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Chronic liver diseases often result in the development of 
liver fibrosis and ultimately, cirrhosis. Treatment strat-
egies and prognosis differ greatly depending on the sever-
ity of liver fibrosis, thus liver fibrosis staging is clinically 
relevant. Traditionally, liver biopsy has been the method 
of choice for fibrosis evaluation. Because of liver biopsy 
limitations, noninvasive methods have become a key re-
search interest in the field. Elastography enables the non-
invasive measurement of tissue mechanical properties 
through observation of shear-wave propagation in the 
tissue of interest. Increasing fibrosis stage is associated 
with increased liver stiffness, providing a discriminatory 
feature that can be exploited by elastographic methods. 
Ultrasonographic (US) and magnetic resonance (MR) im-
aging elastographic methods are commercially available, 
each with their respective strengths and limitations. Here, 
the authors review the technical basis, acquisition tech-
niques, and results and limitations of US- and MR-based 
elastography techniques. Diagnostic performance in the 
most common etiologies of chronic liver disease will be 
presented. Reliability, reproducibility, failure rate, and 
emerging advances will be discussed.

q RSNA, 2018
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composite scores, such as FibroTest/Fi-
broSure (BioPredictive, Paris, France)  
(21), the enhanced liver fibrosis, or 
ELF (Siemens Healthineers, Erlangen, 
Germany), test (22), and FibroMeter 
(Echosens, Paris, France) (23). Though 
simple to perform, these tests have 
limited accuracy in intermediate levels 
of fibrosis (24), and they are generally 
considered less accurate than elasto-
graphic methods (25).

Principles of Elastography

Elastography, first coined by Ophir et al 
(26), describes the noninvasive assess-
ment of tissue mechanical properties 
such as elasticity, which describes the 
resistance to deformation of a tissue to 
an applied stress. In quantitative elas-
tography methods, the stress is applied 
via shear-wave propagation, generated 
transiently, for example, via single me-
chanical impulse, or dynamically, for 
example, via continuous application of 
acoustic waves. US and MR elastograph-
ic methods are available clinically and 
are summarized in Figure 1 and Table 1.  
A more comprehensive overview of the 
elastographic methods to be reviewed is 
included in the Appendix E1 (online).

Quantitative US elastography 
methods include transient elastogra-
phy (TE) and acoustic radiation force 
impulse (ARFI) techniques such as 

fibrosis may be beneficial in monitoring 
treatment efficacy, disease progression, 
and in establishing prognosis.

Until recently, liver fibrosis was pri-
marily assessed with liver biopsy, which 
is the reference standard for staging of 
liver fibrosis and grading of necroin-
flammatory changes, by using various 
semiquantitative scoring systems (8–
15). The most commonly used scoring 
systems include the METAVIR score in 
chronic HBV or HCV infections and the 
Brunt score in nonalcoholic steatohepa-
titis (NASH) (8,9). All scoring systems 
(except the Ishak score) range from F0 
to F4, where F0 indicates no fibrosis; 
F1, mild fibrosis; F2, moderate fibrosis; 
F3, advanced fibrosis, and F4, cirrho-
sis. Despite its strengths, liver biopsy 
has several drawbacks: liver biopsy is 
relatively invasive and associated with 
a low rate of complications (approxi-
mately 3%) such as pain and bleeding, 
which reduce patient acceptance and 
limit its suitability for repeated mea-
surements and disease monitoring. 
Also, biopsy enables the analysis of 
only a small portion of the liver, about 
1/50 000th of the total parenchyma, 
introducing sampling variability and 
possible diagnostic errors (16,17). In-
ter- and intraobserver variability have 
also been suggested as limitations to 
biopsy, which may be linked to the in-
consistency in the definition of some 
pathologic features (8,16,18). Finally, 
liver biopsy lacks dynamic information 
about the speed of disease progression. 
All of these limitations make liver bi-
opsy an imperfect reference standard. 
An important ramification of these 
limitations is the difficulty in validating 
noninvasive tests with use of biopsy as 
the reference standard, as the inherent 
flaws of biopsy can cause misinterpreta-
tion of results.

Alternative, noninvasive methods 
of evaluating liver health are being de-
veloped, such as serum markers and 
ultrasonographically (US) and mag-
netic resonance (MR) imaging–based 
elastography. Serum markers include 
simple markers—such as platelet 
count, aspartate aminotransferase-to-
platelet radio index, or APRI (19), FIB-
4 (20)—and more complex, patented 
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Essentials

 n Elastographic methods are accu-
rate tools for diagnosing liver 
fibrosis and cirrhosis in a wide 
range of etiologies.

 n US-based transient elastography 
is the most validated elasto-
graphic technique.

 n Acoustic radiation force impulse 
elastographic methods are inte-
grated into clinical US systems 
allowing elastography to be per-
formed in routine clinical 
examinations.

 n MR elastography offers excellent 
diagnostic accuracy, although it is 
less well validated and less avail-
able than US elastographic 
methods.

 n Liver stiffness measurement can 
be affected by a variety of con-
founding factors, such as hepatic 
inflammation, congestion, chole-
stasis (for all elastographic 
methods), and steatosis (at least 
for transient elastography).

Chronic liver diseases are a major 
cause of morbidity and mortality 
in the United States and world-

wide. The most prevalent etiologies of 
chronic liver diseases include chronic 
hepatitis B virus (HBV) infection, 
chronic hepatitis C virus (HCV) infec-
tion, nonalcoholic fatty liver disease 
(NAFLD), and alcohol abuse (1). In the 
United States, chronic liver diseases 
affect approximately 360 per 100 000 
persons and are the 12th leading cause 
of death, with an estimated mortality 
of 12 deaths per 100 000 persons (2,3) 
and a projected financial burden ex-
ceeding $100 billion annually, mostly 
from NAFLD and chronic HCV infection 
(4,5). Chronic liver diseases can lead 
to liver fibrosis, which is the result of 
chronic liver injury (6). The end-stage 
of liver fibrosis is cirrhosis, which has 
potential complications including portal 
hypertension, liver failure, and hepato-
cellular carcinoma (HCC). There is ev-
idence that when the underlying cause 
is removed, liver fibrosis may regress or 
stabilize (7). Accurate staging of liver 
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techniques use focused US “push” 
pulses to deform internal tissue and 
generate shear waves (27). The nomen-
clature for ARFI elastography in the 
literature is not standardized. Though 
pSWE and 2D SWE both utilize ARFI 
to generate shear waves, pSWE is of-
ten referred to as ARFI elastography in 
published studies. To avoid confusion, 
in this review we use ARFI to describe 
the method of wave generation and 

of the generated shear wave (Figs 1, 2). 
There are several probes available, with 
the M probe being used for standard 
examinations and the XL probe intro-
duced to increase the reliability of TE 
measurements in overweight patients. 
The XL probe records the measure-
ment at a greater depth than does the 
M probe (35–75 mm vs 25–65 mm), 
with a lower operating frequency (2.5 
MHz vs 3.5 MHz). ARFI elastography 

point shear-wave elastography (pSWE) 
and two-dimensional (2D) shear-wave 
elastography (SWE). The FibroScan 
system (Echosens, Paris, France) was 
the first commercially available TE 
system, introduced in Europe in 2003 
and approved in the United States by 
the Food and Drug Administration in 
2013. The FibroScan probe delivers a 
50-Hz mechanical impulse to the skin 
surface and then measures the velocity 

Figure 1

Figure 1: Illustrations of US elastography techniques, including TE (FibroScan, Echosens), pSWE (Virtual Touch Quantification, Siemens Acuson S2000), 2D SWE 
(Aixplorer, Supersonic Imagine), and MR elastography. Sampling area for each method is depicted by enclosed green area. TE and pSWE have a fixed sampling area 
size, though pSWE allows the depth and location to be chosen. Two-dimensional SWE has the ability of pSWE sampling area placement with the additional ability to 
change the size. MR elastography offers (near) full organ coverage. Corresponding example images for each method are also shown. TE = transient elastography, 
pSWE = point shear-wave elastography, 2D SWE = two-dimensional shear-wave elastography.

Table 1

Comparison of Quantitative Elastography Methods

Method Availability Cost Evidence Liver-sampling Area Region of Interest Placement Reported Parameter
Main Reasons for Failure  
or Unreliable Results

Transient  
elastography

Widespread Low Excellent 
validation

Small Restricted, no guidance Young modulus (kPa) High body mass index  
(M probe), ascites

ARFI Moderate Low Moderate,  
good  
validation

Small (pSWE);  
medium (2D SWE)

Flexible with US guidance; 
recommended 1 cm below 
liver capsule and , 5 cm 
from transducer

Young modulus (kPa) or 
wave speed (m/sec)

High body mass index

MR elastograhy Limited High Limited 
validation

Large Large organ coverage Complex shear modulus 
(kPa)

Liver iron deposition, large 
ascites, body mass 
index*, 3 T (2D GRE)

Note.— ARFI = acoustic radiation force impulse, GRE = gradient recalled echo, pSWE = point shear-wave elastography, SWE = shear-wave elastography, 2D = two-dimensional.

* Conflicting evidence reported regarding MR elastography failure in patients with high body mass index.
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the speed of a shear wave. In MR elas-
tography, increased wavelength is evi-
dent in stiffer tissues. An obstacle to 
direct comparison between techniques 
is the frequency dependence of biologic 
tissue. Higher frequency shear waves 
produce higher stress and strain rates, 
resulting in higher stiffness measure-
ments (38). This can be problematic 
when comparing US elastographic tech-
niques, as TE operates at 50 Hz whereas 
ARFI methods operate at frequencies of 
100–500 Hz (39). Thus, the frequency 
dependence, method of measurement, 
and parameter reported (wave speed, 
E, or G*) should be considered when 
comparing elastography techniques.

Reliability and Failure Rates of 
Elastographic Methods

TE Method
The failure rate and reliability of TE 
were assessed in a study of 13 369 ex-
aminations by using the M probe (40). 
The technique failed in 3.1% of cases; 
however, unreliable measurements were 
acquired in a further 15.8% of cases. 
Body mass index was identified as a 
significant contributory factor to failed 

which generate shear waves and image 
them with the same probe, MR elas-
tography requires external hardware to 
generate shear waves in the tissue of 
interest. Tissue mechanical properties 
are quantified through inversion of the 
visualized “wave field” into a map of the 
mechanical parameter of interest with-
out the intermediate step of measuring 
shear-wave speed (Fig 5). Commercial 
MR elastography implementations re-
port the shear stiffness of tissue, which 
is the magnitude of the complex shear 
modulus, |G*|. MR elastography was 
first described in 1995 by Muthupillai et 
al (36) and was approved by the Food 
and Drug Administration in 2009. Ini-
tially introduced with GE systems, the 
technique has since become available 
with Siemens and Philips MR systems. 
Care must be taken when comparing re-
sults between US and MR elastography 
due to the different output parameters 
reported.

Liver fibrosis leads to increased 
stiffness. As shear waves travel through 
a tissue, the speed of the wave de-
pends on the tissue stiffness (37). In 
stiffer tissues, the shear-wave speed 
is greater, enabling estimation of the 
degree of liver fibrosis from measuring 

refer to the respective implementations 
as pSWE and 2D SWE.

Originally available clinically with 
Siemens (pSWE, Virtual Touch Quan-
tification) and Supersonic Imagine (2D 
SWE) systems, ARFI methods are now 
integrated into clinical systems by other 
major vendors such as Philips (28,29), 
GE (30), Hitachi (31), Toshiba (32), Es-
aote (33), and Samsung (34) (Figs 3, 4).  
Two-dimensional SWE has now been 
incorporated into Siemens clinical 
US systems to complement the pSWE 
method (Fig 4). Clinical US elastography 
systems report “stiffness” values in terms 
of the Young modulus (E, in kilopascals),  
others as shear-wave speed (in meters 
per second), and others with options for 
both. Under simplifying assumptions of 
incompressibility, shear-wave speed and 
E are related by the following mathemat-
ical equation: E = 3rc2, where c is the 
shear-wave speed and r is the density of 
tissue, assumed to be that of water. The 
2017 European Federation of Societies 
for Ultrasound in Medicine and Biology, 
or EFSUMB, guidelines recommend that 
pSWE and 2D SWE measurements be 
performed at least 1 cm below the liver 
capsule to obtain the best results (35). 
In contrast to US elastographic systems, 

Figure 2

Figure 2: Transient elastography images. Left: image in a 39-year-old woman with chronic hepatitis C virus infection with no fibrosis (stage F0) (liver stiffness, 3.2 
kPa; M probe). Middle: image in a 59-year-old man with chronic hepatitis B virus infection with stage F2 fibrosis (liver stiffness, 8.7 kPa; M probe), Right: Image in a 
57-year-old man with nonalcoholic fatty liver disease with cirrhosis (liver stiffness, 27.0 kPa; XL probe). Liver stiffness measurement (Young modulus, median value 
of 10 measurements), interquartile range, and median value percentage are automatically calculated. An elastographic image (red box) shows axial displacement in 
terms of depth (y-axis) and time (x-axis). In stiffer tissues, the shear wave propagates more quickly and produces a steeper time-depth gradient (arrows).
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radiologists (48). Failure rate was low 
for both methods (5% for 2D SWE 
and 1% for pSWE) and intraobserver 
agreement was higher for pSWE than 
2D SWE (0.915 vs 0.829). Scan-rescan 
repeatability of 2D SWE measurements 
performed on the same day by the same 
operator has been shown to be excel-
lent, with ICC of 0.95 and 0.93 for an 
expert and novice operator, respectively 

intraclass correlation coefficient (ICC) 
of 0.98 in a cohort of 188 patients with 
chronic HCV in whom two measure-
ments were performed by two opera-
tors on the same day (47).

pSWE and 2D SWE Methods
The reliability of both pSWE and 2D 
SWE was compared in 79 patients with 
measurements performed by three 

and/or unreliable measurements. The 
introduction of the XL probe has im-
proved the reliability of TE in patients 
with NAFLD (41–46). For example, in a 
study of 276 patients, reliable measure-
ments were obtained in 73% of patients 
with the XL probe compared with only 
50% of patients with the M probe (41).

Excellent interobserver variabil-
ity has been reported for TE, with 

Figure 3

Figure 3: A, Successful and, B, unsuccessful point shear-wave elastographic acquisition (Siemens Acuson S3000) in a 58-year-old man with chronic hepatitis 
C virus infection and stage F2 liver fibrosis. Unsuccessful measurement (displaying as X.XX m/s) related to poor breath hold. In the successful measurement, wave 
speed was measured at 1.10 m/sec.

Figure 4

Figure 4: Images obtained with the same system (Siemens Acuson S3000) in a 50-year-old woman with grade 2 steatosis without fibrosis. A, Point shear-wave 
elastographic image demonstrates placement of fixed-size region of interest in the right hepatic lobe, with measured wave speed of 1.17 m/sec. B, During the same 
examination, two-dimensional shear-wave elastographic image shows placement of larger size region of interest in the same area, with color elasticity map, and 
measured wave speed of 1.33 m/sec with interquartile range of 0.21 m/sec.
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reproducibility. Similarly, with precise 
definition of region of interest place-
ment, including all the pixels with con-
fidence index higher than 95%, Yasar 
et al (62) found almost perfect inter- 
and intraobserver reproducibility, with 
ICC higher than 0.97 and Bland-Atman 
limits of agreement range lower than 
15.9% and 4.2%, respectively.

To become a widely accepted 
method for diagnosis and staging of fi-
brosis, MR elastography must produce 
consistent results regardless of the 
MR system used. Good interplatform 
reproducibility was reported with use 
of a 2D GRE sequence at 1.5 T, with 
ICC between 0.82 and 0.99 (62–64). 
At 3 T, between-vendor ICC was 0.71 
for the 2D GRE sequence and 0.69 for 
the 2D spin-echo echo-planar imag-
ing sequence (64). In the same study, 
the variance in liver stiffness based 
on technical factors was reported to 
be only 0.042 kPa, with correspond-
ing coefficient of variation of 10.7%. 
The reproducibility of spleen stiffness 
measurement using MR elastography 

failure rate at 1.5 T (3.5%); however, 
at 3T the rate of failure was higher 
(15.3%) (53). In the same study, fail-
ure was also significantly associated 
with iron deposition, the presence of 
large ascites, and increased body mass 
index (see below) (53). The use of MR 
elastography in children is also reliable, 
with a recent study reporting a failure 
rate of 4% with use of the 2D GRE 
sequence (54). The test-retest repeat-
ability of MR elastography is high (55–
59), with reported ICC of 0.95 (56). 
A recent meta-analysis of 274 patients 
concluded that a change in stiffness of 
22% or greater measured at the same 
site by using the same equipment sig-
nified a true change in stiffness with 
95% confidence (60). Lee et al (61) 
showed that a large region of interest 
representing approximately 70% of the 
liver, including the greatest part of the 
liver parenchyma excluding hepatic hi-
lar vessels, increased the interobserver 
reproducibility, while a placement of 
a 1-cm region of interest in each liver 
segment optimized the intraobserver 

(49). However, intraobserver repro-
ducibility between measurements per-
formed in the same subject on different 
days revealed ICC values of 0.84 and 
0.65 for an expert and novice operator, 
respectively. There is further evidence 
to suggest that operator experience has 
an effect on pSWE measurements (50), 
thus operators are recommended to be 
suitably trained. With the introduction 
of pSWE and 2D SWE into commercial 
US systems by many manufacturers, 
interplatform variability may be an 
issue. The Quantitative Imaging Bio-
markers Alliance, or QIBA, has formed 
a committee tasked with establishing 
reproducibility across US elastography 
systems (51).

MR Elastography
The failure rate of MR elastography is 
low, with the largest series to date re-
porting a failure rate of only 5.6% when 
using a 2D GRE sequence (52). The 
majority of these failures (71%) were 
attributed to iron deposition. Another 
large cohort study found a similarly low 

Figure 5

Figure 5: MR elastography performed by using a two-dimensional gradient-recalled-echo sequence and a two-dimensional inversion 
algorithm in a 52-year-old woman with advanced liver fibrosis (stage F3) secondary to nonalcoholic steatohepatitis. A, Transverse magnitude 
image with intravoxel phase dispersion (arrows) present under the actuator (which is not visible on MR images). B, Transverse image with waves 
visible in liver parenchyma. C, Transverse colorized wave image shows wave propagation through liver parenchyma. D, Transverse gray-scale 
elastogram. E, Transverse colorized elastogram (0–8-kPa scale). F, Transverse colorized elastogram (0–8-kPa scale) with 95% confidence grid 
overlaid highlighting areas of reliable liver stiffness measurement. Liver stiffness was increased (5.3 KPa).
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has been less well studied, with a study 
reporting ICC greater than 0.88 (62). 
The QIBA has formed a committee (65) 
dedicated to standardizing MR elastog-
raphy through identifying bias in mea-
surements and identifying a suitable 
phantom for characterization of data 
acquired from different MR elastogra-
phy systems.

In summary, MR elastography and 
2D SWE appear to produce the highest 
rate of successful measurements; how-
ever, the introduction of the XL probe 
has improved the applicability of TE 
in overweight patients. Reproducibility 
is good to excellent among all elasto-
graphic techniques.

Diagnostic Performance of 
Elastographic Methods for Staging 
Liver Fibrosis

Diagnostic accuracy for liver fibrosis 
staging in chronic liver diseases, includ-
ing chronic HBV or HCV infections, and 
NAFLD for select publications across 
Europe, Asia, and the United States, 
are presented for TE (43,46,66–77) 
(Table 2), ARFI elastographic methods 
(46,72,77–83) (Table 3), and MR elas-
tography (38,81,84–94) (Table 4). Pub-
lications have been selected on the ba-
sis of reporting of diagnostic accuracy, 
historical primacy, cohort size, and 
geographic distribution. The TE tech-
nique has been thoroughly researched 
and validated for diagnosis of liver fi-
brosis in large cohort studies, mostly in 
Europe.

In the following sections, diagnos-
tic performance of US and MR elasto-
graphic methods will be discussed for 
the major etiologies of liver disease. 
Summary statements are included to 
provide condensed conclusions.

Chronic HBV and HCV Infections

Knowledge of liver fibrosis stage in 
chronic HBV and HCV infections is 
beneficial for prognosis, follow-up, and 
treatment decisions. The combination 
of powerful direct-acting antivirals re-
cently developed in chronic HCV infec-
tion (95) and the recent increased use 
of noninvasive tests for liver fibrosis 
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staging as proposed in the most re-
cent European Association for the 
Study of the Liver, or EASL, guidelines 
on chronic HCV infection (96) have 
decreased the use of liver biopsy in 
chronic HCV infection (97). The Ameri-
can Association for the Study of Liver 
Diseases, or AASLD, guidelines on 
chronic HBV infection state that staging 
of liver disease is important to inform 
therapy decisions and cite the utility of 
TE for noninvasive staging of fibrosis, 
especially in excluding advanced fibro-
sis (98).

TE Technique
Several early studies reported excellent 
diagnostic performance of TE for the 
detection of advanced fibrosis and cir-
rhosis in chronic HCV infection, with 
areas under the receiver operating 
characteristic curve (AUCs) of 0.88–
0.99 (37,66,67) (Table 2, Fig 2). Sim-
ilar results were subsequently reported 
by other studies in chronic HCV and  
HBV infections (68,70,71,73,75,99–101),  
though in some cases the performance 
of TE was decreased compared with se-
rum markers owing to a high proportion 
of unreliable results (69). Several meta-
analyses (102–109) have confirmed the 
excellent diagnostic accuracy of TE for 
diagnosing cirrhosis (AUC, 0.93–0.96), 
better than that for detecting moder-
ate fibrosis (F2–F4) (AUC, 0.83–0.88), 
with cutoffs ranging from 7.0–7.9 kPa 
for the diagnosis of moderate fibrosis 
(F2–F4) and 11.3–15.6 kPa for the di-
agnosis of cirrhosis (F4) (105,107–109). 
These results suggest that TE is better 
at ruling out rather than ruling in liver 
cirrhosis, with negative predictive value 
greater than 90%. These results have 
been confirmed in a North American 
study (74). The EASL-Asociación Lati-
noamericana para el Estudio del Híga-
do guidelines (110) recommend that a 
combination of TE and serum markers 
be used to diagnose moderate fibro-
sis (F2–F4) in chronic HCV infection. 
These guidelines were recently vali-
dated in chronic HCV infection (111). 
The guidelines also recommend TE as 
a noninvasive method to diagnose fibro-
sis in treatment-naïve chronically HBV-
infected patients (110).
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pSWE Technique
ARFI methods have become available 
more recently than TE, thus are less 
well investigated, with data in chronic 
HBV (112–118) and HCV (78,79,119–
127) infections showing high accuracy 
for liver fibrosis staging (Table 3, Fig 3). 
For example, in a study of 274 patients 
with chronic HCV (78), AUCs of 0.91 
and 0.94 were reported for diagnosing 
stage F3–F4 and cirrhosis, respectively. 
A study in chronic HBV infection (83) 
also reported excellent diagnostic per-
formance, with AUC greater than 0.95 
for Scheuer stage S3–S4 and S4. A re-
cent meta-analysis (128) comprising 21 
studies (2691 patients) with chronic 
HBV or HCV infections reported AUCs 
of 0.88 and 0.91 for stage F2–F4 and 
F4, respectively. Recent guidelines 
from the National Health Service in the 
United Kingdom (129) recommend the 
adoption of pSWE for the diagnosis and 
monitoring of liver fibrosis in patients 
with chronic HBV or HCV infections. 
The National Health Service report sug-
gested that pSWE has similar or higher 
performance than TE in diagnosing 
liver fibrosis.

Two-dimensional SWE
Two-dimensional SWE is also a highly 
accurate method in chronically HBV- or 
HCV-infected populations (72,82,130–
132) (Table 3); however, less well 
studied than pSWE and TE. Two-di-
mensional SWE has been found to be 
an equivalent, if not better, diagnostic 
tool than TE in chronic HCV cohorts 
(82,133). A meta-analysis based on 
seven 2D SWE studies reported AUC 
values of 0.91 for stage F2–F4 and 0.95 
for cirrhosis (134). Thus, at present, 
2D SWE can be used with equivalent 
diagnostic results to TE; however, fur-
ther validation is required to establish 
cutoffs for HCV and HBV populations.

MR Elastography
Given the limited availability and recent 
clinical use of MR elastography, less 
published data are available compared 
with TE and pSWE, with a smaller 
number of prospective studies, many 
in cohorts of mixed etiologies of liver 
disease (52,55,84,86–88,135–138), and 
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interest for clinicians and in terms of 
public health perspective.

TE Method
The current EASL guidelines for the 
management of NAFLD recommend TE 
as a noninvasive method for liver fibrosis 
assessment and monitoring, while liver 
biopsy is still recommended to confirm 
advanced fibrosis and cirrhosis (152). 
The use of TE in patients with NAFLD is 
challenging owing to the poor reliability 
of the technique in overweight or obese 
patients when the standard M probe is 
used. The range of unreliable measures 
is large, with reported unreliable and/
or failed measurements in 3.8%–50% of 
patients (41,76,153). A meta-analysis of 
the TE performance using the M probe 
in NAFLD (n = 854) (154) reported 
pooled sensitivity and specificity of 79% 
and 75% for F2–F4, 85% and 82% for 
F3–F4, and 92% and 92% for stage F4. 
Pooled AUC was not reported, though 
AUC ranges for the included studies 
were 0.79–0.87 for F2–F4, 0.76–0.98 for 
F3–F4, and 0.91–0.99 for stage F4. As 
in chronic HBV or HCV infections, TE is 
more accurate in higher fibrosis stages. 
The introduction of the XL probe has led 
to more reliable results than with the M 
probe in overweight or obese patients 

fibrosis and cirrhosis in chronic HCV 
and HBV infections and has been incor-
porated in several guidelines for man-
agement of chronic HBV and HCV infec-
tions. Emerging data suggest that pSWE 
methods are equivalent to or possibly 
superior to TE in viral hepatitis, with 
the integration of pSWE in the National 
Health Service guidelines in the United 
Kingdom. Two-dimensional SWE and 
MR elastography show promising results 
in chronic HBV and HCV infections; 
however, the available data are limited. 
In the case of MR elastography, studies 
have often included mixed etiologies, 
with a lack of prospective studies with 
validation cohorts. All elastographic 
methods have higher accuracy for diag-
nosing advanced fibrosis and cirrhosis 
than lower fibrosis stages.

NAFLD and NASH

NASH is becoming a widespread prob-
lem in the United States due to the 
increasing prevalence of obesity and 
NAFLD (149,150). Liver fibrosis has 
been shown to be the strongest predic-
tor of complications in NAFLD patients 
(151), which motivates the need for re-
liable noninvasive techniques for detec-
tion of liver fibrosis and will be of major 

lack of studies including validation co-
horts (Table 4, Fig 6). From the pub-
lished studies in chronic HCV or HBV 
infections (58,89–91,139–144), 2D 
GRE MR elastography has shown excel-
lent accuracy in diagnosing liver fibrosis 
or cirrhosis, with AUCs for the diagno-
sis of fibrosis stages F2–F4, F3–F4, and 
F4 of 0.95–0.99, 0.94–1, and 0.92–1, 
respectively (89–91,140–143). A me-
ta-analysis of data from patients with 
chronic HCV and chronic HBV report 
accuracy equivalent to, or slightly lower 
than (in early fibrosis stages), that in 
published studies, with AUCs for stage 
F2–F4, F3–F4, and F4 of 0.88, 0.94, and 
0.92 in HCV infection and 0.94 (stage 
F2–F4) and 0.97 (stage F3–F4) in HBV 
infection (145). Several studies also 
showed that necroinflammation may 
increase liver stiffness (90,146,147). 
Currently, there are limited data on 
the performance of 2D spin-echo echo-
planar imaging and three-dimensional 
spin-echo echo-planar imaging MR 
elastography in chronic HBV and HCV; 
however, similar diagnostic accuracy as 
that with TE and 2D GRE MR elastog-
raphy has been reported in a few stud-
ies (92,148).

In summary, TE is the most vali-
dated technique for diagnosing liver 

Figure 6

Figure 6: Transverse T2-weighted half-Fourier acquisition single-shot turbo spin-echo, or HASTE, anatomic images (top) and transverse MR elastograms (bottom) 
depict increasing liver stiffness with increasing fibrosis in patients with chronic hepatitis C virus infection: stage F1 in a 51-year-old man, stage F2 in a 67-year-old 
man, stage F3 in a 46-year-old man, and stage F4 in a 65-year-old woman. Anatomic images depict no significant liver nodularity in patients with stage F3–F4 
fibrosis, while MR elastograms reveal increasing stiffness (yellow and red colored areas).
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(165) reported AUCs of 0.90 or greater 
for the diagnosis of fibrosis stages F3–
F4 and F4, with associated cutoffs of 
3.77 kPa and 4.09 kPa, respectively. As 
they were derived from a meta-analysis, 
these cutoffs are probably the most ap-
plicable at this time, but further valida-
tion studies are needed. There is also 
evidence that MR elastography may be 
able to differentiate NASH and simple 
steatosis in NAFLD patients (161), with 
a reported AUC of 0.93, but this needs 
further confirmation.

Other Etiologies of Liver Disease

TE has also been applied in the study 
of autoimmune liver disease, with ex-
cellent diagnostic performance (166), 
though several studies have reported 
that acute inflammation as a result of 
autoimmune hepatitis may affect liver 
stiffness (167,168). TE has also been 
shown to be an accurate method for 
staging fibrosis in primary biliary cir-
rhosis (169–171), primary sclerosing 

patients (Fig 4). Recently, a prospective 
study in NAFLD (n = 291) evaluated 
2D SWE, pSWE, and TE using the M 
probe (77). When accounting for un-
reliable results, all techniques had a 
similar amount of successful measure-
ments (80%, 77%, and 81% for 2D 
SWE, TE, and pSWE, respectively). 
Two-dimensional SWE performed bet-
ter than pSWE for the diagnosis of 
moderate fibrosis (stage F2–F4), with 
AUC of 0.85 versus 0.76. In a prospec-
tive study of overweight patients with 
mixed etiologies, 2D SWE of the right 
lobe performed similarly to TE with the 
XL probe, with AUC greater than 0.90 
for fibrosis stages F2 or greater (46).

MR Elastography
A small number of retrospective or 
prospective studies have focused on 
NAFLD and/or NASH populations 
(25,81,93,94,161–164), with reported 
AUCs greater than or equal to 0.86 
(Table 4; Figs 5, 7). A recent meta-anal-
ysis of nine studies with 232 patients 

(155), with lower stiffness values com-
pared with the M probe which may ne-
cessitate revalidated cutoffs (42–45).

pSWE Method
A preliminary study in NAFLD patients 
(156) found that pSWE performed very 
well when diagnosing fibrosis stage 
F3–F4 and F4, with AUC greater than 
0.97 (Fig 4). Subsequent studies have 
reported similar high accuracy in di-
agnosing fibrosis and differentiating 
NASH from simple steatosis (157–159). 
In a comparative study of pSWE and 
TE (with the M and XL probes) (160), 
no significant difference was found, al-
though pSWE achieved a significantly 
higher reliability rate. A more recent 
study found that while pSWE reported 
AUCs greater than 0.85 for discriminat-
ing fibrosis stages F2 or greater, it was 
outperformed by MR elastography (81).

Two-dimensional SWE
Two-dimensional SWE is less well val-
idated than pSWE and TE in NAFLD 

Figure 7

Figure 7: Top row, images in 43-year-old woman with nonalcoholic steatohepatitis and advanced fibrosis (stage F3) at liver biopsy. A, 
Transverse PDFF image demonstrates mild steatosis (PDFF, 14.6%). B, Transverse wave image obtained with MR elastography demonstrates 
increased wavelength (thicker waves) in liver parenchyma. C, Transverse elastogram demonstrates increased liver stiffness (4.33 kPa). Bottom 
row, images in a 29-year-old woman with nonalcoholic fatty liver disease with no fibrosis (stage F0) at liver biopsy. D, Transverse PDFF image 
demonstrates mild steatosis (PDFF, 9.2%). E, Transverse wave image obtained with MR elastography demonstrates short wavelengths in the 
liver (thinner waves) parenchyma. F, Transverse elastogram demonstrates normal liver stiffness (2.22 kPa). PDFF = proton density fat fraction.



Radiology: Volume 286: Number 3—March 2018 n radiology.rsna.org 749

STATE OF THE ART: Quantitative Elastography Methods in Liver Diseases Kennedy et al

(38.5% among patients with baseline 
liver stiffness values . 25 kPa, com-
pared with 0.4% among patients with 
values  10 kPa).

pSWE.—So far, published data 
show similar prognostic ability between 
pSWE and TE in predicting hepatic de-
compensation (220). Due to the inte-
gration into conventional US systems, 
pSWE methods are more suitable for 
measuring spleen stiffness than is TE. 
A study of 393 patients with median 
follow up of 44 months found that liver 
and spleen stiffness measured with 
pSWE were associated with decom-
pensation (hazard ratios of 2.53 and 
16.58 per unit increase in stiffness, 
respectively) (221). In patients with 
chronic HCV infection, pSWE outper-
formed serum markers in the predic-
tion of esophageal varices (AUC, 0.89 
vs 0.75) (222). Diagnostic performance 
was also excellent for the diagnosis of 
high-risk esophageal varices, with AUC 
of 0.87 versus 0.74 for pSWE and se-
rum markers, respectively. Few pre-
liminary studies have evaluated pSWE 
for the prediction of HCC development 
(223,224), indicating that liver stiffness 
measured with pSWE is a significant 
predictor of HCC development. More 
studies are needed to validate these 
results.

Two-dimensional SWE.—Liver and 
spleen stiffness measured with 2D SWE 
have also been shown to correlate with 
hepatic venous pressure gradient mea-
surement (225,226). In a cirrhotic pop-
ulation (227), 2D SWE outperformed 
TE for diagnosing clinically significant 
portal hypertension (AUC, 0.87 vs 0.78, 
respectively). Two-dimensional SWE 
spleen stiffness measurements have 
been significantly associated with the 
presence of esophageal varices (228), 
though a high failure rate in spleen mea-
surements (~ 30%) is a limitation. There 
is little published data on the ability of 
2D SWE to predict HCC development. 
In one retrospective study (229), the 
authors noted significantly higher liver 
stiffness in patients with HCC than those 
without; however, prospective studies 
are required for validation.

MR elastography.—To date, few 
studies have investigated the role of 

higher risk of developing complications, 
with one study estimating a 10-fold in-
crease in complications (172). In a me-
ta-analysis of six studies that reported 
hepatic decompensation as an outcome, 
each unit increase in liver stiffness was 
associated with a 7% increased de-
compensation risk (200). TE can also 
help diagnose portal hypertension, with 
another meta-analysis reporting excel-
lent diagnostic performance of TE for 
diagnosing the presence of clinically 
significant portal hypertension (defined 
by hepatic venous pressure gradient  
10 mm Hg), with an area under the hi-
erarchical summary receiver operating 
characteristic curve (HSROC) of 0.93 
(201). Scores combining liver stiffness 
with platelet count and spleen diameter 
at US, referred as LSPS (for liver stiff-
ness spleen-diameter-to-platelet-ratio 
score) (202) or portal hypertension risk 
score (203), have also been proposed 
to increase the diagnostic accuracy.

The performance of TE in predict-
ing the presence and size of esophageal 
varices based on liver stiffness mea-
surements is also promising. A meta-
analysis of 12 studies (2049 patients) 
(201) found the HSROC of TE to be 
0.84 for diagnosing esophageal varices. 
When evaluating the predictive value 
of TE for diagnosing large esophageal 
varices (in nine studies comprising 
2168 patients), the HSROC was 0.78. 
The Baveno VI consensus workshop 
recommendations (204) state that liver 
stiffness measured with TE may be use-
ful for classifying patients with portal 
hypertension. Spleen stiffness has been 
also suggested as a marker of severity 
of portal hypertension (205) with a rea-
sonable accuracy (AUC, 0.78–0.90) in 
predicting the presence of esophageal 
varices (206–208). However, the mea-
surement of spleen stiffness is difficult 
with TE and requires concomitant con-
ventional US guidance.

A correlation between liver stiff-
ness measured by TE and the risk of 
developing HCC has been reported by 
several longitudinal prospective stud-
ies (187,195,209–219). For example, 
a large prospective Japanese study (n 
= 866) (214) reported increased cumu-
lative incidence of HCC within 3 years 

cholangitis (172,173), and alcoholic 
liver disease (174–176). pSWE methods 
have been applied in autoimmune liver 
disease and alcoholic liver disease in 
a small number of studies (177–181). 
Two-dimensional SWE has also been 
applied in alcoholic liver disease, with 
similar accuracy to TE reported (176). 
Excellent diagnostic accuracy of MR 
elastography has been reported in au-
toimmune hepatitis (182) and primary 
sclerosing cholangitis (183); however, 
the method has not been applied in the 
study of alcoholic liver disease thus far.

In summary, patients with NAFLD 
and NASH are more likely to be over-
weight, which is an important factor 
to consider for elastography measure-
ments. The TE M probe is prone to un-
reliable results and/or increased risk of 
failure in these subjects, and this has 
been improved with the XL probe. In 
these subjects, ARFI methods are less 
susceptible to failure than TE. MR elas-
tography is the most robust technique 
in overweight or obese patients, with 
reported high accuracy for fibrosis stag-
ing, although published data are still 
limited.

Additional and Evolving Applications

Assessment of Degree of Portal 
Hypertension, Risk of Hepatic 
Decompensation and HCC
Liver cirrhosis can be further catego-
rized into compensated or decompen-
sated cirrhosis. Decompensated cirrho-
sis is primarily diagnosed on the basis 
of the presence of variceal bleeding and 
ascites and is associated with a signifi-
cantly increased risk of mortality (184). 
Recent data suggest that liver and 
spleen stiffness may represent potential 
biomarkers for hepatic decompensa-
tion and HCC risk.

TE.—Many studies have shown the 
ability of baseline liver stiffness mea-
surement (172,185–199) to help pre-
dict hepatic decompensation in patients 
with chronic liver disease. Two studies 
also looked at the evolution of liver stiff-
ness values over time (172,197) and 
found that patients with increasing liver 
stiffness (1–1.5 kPa per year) were at 
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surveillance for complications such as 
HCC. Several studies have reported re-
duction in liver stiffness of up to 35% 
(243) following direct-acting antiviral 
therapy as measured by TE (243–248) 
and ARFI methods (249,250). The 
clinical significance of reduced liver 
stiffness following sustained virological 
response has not been established, as 
few longitudinal studies incorporating 
biopsy and noninvasive tests have been 
performed. One study investigated the 
longitudinal changes in liver stiffness 
with paired liver biopsies in HCV/HIV-
coinfected patients treated with antiret-
roviral therapy and anti-HCV drugs (in 
a portion of the population). Patients 
with progressing fibrosis were found to 
have significantly increased liver stiff-
ness at 3 years after baseline, while liver 
stiffness was unchanged or reduced in 
stable patients (251). There is no pub-
lished MR elastography study assessing 
changes in liver stiffness after antiviral 
therapy. Further studies are required to 
establish the utility of noninvasive tests 
in the longitudinal monitoring of HCV 
patients undergoing antiviral therapy.

HCC Characterization
Liver lesion characterization is beyond 
the scope of this review. Briefly, there 
are some data assessing the role of US 
and MR elastographic methods in quan-
tifying tumor stiffness for the purpose of 
liver lesion characterization (252–266), 
with a trend toward increased stiffness in 
malignant lesions, such as HCC (Fig 9).  
A recent study reported higher tumor 
stiffness values in well or moderately 
differentiated HCCs compared with 
poorly differentiated HCCs (267). An-
other preliminary study has reported 
a significant correlation between tumor 
stiffness and degree of tumor necrosis 
and enhancement in HCC after local-
regional therapy (268). A drawback of 
MR elastography investigation of tumors 
is the limited spatial resolution and cov-
erage of current 2D MR elastography 
implementations (269). Nonlinear inver-
sion algorithms (270) paired with three-
dimensional MR elastography (265) may 
help to address the problem.

In summary, the available data sug-
gest that elastographic techniques may 

beneficial in predicting risk of decom-
pensation and diagnosis of portal hy-
pertension, more studies are required 
to confirm the findings.

A small number of studies to date 
have evaluated MR elastography as a 
predictive tool for the development of 
HCC, with conflicting data (239,240). 
While one retrospective study (240) re-
ported elevated liver stiffness in patients 
with HCC compared with those with-
out HCC, another study did not (239). 
Thus, more data are needed to predict 
risk of HCC with MR elastography.

Monitoring of Chronic HCV Infection after 
Antiviral Therapy
The introduction of direct-acting an-
tivirals has revolutionized therapy in 
chronically HCV-infected patients, 
with excellent cure rates reported in 
most genotypes (241) and subsequent 
reduction in liver transplant waiting 
lists (242). Determination of residual 
fibrotic burden in patients who have 
achieved sustained virological response 
is important for both prognosis and 

MR elastography in predicting hepatic 
decompensation (183,230,231). In a 
retrospective study of 266 patients with 
primary sclerosing cholangitis, Eaton et 
al (183) found that liver stiffness was 
a significant predictor of risk of de-
compensation (hazard ratio, 1.24–1.30 
per unit increase in liver stiffness). MR 
elastography measurement of predic-
tive markers of portal hypertension is 
an emerging field of research (232–
236). The cross-sectional imaging vol-
ume available with MR elastography en-
ables simultaneous acquisition of liver 
and spleen MR elastography data via 
the use of an additional actuator placed 
on the left side (62,237) and may allow 
the development of composite diagnos-
tic tests by using both measurements as 
has been implemented with TE (238). 
Spleen stiffness measured by means of 
MR elastography has been associated 
with the presence of esophageal vari-
ces (233,235) and found to correlate 
with hepatic venous pressure gradient 
(Fig 8) (234). Though the available data 
suggest that MR elastography may be 

Figure 8

Figure 8: A, Transverse T2-weighted half-Fourier acquisition single-shot turbo spin-echo, or 
HASTE, MR anatomic image with arrows indicating actuator position and, B, transverse stiffness 
map in a 27-year-old healthy woman with normal liver stiffness (2.1 kPa) and spleen stiffness 
measured at 4.3kPa. C, Transverse anatomic image with arrows indicating actuator position and, 
D, transverse stiffness map in a 61-year-old female patient with cirrhosis (secondary to chronic 
hepatitis C virus infection) and clinically significant portal hypertension (hepatic venous pressure 
gradient of 15 mmHg) demonstrate elevated liver stiffness (7.5 kPa) and spleen stiffness (9.9 kPa).
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example, liver stiffness values increase 
after meal intake (59,281–286); there-
fore, elastographic examinations should 
be performed after fasting for at least 
2 hours (110), though fasting for 4–6 
hours prior to measurement has also 
been recommended (39). Similarly, 
cholestasis has been shown to cause 
increased liver stiffness in TE (287), 
pSWE (288), and MR elastography 
(183). A further difficulty in establish-
ing cutoff values for fibrosis staging is 
the influence of the underlying etiology 
of liver disease on measured stiffness 
values; for example, the cutoffs for pre-
dicting esophageal varices in patients 
with cirrhosis using TE is higher in 
those with alcoholic cirrhosis than in 
those with liver cirrhosis of viral etiol-
ogy (289). The cause of this variance 
has not been conclusively established. 
Factors such as alanine aminotransfer-
ase levels have been suggested (290); 
however, the inherent morphologic 
differences in collagen distribution 
caused by increases in myofibroblasts, 
which are associated with the various 
etiologies of fibrotic liver disease, could 
also be a reason for the discrepancy 
in cutoff values, even for livers with 
the same “stage” of fibrosis (291,292). 
Also, cutoff values are generally estab-
lished on the basis of receiver operating 
characteristic analysis of a single-study 
population and so are affected by the 
prevalence and severity of fibrosis and 
cirrhosis in that population (35). Elas-
tography methods are useful as tools to 
generally stratify patient risk; however, 
intermediate fibrosis stages can be dif-
ficult to delineate. The Society of Radi-
ologists in Ultrasound consensus report 
of 2015 (39) highlighted the overlap of 
pSWE shear-wave speeds at intermedi-
ate fibrosis levels (sourced from a meta-
analysis [293]) and therefore suggests 
using thresholds to define population 
groups, which are unlikely to require 
follow-up (stage F0–F2), those at high 
risk (some F3 and F4), and those in be-
tween who may require further testing, 
including MR elastography, to inform 
treatment decisions.

Breathing motion may also affect 
US elastography and MR elastography 
measurements. In US elastography, 

(272). MR elastography has also been 
compared with 2D SWE in a mixed-
etiology cohort (138), with comparable 
diagnostic accuracy for both techniques 
in staging fibrosis. A recent study used 
MR elastography as the reference stan-
dard and found the 2D SWE and MR 
elastography measurements to be well 
correlated (273). MR elastography has 
also been shown to outperform serum 
markers (25,87,89,141,143,162), mor-
phologic features (137), and diffusion 
measurements (86,87,266,274–276).

When evaluating US elastographic 
methods alone, a meta-analysis of 13 
studies including 1163 patients found 
that pSWE had a similar predictive 
value as that of TE for advanced fibrosis 
and cirrhosis while producing a higher 
rate of reliable measurements (277). 
Studies comparing TE to pSWE (278) 
and 2D SWE (72,82) have found ARFI 
methods to provide similar or superior 
diagnostic performance to TE. In com-
parisons of all three methods, pSWE, 
2D SWE, and TE (77,279,280), 2D 
SWE was the slightly superior method 
for staging fibrosis (77), with vari-
able reliability compared with pSWE 
(279,280).

Limitations of Elastographic 
Techniques

Although each elastographic method 
has its own limitations, some draw-
backs apply to all techniques. For 

be viable methods for prediction of 
portal hypertension and hepatic decom-
pensation, although further research is 
needed to understand how the results 
should be used to inform patient care. 
Spleen stiffness appears to be a useful 
biomarker for portal hypertension and 
prediction of esophageal varices. Fi-
nally, TE has been applied in the mon-
itoring of patients undergoing antiviral 
therapy in chronic HCV; however, the 
utility of the technique in this role has 
yet to be established.

Comparison of MR Elastography to US 
Elastography and Other Noninvasive 
Tests

A few comparative studies investi-
gating the diagnostic accuracy of MR 
elastographic and US elastographic 
methods have been published. Though 
MR elastography was generally found 
to be superior to TE in diagnosing fi-
brosis in mixed cohorts (85,87,271) 
and NAFLD patients (94,164), other 
studies have found both techniques to 
perform similarly (88,148). Less litera-
ture on the comparison of MR elastog-
raphy with ARFI methods is available. 
A meta-analysis assessing the diag-
nostic accuracy of pSWE (15 studies, 
2128 patients) and MR elastography 
(11 studies, 982 patients) for staging 
fibrosis found that MR elastography is 
more accurate than pSWE, particularly 
in diagnosing early stages of fibrosis 

Figure 9

Figure 9: Transverse T2-weighted half-Fourier acquisition single-shot turbo spin-echo, or 
HASTE, anatomic image (left) and transverse MR elastogram (right) in a 59-year-old man with 
chronic hepatitis C virus infection and infiltrative hepatocellular carcinoma in right hepatic 
lobe (arrows). MR elastography demonstrates increased stiffness (7.7 kPa) compared with 
background liver parenchyma (3.2 kPa). Another hepatocellular carcinoma nodule is present in 
left lateral hepatic lobe (arrowheads), also demonstrating increased stiffness.
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taking a deep breath or using the Val-
salva maneuver can change liver stiff-
ness (294,295). The 2017 EFSUMB 
guidelines recommend that measure-
ment be performed during breath hold, 
while avoiding deep inspiration (35). 
Also, it has been recently suggested 
that inspiration statically deforms the 
liver, which is expected to alter the ob-
served stiffness due to nonlinearity in 
elasticity of biologic tissues (296). In 
2D GRE MR elastography, a four-sec-
tion acquisition generally requires four 
breath holds of approximately 15 sec-
onds each. Three-dimensional MR elas-
tography acquisitions also require that 
multiple breath holds be performed. 
For accurate determination of liver 
stiffness over the liver volume, breath 
holding should be performed in expi-
ration to minimize positional changes 
between breath holds.

Because the liver is surrounded by 
a nonelastic envelope (Glisson capsule), 
additional space-occupying tissue ab-
normalities, such as edema, inflamma-
tion, or congestion, can interfere with 
measurements of liver stiffness, inde-
pendently of fibrosis. A further con-
sideration when utilizing elastographic 
methods is the additional cost of the 
examination above standard clinical 
examinations. In the United States, TE 
has recently become a reimbursable 
medical examination with the creation 
of a Current Procedural Terminology 
(CPT) code 91200 for the procedure 
(297). A CPT code 0346T for pSWE 
and 2D SWE methods can be added to 
the regular US code. MR elastography, 
the most expensive method, has not yet 
been granted a CPT code, but its in-
creasing use may motivate the introduc-
tion of one. More specific limitations 
for US elastography and MR elastogra-
phy are discussed below.

Limitations of US Elastography Methods
Two-dimensional SWE and pSWE can 
be performed with one probe in all 
patients, independent of body weight, 
as the region of interest can be posi-
tioned manually at different depths in 
the liver. As compared with TE, as-
cites is not a limitation for ARFI US 
methods, enabling its performance in 

decompensated liver cirrhosis for prog-
nostic reasons. TE is not suited for 
spleen measurements owing to the need 
for external guidance from another US 
system. The risk of overestimating liver 
stiffness values has been reported, with 
other confounding factors including 
alanine aminotransferase flares (298–
300), congestive heart failure (301), 
excessive alcohol intake (302–304), and 
acute viral hepatitis (298,305). Some 
work has been done to establish cut-
offs that account for these confounding 
factors (306), though further validation 
is required. The influence of steatosis 
is still a matter of debate with con-
flicting results, some studies suggest a 
detrimental effect (307,308), whereas 
others do not (309,310). In summary, 
US elastographic techniques need to 
be performed by using a standardized 
protocol and with critically interpreted 
results, taking confounding factors into 
account (110).

Limitations of MR Elastography
Although considered a highly accurate 
technique, MR elastography has several 
limitations. The primary drawback of 
liver MR elastography is the sensitivity 
of 2D GRE sequence to iron deposition. 
The short T2* time of the liver affected 
by iron deposition means that signal-
to-noise ratio from a standard GRE 
sequence is too low, and thus unable 
to resolve wave propagation (311). This 
has been addressed by the introduction 
of spin-echo and spin-echo echo-planar 
imaging–based sequences, which are 
instead primarily sensitive to T2 relax-
ation and thus provide higher signal-to-
noise ratio even in slightly longer echo 
times (312) (Fig 10). A study comparing 
2D GRE and spin-echo echo-planar se-
quences found both sequences produced 
consistent liver stiffness measurements, 
with the spin-echo echo-planar sequence 
producing reliable results in subjects in 
whom the GRE sequence failed due to 
iron deposition and larger reliable re-
gions of interest (311). Another study 
found 2D GRE and spin-echo echo-
planar MR acquisitions to produce rea-
sonably consistent results at 1.5 T and 
3.0 T with ICCs ranging 0.73–0.9 across 
manufacturers (64).

There is conflicting evidence on 
the effect of body mass index on MR 
elastography measurements: A recent 
study found that body mass index was 
not a contributing factor in failure (88), 
but found waist circumference to be a 
significant factor of failure. In contrast, 
a recent large retrospective study inves-
tigating the cause of MR elastography 
failure using a 2D GRE sequence (53) 
found that body mass index, iron de-
position, massive ascites, and use of 3 
T were significantly associated with MR 
elastography failure (Fig 11). The over-
all failure rate was low (3.5%) at 1.5 
T though it increased to 15.3% at 3 T, 
likely due to increased T2* relaxation 
at higher field strength. Other potential 
causes of failure include poor actuator 
placement, coupling to the body, or 
tube disconnection, which require the 
examination to be repeated, and ab-
normal physiology. MR elastography is 
also costlier and less available than US 
elastography.

New Technical Developments

Measurement of Liver Steatosis with TE
A more recent application of TE is the 
controlled attenuation parameter (CAP) 
(313). CAP, which is available on both 
M and XL probes, estimates the attenu-
ation of the US signal in units of dBm21 
and is used as a method to grade steato-
sis. A recent meta-analysis of a mixed-
etiology cohort using the M probe (314) 
reported excellent accuracy for detect-
ing steatosis based on histopathologic 
findings. A small pilot study using the XL 
probe (315) found that performance was 
similar between the M and XL probes 
for detecting liver fat. Further validation 
in large cohorts is required to determine 
the performance of CAP, particularly 
with the XL probe. A benefit of MR im-
aging when assessing NAFLD patients is 
the high accuracy of liver fat quantifica-
tion using advanced confounder-correct-
ed chemical shift–encoded methods now 
available with all scanner manufacturers 
(316), which can be combined with liver 
stiffness measurement for a compre-
hensive examination of liver health (Fig 
6). In the study by Imajo et al (94), the 
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accuracy for diagnosing F3–F4 fibrosis in 
2D and three-dimensional MR elastog-
raphy at 60 Hz vibration frequency was 
not significantly different. Three-dimen-
sional MR elastography data acquired at 
40 Hz showed improved diagnostic accu-
racy with a significantly higher AUC than 
2D measurements (AUC, 0.98 vs 0.92). 
Three-dimensional spin-echo echo-
planar imaging MR elastography failure 
rate has been reported as lower than 
that of 2D GRE MR elastography, as the 
spin-echo echo-planar imaging sequence 
is expected to perform better in hepatic 
iron deposition (92). Spleen stiffness 
has also been assessed with three-di-
mensional MR elastography (235), with 
liver stiffness and spleen stiffness signif-
icantly associated with the presence of 
esophageal varices.

Multifrequency MR Elastography
Generally, MR elastography examina-
tions are performed by imaging shear 
waves at a single frequency (typically 

which has been shown to be sensitive 
to pressure-related changes (318) and 
may have applications in the diagnosis of 
portal hypertension, are still being eval-
uated to establish clinical benefit. The 
acquisition of all three motion directions 
also addresses the issue of artificially in-
creased wavelengths due to oblique 2D 
waves violating the planar wave assump-
tion (319). Further details on three-di-
mensional MR elastography are included 
in the Appendix E1 (online).

A comparison of the diagnostic accu-
racies of 2D GRE and three-dimensional 
spin-echo echo-planar imaging MR elas-
tography in 73 patients with chronic 
liver disease found 2D and three-dimen-
sional sequences to perform similarly 
(320). However, three-dimensional MR 
elastography parameter results were 
significantly lower than those of 2D 
MR elastography. A similar result was 
reported from a study of patients with 
NAFLD performed at 60 Hz and 40 Hz 
vibration frequencies (163). Diagnostic 

combination of MR elastography and 
liver fat quantification outperformed 
TE and CAP for staging fibrosis and 
fat quantification, respectively. Further 
comparison studies are required be-
tween MR-based fat quantification and 
elastography and US-based TE and CAP  
for combined staging of fibrosis and 
steatosis.

Three-dimensional MR Elastography
Though the acquisition of all three di-
rections of motion is not a new devel-
opment (317), advances in inversion 
algorithms and the increasing availabil-
ity of research three-dimensional MR 
elastography imaging sequences has 
made the technique more accessible. 
Three-dimensional MR elastography 
enables the determination of additional 
parameters compared with 2D owing 
to the acquisition of the full wave field 
and fewer assumptions about the ma-
terial model during inversion. These 
parameters, such as volumetric strain, 

Figure 10

Figure 10: Images in a 61-year-old man with cirrhosis secondary to chronic hepatitis C virus infection and secondary hemosiderosis causing 
failure of two-dimensional gradient-recalled-echo (GRE) MR elastography (MRE) at 1.5 T. The shortened liver T2* (4.7 msec) due to iron 
deposition causes low signal-to-noise ratio, with disorganized wave propagation pattern and no areas of reliable stiffness measurement. Two-
dimensional echo-planar imaging (EPI) sequence performed during the same MR imaging examination is less sensitive to T2* effects, allowing 
successful wave propagation and liver stiffness measurement (5.6 kPa).
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