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Abstract 

Building on the human memory model that consider LTM to 
be similar to a distributed network (McClelland, McNaughton 
& O'Reilly, 1995), and informed by the recent solutions to 
catastrophic forgetting that suppose memories are 
dynamically maintained in a dual architecture through a 
memory self-refreshing mechanism (Ans & Rousset, 1997, 
2000; Ans et al., 2002, 2004; French, 1997), we checked 
whether false memories of never seen (target) items can be 
created in humans by exposure to "pseudo-patterns" generated 
from random input in an artificial neural network (previously 
trained on the target items). In a behavioral experiment using 
an opposition method it is shown that the answer is yes: 
Though the pseudo-patterns presented to the participants were 
selected so as to resemble (both at the exemplar and the 
prototype level) more the control items than the target items, 
the participants exhibited more familiarity for the target items 
previously learned by the artificial neural network. This 
behavioral result analogous to the one found in simulations 
indicates that humans, like distributed neural networks, are 
able to make use of the information the memory 
self-refreshing mechanism is based upon. The implications of 
these findings are discussed in the framework of memory 
consolidation. 

Keywords: distributed information; neural networks; human 
memory; representation format in human memory; memory 
self-refreshing; exemplar theory; prototype theory; indirect 
memory test; familiarity; perceptual fluency.  

Introduction 
Can information be transported between a GDN–a 
multi-layered network trained by a gradient descent learning 
procedure–and humans? This question is central to models 
of human memory that suppose that LTM is similar to a 
distributed network (e.g. McClelland, McNaughton & 
O'Reilly, 1995) and that memories are dynamically 
maintained in a dual architecture through a memory self-
refreshing mechanism (Ans & Rousset, 1997, 2000; Ans et 
al., 2002, 2004; French, 1997). 

GDN's memory gradually emerges as a result of the 
processing of the training exemplars: the connection 
weights between the processing units reach values that 
allow the network to perform correctly. Thus the memory of 
a given trained GDN can be conceived as the particular set 
of connections weights between its processing units. 

Of course, when trained on a new set of exemplars S2, the 
connection weights of a network previously trained on a set 
of exemplars S1 change in order to allow the network to 
perform correctly on S2, and this new connection weight set 
does not allow the network to perform correctly on S1 any 
more (catastrophic interference or catastrophic forgetting: 
McCloskey & Cohen, 1989; Ratcliff, 1990). To get round 
this obstacle, an obvious solution is to train S1 and S2 
concurrently, thus transforming sequential learning (i.e. first 
S1, then S2) into concurrent learning (i.e. S1, and S2 at the 
same time). However, concurrent learning relies on the 
assumption that S1 is still available when S2 is to be learned, 
an unreasonable assumption when GDNs are used to 
simulate human memory phenomena: Every old exemplar is 
not available nor is it learned anew each time some new 
exemplars are learned (Blackmon et al., 2004). A first step 
towards a more plausible solution to the problem of 
catastrophic forgetting in GDNs in sequential learning tasks 
is due to Robins (1995): Once a network has been trained on 
S1, its memory is sampled, thus generating "random 
input-computed output" pairs (or pseudo-items) that are 
stored in a non-neuromimetic memory; then, instead of 
training the network on S2 only, it is trained both on S2 and 
on the stored pseudo-items. If this solution makes it possible 
to reduce catastrophic forgetting in the absence of S1 
exemplars, it also resorts to an implausible "copy-paste" 
procedure in order to store the pseudo-items before they are 
used as training material. 

The next solutions (Ans & Rousset, 1997; French, 1997) 
avoid the "copy-paste" procedure by having recourse to 
GDN architectures that are able to learn "on the fly" the 
"random input-computed output" pairs. For instance, Ans & 
Rousset's (1997) architecture is made of two separate 
GDNs, NET1 and NET2; once trained on S1, NET1 
generates reverberated "random input-computed output" 
pairs (called pseudo-patterns, PPs) that are used to train 
NET2. Then, when NET1 is to learn a new set of exemplars 
S2, NET1 is not only trained on S2 but also on PPs generated 
this time in NET2 (and conveying information on S1). Were 
a third new training set S3 to be learned, NET1's memory 
would first be transmitted to NET2 through PPs, then NET1 
would be trained on both S3 and PPs generated in NET2 
(now conveying information on both S1 and S2). To sum up, 
this architecture is very efficient in avoiding catastrophic 
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forgetting in the absence of old training exemplars and even 
in the case of numerous phases of sequential learning. 

It will be shown that the memory of a GDN 
auto-associator can be transported to humans by means of  
PPs. However, this would not be a new result if the PPs 
presented to the participants amounted to the exemplars 
used to train the network, under their initial form or as 
noisy, distorted versions of them; except for the use of a 
neural network to generate the stimuli, this would be a 
classic learning/memory result (cf. Medin & Schaffer, 1978; 
Nosofsky, 1986; Posner & Keele, 1968; Reed, 1972). 

The originality of this research is to show that a network's 
memory is transported to human participants and affects 
their behavior even though all the PPs used as stimuli are 
very different from the initial training exemplars. 

In order to make this point, an opposition method was 
adopted: The PPs presented to the participants were selected 
so as to resemble more some other exemplars (hereafter 
control items) than the exemplars used to train the network 
(hereafter target items). Participants were only presented 
with selected PPs during a first, training phase, and then 
tested with the target items and the control items. A higher 
familiarity for the target items than for the control items– 
though the latter resemble more the PPs previously 
presented to the participants–would show a memory 
transport between the neural network and the participants. 

The experiment is preceded by a simulation: A new 
(untrained) GDN auto-associator was trained on the very 
PPs stimuli used in the behavioral experiment. Starting from 
a comparison of behavioral and simulation results, the 
discussion will consider the possible interpretations of the 
behavioral data. 

Simulation 
The simulations involved the construction of 106 items, also 
used in the behavioral experiments (cf. Figure 1). The items 
were matrices constructed as follows. Starting from the 
centre of a 19 19 black grid, the following procedure was 
applied 20 times: A direction (up, down, left or right) was 
randomly chosen and two squares in that direction were 
turned white, then the last square served as starting point for 
the procedure on the next step. Any resulting pattern wider 
or higher than 13 squares was discarded, the remaining were 
re-centered on a 13 13 grid until 106 different and 
meaningless items were available. Each item was then 
coded as a vector of length 169, with black squares coded 0 
and white squares 1. This set of items was subsequently 
randomly divided into two lists of 53 items, List A and 
List B. 

The opposition method outlined in the introduction was 
used in the simulation. A first network (NET1) was trained 
on the target items (e.g. List A items), then generated PPs 
that were selected so as to retain only those that resemble 
more the control items (i.e. List B items) than the target 
items. Then, a new network (NET2) was trained only on the 
selected PPs and tested on the target and control items. The 

opposition method allows for the following contrasted 
predictions. 

If the selected PPs are but distorted items, owing to the 
selection constraints (exposed below), they are distortions 
closer to the control items than to the target items; thus 
NET2, trained only on the selected PPs, would exhibit a 
better performance at test on the control than on the target 
items. On the contrary, it may be that despite the constraints 
applied to the PPs, the selected set of PPs convey enough 
important information on the function instantiated by NET1 
once it has been trained on the target items for NET2 to 
instantiate a similar function; in this case NET2, trained 
only on the selected PPs, would exhibit at test a better 
performance on the target than on the control items. 

 

 
 

Figure 1:  Examples of the experimental material: a) List A 
items; b) PPBA pseudo-patterns; c) List B items; d) PPBB 

pseudo-patterns. See text for details. 

Material and Procedure 
NET1 is a backpropagation three-layer auto-associator 

with 169 input units, 169 output units, 16 hidden units, a 
learning rate of .01 and a momentum of .7, initialized with 
random connection weights uniformly sampled between 
-0.5 and 0.5. After NET1 has been trained on the target 
items, then PPs were generated according to Ans & 
Rousset’s (1997, 2000) procedure: Binary random input was 
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fed to the input layer, resulting activation propagated 
through the network to the output layer, the output was then 
fed to the input layer (reverberation), and again propagated 
through the network, and so on. PPs are output patterns 
produced after five re-injections (cf. Figure 1). Out of 
4,325,000 PPs generated in this way, only those PPs that 
complied with all the three following rules were retained: 

(R1) In terms of Euclidean distance, each selected PP is 
closer to a control item than to any target item; 

(R2) To reduce the number of PPs while increasing their 
variety, the RMS distance between any two selected PPs is 
greater than .15; 

(R3) the mean of the Euclidean distances between each 
target item and the centroid of the selected base of PPs (the 
"mean PP", noted PPM) is greater than the mean of the 
distances between each control item and PPM ; with a 
formula: 
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 S = the number of selected PPs; 
 N = the number of target (control) items. 
The significance of these selection rules is that they make 

sure that the PPs resemble more the control items than the 
target items, both at the exemplar level and at the prototype 
level. This is an important provision in the event of results 
showing a better performance at test on the target items. 
More precisely, without these constraints such a result could 
arise trivially, that is merely because the PPs would 
resemble more the target items (i.e. would be distorted 
versions of them). 

When the target list for generating the PPs was List A, 
this procedure led to PPBA, a 3000-PP base. For 
counterbalancing sake the 3000-PP base PPBB was 
generated by applying the same selection procedure to PPs 
generated in a network trained with List B as target list. 

NET2, a new network similar to NET1, was trained either 
on PPBA or PPBB base and tested on both target and control 
list items. Twelve replications per PP base were run. 

Results 
As shown in Figure 2, the average error — RMS between 
the output of NET2 and the tested item — was dramatically 
smaller for the target than for the control list items [F(1, 22) 
= 33,160, MSE = 0.000005, p < .0001]. Hence, though 
drastically selected in order to resemble more the control 
items than the target items, the PPs generated in NET1 still 
conveyed efficiently information on the specific (target) 
items learned by NET1. 

 
 
Figure 2:  Network performance (RMS error) on target and 
control items, after training on a PP base (PPBA or PPBB, 

according to a target list counterbalancing). 
 

Behavioral experiment 
The general procedure consists in presenting humans 
incidentally with PPs generated in a GDN auto-associator 
that had previously been trained on a list of target items. 
Sensitivity to the information that the selected PPs convey 
on the target items would be evidenced if humans are shown 
to have some form of memory for the never seen target 
items. These items obviously cannot be presented to the 
participants previous to the test phase, so a task where 
participants would be instructed to overtly recognize the 
target items is impossible. Therefore participants' memory 
will be assessed with an indirect design that allows for a 
measure of their familiarity with these items. 

The experiment is strictly matched with Simulation with 
respect to the items and the PP lists used. The memory 
advantage for the never seen target items (over the control 
items) is tested by comparing perceptual fluency for target 
and control list items. 

After an incidental exposure to the selected PPs used in 
Simulation, the participants performed a duration judgment 
task–under time pressure–both on the target and the control 
list items. Participants were induced to believe that two 
slightly different presentation times were used and had to 
classify items' display duration as short or long. Actually all 
items had exactly the same duration. Participants' subjective 
impression that a given item "lasts more" is linked to an 
increased perceptual fluency (Jacoby, 1983; Witherspoon & 
Allan, 1985), whose real cause is familiarity with that item 
(Whittlesea, Jacoby & Girard, 1990) — but that participants 
would attribute to different presentation times. Thus, if 
humans are sensitive to the distributed information 
conveyed by PPs, there will be more long responses on the 
target than on the control list items. 
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Method 
Participants Seventy students (mean age = 20.5 years, SD 
= 1.6) participated for course credit. 
 
Stimuli The PPs used in Simulation and the original 106 
items were used as stimuli, displayed as 13 13 matrices 
(260 260 pixels) centered on a black background on a 17" 
(1024 768 pixels) screen. 
 
Design and procedure Participants first performed an 
incidental study task: They were to detect a cross that 
appeared (9 percent of the trials) in a random location on a 
background made of PPs: PPs were displayed for 400 ms 
each, with no void in between. Prior to performing this task 
with the 3000-PP base, and in order to ensure optimal 
exposure to it, participants underwent a warm-up phase 
where 500 of the 3000 PPs were displayed. 

Then participants engaged in the duration judgment task: 
They were to classify the display duration of images as 
short or long. In order to progressively introduce the test to 
the participants, a 52-item warm-up phase was designed; in 
order to prevent interference with test items, only PPs were 
used during this warm-up phase1. During the warm-up, the 
first 40 trials used two different display durations (200 or 
250 ms): The first eight trials were example trials, then 
participants received feedback on their responses to the 
remaining 32 trials. The remaining 12 PPs were then 
presented without feedback and with closer display 
durations (200 or 230 ms). After this warm-up, participants 
performed the critical duration judgment task, presented to 
them as "the same test on a different type of stimuli"; 
unbeknown to the participants, the presentation time for the 
106 items of interest (i.e. target and control items) was in 
fact always of exactly 200 ms. The inter-stimuli interval was 
of 1300 ms. 

For counterbalancing sake there were two experimental 
groups: The target list of Group A was List A (and their 
control list was List B), and the target list of Group B was 
List B (and their control list was List A). 

Results 
Responses given by the participants during the first 800 ms 
are considered. This time limit was chosen in accordance to 
existing studies that used similar tasks to assess familiarity 
(e.g. Jacoby, 1991; Ratcliff and McKoon, 1995). 

As Figure 3 shows, there were more long responses for 
the target than for the control items [F(1, 68) = 4.517, MSE 
= 9.868, p = .0372]. This denotes a stronger familiarity of 
the participants with the never seen target items (than with 
the never seen control items), a familiarity grounded in the 
prior exposure to the (drastically selected) PPs. No other 
effect was significant–Group effect: F(1, 68) = 0.370; 
interaction: F(1, 68) = 0.088. 

                                                           
1 Both the 500-PP warm-up base used in the incidental study phase 
and the 52-PP warm-up base used in the duration judgment task 
comply with the 3 selection rules described in Simulation. 

 

 
 
Figure 3:  Behavioral results. Effect of previous incidental 
exposure to PPs on long responses (denoting familiarity) to 

target and control items in a duration judgment task. All 
stimuli correspond strictly to those used in Simulation 
(PPBA was used for Group A and PPBB for Group B, 

according to a target list counterbalancing). 

Discussion 
In this paper it was shown that false memories can be 
created in humans by exposure to material created in a 
multi-layered network trained by a gradient descent learning 
procedure (GDN). The motivation of this research stems 
from the question of whether humans have the ability to 
capture distributed information hold in a GDN when 
presented with samples (reverberated pseudo-patterns, PPs) 
of the function instantiated by the network. This question is 
central to a model of human memory that supposes that the 
final memory (LTM) is similar to a GDN (e.g. McClelland, 
McNaughton & O'Reilly, 1995) and that memories are 
dynamically maintained in a dual architecture by means of a 
memory self-refreshing mechanism based on PPs (Ans & 
Rousset, 1997; Ans & Rousset, 2000; Ans, Rousset, French 
& Musca, 2002, 2004; French, 1997). 

The results of the behavioral experiment presented here 
show that the answer is yes. The transport of distributed 
information has been evidenced in a behavioral experiment 
using PPs manipulated so as to prevent them from being the 
exemplars used to train the network or their prototype–
under their initial form or as noisy, distorted versions. Even 
though the selected PPs resembled more the control items 
than the target items–both at the exemplar and the prototype 
level–it was shown that the participants presented only with 
these PPs were more familiar with the target items than with 
the control items. 

What properties of human memory are responsible for 
these surprising results? To answer this question, we 
consider the results of Simulation of and other 
supplementary aspects. 
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A first element is brought by simulations conducted with 
two versions of a matching memory model. In these models, 
the similarity of each target and control item to a set of PPs 
(e.g. PPBA) is computed and taken as a performance 
indicator. Two versions of the model were used: One, 
exemplar-based, computes the similarity between each item 
and each PP; the other, centroid-based, computes the 
similarity between each item and the centroid of the set of 
PPs (i.e. the "mean" PP). 

The exemplar-based version of the model can be best 
described in two steps. First, the similarity Sim(Ii, PPj) 
between an item Ii and a pseudo-pattern PPj is defined as a 
decreasing function of their RMS: 

( )[ ]γjiji PPIRMSPPISim ,1),( −=   (2), 

where 1≥γ denotes an aggregate parameter. 
Then, in order to compare the target and the control lists, a 
global similarity score is computed for each item as the 
mean of its similarities to all the PPs. The aggregate 
parameter γ modulates the contribution of each PP to the 
global similarity score of the item at hand: For low values of 
γ all the PPs make a contribution to the global similarity, 
whereas for high values of γ only PPs (very) close to the 
item at hand make a significant contribution (thus tending 
towards a PP-specific matching). 

The centroid-based version of the model works in a very 
similar way, except that the global similarity of each item to 
PPM, the centroid of the set of PPs, is used. It is computed in 
one step: 

( )[ ]γMiMi PPIRMSPPISim ,1),( −=  (3). 
Simulations with both versions of the model failed to 

replicate the behavioral results, whatever the value of 
parameter γ. This makes it obvious that if human memory 
functioned as a matching system like those used here, one 
could not expect the results that the participants exhibit; the 
nature of the memory system bear crucial consequences on 
the results. 

In order to highlight the crucial role of the learning 
material and as a further support for the idea that the 
selected PPs used in Simulation are not mere item 
distortions, one more set of simulations was conducted. The 
same network as NET2 in Simulation was used, but with a 
very different training material. No PPs were created or 
used at any point in these simulations; instead, mere 
distortions of the target items were used as training material 
for NET2. 

Distortions of the target items (hereafter distorted 
patterns, DPs) were created by adding a random number 
lying between 0 and 0.8 (if component's value was 0) or 
subtracting it (if component's value was 1) to each 
component of each target item. In order to ensure that DPs 
and PPs differ only with respect to the absence/presence of 
information on the function instantiated by NET1 in 
Simulation, the same three rules used to select the PPs were 
applied to select among the created DPs. 

As expected from the selection rules, when NET2 was 
trained on mere item distortions, it exhibited a slightly but 

significantly better performance on the control item list than 
on the target item list. This result validates the selection 
rules used and constitutes a clear-cut comparison reference 
for analyzing the results found in Simulation. When the 
training material is not made of samples of the function 
instantiated by a GDN, NET2 not only fails to produce the 
results found in humans and in the corresponding simulation 
(Simulation), but produces the opposite pattern of results. 
This highlights the importance of the learning material: if 
PPs were just distortions of the target items, the 
simulation of the behavioral experiment (Simulation) would 
not have produced the result it did, but the opposite one–just 
as the simulations that used DPs do.  

The behavioral results are simulated when the stimuli 
used to train the network are samples (i.e. PPs) of the 
function instantiated by a GDN that has previously been 
trained on the target stimuli and, importantly, when the 
memory model used is itself a GDN. After training on PPs, 
such a system instantiates a function that is very compatible 
with a good performance on the target items but not on the 
control items. These considerations seem to point at the 
conclusion that the participants, after extended exposure to 
PPs, have captured the function conveyed by the PPs. Under 
this account, participants' increased familiarity with the 
target (as compared to the control) items would stem, in a 
way similar to the GDN trained on PPs in Simulation, from 
the fact that the target items are obviously compatible with 
this function. 

Because of the thorough controls and the incidental nature 
of the task used during the acquisition phase, alternative 
accounts for the behavioral results are scarce: Participants 
were not asked to attend to the PPs, which served only as a 
background in the cross-detection task. Thus there was no 
explicit or implicit request that the participants learn the 
PPs. Furthermore, all the PPs were obviously part of a 
single category (that of samples of the function instantiated 
by a GDN that has previously been trained on the target 
items), and no categorization was ever required of the 
participants during the acquisition phase. Two versions of a 
very simple matching model were considered and they 
failed to exhibit the result found in the behavioral 
experiment. There are of course more other theories/models 
that assume more complex mechanisms (e.g. Kruschke, 
1992; Medin & Schaffer, 1978; Nosofsky, 1986; Reed, 
1972), but they all apply to situations where a categorization 
task is used during the acquisition phase. Now, this was not 
at all the case for the experiments presented here. 

What are the implications of these results? False 
memories for never seen items can be created in humans by 
mere exposure to distributed network attractors in an 
experimental setting that allows for avoiding an 
interpretation in terms of prototype or exemplars. The 
implication of this result is that the actual items are not 
needed for learning to occur in humans: distributed 
information coming from a GDN can also induce this 
learning. 
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A second implication of the results concerns the nature of 
memory consolidation. In a GDN architecture, a dynamical 
and continuous consolidation is required in order to avoid 
catastrophic forgetting. This constraint of permanent 
rehearsal pays off, as consolidation is confined to a fully 
distributed architecture that comes with all the interesting 
properties of distributed neural networks. As discussed in 
the introduction, the solution whereby memories are 
dynamically maintained relies on the use of PPs generated 
in the GDNs that make up the architecture. This leads 
naturally to the question whether memory consolidation in 
the brain is achieved by continuous cortical consolidation in 
a distributed system similar to a GDN architecture. Of 
course this question cannot be answered directly. However, 
if humans could not be shown to be sensitive to the kind of 
information involved in memory self-refreshing in GDN 
architectures, one would have good reasons to be prone to 
give a negative answer. Now, we showed here that false 
memories can be created in humans through exposure to 
PPs generated in a GDN. PPs are not just odd, disembodied 
entities that came up because they are essential to the 
memory self-refreshing mechanism in a distributed network 
architecture: Humans are sensitive to and capable of 
learning from PPs. 

Though this paper deals with humans' ability to learn 
from PPs, the hypothesis of an intra-cortical PP mechanism 
cannot be tested directly. Because visual modality was 
chosen to pass the PPs to the human cognitive system and 
because of the particular experimental design, the results 
concern phenomena situated at the frontier between memory 
and perception. Beyond having shown that humans are 
sensitive to distributed information, a result that supports an 
original view on the nature of human memory 
consolidation, our hope is that the experiment presented 
here also brings new methodological tools for related fields 
of research. 
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