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ARTICLE

High-resolution population estimation using
household survey data and building footprints
Gianluca Boo 1✉, Edith Darin 1, Douglas R. Leasure1, Claire A. Dooley 1, Heather R. Chamberlain 1,

Attila N. Lázár 1, Kevin Tschirhart2, Cyrus Sinai 3,4, Nicole A. Hoff 3, Trevon Fuller 3, Kamy Musene3,

Arly Batumbo5, Anne W. Rimoin 3 & Andrew J. Tatem 1

The national census is an essential data source to support decision-making in many areas of

public interest. However, this data may become outdated during the intercensal period, which

can stretch up to several decades. In this study, we develop a Bayesian hierarchical model

leveraging recent household surveys and building footprints to produce up-to-date population

estimates. We estimate population totals and age and sex breakdowns with associated

uncertainty measures within grid cells of approximately 100m in five provinces of the

Democratic Republic of the Congo, a country where the last census was completed in 1984.

The model exhibits a very good fit, with an R2 value of 0.79 for out-of-sample predictions of

population totals at the microcensus-cluster level and 1.00 for age and sex proportions at the

province level. This work confirms the benefits of combining household surveys and building

footprints for high-resolution population estimation in countries with outdated censuses.
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Accurate population figures are essential to support
decision-making in many areas of public interest, for
instance, urban planning, environmental hazard risk

management, and public health1. To this end, the most complete
and reliable data source is arguably the national population and
housing census1,2. However, the data collected in the census may
quickly become outdated because of migration, fertility, and
mortality patterns occurring during the 10-year intercensal per-
iod, which can occasionally stretch up to several decades3,4. In
such circumstances, outdated census data can be completed using
different population estimation techniques. For instance, the
Population Division of the United Nations Department of Eco-
nomic and Social Affairs (UN DESA) produces annual national
population estimates using projection models3. However, these
estimates can be highly uncertain because the models do not
address population dynamics occurring at the subnational level,
which may fluctuate significantly when the census data is parti-
cularly outdated3,4.

The bottom-up modeling approach addresses the limitations of
projection models because it produces population estimates at
high spatial resolution independently from the national census4.
Bottom-up models leverage population data retrieved from recent
household surveys involving the complete enumeration of a
representative sample of small and well-defined areas, named
microcensus clusters4. In their basic form, these models link
microcensus-cluster-level population totals and ancillary geos-
patial covariates with complete coverage of the region of interest,
such as settlement extents5,6 and satellite imagery classes7,8, to
estimate population totals in unsurveyed areas. These models can
also include additional geospatial covariates5–8, administrative or
functional strata5,6, and existing age and sex structures to dis-
aggregate the population estimates within different age and sex
groups9. The United Nations Population Fund (UNFPA) recently
highlighted the potential role of bottom-up population models for
census planning and preparation10.

In this work, we develop a Bayesian hierarchical model for
bottom-up population estimation that leverages household sur-
veys and building footprints. Our model introduces a weighted-
precision approach to derive unbiased estimates of population
counts from household surveys with complex sampling designs
and modeled age and sex structures using the same survey data. It
also makes extensive use of building footprints to approximate
the extent and distribution of settled areas and derive morpho-
logical and topological attributes implemented as geospatial
covariates and in a functional classification of settlement types.
We model population totals and age and sex breakdowns with
associated uncertainty measures within grid cells of approxi-
mately 100 m in five provinces in the western part of the
Democratic Republic of the Congo (DRC). Our estimates are
publicly available and can be flexibly aggregated within different
geographic units to support decision-making in a country where
uncertainty around the geography and demography of its popu-
lation regularly hampers public health and humanitarian
interventions.

Results
Population estimates. We developed a hierarchical Bayesian
model to estimate population totals and age and sex breakdowns
at high spatial resolution in five provinces in the western part of
the DRC. Figure 1 shows the estimated population totals within
grid cells of approximately 100 m for the five provincial capitals.
Kinshasa (Fig. 1a) has the largest spatial extent and the highest
population totals per grid cell, with substantial variations between
the central part of the city and its outskirts. The remaining cities
(Fig. 1b-e) have reduced extents and lower population totals per

grid cell, confirming the predominantly rural character of the
study region. The high-resolution population estimates, including
totals, age and sex breakdowns, and associated measures of model
uncertainty, can be accessed on the WorldPop Open Population
Repository (WOPR)11, visualized using the WOPR Vision web
application12, and integrated into data analyses through the
WOPR R package13. These tools can also facilitate the localized
comparison of the high-resolution population estimates with the
enumeration of small geographic areas frequently carried out as
part of public health campaigns14,15.

Population totals and densities. As shown in Eq. (1), we mod-
eled population totals as a Poisson process resulting from esti-
mated population densities multiplied by the total area of
building footprints within the microcensus clusters. We com-
puted population totals across 926 clusters based on data col-
lected across two rounds of household surveys and the total area
of the building footprints. In doing so, we discarded 21 clusters
exhibiting spurious attributes: 7 clusters featured substantial
undercounting of people associated with limited survey coverage,
while in 14 clusters no building footprints were detected. Figure 2
shows the geographic distribution of the observed population
densities across the 905 microcensus clusters according to the
settlement type and province. The clusters in the provinces of
Kwango (Fig. 2c), Kwilu (Fig. 2d), Mai-Ndombe (Fig. 2e), the
eastern part of Kinshasa (Fig. 2a), and Kongo Central (Fig. 2b)
were primarily rural, with highly heterogeneous population
densities. Most urban clusters were located in the provinces of
Kinshasa and Kongo Central, the most urbanized parts of the
study region, where population densities were generally homo-
geneous and lower than in rural clusters.

Hierarchical intercepts. As presented in Eq. (2), we defined
population log-densities in the 905 microcensus clusters as the
response variable of a linear regression. We estimated the random
intercept hierarchically by settlement type (n= 2), province
(n= 5), and sub-provincial region comprising territories, cities,
and groups of municipalities for the city-province of Kinshasa
(n= 37) (Eq. (8)). Figure 3 shows the posterior probability dis-
tributions of the hierarchical intercept by settlement type and
province. While the distributions were generally similar across
rural and urban settlements, the posterior means were lower in
the urban settlements of the Kinshasa (Fig. 3a) and Kongo
Central (Fig. 3b) provinces, potentially because of the higher
prevalence of building footprints with a non-residential function.
The 95% credible intervals are wider in urban settlements, espe-
cially in the provinces of Kongo Central (Fig. 3b), Kwango
(Fig. 3c), and particularly Mai-Ndombe (Fig. 3e), most likely
because of the large diversity of urban settlements, ranging from
sparsely populated towns and suburban areas to denser city
centers.

Covariate effects. As shown in Eq. (7), the hierarchical intercepts
presented above were combined with the additive effects of three
geospatial covariates derived from building footprint attributes.
In doing so, we first defined the covariate effects to be indepen-
dently estimated by settlement type for each covariate (Eq. (9))
and, if their posterior distribution was similar across rural and
urban settlements, we converted them into fixed effects (Eq. (10)).
Figure 4 shows the covariate effects estimated in the model; we
estimated random effects by settlement type for the first two
covariates and a fixed effect for the third covariate. While the
covariate average building proximity (i.e., the inverse of the
average distance to the nearest building footprint) had a sig-
nificant positive effect at the 95% credible level in rural
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settlements, the effect was non-significant in urban settlements.
Conversely, the covariate average building focal count (i.e., the
average count of building footprints in a focal window of
approximately 2 km) had a significant negative effect at the 95%
credible level in rural settlements and a significant positive effect
in urban settlements. The covariate average building area (i.e., the
average area of the building footprints) had a strong significant
negative effect at the 95% level across both settlement types and
was converted into a fixed effect.

Age and sex proportions. As presented in Eqs. (11, 12), we
modeled age and sex proportions from the household survey data
aggregated at the province level as a Dirichlet-multinomial pro-
cess. Figure 5 shows the means of the posterior distribution of the
age and sex proportions with relative 95% credible intervals for
the five provinces. Age and sex structures were similar in the
predominantly rural provinces of Kwango (Fig. 5c), Kwilu
(Fig. 5d), and Mai-Ndombe (Fig. 5e). In these provinces, the bases
of the pyramids were large and became increasingly narrow for
older age groups. In the predominantly urban provinces of Kin-
shasa (Fig. 5a) and Kongo Central (Fig. 5b), the pyramids had a
narrower base, typically associated with lower fertility. The pro-
vince of Kinshasa also had a larger part of the population between
20 and 49 years old because of work-related migratory patterns.
The 95% credible intervals were generally narrow as a con-
sequence of the limited variation in the aggregated province-level
age and sex structures.

Model diagnostics. We achieved model convergence in
10,000 sample iterations for the three Markov chain Monte Carlo
(MCMC) chains. Table 1 summarizes the analysis of residuals for
population totals (people) and population densities (people/
building footprint ha) at the microcensus-cluster level and age
and sex proportions at the cluster level for in-sample and out-of-
sample posterior predictions. The analysis suggested a very good
model fit for population totals for in-sample (R2= 0.81) and out-
of-sample (R2= 0.79) predictions, despite a reduced fit for
population densities for in-sample (R2= 0.52) and out-of-sample
(R2= 0.47) predictions. For both population totals and densities,
approximately 90% of the observations were within the 95%
credible intervals of out-of-sample predictions, suggesting that
the uncertainty intervals were robust. The analysis also indicated
slight bias with over-prediction of population totals and under-
prediction of population densities at the microcensus-cluster
level, with larger imprecision and inaccuracy for the latter. Both
for population totals and densities, no significant (p < 0.05) spatial
autocorrelation in the model residuals was detected using the
Moran’s I test. Province-level age and sex proportions had a
perfect fit for in-sample (R2= 1.00) and out-of-sample
(R2= 1.00) model predictions, with imperceptible levels of
imprecision and inaccuracy, suggesting limited variability in the
age and sex proportions aggregated at the province level. In
addition, in both cases, 100% of the observations fell within the
95% credible intervals, indicating conservative uncertainty inter-
vals for age and sex proportions estimated at the province level.

Fig. 1 Gridded population estimates in selected cities. Estimated population totals (people/cell) in the capital cities of the provinces of (a) Kinshasa
(Kinshasa), (b) Kongo Central (Matadi), (c) Kwango (Kenge), (d) Kwilu (Bandundu), and (e) Mai-Ndombe (Inongo). The estimates represent the mean of
the posterior distribution (n= 10,000). The map of the DRC shows the extent of the five provinces defining the study region in gray.
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Figure 6 visually contrasts the observed population totals
(people) and densities (people/ building footprint ha) versus in-
sample and out-of-sample posterior predictions according to
settlement type. The figure confirms a very good model fit for
population totals, which were generally in line with the observed

totals. The reduced model fit for population densities appears to
be due to large underpredictions in densely populated clusters in
rural settlements. In these clusters, underpredictions were related
to issues in the building footprint data used to compute the
observed population densities because the number of building
footprints was substantially lower than the number of surveyed
buildings. The reason for this could be found in the satellite
imagery used to delineate building footprints that, in these
clusters, were partly obfuscated by clouds and smoke, presumably
from slash and burn agriculture, that prevented the accurate
detection of buildings.

Discussion
This study extended a Bayesian hierarchical framework for
bottom-up population modeling to leverage household survey
data with complex sampling designs and building footprint
attributes. Existing techniques for population estimation
demonstrated the advantages of using household surveys in terms
of time and cost to fully enumerate a set of representative clusters
compared with the country-wide coverage of the national census4.
While these estimation techniques are generally endorsed for
decision-making1,2 and census support10, the resulting estimates
are not a substitute for the richness of information collected in
the census. However, when the census data is incomplete or
outdated, bottom-up models produce comprehensive and up-to-
date population estimates at high spatial resolution4. The popu-
lation estimates and associated uncertainty measures can be
flexibly aggregated within different units, for instance, adminis-
trative boundaries, catchment areas, health districts, and custom-
made polygons, to support different applications16. These appli-
cations can also include validating the modeling results that, in
the absence of recent subnational population figures, can be
compared with ad-hoc small-area enumerations typically per-
formed as part of public health campaigns14,15.

Our modeling effort estimated population totals and age and
sex breakdowns at a spatial resolution of approximately 100 m

Fig. 2 Microcensus clusters location and associated population densities.
Observed population densities (people/building footprint ha) across the
microcensus clusters (n= 905 clusters) in the provinces of (a) Kinshasa
(n= 26 rural and n= 254 urban clusters), (b) Kongo Central (n= 113 rural
and n= 109 urban clusters), (c) Kwango (n= 111 rural and n= 6 urban
clusters), (d) Kwilu (n= 182 rural and n= 23 urban clusters), and (e) Mai-
Ndombe (n= 69 rural and n= 12 urban clusters). The microcensus clusters
are classified according to the settlement type (urban in pink and rural in
turquoise).

Fig. 3 Model intercepts. Posterior probability distributions of the random
intercepts (people/building footprint ha) by settlement type (urban in pink
and rural cluster in turquoise) across the provinces of (a) Kinshasa, (b)
Kongo Central, (c) Kwango, (d) Kwilu, and (e) Mai-Ndombe. The black
dots show the mean of the distributions and the horizontal black lines show
the 95% credible intervals derived from the posterior distribution
(n= 10,000). Source data are provided with this paper.

Fig. 4 Covariates effect. Posterior probability distribution of the random
effect by settlement type (urban in pink and rural in purple) for the
covariates average building proximity and average building focal count and
the fixed effect (in orange) for the covariate average building area. The
black dots show the mean of the distributions and the horizontal black lines
show the 95% credible intervals derived from the posterior distribution
(n= 10,000). Source data are provided with this paper.
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together with measures of model uncertainty. The model lever-
aged household survey data with a probabilistic sampling
design17, typically adopted in national household surveys, such as
Demographic and Health Surveys (DHS) and Multiple Indicator
Cluster Surveys (MICS)18. Given that this type of design

oversamples locations with higher population densities, we
included a weighted-precision approach to recover unbiased
estimates of population totals and densities with robust credible
intervals19. However, this approach is often difficult to
implement20, as we confirmed by assessing the weights used in

Fig. 5 Predicted age and sex structures. Population pyramids presenting the means of the posterior distribution (n= 10,000) for each age and sex
proportion for the provinces of (a) Kinshasa, (b) Kongo Central, (c) Kwango, (d) Kwilu, and (e) Mai-Ndombe. The horizontal black lines show the 95%
credible intervals derived from the respective posterior distribution (n= 10,000). Source data are provided with this paper.

Table 1 Goodness-of-fit metrics.

Estimate Prediction Bias Imprecision Inaccuracy R2 95% CI

Population totals In-sample 13.81 (–0.02) 165.50 (0.41) 100.17 (0.27) 0.81 92.49%
Population totals Out-of-sample 13.43 (–0.03) 173.28 (0.44) 105.61 (0.29) 0.79 90.50%
Population densities In-sample –13.96 (–0.02) 441.66 (0.41) 266.32 (0.27) 0.52 92.04%
Population densities Out-of-sample –15.20 (–0.03) 464.69 (0.44) 282.90 (0.29) 0.47 90.06%
Age and sex proportions In-sample 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 100.00%
Age and sex proportions Out-of-sample 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 100.00%

Analysis of residuals for the estimated population totals (people), population densities (people/building footprint ha), and province-level age and sex proportions for in-sample and out-of-sample
posterior predictions. Bias represents the mean of the residuals, imprecision the standard deviation of residuals, inaccuracy the mean of absolute residuals, R2 the squared Pearson correlation coefficient
among the residuals, and the percentage of observations falling within the 95% credible intervals. Values in parentheses are computed using scaled residuals (residuals/predictions). Out-of-sample
predictions are carried out using 10-fold cross-validation, where the model is fit ten times, each time withholding a random 10% of microcensus clusters until all is held out once.
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the population-weighted sampling. Our assessment identified the
presence of weight outliers associated with uncertainties in the
population data used to compute the sampling weights that we
subsequently truncated at the 90th percentile of the statistical
distribution. The use of sampling weights associated with the
seeds of the clusters also introduces additional uncertainty
because it does not accurately represent the probability of
selecting every location in the cluster. We also modeled age and
sex proportions at the province level because reduced sample size
at finer administrative levels could result in spurious estimates for
the smallest groups9,21. However, these results should be inter-
preted with caution because small differences in the estimated
proportions (e.g., 0.001) can have a substantial impact on the total
population allocated to each class in a province.

We accessed building footprints to approximate the extent and
distribution of the settled areas and derive morphological and
topological attributes22–24. These attributes were used as model
covariates and to define hierarchical intercepts and random
effects by settlement type. The hierarchical intercept by settle-
ment type and province suggested higher population densities
(people/building footprint ha) in rural than urban settlements.
The analysis of the observed population densities at the
microcensus-cluster level confirmed this counterintuitive result,

where reduced population densities in urban settlements were
linked to a higher prevalence of building footprints with non-
residential functions (e.g., factories and shops). In addition, we
identified issues in the building footprint data associated with
outdated input imagery and other contextual factors that pre-
vented the detection of buildings in some clusters. Due to the
reduced extent of the observed building footprints, these clusters
exhibited inflated observed population densities and consequent
substantial model underpredictions. However, in the same clus-
ters, no critical underpredictions were detected for population
totals because the areal extent of the observed building footprints
acted as a multiplicative constraint in the process of estimation.
Considering that our study aimed at estimating population totals,
a reduced goodness-of-fit for population densities was considered
an endorsement of our hierarchical modeling approach rather
than a limitation.

Despite the issues described above, the use of building-
footprints attributes as model covariates enabled us to interpret
the direction and significance of their associations with popula-
tion density. The covariate average building proximity had a
positive effect on population densities in rural settlements, sug-
gesting a link between population density and settlement com-
pactness. The same covariate had a non-significant effect in urban

Fig. 6 Predicted versus observed population totals and densities. Observed population totals (people/cluster) and densities (people/building footprint
ha/cluster) versus in-sample and out-of-sample mean posterior predictions (colored dots) with 95% credible intervals (colored vertical lines) derived from
the respective posterior distribution (n= 10,000). Population totals and densities are classified according to the settlement type (urban in pink and rural in
turquoise). The diagonal black lines show a perfect relationship between observations and predictions. Source data are provided with this paper.
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settlements, potentially because of the more complex settlement
structure23 and the higher prevalence of building footprints with
a non-residential function23. The covariate average building focal
count had a positive effect on population densities in urban set-
tlements, confirming the association between population density
and urban centrality23,25. However, we observed an opposite
effect in rural settlements, potentially because of higher popula-
tion densities in settlements with a larger prevalence of building
footprints with a prominent residential function25. Lastly, the
covariate average building area had a consistent negative effect on
population densities, suggesting the impact of large building
footprints with non-residential function and small but over-
crowded building footprints on population densities23,25. Given
that the covariates presented above were not selected for causal
inference, the interpretation of the effects provided above remains
hypothetical.

Similar to existing modeling efforts, our model assumed that
the population totals retrieved from the household surveys were
observed without error and that no people lived outside of the
area defined using the building footprints5,6. Observation error in
the household surveys is likely to result in lower population totals
because of inaccessible areas within the microcensus clusters.
Additional observation error in the building footprints is expected
to underestimate the population totals where the satellite imagery
used for automatic extraction was outdated or obfuscated by
contextual factors, such as clouds, smoke due to slash-and-burn
agriculture, and forest canopy coverage. If these sources of error
are systematic, they may be tackled in future studies by including
a measurement error component in the model6. The model also
assumed constant age and sex structures within each province,
thus neglecting sub-provincial variations. Whether this choice
was dictated by sample size considerations9, future studies may
benefit from a more complex hierarchical structure to capture
variations occurring at finer administrative levels21. Lastly, future
studies will also benefit from a more systematic assessment of the
implementation of weighted-precision approaches, particularly in
the uncertainty associated with sampling weights18,19.

This study advances the state-of-the-art of bottom-up popu-
lation modeling in countries with outdated census data. In par-
ticular, our weighted-precision approach allows for the inclusion
of household survey data with probabilistic sampling designs
(e.g., DHS and MICS), provided that the data includes the sam-
pling weights and precise geographic information on the surveyed
clusters, such as the cluster boundary or the GPS location of the
household4. Our model also estimates age and sex structures
using the household survey data, thus providing more up-to-date
decompositions than those computed using existing and poten-
tially outdated age and sex structures9. Lastly, we also introduce
morphological and topological attributes derived from building
footprints in bottom-up population modeling. Given that most of
these attributes are openly available across sub-Saharan Africa,
they could be useful in similar modeling efforts22. However, it
remains challenging to develop a meaningful comparison
between the bottom-up population estimates and official figures
because the last national population and housing census of DRC
has been completed in 1984, and no other systematic enumera-
tion of the country was carried out since26,27. In addition, existing
model projections suffer from additional sources of uncertainty
associated with questionable assumptions (e.g., use of fragmented
or unreliable data26) and limitations (e.g., unavailability of sub-
national figures3) that prevent them from reflecting the spatial
distribution of the Congolese population at the subnational level.
These assessments can also be affected by uncertainty around the
spatial extent of the units of comparison since administrative
boundaries often differ according to the data provider. For this
reason, aggerated bottom-up estimates may conflict with other

population figures because the units of aggregation and enu-
meration are not the same.

Research to further develop bottom-up population models is
underway in the eastern part of the DRC and other countries of
sub-Saharan Africa as part of the Geo-Referenced Infrastructure
and Demographic Data for Development (GRID3) program28,29.
These modeling efforts are tailored to the country context and the
available input data. Importantly, when the input data is scarce or
suboptimal, a limited overall goodness-of-fit of the model does
not preclude the successful use of uncertainty measures for policy
planning and campaign implementation14,15. Although the
applications of bottom-up population modeling, conducted as
part of the GRID3 program, are primarily focused in sub-Saharan
Africa, this approach has broader applicability and can support
different steps of the census implementation, from planning (e.g.,
updating sampling frames) to implementation (e.g., support
planning and logistics), from quality assessment (e.g., assess
census coverage) to data usage (e.g., data anonymization)10.

Methods
Household surveys. We accessed geolocated household surveys involving the
complete enumeration of 926 microcensus clusters of approximately three settled
hectares in five provinces in the western part of the DRC. The data was collected
across two rounds of household surveys led by the UCLA-DRC Health Research
and Training Program based at the University of California, Los Angeles Fielding
School of Public Health and the Kinshasa School of Public Health (KSPH)30. The
first round of surveys was carried out between May and July 2017 in the provinces
of Kinshasa, Kwango, Kwilu, and Mai-Ndombe using random sampling, while the
second round was carried out between October and December 2018 in the pro-
vinces of Kinshasa and Kongo Central using population-weighted sampling16. The
surveys were developed for the bottom-up population modeling in the provinces
mentioned above. Given the time and resources needed to travel to and fully
enumerate the 926 clusters, only essential demographic data (e.g., household size
and age and sex characteristics) were collected in the surveys. All survey data were
anonymous and purged of any personally identifiable information before being
received for analysis.

In both surveys, seed locations (i.e., 100 m grid cells) were first selected, and
cluster boundaries were subsequently manually delineated around these locations
to include approximately three settled hectares with similar settlement
characteristics (e.g., building size and shape) assessed from satellite imagery. We
accessed the sampling weights for the second round of surveys and assessed their
statistical distribution to identify outliers associated with known uncertainties in
the gridded population data used in the sampling16,18. To limit the effects of
outliers resulting from the gridded population data used in the sampling, we
truncated the sampling weights at the 90th percentile of the statistical distribution.
We retrieved population totals for the clusters from the population counts recorded
within each household where informed consent was obtained (n= 79,126) and
imputed population in households with a nonresponse (n= 629) based on the
mean population per household within the same cluster. We also retrieved
population totals for standardized age (i.e., under 1-year-old, 5-year groups from 1
to 80, and above 80 years old) and sex (i.e., male and female) groups within each
province by aggregating individual survey records.

Ethical compliance for the data collection was approved by the institutional
review boards at the University of Kinshasa School of Public Health (KSPH) Ethics
Committee and at the University of California Los Angeles Institutional Review
Board (UCLA IRB). Ethical approval for the data analysis was granted at the
University of Southampton Ethics Committee.

Building footprints. We accessed building footprint data automatically extracted
by Ecopia.AI in 2019 using satellite imagery provided by Maxar Technologies
within the DRC31. The imagery used for feature extraction provides the best quality
(i.e., less than 5% cloud coverage and 0.3% coverage gaps) and the most recent (i.e.,
on average more recent than 2017) representation of man-made structures visible
on the ground, including both residential and non-residential buildings. However,
outdated satellite imagery (i.e., dating back to 2009) and other contextual factors
(e.g., clouds, smoke due to slash-and-burn agriculture, and forest canopy coverage)
may affect the automatic extraction of building footprints in the most dynamic and
remote settlement types. Given the robust quality control process developed by
Ecopia.AI, the building footprints are considered to provide the most accurate and
recent approximation of the spatial distribution of populations across the five
provinces. Some alternative building footprint datasets (e.g., Microsoft Building
Footprint Data) have recently been released, but their coverage of the DRC is not
yet available or optimal.

We used the building footprints to derive morphological and topological
attributes, such as area, perimeter, number of nodes, and distance to the nearest
feature22,23. We summarized these attributes within the microcensus clusters and
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grid cells of approximately 100 m comprising the five provinces using basic
summary statistics, such as the sum, mean, and coefficient of variation22. We also
produced the same summary statistics for focal windows of approximately 500 m,
1 km, and 2 km to reflect contextual characteristics23. We allocated the
microcensus clusters and the grid cells to urban and rural settlements using an
existing morphological classification derived from the same building footprint data
by the Center for International Earth Science Information Network (CIESIN)32.
We labeled the original built-up area class as urban settlement and merged the
original classes small settlement area (i.e., representing rural settlements) and
hamlet (i.e., isolated rural settlements) into a class labeled rural settlement. Urban
settlements are characterized by contours with an area greater than or equal to 40
building footprint ha with a building density of at least thirteen building footprints
across it, while rural settlements include the remaining part of the study area32.

Administrative boundaries. We accessed administrative boundaries provided by
the Bureau Central du Recensement (BCR), the administrative body responsible for
the census implementation in the DRC33. The boundaries comprised the admin-
istrative level 0 (i.e., country), level 1 (i.e., provinces), level 2 (i.e., territories and
cities), and level 3 (i.e., sectors/chiefdoms and municipalities). At the time of this
study, the administrative boundaries were being consolidated, and level 3 bound-
aries were only available for the city of Kinshasa. We first derived the spatial extent
of the provinces from the level 1 boundaries and subsequently created the sub-
provincial regions by combining level 2 and level 3 boundaries. In doing so, we
merged the level 3 boundaries of the 24 municipalities comprising the city of
Kinshasa into nine contiguous groups of municipalities with similar settlement
characteristics as reported in the Strategic Orientation Plan for the Agglomeration
of Kinshasa34. For instance, the boundaries of the municipalities of Bandalungwa,
Kintambo, Ngaliema, and Selembao were merged into a group corresponding to
the western expansion of the city. This ad-hoc grouping of municipalities ensured
that every sub-provincial region would contain at least one microcensus cluster to
estimate random intercepts in the population model. Lastly, we produced gridded
datasets with a resolution of approximately 100 m with unique identifiers for each
province and sub-provincial region and subsequently allocated the microcensus
clusters to a single province and a sub-provincial region.

Covariate processing and selection. We first constrained the extent of the
clusters using the building footprints located within a radius of approximately 50 m
from the surveyed households to exclude areas that were not surveyed because of
accessibility constraints. We then derived morphological and topological attribute
summaries from the building footprints and extracted additional summaries from
standard gridded datasets used in the study of population distributions, for
instance, temperature, precipitation, land use, and night-time light intensity35.
Model covariates were selected by assessing relationships between log-population
densities (people/building footprint ha) and the attribute summaries across the
clusters using scatterplots and Pearson correlations. This procedure enabled us to
retain the five covariates with the strongest linear association to population den-
sities — (1) building count (count of structures), (2) average building area (in ha),
(3) average building perimeter (in m), (4) average building proximity or the inverse
of the distance to the nearest building (in m), and (5) average building focal count
(average count of building within a focal window of approximately 2 km). To avoid
multicollinearity, we assessed Pearson correlations between the five covariates and
subsequently discarded average building perimeter because it was strongly corre-
lated with average auilding area. Building count was also discarded to avoid
potential data circularity because it was used in other parts of the model. The
selected covariates were finally scaled based on the mean and standard deviation
computed at the grid cell level across the study area.

Data processing and covariate selection were conducted in R version 4.0.236

using the R packages raster37 version 3.0 and sf38 version 0.7.

Population model. We modeled population totals by extending an existing hier-
archical Bayesian modeling framework for population estimation6. The hierarchical
modeling framework offers great flexibility and adaptability to complex input data,
such as household survey data, while accurately reflecting model uncertainty
through Bayesian credibility intervals. Model uncertainty is associated with the
inability to capture features in the input data, for instance, observational error or
limited sample size. Equation (1) models the total number of people Ni as a Poisson
process, where Di is the population density (people/ building footprint ha) and Ai is
the total area of building footprints (ha) derived from the building footprints
within each microcensus cluster i. The use of building footprints provides a
valuable additional source of information that constrains the estimation of popu-
lation totals within a reasonable range.

Ni � Poisson DiAi

� � ð1Þ
Equation (2) models Di as a log-normal process to relax the assumptions of the
Poisson distribution, where �Di is the expected population density on a log-scale
and τt;p;i is a hierarchical precision term estimated by settlement type t and pro-
vince p for each cluster i.

Di � LogNormal �Di; τt;p;i

� �
ð2Þ

Equation (3) defines the precision term τt;p;i based on a hierarchical estimate of
precision τt;p and the model weights vi19. τt;p is estimated hierarchically by set-
tlement type t and province p using uninformative priors on the mean μt and the
variance σt terms, which are modeled by a normal and uniform distribution,
respectively.

τt;p;i ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

viτ
�2
t;p

s

ð3Þ

τt;p � Half�Normal μt;p; σt;p

� �

μt;p � Half�Normal μt ; σt;

� �

σt;p � Uniform 0; σt
� �

μt � Normal 0; 1000ð Þ

σt � Uniform 0; 1000ð Þ
Equation (4) defines the model weight vi as the inverse of the sampling weight wi

used to select cluster i in the second round of household surveys. The sum of wi is
used to proportionally impute wi for the clusters that were selected randomly
during the first round of household surveys. vi are then rescaled to sum to one
across all the clusters I

vi ¼
w�1
i

∑I
i¼1w

�1
i

ð4Þ

As the estimate of precision τt;p;i cannot be derived in locations where the model
weights wi are not available and adopted for posterior model predictions, Eq. (5)
determines a hierarchical estimate of precision τ̂t;p from a weighted average of τt;p;i ,
where It;p is the number of clusters i within settlement type t and province p.

τ̂t;p ¼
∑

It;p
i¼1τt;p;i

ffiffiffiffi
vi

p

∑
It;p
i¼1

ffiffiffiffi
vi

p ð5Þ

Equation (6) uses the precision estimate τ̂t;p for posterior model predictions by
altering Eq. (2).

D̂i � LogNormal �Di; τ̂t;p

� �
ð6Þ

Equation (7) models the expected population density �Di using a linear regression
with random intercept αt;p;l estimated by settlement type t, province p, and local
area l and K covariates xk with random effects βk;t estimated by settlement type t.

�Di ¼ αt;p;l þ∑K
k¼1βk;t xk;i ð7Þ

Equation (8) models the hierarchical intercept αt;p;l for a local area l belonging to a
settlement type t and province p as a nested hierarchy with uninformative priors on
the mean ξt;p and variance νt;p terms. These are modeled using a normal and
uniform distribution, respectively.

αt;p;l � Normal ξt;p; νt;p

� �
ð8Þ

ξt;p � Normal ξt ; νt
� �

νt;p � Uniform 0; νt
� �

ξt � Normal 0; 1000ð Þ

νt � Uniform 0; 1000ð Þ
Equation (9) models the random effects βk;t for each covariate k independently for
each settlement type t with uninformative priors on the mean ρk and variance ωk
terms, which follow a normal and uniform distribution, respectively.

βk;t � Normal ρk; ωk

� �
ð9Þ

ρk � Normal 0; 1000ð Þ

ωk � Uniform 0; 1000ð Þ
For each covariate k, random effects βk;t with similar estimated posterior dis-
tributions across settlement types t are converted into a fixed effect βk modeled
with an uninformative normal distribution (Eq. (10)).

βk � Normal 0; 1000ð Þ ð10Þ

Age and sex structure model. Age and sex structures are modeled as a Dirichlet-
multinomial process21. This distribution is often used to model compositional
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count data, in other words, the count of observations (e.g., people) belonging to
mutually exclusive categories (e.g., age and sex groups). Equation (11) models the
observed count of people Ng;p within an age and sex group g and a province p as a
Multinomial process, where πg;p is the relative proportion of the age and sex group
and Np the observed population within the province p. g comprises G mutually
exclusive age and sex groups—two sex groups (i.e., male and female), each sub-
divided into 18 age groups (i.e., under 1-year-old, 1 to 4 years old, 5-year groups
from 5 to 80, and above 80 years old). Age and sex proportions were not modeled
at the sub-provincial level because reduced sample sizes could result in spurious
estimates for the smallest groups9,21.

Ng;p � Multinomial Np; πg;p

� �
ð11Þ

Because the sum of πg;p within each p is constrained to one, Eq. (12) uses an
uninformative Dirichlet distribution as a conjugate prior for πg;p where χG is a
constant numerical vector with values 1=G and of length G13.

πg;p � Dirichlet χG
� �

ð12Þ

Model fit and diagnostics. We estimated the model with MCMC methods in
JAGS 4.3.039 using the R package runjags40 version 2.0.4. The convergence of three
MCMC chains was assessed using the Gelman-Rubin statistic, and values less than
1.1 were interpreted as indicating convergence41, while the model residuals were
tested for spatial autocorrelation using semivariograms and Moran’s I statistics. We
examined model fit in- and out-of-sample using 10-fold cross-validation, where the
model was fit ten times, each time withholding a random 10% of microcensus
clusters until all had been held out once. To assess model fit for age and sex
proportions, we held out 10% of the clusters for each province and assessed the
combined posterior distribution for each demographic group. For in- and out-of-
sample predicted population sizes, densities, and province-level age and sex pro-
portions, we evaluated bias (i.e., the mean of residuals—mean posterior predictions
minus observed values), imprecision (i.e., the standard deviation of residuals),
inaccuracy (i.e., the mean of absolute residuals), R2 values (i.e., the squared Pearson
correlation coefficient among the residuals), and the percentage of observations
falling within the 95% prediction intervals. We also computed bias, imprecision,
and inaccuracy using standardized residuals (i.e., residuals divided by the mean
posterior predictions)41.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this study are available on Zenodo [https://doi.org/10.5281/
zenodo.5712953]. The population data generated in this study can be accessed on the
WOPR repository [https://wopr.worldpop.org/?COD/Population/v2.0] and visualized
using the WOPR Vision web application [https://apps.worldpop.org/woprVision].
Summary statistics of the posterior distributions generated in this study are available in
the Source Data file.

Code availability
The code developed in this study has been deposited on Zenodo [https://doi.org/10.5281/
zenodo.5712953].

Received: 14 June 2021; Accepted: 23 February 2022;

References
1. Findlay, A. M. Doing development research (SAGE Publications, 2021).
2. Moultrie, T. A. et al. Tools for demographic estimation (International Union

for the Scientific Study of Population (IUSSP), 2013).
3. United Nations Department of Economic and Social Affairs (UN DESA) —

Population Division. World population prospects 2019: methodology of the
United Nations population estimates and projections (United Nations, 2019).

4. Wardrop, N. A. et al. Spatially disaggregated population estimates in the
absence of national population and housing census data. Proceedings of the
National Academy of Sciences of the United States of America 115, 3529–3537
(2018).

5. Weber, E. M. et al. Census-independent population mapping in northern
Nigeria. Remote Sensing of Environment 204, 786–798 (2018).

6. Leasure, D. R., Jochem, W. C., Weber, E. M., Seaman, V. & Tatem, A. J.
National population mapping from sparse survey data: A hierarchical
Bayesian modeling framework to account for uncertainty. Proceedings of the

National Academy of Sciences of the United States of America 117,
24173–24179 (2020).

7. Mossoux, S., Kervyn, M., Soulé, H. & Canters, F. Mapping population
distribution from high resolution remotely sensed imagery in a data poor
setting. Remote Sensing 10, 1409 (2018).

8. Engstrom, R., Newhouse, D. L. & Soundararajan, V. Estimating small area
population density using survey data and satellite imagery: an application to
Sri Lanka. PLoS One 15, e0237063 (2020).

9. Pezzulo, C. et al. Sub-national mapping of population pyramids and
dependency ratios in Africa and Asia. Scientific Data 4, 170089 (2017).

10. United Nations Population Fund (UNFPA). The value of modelled population
estimates for census planning and preparation. Technical Guidance Note
(United Nations, 2020).

11. WorldPop, University of Southampton. WorldPop Open Population
Repository (WOPR). https://wopr.worldpop.org/?COD/Population/v2.0
(2020).

12. WorldPop, University of Southampton. WorldPop Open Population
Repository — WOPR Vision (beta). https://apps.worldpop.org/woprVision
(2020).

13. Leasure, D. R., Bondarenko, M. & Tatem, A. J. WOPR: An R package to query
the WorldPop Open Population Repository, version 0.3.4. (University of
Southampton, 2020).

14. SCI Foundation. Sapiens: a tool to conduct small area population evaluations.
https://schistosomiasiscontrolinitiative.org/sapiens-project (2021).

15. Nielsen, K. et al. A review of geospatial methods for population estimation and
their use in constructing reproductive, maternal, newborn, child and
adolescent health service indicators. BMC Health Services Research 21, 370
(2021).

16. Leyk, S. et al. The spatial allocation of population: a review of large-scale
gridded population data products and their fitness for use. Earth System
Science Data 11, 1385–1409 (2019).

17. Boo, G., Darin, E., Thomson, D. R. & Tatem, A. J. A grid-based sample design
framework for household surveys. Gates Open Research 4, 13 (2020).

18. Thomson, D. R., Rhoda, D. A., Tatem, A. J. & Castro, M. C. Gridded
population survey sampling: a systematic scoping review of the field and
strategic research agenda. International Journal of Health Geographics 19, 34
(2020).

19. Leasure, D. R., Dooley, C. A. & Tatem, A. J. A simulation study exploring
weighted Bayesian models to recover unbiased population estimates from
weighted survey data. (University of Southampton, 2021).

20. Gelman, A. Struggles with survey weighting and regression modeling.
Statistical Science 22, 153–164 (2007).

21. Harrison, J. G., Calder, W. J., Shastry, V. & Buerkle, C. A. Dirichlet-
multinomial modelling outperforms alternatives for analysis of microbiome
and other ecological count data. Molecular Ecology Resources 20, 481–497
(2020).

22. Dooley, C. A., Boo, G., Leasure, D. R. & Tatem, A. J. Gridded maps of building
patterns throughout sub-Saharan Africa, version 1.1. https://doi.org/10.5258/
SOTON/WP00677 (2020).

23. Jochem, W. C. et al. Classifying settlement types from multi-scale spatial
patterns of building footprints. Environment and Planning B-Urban Analytics
and City Science (2020).

24. Center for International Earth Science Information Network (CIESIN),
Columbia University, Flowminder Foundation, United Nations Population
Fund (UNFPA) & WorldPop, University of Southampton. Mapping and
classifying settlement locations. (Georeferenced Infrastructure and
Demographic Data for Development (GRID3), Palisades, NY, 2020).

25. Lloyd, C. T. et al. Using GIS and machine learning to classify residential status
of urban buildings in low and middle income settings. Remote Sensing 12,
3847 (2020).

26. Marivoet, W. & De Herdt, T. Tracing down real socio-economic trends from
household data with erratic sampling frames: the case of the Democratic
Republic of the Congo. Journal of Asian and African Studies 53, 532–552
(2018).

27. Marivoet, W. & De Herdt, T. From figures to facts: making sense of
socioeconomic surveys in the Democratic Republic of the Congo (DRC).
Analysis and Policy Brief 6, 1–6 (2017).

28. Geo-Referenced Infrastructure and Demographic Data for Development
(GRID3). GRID3. https://grid3.org (2021).

29. Geo-Referenced Infrastructure and Demographic Data for Development
(GRID3). GRID3 Mapping for Health Project. https://grid3.org/publications/
grid3-mapping-for-health-brochure (2021).

30. UCLA-DRC Health Research and Training Program & Kinshasa School of
Public Health. Microcensus survey data for the Kinshasa, Kongo Central and
former Bandundu provinces (2017 and 2018) (2018).

31. Ecopia.AI & Maxar Technologies. Digitize Africa Data — Building footprints.
https://www.maxar.com/products/imagery-basemaps (2020).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29094-x ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1330 | https://doi.org/10.1038/s41467-022-29094-x | www.nature.com/naturecommunications 9

https://doi.org/10.5281/zenodo.5712953
https://doi.org/10.5281/zenodo.5712953
https://wopr.worldpop.org/?COD/Population/v2.0
https://apps.worldpop.org/woprVision
https://doi.org/10.5281/zenodo.5712953
https://doi.org/10.5281/zenodo.5712953
https://wopr.worldpop.org/?COD/Population/v2.0
https://apps.worldpop.org/woprVision
https://schistosomiasiscontrolinitiative.org/sapiens-project
https://doi.org/10.5258/SOTON/WP00677
https://doi.org/10.5258/SOTON/WP00677
https://grid3.org
https://grid3.org/publications/grid3-mapping-for-health-brochure
https://grid3.org/publications/grid3-mapping-for-health-brochure
https://www.maxar.com/products/imagery-basemaps
www.nature.com/naturecommunications
www.nature.com/naturecommunications


32. Center for International Earth Science Information Network (CIESIN),
Columbia University & Novel-T. Settlement extents version 1.0— Democratic
Republic of the Congo. https://doi.org/10.7916/d8-cpry-wv37 (2020).

33. Bureau Central du Recensement (BCR). Report des limites administratives —
République Démocratique du Congo (2018).

34. Groupe Huit and Arter. Schéma d’orientation stratégique de l’agglomération
kinoise (SOSAK) et plan particulier d’aménagement de la ville (PPA) (Groupe
Huit and Arter, 2014).

35. Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing
high-resolution gridded population distribution datasets. Big Earth Data 3,
108–139 (2019).

36. R Core Team. R: A Language and Environment for Statistical Computing (R
Foundation for Statistical Computing, 2020).

37. Hijmans, R. J. raster: Geographic Data Analysis and Modeling (2020).
38. Pebesma, E. Simple features for R: standardized support for spatial vector data.

The R Journal 10, 439–446 (2018).
39. Plummer, M. JAGS: A program for analysis of Bayesian graphical models

using Gibbs sampling. Working Papers 8 (2003).
40. Denwood, M. runjags: An R package providing interface utilities, model

templates, parallel computing methods and additional distributions for
MCMC models in JAGS. Journal of Statistical Software 71, 1–25 (2016).

41. Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2013).

Acknowledgements
This work is part of the GRID3 project (Geo-Referenced Infrastructure and Demo-
graphic Data for Development), funded by the Bill and Melinda Gates Foundation and
the United Kingdom Foreign, Commonwealth and Development Office (FCDO)
(#INV009579 A.J.T.). Project partners include WorldPop at the University of South-
ampton, the United Nations Population Fund (UNFPA), the Center for International
Earth Science Information Network (CIESIN) in the Earth Institute at Columbia Uni-
versity, and the Flowminder Foundation. The UCLA-DRC Health Research and Training
Program based at the University of California, Los Angeles Fielding School of Public
Health, the Kinshasa School of Public Health (KSPH) led the two rounds of household
surveys in 2017 and 2018, with the support of the Bureau Central du Recensement (BCR)
(#OPP1151786 A.W.R.). Prof Emile Okitolonda-Wemakoy at the KSPH, who passed
away before the submission of this work, provided oversight to the household survey data
collection. D’Andre Spencer, Camille Dzogang, Jojo Mwanza, Handdy Kalunga, Millet
Mfawankang, Eric Musenge, Elie Lokutumba, Joseph Wasiswa, Arthur Lisambo, Kevin
Karume, Kizito Mosema, Lievin Dinoka, and Michael Beya supervised the surveyors who
were hired locally in collaboration with the provincial health departments. The Oak
Ridge National Laboratory (ORNL) supported the first round of household surveys. Key
ORNL collaborators include Eric Weber, Jeanette Weaver, and St. Thomas LeDoux. The
survey data collection instrument and data quality control platform were developed by
eHealth Africa in collaboration with the UCLA-DRC program. Key eHealth Africa
collaborators include Ayodele Adeyemo, Dami Sonoiki, and Adeoluwa Akande. The
health zone bureau staff throughout the five provinces provided logistical support to
surveyors as they traveled to microcensus clusters within each health zone. We

acknowledge the work of local surveyors who carried out the survey data collection, often
in the face of significant logistical challenges in remote, difficult-to-traverse areas. The
authors used the IRIDIS High-Performance Computing Facility and associated support
services at the University of Southampton.

Author contributions
G.B. prepared the manuscript; E.D., D.R.L., C.A.D., H.R.C., A.N.L., K.T., C.S., N.A.H.,
T.F., K.M., A.B., A.W.R., and A.J.T. edited the manuscript; G.B., E.D., H.R.C., K.T., C.S.,
N.A.H., T.F., K.M., and A.B. supervised data collection; G.B., E.D, and H.R.C. processed
the data; G.B., E.D., D.R.L., and C.A.D. developed the model; G.B., E.D., and D.R.L.
implemented the model; H.R.C., A.N.L., K.T., and A.J.T. provided project oversight;
A.W.R. and A.J.T. acquired funding.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-29094-x.

Correspondence and requests for materials should be addressed to Gianluca Boo.

Peer review information Nature Communications thanks Gerardo Gallo, Siqin Wang,
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29094-x

10 NATURE COMMUNICATIONS |         (2022) 13:1330 | https://doi.org/10.1038/s41467-022-29094-x | www.nature.com/naturecommunications

https://doi.org/10.7916/d8-cpry-wv37
https://doi.org/10.1038/s41467-022-29094-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	High-resolution population estimation using household survey data and building footprints
	Results
	Population estimates
	Population totals and densities
	Hierarchical intercepts
	Covariate effects
	Age and sex proportions
	Model diagnostics

	Discussion
	Methods
	Household surveys
	Building footprints
	Administrative boundaries
	Covariate processing and selection
	Population model
	Age and sex structure model
	Model fit and diagnostics

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




