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3Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 3 January 2023; accepted 10 July 2023; published 15 August 2023)

Particle-in-cell simulations are among the most essential tools for the modeling and optimization of
laser-plasma accelerators, since they reproduce the physics from first principles. However, the high
computational cost associated with them can severely limit the scope of parameter and design optimization
studies. Here, we show that a multitask Bayesian optimization algorithm can be used to mitigate the need
for such high-fidelity simulations by incorporating information from inexpensive evaluations of reduced
physical models. In a proof-of-principle study, where a high-fidelity optimization with FBPIC is assisted by
reduced-model simulations with Wake-T, the algorithm demonstrates an order-of-magnitude speedup. This
opens a path for the cost-effective optimization of laser-plasma accelerators in large parameter spaces, an
important step toward fulfilling the high beam quality requirements of future applications.

DOI: 10.1103/PhysRevAccelBeams.26.084601

I. INTRODUCTION

Laser-plasma accelerators (LPAs) make use of a plasma
medium to transform the energy of a laser pulse into
large longitudinal electric fields capable of accelerating
particles to high energies in a short distance [1]. This
process depends on a complex interplay of nonlinear
physical phenomena that determine the final perfor-
mance of the accelerator. The laser-plasma interaction
(manifested as laser self-focusing, dephasing, and depletion
[2]), the injection of electrons into the plasma wake [3–11],
the beam-plasma interaction (especially beam loading
[12–18]), and the dynamics of the injected electrons in
the resulting plasma fields [19–21] dictate the final proper-
ties of the generated beams. These processes can be
controlled, up to a certain extent, by the parameters and
design properties of the setup. Typical examples include the
plasma density profile (e.g., [11,17,18,22–25]), the proper-
ties of the laser pulse [26], or the use of external laser
guiding [27–29]. Careful tuning and optimization of these
parameters is critical for realizing LPAs that are capable of
delivering the high beam quality and stability demanded by

applications, particularly for free-electron lasers [30],
storage ring injectors [31,32], and future colliders [33].
Due to the complexity of the physical processes

involved, the optimization of an LPA design requires the
use of high-fidelity particle-in-cell (PIC) simulations [34]
where the self-consistent interaction between particles and
electromagnetic fields is computed with minimal assump-
tions. However, the high computational cost associated
with these simulations makes optimizing over a large set of
parameters practically unfeasible. This limits the number of
configurations that can be explored for achieving optimal
performance.
Developing more efficient techniques for optimizing the

design of LPAs is therefore an important step toward
realizing the full potential of these novel accelerators.
Besides the continued growth of available computing
power, two approaches for more affordable optimization
can be identified: reducing the number of simulations
required to find the best-performing configuration, and
reducing the cost per simulation.
The number of required simulations can be minimized by

utilizing advanced algorithms that predict and evaluate only
the most promising configurations throughout an optimiza-
tion run. An example of this is Bayesian optimization [35], a
machine learning-based technique that has gained popularity
within the accelerator community [18,36–40]. This method
generates a surrogate model of the simulation outcome
(typically using Gaussian processes [41]) and suggests the
most promising candidates for evaluation based on a balance
between exploration (evaluating unmapped regions of the
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parameter space where new optima could be located) and
exploitation (further sampling around known optima). The
underlying model is continuously updated with the results
from new evaluations, allowing for more promising and
accurate suggestions in successive iterations. With this
approach, the method can identify global optima with a
reduced number of evaluations.
The computational cost of the individual simulations can

be mitigated by making use of reduced models that sacrifice
generality or accuracy by introducing physical approxima-
tions. This can involve both reducing the dimensionality
(e.g., assuming quasicylindrical symmetry [42]) or neglect-
ing certain physical properties of the laser-plasma interaction
that are not dominant in the problem at hand. Common
examples of the latter include the use of a laser envelope
model [43] or assuming the wakefield to be quasistatic
[43,44]. In principle, simulations with such reduced models
can fully replace a complete PIC description if they accu-
rately capture all the relevant physics involved. In other
cases, they provide an approximate solution from which
useful information might still be extracted.
In this paper, we show that the computational cost of

Bayesian optimization can be further reduced with the
assistance of inexpensive reduced-model evaluations that
are performed in tandem with costly high-fidelity simu-
lations. The inexpensive evaluations are used to dynami-
cally probe regions of high interest and gather information
that improves the predictions of the most promising
configurations to evaluate at high fidelity. This strategy
is enabled by the use of a multitask Gaussian process model
[45–47], whereby the correlation between the outputs of
different tasks (i.e., the two levels of fidelity in the proposed
method) is learned so that information gained on one task
results in an improved model of the other. In this way, the
need for high-fidelity simulations is further reduced, lead-
ing to a faster and cheaper optimization. This is demon-
strated here by a proof-of-principle study combining the
simulation codes FBPIC [48] and Wake-T [49], which provide
a full PIC description in quasi-3D geometry and in-
expensive reduced models, respectively.

II. MULTITASK BAYESIAN OPTIMIZATION

Bayesian optimization is an efficient technique for the
global optimization of black-box functions that are noisy and
expensive to evaluate. It operates by building a probabilistic
surrogate model of the objective function f (the function to
minimize or maximize) that is cheaper to evaluate than f and
from which the most promising points to query can be
determined by maximizing an acquisition function. The
surrogate model is typically obtained by performing
Gaussian process regression over the available data. This
provides an estimate off and its associated uncertainty at any
point of the parameter space. Determining which points to
evaluate next depends on a balance between querying around
knownoptimaor exploring regions of high uncertaintywhere

new optima could be identified. This balance is quantified by
the acquisition function, and the points that maximize it are
deemed as most promising for future evaluation. A typical
choice for the acquisition function is the expected improve-
ment [35], which quantifies how much a new evaluation is
expected to improve over the current optimum.Once the new
evaluations are completed, the Gaussian process model is
updated with the obtained data and the same procedure is
repeated. This continuously improves the accuracy of the
model and of the suggested evaluations.
With the use of a multitask Gaussian process (MTGP)

[45], Bayesian optimization can be extended to a collection
of objective functions f1;…; fNt

from Nt different tasks.
The MTGP learns the correlations between them and
provides a surrogate model of each objective that features
a reduced uncertainty by incorporating information from
highly correlated tasks. This exchange of information was
originally proposed as a way of transferring the knowledge
of previous optimizations to new tasks in order to optimize
them more efficiently [46]. Here, we make use of the
approach described in Ref. [47], where an inexpensive task
fR (the reduced physical models) is used to assist in the
optimization of a costly function fH (the high-fidelity PIC
simulations) so that the number of required evaluations of
fH is reduced. This strategy is a special case of multifidelity
optimization where only two discrete levels of fidelity are
considered. Alternative multifidelity algorithms adapted to
multiple objectives have also been explored in the context
of particle accelerators [50,51].
In this two-task approach, the covariance function—or

kernel—that enables the MTGP to transfer information
between tasks t and t0 with inputs x and x0 is defined as
k½ðt;xÞ; ðt0;x0Þ� ¼ Btt0κðx;x0Þ [47]. This expression deter-
mines the covariance between data points from different
tasks by assuming that both tasks share the same kernel
κðx;x0Þ for the input parameters (here, a Matérn 5=2 kernel
[41] is used) and that the task covariance can be captured
separately by a 2 × 2 matrix B, where element Btt0 is the
covariance between t and t0. The coefficients of B as well as
the parameters of κðx;x0Þ are kernel hyperparameters that
are inferred from the available data by maximizing mar-
ginal likelihood [47]. The degree of inter-task correlation
can be quantified by ρ2 ¼ B2

tt0=ðBttBt0t0 Þ, which ranges
between ρ2 ¼ 0 (no correlation) to ρ2 ¼ 1 (maximum
correlation).
Using this MTGPmodel, the Bayesian optimization loop

described in Ref. [47] is performed. As summarized in
Fig. 1, batches of NR reduced-model simulations and NH
high-fidelity simulations (with NH ≤ NR) are executed in
tandem. At each iteration, the optimizer (i) fits an MTGP to
the available data, (ii) determines a set fxigi¼1;…;NR

of the
NR most promising points to query by maximizing noisy
expected improvement [52] on the MTGP model for the
high-fidelity output fHðxÞ, (iii) evaluates these NR points
using reduced-model simulations, (iv) updates the MTGP
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with the obtained results, (v) evaluates the NR points in the
updated surrogate model of fHðxÞ to select the NH points
with the most promising outcome, and (vi) evaluates the
reduced sample ofNH points with high-fidelity simulations.
To start the optimization, initial quasirandom samples of
NR;0 reduced-model simulations and NH;0 high-fidelity
simulations are generated by using two separate scrambled
Sobol sequences [53] of input parameters.
This workflow has been implemented in OPTIMAS

[54,55], a Python package that allows for scalable opti-
mization on high-performance computing systems. The
Bayesian optimization functionality relies on the AX library
[56] and can be executed on both CPUs and GPUs. The
allocation of computing resources for the optimizer and the
simulations, as well as the coordination, execution, and
communication between them, is orchestrated internally by
the LIBENSEMBLE library [57]. This allows for the con-
current evaluation of multiple simulations that can make
use of variable resources (number of CPUs and GPUs)
across the available computing nodes.
The use of noisy expected improvement as acquisition

function allows for the generation of large simulation
batches while taking into account the noise of the obser-
vations and, if needed, of any optimization constraints.
However, it is also the reason why NH and NR stay fixed
throughout the optimization, as it does not directly provide
a way of determining the fidelity and size of the simulation
batches. Alternative acquisition functions, such as knowl-
edge gradient [58] or predictive entropy search [59,60],

could allow for a dynamic selection of the fidelity, but their
implementation in a multitask optimization workflow is not
trivial and remains an active area of research [47].

III. PROOF-OF-PRINCIPLE STUDY

The effectiveness of the proposed algorithm is demon-
strated here by a proof-of-principle optimization study
combining the simulation codes FBPIC [48] and Wake-T

[49]. While FBPIC provides a high-fidelity, fully electro-
magnetic PIC description of the LPA physics in quasi-3D
geometry [42], Wake-T allows for inexpensive simulations
by using a reduced quasistatic wakefield model with 2D
cylindrical symmetry [61] and a laser envelope model [62].
The setup to be optimized is an LPA booster stage for an

externally injected electron bunch. Given a fixed laser
driver and plasma profile, the goal is to determine the bunch
current profile that results in the lowest energy spread
with the highest possible charge and energy. This involves
optimizing the net beam loading effect [12–14,17,18]
throughout the LPA, a nontrivial process affected by laser
dephasing, depletion, and diffraction for which no analyti-
cal theory is available and that must therefore be addressed
with simulations.
To simultaneously achieve low energy spread, high

charge, and high energy, these quantities are combined
into a single objective to maximize:

f ¼ kQEMED½GeV�
kMAD

; ð1Þ

where kQ ¼ Qtot=Qref is the ratio between the total Qtot

and a reference Qref ¼ 10pC charge, kMAD ¼ ΔEMAD=
ΔEMAD;ref is the ratio between the relative energy spread
ΔEMAD and a reference valueΔEMAD;ref ¼ 10−2, and EMED

is the median energy. The use of the median absolute
deviation (MAD) energy spread and median energy pro-
vides a robust characterization of the energy spectrum in
distributions with outliers, as typically observed in LPAs
[17,18]. The value of f given by Eq. (1) can span over
several orders of magnitude and feature sharp extremes that
are not ideal for Gaussian process modeling. To alleviate
this, the objective is internally treated by the optimizer
as logðfÞ.
The parameters of the laser driver are an energy

EL ¼ 10 J, an FWHM duration τFWHM ¼ 25fs, a focal
spot size w0 ¼ 40 μm, a wavelength λ0 ¼ 800nm, and a
peak normalized vector potential a0 ≃ 2.6. The plasma
density profile is a simple 10 cm-long flat-top with an on-
axis electron density ne;0 ¼ 2 × 1017 cm−3 and a parabolic
radial profile for laser guiding neðrÞ ¼ ne;0 þ r2=ðπrew4

0Þ
[63]. The externally injected electron bunch has an initial
energyEb;0 ¼ 200 MeVwith an rms energy spread of 0.1%.
It features a normalized emittance of ϵn;x ¼ 3 μm in the
horizontal direction and of ϵn;y ¼ 0.5 μm in the vertical

FIG. 1. Workflow of the implemented algorithm for multitask
Btextayesian optimization. Batches of reduced-model and
high-fidelity simulations are highlighted in light and dark blue,
respectively.
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plane. This difference between the x and y emittances
typically arises in LPAs based on ionization injection as a
result of the laser polarization [18]. Here, it is included in the
externally injected bunch in order to ensure a bias between
the two simulation codes, as this asymmetry can only be fully
captured by the high-fidelity FBPIC simulations. The initial
transverse size is matched to the focusing strength in the
plasma, allowing for emittance preservation [19,64]. The
longitudinal profile of thebunch is assumed tobe trapezoidal,
as it is known to be well suited for beam loading [13], and
features smooth Gaussian ramps (1 μm rms) at the head and
tail. The parameters exposed to the optimizer are the current
at the head Ih and tail It, the bunch length Lb, and its
longitudinal position in the wake, parameterized by the
distance Δzl;h ¼ zl − zh between the head of the bunch zh
and the center of the laser driver zl. They are allowed to vary
in the following ranges: Ih ∈ ½0.1; 10� kA, It ∈ ½0.1; 10� kA,
Lb ∈ ½1; 20� μm, and Δzl;h ∈ ½40; 60� μm.
The FBPIC simulations are performed using the boosted

frame technique [65,66] with a Lorentz boost factor of 25.
The longitudinal and radial resolutions are dz ¼ λ0=80 and
dr ¼ k−1p =20, respectively, where kp ¼ ðne;0e2=meϵ0c2Þ1=2
is the plasma wave number, e is the elementary charge, ϵ0 is
the vacuum permittivity and c is the speed of light. The
number of particles per cell is 2 in both z and r, and 8 in the
azimuthal direction. Three azimuthal modes are used to
properly describe the ellipticity of the electron bunch. The
simulations are performed on a single NVIDIA A100 GPU
and have a typical execution time of ∼40 min. The Wake-T

simulations have a resolution of dz ¼ cτFWHM=40 and
dr ¼ k−1p =20 with two particles per cell. Each simulation
is performed on a single core of an AMD EPYC 7643 CPU,
with a typical execution time of ∼3 min. The entire
optimization is carried out in one compute node with 96
CPU cores and 4 GPUs. One of the GPUs is dedicated to
the optimizer (fitting the MTGP, acquisition function, etc.),
and the remaining resources are available for simulations.
With this setup, batches of either NR ¼ 96 concurrent Wake-

T simulations or NH ¼ 3 concurrent FBPIC simulations can
be performed. The scripts used to define and carry out this
optimization workflow are available on Ref. [67].
To quantify the performance gain from the multitask

approach, the same physical setup is also optimized solely
with batches of three FBPIC simulations using a Bayesian
algorithm based on a standard single-task Gaussian process
model. This optimization is carried out in the same hardware
and uses the same initialization routine and acquisition
function as the multitask case. Since each optimization
run evolves differently—both the initial sample of points
and the optimization of the acquisition function include a
certain degree of randomness—a total of six independent
multitask and single-task optimizations have been carried out
to determine the average evolution and its variance.
The results of this optimization study, shown in

Fig. 2, indicate that incorporating information from

reduced-model simulations using the multitask algorithm
leads, on average, to an order-of-magnitude speedup in
terms of the time to converge to a solution, and to a reduced
variability in the convergence rate. For example, an average
objective value of fH ¼ 280 is reached after ∼6 h when the
optimization is assisted with Wake-T simulations, while this
number grows to ∼45 h when only FBPIC is used. This
boost in performance is achieved despite the outcome of
both codes not being in full agreement with each other, as
evidenced in Fig. 2(b). However, owing to the high degree
of correlation between them (hρ2i ≃ 0.82, where hi denotes
average over the 6 runs), the multitask algorithm can
capture the bias of the reduced model with respect to
the high-fidelity simulations and extract useful information
from it.
This approach successfully manages to optimize the

given setup. The highest scoring FBPIC simulation
(fH ≃ 323) from the 6 multitask optimizations corresponds
to a configuration with Ih ¼ 4.26 kA, It ¼ 3.50 kA, Lb ¼
6.35 μm and Δzl;h ¼ 55.2 μm, which results in a total
charge of 114.6 pC, a mean energy of 2.9 GeV, and a
relative energy spread of 0.1% (MAD). Figure 3 shows
the outcome of the FBPIC and Wake-T simulations for this
working point. Certain differences can be observed in the
plasma wake, particularly toward the back, where highly
relativistic plasma electrons cannot be accurately modeled
within the quasistatic approximation. The evolution of the
longitudinal phase space seen in Figs. 3(b)–3(d) shows that,
as originally intended, an optimal net beamloading is
achieved at the end of the LPA. Even though the energy
spread can be locally high at some points during accel-
eration, the laser evolution and the subsequent changes to
the plasma wake along the LPA end up resulting in a
flattened energy distribution.

FIG. 2. (a) Average (thick line) and standard error (shaded area)
of the evolution of the high-fidelity FBPIC objective with and
without the assistance of reduced-model simulations with Wake-T.
Six runs (thin lines) were performed for each case. (b) Correlation
between the FBPIC (fH) and Wake-T (fR) objectives in the
multitask optimization as obtained from individual simulations.
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A detailed view of the sequence of simulation batches
and the evolution of fR and fH in a multitask optimization
is included in Fig. 4. The Wake-T simulations have a
negligible cost compared to the FBPIC batches, allowing
for broad and inexpensive exploration so that only the most

promising configurations are evaluated at high fidelity. This
allows for a much faster convergence of fH, which evolves
at virtually the same rate as fR despite the reduced number
of simulations. However, one potential drawback of per-
forming large batches of reduced-model simulations is a
rapid increase in the cost of suggesting new configurations.
This is a result of the OðN3Þ cost scaling of fitting the
MTGP [41], where N is the total amount of evaluations,
together with the also increasing costs of evaluating the
model and optimizing the acquisition function. Clear
evidence of this can be seen in Fig. 4, where the intervals
between simulation batches progressively widen as the
total number of evaluations increases. Therefore, deter-
mining an adequate ratio between NR and NH is of high
relevance for a well-performing optimization. Otherwise,
the cost savings from the increased convergence rate could
be counterbalanced, at least in part, by the growing cost of
the multitask optimizer.
The influence of the ratio between NR and NH is

investigated here with a series of optimizations where
the number of Wake-T simulations per batch is varied. In
addition to the original study with NR ¼ 96, three more
cases (each of them consisting of six independent runs)
with NR ¼ 48; 24, and 12 are included. For each case, the
evolution of fH as well as the fraction of time that is spent
purely in the optimizer, topt, are quantified. The general
outcome of this scan is that reducing NR leads to a slower
convergence in terms of the number of iterations but to a
faster optimizer (i.e., smaller topt). These two effects
partially compensate each other in terms of total run time,
leading to no significant differences between the cases with
NR ¼ 96; 48, and 24, as seen in Fig. 5. To achieve an
objective fH ≥ 250, which is reached by all runs, the

FIG. 3. Outcome of the highest scoring FBPIC simulation.
(a) Plasma wakefields at the center of the LPA as obtained from
FBPIC (top) and Wake-T (bottom). Longitudinal phase space at the
(b) start, (c) middle, and (d) end of the FBPIC simulation. Δz and
Δzb are the longitudinal positions relative to the front of the
simulation box and the beam center, respectively.

FIG. 4. Evolution of a multitask optimization with alternating
batches of Wake-T and FBPIC simulations. The run time of each
batch is indicated by the light blue (Wake-T) and dark blue (FBPIC)
shaded areas. Intervals between batches correspond to the time
when the optimizer is computing the next set of configurations to
evaluate. Outcomes of each simulation and the evolution of the
cumulative best objective are also included.

(a)

(b)

FIG. 5. (a) Evolution of the high-fidelity objective in multitask
optimizations using a different number of Wake-T simulations per
batch compared against a single-task (FBPIC only) benchmark.
(b) Percentage of total run time consumed by the optimizer as a
function of NR. This percentage is measured both over the 40 h
period shown and, alternatively, over the time needed to reach an
objective fH ≥ 250.
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time consumed by the optimizer is moderate in all cases,
ranging from topt ≃ 10% when NR ¼ 96 to topt ≃ 2% when
NR ¼ 12. However, when quantifying topt over the 40 h
period displayed in Fig. 5, the optimizer becomes the
dominant contribution to the total run time (topt ≃ 52%)
when NR ¼ 96 while remaining negligible (topt ≃ 2%)
when NR ¼ 12. This is not particularly concerning here,
as the case with NR ¼ 96 reaches a close-to-optimal
objective well before the 40 h threshold. However, if a
higher number of iterations were required, such as in a case
where the reduced models and the high-fidelity simulations
are not as well correlated, it could lead to a significant loss
in performance. Based on the results from this scan, NR ¼
24 appears to be an adequate choice that leads to virtually
the same rate of convergence as cases with higher NR while
allowing, if needed, for a larger number of iterations.
Potential strategies that could be pursued in the future for

reducing topt include, for example, the use of dynamic batch
sizes, so that the number of reduced-model simulations can
be decreased when they no longer provide useful informa-
tion, or establishing a criterion for removing the least
valuable reduced-model observations at each iteration.
In general, depending on the physical problem to

optimize, different reduced models of varying fidelity
and cost might be available. As such, studying the behavior
of the multitask method under varying degrees of inter-task
correlation is of high relevance for its general applicability.
In particular, it is important to ensure that the method
converges to a meaningful optimum despite any degrada-
tion of the information gained from the reduced model and
a potential increase in overall costs. To test this, an
additional set of optimizations has been performed where
the fidelity of fR is reduced by decreasing the resolution of
the Wake-T simulations. In addition to the original setup, 3
cases with a factor of 2, 4, and 8 lower resolution in both z
and r are included. Due to the expected reduction in
convergence rate, all optimizations are performed with
NR ¼ 24 to allow for a larger number of iterations without
significantly increasing topt. The results from this study,
summarized in Fig. 6, clearly indicate that a loss in
correlation directly translates into a slower convergence rate.
However, evenwith amoderate correlation (hρ2i ≃ 0.57), the
multitask algorithm can still provide a significant perfor-
mance gain. Only when the two tasks are essentially
independent (i.e., hρ2i ∼ 10−3 in the lowest resolution case)
does the rate of convergence decrease below the single-task
benchmark. This is because even though the MTGP reduces
to a single taskwhenρ2 ¼ 0 [47], the inaccurate data from fR
can still influence the surrogate model of fH until sufficient
evaluations to infer the lack of correlation have been
gathered. As such, the multitask technique converges
toward the optimum even with unreliable or misleading
reduced-model data, and provides a performance boost over
single-task optimization as long as a meaningful inter-task
correlation can be recognized.

Multitask optimization could also prove to be useful
beyond laser-plasma acceleration. For example, the design
of conventional accelerator components, such as bunch
compressors or transfer lines, typically involves multiple
levels of fidelity (from simple transfer matrix calculations
to full particle-tracking simulations with 3D effects such as
space-charge or synchrotron radiation) that are optimized
separately (see, e.g., [68,69]). A multitask algorithm would
be able to combine these different levels of fidelity and cost
into a single optimization.

IV. CONCLUSION

The proposed multitask method introduces the capability
of leveraging reduced physical models for assisting in the
Bayesian optimization of LPAs and lowering the need for
costly high-fidelity simulations. In a proof-of-principle
study combining the simulation codes FBPIC (high fidelity)
and Wake-T (reduced models), this technique demonstrates
an order-of-magnitude speedup over an equivalent single-
task Bayesian optimization consisting solely of FBPIC

simulations. This improvement in performance depends
on the ratio of reduced-model to high-fidelity simulations,
the cost difference between them, and their degree of
correlation. An excessive number of reduced model sim-
ulations can increase the computational cost of suggesting
new configurations, thus partially counterbalancing the
gain in performance, while carrying out too few can slow
down the convergence rate. Batches of NR ¼ 24 Wake-T

simulations and NH ¼ 3 FBPIC simulations were found to
be an adequate balance in the presented study. The choice
of a reduced model that correlates well with the high-
fidelity simulations is essential for achieving a signi-
ficant speedup, although the algorithm converges toward
the optimum even if no information is gained from the

FIG. 6. (a) Evolution of the high-fidelity objective in multitask
optimizations assisted by Wake-T simulations of different reso-
lutions compared against a single-task (FBPIC only) benchmark.
(b), (c), (d), and (e) show the correlation between Wake-T (fR) and
FBPIC (fH) results in each case.
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inexpensive simulations. The high computational effi-
ciency of this method allows for the cost-effective opti-
mization of LPAs in large parameter spaces. This is a
critical step toward unlocking the full potential of these
devices and fulfilling the high beam quality requirements of
applications such as free-electron lasers, storage-ring
injectors, and future particle colliders.
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