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Abstract 

Formulas that express the multiple normal­

threshold discontinuities of scattering functions for 2-to-4 

processes as sums of products of scattering amplitudes for 

related processes are derived from a combination of field­

theoretic and S-matrix principles. 

Resume 

A partir des principes generaux de la 

theorie des champs et des postulats classiques de la theorie 

de la matrice s, on demontre certaines formules de disconti­

nuite pour la fonction analytique de diffusion relative au 

processus comportant 2 particules initiales et 4 particules 

finales. Ces formules expriment les discontinuites multiples 

de la fonction precedente a travers les coupures associees aux 

seuils normaux conune des sommes de produits d'amplitudes de 

diffusion relatives a d'autres processus. 
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I. Introduction 

Multiparticle dispersion relations have been 

used recently in the development of Regge theory [ 1, 2] .· The 
principal contributions to these dispersion relations are multi­

ple Cauchy integrals of the multiple discontinuities of the 

scattering function across certain sets of normal-threshold cuts. 

Formulas that express these multiple discontinuities as sums 

of products of scattering amplitudes have been derived for the 

3-to-3 scattering process in references [3] and [4] . In the 

present work analogous formulas are derived for 2-to-4 and 

4-to-2 processes. These formulas together with the earlier 
3-to-3 results determine the strengths of the principal contri­

butions to the dispersion relations for the six-particle 
scattering function. 

It is sufficient to treat explicitly only 

the 2-to-4 case because the 4-to-2 results may be obtained frorn 

the 2-to-4 results by reflection. 

II. The Results 

The notation that will be used in what 

follows is that of references [3] and [4] • For 2-to-4 processes 

the complete set E of normal-threshold cuts consists of the one 

total-energy cut t, the four final 3-particle subenergy cuts 

f, where f = 1,2,3, or 4 labels the final particle that 
is not grouped with the other three final particles, and the 

six final 2-particle subenergy cuts (f' f"), where f' and f" 

label the two final particles that are not grouped with the two 
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initial particles. The letter G will stand for a subset of the 

set E and the s~nbol MG will be used for the scattering function 

evaluated below the set of cuts G and above the ~et of cuts 

G = E - G. The set G can be the entire set E or the enpty set 0 . 

The function M~ defined by 

H~ = L l-1) n (HI) MGH I 

H 1 CH 

( 2. 1) 

is the multiple discontinuity across the set of cuts HCE evalua­

ted below the set of cuts G and above the set of cuts E-GH. The 

s0t GH 1 is G u H 1 and n(H') is the number of cuts in tbe set H 1
• 

The sum in (2.1) and in all similar sums includes the terms where 

H1 = ~ and where II 1 =H. Equation (2.1) implies that 

( -1 ) n ( G I ) l'1JG I (2.2) 

G 1 C G 

'I'his forrnula allows all the multiple discontinuities M~ to be 

expressed in terms of the multiple discontinuities MH which 

are evaluated above all cuts not in H. Our results will be 

stated in terms of these basic discontinuities ~· 

The single discontinuties Mh are given :r.~y the 

following formulas 

Jvlt = 
(2.3a) 

~ , 

M = I (2.3b) f f 
and 

2 . 
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M(f' f") = 

= (2,3c~ 

The non-zero'double discontinuities are 

= 

= 

= 

= ~u, 

I I 

Mf (f If"} = 

= 

M(f'f") (ff 111 ) = 

= 

, 

f' 
~-f'' 
-~-f --"Ill flfl 

f' 
f" 

(2.4a) 

(2. 4~) 

(2.4c) 

(2.4d) 

3. 
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In these equations, as in references ( 3 J and ( 4] ' 

~ - @r ~f - (2. Sa) 

and 

~ - fl ~ 
(2.5b) 

The expression (2.5a) represents all the terms in the cluster 

expansion of the ± box in which line f does not go straight 

through (i.e. particle f interacts with some other final parti­

cle). The expression (2.5b) represents the sum of all terms of 

the cluster expansion of the ± box in which each of the two 

lower lines touches some bubble that touches some line in the 

upper set of lines. 

and 

The non-zero triple discontinuities are 

Mtf(f 1 f") = 

= 

= 

Mt ( f If") ( ff" I ) = 

f' 
L..,!~...:::=::=::_f II 

L-:::t----f 

~~..:::::::::::== 
fH 

L..-.:::t----f 
(2.6a) 

(2.6b) 
I 

4. 
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F' 
F II 

~F' 
~F" 

9 

(2.7) 

is the set of terms in the cluster decomposition of the ± box 

in which some bubble touches both a line in F' and a line in F". 

All quadruple and higher multiple 

discontinuities vanish. 

III. Properties of the MG 

It will be shown in what follows that the 

functions MG satisfy the following conditions : 

( 1) The MG obey the generalized Steinmann relations. 

(2) ·rhe MG coincide with the corresponding cell functions 

of field theory where the latter are defined. 

( 3) The MG satisfy generalized hermitian analyticity 

(3.1) 

14) Th MG h h . t t , e H ave t e appropr~ate supper proper y : 

l-1~ (p) vanishes if for any h E H the corresponding channel 

invariant ph (p) is less than the leading normal threshold for the 

channel Jh. 'l'he letters g and h are used to label both cuts and 

their corresponding channels, and the channel invariant ~h(p) is 

)h (p) ( 3. 2) 

5. 
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(5) The MG continue in the appropriate way around all 

normal- threshold singularities : MG can be expressed in a 

form that has no singularity corresponding to any positive-a 
normal-threshold diagram D+ for any g E G ; and MG can be g 

w expressed in a form that has no singularity corresponding to 

any negative-a normal-threshold diagram D~ for any g in E-G. 
Thus if only normal-threshold-diagram singularities are 

considered, then the function MG continues into itself by passing 

into the lower-half Ag plane near each normal-threshold singu­

larity surface .) = (a sum of rnasses) 2 for each gin G, and g 
similarly into the upper-half •g plane for each g in E-G. 

(6) The MG's can be classified as good MG's 
and bad MG's. The bad MG's are those such that for some pair 

(f'f") of final particle either 

f' E G, f" E G, t E E-G, and (ff"') E E-G ( 3. 3a) 

or 

f' E E-G, f" E E-G, t E G, and (ff"') E G I (3.3b) 

where f,f',f", and f"' are the four final particles. The 

remaining MG's are the good MG's. Analytic continuation of a 

good MG is never blocked by the canonical mechanism. 

The possibility that the continuation of 
some good MG's might be blocked by a non-canonical mechanism 

is not ruled out. However, blockage by a non-canonical mecha­

nism is in some sense. accidental; and we believe, on the basis 

of the analysis of reference [ 1] , that those MG's whose 

continuations are not blocked by the canonical mechanism are 

boundary values of the physical-sheet scattering function, 

in the sense required for rnultiparticle dispersion relations. 

This point is discussed at the end of section IX. 

6. 
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Proofs of the six properties described above 

are given in the following six sections. 

IV. Generalized Steinmann Relations 

A scattering function M is said to satisfy 

the generalized Steinmann relations [ 1,3-6] if the multiple 

discontinuity ~ vanishes identically 

~ =0 ( 4. 1) 

whenever the set H contains two overlapping channels. [A channel 

Jh ~sa non-empty proper subset of the·whole set X={l,2,3,4,5,6} 

of six particle labels. Two channels Jg and Jh are said to be 

overl~pping if none of the four sets Jh n Jg, Jh n (X-Jg), 

(X-Jh) n Jg, and (X-Jh) n (X-Jg) is empty .] 

Now it is evident from an inspection of the 

formulas (2.3-2.7) for the fundamental non-zero discontinuities 

~ that the set H consists in each case of channels that are 

non-overlapping. Thus for the two-to-four case, the generalized 

Steinmann relations (4.1) are a consequence of Eq. (2.2) which 

expresses an arbitrary ~ in terms of these ~· 

V. Agreement with the Cell Functions 

It has been shown in references [5] and [6] 
'VG that the cell function r on the real mass shell possesses 

the representation 

7. 
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0 0 

= 

t .. ~ 
!11 
iJ 

~ 
H C G 

<,j 7 '] • ,;,J .. 

(-l)n(H) N 
H 

:f.' 2 •) 0 - ..... 

(5. 1) 

where the functions NH are the same as the functions MH 

N = M H H (5.2) 

with the following exceptions : 

and 

in 

In 

N(ff')(f"f"') = Nt(ff')(f"f"') = 0 

Nt(ff') = Mt(ff') + 

I 

f 
f'/1 
f 
fill 

(5.3) 

(5. 4) 

= Mt(ff') + M(ff') (f"f'" )-Mt(ff') (f"f'") I 

(3) 
f 

~ +[ f' Nt = fn 

(f,f') f"' 
( 3) 

= Mt + L: [ M ( f f ' ) ( f II f II' ) -.Mt ( f f' ) ( f" f II' ) l (5. 5) 

(ff') 

which the sum is over the three distinct possible summands. 

obtaining these formulas use has been made of the identity 

8. 
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f 
f' 

0 

f 
f' + 

f 
f' 
f" 
f'" 

+ 

(5.6) 

.. 

G "-'G In order to prove that M = r for all cells 

G, it will be necessary to observe two properties of cells : 

If (ff') and ~"f"') are both 

in G, then t must also be in G. (5.7) 

If t is in G, then either 

(ff') or (f"f"') or both must be in G. (5.8) 

In the statement of these two properties of cells, f,f',f", and 

f"' represent the four different particle labels in the set 

t = {1,2,3,4}. 

Let 6~ be one if t is in G and zero 

otherwise. Then it follows from eqs. (5.1-5) and from property 

(5.7) that the cell function ~G may be written in the form 

9. 



0 0 

= ~ (-l)n(H)~ 
H CG 

H=Ft It ( ff I) 

(ff 1
) (f"f 111

), 

t ( f f I ) ( f II f Ill ) 

l 
{3) 

- 0 ~ Mt + L [ M (ff I) (f"£ 111 ) - Mt (ff I) (f"f" 1 
,] 

(f f 1
) 

(ff~EG [ Mt(ff 1
) + M(ff 1

) (f"f" 1
) - Mt(ff 1

) (f 11 f 111 
)] ~ 

10. 

= " (-1) n (H) M. + G l "" [M M J L...J H cS t L...J ( f f I ) ( f II f Ill ) - t ( f f ' ) ( f II f II I ) 

H C G { f f ' ) EG . 

( f f I ) ( f II f Ill ) El: H 

( 3) 
( 5. 9) 

L [ N ( f f ' ) ( f II fIll ) - Mt ( f f I ) ( f II fIll >] l . 
( ff I ) ) 

Now by combining the formula (2.2) for MG with the proposition 

(5.7) one may express MG for any cell Gas 

MG = L 
H cG 

(-l)n(H)M 
H 

( f f I ) ( f II fIll )f$ H 

+ 0 ~. L [M{ff 1
) (f"f 111 )-Mt{ff 1

) (f 11 f"~J. 
( f f ' ) ( f II f Ill ) EG 

(5.10) 

It may now be seen that these two formulas, (5.9) for ~G and 

{5.10) for MG, differ only in the manner in which the terms 

involving two of the (fr1 )-type cuts appear. There are three 

distinct such pairs of cuts. For each pair either (1) (ff') 
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and (f"f"') are both in G, or (2) (ff') is in G but (f"f"') 

is notinG, or (3) (ff') is notinG but (f"f"') isinG, or 

(4) neither (ff') nor (f"f"') is in G. In case (1) the term 

0~ [ M(ff')(f"f"')- Mt(ff')(f"f'")] (5.11) 

occurs in the formula (5.9) twice with a positive sign and 

once with a negative sign, and it occurs in the formula (5.10) 

onoe with a positive sign. In case (2) the term (5.11) occurs 
in the formula (5.9) once with a positive sign and once with 

a negative sign, and it does not occur in the formula (5.10). 

Case (3) is the same as case·(2). In case (4) the coefficient 

o~ vanishes in both formulas (5.9) and (5.10) because of the 
property (5.8). Thus for each cell G the function MG defined 

by the formula (2.2) is the same as the cell function ~G defined 

by the formulas (5.1-5). 

VI. Generalized Hermitian Analyticity 

In S-matrix theory, the operation of 
hermitian conjugation, which is represented by an obelus, 
changes a bubble diagram F into the diagram Ft obtained by 

reversing the sign inside each bubble, box, and modified box 

and by multiplying ~y the factor (-1)Nb where Nb is the number 

of bubbles in the diagram, 

N 
= ( -1 ) b F (± ++ ) (6.1) 

The operation of hermitian conjugation acts linearly on any 

linear combination of diagrams. The purpose of this s•ction is 

to show that un~er hermitian conjugation each function MG is 
.. E-G turned tnto - ~ ; 

11. 
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( 6. 2a) 

or equivalently 

(6,2b) 

Si~ce the number of boundary values MG is very 

much larger than the number of non-zero multiple discontinuities 

Ma' it will be easier to prove the corresponding property 

(M )t = -(-l)n(H) ~ (-l)n(G) ~-
H GCE-H -~G 

(6.3) 

That this proposition (6.3) does in fact imply the desired 

result (6.2) follows from the identity 

{ 
0

(-l)n(F) MF 
~ (-l)n(K) ~K = 

H C G 
K C E-H 
HK=F 

if FC E-G 

if F4 E-G 

which is itself an elementary consequence of the rule 

0!21 
L = L: (-l)n(H) 

H C L 

where o~ is one if L = ¢ and zero otherwise. For by 
eqs. ( 2. 2) , ( 6. 3) , and ( 6. 4) 

{6.4a) 

(6,4b) 

( 6. 5) 
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(MG) t = 2: (-l)n(H) ~ H C G 

= 2: 2: (-l)n(K) 
MHK 

H C G K C E-H 

= -2: 2: (-l)n(K) 
~K F H C G 

K C E-H 
HK=F 

:E (-l)n(F) 
~ 

E-G (6.6) = = - M 
F C E-G 

Thus the problem of proving the relation (6.2) reduces to that 

of proving the property (6.3) for the ten different multiple 

discontinuities MH. 

13. 

This task was carried out by one of us (K.C.): 

but since the details of the calculation are tedious, we shall 

limit the present demonstr~tion to showing how the computation 

precedes only for the two triple discontinuities, for three of 

the four double discontinuities, and for the null discontinuity 

M~. 

The application of hermitian conjugation 

(6.1) to the triple discontinuity Mtf(f'f") turns the second 
line of equation (2.6a) into the third line of that equation. 
Thus 

t 
[Mtf(f'f")] = Mtf(f'f") (6.7) 

which verifies the property (6.3) for this triple discontinuity. 

Similarly, by using the definition (2.7) 

to express the triple discontinuity Mt(ff') (f"f"') (2.6b) in 
the form 
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Mt (ff I) (f"f 111 ) = 

one finds that 

( Mt ( f f I ) ( f II f II I ) ] t = 

f 
f' 
f' 
f"' 

Mt (ff 1 ) (f"f 1i 1 
) 

which verifies the property (6.3) for this case. 

Now from eq. (2.4d) one has 

t 
[M(ff 1 ) (f 11 f 111 )) 

which, together with eq. (6.8), gives 

f 
f' 
f" 
f" 

f 
f' 

f' 
f ,, 

t r M < f f I > < f II f II I > 1 = Mt < f f I > < f II f II I > - M < f f I > <f .. fIll > 

( 6. 8) 

, 

( 6. 9) 

(6 .10) 

(6.11) 

thereby establishing the desired result (6.3) for this double 

discontinuity. 

By eqs. (2.4c) and (2.5a) one may find 

( 
fN 

= 

f' 
= f" 

= Mtf(f 1 f 11 ) - Mf(f 1 f") (6.12) 

14. 
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which verifies the property (6.3) in this case. 

Now from eq. (2.4a) and from the n-to-3-

particle unitarity equation, one gets the relations 

t 
(Mtf) = 

f 

= - Mtf f~ [ + 

(3) 
= - Mtf + f~f Mt f ( f" f" I ) 

(6. 13) 

which is the desired result (6.3) for this double discontinuity. 

The calculations required for the cases of 

the remaining double discontinuity and for the three single 

discontinuities involve too many terms to be worth reproducing 

here. Finally, in the case of the null discontinuity M¢ = Mf/J 

one has 

(M ) t (Mf/J) t = -=8§ rut (6.14a) = = r ¢ 

ruE (6.14b) = - r 

= ME (6.14c) 

= 2: (-1)n(G) 
MG (6.14d) 

G C E 

The first line is the definition of the minus-bubble diagram, 

15. 

the second line follows from the hermitian-analyticity property 

proved in ref.[4] , the third line follows from a special case 

of the equality ~G = - MG proved in section v, and the fourth 

line follows .fr.om a special ·case of ·eq. ( 2. 2) . 

] 
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VII. Support Properties of the M~ 

The functions M~ have the support property 

if _.h (p) < ,0° h for SC'!Ire h E H (7.1) 

where foh is the lowest normal threshold of the channel Jh. 
This property holds also if ~h is the lowest multiparticle 

threshold, provided .A>h(p) is not equal to the square of the 

mass of any single particle that can communicate with the sets 

of particles that define channel h. 

Inspection of the formulas given in 

section II for the discontinuities~ shows that eq. (7.1) holds 

in the case G = ~. For if h belongs to H then there is in 
I 

every bubble diagram contributing to MH(p) a set of particles 

that carries the invariant energy Ah(p). The same result 
holds if H is replaced by any larger set HG' C E. Thus eq. (7.1) 

holds by virtue of eq. (2.2). 

VIII. Continuation around Normal-Threshold 

Singularity Surfaces 

The proofs of analyticity properties given 

in this section are based on the formal method described in 

references [ 1] , [ 3] , and [7] • This method involves algebraic 

manipulations -of infinite series without regard to questions 

16. 

of convergence. In the 3-to-3 case the results obtained by this 

formal method were derived also by .rigorous methods. We believe 

that this could be done here also but have not attempted todo so. 
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In the formal method the S matrix is identi­

fied with its infinite series expansion in terms of the minus-bubble­

diagram functions FB~. This expansion is 

( 8. 1) 

where cs- is the set of all bubble diagrams having only minus 

bubbles. By virtue of the structure theorem, the function FB­

can have a singularity associated with a diagram that contracts 

to a positive-a Landau diagram D+ only if the Landau diagram 

D{B-) obtained by contracting the bubbles of B- to points can be 

contracted to D+. [In this contraction the originally unsigned 

lines of D{B-) are assigned plus signs.] 

As in the heuristic development given in 

reference [3], the functions TH are defined by 

{ 8. 2) 

where CB~ is the subset of CB- consisting of all connected B­

such that for each h E H the diagram D{B-) contracts to Dh' 

where Dh is the generic {arbitrary number of internal lines) 

h-channel normal-threshold diagram. Equivalently, (B-H is the 
set of B- E(9- that have for each hE Han h cut-set, which is 

a set of explicit lines of B- the cutting of which separates 

B into two connected parts in the manner associated with 

channel h. {See ref.[ 3] , p. 1297, for a more detailed discus­

sion. There an h cut-set is called an explicit h-channel cut-set.) 

If H is the empty set ~' then there are no conditions on the 

elements of CB-H except connectedness : (B-~ = <B~. Thus 

T : T~ = M : Sc. 

G . 
The, function T defined by 



.. 

0 0 <J u .~··~ 
,&::!{ ~ 7 J ) 1.,, 

TG- L (-l)n(H) TH 

H C G 

~ W1J '.,} "} 0 .;) ,..,. 

(8.3) 

has no singularity corresponding to any D that can be contracted 

to any D~ with h E G. This is because the term T¢ = M is the 
sum of the functions FB- over all B- E6- while the terms -T 

- c g 
in (8.3) subtract all the FB that have singularities corres-

ponding to any D that contracts to any D~ with h E G. The 
B­

remaining terms in (8.3) correct for the fact that a term F 

might have been subtracted more than once, as was discussed 

in reference [ 3] • 

The functions MG are given by a formula 

similar to eq. (8.3) but with TH replaced by MH. It will be 

shown presently that 

for HE }i ( 8. 4) 

where J1 is the set of H such that no pair of channels 

in H are overlapping. The functions ~1H satisfy 

for 

However, the TH do not obey this rule. Thus we put 

where 

(-l}n(H) '1' 
H 

(8.5) 

(8. 6} 

( 8. 7) 

Our first task is to confirm (8.4). We 

shall use S+(a;8) to denote the S matri~ associated with an 

18 . 
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initial set of lines a and a final set of lines B • Its adjoint 

St will be written s-. A set of n lines, with n fixed, will 

generally be identified by the number n. The present arguments 

will be similar to the ones given in reference [ 3] and 

hence will be merely outlined. 

Consider _first the function Tt. This 

function is the sum of all FB with B- E(B ~ where m ~ is the 

set of B- E CB- having a t cut-se·t. Every 2-to-4 diagram B­

must begin with a minus bubble b-(2;a) on the far left. The 

set QB~ consists precisely of those 2-to-4 B- that remain 

connected when this initial minus bubble is removed. 

' - + Consider the product F=E[-S (2;a)]S (a;4). c c 
Let Et be the sum of bubble diagrams obtaiRed by replacing 

S~(a;4) in F by its expansion in terms of minus bubbles andby 

replacing [-S-(2;a)] by the corresponding minus bubble •. Then c 
every Bin the sum rt is a Bt eCB~, and every B-E~~ 

occurs at least once in rt. In fact each B- E <B~ appears 

precisely once in rt. One can see this by considering the 

left-most t cut-set. It will lie just to the right of b-(2;a}. 

To construct~~ one: must ;place on the right of this cut a 

every possible connected B-(a;4}. But the set of these 
; 

B-(a;4} is precisely the jsetQB-(a;4) , and the corresponding 

sum of terms FB- is just s+(a;4}. Thus one obtains the second c 
form of eq. (2.3a). 

Consider next the function T(f'f")" It is 
the sum of the FB- over B-in (B-(f'f"}' where ca-(f'f") is 
the set of B that contain an (f'f"} cut-set. Consider the 

right-most of these cut-sets. Then arguments almost identical 

to those of the preceding paragraph give the second form of 
eq. ( 2. 3c} • 

19. 
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Consider next the function Tf. It is 
B-

the sum of the F over all B-in e~. For any B-in~~ consider 

the right-most f cut-set a • The part of B- standing to the 

right of this cut-set a is either a minus bubble b-(a;3) or 

a term in the sum represented by the first member of 

-\a 
f' f. 

The pie-shaped figure in the first member of this equation 

represents the sum of all connected diagrams B-(B+y;2) in~­

such that every bubble lies on a path that starts at one of 

the B lines and moves always to the right. The identity 

, (8.9) 

which is analogous to eq. (3.3) of ref.[ 7] or to eq. (V.4.5) 

of ref.[ 1] , is used together with unitarity to obtain the 

second member of eq. (8.8). The minus sign in the third member 

comes from our convention that the connected part of S- is 

represented by minus the minus bubble. 

The part of any B- in <B~ standing to the 

left of this right-most f cut-set a is a term of the minus­

bubble expansion of S ~ ( 2; a+f) • To obtain each B- in~~ precisely 

once, one must multiply independently each term of this 

expansion of S~(2;a+f) with each term of the sum of eq. (8.8) 

and the single minus bubble b-(a;3). This latter sum, by 

virtue of unitarity, is r S-(a;c) s (c;3). By combining this 
0 c 

with S+(2;a+f), one obtains eq. (2.3b). (This result could also 

be obtained by considering,alternatively, the left-most f 

cut-set.) 

These results obtained above by the formal 
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(infinite-series) method.are contained in eq. (6.4) of 

reference [8] , which was obtained by finite methods. 

Consider next Tt(f'f"). It is the sum of 

the FB- forB- in(B~(f'f") where <B~(f'f") is the set of all 
B- that contain both a t cut-set and an (f'f") cut-set. By 

pushing the t cut-set as far left as possible and the (f'f") 

cut-set as far right as possible, one isolates the left-most 

minus bubble b-(2;a) and the right-most minus bubble b-(8;2). 

21. 

In between one must put all minus-bubble diagrams that connect 
the remaining two final lines, f and f"' , to e . (This connection 

is demanded by the t-cut requirement.) These diagrams are 

obtained by expanding all terms of S+(a;S+f+f") in which both 

f and f" are connected to e. Thus one obtains the second 

form of eq. (2. 4b). 

Consider next Ttf" By pushing the t cut-set 
as far left as possible and the f cut-set as far right as 

possible and by using the arguments used for cases Tf and 

Tt (f, f"), one obtains the second form of eq. (2. 4a). 

Consider next T(f'f") (ff"' )"Pushing the 
(f'f")· and (ff"') cut-sets as far right as possible, one 

isolates the two right-most minus bubbles, b-(a;2} and 

b~(S;2}. On the left of these two cuts, a and e, one must put 

ev~ry connected B-(2;a+S) in (B- . Thus one obtains the second 

form of eq. (2. 4d}. 

Consider next Tf(f'f")" Push the f cut to 
the right. Without the condition that the (f'f") cut be present, 

one would obtain for the part standing to the right of the 

f cut u the sum of the minus bubble b-(a;3) and the expansion 

shown in eq. (8.8). One must now take the subset having also 

the (f'f") cut. This condition eliminates the b-(a;3) term and 

two of the three terms in eq. (8.8). By combining the expansion 

of the remaining term of· (8. 8) '(the one with f"' in place of 

f') with the expansion of S+(2;a+f), one obtains the second c 
form of eq. (2.4c). (By pushing the f cut to the left and using 
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arguments similar to the ones used for Tf' one can obtain the 

first form of eq. (2.4c) directly.] 

Consider next Tt(f'f") (ff"' )"By pushing 
the t cut-set to the left and the (f'f") and ~f'") cut-sets 

to the right, one isolates the left-most minus bubble b-(2;a) 

and the two right-most minus bubbles b-(8;2) and b-(y;2). In 

between one must put all B-(a;S+y) in 03- such that 8 is 

connected to yin B-(a;8+y). [If B-(a;S+y) has this connected­

ness property,then the t, (f'f"), and (ff"') cut-sets are all 

present in B-(2;4) ; otherwise they are not.] This set of 

B-(a;B+y) is generated by expanding all plus bubbles of those 

terms of S+(a;B+y) in which some bubble connects a line of 8 

to a line of y . Thus one obtains the second form of eq. (2.6b). 

Consider finally Ttf(f'f")" Shifting the 
t cut-set to the left and the (f'f") cut-set to the right, 

one isolates the left-most minus bubble b-(2;8) and the right­

most minus bubble b-(6;2). Shifting the f cut-set a to the 

right, one must put in all possible B-(S;f+a) such that f is 

connected to a. This is obtained by expanding all terms of 

S+(B;f+a) in which f is connected to a • To the right of a one 

must put all the terms of the expansion of eq. (8.8) in which 

f' and f" come into the same minus bubble b-(6;2). Thus one 

obtains the second form of eq. (2.6a). This completes the 

verification of eq. (8.4). 

The functions TH for H ~ ~ are evaluated 
by using skeleton diagrams. These diagrams were introduced in 

reference [ 3] in the following way : for each diagram D its 

skeleton diagram D~ contains the external lines and external 

vertices of D and certain paths connecting them. A path runs 

always from left to right. The diagram D~ contains a path 

running through a certain set of external vertices of DA if 

and only U (1) there is a path in D that contains these 

vertices (in the same order} and (2) there is no path in D 

that contains all these external vertices and at least one 

22. 
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other external vertex. For the 3-to-3 case considered in 

ref. [ 3] , there were 76 different skeleton diagrams, of which 

67 were tree diagrams and 9 were box diagrams. The set of cut­

set~ in a diagram D is identical to the set of cut-sets in the 

corresponding DA , and each skeleton graph D~ 

set of cut-sets. Thus the skeleton of a graph 

which of the sets<i~ contain B- : 

has a different 
D(B-) determines 

B- belongs to CB~ if and only if for every 

hE H the skeleton diagram D~(B-) has cut-set h. 

Thus all of the TH, and hence all of the TG, are constructed 

out of the 76 functions 

(8.10) 

where <B-(D~) is the set of minus bubble diagrams B such that 

D{B-) has skeleton D~. 

23. 

For the 2-to-4 case there is one modification­

skeleton diagrams of the form shown in fig. {8 .1) must also be 
considered. 

Fig. (8.1) -A skeleton diagram for the 
2-to-4 case. 

This skeleton diagram has an internal vertex. A diagram D has 

the skeleton shown in fig. (8.1) if and only if there are two 

paths that start at the initial vertex, that coincide over a 

non-zero segment, and that then separate and go to the two 

£inal vertices shown .. For all D not having skeletons of the 
type shown in fig. (8.1) the rules ·of ref.[3] apply. 
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Any bubble diagram B having a tree-type 

skeleton D~(B-) contributes only to the TH with H EJi. Thus the 

only B- that contribute to the TH with H ~ ~ are those 

for which DJl (B-) is of box form. Hence the TH with H Et J-1 are 
I 

linear combinations of the functions F(D~) • 
I 

For the 2-to-4 case there are six box-diagram 

skeletons. If Dp is the box diagram shown in fig. (8.2a) and 

B(D~) is the bubble diagram shown in fig. (8.2b), then 

(a) 

Fig. (8.2) -

= (8.11) 

f' 

f" 

(b) 

A box-diagram skeleton D~ and the 

corresponding bubble diagram B(D~). 

This result is proved by pushing the t cut-set to the right 

f' 
f" 

and by pushing the (f'f") cut-set to the left. The two external 

minus bubbles are then isolated, and the internal minus box 

compensates for double counting in the region lying to the 

left of the right-most t cut and to the right of the left-most 

(f'f") cut. That is, the minus box cancels, by virtue of unitari­

ty, the part of the expansion of the left-hand (or right-hand) 

plus bubble that is generated already by the expansion of the 

right-hand (or left-hand) plus bubble. 

The definition of TH now gives 

24. 
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Tff'11 = Tff"' (f'f") = Ttff"' = Ttff"' (f'f") 

(8.12) 

Substitution of this result into eq. (8.7) then gives 

(8.13) 

provided G contains both f and f"' but neither t nor (f'f"). 

If this condition is not satisfied for some way of labeling 

the four final lines, then DG = 0. 

The good G are defined in eq. (3.3). For 

these G, DG = DE-G = 0 and hence 

(8.14a) 

and 

E-G E-G M = T (8.14b) 

Thus the generalized hermitian-analyticity relation 

(8.15) 

gives for the good G's 

(8.16a) 

and 

(8.16b) 

The first of these equations expresses MG as a function that 

has no singularities corresponding to any D that contracts 

to a D~ with h in G. The second equation expresses MG as a 

function that has no singularities corresponding to any D that 
contracts to a Dh with h in E-G. 

25 . 
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. G' 
Thus the good M s, by virtue of the structure 

theorem, must continue in the correct way around all singularity 

surfaces that correspond to normal-threshold diagrams. The bad 
·MG's enjoy the same properties apart from singularities coming 

from the box-diagram contributions DG and DE-G. Hence if one 

considers these singularities coming from DG and DE-G to be 

singularities associated with box diagrams, and not with normal­
threshold diagrams, then all the MG continue in the appropriate 

way around all normal-threshold-diagram singularities. 

IX. Analyticity Properties of the Good MG 

The arguments of reference [ 3] show in the 

3-to-3 case that for each good G and each skeleton DA there is 

an open (off-mass-shell) cone r·(G,D.A) such that, if p is any 

real point that lies on the closure of L(D) only if the diagram 

D has skeleton DA , then in some real neighborhood of p the 
function MG is the boundary value of a function analytic near 

p in the set Imp E r (G,D;&). Moreover, each good MG continues 

into itself staying in the mass shell past every codimension­

one portion of the union LG of its singularity surfaces, except 

for certain exceptional surfaces described in ref. [3]. 

The results just described carry over intact 

to the 2-to-4 case, except for singularities associated with 
diagrams having skeletons of the form shown in fig. (8.1). In 

this last case the methods of ref. [3] fail. However, a more 

limited result continues to hold : analytic continuation of the 

good MG's is not blocked by the canonical mechanism. 

The canonical mechanism for blocking the 

analytic continuation of a sum of bubble-diagram functions 

occurs when the sum has singularities corresponding to two 

diagrams D1 and D2 that differ only by a reversal of all the 
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signs ai of all the internal lines of the diagram. 

The Landau surfaces L(Dl) and L(D 2 ) associa­

ted with any such pair D1 and D2 coincide, but the associated 

27. 

ie: rules of continuation are opposite. This clash of the ie: rules 

means that no path of continuation past the surface L(Dl)=L(D2) 

is ~an~ by the structure theorem, and the parts of the 

function on the two sides of such a surface are, in general, 
not parts of a single analytic function. 

The argument that yields this conclusion 

is as follows : if the skeleton of a diagram D has a form 
other than that shown in fig. (8.1), then, by virtue of 

arguments almost identical to thosegiven in ref. [3] , there is 

for each good MG a pair of external vertices vr and v~ of D, 

depending only on the skeleton D~ of D and on G, such that the 

corresponding vector v~ - vr in every space-time representation 
of any D corresponding to a singularity of MG [or of (ME-G)t] 

is strictly time-like with the sign of its time component vJ -v; 
determined solely by D~ and G. This restriction on the sign of 

v; v; precludes the existence of another representation in 

which the signs ai of all internal lines of D are reversed. 

The result just described holds also for 

diagrams with skeletons of the form shown in fig. (8.1), except 

that now not all the vertices vr and v~ need be external. 

In particular,theorem (6.1) of ref. [3] entails that if D has 

a skeleton DA of the form shown in fig. (8.1), then, for each 

of the three external vertices vr of D and for each internal 

vertex v~ of D that can be identified with the internal vertex 

of D) (i.e., for each internal vertex v~ of D that is connected 

by a correctly oriented path in D to each of the three external 

vertices vr of D), the vector~ - vr in every representation 
of D corresponding to a singularity of MG [ or of (ME-G) t 1 must 

be time-like with its time component v~ - v; having a well­

defined sign determined solely by D~ and G. This sign restriction 

rules out the possibility of a second representation correspon­

ding to a diagram generated from D by a reversal of all signs ai 
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of all internal lines. Consequently the continuation of the 

good MG's is not blocked by the canonical mechanism. 

28. 

In ref. [3] the possibility that the continua­

tion of good MG's could be blocked by non-canonical mechanisms 

was examined for the 3-to-3 case, and it was found that certain 

exceptional surfaces could indeed block these continuations. 

However, the analysis of reference [ 1] suggests that in the 

context of dispersion relations one should nevertheless regard 

a function MG as a single analytic function unless its continua­

tion is blocked by the canonical mechanism. For in the cases 

examined the blocking by non-canonical mechanisms was due to 

cuts that arise in the construction of the physical sheet of 

the scattering function. These cuts emerge from the normal­

threshold cuts and then loop back and divide the real region 

into separate parts. Consequently the physical-sheet scattering 

function has in these separated real regions boundary values 

represented by different analytic functions. These different 

analytic functions are, however, the boundary values in these 

separated regions of the physical-sheet function that is repre­

sented by the multiparticle· dispersion relation . 
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X. Conclusions 

Discontinuity formulas very similar to those 

previously obtained for 3-to-3 processes have been obtained here 

for 2-to-4 processes. The multiple discontinuities ~' from 

which all the functions M~ are constructed, have the same form as for 

the 3-to-3 case. Each non-zero ~ corresponds to a tree 

diagram TH. A tree diagram TH is a simply connected set of 

lines and vertices. The lines run from left to right. The 

external lines correspond to the final and initial particles ; the 

internal lines correspond to the cuts h in H. The multiple discon­

tinuity MH is constructed from the tree diagram TH by the 

following steps : 

(1) replace each vertex by a plus vertex-box, which will 

be defined below, 

(2) replace each internal line by a minus box, 

(3) join each minus box to each of the two adjacent plus 

vertex-boxes by a complete set of intermediate lines, 

(4) replace each external line by the corresponding 

ext~rnal particle-line that runs into or out of the correspon­

ding plus vertex-box. 

A plus vertex-box is the sum of all terms 

in the cluster decomposition of the plus box that have the 

following connectedness properties : (1) if all the minus boxes 

immediately to the left of a given plus vertex-box were 

replaced by minus bubbles, then these bubbles together with the 

plus vertex-box in question would form a connected structure and 

(2) the same ap (l) but with left replaced by right. 

The functions ~ constructed from such MH 
automatically satisfy the generalizedSte~ relations and have 
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the required support properties. They have been shown here 

for the 2-to-4 case to agree with the cell functions of field 
I 

theory where the latter are defined, to respect generalized 

hermitian analyticity, and to exhibit suitable analyticity. 

The analyticity properties derived here are not quite as good 

as those obtained in ref. [ 3] ·for the 3-to-3 case. Diagrams 

with skeletons of the form shown in fig. (8.1) cause a break­

down of the argument that showed, in the 3-to-3 case, that 

the good MG's could be continued past every real singularity 

surface by a small off-mass-shell detour. However, the 

continuation of the good MG's is not blocked by the canonical 

mechanism, and this probably means that these good MG's are 

boundary values of the physical-sheet scattering function in 

the sense required for multi-partic1e dispersion relations .. 

30. 
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