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Abstract A significant event happened for electri-
cal engineering in 2008, when researchers at HP Labs
announced that they had found “the missing memris-
tor,” a fourth basic circuit element that was postulated
nearly four decades earlier by Dr. Leon Chua, who was
also instrumental in developing the mathematical theo-
ries of memristive, memcapacitive, and meminductive
systems, resulting in an entire class of “mem-models”
that are the foundation of the present work. By apply-
ing well-known mechanical–electrical analogies, the
mathematics of mem-models may be transferred to the
setting of engineering mechanics, creating the mechan-
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ical counterparts of memristors, memcapacitors, etc.
However, this transfer is nontrivial; for example, a new
concept and state variable called “absement,” the time
integral of deformation, emerge. We study these mem-
models, which are characterized by a “zero-crossing”
property that has interesting implications for nonlinear
constitutive modeling, particularly hysteresis, and we
identify some examples of “mem-dashpots” and “mem-
springs,” which include displacement-dependent and
variable dampers, the superelasticity found in shape-
memory alloys, and the pinched hysteresis loops asso-
ciated with self-centering structures. This work adds
to the fast-growing body of literature on elements and
systems labeled with “mem,” which is a basic branch
of study in nonlinear dynamics.

Keywords Nonlinear hysteresis · Memristor ·
Memcapacitor · Memristive system · Memcapacitive
system

List of symbols

ẋ Velocity
x Displacement
a Absement, first time integral of displacement,

x
σ Stress
ε Strain
εt Strain rate
α Strain absement
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ṙ The first time derivative of r
r Resisting force or characteristic force of an ele-

ment
p General momentum, the first time integral of r
ρ The first time integral of p
y State variables, see Tables 2 and 3
z State variables in Table 8
w Internal state or intermediate variable in Sects. 4

and 5
u Driving force, see Eq. (1), Fig. 25 and Table 8
M Incremental memristance following Chua [9]
W Incremental memdunctance following Chua [9]
G See Table 2
F See Table 2
g See Table 2
f See Table 2
e Effort
f Flow
D Secant damping, see Table 3 and Fig. 15
S Secant stiffness, see Table 3 and Fig. 15
K Tangent stiffness, see Property 4
P Power, see Table 3
U Energy, see Table 3
a0 See Sect. 3.3, especially Table 4
i Current
v Voltage
q Charge
ϕ, φ Flux linkage

1 Introduction

1.1 Motivations of this study

Modeling hysteresis (e.g., [4,15,29,39,40,46]) is
inherently challenging; however, it is necessary in
that it has broad utility in many engineering disci-
plines, including smart structures, robotics, mecha-
tronics, structural control, structural health monitor-
ing, damage detection, and earthquake engineering.
Rapid advances in sensor technology are providing
researchers in different fields of science and engineer-
ing with valuable data collected from real-world mea-
surements. Facing formidably large streams of such
data, researchers are expected to extract the most use-
ful and accurate information to enable rapid assessment
for decision-making, and modeling plays a central role.
This study explores one possibility for very generally
modeling hysteresis, adopted from another discipline.

Development of a fundamental circuit element,
the memristor, was announced recently [43], nearly
four decades after its prediction [9]. Equally impor-
tant, there is a mathematical theory involving mem-
ristor devices and memrisitive systems [10] and, more
recently, this theory was extended to include memca-
pacitors and meminductors [13], thereby significantly
enlarging this family of “mem-models.” These devel-
opments have inspired us to explore whether these non-
linear constitutive models, all of which are character-
ized by a “zero-crossing” property, have a role to play
in engineering mechanics.

Two obvious but related conceptual gaps need to be
bridged first in this study: from electronics to mechan-
ics, and from nano- to macro-scale modeling. Bridg-
ing these gaps is made possible, in part, by applying
mechanical–electrical system analogies. Bond graph
theory [32,36] also helps to bridge the gaps. Starting
from these well-established techniques, we identify the
mechanical counterparts of the memristor, memcapaci-
tor, memrisitive systems, etc., and identify some exam-
ples of these mem-models found in recent engineering
mechanics literature.

The transfer from one knowledge domain to another
is not straightforward. The mem-models defined in
Chua [9], Chua and Kang [10], and Di Ventra et al.
[13] are mathematically abstract, demanding signifi-
cant effort to translate the terminology and mathemat-
ical notation from electrical systems theory to other
physical domains. Also, many functional forms need to
be examined in order to develop mem-models usable
in practical data analysis and modeling. Georgiou
et al. [17] is one of the few recent studies with speci-
ficity in functional form; however, it covers a rela-
tively simple situation and is not from the field of engi-
neering mechanics. Jeltsema and Dòria-Cerezo [23]
discuss difficulties that may arise when introducing
mem-models in classical Lagrangian or Hamiltonian
mechanics and propose a “port-Hamiltonian” approach
as a way to overcome these difficulties. Other refer-
ences are cited in the literature review (Sect. 2) and in
subsequent sections, but generally speaking, there are
very few published studies relevant to the engineering
mechanics community. This is mainly because these
mem-models are so “new,” even though the physical
and mathematical basis of memristors was first pre-
sented many years ago. We are thus motivated to inves-
tigate these models and to examine their potential for
dealing with engineering mechanics problems.
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Fig. 1 a–d From
simulations using
memristors/memcapacitors
subject to cyclic or
sinusoidal loading; see
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As a preview, consider a single-degree-of-freedom
(SDOF) model:

mẍ(t) = u(t) − r(t) (1)

where x(t) is the displacement of mass m, u(t) is its
driving force, r(t) is its restoring force, and

r(t) = cẋ(t) + kx(t), for a linear dashpot and spring
(2)

r(t) = M(x)ẋ, for a memristor (3)

r(t) = M(a)x, for a memcapacitor (4)

The restoring force in Eq. (2) is widely studied and
understood, whereas the nonlinear damper in Eq. (3) is
not so well known, and certainly not by the name “mem-
ristor.” In Eq. (4), a(t) is the integral of x(t)with respect
to time; we are unaware of any such “memcapacitor” in
engineering mechanics. Equations (3) and (4) are the
simplest examples of mem-models to be studied herein.
Figure 1 presents four pinched hysteresis loops, taken
from computational results that will be discussed later.
It is worth noting that the abscissa of each panel in Fig. 1
has two labels, velocity or displacement, due to the fact
that Eqs. (3) and (4) have identical mathematical form,
although the physical units of the two functions M(·)
differ.

1.2 Contributions and structure of this paper

This paper demonstrates the usefulness of memris-
tive and memcapacitive theories for modeling some
important nonlinear hysteretic systems in engineering
mechanics. Specifically, displacement-dependent and
variable dampers are memristive systems. Also, the
superelasticity of shape-memory alloys (SMA) and the
pinched hysteresis of self-centering structures may be
modeled as memcapacitive systems, a premise justi-
fied (in part) by devising and presenting quantitative
mem-models using simulations and experimental data
in Sect. 5. This paper also connects mem-models with

broader classes of constitutive models in engineering
mechanics in Sects. 5.4 and 6, thereby highlighting
future research directions.

The literature review in Sect. 2 summarizes basic
concepts and translates mem-model theories from elec-
trical engineering to engineering mechanics. Mem-
dampers and mem-springs are formally introduced in
Sect. 3. Due to their newness, mem-springs subjected to
two typical kinds of periodic inputs are the main focus
when deriving various properties. These properties not
only illuminate understanding but also are instrumen-
tal in modeling. Significant portions of this paper focus
on detailed case studies, presented in Sects. 4 and 5.
Because mem-models are nonlinear (and thus lack
many linear system properties and simplicity), such
case studies are both necessary and enlightening. More-
over, we must pay attention to time and state events
that arise in the case studies, where time events are the
discontinuities inherent in nearly all excitation signals,
and state events are the discontinuities inherent in a
model’s state variables. Regarding modeling technique,
Sect. 4.6 outlines an approach, involving time-varying
secants, which was first tested on mem-dashpot models,
and later utilized to devise the quantitative mem-spring
models discussed in Sect. 5.

In this paper, a Remark gives a brief review of exist-
ing knowledge. A Property presents useful results, put
forth in detail for the first time in this study, and derived
mainly for mem-models subjected to two classes of
periodic excitation. Finally, an Example augments the
case studies, providing specific mathematical expres-
sions or numerical results of mem-model simulations.

2 Literature review

2.1 Memristors, bond graphs, and physical analogies

Chua’s seminal memristor paper is Chua [9]. Two years
later, Oster and Auslander [31] proposed the mem-
ristor as a new bond graph element by interpreting
Chua’s idea in the context of Paynter’s tetrahedron
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Table 1 Force–Voltage Analogy used to translate from electrical to mechanical terminology

Electrical system Translational mechanical system

1. Current i Velocity ẋ

2. Voltage v Restoring force r

3. Charge q, dq = idt Displacement x, dx = ẋdt

4. Flux linkage ϕ, dϕ = vdt �⇒ ϕ = ∫ t
−∞ v(τ)dτ Momentum p, dp = rdt �⇒ p = ∫ t

−∞ r(τ )dτ

5. Resistor dv = Rdi Dashpot dr = cdẋ

6. Capacitor dq = Cdv Spring dx = 1
k dr

7. Inductor dϕ = Ldi �⇒ v = L di
dt Mass dp = mdẋ �⇒ r = m dẋ

dt

8. Memristor dϕ(q) = M(q)dq �⇒ M(q) = v
i [9] Memristor dp(x) = M(x)dx �⇒ M(x) = r

ẋ

9. Memristor dq(ϕ) = W (ϕ)dϕ �⇒ W (ϕ) = i
v

[9] Memristor dx(p) = W (p)dp �⇒ W (p) = ẋ
r

10. i − v for hysteresis [9] ẋ − r for hysteresis

11. q − ϕ for additional insights [9] x − p for additional insights

of state [32] and using the Force–Current Analogy to
explain a mechanical device called a “tapered dash-
pot.” As told by Paynter [33], bond graphs were
born in 1959 as a result of his training and experi-
ence in hydroelectric power, which greatly reinforced
his awareness of physical analogies. Physically differ-
ent systems that have the same mathematical model
are called analogous systems [30]. In other words,
analogous systems are expressed by the same set of
algebraic, differential (or integro-differential) equa-
tions, but the specific physical meaning of each
parameter or state variable is different. Analogies
are available for many kinds of mechatronic (i.e.,
electro-mechanical) systems, including translational
and rotational mechanical systems, fluid power sys-
tems, electrical power systems, and heat transfer sys-
tems [19]. Today, bond graph models are routinely
used when analyzing mechatronic systems with many
degrees of freedom, and when appropriate, they incor-
porate finite element models [11,44,45]. Another
analogy—involving springs (capacitors), dashpots
(resistors), and masses (inductors)—is the Force–
Voltage Analogy [30], which is applicable to transla-
tional mechanical systems and was used during this
study (in addition to the Force–Current Analogy) to
“translate” memristor theory and its extensions into
mechanical notation and terminology; e.g., see Table 1.

Remark 1 (On p = momentum or impulse) It is chal-
lenging to name p in Table 1 without a bit of thought.
In classical mechanics, a particle’s momentum is
defined as the product of its mass and velocity, so in

analytical mechanics, p and q are called generalized
momenta and generalized coordinates, respectively.
This supports the naming of p and x as momentum and
displacement, respectively, in engineering mechanics.
It also supports the naming of p as momentum in Oster
and Auslander [31] or Jeltsema and Scherpen [24], but
there are reasons to support the naming of p as impulse
(also mentioned in those two references). In classical
mechanics, an impulse is defined as the time integral
of force, resulting in a change of momentum, and thus
impulse and momentum have the same physical units.
No matter how we name p, the mathematical relation-
ship between p and r is the same as between x and ẋ ,
in the sense that the first quantity is the time integral
of the second. Paynter’s tetrahedron of state includes
both of these relationships.

Remark 2 (On r = restoring force) The force r in
Table 1 is not an applied (i.e., external) force. Rather,
it is an internal force that characterizes a particular ele-
ment (or system) in a constitutive equation. For exam-
ple, for a spring or damper, r is a restoring force [28];
for a mass, r is its inertia force. An applied force is
denoted in this paper by u(t), as in Eq. (1).

2.2 Flow- and effort-controlled systems

Bond graph practitioners distinguish a flow-controlled
element (or system) from an effort-controlled ele-
ment. Paynter’s tetrahedron of state depicts relations
among four state variables which, for electric circuit
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elements, are e = effort = v = voltage, f =
flow = i = current, q = charge, and p = ϕ =
φ = flux linkage. These various symbols and terms
are briefly mentioned here because they (and others)
appear in Chua [9], Oster and Auslander [31], or Jelt-
sema and Scherpen [24]; see Table 7 in “Appendix 1.”
For electrical systems, charge- or current-controlled
are aliases for flow-controlled, while flux-, voltage-,
or impulse-controlled are aliases for effort-controlled.
Thus, when exercising the Force–Voltage Analogy, we
see that Paynter’s tetrahedron depicts relations among
four state variables that govern translational mechani-
cal elements: e = effort = r = restoring force, f =
flow = ẋ = velocity, x = displacement, and p =
momentum. So for mechanical elements (or sys-
tems) under this analogy, displacement- or velocity-
controlled are aliases for flow-controlled, while force-
or momentum-controlled (or impulse-controlled) are
aliases for effort-controlled.

As discussed in Rosenberg and Karnopp [36], pages
20 and 21, flow (velocity) and effort (force) are called
power variables because their product equals power,
which is the time derivative of energy. Conversely,
energy is the time integral of power. Momentum
and displacement are called energy variables because
instantaneous energy quantities (kinetic or potential)
can be expressed naturally in terms of them. Displace-
ment is the time integral of flow, while momentum is the
time integral of effort. These four state variables (flow,
effort, displacement, and momentum), which are fun-
damental in power flow and energy conservation con-
siderations for dynamical systems, are the vertices of
Paynter’s tetrahedron of state, regardless of the type of
physical system of interest.

Loosely speaking, a flow-controlled system involves
connecting two or more basic elements in parallel

where the total kinetic quantities are summations of
individual ones while all elements share the same kine-
matic quantities. In this case, the kinematic quanti-
ties need to be solved (or calculated) first. The con-
trary can be said about the kinetic quantities in an
effort-controlled system where two or more basic ele-
ments are connected in series. An example is given in
“Appendix 1”; see Fig. 25 and corresponding equations
in Table 8.

2.3 Mem-elements and mem-systems

The constitutive equations for all mem-models (i.e.,
memristor, memcapacitor, meminductor, as well as
memristive, memcapacitive, and meminductive sys-
tems) are summarized in Table 2. Both the time-
invariant elements and their time-varying systems def-
initions are included, but hereafter, we will restrict this
study to time-invariant mem-models.

Remark 3 (On a=absement and ρ) The quantity a in
Table 2 is the time integral of displacement x , while
ρ is the time integral of momentum p. Although the
name “absement” for a appears in Jeltsema [22], it is
not widely known or accepted. An online search uncov-
ered “absition” as an alternative to absement. Another
search uncovered “time integral of momentum” in Bel-
lenger and Duvel [3], but this article is not about mem-
capacitors, and ρ was not given a name. Rather, ρ was
used to estimate an “average value” of the diurnal water
layer over the course of many days. This article is cited
as an example of a study of time series data that might
(eventually) lead to an engineering model of nonlinear
behavior that is of interest in the field of meteorology.

Remark 4 (Passivity) Chua [9] provides necessary and
sufficient conditions for a memristor (in isolation) to be

Table 2 Two forms of mem-models (element or system)

Element or system Flow-controlled Effort-controlled

1. Memristor (element) p = G(x) or r = M(x)ẋ x = F(p) or ẋ = W (p)r

2. Memcapacitor (element) p = G(a) or r = M(a)x a = F(p) or x = W (p)r

3. Meminductor (element) ρ = G(x) or p = M(x)ẋ x = F(ρ) or ẋ = W (ρ)p

4. Memristive system† ẏ = g (y, ẋ, t) and r = M (y, ẋ, t) ẋ ẏ = f (y, r, t) and ẋ = W (y, r, t) r

5. Memcapacitive system† ẏ = g (y, x, t) and r = M (y, x, t) x ẏ = f (y, r, t) and x = W (y, r, t) r

6. Meminductive system† ẏ = g (y, ẋ, t) and p = M (y, ẋ, t) ẋ ẏ = f (y, p, t) and ẋ = W (y, p, t) p

All expressions were translated from Chua [9], Oster and Auslandar [31], Chua and Kang [10], and Di Ventra et al. [13] by using
mechanical–electrical system analogies
† y denotes a state variables vector, g and f denote vector functions, and M and W are scalar functions
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passive such as M(x) ≥ 0 for “any admissible input”
ẋ and output r for all time t ≥ t0. Similarly, Chua
and Kang [10] give M(y, ẋ) ≥ 0 for time-invariant
memristive systems, the generalization of memristors.
However, this passivity condition is only sufficient if a
memristor (element or system) is part of a more com-
plicated system containing other elements that dissi-
pate energy. (For example in the case of Fig. 25(2a),
the weaker condition M(x) ≥ −c is sufficient for
passivity of the combined system; see “Appendix 1.”)
Nonetheless, the passivity condition will be adopted in
this paper, despite contrary considerations in Di Ventra
and Pershin [12]. Together with Remark 9, the passivity
condition restricts all memristor or memristive system
paths to the first or third quadrants of the (ẋ, r) plane.

Remark 5 (Mathematical parallelism) As was men-
tioned in the introduction after Eq. (4), and as Table 2
shows, mem-models possess mathematical (i.e., func-
tional) parallelisms that are noteworthy. However,
physical units and energetics must also be considered;
see Sect. 3.1. Also, see Table 9 in “Appendix 1” for an
example.

Remark 6 (On invertibility) The mathematical rela-
tionship between F and G in Tables 2 and 7 is the
same as for any basic element (electrical or mechan-
ical) in the sense that one is the inverse of the other:
F−1 = G and G−1 = F . Also, W is the reciprocal of
M (and vice versa) at any given point in time t .

Remark 7 (Reduction of memristive system to mem-
ristor) Chua and Kang [10] defines memristive sys-
tems in terms of two equations, called the state equa-
tion and the input–output equation, from which the
time-invariant version can be obtained. As a concep-
tual example of a flow-controlled memristive system,
we have the following:

State equation: ẏ = g (y, ẋ, t)

time inv.�⇒ ẏ = g (y, ẋ)
for element: y=x�⇒
suff. conds. only

ẋ = ẋ (5)

Input–output equation: r = M (y, ẋ, t) ẋ

time inv.�⇒ r = M (y, ẋ) ẋ
for element: y=x�⇒
suff. conds. only

r = M (x) ẋ

(6)

where y is the state vector, g is a vector function, and
M is a scalar function. In this case, the velocity ẋ is the

input, while the restoring force r is the output. Triv-
ial sufficient conditions for a time-invariant memris-
tive system to reduce to a simple memristor are: y = x ,
g(x, ẋ) = ẋ , M(x, ẋ) = M(x). These conditions are
assumed in Eqs. (5) and (6). The final result in Eq. (6) is
Eq. (3), which is a memristor, a subclass of memristive
systems (as expected).

Remark 8 (Reduction of memcapacitive system to
memcapacitor) Di Ventra et al. [13] introduce another
basic mem-model, a memcapacitive system in which a
is the integral of displacement x with respect to time.
As a conceptual example of a flow-controlled memca-
pacitive system, we have the following:

State equation: ẏ = g (y, x, t)

time inv.�⇒ ẏ = g (y, x)
for element: y=a�⇒
suff. conds. only

x = x (7)

Input–output equation: r = M (y, x, t) x

time inv.�⇒ r = M (y, x) x
for element: y=a�⇒
suff. conds. only

r = M (a) x

(8)

where y is the state vector, g is a vector function, and
M is a scalar function. In this case, the displacement
x is the input, while the restoring force r is the output.
Trivial sufficient conditions for a time-invariant mem-
capacitive system to reduce to a simple memcapacitor
are: y = a, g(a, x) = x , M(a, x) = M(a). These con-
ditions are assumed in Eqs. (7) and (8). The final result
in Eq. (8) is Eq. (4), which is a memcapacitor, a sub-
class of memcapacitive systems (again as expected).
Another example is Eq. (15) in Di Ventra et al. [13].

Remark 9 (Zero-crossing property) For a memristor,
r = 0 when ẋ = 0 and vice versa. This means that
the (ẋ , r ) intersection always goes through the origin,
which is called the “zero-crossing” property in Chua
and Kang [10]. In fact, all mem-models in Table 2
have a zero-crossing property, determined by the cor-
responding pair of input and output in the input–output
equation.

Remark 10 (On nonlinearity) It is important to note
that the memristor is intrinsically nonlinear, not merely
a classical resistor (constant), which is a linear time-
invariant electrical engineering element; see page 511
of Chua [9]. By analogy, a classical viscous damper
(constant) should not be considered a mechanical mem-
ristor, nor should a classical spring (constant) be called
a mechanical memcapacitor.
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3 Passive mem-springs and mem-dashpots

3.1 Terminology and scope of this study

The point of departure for the rest of this paper is
Table 2, which summarizes three classes of nonlinear
constitutive equations where the elements in Lines 1–3
are subclasses of the corresponding systems in Lines
4–6. In the context of engineering mechanics, a classi-
cal dashpot model resists motion by means of a force
that is directly proportional to velocity. By analogy
and for brevity in this paper, memristors (elements)
or memristive systems will often be called “mem-
dashpots” because the ratio of resisting force to velocity
is nonconstant and explicitly depends on “memory” via
the state vector y. Similarly, the class of mem-models
in Lines 2 and 5 will often be called “mem-springs”
because the ratio of restoring force to displacement is
nonconstant and explicitly depends on “memory” via
the state vector y, not simply on the current value of dis-
placement. Hence, as an example, the cubic term in the
Duffing equation is not considered a mem-spring. The
mem-models in Lines 3 and 6 will not be discussed fur-
ther. Table 3 gives sample notation and physical units
(see caption) that will be used as needed.

The scope of this study is limited to case stud-
ies of mem-springs and mem-dashpots in isolation,
meaning not in combination with other elements (or
systems). Moreover, thermodynamically passive mem-
dashpots and mem-springs are of primary interest here.
The focus is on discovering what the engineering
mechanics literature holds regarding these two special
mem-models. Due to their mathematical parallelism
(Remark 5), insights gained about one should prove
useful for the other. Therefore, plots of force r versus
velocity ẋ and force r versus displacement x can be pre-

sented together (as in Fig. 1), despite the fact that mem-
springs and mem-dashpots differ significantly in their
physical interpretations, particularly their energetics.

Thus far, various passive mem-dashpot models have
been found in the engineering mechanics literature, but
no unified studies, which simultaneously study passive
mem-spring models, have been found (although per-
haps these appear, and other researchers will find them).
Since their energetics are path-dependent, arrows that
show increasing time have been added to the plots.

As noted in Remark 4, the passivity condition
D(y, ẋ) ≥ 0 will be assumed for mem-dashpots,
which along with the zero-crossing property restricts
all paths in the (ẋ , r ) plane to the first and third quad-
rants. Consequently, mem-dashpot power is never neg-
ative, and mem-dashpot energy cannot be created as
time goes forward. In addition, the passivity condi-
tion S(y, ẋ) ≥ 0 will be assumed for mem-springs,
which along with the zero-crossing property restricts
all paths in the (x , r ) plane to the first and third quad-
rants. Assuming the mem-spring displacement is zero
at some point in time (sometimes called an initial or ref-
erence state), the amount of energy removed at any time
thereafter cannot exceed the amount already stored up
to that time; see the discussion pertaining to Fig. 3 in
[13].

The condition D ≥ 0 alone suffices to prove that
mem-dashpot models are passive, whereas the parallel
condition S ≥ 0 is insufficient by itself to do the same
for mem-springs. Clearly, it is more difficult to prove
that mem-spring models (as a class) are passive, which
presumably accounts for the lack of unified studies.
This observation has motivated us to examine mem-
spring models in more detail in Sects. 3.3 and 3.4, and
to devise the quantitative mem-spring models presented
in Sect. 5.

Table 3 Two time-invariant flow-controlled mem-models

Mem-dashpots Mem-springs

State Eqs. ẏ = g(y, ẋ) ẏ = g(y, x)

I/O Eq. r = D(y, ẋ)ẋ r = S(y, x)x

Power P(t) = r(t)ẋ(t)
for element= D(x(t))ẋ2(t) P(t) = r(t)ẋ(t)

for element= S(a(t))x(t)ẋ(t)

Energy U (t) = ∫ t
0 P(τ )dτ

for element= ∫ t
0 D(x(τ ))ẋ2(τ )dτ U (t) = ∫ t

0 P(τ )dτ
for element= ∫ t

0 S(a(τ ))x(τ )ẋ(τ )dτ

† y denotes a state variables vector, g denotes a vector function, and D and S are scalar functions bearing SI units of N s/m, and N/m,
respectively.
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Fig. 2 Illustrations for a
analytic and b piecewise
continuous displacement
and their corresponding
absement defined in Table 4
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3.2 Examples of mem-dashpots

An example of a mem-dashpot is the “tapered dashpot”
[24,31]. Table 10 in “Appendix 2” summarizes other
examples from the literature.

On the other hand, many commonly discussed
types of damping are not mem-dashpots (memristors
or memristive systems), such as linear viscous, air,
Coulomb, displacement-squared, and solid or struc-
tural damping (e.g., [21]).

3.3 Mem-springs r = S(a)x subject to periodic input

This subsection discusses several properties of mem-
springs of the form r = S(a)x subject to peri-
odic input. The properties are illustrated via exam-
ples in Figs. 3, 4, 5, 6, 7, and 8. Table 4 summarizes
two different but related types of periodic input, dis-
placement x(t) and absement a(t), plotted in Fig. 2.
Table 11 in “Appendix 2” gives the secant stiffnesses
S(a) and their differentiability classifications for all
examples.

Due to mathematical parallelisms evident in Table 2,
some of these mem-spring properties can be rein-
terpreted as properties of mem-dashpots of the form
r = D(x)ẋ by replacing x , a, and S with ẋ , x , and D,
respectively. Other useful results and insights can be
obtained from these examples and properties by trans-
lating concepts, terminology, and notation from flow-
controlled elements to effort-controlled elements.

One type of periodic input is defined by a pair of
analytic functions, Eqs. (9) and (10) in Table 4, where
A > 0 is the amplitude of the sinusoidal displacement

with period T = 2π
ω

, and a0 = A
ω

is the value about
which the analytic absement a(t) oscillates. The related
type of periodic input is defined by a pair of piecewise
continuous functions, Eqs. (13) and (14) in Table 4.
Equation (13) is the piecewise linear (C0) displacement
whose extrema coincide with the maxima and minima
of the sinusoidal displacement. The related piecewise
parabolic (C1) absement is the time integral of Eq. (13)
with a(0) = 0 (consistent with the analytic absement).
Hence, a0 for the related absement differs by a factor of
π
4 from a0 for the analytic absement. These quantities
are defined for notational convenience and insight into
analysis, and all examples are plotted with respect to
A, ω, and a0 as a way of “normalizing” and comparing
results. In many figures, dissipated energy is indicated
by a plus sign inside a clockwise hysteresis loop in the
(x , r ) plane, whereas stored (or created) energy is indi-
cated by a minus sign inside a counter-clockwise loop.

Note that in certain situations when t = 0, T
4 , T

2 , 3T
4 ,

T , the corresponding values of r(t) (or other vari-
ables) are not always unique, meaning one-sided limits
must be considered at those times. Thus, for notational
convenience, the four quarter periods—called Phases
1,2,3, and 4—are detailed in Eqs. (17)–(20) along with
ā(t) in Eqs. (11) and (15).

Phase 1: r = S (a0 − ā) x, Red Arrow in Plots,

with 0 < t <
T

4
,

0 < x(t) < A, 0 < a(t) < a0, a0 > ā(t) > 0
(17)

Phase 2: r = S (a0 + ā) x, Orange Arrow in Plots,
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with
T

4
< t <

T

2
,

A > x(t) > 0, a0 < a(t) < 2a0, 0 < ā(t) < a0

(18)

Phase 3: r = S (a0 + ā) x, Green Arrow in Plots,

with
T

2
< t <

3T

4
,

0 > x(t) > −A, 2a0 > a(t) > a0, a0 > ā(t) > 0
(19)

Phase 4: r = S (a0 − ā) x, Blue Arrow in Plots,

with
3T

4
< t < T,

− A < x(t) < 0, a0 > a(t) > 0, 0 < ā(t) < a0

(20)

Fig. 3 Two element models
(see Table 11) illustrate two
situations where there is no
hysteresis loop;
x(t) = A sin(ωt) with
A = 1 and ω = 1
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Fig. 4 Two element models
(see Table 11) illustrate the
relationship between the
increasing/decreasing
nature of S(a) and the
clockwise/counter-
clockwise direction of (x ,
r ); x(t) = A sin(ωt) with
A = 1 and ω = 1
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Fig. 5 Same element
models as in Fig. 4 (see
Table 11) but subject to
x(t)= 4A

T

(
t − T

2

⌊ 2t
T + 1

2

⌋)

(−1)� 2t
T + 1

2 �, with a(0) =
0, T = 2π

ω
, A = 1, and

ω = 1
−2

0

2

re
st

or
. f

or
ce

, r

−2

0

2

re
st

or
. f

or
ce

, r

1

2

3

se
ca

nt
, S

0

2

4

G

0 a0 2a0

−2

0

2

abs., a

re
st

or
. f

or
ce

, r

−A 0 A

−2

0

2

disp., x

re
st

or
. f

or
ce

, r

0 a0 2a0
1

2

3

abs., a

se
ca

nt
, S

0 a0 2a0
0

2

4

abs., a

G

+

-

-

+

(a)

(b)

123

Author's personal copy



J.-S. Pei et al.

Fig. 6 One element model
(see Table 11) subject to
x(t) = A sin(ωt), and
x(t)= 4A

T
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T + 1

2

⌋)

(−1)� 2t
T + 1

2 �, with a(0) = 0,

T = 2π
ω

, respectively, with
A = 1, and ω = 1. This is
to illustrate the impact of
Situation (1) to the tangent
stiffness of (x , r )
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Fig. 7 One element model
(see Table 11) subject to
x(t) = A sin(ωt), and
x(t)= 4A
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2 �, with a(0) =
0, T = 2π

ω
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with A = 1, and ω = 1.
This is to illustrate the
impact of Situation (2) to
the tangent stiffness
of (x , r )
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Fig. 8 One element model
(see Table 11) subject to
x(t) = A sin(ωt), and
x(t)= 4A
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2 �, with a(0) =
0, T = 2π

ω
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with A = 1, and ω = 1.
This is to illustrate the
impact of Situation (3) to
the tangent stiffness of
(x , r )
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Property 1 (Asymmetry of secant stiffness S(a) about
a0) Under certain conditions, a mem-spring model can
degenerate into a nonlinear (or even linear) spring with-
out memory, meaning there is no hysteresis loop in the
(x , r ) plane. As an example, if S(a) is an even function
with respect to a0 (i.e., S(a0−ξ) = S(a0+ξ) for all ξ ),
such degeneracy happens, as Fig. 3 illustrates. Hence,

the remaining examples involve secant stiffnesses
S(a) which, by design, are not even functions about
a0.

Property 2 (Orientation of hysteresis loops) If S(a)

decreases in a strictly monotonic fashion about a0 (i.e.,
S(a0 + ξ) < S(a0 − ξ) for all ξ > 0), then the orien-
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Table 4 Two related periodic motions (displacements and abse-
ments) used in Sect. 3.3

Analytic displacement and absement

x(t) = A sin (ωt) with T = 2π
ω

(9)

a(t) = a0 (1 − cos (ωt)) with (10)

a0 = A
ω

, ā = a0

√
1 − 1

ω2
x2(t)

a2
0

(11)

da
dx = x

ẋ = A sin(ωt)
Aω cos(ωt) = 1

ω
tan(ωt) (12)

Piecewise continuous displacement and absement

x(t) = 4A
T

(
t − T

2

⌊ 2t
T + 1

2

⌋)
(−1)� 2t

T + 1
2 � (13)

where �·� denotes the floor function.

a(t) = a0

[
1 ∓
(

1 − x2

A2

)]
with (14)

a0 = π
4

A
ω

, ā = a0

(

1 − π2

16ω2
x2

a2
0

)

(15)

da
dx = x

ẋ = t − T
2

⌊ 2t
T + 1

2

⌋
(16)

tation of the hysteresis loop in the first quadrant of the
(x , r ) plane is clockwise (since A > 0), whereas
the loop in the third quadrant is counter-clockwise.
If, on the other hand, the secant stiffness increases
monotonically, the orientation is counter-clockwise in
the first quadrant, but clockwise in the third quadrant.
See Fig. 4.

Property 3 (Smoothness of r, S, x and a) The smooth-
ness (i.e., differentiability classification) of r(t)depends
on the smoothness of both x(t) and S(a(t)). If S(a) and
x(t) are analytic functions, then:

dr

dt
= d

dt
(S(a)x) = S(a)ẋ + dS(a)

da
x2, (21)

where ȧ = x was used. However, if S(a) or x(t) are
nondifferentiable at any point in time, then care must
be taken when interpreting Eq. (21). For example, the
sharp outer tips of the “petals” (hysteresis loops) in
Fig. 5 are due solely to the nondifferentiability of the
piecewise linear displacement in Eq. (13) at t = T

4 , 3T
4 ,

whereas the outer tips are smooth in Fig. 4.

Property 4 (Tangent stiffness K along (x, r) curve) The
tangent stiffness K (t) = dr

dx (t) along the (x , r ) path is
symbolically obtained by dividing Eq. (21) by ẋ(t) with
the proviso that the velocity is not zero (although it is
at t = T

4 , 3T
4 ):

K (t) = dr

dx
= d

dx
(S(a)x) = S(a) + dS(a)

da︸ ︷︷ ︸
Factor1

x2

ẋ︸︷︷︸
Factor2

(22)

Equation (22) shows that the tangent stiffness K and
the secant stiffness S differ by a term that is critically
sensitive (analytically and numerically) in the vicinity
of times when ẋ = 0. This sensitivity is one of the rea-
sons that it is important to examine both S and K when
analyzing test data with mem-models in mind (see Sect.
4.6). Moreover, if hysteresis is to be modeled well, it is
important to study S and K separately from x and ẋ in
order to understand their effects on the restoring force r .

To clarify the relationship between secant and tan-
gent stiffness, Table 5 gives the values of S and K for
a few examples at t = 0, T

4 , T
2 , 3T

4 , T . These are the
times when the (x , r ) path either crosses the origin
(when x(t) = 0), or the path reaches an extremum of
x(t) (when ẋ(t) = 0, a(t) = a0), sometimes called a
“turning point” in hysteresis modeling articles.

At the origin: For mem-springs of the form r = S(a)x ,
Eqs. (12) and (16) are continuous and equal to zero
when x(t) = 0 while dS

da is finite at those times, so
one-sided limits exist and are continuous, leading
to:

K (0) = S(a(0)) = S(0) (23)

K

(
T

2

)

= S

(

a

(
T

2

))

= S(2a0) (24)

K (T ) = S(a(T )) = S(0) (25)

for all examples in Figs. 3, 4, 5, 6, 7, and 8.
At both turning points: Three situations are illustrated

in Figs 6, 7, and 8, respectively. The situations are:
(1) S is continuously differentiable with dS

da = 0; (2)
S is continuous piecewise linear with dS

da 	= 0; and
(3) S has an integrable discontinuity with dS

da = 0.
One-sided limiting values of S and K are given in
Table 5 at each junction of Phases 1–4.

Under Situation (1) with the sinusoidal excitation—
Fig. 6a—the product of Factors 1 and 2 in Eq. (22) may
be determined by using L’Hospital’s rule. Under Situa-
tion (1) with the piecewise excitation—Fig. 6b—Factor
1 is continuously differentiable and equal to zero, while
Factor 2 is zero—so their product is zero. Thus, the
tangent stiffness is continuous and equal to the secant
stiffness.

Under Situation (2) with the sinusoidal excitation—
Fig. 7a—the tangential stiffness line becomes vertical.
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Table 5 Values and S, K , and U at the controlling points within a cycle for selected models given in Sect. 3.3

Figures Phase 1: Loading
in 1st Quad.

Phase 2: Unload-
ing in 1st Quad.

Phase 3: Loading
in 3rd Quad.

Phase 4: Unloading
in 3rd Quad.

S, K or U t = 0+ t = T
4

−
t = T

4
+

t = T
2

−
t = T

2
+

t = 3T
4

−
t = 3T

4
+

t = T −

4a, 5a, and 6a,b S 3 2 2 1 1 2 2 3

7a S 3 1 1 1 1 1 1 3

7b S 3 1.33 1.33 1 1 1.33 1.33 3

8a S 3 2 1 0 0 1 2 3

11a S 3 3 1 1 1 1 3 3

4a, and 7a K 3 −∞ +∞ 1 1 +∞ −∞ 3

5a K 3 −0.35 4.36 1 1 4.36 −0.35 3

6a K 3 −0.47 4.47 1 1 4.47 −0.47 3

6b K 3 2 2 1 1 2 2 3

7b K 3 −1.17 1.83 1 1 1.83 −1.17 3

8a K 3 −0.47 3.47 0 0 3.47 −0.47 3

11a K 3 3 1 1 1 1 3 3

4a U U (0) = 0 U
( T

4

) = 1.40 U
( T

2

) = 0.81 U
( 3T

4

) = 1.40 U (T ) = 0

5a U U (0) = 0 U
( T

4

) = 1.29 U
( T

2

) = 0.58 U
( 3T

4

) = 1.29 U (T ) = 0

6a U U (0) = 0 U
( T

4

) = 1.27 U
( T

2

) = 0.54 U
( 3T

4

) = 1.27 U (T ) = 0

6b U U (0) = 0 U
( T

4

) = 1.16 U
( T

2

) = 0.31 U
( 3T

4

) = 1.16 U (T ) = 0

7a U U (0) = 0 U
( T

4

) = 1.22 U
( T

2

) = 0.67 U
( 3T

4

) = 1.22 U (T ) = 0

7b U U (0) = 0 U
( T

4

) = 1.04 U
( T

2

) = 0.45 U
( 3T

4

) = 1.04 U (T ) = 0

8a U U (0) = 0 U
( T

4

) = 1.27 U
( T

2

) = 1.04 U
( 3T

4

) = 1.27 U (T ) = 0

11a U U (0) = 0 U
( T

4

) = 1.5 U
( T

2

) = 1 U
( 3T

4

) = 1.5 U (T ) = 0

If the hysteresis loop in the first quadrant is considered a
flower petal, its outer tip is rounded. This may be a dis-
advantage of this kind of excitation as it could mask dis-
continuities in the model in this situation. In Situation
(2) with the triangular excitation—7b—ẋ

(
T
4

−) 	= 0,

ẋ
(

T
4

+) 	= 0 and ẋ
(

T
4

−) 	= ẋ
(

T
4

+)
. The last con-

dition leads to dr
dx

(
T
4

−) 	= dr
dx

(
T
4

+)
, under which

we will always have a flower petal with a sharp
outer tip.

Under Situation (3)—Fig. 8—r has a C0 discontinu-
ity at a0, regardless of excitation.

Remark 11 (Rate dependence of mem-spring mod-
els) Generally speaking, mem-spring models are rate-
dependent, behaving as linear (constant) springs “in
the limit of infinite frequency” [13]. In particular, as
ω → ∞ for models of the form r = S(a)x subject
to periodic input, we have, e.g., a0 = A

ω
→ 0, so

r(t) → S(0)x(t), which is a linear spring.

Property 5 (Energy stored or dissipated) For most
examples in Figs. 4–8, Table 5 gives the values of the
energy U (t) at the end of Phases 1–4. The results are in
accord with passivity at the end of a full period, mean-
ing U (T ) = U (0) as noted in Di Ventra et al. [13].
In particular for r = S(a)x subject to periodic input,
energy is stored (created) during the first half period and
then dissipated by an equal amount during the second
half period (or vice versa). Moreover, because mem-
springs degenerate to linear springs as the frequency
goes to infinity (Remark 11), U (t) goes to zero in the
same limit.

3.4 The usefulness of system models

According to Property 5, the simplest mem-spring
models show energy storage in either the first or the
third quadrant, whereas data from many structural
(macro-scale) tests show only energy dissipation (in
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Fig. 9 b Following Fig. 1 in [37], a schematic hys-
teretic loop is formed for SMA subject to x(t) =
4A
T

(
t − T

2

⌊ 2t
T + 1

2

⌋)
(−1)� 2t

T + 1
2 �, with a(0) = 0, T = 2π

ω
,

A = 1, and ω = 1. a, c, and d Other insights developed in this
study. See “Appendix 4” including Fig. 30 for more explanations

Fig. 10 Two system
models (see Table 12) that
contrast the two element
models in Fig. 4 and
illustrate the behavior of
(x , r ) in the third quadrant;
x(t) = A sin(ωt) with
A = 1 and ω = 1
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both quadrants); e.g., see Dolce et al. [14], Santos and
Cismaşiu [37], Christopoulos et al. [8], Ricles et al.
[35], and Fig. 9 for one such example. A different
insight can be gained by contrasting Eqs. (17) and (19)
while observing that an element model cannot produce
the same behavior in the first and third quadrants when
subjected to the specified cyclic input. In other words,
the (x , r ) path is “anti-symmetric with respect to the
origin,” as stated in [13].

One way to tackle this issue within the framework of
mem-models is to utilize system models, Table 2, Line
5. The basic approach is to include x in S and introduce
a switching mechanism whenever x(t) = 0. Section 5
presents examples of such mem-spring system mod-
els. The rest of this subsection gives a few examples of
mem-springs of the form r = S(a, x)x subject to the
same two types of periodic input as were used in the pre-
vious subsection (Table 4). In “Appendix 2,” Table 12
contains the secant stiffness S(a, x) and Table 13 lists
values of S, K , and U (for comparison with Table 5).
Contrasting Fig. 10 with 4, and Fig. 11a with b, one can
see the difference that the switching in these models

can make in terms of modeling capability. Properties 1
to 4 may be extended from elements to systems; see
Figs. 26 and 27 in “Appendix 2” for an example.

4 Case studies of mem-dashpots

4.1 Overview of mem-dashpot case studies

As a case study of a mem-dashpot in the engineering
mechanics literature, details of a controllable hydraulic
damper in Scruggs and Gavin [38] are presented and
discussed in this section. For comparison purposes,
results from three nano-device models (two memristors
and one memristive system in [7,42,43]) are also sum-
marized and discussed. The three nano-device mod-
els, designated herein as Case Studies #1, 2 and 3 (see
“Case studies from nano-field” of Appendix 3), can
be viewed as mem-dashpots by means of the Force–
Voltage Analogy. Instead of using the Simulation Pro-
gram with Integrated Circuit Emphasis (SPICE) as in
Chang et al. [7], MATLABTM was used for all computa-
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Fig. 11 One element
contrasted with one system
model (see Table 12) to
illustrate the behavior of
(x , r ) in the third quadrant;
x(t) = A sin(ωt) with
A = 1 and ω = 1
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tions herein. Throughout this study, ode45 (a MATLAB
ODE solver based on RK45) was used with RelTol =
10−6, AbsTol = 10−3 and MaxStep = 10−3.

This section focuses on the governing state and
input–output equations. Naturally, the input (i.e., exci-
tation) plays an important role in understanding the
nonlinear input–output equations. Although the
response to many different kinds of excitation is of
interest, only a few signal types have actually been
used thus far, namely periodic, ordered, or amplitude-
modulated forms, which are often used to probe
both memristive devices and engineering mechanics
devices.

4.2 A controllable hydraulic damper

Equations (30.59)–(30.62) in [38] are simplified ver-
sions of a more general form of variable damper, also
reviewed in that same paper. Following the notation
for flow-controlled memristive systems in Tables 2
and 3, Eqs. (30.59) to (30.62) can be rewritten as time-
invariant state and input–output Eqs. (26) and (27),

State Eq.: ẏ =
[

ẋ
1

Tw
sat[−1,1]

{
Kw

[
50|y1| 3

2 H
(
− [(1 − y2) cmin + y2cmax] A2

p ẋ · y1

)
− y2

]}
]

︸ ︷︷ ︸
g(y,ẋ)

(26)

I/O Eq.: r = [(1 − y2)cmin + y2cmax] A2
p

︸ ︷︷ ︸
D(y,ẋ)

ẋ (27)

where the state vector has two components y(t) =
[y1(t), y2(t)] = [x(t), w(t)] with w ∈ [0, 1]. Tw,
Kw, cmin and cmax are design parameters, while sat
and H denote the saturation and Heaviside functions,
respectively. Thus, this model is included as a key mem-
dashpot case study. Some snapshots of this nontrivial
model from Scruggs and Gavin [38] are reproduced in
Fig. 12, while more details and insights are provided in
Figs. 12 and 13.

4.3 Regarding variable(s) in state vector y

The selection of variable(s) in state vector y is, in gen-
eral, a subjective matter that depends on the physical
mechanism(s) perceived to underlie the observed non-
linear behavior. In some cases encountered in the liter-
ature, a mem-model expressed in terms of a state vec-
tor does not necessarily mean the model is a system
as defined in Table 2. Instead, the model may actually
be an element (as in Case Study #1). Two interesting
observations can be made regarding Case Study #2.
First, it is straightforward to show that:
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Fig. 12 These two panels
reproduce part of Fig. 30.6
in Scruggs and Gavin [38],
but acceleration turning
points (and others) have
been added here
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Fig. 13 Time histories of the input, output, internal variable, power, and energy in Fig. 30.6 in Scruggs and Gavin [38]

v(t) =
[

y + RON

ROFF
(1 − y)

]
D2

μV

ẏ

y(1 − y)

= D2

μV

[
1

1 − y
+ ROFF

RON

1

y

]

︸ ︷︷ ︸
M(y)

ẏ (28)

where y = w
D , which may have a physical meaning of

being a normalized width according to Chang et al. [7].
It can be seen that y, ẏ—joined with v—form a mem-
ristor (not a memristive system). We have:

G(y) =
∫

M(y)dy

= D2

μV

[

− ln(1 − y) + ROFF

RON
ln y

]

+ D2

μV

[

ln(1 − y0) − ROFF

RON
ln y0

]

(29)

where ln y and ln(1 − y) require 0 < y < 1.
Alternatively, it is again straightforward to show that

the state and input–output equations in Case Study #2
define another memristor. We can also show that:
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Fig. 14 Typical smooth and nonsmooth excitation time histories
and their corresponding phase plots. Here, a mem-dashpot is used
as an example. a Follows Fig. 2, b mimics [7], the analytic signal
in (c) follows [38], while the piecewise signal in (c) mimics [35]

v =
⎡

⎣ RON − ROFF

e
−
(
μV

RON
D q+C

)

+ 1
+ ROFF

⎤

⎦ i (30)

where C is an integral constant to be determined (i.e.,
a memristor, not a memristive system).

Considering what variable(s) a state vector might
include, the internal state variable w in [38] has a
physical interpretation, being the normalized viscosity
coefficient with w ∈ [0, 1], which is quite noteworthy
because in Case Study #3 from [7], a similar choice
occurs for the internal state variable w. The normal-
ized w has a clear physical interpretation, being an area
index varying between 0 and 1. w can be solved as a
nonlinear function involving an integral of v. Using the
notation in Table 2, w is a nonlinear function of φ, while
W is an affine combination of w and a nonlinear func-
tion of v. Ultimately, W can be expressed as a nonlinear
bivariate function of v and φ; see “Understanding case
study #3” in Appendix 4.

4.4 Regarding excitations

The first (and maybe foremost) challenge in studying
mem-models is the dependence of their responses on

their excitations, which is due to their intrinsic nonlin-
earity (so long as the amplitude of excitation is high
enough to meet some nonlinearity observability crite-
ria). See Figs. 17 to 19 (later) for simulated results of
Case Studies #1 to 3 as well as the hydraulic damper
from [38]. To symbolically illustrate excitation depen-
dency, let r = D (x, ẋ) ẋ , which is a simple example
of a flow-controlled time-invariant system model for a
mem-dashpot, we have:

p =
∫

rdt =
∫

D (x, ẋ) ẋdt

=
∫

D (x, ẋ) dx =
∫

D (x, h(x)) dx (31)

where ẋ = h(x) has a piecewise-defined expression
according to the phase plot (ẋ , x)—as discussed in
Sect. 3.3 especially Table 4 and Eqs. (17) to (20)—
but for a mem-dashpot. Thus, it can be seen that p is
piecewise defined, depending on x . Also, it can be seen
that (x , p) (or, equivalently, G in Table 2) is phase plot-
dependent, i.e., excitation-dependent.

Together with Fig. 2, Fig. 14 exemplifies typical time
histories and phase plots in terms of x and ẋ used as
input to a flow-controlled mem-dashpot. Similar phase
plots, but in terms of p and r , could be applied to
an effort-controlled mem-dashpot. (For a mem-spring,
we could use pairs of a and x , and p and r , respec-
tively, for a flow-controlled and an effort-controlled
situation.)

Each of the three typical signals illustrated in Fig. 14
has its pros and cons. In terms of propagating in phase
space, the sinusoidal signal seems to be the least effi-
cient given that only one circle is explored (assuming
constant amplitude). An amplitude-modulated signal
would be more efficient in contrast in this regard.

The difference between a smooth signal and its
sawtooth counterpart needs to be clarified: The for-
mer is differentiable, thus facilitating analytical manip-
ulation, while the latter does not possess this con-
venience but enjoys popularity in practice, e.g., in
pseudo-dynamic tests in earthquake engineering (such
as the excitation in Fig. 20a following Applied Tech-
nology Council [2]). Of course, these excitation forms
are not exhaustive. Ultimately, responses under ran-
dom excitations need to be studied; studying periodic
and/or ordered excitations is a necessary preliminary
stage.
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Table 6 State events in
case study of controllable
hydraulic damper

ID Description

(i) Those caused by H, i.e., both x(t) = 0 and ẋ(t) = 0

(ii) Those caused by sat, which are not known in advance. When the excitation is low,
however, we do not need to worry about this type of state event

(iii) Those caused by the absolute value function, i.e., x(t) = 0

(iv) Those caused by the “hard bound” of w, i.e., w ∈ [0, 1]—it is found that, for the
specified parameter values, this bound is easier to reach than the bound by sat

4.5 Regarding solving state and input–output
equations

State and input–output equations, such as Eqs. (5)
and (6) and others presented elsewhere as typical exam-
ples of flow/effort-controlled mem-dashpot and mem-
spring systems, can be sometimes be solved uncoupled.
For example, Case Studies #1 to 3 are simple enough
that they can be solved uncoupled (as they were in this
work; see Sect. 4.3 and “Case studies from nano-field”
in “Appendix 3”). On the other hand, the hydraulic
damper equations from Scruggs and Gavin [38] were
solved coupled.

In particular, Eq. (5) is a nonlinear ODE to be solved.
The smoothness condition for numerically integrating
this ODE can easily be violated by discontinuities in the
nonlinear operator g and/or those in the input ẋ . The for-
mer leads to state events while the latter to time events.
See Fig. 14, where a sawtooth wave is an example
involving time events; typically, a displacement time
history with sawtooth features is popular in earthquake
engineering tests. Mathematically, this means that dx

dt
is discontinuous at certain times. On the other hand,
nonsmooth operators f include, but are not limited to,
piecewise-defined functions or generalized functions.
Time events, which are (by definition) known prior to
the start of computations, are associated with excita-
tions (assuming they are deterministic, not random).
Some locations when ẋ = 0 (or i = 0, or v = 0) are
highlighted with red circles in most plots in Sect. 4.
In contrast, state events cannot be known in advance
because they are caused by nonlinearities in the consti-
tutive relations. Both directly affect the smoothness of
the state equation, an ODE.

An interesting and a challenging point for the con-
trollable hydraulic damper is the subtlety of state
events. There are no time events in this case because
the prescribed excitation is analytic. However, there
are state events, caused by four situations, detailed in
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Fig. 15 Cartoons showing time-varying secants of a (ẋ , r ) and
b (x , r ) for memristive and memcapacitive systems, respectively

Table 6. Numerically solving the case study of con-
trollable hydraulic damper can be quite challenging.
We need to pay attention to the time instances when
x(t) = 0, ẋ(t) = 0, ẍ(t) = 0 and those time instances
when sat applies. One of the challenges—for the spec-
ified excitation time histories—is that x(t) = 0 and
ẍ(t) = 0 do not line up. Some locations when ẍ = 0
(or v̇ = 0) are highlighted with blue squares in most
plots in Sect. 4.

4.6 Using time-varying secants in modeling

For modeling purposes, it is worth noticing that the
quotient of r(t) and ẋ(t) has the physical meaning
of a time-varying viscous damping coefficient. Like-
wise, the quotient of r(t) and x(t) is a time-varying
stiffness. In other words, the quotients D = r(t)

ẋ(t)

and S = r(t)
x(t) are time-varying secants, illustrated in

Fig. 15, which are defined for all t except when the
denominator is zero which should not hinder physical
interpretation.

Given a time-varying (x , r ) plot, the physical inter-
pretation of secant stiffness S clearly differs from the
tangent stiffness K , as discussed in Property 4 and
shown in Tables 5 and 13. Secant modulus is also
well-known in engineering mechanics as, for example,
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Young’s modulus for concrete which is typically esti-
mated for a stress-strain curve by connecting the origin
with the point corresponding to 45% of its ultimate
strength in accord with the recommendation of ACI
[1]. However, time-varying secants are not so widely
used as time-varying tangents when modeling path-
dependent engineering mechanics systems. Neverthe-
less, when applying mem-models to experimental data,
we must pay attention to time-varying secants . For the
reader’s convenience, time-varying secant plots of all
four mem-dashpots are presented together in Fig. 16.
Note that Cases #1 to 3 are effort-controlled with v(t)
specified as the excitation; M = v(t)

i(t) and W = i(t)
v(t)

in these case studies are analogous to r(t)
ẋ(t) and ẋ(t)

r(t) ,
respectively, for mem-dashpots.

Example 1 (Using M = v(t)
i(t) for modeling memris-

tors: Case Studies #1 and 2) Figures 17 and 18 show
results from Case Studies #1 and 2. Even though differ-
ent excitations are used, each quotient M = v(t)

i(t) stays
on its own secant curve, which is a constitutive curve.
Moreover, since these are memristors (elements), each
flux–charge relationship is one-to-one for the specified
excitation, which in general does not happen for sys-
tems (either memristive or memcapacitive).

Example 2 (Using W = i(t)
v(t) for modeling a memris-

tive System: Case Study #3) Figure 19 shows results
from Case Study #3 [7], which is a memristive system
(not an element). For this model, the secant (i.e., quo-
tient) is a bivariate function that depends on the volt-
age v and its time integral φ. In addition, both (q, φ)
and (W , φ) are not one-to-one mappings—even though
these facts are not obvious without careful study of the
model and Fig. 19. While “Understanding Case Study
#3” of Appendix 4 discusses these claims, intuitively
we explain them as a result of the model not being an
element but a system, the former of which would guar-
antee (q, φ) and (W , φ) to be one-to-one mappings
according to Table 7.

Example 3 (Using D = r(t)
ẋ(t) for modeling a mem-

dashpot: Scruggs and Gavin [38]) It should not be
a surprise to learn that, for memristive systems, the
secant damping D is not a single-valued function of
x . For example, under the excitation given in Scruggs
and Gavin [38], the secant damping in (ẋ , r ) is not a
simple function. In fact, the internal state variable, w,
is actually a normalized time-varying damping coeffi-
cient that follows its own dynamics; see Fig. 13.

5 Case studies of mem-springs

5.1 Overview of mem-spring case studies

In this section, we present mem-spring models that
reproduce the features of some fascinating nonlinear
hysteresis, which we believe have underlying memca-
pacitive nature. In contrast to memristors, memcapac-
itors are relatively new, yet we believe there is no lack
of examples. Two possibilities are self-centering struc-
tures and flag-shaped hysteresis, which have captured
attention in earthquake engineering and shape-memory
alloy (SMA) communities (e.g., [8,35]). However, they
are neither memristors nor memristive systems. The
zero-crossing property of memristors is expressed in
terms of (ẋ , r ), whereas the zero-crossing property of
self-centering structures (or flag-shaped hysteresis) is
expressed in terms of (x , r ) manifesting superelasticity,
i.e., having zero residual displacement upon unload-
ing. Perhaps, their behavior could be modeled as mem-
capacitors or, more likely, memcapacitive systems.
While simulated data are used for SMA as described
in “Appendix 4,” experimental data are examined for
a self-centering test structure in this section. In both
cases, the resulting mem-spring models utilized the
switching mechanism discussed in Sect. 3.4.

There are of course other mechanical capacitors (i.e.,
springs) that include memory effects; however, many
of them are neither memcapacitors nor memcapaci-
tive systems. For example, the Ramberg-Osgood model
[25] is not a memcapacitor, nor is it a memcapacitive
system. The same can be said for the well-known bilin-
ear model [5,6,26].

5.2 Experimental PC4 data modeled as a mem-spring

PC4 in Ricles et al. [35] is a specimen typifying the
potential of self-centering structures. T = 8 s is
assumed for every cycle of an amplitude-modulated
sawtooth displacement excitation as shown in Fig. 20a.
Four colors are used to indicate loading and unloading
in both the positive and negative directions. Digitized
data are only obtained for the positive direction, while
antisymmetry is used for the negative direction. a(t) is
obtained through calculating the area under x(t). Fig-
ure 21a recovers Ricles et al. [35]’s Fig. 8(a), while
Fig. 20b–d and Fig. 21b, c provide other quantities that
are not presented in Ricles et al. [35], but useful in our
modeling.
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For the assumed excitation, the secant stiffness S
shown in Fig. 22 was extracted by analyzing test data.
To clarify this, we select a and ẋ as state variables and

assume the following input–output equation:

r = S(a, ẋ︸︷︷︸
y

, x)x (32)
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a system, it is not. For Case Study #3, the secant is a bivariate
function (see Fig. 19). For the controllable hydraulic damper, it
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Fig. 17 Figure 2b, c in Case Study #1 from Strukov et al. [43] is reproduced by using the two different memristor models subject to
two different excitations. See Tables 14 and 15 in “Case studies from nano-field” of Appendix 4 for details
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Fig. 18 A parametric study based on the model given in
Strukov [42], Page 17, subject to v = ±v0 sin2

( 1
2 2.5π t

)
with

v0 = 1, 2, 2.2, respectively. These exercises reveal the one-
to-one mapping M (or, equivalently, G) as the excitation gets

stronger. They also show that a memristor may not display its
nonlinearity when the excitation is very weak. This is our Case
Study #2; see Tables 14 and 15 in “Case studies from nano-field”
of Appendix 4 for details

=
[

1

4
(sgn(x) + 1)(sgn(ẋ) + 1)S1(x)

+ 1

4
(sgn(x) + 1)(1 − sgn(ẋ))S2(a, x)

+ 1

4
(1 − sgn(x))(1 − sgn(ẋ))S3(x)

+ 1

4
(1 − sgn(x))(sgn(ẋ) + 1)S4(a, x)

]

x (33)

For this example, having ẋ as a state variable is very
helpful in defining the switching mechanism for a mem-
capacitive system. For each of the four zones selected
by the joint signs of x and ẋ , the value of S is either
a function of x alone (when it seems to be simply a
nonlinear spring) or a function of both a and x (when
it seems to be a memcapacitive system).

Our proposed model works with the specified ampli-
tude and rate of the input. It is a black-box model that
is quite a simplification since it involves only a single-
degree-of-freedom. Since each nonlinear model would
be different, our model must be checked against addi-
tional test data. In addition, we anticipate the need for a
damage index bounded within a range, to be introduced
as an internal state variable.

5.3 A proposed qualitative mem-spring model for
flag-shaped hysteresis

When an input x(t) with a period of T = 4 s is used,
we have the following model and simulation shown in
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Fig. 5a in Chang et al (2011)
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Fig. 19 An illustration of the secant W being a bivariate function
of φ and v in Case Study #3 from Chang et al. [7]. The three-
dimensional surface W = W (φ, v) contains two trajectories that
resulted from two distinct excitations. In addition, the first and

third quadrants in (v, i) correspond to two different curves in (φ,
W ) and (φ, q), even though these facts may not be easily seen
here. See “Understanding Case Study #3” of Appendix 4)

Figs. 23 and 24 by introducing an intermediate variable,
which is not a state variable:

w(t) = a(t) − a(ti )
[H(t − ti ) − H(t − ti+1)

]

t ∈ [ti , ti+1], where x(ti ) = 0, i = 1, 2, 3, . . .

(34)

leading to w(t) = a(t) when x(t) > 0, and w(t) =
a(t)− a local maximum value for a(t) when x(t) < 0.
All local maximum values can be considered values of
a memory parameter [49]. The input–output equation
then becomes r(t) = S(t) x(t) with:

S(t) =
{

S0e−a0 , |w(t)| ≤ a0

S0e−|w(t)|, |w(t)| > a0
(35)

where a0 > 0. Comparing Figs. 20 with 23, and 21
with 24 indicates both the promise and limitation of
this proposed mem-spring model in capturing the flag-
shaped hysteresis given in the PC4 data in Ricles
et al. [35].

5.4 Comment on generalizing mem-springs

Many continuum mechanics texts introduce constitu-
tive models by discussing linearly elastic materials that
obey tensorial stress-strain equations
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Fig. 23 Behaviors and inner workings of the proposed qualitative system model under multiple cycles of amplitude-modulated sawtooth
excitation—in terms of time histories—in contrast to those in Fig. 20
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Fig. 24 Behaviors and inner workings of the proposed qualitative system model under multiple cycles of amplitude-modulated sawtooth
excitation—in terms of hysteretic loops—in contrast to those in Fig. 21 and more

σ = E : ε (36)

where E denotes a constant tensor called the secant
modulus [47]. These are called Hookean models
because they generalize Hooke’s law, which is a scalar
equation, just as each input–output equation in Table 2
is scalar. By analogy, one way to generalize mem-
springs is to embed them in continuum mechanics by
defining a secant modulus tensor which depends on
strain as well as other state variables y that enable his-
tory dependence E = E(y, ε).

For example, consider a long thin uniform cylindri-
cal wire, made of SMA, having length L and cross-
sectional area A. Assume infinitesimal strain theory,
let the axial displacement be denoted by

δ = δ(ξ, t) (37)

where ξ ∈ [0, L] is the axial coordinate, and let

ε = ε(ξ, t) = ∂δ(ξ, t)

∂ξ
(38)

be the axial strain. Assume the SMA material obeys a
uniaxial stress-strain equation of the form

σ = E(α, ε)ε (39)

where α = α(ξ, t) is the integral of the strain with
respect to time, called the “strain absement,” thereby
enabling history-dependent response under certain
axial loading conditions. Furthermore, since SMA is
known to be rate-dependent [50], the secant modulus
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should also depend on strain rate εt = ∂ε(ξ,t)
∂t , so gen-

eralize further by letting

E = E(α, εt , ε) (40)

which highlights the distinction between history- and
rate-dependent response. The local axial stiffness of
this model is

S(α, εt , ε) = E(α, εt , ε)A

L
(41)

which is analogous to the secant stiffness in Eq. (32).
Dynamically, this SMA wire model would satisfy the
nonlinear wave equation

μ
∂2δ

∂t2 = ∂

∂ξ

[

E(α, εt , ε)
∂δ

∂ξ

]

(42)

where μ is the mass density of the SMA material.
In addition to nonlinear material behavior, nonlin-

ear geometric behavior (finite strain) must ultimately
be considered in three-dimensional configurations. As
stated on page 609 of Willam [47], “the three versions
of nonlinear elasticity” (algebraic, integral, differen-
tial) “lead to constitutive formulations which exhibit
fundamental differences when we consider triaxial con-
ditions.” Constitutive models for SMA (and other mate-
rials) must be generalized beyond nonlinear elasticity,
thereby enabling hysteretic dissipative response under
diverse loading conditions. These are challenging top-
ics which have been, and will continue to be, impor-
tant areas of engineering mechanics research for many
decades.

6 Summary and conclusions

In brief, Chua proposed the memristor in [9], presented
memristive systems theory with Kang 5 years later in
Chua and Kang [10], and presented memcapacitive
and meminductive theories with Di Ventra and Per-
shin in Di Ventra et al. [13]. Table 2 summarizes the
results of transplanting these theories to the field of
engineering mechanics by following the lead of Oster
and Auslander [31] and Jeltsema and Scherpen [24].
Many examples of memristors and memristive sys-
tems, called mem-dashpots, were found in the litera-
ture; however, the same could not be said of memcapac-
itors or memcapacitive systems, called mem-springs.
Mathematical parallelisms between mem-dashpots and
mem-springs were recognized and exploited, but phys-
ical differences and the newness of mem-springs led to

the realization that these newer models deserve deeper
study, in part because of a little-studied quantity called
absement which allows mem-spring models to display
hysteretic response in great abundance. However, it
is nontrivial to devise mem-spring models that, when
subjected to arbitrary excitations, are passive. Even
for periodic excitations, a switching mechanism was
needed so that simulations with prototype mem-spring
models could maintain passivity, as in Fig. 1. More-
over, the input–output equations for all mem-models in
Table 2 are scalar, as is Hooke’s law, which implies that
embedding mem-models in continuum mechanics is a
nontrivial task. The mathematical form of the stress-
strain equations that arise from such considerations
involves secant modulus rather than tangent modulus,
so these inherently nonlinear models are partly alge-
braic (the input–output equation) and partly differen-
tial (the state equation). In other words, the stress-strain
equations that emerge from generalizing a scalar mem-
spring model would involve total stress and strain (not
incremental relations as in plasticity). As [47] notes,
different versions (algebraic, differential) of nonlinear
elasticity alone (to say nothing of inelasticity) lead to
constitutive formulations that display fundamental dif-
ferences under triaxial conditions. Clearly, these non-
linear constitutive models merit more study.
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Appendix 1 for Sect. 2

Table 7 lists various definitions of the memristor and the
publications from which they were taken. First, these
seemingly different definitions are indeed all consis-
tent once notational differences are taken into account.
Next, they are for either a general or a specific electrical
system. Last, they distinguish a flow-controlled electri-
cal device from an effort-controlled electrical device.
For electrical systems, charge- or current-controlled
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Table 7 Many faces of
mathematical expressions
for the memristor

All notations in this table
follow those in the original
publications. Note that ϕ is
the same as φ

In device of Algebraic form Differential form

“charge-controlled” [9] v(t) = M(q(t))i(t), M(q) = dϕ(q)
dq

“charge-controlled” [31] p = G(q) ṗ = G ′(q)q̇ �⇒ e = M(q) f

“charge-controlled” [24] φ = φ̂(q) V = M(q)I

“flux-controlled” [9] i(t) = W (ϕ(t))v(t), W (ϕ) = dq(ϕ)
dϕ

“impulse-controlled” [31] q = F(p) q̇ = F ′(p) ṗ �⇒ f = W (p)e

“flux-controlled” [24] q = q̂(φ) I = W (φ)V

m

k

c

u(t)

M

m

k

c

u(t)

m
u(t)

m

k c

k c u(t)

(1b)(1a)

(2b)(2a)

W

Fig. 25 1a A Kelvin model connected in series with a mass, 1b
a Maxwell model connected in series with a mass, 2a a Kelvin
model connected with a memristor in parallel and then connected
in series with a mass, 2b a Maxwell model connected with a
memristor in series and then connected in series with a mass.
Each is subject to a prescribed force u(t)

are aliases for flow-controlled, while flux-, voltage-,
or impulse-controlled are aliases for effort-controlled.

Figure 25 depicts some simple situations where
the necessity to contrast flow- and effort-controlled
mechanical systems becomes evident. After all, basic
elements like springs, dampers, or memristors are made
to be used repetitively and in a well-organized manner
in order to form a “system” that models a complex real-
world device or structure. For translational mechanics,
the connectivity of these basic elements can be reduced
to either parallel or serial connections, the roots of the
concepts of flow- and effort-controlled systems.

Figure 251a and 1b shows the Kelvin and Maxwell
models, each connected in series with a mass. Jeltsema
and Scherpen [24] reveal the duality between these
flow- and effort-controlled systems, expressed in terms
of integro-differential equations. In a flow-controlled
device, the natural state variables are displacement x
and velocity ẋ . These state variables should be solved
(or calculated) first by integrating the differential equa-
tion based on force equilibrium. In contrast, in an
effort-controlled device, the natural state variables are

momentum p and restoring force r , where momentum
is the time integral of restoring force. These state vari-
ables should be solved (or calculated) first from the
equation based on deformation compatibility.

These two linear time-invariant flow- and effort-
controlled systems may be extended by introducing a
new element—such as the memristor (nonlinear time-
invariant)—as shown in Fig. 25 2a and 2b. Table 8
presents the state variables and state equations for the
corresponding models in Fig. 25, where u(t) is an
applied force as in Eq. (1). For systems in general,
the constitutive relations of all components—either ele-
ments or systems—need to be “assembled” in accord
with the connectivity of the components. In the absence
of other important details, the need for two different
mathematical expressions for the same memristor to fit
into these two different systems may be seen clearly. In
other words, when doing computations, we may need
to deal with either a flow-controlled memristor or an
effort-controlled memristor, depending on the element
or system connectivity.

Table 9 lists expressions that are analogous to the set
of (v, i) plots in Strukov [42] under the title of “Curi-
ous Lay Person’s Viewgraph—II,” plus one more for
the memcapacitor. Table 9 also illustrates the underly-
ing mathematical parallelism in the case of sinusoidal
excitation.

The proof to Remark 4 is given below. The equation
of motion corresponding to Fig. 25(2a) is:

mẍ + kx = u − [c + M(x)] ẋ, with x(0) = x0,

ẋ(0) = ẋ0 (43)

Assume free vibration; i.e., u = 0. Multiply both sides
of Eq. (43) by ẋ(t). Note that

(mẍ + kx) ẋ = d

dt
E(t) (44)
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Table 8 Summary of
possible state variables and
equations for all cases in
Fig. 25

Flow-controlled Force-controlled

Fig. 25(1a) Fig. 25(1b)

z =
[

x
ẋ

]

z =
[

p
r

]

ż =
[

ẋ
ẍ

]

=
[

0 1
− k

m − c
m

] [
x
ẋ

]

︸︷︷︸
z

+
[

0
1
m

]

u ż =
[

r
ṙ

]

=
[

0 1
− k

m − k
c

] [
p
r

]

︸ ︷︷ ︸
z

+
[

0
k
m

]
∫

udt

Fig. 25(2a) Fig. 25(2b)

z =
[

x
ẋ

]

�
[

z1
z2

]

z =
[

p
r

]

�
[

z1
z2

]

ż =
[

z2

− 1
m (kz1 + cz2 + M(z1)z2) + 1

m u

]

ż =
[

z2

−k
( 1

m z1 + 1
c z2 + W (z1)z2

)+ k
m

∫
udt

]

Table 9 Periodic solution for spring and memcapacitor subject to †x(t) = A sin (ωt), and for mass, dashpot, and memristor subject to
‡ ẋ(t) = A sin (ωt)

Element r Expression for r Signature plot

Spring† r = kx k A sin (ωt) an ellipse ẋ2

(Aω)2 + r2

(k A)2 = 1 in the (ẋ , r ) plane

Memcapacitor† r = M(a)x M
( A

ω
− A

ω
cos (ωt)

) · A sin (ωt) “bow tie” in the (x , r ) plane

Mass‡ r = mẍ m Aω cos (ωt) an ellipse ẋ2

A2 + r2

(m Aω)2 = 1 in the (ẋ , r ) plane

Dashpot‡,� r = cẋ cA sin (ωt) one-to-one mapping in the (ẋ , r ) plane

Memristor‡ r = M(x)ẋ M
( A

ω
− A

ω
cos (ωt)

) · A sin (ωt) “bow tie” in the (ẋ , r ) plane [48]

� Other damper equations may be used

Table 10 Examples of mem-dashpots

ID Application and governing Eq.

1. The Van der Pol oscillator and Liénard equation contain mem-dashpots. The Van der Pol oscillator can be viewed as a mem-
dashpot connected in parallel with a linear dashpot and a linear spring before connecting in series with a mass, as illustrated
in Fig. 25(2a):

ẍ − ε[1 − x2]ẋ + x = 0, with ε > 0 �⇒ ẍ︸︷︷︸
unit mass

−εẋ︸︷︷︸
classical dashpot

+ εx2 ẋ︸︷︷︸
mem-dashpot

+ x︸︷︷︸
classical spring

= 0 (46)

A more general expression for a mem-dashpot in a flow-controlled mechanical system is the term D(x)ẋ in the Liénard equation:

ẍ︸︷︷︸
unit mass

+ D(x)ẋ
︸ ︷︷ ︸

mem-dashpot

+ f (x)
︸︷︷︸

nonlinear spring

= 0 (47)

The Liénard equation, which includes the Van der Pol oscillator, is one of the most theoretically studied nonlinear dynamics
equations (e.g., [18,29,41]).

2. Displacement-dependent dampers, which have been investigated for earthquake mitigation [16,34], are mem-dashpots. A
general form is:

D(x) =
∞∑

n=1
αn |x |n, αn ≥ 0 (48)

where the use of the absolute function and the requirement of nonnegativity of αn are to ensure passivity of the memristor
(Remark 4). Ilbeigi et al. [20] studied nonlinear displacement-dependent dampers of the type:

D(x) = λ

⎡

⎣μ2

(
1

1−βx

(
1
s

)

)2

− 1

⎤

⎦

2

(49)
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Table 10 continued

ID Application and governing Eq.

where λ > 0 satisfies the passivity property, Remark 4 (μ, β, and s are other design parameters). This formula is approximated
using Taylor series expansion in Ilbeigi et al. [20], resulting in two other damper formulas as follows:

D(x) = α1 + α2|x | 1
s + α3|x | 2

s + α4|x | 3
s + α5|x | 4

s (50)

D(x) = α1 + α2x2 + α3x4 + α4x6 + α5x8 (51)

Each of these can be considered a linear viscous damper connected with memristors (mem-dashpots) in series. The passivity
conditions α’s ≥ 0 are satisfied in Ilbeigi et al. [20] but not mentioned.

3. Variable dampers have been studied for earthquake mitigation as well. Unlike the displacement-dependent dampers discussed
above, they are not memristors but they are memristive systems. For example, setting y = x , the two-step viscous damping in
Madhekar and Jangid [27] is of the form:

r =
[

1

2
(1 + sgn (x ẋ)) cd1 + 1

2
(1 − sgn (x ẋ)) cd2

]

︸ ︷︷ ︸
D(y,ẋ)

ẋ (52)

where cd1 and cd2 are two different viscosity values. This is an input–output equation of a time-invariant flow-controlled mem-
dashpot as in Table 3; also see the two (ẋ , r ) plots with prominent zero-crossing feature in Madhekar and Jangid [27].

where E(t) = 1
2 mẋ2 + 1

2 kx2. Multiply this equation
by dt and integrate from t = 0 to t = T to obtain
E(T ) = E(0) − Δ(T ), where

Δ(T ) =
∫ T

0
[c + M(x)] ẋ2dt (45)

is a dissipation function. If c + M(x) ≥ 0, ∀x(t), then
Δ(T ) ≥ 0. Thus, M(x) ≥ −c is sufficient for passivity
(i.e., no produced energy).

Appendix 2 for Sect. 3

Examples of mem-dashpots are given in Table 10.
See Tables 11 and 12 for some models used in Sects. 3.3

and 3.4, respectively. Table 13 and Figs. 26 and 27 are
also referred to in Sect. 3.

Appendix 3 for Sect. 4

Case studies from nano-field

Tables 14 and 15 give an overview of all these case
studies.

Understanding case study #3

To see that W = i(t)
v(t) is a bivariate function of v(t) and

φ(t), note that i(t), defined by Eq. (58), is a bivariate

Table 11 Secant stiffness S(a) used in simple mem-spring models r = S(a)x in Sect. 3.3

Figures S(a) Differentiability classification

3a (a − a0)
2 + 2 Cω (analytic), quadratic function of a

3b |a − a0| + 2 = 1−sgn(a−a0)
2

(
3 − a

a0

)
+ 1+sgn(a−a0)

2

(
2 + a−a0

a0

)
C0, continuous at a0, piecewise linear

4a and 5a cos
(

πa
2a0

)
+ 2 Cω , analytic for all a

4b and 5b − cos
(

πa
2a0

)
+ 2 Cω , analytic for all a

6a, b 1−sgn(a−a0)
2

[
− sin

(
πa
2a0

)
+ 3
]

+ 1+sgn(a−a0)
2

[
sin
(

πa
2a0

)
+ 1
]

C1, differentiable at a0, piecewise analytic

7a, b 1−sgn(a−a0)
2

(
3 − 5a

3a0

)
+ 1+sgn(a−a0)

2

(
4
3 − a−a0

3a0

)
C0, continuous at a0, piecewise linear

8a, b 1−sgn(a−a0)
2

[
− sin

(
πa
2a0

)
+ 3
]

+ 1+sgn(a−a0)
2 sin

(
πa
2a0

)
C−1, integrable at a0, piecewise analytic

11a 1−sgn(a−a0)
2 × 3 + 1+sgn(a−a0)

2 × 1 C−1, integrable at a0, piecewise constant
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Table 12 Secant stiffness
S(a, x) used in simple
mem-spring models
r = S(a, x)x in Sect. 3.4

Figures S(a, x)

10a sgn (x) cos
(

πa
2a0

)
+ 2

10b −sgn (x) cos
(

πa
2a0

)
+ 2

11b 1−sgn((a−a0)x)
2 × 3 + 1+sgn((a−a0)x)

2 × 1

26a and 27a 1−sgn((a−a0)x)
2

(

1 + 2
a2

0
(a − a0)

2
)

+ 1+sgn((a−a0)x)
2

(

1 + 2
a6

0
(a − a0)

6
)

26b and 27b 1−sgn((a−a0)x)
2

(

3 − 2
a0

(
a − 1−sgn(x)

2 2a0

)2
)

+ 1+sgn((a−a0)x)
2

(

1 + 2
a6

0
(a − a0)

6
)

Table 13 Values and S, K , and U at the controlling points within a cycle for selected models given in Sect. 3.4

Figures Phase 1: Loading
in 1st Quad.

Phase 2: Unloading
in 1st Quad.

Phase 3: Loading
in 3rd Quad.

Phase 4: Unloading
in 3rd Quad.

S, K or U t = 0+ t = T
4

−
t = T

4
+

t = T
2

−
t = T

2
+

t = 3T
4

−
t = 3T

4
+

t = T −

10a S 3 2 2 1 3 2 2 1

11b S 3 3 1 1 3 3 1 1

26a, b and
27a, b S

3 1 1 3 3 1 1 3

10a K 3 −∞ +∞ 2 3 −∞ +∞ 1

11b K 3 3 1 2 3 3 1 1

26a K 3 −∞ 1 3 3 −∞ 1 3

26b K 3 −3 1 3 3 −3 1 3

27a K 3 −5.00 1 3 3 −5.00 1 3

27b K 3 1 1 3 3 1 1 3

10a U U (0) = 0 U
( T

4

) = 1.40 U
( T

2

) = 0.81 U
( 3T

4

) = 2.22 U (T ) = 1.62

11b U U (0) = 0 U
( T

4

) = 1.5 U
( T

2

) = 1 U
( 3T

4

) = 2.5 U (T ) = 2

26a U U (0) = 0 U
( T

4

) = 1.33 U
( T

2

) = 0.58 U
( 3T

4

) = 1.92 U (T ) = 1.17

26b U U (0) = 0 U
( T

4

) = 1 U
( T

2

) = 0.25 U
( 3T

4

) = 1.25 U (T ) = 0.5

27a U U (0) = 0 U
( T

4

) = 1.12 U
( T

2

) = 0.50 U
( 3T

4

) = 1.62 U (T ) = 1.01

27b U U (0) = 0 U
( T

4

) = 0.79 U
( T

2

) = 0.17 U
( 3T

4

) = 0.96 U (T ) = 0.34

Table 14 Three case studies on nano-devices selected as case
studies herein with the equation or page numbers appeared in
these papers

Case study Reference State Eqs. I/O Eq.

#1 Strukov et al. [43] Eq. (6) Eq. (5)

#2 Strukov [42] pp. 17 pp. 15

#3 Chang et al. [7] Eq. (5) Eq. (4)

function of w(t) and v(t). Applying the fundamental
existence-uniqueness theorem for ODEs (e.g., in [18])
to Eq. (57), the solution exists and is unique on an
open set for v; i.e., (w, φ) is one-to-one (since the

hyperbolic sine in Eq. (57) is analytic and thus satisfies
the Lipschitz condition). Hence, W = f (w(φ), v) =
g(φ, v).

Hereafter, consider only prescribed piecewise linear
v(t) as in [7]. Assume v(t) = bt + c for a generic
section of the excitation and proceed as follows:

dφ

dv
= φ̇

v̇
= v(t)

b
(59)

leading to the following piecewise relation for the phase
plot (φ, v):

φ(t) = v2(t)

2b
+ φ0 �⇒ v(t) = ±√2b(φ(t) − φ0)

(60)
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Table 15 Case studies: Both the state and input–output equations are from the original papers where they are cited from

ID State and input–output Eqs. and Inter. Var.

1 Equations (6) and (5) from Strukov et al. [43] are the state and input–output equations to produce Fig. 2 in that paper:

State Eq.: dw
dt = μV

RON
D i (53)

I/O Eq.: v = (RON
w
D + ROFF

(
1 − w

D

))
i (54)

where v(t) = v0 sin(ω0t) and v(t) = ± v0 sin2(ω0t) for Fig. 2b, c, respectively, with v0 = 10, and ω0 = 10π - differing
from Strukov et al. [43], where v0 and ω of being 1 and 200π , respectively. In addition, ROFF

RON
= 160 and ROFF

RON
= 380 for

Fig. 2b, c, respectively, RON = 100, D2

μV
= 0.01, and w

D |t=0 = 0.1.

2 Strukov et al. [43] points that Chua does not anticipate w being bounded by 0 and D. A term called “window function” is
used to simulate nonlinear drift when w approaches 0 and D. The expression for the term, w(1−w)

D2
, unfortunately, has a typo.

The correct one is given in Strukov [42]:

State Eq.: dw
dt = μV

RON

D
i w

D

(
1 − w

D

)
(55)

I/O Eq.: v = (RON
w
D + ROFF

(
1 − w

D

))
i (56)

where ROFF
RON

= 50, RON = 100, D2

μV
= 0.01, and w

D |t=0 = 0.001 assumed by the authors—not being zero as w ∈ (0, D)

on pp. 17 of Strukov [42]. To reproduce the response given on pp. 17 in Strukov [42], the authors were able to follow the
specified frequency but not amplitude.

3 From Chang et al. [7]:

State Eq.: dw
dt = 2λ sinh(ηv) (57)

I/O Eq.: i = (1 − w
D

)
α
[
1 − e−βv

]+ w
D γ sinh(δv) (58)

where λ = 4.5, η = 4, α = 0.5 × 10−6, β = 0.5, γ = 4 × 10−6, and δ = 2. D = 412.5 was obtained by trial and error in
this study with w

D as given in Eq. (58) (instead of Eq. (4) in Chang et al. [7] which gives a different range for i).

The general solution to Eq. (57) with v(t) = bt + c
is:

w(t) = w(t0) + 2λ

ηb
[cosh(ηv(t)) − cosh(ηbt0 + ηc)]

(61)

Eq. (60)= w(t0) + 2λ

ηb

[
cosh
(
±η
√

2b (φ(t) − φ0)
)

− cosh(ηbt0 + ηc)
]

(62)

where the sign ± remains the same within each piece as
before. Clearly, (w, φ) is a one-to-one mapping within
each piece of the solution curve separated by the time
events. Given that cosh is an even function, the first and
third quadrants in (v, i) share the same (w, φ). These
can be verified in Fig. 28.

Substituting Eqs. (58) to (61), it can be seen that, for
a pair of v and −v, the absolute values of their i differ,
so do their q and W values—as stated in the caption for
Fig. 19. Indeed, this system is not a memristor; rather,
it is a memristive system.

In fact, the pair of ẇ and v defined in Eq. (57) repre-
sents a relationship in a nonlinear resister with ẇ and
w corresponding to current and charge, respectively.

Having said this, (w, φ) must be a one-to-one map-
ping as stated above and illustrated in Fig. 28. Alter-
natively (and at the risk of unnecessary length), the
one-to-one’ness and inflection points on (w, φ) shown
in Fig. 28 can be understood as follows:

dw

dφ
= ẇ

φ̇
= 2λ sinh(ηv)

v
(63)

For all v(t), dw
dφ

> 0, which explains the monotonic
(w, φ); i.e., (w, φ) is one-to-one for all t . Furthermore,
the continuity of sinh can be used to explain the conti-
nuity of (w, φ) even when v(t) is only C0 continuous.

Appendix 4 for Sect. 5

A prototype mem-spring model for SMA wire is given
herein. While the models in Figs. 26 and 27 could be
candidates for SMA wire in tension (e,g., those in [14]),
there is a useful methodology for establishing a mem-
capacitor model for any individual set of SMA wire
data under a clearly defined excitation—if we adopt
the philosophy of Sect. 4.6 by paying attention to time-
varying secants. For the piecewise-defined displace-

123

Author's personal copy



J.-S. Pei et al.

Fig. 26 Two system models
(see Table 12) illustrate the
behavior of (x , r ) at x = 0
and the impact of a
Situation (1) and b Situation
(2) to the tangent stiffness
of (x , r ); x(t) = A sin(ωt)
with A = 1 and ω = 1
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Fig. 27 Same system
models as in Fig. 26 (see
Table 12) but subject to
x(t) = 4A
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⌊ 2t
T + 1

2
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(−1)� 2t
T + 1

2 �, with
a(0) = 0, T = 2π

ω
, A = 1,

and ω = 1. This is to
illustrate the behavior of (x ,
r ) at x = 0 and the impact
of a Situation (1), and b
Situation (2) to the tangent
stiffness of (x , r )
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Fig. 28 More insights in terms of w
D to understand Chang et al.’s [7] Fig. 5a and Fig. 5b
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Fig. 29 Illustrations of the procedure of developing a memca-
pacitor model by using an arbitrary set of SMA wire under a
piecewise linear displacement as in Eqs. (13) to (16)

ment in Eqs. (13) to (16), this methodology is illustrated
in Fig. 29 and explained hereafter.

The mathematical expressions involved in modeling
—for the example illustrated in Fig. 29—are given as
follows:

r1 (x) ⇒ s1 (x) = r1 (x)

x
= s1 (h1(a)) = S1(a) (64)

r2 (x) ⇒ s2 (x) = r2 (x)

x
= s2 (h2(a)) = S2(a) (65)

To clearly demonstrate this modeling method, Fig. 9
presented previously is utilized again. The restoring
force versus displacement plot in the first quadrant
is examined first. As shown in Fig. 30, the model
parameters x1, r1, and x2 are to be given in advance.
Others can be conveniently obtained from geometry:
r2 = R − A−x2

x1
r1 and where R is the restoring force

corresponding to A, and x3 = x2−(A−x1); r3 = x3
x1

r1.

The corresponding absement values are: a1 = T
8A x2

1 ;
a2 = 2a0 − T

8A x2
2 , and a3 = 2a0 − T

8A x2
3 . By vary-

ing the values of x1, r1 and x2, a set of these sub-
models are obtained. In all these sub-models, applying
Eqs. (64) and (65) but considering a total of five pieces
that characterize an experimental restoring force versus
displacement plot, we have the following equations to
define S(a) in a piecewise manner:

S1(a) = r1

x1
,

a ∈ [0, a1], red lines in Fig. 30, (66)

S2(a) =
(

r1 − x1

A − x1
(R − r1)

)√
T

8Aa
+ R − r1

A − x1
,

a ∈ [a1, a0], orange lines in Fig. 30, (67)
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Fig. 30 To expand on Fig. 9, different variations in the hysteric
loop in the first quadrant (subject to a piecewise linear displace-
ment) and their corresponding models. The piecewise linear dis-

placement is defined in Eqs. (13) to (16) with a(0) = 0, A = 1,
and ω = 1. Five sets of values are used for x1, r1, and x2

123

Author's personal copy



J.-S. Pei et al.

S3(a) =
(

R − A

x1
r1

)√
T

8A(2a0 − a)
+ r1

x1
,

a ∈ [a0, a2], green lines in Fig. 30, (68)

S4(a) =
(

r3 − x3

x2 − x3
(r2 − r3)

)√
T

8A(2a0 − a)

+ r2 − r3

x2 − x3
,

a ∈ [a2, a3], blue lines in Fig. 30, (69)

S5(a) = r1

x1
,

a ∈ [a3, 2a0], black lines in Fig. 30, (70)

After finishing modeling the first quadrant, the
model in the third quadrant must be made “anti-
symmetric with respect to the origin” following [13]
(see Sect. 3.4), which is conveniently carried out, say,
using vector concatenation under MATLABTM. Math-
ematically, this could be done using either of two
approaches given in Sects. 5.2 and 5.3. Data sets from
other analytic or piecewise continuous displacements
can be treated in a similar manner.
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