances	 within	 the	 restraint	 range	 should	 be	 of	 roughly	 equal	
likelihood,	but	might	not	sufficiently	penalize	distances	outside	of	the	restraint	range.	

	
Figure	2:	Variation	in	relative	probabilities	with	different	scaling	of	SVWX 	for	NOEs.	The	x-axis	
is	 normalized	 the	 restraint	 value,	 4	 or	 5	Å	 for	 this	 set	 of	 test	 data,	 such	 that	 the	peak	 is	
always	set	to	1	in	the	plot,	and	the	dashed	black	line	represents	the	nominal	upper	bound	
of	the	restraint	range.	
	
	 This	effect	 is	manifested	in	the	varying	aggregate	probabilities	of	randomly	drawn	
ensembles	of	different	sizes,	shown	in	Figure	3	for	SVWX 	=	range/2,	and	for	all	tested	values	
of	SVWX 	in	Supplemental	Figure	2.	The	value	of	the	ensemble	score	increases	and	the	range	
of	 scores	 among	 ensembles	 decreases	 as	 the	 number	 of	 conformations	 in	 the	 ensemble	
increases.	This	 reflects	 and	 confirms	 the	overall	 very	good	 fit	 of	 the	 full	 ensemble	 to	 the	
experimental	data,	as	also	seen	in	the	full	ensemble	fit	in	Table	1	and	the	RMSDs	of	random	
ensembles	 in	 Supplemental	 Figure	 3.	 This	 very	 good	 overall	 fit	 results	 in	 RMSDs	 for	
randomized	ensembles	 that,	with	enough	 conformations,	 are	 entirely	within	 the	nominal	
experimental	restraint	ranges,	with	restraint	RMSDs	less	than	4	Å.	We	may	be	limited	from	
seeing	 some	 of	 the	 possible	 negative	 effects	 of	 setting	 larger	 values	 of	 SVWX 	 given	 this	
apparent	lack	of	sets	of	conformations	that	significantly	deviate	from	the	restraints.	
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Figure	 3:	 EISD	 scores	 for	 randomized	 ensembles	 of	 different	 sizes	 according	 to	 different	
experimental	 data	 types.	 Mean	 scores	 are	 calculated	 across	 1,000	 repeated	 random	
samplings	of	different	 ensembles,	with	 error	bars	 representing	±	one	 standard	deviation	
across	the	1,000	replicates.	
	

This	 trend	 persists	 following	 optimization	 of	 the	 ensembles,	 with	 histograms	 of	
scores	 of	 optimized	 and	 randomized	 ensembles	 using	 SVWX 	 =	 range/2	 in	 Figure	 4,	
histograms	of	RMSDs	using	SVWX 	=	range/2	in	Supplemental	Figure	4,	and	a	summary	of	the	
optimized	scores	and	RMSDs	in	Table	2	for	all	tested	values	of	SVWX .	 In	all	cases	there	is	a	



	 83	

clear	 separation	 between	 the	 scores	 and	 RMSDs	 of	 optimized	 ensembles	 versus	
randomized	ensembles,	reflecting	consistent	convergence	toward	minimized	deviation	and	
maximized	 scores.	 The	 overall	 tightness	 of	 the	 distributions	 of	 optimized	 scores	 and	
RMSDs	 reflects	 that	 maximization	 using	 the	 total	 EISD	 score	 is	 reproducibly	 capable	 of	
converging	 to	 similar	 results	 independent	 of	 the	 starting	 ensemble,	 even	with	 relatively	
few	total	exchanges	relative	to	the	size	of	the	total	conformational	pool.	
	 There	is	no	observed	change	in	the	restraint	RMSDs	after	optimization	based	on	the	
different	tested	values	of	SVWX .	This	is	likely	due	to	the	fairly	extensive	direct	maximization	
procedure	 used	 relative	 to	 the	 overall	 mismatch	 of	 the	 full	 ensemble.	 An	 annealing	
procedure	with	 a	 non-zero	 probability	 of	 accepting	 exchanges	 that	 slightly	 decrease	 the	
score	depending	on	 the	 temperature	scale	used	would	be	expected	 to	demonstrate	some	
sensitivity	 to	 the	sharpness	of	 the	SVWX ,	 and	represents	a	potential	 future	development	 in	
the	EISD	protocol.	
	
Table	 2:	NOE-optimized	 ensemble	 scores	 and	 restraint	 RMSDs	 for	 varying	 values	 of	 SVWX .	
Scores	 and	 RMSDs	 are	 averaged	 across	 1,000	 repeats	 for	 each	 case,	 with	 uncertainties	
estimated	by	calculating	the	standard	deviation	across	the	repeats	in	parentheses.	
	
	 ~�ÄÅ 	=	range/2	 ~�ÄÅ 	=	range/3	 ~�ÄÅ 	=	range/4	 ~�ÄÅ 	=	range/5	
Score	 547.9	(0.11)	 579.1	(0.25)	 596.8	(0.46)	 605.8	(0.68)	
RMSD	(Å)	 1.41	(0.015)	 1.41	(0.015)	 1.41	(0.016)	 1.41	(0.015)	
	

PREs	Though	PREs	are	back-calculated	and	scored	the	same	as	NOEs	in	this	case,	we	
test	only	a	single	value	of	SVWX 	per	restraint,	dividing	the	experimental	range	by	4	to	fit	the	
experimental	 range	 to	 a	 95	%	 confidence	 interval	 on	 the	 normal	 distribution.	 Scores	 of	
randomized	ensembles	of	varying	sizes	are	shown	in	Figure	3,	with	corresponding	RMSDs	
in	Supplemental	Figure	3.	We	observe	a	similar	trend	as	for	NOEs,	with	scores	converging	
to	 higher	 values	 and	 RMSDs	 converging	 to	 lower	 values	 as	 the	 ensemble	 size	 increases,	
again	reflective	of	 the	prior	restraining	of	 the	 full	ensemble.	We	do	note	 the	significantly	
larger	range	in	score,	resulting	from	the	greater	signal	range	of	PREs	generally	and	the	far	
greater	 number	 of	 experimental	 restraints	 reporting	 on	 very	 distant	 pairs	 of	 residues,	
allowing	for	greater	variation	and	error	in	ensemble	averaged	distances	relative	to	the	NOE	
dataset,	which	consists	primarily	of	close	contacts.	
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Figure	4:	Histograms	of	scores	for	randomized	and	optimized	ensembles	of	100	conformers	
each,	 according	 to	 the	 experimental	 data	 type	 against	which	 optimization	 and	 scoring	 are	
performed.	Optimized	ensembles	are	in	blue,	randomized	ensembles	are	in	orange.	Each	set	
represents	1,000	optimized	and	randomized	ensembles.	
	
	 Optimization	against	the	PRE	score	again	confirms	the	utility	of	this	formulation	of	
the	EISD	scoring	metric	by	 increasing	the	value	and	decreasing	the	variation	 in	the	score	
(Figure	4),	and	corresponding	improvements	in	the	RMSD	(Supplemental	Figure	4).	
	 For	 both	 NOEs	 and	 PREs,	 we	 note	 that	 while	 we	 believe	 these	 results	 fully	
demonstrate	 the	 ability	 of	 EISD	 to	 characterize	 ensembles	 of	 differing	 quality,	 and	 its	
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appropriateness	 as	 a	 metric	 for	 ensemble	 comparison	 and	 optimization,	 the	 somewhat	
arbitrary	 nature	 of	 our	 assignment	 of	 very	 low	 values	 of	 the	 back-calculation	 error	 SZ 	
might	result	in	larger	shifts	in	the	score	for	these	two	data	types	than	for	the	others,	to	the	
point	of	potentially	overstating	the	increase	in	true	likelihood	of	a	match	between	the	final	
ensembles	 and	 the	 experimental	 data.	 Further	 testing	 against	 different	 systems,	 both	
different	 peptides	 and	 different	 initial	 pools	 of	 conformers,	 should	 be	 done	 to	 validate	
appropriate	scaling	of	SZ 	when	implementing	scoring	against	converted	distance	restraints.	
We	believe	these	tests	demonstrate	that	an	EISD	formalism	for	comparison	to	NOE	and	PRE	
data	is	clearly	viable	and	useful,	even	if	comparing	to	converted	distance	restraints	rather	
than	intensities,	but	that	comparison	to	intensities	would	be	better	and	more	nuanced,	and	
should	be	explored	and	implemented.	

RDCs	Similar	performance	is	obtained	for	RDCs	upon	randomly	sub-sampling	from	
the	full	ensemble,	with	scores	shown	in	Figure	3	and	RMSDs	in	Supplemental	Figure	3.	As	
expected	given	the	prior	restraining	of	the	full	ensemble,	and	as	demonstrated	in	the	local	
RDC	back-calculation	paper,	fairly	low	RMSDs	are	achieved	with	random	samplings	of	100	
conformations.	We	note	that	the	negative	scores	likely	result	from	the	fairly	high	values	of	
SVWX 	 (1.0	 Hz)	 and	 SZ 	 (0.88	 Hz)	 relative	 to	 the	 range	 of	 experimental	 values,	 at	 least	
compared	to	NOEs	and	PREs	where,	again,	we	have	somewhat	artificially	set	SZ 	to	be	quite	
low.	 It	 is	 possible	 that	 the	 experimental	 errors	 are	 overestimated	 here,	 an	 artificial	
reduction	of	SVWX 	to	0.1	Hz	results	in	scores	of	7.8	±	1.3	across	1,000	randomized	ensembles	
of	100	conformers	each.	In	any	case,	for	the	current	set	of	data,	the	lower	values	of	scores	
for	the	RDCs	conveys	that,	despite	the	relatively	good	fit	seen	in	the	RMSDs,	EISD	assigns	is	
lower	 confidence	 to	 the	match	between	 the	 conformational	 ensembles	 and	 experimental	
data,	in	a	way	that	standard	figures	of	merit	are	unable	to	capture.	
	 Likely	 due	 to	 the	 relatively	 large	 values	 of	 the	 uncertainties,	 optimization	 of	 the	
ensembles	 does	 not	 lead	 to	 as	 large	 of	 a	 shift	 in	 the	 scores	 (Figure	 4)	 despite	 a	 strong	
reduction	in	the	RMSD	(Supplementary	Figure	4).	This	would	again	shift	with	lower	values	
of	SVWX 	and	SZ ,	but	for	now	reflects	that,	 if	the	uncertainties	are	large,	even	a	near	perfect	
match	between	back-calculated	and	experimental	data	does	not	provide	much	confidence	
that	 the	 simulated	 ensemble	 is	 necessarily	 correct.	 Alternatively,	 given	 that	 the	
conformational	 pool	 has	 been	 refined	 against	 an	 extensive	 set	 of	 experimental	 data,	 the	
relatively	 low	 score	 for	 RDCs	 suggests	 that	 this	 set	 of	 experimental	 data	 may	 contain	
slightly	 less	useful	 information	 for	 structure	 refinement	 than	 the	others,	 though	we	note	
that	 other	 work	 has	 demonstrated	 their	 utility	 in	 improving	 modeling	 of	 tertiary	
structure32.	
	 ;<	Fitting	to	;<	is	simplified	compared	to	the	other	previously	discussed	restraints	
as	there	is	only	one	restraint	being	fit.	As	before,	randomized	ensemble	scores	(Figure	3)	
and	deviation	from	the	restraint	value	(Supplementary	Figure	3)	approach	convergence	as	
the	 ensemble	 size	 increases,	 appearing	 to	 converge	 at	 smaller	 sizes	 than	 for	 previous	
models	due	to	the	presence	of	only	one	restraint.	The	negative	score	values,	while	not	truly	
significant,	 convey	 again	 that	 despite	 reasonable	 agreement	 between	 the	 ensembles	 and	
experiment,	there	is	fairly	significant	uncertainty.	
	 As	 a	 result,	while	optimization	 is	 able	 to	generate	ensembles	 that	perfectly	match	
the	 experimental	 value	 of	 the	;<	with	 deviations	 on	 the	 order	 of	 10-5	Å	 (Supplementary	
Figure	4),	the	scores	remain	relatively	low	(Figure	4).	Furthermore,	that	there	is	only	one	
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restraint	 to	 fit	 results	 in	 overall	 lower	 changes	 in	 the	 magnitude	 of	 the	 score	 upon	
optimization,	as	it	is	overall	more	likely	that	a	random	ensemble	will	converge	to	a	similar	
level	of	agreement	as	an	optimized	ensemble	for	the	single	data	point.	
	 FRET	Efficiency	For	FRET	efficiency,	we	first	require	an	estimate	of	SZ .	As	with	RH,	
because	 there	 is	 only	 a	 single	 restraint	we	are	 able	 to	 generate	 ensembles	 that	perfectly	
match	 the	 experimental	 efficiency,	 assuming	 mean	 values	 for	 the	 back-calculation	 and	
experimental	nuisance	parameters.	To	estimate	SZ ,	we	recalculate	what	the	FRET	efficiency	
would	 be	 for	 such	 a	 set	 of	 perfect-fit,	 100-conformation	 ensembles	 while	 varying	 these	
parameters	within	 expected	 ranges,	 and	 assign	SZ 	 to	 be	 equal	 to	 the	 standard	 deviation	
among	 the	 106	 resulting	 recalculated	 ensemble	 FRET	 efficiencies	 (see	 Supplementary	
Figure	5)	=	0.0074.	
	 Using	this	value	of	SZ ,	we	again	calculate	scores	(Figure	3)	and	average	deviations	
(Supplementary	Figure	3)	for	randomly	drawn	ensembles	of	various	sizes,	finding	similar	
behavior	as	 for	RH,	 given	 the	single	 restraint	available	 for	comparison,	albeit	with	higher	
scores,	likely	due	to	the	lower	relative	uncertainty	values.	These	lower	uncertainties	likely	
drive	the	stronger	shift	in	score	upon	optimization	(Figure	4)	that	corresponds	to	a	similar	
reduction	in	deviation	from	experiment	(Supplementary	Figure	4).	
	
Comparisons	Between	Optimized	Ensembles	
We	compare	the	different	effects	of	the	optimization	according	to	each	experimental	data	
type	by	observing	shifts	in	the	secondary	structure	populations	from	the	full	ensemble,	and	
changes	 in	 the	 variation	 in	 secondary	 structure	 among	 the	 1,000	 repeats	 of	 each	
optimization	as	shown	in	Figure	5.	As	expected	given	the	prior	refinement	of	the	ensemble,	
none	of	the	optimizations	shift	secondary	structure	populations	entirely	away	from	that	of	
the	full	ensemble,	there	are	merely	small	localized	shifts.	
	 Two	 of	 the	 modules,	 RH	 and	 FRET	 efficiency,	 produce	 secondary	 structure	
distributions	and	errors	that	are	nearly	 identical	 to	that	of	 the	full	ensemble,	as	expected	
given	 that	 both	 consist	 of	 one	 fairly	 global	 restraint	 that	 would	 not	 be	 expected	 to	 be	
particularly	sensitive	to	secondary	structure.	The	greatest	shift	is	seen	for	chemical	shifts,	
where	 the	 very	 narrow	 error	 bars	 suggest	 that	 nearly	 identical	 sets	 of	 structures	 were	
selected	 for	 in	 final	ensembles,	 indicative	of	 the	strong	expected	dependence	of	chemical	
shifts	 on	 local	 structure.	 Beyond	 that,	 chemical	 shift	 optimization	 produces	 reduced	
amounts	of	helical	content	in	residues	1-10,	slight	enrichment	of	helical	content	in	residues	
15-20,	 and	 enrichment	 in	 the	 turn	 population	 at	 the	 C-terminus.	 The	 enrichment	 of	 α-
helical	 content	 in	 residues	 15-20	 is	 a	 fairly	 common	 feature,	 with	 optimization	 by	 J	
couplings,	NOEs,	PREs,	and	RDCs	also	resulting	in	that	shift.	Optimization	with	RDCs	and	J	
couplings	 produce	 other	 secondary	 structure	 shifts	 as	well,	 though	 the	 size	 of	 the	 error	
bars	remains	generally	similar	to	that	of	the	full	ensemble,	suggesting	that—while	they	do	
shift	 certain	 structural	 populations—they	 are	 similarly	 permissive	 around	 those	 mean	
values.	 Contrastingly,	 NOE	 refinement	 results	 in	 lower	 variance	 in	 secondary	 structure	
compared	to	random	sampling	of	the	full	ensemble,	perhaps	due	to	the	preponderance	of	
relatively	short	range	{i,	i	+	(3,	4,	5)}	restraints	in	the	NOE	dataset.	Optimization	with	PREs	
produces	in	some	places	larger	error	bars	than	the	random	sampling,	suggesting	that	some	
of	the	optimized	ensembles	are	quite	distinct	from	each	other.	This	corresponds	generally	
to	 the	 somewhat	 larger	 range	 in	 final	 RMSD	 values	 for	 the	 PRE-optimized	 ensembles,	
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perhaps	 as	 a	 result	 of	 greater	 difficulty	 of	 converging	 within	 the	 attempted	 number	 of	
exchanges.	

	
Figure	 5:	 Secondary	 structure	 propensities	 of	 optimized	 ensembles.	 Mean	 secondary	
structure	propensities	per	residue	from	1,000	optimized	ensembles	for	each	experimental	
data	type.	Error	bars	are	±	one	standard	deviation	from	the	1,000	replicates.	Propensities	
for	α	helix	are	in	blue,	3-10	helix	in	orange,	turn	in	gold,	and	bend	in	purple.	Propensities	
for	 β	 content	 and	 π	 helices	 are	 not	 shown	 due	 to	 negligible	 sampling.	 Full	 ensemble	
secondary	 structure	 propensities	 are	 reproduced	 at	 bottom	 right	 for	 convenience	 of	
comparison,	with	error	bars	 estimated	 from	1,000	 random	samplings	of	100	 conformers	
each.	
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Ensemble-averaged	values	of	the	;f,	a	global	measure	of	the	degree	of	extension	of	
the	peptide,	are	presented	in	Table	3.	Again	there	are	no	huge	shifts	in	;f,	doubly	expected	
given	 that	 the	 full	 ensemble	 was	 additionally	 refined	 against	 SAXS	 data,	 but	 the	 minor	
perturbations	in	both	mean	values	and	variances	point	to	differences	in	preferences	upon	
optimizing	 to	 the	 near-limit	 for	 each	 data	 type.	 Here	 again	 optimization	 with	 the	 ;<	
produces	 no	 shift	 in	 the	mean	 value,	 but	 has	 lower	 variance	 than	 random	 sampling	 and	
optimization	 with	 each	 other	 experimental	 restraint,	 suggesting	 that	 ;<	 is	 powerfully	
specific	for	overall	extension.	Refinement	with	NOEs	produces	the	largest	shift,	potentially	
suggesting	 that	 the	optimization	performed	was	too	strict,	and	might	be	better	 tempered	
by	 incorporating	some	 temperature	scaling	or	Metropolis	criterion.	We	may	also	here	be	
overfitting	 to	 a	 set	 of	 restraints	 that	 do	 not	 sufficiently	 account	 for	 the	 effects	 of	 chain	
dynamics	on	NOEs,	 given	 the	uniformity	of	 the	 restraint	values.	Development	of	 an	EISD	
scoring	 formalism	 for	 NOEs	 that	 accounts	 for	 dynamical	 effects,	 as	 well	 as	 for	 other	
observables	 with	 similar	 dynamical	 dependence,	 is	 important	 for	 truly	 capturing	 the	
physics	represented	by	the	measurement,	and	is	underway	in	the	group.	Interestingly	again	
PRE	 refinement	 produces	 larger	 variance	 in	;f	 than	 random	 sampling,	 highlighting	 the	
potential,	 at	 least	 within	 these	 already	 strongly	 refined	 ensembles,	 for	 disparate	 final	
ensembles	to	satisfy	the	PRE	data,	or	just	much	greater	difficulty	in	optimizing	to	match	the	
set	of	PRE	restraints.	
	
Table	3:	Ensemble-averaged	 ;f 	values	upon	optimization	with	different	experimental	data	
types.	 Mean	 values	 represent	 an	 average	 across	 1,000	 repeated	 optimizations	 for	 each	
restraint	 type,	 and	 uncertainty	 values	 in	 parentheses	 represent	 the	 standard	 deviation	
across	 the	 repeated	 optimizations.	 Uncertainty	 for	 the	 full	 ensemble	 is	 estimated	 by	
calculating	the	standard	deviation	across	1,000	repeated	random	samplings.	
	

Ensembles	
Restrained	with:	 < ÇÉ 	(Å)	
NOEs	 17.67	(0.16)	
PREs	 18.15	(0.35)	
RDCs	 19.18	(0.19)	
;<	 18.52	(0.09)	
FRET	 18.17	(0.17)	
J	couplings	 18.78	(0.19)	
Chemical	shifts	 18.82	(0.13)	
Full	ensemble	 18.50	(0.20)	

	
	 Lastly,	we	analyze	the	agreement	of	each	set	of	ensembles	optimized	with	a	single	
experimental	data	type	with	the	all	of	the	other	experimental	data,	with	scores	presented	in	
Table	4	and	RMSDs	presented	in	Supplementary	Table	2.	This	first	summarizes	the	effect	
that	 the	 number	 of	 restraints	 and	 the	 level	 of	 uncertainty	 has	 on	 the	 total	 value	 and	
variation	of	the	score	for	an	individual	experimental	data	type.	Data	types	for	which	there	
are	more	restraints	are	expected	to	have	a	greater	magnitude	of	score.	Data	types	with	high	
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amounts	 of	 uncertainty	will	 generally	 have	 lower	 scores	 even	 despite	 potentially	 having	
many	restraints,	as	in	the	case	of	the	RDCs,	and	will	similarly	be	expected	to	exhibit	lower	
variability	in	scores.	
	
Table	4:	Cross-module	scores	of	ensembles	optimized	against	a	single	experimental	data	type.	
Each	row	is	a	different	ensemble	generation	type,	starting	with	randomized	ensembles	and	
then	 below	 ensembles	 generated	 by	 optimizing	 against	 the	 single	 data	 type	 listed	 at	 the	
left.	Each	column	 is	 the	score	of	 that	ensemble	 for	 the	data	 type	 listed	at	 the	 top,	so	 that	
variations	 in	 the	 values	 within	 a	 column	 reflect	 the	 different	 effects	 of	 different	
optimization	on	 the	score	of	 the	data	 type	 for	 the	column.	Mean	values	are	generated	by	
averaging	 across	 the	 1,000	 repeated	 ensembles	 in	 every	 case,	 and	 uncertainties	 in	
parentheses	 are	 generated	 by	 calculating	 the	 standard	 deviation	 across	 the	 1,000	
ensembles.	The	rightmost	column	is	the	sum	of	the	per-module	scores	for	each	ensemble.	
	
	 Scores:	

Sum	NOE	 PRE	 RDC	 FRET	 ;<	 JC	 CS	
Number	of	
restraints:	 93	 68	 28	 1	 1	 47	 267	

Random	ensemble	
score:	

517.7		
(5.52)	

225.2		
(191.2)	

-51.8	
(0.70)	

0.35	
(5.09)	

-0.37	
(1.3e-2)	

34.4	
(1.75)	

263.5	
(4.37)	 989.0	

En
se
m
bl
es
	o
pt
im
iz
ed
	u
si
ng
:	

NOE	 548.0	
(0.11)	

292.2	
(26.5)	

-52.7	
(0.38)	

6.02	
(1.22)	

-0.44	
(3.6e-2)	

30.9	
(1.52)	

255.5	
(2.89)	 1,079.5	

PRE	 518.1	
(4.84)	

462.3	
(5.57)	

-51.0	
(0.59)	

4.28	
(4.34)	

-0.39	
(4.4e-2)	

26.3	
(2.71)	

263.1	
(6.22)	 1,222.7	

RDC	 511.2	
(6.98)	

-102.9	
(456.1)	

-47.9	
(2.5e-3)	

-8.93	
(6.41)	

-0.47	
(5.4e-2)	

31.6	
(1.87)	

269.8	
(3.67)	 652.4	

FRET	 519.2	
(4.52)	

310.1	
(57.4)	

-51.9	
(0.58)	

7.16	
(3.8e-10)	

-0.39	
(2.1e-2)	

34.0	
(1.90)	

263.0	
(4.46)	 1081.2	

;<	
517.9	
(5.32)	

248.3	
(127.7)	

-51.8	
(0.56)	

0.74	
(3.90)	

-0.36	
(1.4e-9)	

34.5	
(1.83)	

263.5	
(4.28)	 1012.7	

JC	 512.4	
(6.17)	

101.9	
(261.8)	

-51.9	
(0.50)	

-9.95	
(7.18)	

-0.37	
(1.5e-2)	

47.7	
(1.2e-2)	

248.0	
(3.88)	 847.8	

CS	 506.6	
(3.38)	

58.2	
(145.8)	

-51.8	
(0.29)	

6.75	
(0.57)	

-0.45	
(3.2e-2)	

20.3	
(1.26)	

322.5	
(0.28)	 862.2	

	
	 This	testing	also	allows	for	evaluation	of	the	potential	effects	that	optimization	with	
one	data	type	has	on	the	score	for	another	data	type.	One	such	example	where	the	effect	is	
strong	 is	 the	 improvement	 in	 the	 PRE	 score,	 relative	 to	 randomized	 ensembles,	 upon	
optimizing	with	 NOEs,	 with	 the	mean	 PRE	 score	 shifting	 from	 225.2	 (random)	 to	 292.2	
(NOE-optimized).	 This	 suggests	 that	 there	 is	 sufficient	 shared	 or	 correlated	 information	
from	 the	 NOE	 restraints	 that	 they	 are	 able	 to	 produce	 better	 modeling	 of	 the	 PRE	
restraints.	 Interestingly,	 the	 inverse	 does	not	 turn	out	 to	 be	 true,	with	PRE	optimization	
barely	shifting	the	NOE	score	from	the	random	result.	

As	expected	given	the	application	of	a	straightforward	maximization	procedure,	the	
highest	score	for	any	individual	experimental	data	type	is	achieved	by	optimizing	with	that	
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specific	data.	This	is	true	by	a	large	margin	in	all	cases	except	for	the	data	types	that	exhibit	
relatively	low	variability	in	scores	at	all,	particularly	the	RDCs	and	;< .	This	is	potentially	a	
result	of	the	relatively	high	uncertainties	assigned	to	these	two	data	types	relative	to	both	
the	values	of	the	experimental	restraints,	and	relative	to	the	overall	disagreement	between	
the	full	ensemble	and	the	restraints.	
	 Conversely,	the	PRE	and	FRET	modules	exhibit	relatively	huge	variability	in	scores,	
both	in	the	mean	values	upon	optimization	with	different	data	types,	and	in	the	variance	of	
random	ensembles.	Both	exhibit	strong	decreases	in	scores	relative	to	the	random	set	upon	
optimization	with	RDCs	and	J	couplings,	perhaps	representing	disagreement	between	those	
more	 locally	 sensitive	 data	 types	 and	 the	 longer-range	 PRE	 and	 FRET	 experiments.	 The	
PRE	 and	 FRET	 modules	 interestingly	 show	 opposite	 responses	 upon	 optimization	 with	
chemical	shifts,	with	the	PRE	score	decreasing	and	the	FRET	score	increasing	to	nearly	the	
optimal	 FRET	 score	 achieved	 after	 optimization	 using	 FRET	 data.	 This	 could	 potentially	
point	 to	 some	 unseen	 disagreement	 between	 the	 PRE	 and	 FRET	 data	 about	 long-range	
behavior	that	is	captured	by	chemical	shifts	but	not	the	RDCs	or	J	couplings.		

In	 all	 cases,	 it	 is	 important	 to	 note	 that	 the	 changes	 in	 RMSD,	 summarized	 in	
Supplementary	Table	2,	are	restricted	to	fairly	low	values	given	the	pre-refinement	of	this	
full	ensemble.	We	can	generally	expect	that	random	ensembles	drawn	from	a	true	random-
coil	ensemble	would	likely	score	much	more	poorly,	which	might	result	in	cases	such	as	the	
above	producing	similar	responses	relative	to	the	random	case	rather	than	fully	diverging.	
In	another	light,	however,	the	range	of	scores	possible,	and	the	very	different	preferences	
of	certain	modules	within	that	fairly	tight	range	of	conformations,	is	demonstrative	of	the	
sensitivity	of	EISD	to	subtle	changes	in	the	ensemble.	

The	 rightmost	 column	 of	 Table	 2	 contains	 the	 summed	 scores	 for	 each	 ensemble	
type	across	the	full	set	of	experimental	data.	The	PRE,	NOE,	and	FRET-optimized	ensembles	
have	the	highest	scores,	while	 the	 J	coupling,	chemical	shift,	and	RDC-optimized	have	the	
lowest,	with	the	;<-optimized	ensembles	barely	shifting	the	score	from	random	sampling.	
This	 suggests	 that	 the	 available	 PRE,	NOE,	 and	 FRET	data	might	 carry	 the	most	 positive	
mutual	 information	 with	 the	 other	 modules,	 with	 the	 least	 amount	 of	 information	 that	
contradicts	 other	modules.	 This	 is	 particularly	 noteworthy	 in	 the	 case	 of	 the	 FRET	data,	
where	 optimization	 occurs	 against	 only	 one	 long-range	 pairwise	 distance.	 Almost	 the	
entirety	 of	 the	 improvement	 in	 the	 FRET	 module	 score	 comes	 from	 improvement	 in	
modeling	of	 the	PRE	data	however,	 and	while	 that	does	 reflect	 a	 likely	 agreement	 in	 the	
type	 of	 information	 the	 two	 modules	 provide	 and	 refine	 against,	 there	 is	 also	 certainly	
some	affect	of	the	potential	over-sensitivity	of	the	PRE	module,	given	the	low	assigned	SZ .	
	
5.4	Discussion	and	Conclusions	
	
We	have	developed	Bayesian	scoring	formalisms	for	comparing	simulated	ensembles	to	a	
variety	of	experimental	data	types,	spanning	those	that	report	on	very	local	to	very	global	
structure.	 The	 very	 good	 scaling	 of	 EISD	 calculations	with	 ensemble	 sizes	 facilitates	 the	
high	number	of	replicates	we	perform	for	each	test,	demonstrating	the	cost-effectiveness	of	
the	algorithm	and	providing	high	 levels	of	 confidence	 in	 the	 significance	of	 the	observed	
responses.	
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	 The	current	implementations	presented	here	all	follow	a	simple	black-box	approach	
in	 which	 a	 single	 generic	 error	 parameter	 Y	 is	 optimized	 for	 every	 tested	 experimental	
restraint.	 This	 approach	 is	 able	 to	 account	 for	 varying	 levels	 of	 uncertainty	 in	 both	
experiment	and	back-calculation,	 and	has	been	 shown	 to	be	 fully	 capable	 to	 serving	as	a	
characterization	metric	and	target	for	optimization	for	ensembles	of	IDP	conformations.	
	 There	do,	however,	 remain	significant	areas	 for	 improvement	 in	EISD	scoring.	For	
certain	modules,	such	as	NOEs	and	PREs,	this	implementation	targets	a	forward-calculated	
distance	 restraint	 from	 experiment,	 and	 asserts	 near-zero	 variance	 in	 back-calculation	
uncertainty	as	a	result.	A	scoring	method	that	targets	the	actual	peak	intensity	could	likely	
identify	 differences	 between	 NOEs	 of	 different	 intensities,	 though	 that	 would	 require	
sufficiently	well	resolved	experiments	to	be	able	to	confidently	assign	and	resolve	different	
peaks,	which	remains	difficult	for	many	IDPs.	This	could	furthermore	aid	in	development	of	
more	confidently	representative	estimates	of	SVWX 	and	SZ .	Further	improvement	could	also	
likely	be	gained	in	implementation	of	scoring	algorithms	that,	as	has	been	developed	for	J	
couplings,	explicitly	model	the	math	involved	in	back-calculation.	Whenever	it	is	possible,	
particularly	for	NOEs	and	other	such	observables	where	there	is	a	strong	dynamical	effect,	
the	 back-calculation	 method	 and	 corresponding	 scoring	 should	 as	 well,	 either	 through	
calculation	 of	 correlation	 times	 from	 standard	 MD	 as	 has	 been	 done	 before6	 or	 a	
hypothetical	new	method	for	estimation	of	correlation	times	from	static	structures	that	are	
not	dynamically	linked.	
	 Despite	these	limitations	of	the	current	model,	we	believe	these	results	demonstrate	
the	 appropriateness	 and	 efficiency	 of	 the	 EISD	 formulation	 for	 a	 wide	 variety	 of	
experimental	 data	 types.	 Even	within	 a	 restricted	 pool	 of	 total	 conformers,	 optimization	
using	 EISD	 scores	 for	 a	 single	 experimental	 data	 type	 produces	 ensembles	with	 distinct	
scores,	 aiding	 in	 the	 identification	 of	 conformational	 ensembles	 that	 best	 model	 the	
available	 experimental	 data.	 	 We	 can	 further	 identify	 the	 relative	 utility	 of	 different	
experimental	 comparisons	 in	 the	 context	 of	 current	 uncertainty	 in	 back-calculation	 and	
experiment	for	each,	useful	for	learning	which	types	of	comparisons	should	be	prioritized	
as	well	as	identifying	areas	of	need	for	more	precise	back-calculators.	
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5.6	Appendix	
	
Supplementary	Table	1:	Normalized	RMSDs	of	test	systems	for	local	RDC	back-calculation	
for	estimating	back-calculator	uncertainty	of	RDCs.	By	digitizing	the	plots	from	the	original	
work,	the	RMSD	per	peptide	of	the	local	RDC	back-calculated	results	from	large	ensembles	
of	 simulated	 conformations	 against	 the	 experimental	 data	 is	 calculated,	 to	 develop	 an	
estimated	mean	RMSD	normalized	by	the	experimental	range	per	peptide	=	0.191,	which	is	
scaled	back	up	by	the	experimental	signal	range	for	drkN	Sh3	to	estimate	the	value	of	SZ 	=	
0.88	Hz	used	in	this	work.	
	

System	 #	RDCs	 Exp.	range	
(Hz)	

RMSD	normalized	
by	exp.	range	

Drk	 28	 4.61	 0.2263	
ACBP	 76	 21.43	 0.1879	
CFTR	 129	 17.54	 0.1666	
StaphN	 38	 10.51	 0.1822	
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Supplementary	 Table	 2:	 Cross-module	 RMSDs	 of	 ensembles	 optimized	 against	 a	 single	
experimental	 data	 type.	 Each	 row	 is	 a	 different	 ensemble	 generation	 type,	 starting	 with	
randomized	 ensembles	 and	 then	 below	 ensembles	 generated	 by	 optimizing	 against	 the	
single	data	 type	 listed	at	 the	 left.	 Each	 column	 is	 the	RMSD	 (NOE,	PRE,	RDC,	 J	 couplings,	
chemical	shifts)	or	absolute	deviation	(;< ,	FRET)	of	that	ensemble	for	the	data	type	listed	
at	 the	 top,	 so	 that	variations	 in	 the	values	within	a	column	reflect	 the	different	effects	of	
different	 optimization	 on	 the	 RMSD	 or	 deviation	 of	 the	 data	 type	 for	 the	 column.	 Mean	
values	are	generated	by	averaging	across	the	1,000	repeated	ensembles	in	every	case,	and	
uncertainties	in	parentheses	are	generated	by	calculating	the	standard	deviation	across	the	
1,000	ensembles.	
	
	 RMSDs:	

NOE	
(Å)	

PRE	
(Å)	

RDC	
(Hz)	

FRET	
(Eff)	

;<	
(Å)	

JC	
(Hz)	

CS	
(ppm)	

Number	of	
restraints:	 93	 68	 28	 1	 1	 47	 267	
Random	ensemble	
RMSD:	

3.80	
(0.35)	

3.44	
(0.94)	

0.70	
(5.1e-2)	

0.07	
(3.0e-2)	

9.3e-2	
(6.7e-2)	

0.30	
(2.0e-2)	

0.42	
(7.9e-3)	

En
se
m
bl
es
	o
pt
im
iz
ed
	u
si
ng
:	

NOE	 1.41	
(1.5e-2)	

3.07	
(0.20)	

0.78	
(3.1e-2)	

2.7e-2	
(1.6e-2)	

0.32	
(7.5e-2)	

0.34	
(1.5e-2)	

0.43	
(4.8e-3)	

PRE	 3.72	
(0.30)	

1.08	
(0.13)	

0.63	
(5.9e-2)	

3.9e-2	
(3.1e-2)	

0.16	
(0.12)	

0.38	
(2.4e-2)	

0.41	
(8.2e-3)	

RDC	 4.12	
(0.40)	

5.02	
(1.66)	

3.6e-2	
(4.3e-3)	

0.12	
(2.4e-2)	

0.37	
(9.3e-2)	

0.33	
(1.9e-2)	

0.40	
(5.1e-3)	

FRET	 3.70	
(0.28)	

2.94	
(0.39)	

0.71	
(5.2e-2)	

1.9e-7	
(2.5e-7)	

0.17	
(7.9e-2)	

0.31	
(2.1e-2)	

0.42	
(7.8e-3)	

;<	
3.78	
(0.33)	

3.33	
(0.73)	

0.70	
(5.1e-2)	

7.1e-2	
(2.3e-2)	

3.3e-5	
(2.3e-5)	

0.30	
(2.1e-2)	

0.42	
(7.7e-3)	

JC	 4.09	
(0.34)	

4.10	
(1.16)	

0.71	
(4.4e-2)	

0.12	
(2.6e-2)	

0.11	
(7.2e-2)	

2.4e-2	
(1.8e-3)	

0.45	
(5.8e-1)	

CS	 4.33	
(0.19)	

4.57	
(0.70)	

0.70	
(2.6e-3)	

1.5e-2	
(1.1e-2)	

0.35	
(6.0e-2)	

0.42	
(9.6e-3)	

0.34	
(1.5e-3)	
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Supplementary	 Figure	 1:	 Full	 ensemble	 agreement	 with	 experimental	 data.	 Shown	 as	
deviation	 from	restraint	based	on	ensemble-averaged	properties	 for	NOEs,	PREs,	RDCs,	 J	
couplings,	 and	 chemical	 shifts.	 Shown	 as	 per-structure	 deviation	 from	 restraint	 for	 ;< .	
Shown	as	per-structure	FRET	efficiency	for	FRET,	experimental	value	=	0.55	±	0.02.	
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Supplementary	 Figure	 2:	NOE	 scores	 for	 randomized	 ensembles	 of	 different	 sizes,	 using	
different	 values	 of	 experimental	 uncertainty.	 Error	 bars	 are	 calculated	 as	 ±	 one	 standard	
deviation	across	1,000	replicates.	
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Supplementary	Figure	3:	Restraint	RMSDs	(NOEs,	PREs,	RDCs,	J	couplings,	Chemical	shifts)	
or	deviation	from	restraint	(;< ,	FRET)	for	random	ensembles	of	different	sizes.	
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Supplementary	Figure	4:	Histograms	of	RMSDs	for	randomized	and	optimized	ensembles	of	
100	 conformers	 each,	 according	 to	 the	 experimental	 data	 type	 against	which	 optimization	
and	scoring	are	performed.	Optimized	ensembles	are	in	blue,	randomized	ensembles	are	in	
orange.	Each	set	represents	1,000	optimized	and	randomized	ensembles.	
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Supplementary	Figure	5:	Histogram	of	resampled	FRET	efficiencies	 for	100-conformation	
best-fit	 ensembles	 upon	 varying	 values	 of	 involved	 nuisance	 parameters	 for	 estimation	 of	
back-calculation	uncertainty.	Each	parameter	is	modeled	with	a	normal	distribution:	2]4rsNt 	
with	 μ	 =	 7	 based	 on	 the	 experimental	work	 and	 σ	 =	 3	 based	 on	 the	 range	 of	 estimated	
values	 from	simulated	work39,	hk	with	μ	=	4.4	nm	and	σ	=	0.2	nm	 from	the	experimental	
work,	and	ν	with	µ	=	0.5	and	σ	=	0.05	to	model	slight	uncertainty	around	the	assumption	of	
an	ideal	chain.	The	106	resampled	efficiencies	have	a	standard	deviation	=	0.0074,	which	is	
used	as	the	value	of	σq.	
	




