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The adaptive and innate branches of the vertebrate immune system work in close collaboration to protect
organisms from harmful pathogens. As an organism ages its immune system undergoes immunosenes-
cence, characterized by declined performance or malfunction in either immune branch, which can lead
to disease and death. In this study we develop a mathematical framework of coupled innate and adaptive
immune responses, namely the integrated immune branch (IIB) model. This model describes dynamics of
immune components in both branches, uses a shape-space representation to encode pathogen-specific
immune memory, and exhibits three steady states – health, septic death, and chronic inflammation –
qualitatively similar to clinically-observed immune outcomes. In this model, the immune system (initial-
ized in the health state) is subjected to a sequence of pathogen encounters, and we use the number of
prior pathogen encounters as a proxy for the ‘‘age” of the immune system. We find that repeated patho-
gen encounters may trigger a fragility in which any encounter with a novel pathogen will cause the sys-
tem to irreversibly switch from health to chronic inflammation. This transition is consistent with the
onset of ‘‘inflammaging”, a condition observed in aged individuals who experience chronic low-grade
inflammation even in the absence of pathogens. The IIB model predicts that the onset of chronic inflam-
mation strongly depends on the history of encountered pathogens; the timing of onset differs drastically
when the same set of infections occurs in a different order. Lastly, the coupling between the innate and
adaptive immune branches generates a trade-off between rapid pathogen clearance and a delayed onset
of immunosenescence. Overall, by considering the complex feedback between immune compartments,
our work suggests potential mechanisms for immunosenescence and provides a theoretical framework
at the system level and on the scale of an organism’s lifetime to account for clinical observations.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Infectious diseases as diverse as bacterial pneumonia, influenza,
tuberculosis, herpes zoster, and most recently COVID-19 have an
increased morbidity and mortality among the elderly
(Yoshikawa, 1981; Eickhoff et al., 1961; Powell and Farer, 1980;
Miller and Brunell, 1970; Yoshikawa, 1997; Clinical features of
COVID-19 in elderly patients, 2020). Especially in conjunction with
global demographics that broadly reflect increases in age across
the world’s populations (both due to prolonged life expectancy
and declining birth rates), the prevalence of disease among the
elderly underscores the need for a better understanding of how
physiology changes with age (United Nations, 2019). In particular,
it is acutely important to identify the causes of immunosenescence,
the readily observed yet mechanistically vague deterioration of
immune function in aged individuals.

The vertebrate immune system targets and clears pathogens
through the collaborative efforts of innate and adaptive immune
responses: the innate immune system reacts quickly and non-
specifically to pathogenic threats, while the adaptive immune sys-
tem acts more slowly and generates a pathogen-specific response
through clonal expansion of cognate T and B lymphocytes. To
orchestrate this division of responsibility, extensive bidirectional
interactions exist between the innate and adaptive immune com-
partments (Getz, 2005; Shanker et al., 2017; e Sousa, 2004;
Pelletier et al., 2010; Strutt et al., 2011; Shanker, 2010). For exam-
ple, dendritic cells in the innate compartment mediate the presen-
tation of antigens to the adaptive compartment (Thery and
Amigorena, 2001). Conversely, T cells in the adaptive arm reduce
the production of inflammatory cytokines and thus limit tissue
damage caused by the innate immune response (Guarda et al.,
2009; Palm and Medzhitov, 2007; Kim et al., 2007). For example,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2020.110473&domain=pdf
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Table 1
Major biological components in the integrated immune branch (IIB) model.
Model equations are provided in full in Table 2.

Notation Immune
component

Description

Pi Pathogen � Harmful exogenous stimulants (e.g., bacte-
ria or viruses) that activate an immune
response

� Pathogen of shape i (shape space
formulation)

N� Activated
phagocytes

� Phagocytes (which include neutrophils and
macrophages) that are activated by any
pathogen Pi or by pro-inflammatory
cytokines

� Responsible for removing pathogens Pi , but
cause collateral tissue damage D

D Tissue damage � Caused by activated phagocytes N�

� Causes release of pro-inflammatory cytoki-
nes that recruit additional phagocytes N�

CA Anti-
inflammatory
cytokines

� Small protein molecules that reduce the
efficiency and recruitment of activated
phagocytes N�

� Production encouraged by activated phago-
cytes N� and tissue damage D, and also by
effector cells E (innate-adaptive crosstalk)

Ni Naive cells � Mature T cells with receptor specificity
represented by shape i that are agnostic
to previous pathogen encounters

� Divide and differentiate into memory Mi

and effector Ei cells when activated by
pathogens Pi

� Subject to homeostasis control
mechanisms

Mi Memory cells � Long-lived cells differentiated from naive
cells Ni with the same pathogen specificity

� Divide and differentiate into memory Mi

and effector Ei cells when activated by
pathogens Pi

� Subject to homeostasis control
mechanisms

Ei Effector cells � Short-lived cells differentiated from naive
Ni and memory Mi cells

� Remove pathogen Pi and produce anti-
inflammatory cytokines CA
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experiments with nude mice (a mutant mouse strain with low T
cell levels) showed that death can ensue without this adaptive sup-
pression of inflammation (Palm and Medzhitov, 2007; Kim et al.,
2007).

Immunosenescence manifests itself in both the innate and the
adaptive immune branches. In the adaptive branch aging is par-
tially driven by thymus involution, which reduces the output of
new naive T cells (Aw and Palmer, 2011; Goronzy and Weyand,
2005; Shanley et al., 2009). Furthermore, a lifetime of persistent
pathogen exposures (e.g. chronic infections like cytomegalovirus)
leads to oligoclonal expansion of memory T cells specific to those
pathogens. These physiological mechanisms lead to an ‘‘imbal-
anced” repertoire of immune cells that is predominately populated
by memory cells specific to frequently encountered pathogens,
which limit the ability of the adaptive branch to respond to novel
pathogens. Indeed, the increased fraction of CD8+ T cells caused by
memory inflation has been associated with the immune risk phe-
notype (IRP), which has been found to predict impaired immune
function and mortality (Souquette et al., 2017; Blackman and
Woodland, 2011; Wikby et al., 2006).

In the innate compartment, aging is associated with the devel-
opment of a chronic low-grade inflammatory response even in
the absence of pathogen stimulation, called ‘‘inflammaging”
(Franceschi et al., 2000). The elderly often experience chronic
inflammation and possess elevated levels of pro-inflammatory
cytokines (Wikby et al., 2006; Bruunsgaard et al., 1999;
Bruunsgaard et al., 2003; Volpato et al., 2001), which have been
found to be strong predictors of mortality (for example, interleukin
6 has been associated with the IRP) (Wikby et al., 2006). Prior the-
ories suggest that inflammaging is facilitated by long-lasting patho-
gen encounters, cell debris and stress, and the reduced efficiency of
the adaptive immune response (Franceschi et al., 2000; Fulop et al.,
2018; Franceschi et al., 2018). Still, the mechanisms underlying the
onset of inflammaging – and in particular its connection to aging in
the adaptive immune system – require further study.

In an earlier mathematical model of the adaptive immune
response, Stromberg and Carlson found that repeated pathogen
exposures could lead to an imbalanced immune repertoire that
was fragile to rare pathogens, in the sense that rare pathogens pro-
liferated significantly more than common pathogens (Stromberg
and Carlson, 2006). Around the same time, Reynolds et al. devel-
oped a model of the innate immune response immediately follow-
ing a pathogen encounter. Based on these earlier models, in this
paper we construct an ordinary differential equation model of
the coupled innate-adaptive immune system called the integrated
immune branch (IIB) model, and demonstrate how immunosenes-
cence can develop and trigger a chronic inflammatory response. As
detailed in Table 1, the state variables of the IIB model incorporate
pathogen abundance Pi (where subscript i indicates the pathogen
type); the inflammatory response of the innate branch with neu-
trophils N�, anti-inflammatory cytokines CA, and inflammatory tis-
sue damage D; and the pathogen-specific T cell dynamics of the
adaptive branch with naive cells Ni, memory cells Mi, and effector
cells Ei. Here, the onset of immunosenescence arises purely from
the fragility of an imbalanced immune repertoire shaped by past
encounters of pathogens; this fragility renders the system vulner-
able to novel infections, causing an irreversible transition to the
chronic inflammation state. Importantly, this fragility emerges
without any assumptions regarding the degradation of cellular
function with age. The IIB model also recapitulates several
clinically-observed signatures of immunosenescence: the ratio of
naive to memory cells decreases over time (Boren and Gershwin,
2004), repeated exposure to chronic infections (e.g. human cyto-
megalovirus) induces immune fragility (Aiello et al., 2019), and this
fragility is characterized by chronic inflammation (‘‘inflammag-
ing”) (Boren and Gershwin, 2004; Wikby et al., 2006).
2

With the IIB model, we first characterize the dynamics and
steady states of the immune system in response to a single infec-
tion event. The three steady states of the IIB model – health, septic
death, and chronic inflammation – are characterized, and their
dependence on key parameters is explored. Then, the system is
exposed to a series of pathogens that form an infection history;
these regularly-spaced pathogen encounters are used to measure
the age of the immune system. This sequence of infection events
causes overspecialization in the adaptive compartment and trig-
gers chronic inflammation. In particular, the order in which infec-
tions are encountered strongly influences immune outcomes, and
can hasten or delay the onset of chronic inflammation. Further,
by tuning resource allocation in the adaptive compartment toward
pathogen clearance versus suppression of inflammation, crosstalks
between immune compartments may be directly manipulated.
This manipulation reveals a trade-off between a delayed onset of
chronic inflammation and rapid pathogen clearance. Our model
provides a mechanistic explanation for how repeated pathogen
exposures can cause immune fragility that leads to inflammaging
and immunosenescence, and may serve as a foundation for quanti-
tative studies of immune crosstalk and aging.
2. Mathematical model

Extensive mathematical and computational modeling efforts
have been made to better understand both the innate and adaptive
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branches of vertebrate immune system (Vodovotz et al., 2017;
Eftimie et al., 2016; Chakraborty, 2017). Additionally, a rich litera-
ture exists regarding the inflammatory innate response (Dunster
et al., 2014; Nagaraja et al., 2014; Vodovotz et al., 2006;
Vodovotz et al., 2009; Yang et al., 2011) and the adaptive immune
repertoire (De Boer and Perelson, 1994; Stirk et al., 2008; Davis and
Adler, 2013; Schlesinger et al., 2014). In particular, Reynolds et al.
studied the positive feedback between activated phagocytes and
collateral tissue damage (Reynolds et al., 2006), and Stromberg
and Carlson modeled the accumulated loss of memory cell diver-
sity over the course of a lifetime of infections (Stromberg and
Carlson, 2006). In this study, we modify and synthesize the models
of Reynolds et al. and Stromberg and Carlson to develop an inte-
grated immune branch (IIB) model, in which the innate and adap-
tive immune branches work collaboratively to clear pathogens.

A schematic of the IIB model is depicted in Fig. 1, and a thor-
ough accounting of the individual components of the innate
(pathogen Pi, phagocytes N�, tissue damage D, and anti-
inflammatory cytokines CA) and adaptive (pathogen Pi, naive cells
Ni, memory cells Mi, and effector cells Ei) models is provided in
Table 1. The coupled model is described in full in Table 2, and
parameter descriptions and values are provided in Table 3. For
more complete descriptions of the separate innate and adaptive
immune models, we refer the reader to the original publications
(Reynolds et al., 2006; Stromberg and Carlson, 2006).
2.1. Innate immune response

In the model formulated by Reynolds et al. (2006) (depicted in
the green box of Fig. 1), once a pathogen Pi is introduced, phago-
cytes N� (which include, e.g., neutrophils and macrophages) are
recruited to the site of the infection by activation or migration.
These phagocytes kill the pathogen Pi by phagocytosis, degranula-
tion, or by creating neutrophil extracellular traps. At the same
time, these phagocytes release inflammatory cytokines that induce
inflammation and tissue damage D in the host. Damaged tissue in
turn releases additional inflammatory cytokines, further promot-
Fig. 1. Schematic of the integrated immune branch (IIB) model. An introduced
pathogen prompts innate and adaptive immune responses that seek to eliminate
the pathogen. The innate response (green) is adapted from the model of Reynolds
et al. (2006), in which the presence of a pathogen activates phagocytes that induce
inflammation and the subsequent production of anti-inflammatory cells. The
adaptive immune response (magenta) is adapted from the model of Stromberg and
Carlson (2006), in which presented pathogens (orange) activate naive and memory
T cells specific to that pathogen, causing them to divide into effector cells that
target the pathogen. In this model, the delay in the adaptive response due to antigen
presentation is hard-coded via the compartments Pð1Þ

i ; Pð2Þ
i , and Pð3Þ

i using the linear
chain technique. The state variables of this model are described in Table 1, the
model itself is given explicitly in Table 2, and the model parameters are provided in
Table 3.
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ing phagocyte activation. Following this initial inflammatory
response, a wave of anti-inflammatory cytokines CA is released to
downregulate phagocyte recruitment and to reduce inflammation
and tissue damage.

The steady-state behavior of this model was investigated by
Reynolds et al. (2006), who found that this formulation of the
innate immune response led to three possible steady states: health,
in which the pathogen is cleared and the phagocytes and tissue
damage vanish; septic death, in which the innate response is unable
to clear the pathogen; and chronic inflammation, in which the
innate response clears the pathogen at the expense of inducing a
constant inflammatory response that fails to dissipate, even after
pathogen clearance. In the model’s original formulation this
chronic inflammation steady state was named aseptic death, but
in this paper we allow for the possible interpretation of this steady
state as ‘‘inflammaging,” which is not necessarily fatal, rather than
death (Chen and Nuñez, 2010; Rock et al., 2009). As we will show,
the IIB model retains these three steady states while introducing
interplay between the non-specific innate response and the speci-
fic adaptive response.
2.2. Adaptive immune response

The IIB model also incorporates the adaptive immune response
(shown in the magenta box of Fig. 1), which is based on the shape-
space adaptive immunemodel of Stromberg and Carlson (2006). By
assigning discrete ‘‘shapes” to pathogen epitopes and adaptive
immune cells, this formulation allows pathogen-specific immune
memory and immune responses to be developed (Perelson and
Oster, 1979). Thus, an introduced pathogen Pi of shape i induces
an adaptive response consisting of naive cells Ni, memory cells
Mi, and effector cells Ei that all specifically target the introduced
pathogen. There are Smax available shapes. In the original model
of Stromberg and Carlson, pathogens Pi of shape i could interact
with adaptive cells of some different shape j with a lowered bind-
ing affinity, but in this paper for computational efficiency we
require that adaptive responses be activated by a pathogen of iden-
tical shape (that is, cross-reactivity is not implemented in the IIB
model).

The process of antigen presentation delays the activation of the
adaptive immune response. To model this phenomenon using ordi-
nary differential equations (rather than with delay differential
equations), the delay is hard-coded in the IIB model with the linear
chain technique. This process is schematized in the orange box of

Fig. 1, in which the populations Pð1Þ
i ; Pð2Þ

i , and Pð3Þ
i are intermediate

states that represent different stages of antigen presentation
(MacDonald and Lags, 1978). Eventually, the presented antigen

Pð3Þ
i induces naive cells Ni to divide into memory cells Mi and effec-

tor cells Ei; and memory cells Mi to divide into additional memory
cells Mi and effector cells Ei. Once created, these pathogen-specific
effector cells Ei work to clear the pathogen Pi.
2.3. Integrated immune branch (IIB) model

The IIB model is described in full in Table 2, with descriptions
and values of the parameters given in Table 3. Next, we emphasize
the modifications made to synthesize the two separate innate and
adaptive immune models.

In the IIB model, the innate and adaptive components are linked
in two ways. First, the two compartments are implicitly linked
through the pathogen population: a higher pathogen load Pi not
only activates more phagocytes N� in the innate compartment,
but also leads to a higher rate of antigen presentation and subse-
quent activation of naive Ni, memoryMi, and effector Ei cells. Thus,



Table 2
Full equations in IIB model.

Equation Interpretation

dPi
dt ¼ kpgPi 1� j~Pj

P1

� �
� kpmsm

lmþkmp j~Pj
Pi

�kpnf ðN� ; CAÞPi � pcPiEi � DPi

Pathogen Pi of shape i changes according to:
� logistic growth, carrying capacity P1 (j � j denotes the 1-norm)
� inhibition by a non-local immune response
� clearance by innate phagocytes N� , effect is mediated by anti-inflammatory cytokines CA via f ð�Þ
� clearance by adaptive effector cells Ei

� sequestration by dendritic cells for antigen presentation

dPð1Þ
i

dt ¼ D Pi � Pð1Þ
i

h i
dPð2Þ

i
dt ¼ D Pð1Þ

i � Pð2Þ
i

h i
dPð3Þ

i
dt ¼ D Pð2Þ

i � Pð3Þ
i

h i
� bcPð3Þ

i ðNi þMiÞ

Intermediate pathogen variables Pð1;2;3Þ used for antigen presentation change according to:
� antigen presentation occurs with hard-coded delay (linear chain technique) of 3=D units of time on average required for a
pathogen Pi to transition to compartment Pð3Þ

i

� compartments Pð1;2;3Þ
i correspond to intermediate states during antigen presentation

� once antigen arrives in compartment Pð3Þ
i it activates naive cells Ni and memory cells Mi

dNi
dt ¼ �acNiP

ð3Þ
i þ hN � dNNi

j~Mjþj~Nj
R0

Naive cells Ni of shape i change according to:
� division into effector cells Ei (with rate f ) and memory cells Mi (with rate 1� f )
� constant production at rate hN
� return to homeostatic equilibrium (timescale 1=dN)

dMi
dt ¼ ð2� 2f ÞacNiP

ð3Þ
i

þð1� 2f ÞacMiP
ð3Þ
i � dMMi

j~Mjþj~Nj
R0

Memory cells Mi of shape i change according to:
� division into effector cells Ei (with rate f ) and memory cells Mi (with rate 1� f ); factor of 2 results from cell division
� growth from naive and memory cell division
� decay at rate dM

dEi
dt ¼ 2faðMi þ NiÞcPð3Þ

i � dEEi Effector cells Ei of shape i change according to:
� production by naive and memory cells proportional to antigen presentation rate a
� decay at rate dE

dN�
dt ¼ snrR

lnrþR � lnN
� Innate phagocytes N� change according to:

� activation by the presence of other phagocytes, pathogen, or tissue damage (encapsulated by R)
� decay at rate ln

dD
dt ¼ kdnf sðf ðN�; CAÞÞ � ldD Tissue damage D changes according to:

� induced by activated phagocytes N� , but ameliorated by the presence of anti-inflammatory cytokines CA via f ð�Þ
� decay at rate ld

dCA
dt ¼ sc þ kcn

f ðN�þkcndD; CAÞ
1þf ðN�þkcndD; CAÞ � lcCA

þð1� pÞkce j~Ej
j~EjþE1=2

Anti-inflammatory cytokines CA change according to:
� production at constant rate sc; decay at rate lc

� production related to phagocyte and tissue damage levels
� stimulation by effector cells j~Ej
� 1 in denominator of second term has units of [N�]

R ¼ f ðknnN� þ knpP þ kndD; CAÞ
f ðx; CAÞ ¼ x

1þ CA
C1

� �2

f sðyÞ ¼ y6

x6
dn
þy6

Auxiliary equations:
� R is an aggregation of signals that trigger the innate immune response
� f ðx; CAÞ mediates the value of x according to the level of anti-inflammation cytokines CA

� f sðyÞ was phenomenologically fit by Reynolds et al. in their original formulation Reynolds et al., 2006
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depletion of pathogen by either response (by phagocytes N� or by
effector cells Ei) affects both compartments.

Second, the two compartments are explicitly linked since effec-
tor cells Ei can create anti-inflammatory cytokines CA that weaken
the innate response. The suppression of inflammatory responses by
effector cells has been observed experimentally (Guarda et al.,
2009; Palm and Medzhitov, 2007; Kim et al., 2007). In the IIB
model, effector cells are allocated either to clear pathogens or to
promote the production of anti-inflammatory cytokines, in propor-
tion to p and 1� p, respectively (dashed line in Fig. 1). The patho-
gen removal efficiency p may be varied from 0 to 1, so that in the
limit that effector cells are solely responsible for pathogen clear-
ance (p ¼ 1) no additional anti-inflammatory cytokines are pro-
duced. Therefore, the synthesized model is capable of
quantitatively comparing the two adaptive immune functions of
pathogen clearance and inflammation attenuation.

The IIB model introduces homeostatic constraints that regulate
the capacity of naive and memory cells. The rates of both homeo-
static responses are dependent on the sum of the bulk naive cell

population j~Nj � P
iNi and the bulk memory cell population

j~Mj � P
iMi. In the process of clearing a pathogen, memory cells

accumulate. Afterwards, to satisfy the homeostatic constraints,
naive cells must become less abundant than they were before
4

the infection. In the Supplementary Information, we derive ana-
lytic approximations to the immune dynamics that are generated
by these homeostatic relaxations; when the timescale of pathogen
clearance is much shorter than the timescale of homeostatic relax-
ation, these expressions can be used as part of a dynamic program-
ming approach to significantly speed up numerical simulations.
3. Results

3.1. Clearance of a single infection by the coupled immune response

In the IIB model, once a pathogen is introduced it initiates a cas-
cade of immune responses in the innate and adaptive compart-
ments, and these responses combat the logistic growth of the
pathogen and attempt to drive it to extinction. Fig. 2 depicts a rep-
resentative pathogen encounter and clearance, and plots the
pathogen abundance (orange) as well as the pathogen clearance
rates due to the adaptive effector cell (purple) and innate phago-
cyte (green) responses given by the quantities pcPiEi and
kpnf ðN�ÞPi, respectively, as given in Table 2. Note that the adaptive
response is specific to the pathogen shape, while the innate
response is nonspecific. For clarity only the lumped contributions
of the innate and adaptive compartments to pathogen clearance



Table 3
Typical parameters of the immune model in Table 2. The parameters listed in this table are used to generate Fig. 5, while the other figures are created with slightly modified
parameters as detailed in the Supplementary Information. Most innate parameters were originally described in the Reynolds et al. model (Reynolds et al., 2006), while most
adaptive parameters were originally described in the Stromberg and Carlson model (Stromberg and Carlson, 2006). Parameter values that are the same as those used in the
original models are bold-faced. Dimensions are given in square brackets, with [T] denoting time, other symbols denoting the concentrations of their corresponding immune
variables, and [C] denoting concentrations of adaptive immune cells (i.e. naive cells Ni , memory cells Mi , or effector cells Ei).

Parameter Value Description and dimension Source Parameter Value Description and dimension Source

kpg 0.6 pathogen logistic growth rate; [T�1] Reynolds
et al. (2006)

P1 20 pathogen logistic carrying capacity; [P] Reynolds
et al. (2006)

kpm 0.6 pathogen clearance rate by nonspecific

response; [T�1]

Reynolds
et al. (2006)

sm 0.005 source rate of nonspecific response; [T�1] Reynolds
et al. (2006)

lm 0.002 decay rate of nonspecific response; [T�1] Reynolds
et al. (2006)

kmp 0.01 rate of nonspecific exhaustion per

pathogen; [P�1T�1]

Reynolds
et al. (2006)

kpn 1.8 rate of pathogen clearance by innate

response; [ðN�Þ�1T�1]

Reynolds
et al. (2006)

c 0.02 binding rate between pathogens and

adaptive cells of the same type; [C�1T�1]

Stromberg
and Carlson
(2006)

p 0.9 proportion of effector cell resources
allocated to pathogen clearance; [nondim.]

D 0.1 rate of antigen presentation; [T�1]

b 0.01 efficacy of Pð3Þ
j depletion by antigen

presentation; [nondim.]

a 0.1 efficacy of adaptive cell activation by

antigen presentation; [CP�1]

Stromberg
and Carlson
(2006)

hN 5 naive cell creation rate; [CT�1] R0 7200 total naive and memory cell logistic
carrying capacity; [C]

dN 0.025 naive cell homeostasis rate; [T�1] dM 4e�5 memory cell decay rate; [T�1]
f 0.4 proportion of memory and naive cells that

divide into effector cells; [nondim.]
Stromberg
and Carlson
(2006)

dE 0.05 effector cell decay rate; [T�1] Stromberg
and Carlson
(2006)

snr 0.08 maximum phagocyte recruitment rate;

[N�T�1]

Reynolds
et al. (2006)

lnr 0.12 phagocyte recruitment half-saturation

constant; [T�1]

Reynolds
et al. (2006)

ln 0.05 phagocyte decay rate; [T�1] Reynolds
et al. (2006)

kdn 0.35 rate of tissue damage due to phagocytes;

[DT�1]

Reynolds
et al. (2006)

ld 0.02 tissue damage decay rate; [T�1] Reynolds
et al. (2006)

sc 0.0125 source rate of anti-inflammatory

cytokines; [CAT
�1]

Reynolds
et al. (2006)

kcn 0.04 maximum activation of anti-inflammatory
cytokines by phagocytes and tissue damage

[CAT
�1]

Reynolds
et al. (2006)

kcnd 48 conversion rate between tissue damage

and phagocyte abundance; [N�D�1]

Reynolds
et al. (2006)

lc 0.1 anti-inflammatory cytokine decay rate;

[T�1]

Reynolds
et al. (2006)

knn 0.01 conversion rate between phagocyte
abundance and aggregate innate response

R; [ðN�Þ�1T�1]

Reynolds
et al. (2006)

knp 0.1 conversion rate between pathogen
abundance and aggregate innate response

R; [P�1T�1]

Reynolds
et al. (2006)

knd 0.02 conversion rate between tissue damage

and aggregate innate response R; [D�1T�1]

Reynolds
et al. (2006)

kce 0.4 maximum anti-inflammatory cytokine

production rate by effector cells; [CAT
�1]

E1=2 10 half-saturation constant for cytokine
production by effector cells; [C]

C1 0.28 scaling factor for anti-inflammatory
cytokine abundance; [CA]

Reynolds
et al. (2006)

xdn 0.06 phenomenologically-inferred half-
saturation constant; [N�]

Reynolds
et al. (2006)

Smax 36 number of pathogen shapes in shape space;
[nondim.]

Stromberg
and Carlson
(2006)
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are plotted in Fig. 2. The populations of every immunological vari-
able are plotted for several scenarios in Fig. 3.

In Fig. 2 the logistic growth of the pathogen drives the initial
pathogen spike, which is mildly tempered by a non-local immune
response as described by Reynolds et al. (2006). Phagocytes are
immediately recruited and attack the pathogen, leading to the
increase in innate pathogen clearance (green). Simultaneously,
the collateral tissue damage inflicted by phagocytes causes the
production of anti-inflammatory cytokines, which suppress further
phagocyte recruitment and tissue damage. Anti-inflammatory
cytokines in conjunction with a decreasing pathogen population
cause the decrease in innate pathogen clearance. Once the patho-
gen is presented to the adaptive immune branch – a delay that is
hard-coded in the IIB model with the auxiliary immunological vari-

ables Pð1Þ
i ; Pð2Þ

i , and Pð3Þ
i – the naive and memory cells specific to the

presented antigen divide into effector cells. These effector cells
subsequently contribute to the increase in adaptive pathogen
clearance (purple). Ultimately, with the given parameter values
(provided in the Supplementary Information) the innate and adap-
tive responses overpower the pathogen and drive it to extinction.
In the process, memory cells specific to this pathogen shape prolif-
5

erate and provide future protection in case the same pathogen is
faced again in the future, since the higher initial abundance of
pathogen-specific memory cells will result in a more immediate
adaptive response.

3.2. Steady state analysis of the IIB model

The IIB model described in Table 2 exhibits steady states when
the time derivatives of all the populations vanish. This coupled
model inherits many of the steady state characteristics of the con-
stituent innate and adaptive immune models. In particular, this
model exhibits steady states of (a) health, characterized by vanish-
ing pathogen and immune response; (b) chronic inflammation, in
which the pathogen clears but the innate immune response is sus-
tained in a positive feedback loop; and (c) septic death, character-
ized by the chronic presence of pathogen and activated immune
responses. Realizations of these three steady states are displayed
in Fig. 3, and the parameter sets used to generate each outcome
are provided in Table 3 and in Table S1 of the Supplementary Infor-
mation. The steady states attained by the IIB model are sensitive to
parameter values, and in Fig. 3 different steady states were



Fig. 2. Pathogen abundance (orange, solid) is regulated by the innate and
adaptive immune responses in the IIB model. The clearance rates of the innate
response (green dash-dotted, rate given by kpnf ðN�ÞPi) and the adaptive response
(purple dashed, rate given by pcPiEi), as described in the dPi

dt equation of Table 2, are
plotted. The innate response is activated immediately, while the adaptive response
is delayed due to the antigen presentation process (encoded with the linear chain
technique Pi ! Pð1Þ

i ! Pð2Þ
i ! Pð3Þ

i ). Ultimately the combined immune responses
manage to clear the pathogen. The parameters used to generate this figure are given
in Table 3 and in Table S1 of the Supplementary Information. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 3. The IIB immune model exhibits (a) health, (b) chronic inflammation, and (c
purple, while components of the innate response are plotted in green. (a) An inoculat
antigen presentation, naive cells divide into memory cells and effector cells. The phago
tissue damage gradually decays resulting in the health steady state. (b) The innate and ad
enters a positive feedback loop between phagocyte recruitment and tissue damage l
inflammation steady state. (c) The innate and adaptive immune responses do not clear th
pathogen and tissue damage. The chronic inflammation steady state was obtained with s
used to obtain the health steady state. The septic death steady state was obtained wit
pathogen growth rate kpg than were used to obtain the health steady state. Explicit valu
Supplementary Information. (For interpretation of the references to color in this figure
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attained by varying the innate cell clearance rate kpm, the tissue
damage decay rate ld, the proportion f of cells that divide into
effector cells, and the pathogen growth rate kpg . In Fig. 4, phase dia-
grams demonstrate how different parameter regimes and initial
conditions lead to different steady states. To observe the presence
of these steady states mathematically, note that a quantity Pi may

be factored out of the pathogen dynamics dPi
dt , from which it is clear

that at steady state the pathogen population �Pi must either be 0 or

some nonzero quantity that satisfies 1
Pi

dPi
dt ¼ 0. The three steady

states immediately follow from the implications of choosing �Pi to
be zero or non-zero.

(a) Health steady state – If �Pi ¼ 0 at equilibrium, then the inter-
mediate pathogen states must vanish as well

(�Pð1Þ
i ¼ �Pð2Þ

i ¼ �Pð3Þ
i ¼ 0). In the absence of presented antigen, the

memory cells Mi decay with timescale 1=dM . When this timescale
is slow relative to the homeostatic dynamics of the naive cells
(whose dynamics are of timescale 1=dN), the naive cells Ni tend
towards their homeostatic equilibrium �Ni as described in Eq.
(S11) in the Supplementary Information. Lastly, all effector cells
Ei decay with timescale 1=dE, which is assumed to be fast compared
to the naive and memory cell dynamics. Thus, in the absence of
pathogen, the adaptive immune response turns off and becomes
dormant. In a steady state with �Pi ¼ 0 the innate immune response
can either be ‘‘inactive” or it can be ‘‘active,” which lead to the
steady states of health or chronic inflammation, respectively. When
) septic death steady states. Components of the adaptive response are plotted in
ed pathogen activates phagocytes, which in turn induce tissue damage. Following
cytes and effector cells jointly suppress the pathogen, which goes extinct, and the
aptive immune responses clear the pathogen, but in the process the innate response
eading to persistent tissue damage and phagocyte activation, called the chronic
e pathogen, leading to the septic death steady state characterized by the presence of
maller innate clearance rate kpm and smaller tissue damage decay rate ld than were
h a larger proportion of cognate cells that divide into effector cells f and a larger
es of the parameters used for each panel are given in Table 3 and in Table S1 of the
legend, the reader is referred to the web version of this article.)



Fig. 4. Phase diagram of immunological steady states as a function of naive cell and memory cell initial conditions (ICs). In the IIB model, whether the immune system
reaches a health, chronic inflammation, or septic death steady state following a pathogen encounter depends on the level of cognate naive and memory cells when the
pathogen is introduced. The proportion f of cognate cells that divide into effector cells significantly influences the steady-state phase diagram; in particular, septic death (red
zone) can only occur for f P 0:5. Results are calculated in the absence of homeostatic response (hN ¼ dN ¼ dM ¼ 0 in Table 2) during single infection events and initial
pathogen level is Pi ¼ 1. Other parameters for generating the phase diagrams are as stated in Table 3. In the following figures, f ¼ 0:4.
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the innate immune response is inactive, the activated phagocytes
N� and tissue damage D are both zero. This implies that the aggre-
gate innate response R is zero as well. Lastly, in the absence of the
innate response and effector cells, anti-inflammatory cytokines
equilibrate to a constant level. It is straightforward to check that
setting �Pi ¼ �N� ¼ �D ¼ 0 and �CA ¼ sc=lc leads to a steady state in
this model.

This health steady state is demonstrated numerically in Fig. 3a.
In this figure, an initial pathogen response activates innate (green)
and adaptive (purple) responses that eventually vanish. The naive
and memory cells change over the course of the adaptive immune
response, and then remain at constant steady state values.

(b) Chronic inflammation steady state – When �Pi ¼ 0 but the
innate immune response is active, the model reaches the chronic
inflammation steady state. This steady state is inherited from the
Reynolds et al. innate immune model (Reynolds et al., 2006), and
occurs due to a positive feedback loop between tissue damage D
and phagocytes N� (as can be schematically understood based on
Fig. 1). In particular, there exist equilibrium quantities �N� and �D
that precisely balance the activation of phagocytes and accumula-
tion of tissue damage with their respective decays ln

�N� and ld
�D.

This chronic inflammation steady state is shown in Fig. 3b: the
pathogen is cleared and effector cells dissipate, but the innate
response is perpetually sustained.

(c) Septic death steady state – Lastly, the steady state in which
the pathogen population is sustained is called septic death. For a
steady state with nonzero pathogen �Pi, the values of the interme-

diate pathogen states �Pð1Þ
i ; �Pð2Þ

i , and �Pð3Þ
i will be nonzero as well.

Subsequently, the presented pathogen �Pð3Þ
i sustains the activation

of naive, memory, and effector cells. In the innate compartment,
the nonzero pathogen presence implies a nonzero aggregate innate
response �R, which implies a nonzero equilibrium population of
phagocytes �N�, which in turn implies a nonzero equilibrium popu-
lation of tissue damage �D. Therefore, the septic death steady state
is characterized by activity in both the innate and the adaptive
immune compartments. Naive and memory cells of the adaptive
compartment continue to predominantly divide into effector cells;
eventually all adaptive cells are exhausted and vanish while failing
to clear the pathogen. This steady state is depicted in Fig. 3c.
7

The rest of this paper uses a parameter regime that does not
exhibit the septic death steady state: in particular, simulations of
this paper set f (the proportion of cognate cells that divide into
effector cells) equal to 0:4, which causes memory cells to accumu-
late until they are able to produce enough effector cells to suppress
the pathogen. When f is larger than 0:5 memory cells deplete over
the course of an immune response, which can lead to septic death.
A phase diagram of steady state behaviors at different values of f
for different naive and memory cell initial conditions is plotted
in Fig. 4. In particular, septic death is only reachable when
f P 0:5: if f < 0:5 the number of memory cells will strictly increase
over time, eventually leading to a sufficiently strong adaptive
immune response capable of clearing any pathogen (and thus pro-
hibiting septic death). In what follows, we focus on the transition
from health to chronic inflammation, a process phenomenologi-
cally similar to inflammaging.

3.3. The onset of chronic inflammation results from a fragility induced
by a lifetime of infections

Next we consider the immunological consequences that result
from encountering a sequence of infection events. Infection
sequences are composed of discrete infection events, and each
infection event consists of the time course following the encounter
with a particular pathogen shape until a steady state of the system
(i.e. health, chronic inflammation, or septic death) is reached. For
each infection event an immune response is generated by simulat-
ing the IIB model, given in Table 2. When pathogen encounters are
evenly spaced in time, the number of infection events acts as a
measure of age. This infection sequence encodes a lifetime of infec-
tion events, is different for different individuals, and serves as a
vehicle with which to explore the variable immunological out-
comes experienced by different individuals over their lifetimes.

More concretely, the IIB model is simulated for ntot infections
that are DT ¼ 1000 time units apart. The time DT is chosen to be
sufficiently large so that the system reaches a steady state between
infection events (i.e., infection events are well separated in time).
The shape space in the IIB model is discrete, consisting of
Smax ¼ 36 available pathogen shapes. For each infection event, the
probability pi that a pathogen of shape i is encountered is given by
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pi ¼ fe�i=n; i ¼ 1; 2; . . . ; Smax; ð1Þ

where n ¼ 20=3 and f satisfies
PSmax

i¼1 pi ¼ 1. This distribution allows
for some pathogen shapes to be more common than others, and is
similar to the one originally used by Stromberg and Carlson
(2006). A lifetime of infections is explicitly encoded in the infection
sequence fS‘g, where each S‘ is the pathogen shape encountered for
the ‘th infection event. Then, for each infection event
‘ ¼ 1; 2; . . . ; ntot , a single unit of pathogen PS‘ is added to the sys-
tem at time t‘ ¼ 1000ð‘� 1Þ. In the simulations used to create
Figs. 5–7, the system is initialized with zero memory cells
Mið0Þ ¼ 0 and a uniform distribution of naive cells Nið0Þ ¼ 200
across all possible pathogen shapes i ¼ 1; 2; . . . ; Smax.

There are four important timescales in the IIB model: the time
sinfec required for pathogen clearance, the interval DT between
infection events, and the timescales of naive and memory cell
homeostasis control. Pathogen clearance is the fastest process, dur-
ing which the homeostasis control still has little effect, and its
timescale is on the order of days (Reynolds et al., 2006). The time-
scales of naive and memory cell homeostasis are characterized by
the reciprocal of their decay rates, given by 1=dN and 1=dM , respec-
tively. Experimental data suggest their orders as months (De Boer
and Perelson, 2013) and decades or longer (Choo et al., 2010),
respectively. Due to the longevity of immune memory, the interval
between infections DT was chosen to be much shorter than the
timescale of memory decay. Additionally, as in Stromberg and Carl-
son naive cells are assumed to regenerate and equilibrate quickly
Fig. 5. Timing of the transition to chronic inflammation (CI) is highly variable and d
adaptive (purple) immune responses over the course of 100 infection events for two
regularly-spaced infection events are used to measure the age of the immune system. As a
and phagocytes hN�i � 1

DT

R t‘þ1
t‘

N�ðtÞ dt for each infection event ‘ are plotted. The sharp tr
and 82nd infection events, respectively. (c) An ensemble average of the innate and adap
pathogen distribution) smooths the variability in transition timing, though the distribu
distribution of transition times to chronic inflammation is concentrated at earlier times
depletion of naive cells (black) drives immune fragility and vulnerability to new patho
parameters given in Table 3, and with randomly generated pathogen sequences as descri
reader is referred to the web version of this article.)
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relative to the rate at which infection events occur (Stromberg
and Carlson, 2006). Thus, between infection events the homeo-
static naive cell population depends on a slowly-decaying memory
population. More explicitly, the four timescales in IIB model are
chosen to satisfy sinfec < 1=dN < DT � 1=dM .

As the immune system ages (i.e., over the course of an infection
sequence), early infection events (e.g. before the 50th infection
event) are successfully cleared by the immune system, and the sys-
tem returns to the health steady state. However, for later infection
events the system fails to recover and instead transitions to the
chronic inflammation steady state, where it remains thereafter.
This age-driven, history-dependent transition to chronic inflam-
mation is qualitatively similar to ‘‘inflammaging.”

Depending on the details of the infection sequence, the timing
of the onset of chronic inflammation is highly variable. Two
instances of the transition to chronic inflammation, with different
sequences of pathogen encounters generated from the same statis-
tical distribution of pathogen frequencies, are displayed in Fig. 5a
and b. The strengths of the adaptive (purple) and innate (green)
responses during each infection event are plotted in Fig. 5a and
b, quantified by the average number of effector cells hEi and aver-
age number of phagocytes hN�i over the course of each infection,
respectively. For the ‘th infection,

hEi � 1
DT

R t‘þ1
t‘

j~EðtÞj dt; and

hN�i � 1
DT

R t‘þ1
t‘

N�ðtÞ dt;
ð2Þ
epends on previous pathogen encounters. (a, b) Activity of the innate (green) and
different infection sequences drawn from the same statistical distribution. These
proxy for these responses, the average number of effector cells hEi � 1

DT

R t‘þ1
t‘

j~EðtÞj dt
ansitions indicate the onset of the chronic inflammation state, and occur at the 57th
tive immune responses over 1000 infection sequences (each drawn from the same
tion of immune responses is bimodal (c, inset). CI: chronic inflammation. (d) The
(on average after 76 infections). (e) The accumulation of memory cells (blue) and
gen shapes (50 infection sequences shown). These figures are generated with the
bed in Eq. (1). (For interpretation of the references to color in this figure legend, the



Fig. 6. Aging-induced transition to chronic inflammation (CI) is driven by depletion of naive cells and lack of protection from memory cells. The number of
encountered infections is used as a proxy for the age of the immune system. (a) The number of cognate T cells specific to a novel pathogen shape (equal to the sum of naive
and memory cells) is the key indicator for whether an infection event will trigger the chronic inflammation steady state. Here, cognate T cell counts specific to an encountered
pathogen P‘ are plotted for each infection event ‘ across 20 infection sequences sampled from Eq. (1). The color of each point indicates the number of times that the
encountered pathogen P‘ has been previously encountered. The colored bands are generated from 1000 infection sequences sampled from Eq. (1)., and envelope the observed
cognate cell counts. The large red circles in the lower-right corner mark the infections events that trigger chronic inflammation across all 1000 infection sequences, which
occur when a novel pathogen is encountered after naive cells have been depleted below some threshold. A shorter time interval between pathogen encounters of the same
shape results in less memory cell decay and hence more cognate T cells, and this effect causes the shape of the colored bands. (b) We consider three synthetic reorderings of
each ‘‘authentic” randomly generated pathogen sequence: the clustered sequence orders pathogens according to their prevalence; the cyclic sequence orders them to ensure
immediate exposure to all pathogen types; and the incomplete cyclic sequence induces fragility by quickly depleting naive cells and then introducing a novel pathogen. (c)
The authentic sequence and three synthetic sequences transition to chronic inflammation (CI) at different times (black crosses). The pathogen shape distribution for this
infection history (right histogram) is drawn from the theoretical shape distribution (black line overlaid) given by Eq. (1). (d) The naive cell pool is depleted at different rates
depending on how infection events are ordered. Naive cell counts and their variation across 50 (sampled out of 1000) authentic sequences considered in panel (a) are shown
for the three synthetic sequence types. Error bars for the timing of chronic inflammation are 50% confidence intervals. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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where j~EðtÞj � PSmax
i¼1 EiðtÞ, and t‘ is the starting time of the ‘th infec-

tion event. Once the system attains the chronic inflammation
steady state the heightened inflammatory response will rapidly
clear pathogens in any future infection, thus limiting the activity
of the adaptive response. Accordingly, this leads to the sharp tran-
sition behavior of the two trajectories observed in Fig. 5a and b.
Therefore, the onset of chronic inflammation causes the innate
response to strengthen while the adaptive response weakens.

When averaged over an ensemble of infection sequences, vari-
ability in the timing of the sharp transition from health to chronic
9

inflammation smooths into the crossing displayed in Fig. 5c
(though the actual distribution of effector cells and phagocytes
across infection sequences is bimodal, as seen in the inset of
Fig. 5c). This crossing behavior is consistent with a longitudinal
study of Swedish people, in which middle-aged people exhibited
steady lymphocyte and neutrophil counts over the three-year span
of the study, while older people (>85 years of age) exhibited signif-
icantly increased neutrophil counts and significantly decreased
lymphocyte counts over the same span (Wikby et al., 1994). In
addition, people with an immune risk phenotype (IRP) (which



Fig. 7. Effector cells are subject to a trade-off between clearing pathogens and
suppressing inflammation as the immune system ages. (a) The onset of chronic
inflammation (histograms as in Fig. 6d) is delayed for lower values of p, i.e. when
the anti-inflammatory role of effector cells is increased. (b) The cumulative
pathogen load L‘ over the course of each infection event (averaged over 1000
infection sequences) is larger for smaller values of p. The drop in L‘ after the 60th
infection event for p ¼ 0:9 is caused by the onset of chronic inflammation, which
compensates for the overspecialized adaptive immune repertoire. To generate the
statistics in panel (a), the homeostatic parameters dN ; dM ; R0, and hN were modified
to ensure that the timescales of infection clearance and homeostatic response were
separated enough for us to use the adaptive programming method, as described in
Table S1 of the Supplementary Information. The simulations in panel (b) are
generated with the parameters given in Table 3.
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often precedes immune decline and death) commonly possess a
weakened adaptive immune repertoire and experience inflammag-
ing (Wikby et al., 2006). Taking hEi and hN�i as proxies for adaptive
and innate immune function, the age-dependent transition in the
IIB model resembles the shift in immune function experienced by
people with an IRP.

The number of infection events that are encountered before
chronic inflammation is reached is plotted as a distribution across
10,000 randomly-generated infection sequences in Fig. 5d. The dis-
tribution in Fig. 5d decays approximately exponentially for large
numbers of infection events. Different choices of pathogen shape
distributions result in different distributions of transition times
that are qualitatively similar but in general not exponentially dis-
tributed, as demonstrated in Fig. S1. Thus, the sequence of infection
events is a significant driver of variability in the timing of the tran-
sition to chronic inflammation.

To identify the relationship between an infection sequence and
the transition from health to chronic inflammation, we examine
the effect of accumulated pathogen exposures on the bulk

immune state variables j~Mj � PSmax
i¼1 Mi and j~Nj � PSmax

i¼1 Ni; see
10
Fig. 5e. Over the course of an infection sequence, memory cells
are generated in response to new pathogen encounters at a faster
rate than their decay. When fewer novel pathogens are encoun-
tered, memory accumulation slows, since previously encountered
pathogens are cleared more quickly and adaptive immune cells
are stimulated for a shorter amount of time. As the memory cell
repertoire grows, the naive cell population shrinks according to
the homeostatic constraints. Eventually, the immune system
develops a fragility to novel pathogens due to the depleted naive
cell population that results from aging; once this fragility is
developed, chronic inflammation will be triggered when any
novel pathogen is encountered.
3.4. The transition to chronic inflammation is influenced by previous
pathogen encounters

The disparate immunological outcomes of different individuals
demonstrated in Fig. 5 are necessarily determined by the differ-
ence in their infection sequences, since the model equations in
Table 2 are otherwise deterministic. Until the transition to chronic
inflammation, the system always returns to the health steady state.
In the health steady state most immune variables assume values
that are independent of previous pathogen encounters; only the
naive and memory cell populations occupy values that are poten-
tially different after each infection event. Therefore different infec-
tion sequences lead to differences in memory and naive cell
populations, which in turn are directly responsible for the transi-
tion to chronic inflammation.

In Fig. 6a, the number of cognate T cells (the sum of pathogen-
specific naive and memory cells NS‘ þMS‘ Þ at the beginning of
each infection event ‘ are plotted for 1000 infection sequences,
each consisting of 100 infection events sampled from the patho-
gen shape distribution Eq. (1). Due to the accumulation of
immune memory, the number of cognate T cells specific to a
pathogen shape will be greater if that pathogen has been previ-
ously encountered. To demonstrate this, the colored points in
Fig. 6a encode the number of times that a pathogen shape S‘
was encountered in the ‘� 1 previous infection events. A shorter
time interval between infections of the same pathogen shape
leads to less memory decay and more cognate T cells specific to
that pathogen, as shown in the black trajectories in Fig. 6a. The
average time before a pathogen shape is re-encountered is ran-
domly distributed, which causes the variability of each color band
(computed from 1000 simulated infection sequences). The num-
ber of cognate cells specific to novel pathogens is plotted in blue:
in this case no pathogen-specific memory cells exist, and so the
cognate cell and naive cell counts are the same. Therefore, the
decline in the dark blue dots demonstrates the gradual decay of
naive cell counts over the course of an infection sequence (i.e.,
as the immune system ages).

The infection events that trigger the transition to chronic
inflammation are indicated by the red circles in Fig. 6a. These
transitions always occur (i) in response to a novel pathogen
shape (red circles are laid on top of the blue band), and (ii)
when the number of cognate naive cells falls below a threshold
(approximately 180 in Fig. 6a). When both conditions are met,
the adaptive immune response is low in magnitude and unable
to produce sufficient anti-inflammatory cytokines to suppress
the innate immune branch. This weakened adaptive immune
response, itself a function of the infection sequence, is the prin-
cipal driver of chronic inflammation in the IIB model. Accord-
ingly, the IIB model exhibits a ‘‘robust yet fragile” behavior
(Stromberg and Carlson, 2006; Carlson and Doyle, 2000): it is
robust to frequently-encountered pathogens, yet fragile to novel
pathogens.
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3.5. Manipulating immune system fragility via synthetic infection
sequences

To probe the variability in the timing of the transition to chronic
inflammation as the immune system ages, we examine three syn-
thetic infection sequences that are reorderings of an ‘‘authentic”
infection sequence sampled from Eq. (1). These sequences, show-
cased schematically in Fig. 6b and detailed in the text below, delib-
erately structure the order of pathogen encounters to induce
different levels of fragility towards novel pathogen shapes. The
synthetic and authentic infection sequences affect the rate of
memory cell accumulation and naive cell loss, and in turn, alter
the timing of the onset of chronic inflammation. An example
authentic sequence, along with its corresponding synthetic
sequences, is illustrated in Fig. 6c. In Fig. 6d naive cell statistics
of 50 authentic infection sequences are compared with the statis-
tics generated by their synthetic counterparts.

In the clustered synthetic ordering (Fig. 6b–d, orange), the infec-
tion sequence is ordered so that the most common pathogens are
encountered first and the rarest pathogens are encountered last.
In this case, pathogens are immediately reencountered so memory
cells do not significantly decay between infections, and the accu-
mulated immune memory causes an accelerated immune response
that generates fewer memory cells. Therefore, this reordering is a
lower bound for the naive cell loss rate. Indeed, the clustered
sequence leads to the slowest loss of naive cells among the authen-
tic and synthetic sequences in Fig. 6d. The clustered sequence pro-
vides reliable protection that delays the transition to chronic
inflammation until infection 89, compared with the authentic
sequence that transitions after infection 66, as shown in Fig. 6c.

In the cyclic synthetic ordering (Fig. 6b–d, yellow) infections are
ordered so that all available pathogen types are encountered as
early as possible: in this ordering each pathogen type is encoun-
tered once before any pathogen is encountered for the second time,
then each pathogen type is encountered twice before any pathogen
is encountered for the third time, and so on. Constantly encounter-
ing new pathogen types drives the accumulation of memory cells
and in turn naive cell loss at an accelerated rate. Thus the cyclic
sequence yields an upper bound for the naive cell loss rate, as in
Fig. 6d. At the same time, since this synthetic sequence is struc-
tured to front-load every pathogen type that can be encountered
early in the infection history, the generated memory cells eventu-
ally provide full protection against each pathogen type, and the
chronic inflammation state never occurs, as in Fig. 6c. Thus, broad
exposure to pathogens early in an individual’s infection life history
can provide adaptive-mediated protection from chronic inflamma-
tion in the IIB model.

Lastly, the incomplete cyclic synthetic ordering (Fig. 6b–d, pur-
ple) is similar in construction to the cyclic ordering, except that
one rare pathogen is intentionally omitted from the initial patho-
gen cycles. Then, this pathogen is presented at a later time to trig-
ger chronic inflammation. The incomplete cyclic ordering induces a
fragile immune response: naive cells deplete nearly as quickly as
for the cyclic ordering, and incomplete immune memory coverage
causes vulnerability to novel pathogens. Thus, the onset of chronic
inflammation is accelerated in the incomplete cyclic ordering, with
the onset occurring during the 48th infection in Fig. 6c.

The clustered and cyclic synthetic immune histories demon-
strate how some pathogen sequences can delay the onset of
chronic inflammation, either by prolonging the abundance of naive
cells or by quickly acquiring full immune memory coverage across
all pathogen shapes. In contrast, the incomplete cyclic sequence
demonstrates how pathogen sequences can induce immune fragi-
lity, by quickly depleting naive cells while remaining vulnerable to
novel pathogens; alternatively, the incomplete cyclic sequence
shows how the introduction of a new pathogen species, either
11
through mutation or migration to a new environment, can break
existing memory coverage and lead to immune fragility.

3.6. The adaptive immune response is subject to a trade-off between
pathogen clearance and inflammation suppression?

In the original adaptive immune model by Stromberg and
Carlson (2006), the sole function of effector cells was to clear
pathogens. However, the diverse repertoire of effector T cells –
including helper T cells, cytotoxic T cells, and regulatory T cells –
can additionally exhibit anti-inflammatory functions (Shanker,
2010; Kim et al., 2007; Maloy et al., 2003). Incorporating these fea-
tures in the IIB model leads to a trade-off between pathogen clear-
ance and inflammation suppression that can be explored
quantitatively.

Specifically, in the IIB model a proportion p of effector cells are
allocated to pathogen clearance (a responsibility of cytotoxic T
cells with the aid of helper T cells Sompayrac, 1999), while a pro-
portion 1� p of effector cells are allocated to the production of
anti-inflammatory cytokines (a responsibility of regulatory T cells
Maloy et al., 2003). These dual functions are presented schemati-
cally in Fig. 1 and explicitly in Table 2.

For smaller values of p, effector cells are increasingly used to
combat inflammation, which delays the onset of chronic inflamma-
tion as demonstrated in Fig. 7a. On the other hand, at smaller val-
ues of p more resources are allocated to combat inflammation, so
the diminished innate response slows the rate of pathogen clear-
ance. This is quantified in Fig. 7b, which plots an ensemble average
(across 1000 infection sequences) of the cumulative pathogen load
L‘ for each infection event: for the ‘th infection,

L‘ �
Z t‘þ1

t‘

PS‘ ðtÞ dt; ð3Þ

where S‘ is the pathogen shape and t‘ the starting time of the ‘th
infection event. This measure was originally introduced in
Stromberg and Carlson (2006) where it was called the ‘‘loss func-
tion,” and we similarly use it here as a proxy for the damage the
pathogen inflicts during each infection event. In Fig. 7b, smaller val-
ues of p lead to greater cumulative pathogen load for each infection
event and vice versa.

Note that for p as large as 0:9 there is a further drop in L‘ for
‘J60 due to the onset of the chronic inflammation steady state
in a larger proportion of individuals. Once the chronic inflamma-
tion state is reached, the non-zero activated phagocyte population
N� rapidly responds to infection events, efficiently clears patho-
gens, and returns to the chronic inflammation steady state. In this
sense, the onset of chronic inflammation in aging immune systems
acts as a protective mechanism that shields the immune response
from future pathogen encounters and minimizes the damage that
pathogen inflicts. Interpreted biologically, it is advantageous for
organisms to minimize cumulative pathogen load while also avoid-
ing the early onset of chronic inflammation. Evolutionarily, these
two opposing selection forces should lead to an intermediate opti-
mal p in which effector cells allocate resources both to pathogen
clearance and innate suppression.
4. Discussion

4.1. Immunosenescence as an emergent immune response

Though immunosenescence affects every aging individual, the
mechanisms through which it develops are not yet fully under-
stood. In this paper we demonstrate through quantitative model-
ing how physiological markers of immunosenescence can arise
from the accumulated effect of pathogen encounters. In particular,
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clonal expansion and homeostatic maintenance lead to an increase
in memory cells and a decrease in naive cells, which are qualita-
tively consistent with their clinically-observed abundances
(Fulop et al., 2018). Accumulated memory cells protect the
immune system against previously-encountered pathogens, but
the shrinkage in the naive cell pool renders the immune system
vulnerable to novel pathogens and is the key indicator of immune
system fragility. While a similar mechanism was demonstrated in
the model by Stromberg and Carlson (2006), in their study the
overspecialized immune repertoire led to increased cumulative
pathogen load. In the IIB model, the acquired immune fragility is
characterized by a transition to a chronic inflammatory state, and
the timing of this transition is highly variable and depends on
the infection history.

In addition to this mechanism of imbalanced immunological
space, several other immune functions vary with age and could
play a role in the development of immunosenescence. For example,
clinical studies observed that the average cytotoxicity of natural
killer cells decreases with age (Aw et al., 2007; Weinberger and
Grubeck-Loebenstein, 2012), cell signaling between immune cells
can become impaired with age (Fulop et al., 2014), and thymus
involution leads to decreased T cell production with age (Palmer,
2013; Lynch et al., 2009). The current formulation of the IIB model
exhibits an inflammaging-like behavior without taking these addi-
tional factors into account. However, in future work physiological
parameters of the model could be used as a proxy for these
observed behaviors: for example, the decreased cytotoxicity of nat-
ural killer cells (which are innate) could be incorporated by
decreasing kpn with age, the impaired cell signaling in T cells
(which are adaptive) could be achieved by decreasing c with age,
or the reduced thymus output could be modeled by decreasing
hN with age. The calculated immune outcomes that result from
these modifications could shed light on the relative contributions
to immunosenescence from memory-induced fragility in the adap-
tive response, an impaired innate response, and an impaired adap-
tive response.
4.2. Chronic inflammation as inflammaging and the collaboration
between innate and adaptive responses

The chronic inflammation steady state has two physiological
interpretations. First, the runaway tissue damage caused by the
sustained inflammatory response may cause death in the host, as
was implied by Reynolds et al. when they called this steady state
‘‘aseptic death.” Second, if the sustained inflammatory response
is relatively minor, the chronic inflammation state can be inter-
preted as ‘‘inflammaging,” a chronic low-grade inflammation that
is common among the elderly (Franceschi et al., 2000). In this
paper we choose this second interpretation and construe the tran-
sition to the chronic inflammation state as inflammaging. Accord-
ingly, the mechanisms of the IIB model that induce this transition
might inform the biological mechanisms that they emulate.

For example, recent work has suggested that the development
of inflammaging might be a result of immune system remodeling:
as immunosenescence lessens the efficacy of the adaptive immune
response, the body relies on inflammaging for protection against
pathogens via the innate immune response (Fulop et al., 2018).
Similarly, the adaptive response in the IIB model is subject to a
trade-off between clearing pathogens and suppressing inflamma-
tion. In part based on recent work demonstrating that the adaptive
response can act to suppress a hazardous innate response (Kim
et al., 2007), recent theories suggest that this suppression might
have been the evolutionary driver that promoted the development
of an adaptive immune response (Palm and Medzhitov, 2007). Cor-
respondingly, in the IIB model when pathogens are introduced to a
12
system in the chronic inflammation state, they are cleared almost
immediately since the inflammatory response is already primed.

Evolutionarily, the innate immune response preceded the cre-
ation of the adaptive response (Bayne, 2003). This is consistent
with the taxonomic complexity of organisms, in which inverte-
brates possess only an innate response while vertebrates possess
the additional capacity for pathogen-specific immune memory
(Müller et al., 2013). Additionally, adaptive immune components
are dependent on innate cells – for example, the activation of an
adaptive response through antigen presentation relies on dendritic
cells. The evolutionary drivers of the adaptive immune response
could be explored with immune models that quantify the added
benefit of possessing an adaptive immune system.

4.3. Age-dependent strength of immune response

The efficiency of the human immune system changes in a non-
monotonic manner as one ages: it is weak in infancy and depen-
dent on maternal antibodies; then it grows stronger as the innate
and adaptive responses mature and as immune memory is accu-
mulated; and finally it plummets in the elderly (Simon et al.,
2015). As people age, effector T cell levels drop, chronic inflamma-
tion builds (Wikby et al., 2006; Whiting et al., 2015), and immune
outcomes among the elderly become extremely variable (Whiting
et al., 2015).

In this work we present a potential mechanism for these
clinically-observed aging trends, driven by overspecialization of
the adaptive immune repertoire. The accumulation of memory
cells initially strengthens the immune response against
previously-encountered pathogens. Eventually, memory cells
become overspecialized and restrict the growth of naive cells, ren-
dering aged individuals vulnerable to rare pathogen types. In the
IIB model the onset of the chronic inflammation state is variable,
and dependent on the history of previous pathogen encounters.
The age-dependent immune system efficiency observed in the IIB
model is consistent with the previously mentioned clinically-
observed immune behaviors.

4.4. Imprinting and vaccines

The shape space formulation of the adaptive immune response
produces results that are qualitatively similar to the clinically-
observed behaviors of immune imprinting (Gostic et al., 2016)
and the decreased efficacy of vaccines in the elderly (Weinberger
and Grubeck-Loebenstein, 2012). Immune imprinting occurs when
individuals exhibit sustained memory to the pathogens they were
exposed to early in their life. In the IIB model naive cells are more
abundant at the beginning of an infection sequence, and as mem-
ory cells accumulate over time, homeostatic pressures drive down
the population of naive cells. Thus, during the first several infection
events the larger naive cell pool will induce a stronger adaptive
response and therefore generate a stronger memory for encoun-
tered pathogens. On the contrary, near the end of an infection
sequence the diminished naive pool will induce a weaker adaptive
response to a novel pathogen, and generate a weaker immune
memory. If we interpret vaccination as an exposure to a novel
pathogen, then the clinically-observed characteristics of immune
imprinting and vaccination in the elderly are qualitatively captured
by the IIB model.
5. Conclusion

The progression towards immunosenescence is a dynamical
process influenced by a lifetime of pathogen encounters, physio-
logical alterations, genetic factors, and general lifestyle choices.
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This blend of factors makes it difficult to isolate and identify the
most relevant causative agents of immunosenescence. Therefore,
mathematical models hold great utility in their ability to probe
the mechanisms of immunosenescence.

In this paper we developed the IIB model, which incorporates
the structure of the innate and adaptive immune branches, and
exhibits behaviors that are qualitatively consistent with
clinically-observed phenomena. We found that repeated pathogen
encounters cause an overspecialization of memory cells and deple-
tion of naive cells as the immune system ages. Over time these
effects render the immune system fragile to novel pathogens, the
encounter of which will trigger an irreversible transition of the sys-
tem to a chronic inflammation state. By describing immune
dynamics with a mathematical model, we demonstrated how the
feedback between innate and adaptive immune responses could
give rise to diverse immune courses and outcomes. Going forward,
experimental studies combined with knowledge-based quantita-
tive models will continue to illuminate the impact of aging on
immune efficacy.
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