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Effect of Nanoparticles on Electron and Thermoelectric

Transport
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and Computer Engineering Department, University of California, Santa Barbara, CA 93106, USA.
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Recent experimental results have shown that adding nanoparticles inside a
bulk material can enhance the thermoelectric performance by reducing the
thermal conductivity and increasing the Seebeck coefficient. In this paper
we investigate electron scattering from nanoparticles using different models.
We compare the results of the Born approximation to that of the partial-wave
method for a single nanoparticle scattering. The partial-wave method is more
accurate for particle sizes in the 1 nm to 5 nm range where the point
scattering approximation is not valid. The two methods can have different
predictions for the thermoelectric properties such as the electrical conductivity
and the Seebeck coefficient. To include a random distribution of nanoparticles,
we consider an effective medium for the electron scattering using the coherent
potential approximation. We compare various theoretical results with the
experimental data obtained with ErAs nanoparticles in an InGaAlAs matrix.
Reasonably good agreement is found between the measured and theoretical
electrical conductivity and Seebeck data in the 300 K to 850 K temperature

range.
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INTRODUCTION

In recent years, along with advancement in
materials synthesis, it has been possible to embed
nanoparticles with controlled size in bulk materials.
Such structures can be used for various aPplications
such as thermoelectric power generators™ and solar
cells.? The advantage of incorporating nanoparticles
inside thermoelectric materials is to reduce the lat-
tice thermal conductivity® and enhance the Seebeck
coefficient due to electron filtering.* Adding nano-
particles also reduces the electrical conductivity.
Therefore the size and the material forming the
nanoparticles should be chosen in such a way that
they scatter phonons more effectively than electrons.

(Received July 8, 2008; accepted December 31, 2008;
published online January 28, 2009)

954

Scattering of electrons by localized defect poten-
tials,” by space-charge regions,® and by neutral
impurities’ have been widely studied. Busch and
Soukoulis® investigated the transport of a classical
wave in a random medium composed of dielectric
spheres. They obtained the mean free path of the
transport and the energy transport velocity, which
were in agreement with the experimental results.
Sheng? calculated the electronic transport in granu-
lar metal films. His theory is extendable to the case of
metallic spherical nanoparticles inside a host matrix.
Kim and Majumdar'® calculated the phonon scat-
tering cross section of spherical nanoparticles within
the Born approximation, and found an oscillatory
behavior in the scattering cross section, presumably
due to acoustic mismatch. Recently, Faleev and
Leonard!! showed enhancement of the power factor
of semiconductors with metallic nanoinclusions at
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high doping concentrations. They have used the
partial-wave technique to calculate the scattering
rates from nanoparticles; however, the results are
based on Eq. 35 in their paper, which is not correct
(see Eq. 6 of this paper). In contrast to their predic-
tion, we find that there is a big difference between a
well potential and a barrier potential.

In this paper, we consider finite-size nanoparti-
cles inside a host semiconductor and investigate the
effect of adding nanoparticles on the thermoelectric
transport using three different methods. We use the
Born approximation and the partial-wave technique
to calculate the scattering cross section and trans-
port properties in the dilute limit (low concentration
of nanoparticles). For higher concentrations we use
the coherent potential approximation (CPA),'%13
which is known as the best single-site approxima-
tion for a disordered system. The predictions of
these models of thermoelectric transport are studied
in this work.

MODEL AND THEORY
Single Nanoparticle Scattering

Here we develop the theory to calculate the scat-
tering cross section of a single nanoparticle. The
theory is applicable to the case of any arbitrary
spherically symmetric potential.

Born Approximation

The Born approximation is based on the pertur-
bation theory and therefore has the intrinsic
assumption that the potential of the scatterer is
weak. This approximation works well for energies
which are several times the barrier height. For a
square barrier/well potential, the Born approxima-
tion yields the following results for the differential
scattering cross section (g(0)), the total scattering
cross section (¢), and the momentum cross section
(0m), respectively.'*

2m*Voa?® 2 .0
a(0) = <T) g<2ka s1n§>

. - 1
sSInx —xCosx
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where, a is the radius of the nanoparticle, Vj is the
barrier/well height, k is the wavevector of the inci-
dent electron, and m " is its effective mass in the host
material. As can be seen from these formulas, the
sign of the potential (barrier or well) does not mat-
ter, and the strength of the nanoparticle potential
(and its size, in the high-energy limit) comes as a
multiplicative factor.

The Partial-Waves Method

The partial-waves method is a way to calculate
the scattering from a spherically symmetric poten-
tial exactly. The details of the method can be found
in standard textbooks.'* The result for the total
cross section is well known. We find for the
momentum cross section the expression shown in
Eq. 6, which is in contrast to the (incorrect) results
of Faleev and Leonard.
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where 0; is called the phase shift of the /th partial
wave (I being the angular momentum quantum
number) and ¢ is the wavefunction of the electron
inside the nanoparticle. For a known potential
shape and a given energy, the solution of the
Schrodinger equation can be found numerically (for
example, by the Numerov method) inside the
nanoparticle. Then y; is calculated by matching the
slope of the wavefunction at the boundary between
the nanoparticle and the host material. We use the
shooting method to find the wavefunction within the
cutoff radius of the nanoparticle. The solution is
exact and can be applied to any arbitrary spheri-
cally symmetric potential of finite range.

Scattering from a Random Medium

In the dilute limit, when the nanoparticles are
far apart, each nanoparticle can be treated inde-
pendently; however, when the concentration of
nanoparticles increases, this approximation ceases
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to be valid. We need to add the effect of the nano-
particles volume, meaning that the electron wave
sees a random medium instead of individual scat-
terers. One approach to solve such a problem is to use
an effective medium theory. Instead of a random
potential due to nanoparticles, the electron wave
sees an effective medium. At each energy E, the
system behaves as if a coherent potential or a self-
energy X(E) was added to the host Hamlltoman We
use the CPA following the work of Sheng,” but apply
it to a bulk matrix with a given concentration of
spherical nanoparticles. Figure 1 shows the model
schematically. We assume that each nanoparticle is
embedded inside a host material and they are both
inside an effective medium. A distribution function is
defined for the nanoparticles radii. The host radius is
set according to the concentration of nanoparticles
and their average radius. The T-matrix of each
nanoparticle species in three dimensions is related to
the amplitude of the scattered wave at infinity:

¢ i exp(zk ) +@exp(lkr)

(8)
FO) = — (KR,

The CPA condition'®

Re (Z cm<ket;|ke>> =0 9

states that, on average, the scattering of the
(host + nanoparticle) in the effective medium is
zero. The index m refers to each different radius of
the nanoparticle, ¢, is the weight of each species m,
¢! is the retarded T-matrix for each species inside
the effective medium, and k. is the wavevector of
the electron inside the effective medium. The total
scattering cross section can be obtained from the
optical theorem.

1
7= —k—eImzm:cm<ke|trfL|ke>. (10)

Effective Medium

Fig. 1. Schematic diagram of the coherent potential model. The
nanoparticle is a sphere embedded inside the host material (the
outer sphere) and they are both inside an effective medium.

In the dilute limit the CPA results tend to that of
the partial-wave method.

Thermoelectric Transport

For modeling a realistic material, we need to
include in the formalism other scattering mecha-
nisms such as phonons and impurities. The distri-
bution function relaxation time 7; appearing in the
collision term of the Boltzmann’s equation can be
obtained by summing the inverse of relaxation
times for each individual scattering mechanism. For
elastic scatterings the distribution function relaxa-
tion time is the same as the momentum relaxation
time. Nanoparticle scatterings are assumed to be
elastic. The relaxation time t is inversely propor-
tional to the total cross section. Thermoelectric
properties can be obtained by using the linear
response theory and by integrating the differential
conductivity over energy:

1 [ [v*(E — W (E)Dos(E) dE
= , (v

[v2t(E)Dos(E) ZdE

1 2e

o

where S is the Seebeck coefficient, p is the resis-
tivity, u is the chemical potential, 7; is the distri-
bution function relaxation time, Dos(E) is the
density of states at energy E, T is the temperature,
and fAE) is the Fermi-Dirac distribution function.

E)Dos(E) gz,dE’ (12)

RESULTS AND DISCUSSION

First, we look at the dilute limit, where the
nanoparticles can be considered as independent
potentials. As we mentioned before, the Born
approximation is valid for weak potentials. Equa-
tions 1-3 show that the scattering cross section is
proportional to V3. This means that the barrier
height is just a scaling factor and that the result of
the Born approximation is not sensitive to the
attractive or repulsive nature of the potential. The
radius of the nanoparticle is another scaling factor
and it does not change the behavior of the scattering
cross section versus energy at high energies. In
Fig. 2 we have compared the scattering cross sec-
tions resulting from the Born approximation and
the partial-wave method.

In this case the Born approximation overestimates
the scattering cross sections of a barrier potential
and underestimates that of a well potential. Within
the Born approximation, forward scattering is
independent of the electron energy. However, the
partial-wave method predicts that forward scatter-
ing increases with energy, which means that low-
energy electrons are more affected by the potential
compared with high-energy ones.
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Fig. 2. Comparison of the Born approximation and the partial-wave
method. Right: scattering cross section in units of =& for the partial-
wave and the Born approaches. The barrier/well energy scale (2 V&)
here is 0.75. Left: differential scattering cross section as a function of
electron momentum (the horizontal axis is in the direction of the
incident wave and the vertical axis is in the transverse direction). We
assumed a potential barrier. The differential scattering cross section
is shown for the partial-wave method (top right) and for the Born
approximation (bottom right).
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Fig. 3. Mobility versus electron concentration using the partial-
waves method and the Born approximation. Nanoparticle potentials
are considered as square barriers/wells of height 0.1 eV and a radius
of 2 nm. Mobilities are shown for the case of 1% nanoparticle con-
centration. The host material is GaAs for which the results without
nanoparticles are also reported for comparison and also to validate
our model in comparison with experiments.

Figure 3 shows the mobility prediction obtained
using the two approaches. This figure is plotted for
the case of GaAs. In this calculation we consider
other important scattering mechanisms such as po-
lar optical phonons, acoustic phonons, and ionized
impurities in addition to the nanoparticle scattering.
The results without nanoparticles are also reported.
They are in good agreement with the experimental
results.'® Notice that the Born underestimates/
overestimates the mobility by about 7%/15% com-
pared with that of the partial-wave method for the
case of barrier/well potential. The partial-wave
method is accurate for low concentrations when
multiple scatterings can be ignored. For higher
concentrations we need to go beyond the single
nanoparticle picture. The electron wave sees an
effective medium instead of a single independent
scatterer. We take into account the fluctuations of the
random medium by considering a distribution func-
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Fig. 4. CPA results for InGaAlAs with 1% Er at room temperature. A
Gaussian distribution was assumed for nanoparticles with an aver-
age radius of 1.5 nm and deviation of 0.5 nm. The carrier concen-
tration is 7 x 10" cm~3,
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Fig. 5. Total scattering cross section per nanoparticle for different
nanoparticle concentrations using the CPA. The nanoparticle radius
distribution function is a Gaussian function with an average radius of
2 nm and variance of 0.7 nm. The barrier height is 0.1 eV.

tion for nanoparticle radii and averaging over it (see
also Eqgs. 9 and 10). Figure 4 shows the CPA predic-
tion for the thermoelectric properties for a sample
material. We did not optimize the power factor but
generally we observed that the enhancement of the
Seebeck coefficient is higher for higher carrier con-
centrations but there is an optimum concentration
for the highest thermoelectric power factor.

To simplify the discussion let us take the square
barrier/well model again. To stay close to the
parameters of previous methods (Fig. 3), we choose
the same material (GaAs) with the same barrier
height for nanoparticles (0.1 eV). The nanoparticle
radius distribution function is chosen such that
the average radius of the nanoparticles stays the
same as before (2 nm). Figure 5 shows the
total scattering cross section per nanoparticle for
different nanoparticle concentrations. Similar to the
other two methods, the scattering cross section goes
to zero as E~! for large E. It can be seen from the
figure that, for low concentrations, electrons with
energies close to the barrier height (0.1 eV) have the
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largest cross section. At high nanoparticle concen-
trations, however, electrons see an overall potential
distribution and do not see single barriers. There-
fore the peak at 0.1 eV disappears in favor of a
sharp increase at low energies. Such a sharp in-
crease is an indication of the electron filtering. Low-
energy electrons are blocked in this picture and
high-energy ones contribute to the transport, and
therefore the average energy transported per car-
rier (thermopower) is increased. The CPA method
results in imaginary wavenumbers inside the
effective medium below a threshold energy. This
means that these states are localized and do not
contribute to the transport. We can then define a
mobility edge, above which states are extended and
below which states are localized. We have observed
that at low concentrations this edge is close to ¢V
(the concentration of nanoparticles multiplied by
the barrier height is the mean band edge in the
medium), whereas at higher concentrations the
edge has slightly higher values.

Figure 6 shows the mobility versus electron den-
sity for different nanoparticle concentrations. In
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Fig. 6. Mobility versus carrier concentration using the CPA method.
Top: for different nanoparticle concentrations. Mobility without
nanoparticles (“wo”) is also plotted. Parameters are the same as
Fig. 5. Bottom: for different size distributions. Solid and dotted lines
are for Gaussian functions with variance of 0.05 nm and 0.25 nm,
respectively. Dotted dashed lines are for a flat distribution if radii
between 1 nm and 3 nm. Results are reported for both barrier and
well potentials. Nanoparticle concentration is 1%.

these calculations, the electron density is increased
by increasing the concentration of ionized impuri-
ties. If the randomness of the system is increased,
for example by changing the nanoparticle radius
distribution function from a Gaussian to a flat dis-
tribution, the nanoparticle scattering rate increases
as expected and therefore the mobility decreases.
Figure 6b shows that such changes affect the scat-
tering form well potentials more than that of the
barrier ones. This figure is plotted for 1% concen-
tration of nanoparticles. If the concentration
decreases to 0.3% or less, results of the CPA tend to
that of the partial-wave approach.

COMPARISON BETWEEN THEORY
AND EXPERIMENT

To verify the effect of nanoparticles on thermo-
electric transport we made two samples. The sam-
ples were InGaAlAs with 20% InAlAs grown on an
InP substrate. The substrate was then removed and
the samples were bonded to sapphire plates. One
sample was bulk InGaAs doped with 2 x 10'® cm ™3
concentration of silicon. To the other sample 0.3%
Er nanoparticles were added. ErAs nanoparticles
are formed inside the bulk matrix with sizes of
2 nm to 3 nm. Hall measurement was done to obtain
the carrier concentration of the samples. In-plane
Seebeck and conductivity were measured and are
reported in Fig. 7.

To fit the data with our theory, we set the mate-
rial properties of InGaAlAs by interpolating
between InGaAs and InAlAs. The conductivity data
of bulk InGaAlAs was used to set the scattering
rates by fitting the rates to a power series in elec-
tron energy. Detailed inclusion of all the scattering
mechanisms for bulk InGaAlAs will be presented
elsewhere. Nanoparticle scattering rates are then
added to these rates. Nanoparticles are assumed to
have a repulsive screened potential away from the
interface j—re"ir. ¢ 1is the dielectric constant, 1/4 is the
screening length, and z is the number of electrons
per nanoparticle contributing to the conduction
band. Inside the nanoparticle a uniform distribution
of z+ charges was assumed. A part of the erbium
does not form nanoparticles; rather it forms point-
like potentials (ionized dopants). The ratio of carri-
ers coming from dopants to those coming from
nanoparticles was used as a fitting parameter. Total
number of carrier concentration was set from the
Hall data. Figure 7 shows the comparison between
the prediction of the theory and the experimental
data. The model is able to reproduce conductivity
data quite accurately. The Seebeck coefficient
can be off by as much as 15%. One can note a sys-
tematic underestimation, however, in the case of
nanoparticle doping. The difference may come from
the fact that the real potential of the nanoparticles
is not known and that we have used a simplified
model of the potential distribution around nano-
particles.



Effect of Nanoparticles on Electron and Thermoelectric Transport 959

900

£ w o ~4 =]
(=] (=1 o o o
o (=] o o o

Electrical conductivity [1/0hm-cm]

200 .| 1 1 L 1 L 1

260
240
220}
200 |
180}

Seebeck [uV/K]

100f o~ °

300 400 500 600 700 800 900
Temperature [K]

Fig. 7. Comparison of the theory with the experiment: Solid lines are

experimental data and dashed lines are theoretical prediction. The

model is explained in the text. Electrical conductivities were fitted

(using the appropriate ratio of dopant carriers to nanoparticle carri-
ers), and the Seebeck coefficient was predicted.

CONCLUSIONS

The Born approximation cannot quantitatively
predict transport properties of a bulk matrix with
embedded nanoparticles; it is not sensitive to the
attractive or repulsive nature of the potential. The
prediction of the Born approximation is not correct
for low energies. Using the partial-wave method,
scattering at low energies is isotropic but the
Born approximation predicts a dominant forward
scattering for the whole energy range. In the dilute
limit, the partial-wave method is a good approxi-
mation. For higher concentrations, CPA is more
accurate. The results of the CPA tend to that of the
partial-wave method in the dilute limit. CPA
includes several classes of multiple scatterings off of
different nanoparticles, but neglects processes

involving more than four successive scatterings off
of two different nanoparticles. This theory can be
used to predict thermopower at higher nanoparticle
concentrations. Nanoparticles can increase or
decrease the power factor. This depends on their
potential profile inside the bulk matrix and also on
the position of the Fermi level. Preliminary experi-
mental results show that the existing theory can
explain the measured Seebeck coefficient and elec-
trical conductivity of InGaAlAs samples with 0.3%
volume concentration of ErAs nanoparticles with an
average diameter of 1 nm to 2 nm.
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