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and
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Keio University

Introduction

Recursion is a recurrent theme in human thinking. [t has been
around for a long time in some fields related to cognitive science:
for instance. it has taken place in information-processing models
of cognition, in the theory of computation, in cognitive and
developmental psychology, or in teaching computer programming
to novices.

Intuitively, recursive formulation may lead to understanding of
potentially infinite phenomena in compact, finite terms. On the
other hand. since recursive definition involves top-down, tightty
ceonnected organization of knowledge, it may not be easy to learn,
or to be applied to formulaton of complex problems. Thess
expectations. however, are less well examined experimentaily.
Sesides, there are some other points such as memory load for
executing recursive procedures, the firmly established character
of recursive functions in the theory of mathematics, or practical
application to teaching computer programming, which make
recursion an interesting theme for cognitive science. As one topic
related to recursion, this paper discusses the question of whether
recursive procedures are cognitively difficuit to learn, based on a
rule induction experiment conducted on middleschool children. It
concludes that racursive procedures may be acquired based on
learning of the corresponding iterative procedures.

Learning Recursive Procedures

A recursive function treated here is simply a function whose
definition includes the function itself. As a simple but
representative example, we use exclusively in this paper the
factorial function “fact” defined on N, the set of positive integers,
as follows:

fact(n) = fact(n-1) x n for any neN, n>1, andfact(1) = 1.

The above definition is recursive, but of course fact can be
Zefined iterativaly:

faci{n) = 1 x2x...xn foranyneN.

The above two kinds of definitions are functionally equivalent,
but have many cogmitively different points. Let us consider below
cnly the pcint relevant here: how people acquire the recursive
procadure for computing factorials, based on example data. First,
suppose that a student is given an iterative sequence of data for
factonals:

fact{1) =1 facti2) = 1x2 fact(3) = 1x2x3.

It may be easy for him to generalize the above simple patterned
sequence, and to obtain the general iterative definition,
fact(n) = 1x2x...xn (neM). Note that the induced definition itself
can easily be interpreted to provide procedures (multiplications)
for actual computation.

On the other hand, suppose that the student tries to induce the
factonal function based on the following recursively generated
data:
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fact(3) = fact(2) x 3 fact(2) = fact(1)x2 fact(1) = 1.

In this case, although the data, if regarded declarative, can be
generalized formally to generate fact(n) =fact(n-1)xn (neN), the
student needs to consider all the subformulas, fact(k) = fact{k-1)xk
(k=2,..,n-1), to actually compute fact(n): the data allow direct
generalization by converting, for example, 3 to n and 2 to n-1, but
he is necessary to organize the given segments of data to acquire
the recursive computational procedure. It may be much more
difficult than in the iterative case.

However, we can advance our speculation one more step. The
student, while he is engaged in the task of inducing the factorial
from the iterative data, might notice the regularity of embedded
pattern in the data. The left column of Fig. 1 illustrates it for an
iterative data set. If thus kind of structural embedding was
discovered, acquisition of the iterative definition of the factorial
may result In learning the nested procedural structure of the
factorial. Then, if the nested structure as shown in the left of Fig. 1
resides in memory, and if recursive data are presented, the data
may match the nested structure fairly easily as shown in Fig. 1.
Thus, the recursive procedure may be learned by the successive
presentation of the iterative and recursive data sets in this order.

facr(1)=1

Fig. 1

Nested structure embedded in an iterative data set
and its relation to the corresponding recursive data set

The preceding simpie discussion gives us the hypothesis that, if
a student knew none of the factorial function, or the concept of
recursion, he finds it easier to learn the iterative procedure for the
factonal rather than the recursive one, but after he learned it, he
must already be rcady to assimilate the recursive procedure. In
the following rule induction 2xperiment, we examine this
hypothesis by using middieschool children.

Experiment
Subjects and procedure

88 middleschool children (age about 14) participated in the
experiment. The rule to be induced was the numencal function for

‘computing factorials of positive integers. Two kinds of formats for

example data were considered. One was the iterative format, and
the corresponding to-be-induced function was called WHITE in
the experiment. The other was the recursive format, and the
corresponding function was named BLACK.

For each format, a sequence of three data sets was prepared.
The first data sets for WHITE and BLACK were given as follows:

First data set for WHITE

Let us think about the following computation for a
given number. The answer to the compulation is called
“WHITE" For example, "WHITE of 2" is computed as
follows:

(1) Start with 1.
2) Multiply 1 by 2. The resultis 2.



"WHITE of 2" is 2.

Now, compute “WHITE of 4" (Write the
computation and the answer.)

First data set for BLACK

Let us think about the following computation for a
given number. The answer fo the compuiation is called
"BLACK" For example, "BLACK of 2" (s computed as
follows:

(1) "BLACK of 2" is "BLACK of 1" muitiplied by 2.
(2) "BLACK of 1™is 1.
"BLACK of 2" is 2.

Now, compute "BLACK of 4" (Write the
computation and the answer.)

In each of the above data sets, two segments of information, (7)
and (2), for the factorial of 2, and the value of it were supplied.
There was provided a problem at the last line, which was to
compute the factonal of 4. If a subject gave the correct answer to
the problem, then he was considered to have acquired a factonial-
computing procedure, iterative or recursive, depending on which
data set, WHITE or BLACK, was presented to him,

The second data sets for WHITE and BLACK included three
segments of information, and were designed as shown below:

Second data set for WHITE

Let us think about the following computation for a
given number. The answer lo the computation is called
"WHITE" For example, "WHITE of 3" is computed as
follows:

(1) Start with 1.

2) Muttiply 1 by 2. The resultis 2.
(3) Multiply 2 by 3. The resuit is 6.
"WHITE of 3" is 6.

Now, compute "WHITE of 5" {Write the
computation and the answer.)

Second data set for BLACK

Let us think about the following computation for a
given number. The answer to (he compulation is called
"BLACK". For example, "BLACK of 3" is computed as
follows:

{1) "BLACK ol 3" is "BLACK of 2" multiplied by 3.
{2) "BLACK of 2" is "BLACK of 1" muitiplied by 2.
(3) "BLACK of 1™ is 1.

"BLACK of 3" is 6.

Now, compute "BLACK of 5 (Write the
computation and the answer.)

The third data sets, each of which contained four segments of
information, were defined in a similar manner.

The subjects were divided into two groups called G1 (n=45)
and G2 (n=43). The group G1 was given the data in the order of
W-1, W-2, W-3, B-1, B-2 and B-3, where W-/ and B-/ denota the i-th
data set for WHITE and BLACK respectively. On the other hand,
G2 was given the data in the order of B-1, B-2, B-3, W-1, W-2 and
W-3. Both groups were given five minutes for each data set, which
were ample enough for middleschool children. The data sheets
were collected from the subjects for each data set, and no direct
feedback of answers was given.

Results and discussion

The resuits are tabulated in Table 1. The more data sets
presented, the greater number of subjects who answered
carrectly, both for WHITE and BLACK. The percent correct was
larger for G1's WHITE (60% for the third set) than for G2's BLACK
(33% for the third set), but even the latter gave fairly good

performance. Also, if the data for BLACK were presented after
WHITE as for the group G1, the performance was better than its
opposite: G1 for BLACK gave 16%, 20% and 64% of percent
correct for the data sets with two, three and four segments of
information, but G2 for BLACK provided 0%, 14% and 33%, which
were relatively smaller. On the other hand, the performace lor
WHITE was similar for the two groups, regardless of the order of
presentation.

The result is thus generally in agree with our expectations. It
was easier for the children to have worked on the iteratively
gonerated data sets, but acquisition of the recursive procedure
was facilitated by learming the iterative one.

Also, note that the WHITE data for G1 and G2 show a similar
tendency, and the BLACK data for the two groups provide a
different sort of similar tendency: the rate of increase of the
percent correct decreased for the WHITE data with respect to the
number of presented data sets, while it increased for the BLACK
data. This particular trend may have reflected the subjects’
relative difficulty in discovering regularity in a small number of
information segments in a recursive data set.

Table 1
Percent correct for the induction experiment

61 62
Data sat no. WHITE BLACK  BLACK WHITE
1 11(%) 18 0 9
2 42 29 14 30
3 60 64 a3 47
No. of subjects 46 43

(For almost all the subjects, if a subject gave the
correct answer for the j-th data set, he was also correct
for all the i-th sets, where 1€ i<.)

Thus, we think that recursive computation may be apparently
difficult for children to leamn, but also that it may be acquired by
inducing the nested structure, and intarpreting it as a procedure,
based on the recursive data. Let us provide one possible
mechanism that generates the gross charactenstics of the
experimental resuits, which is essentially similar to the one briefty
described in the previous section. Suppose that the third data
sets for WHITE and BLACK given in the experiment were
represented as follows:

WHITE BLACK

(equal (times 1 2) 2) (equal (black 4)
(times (black 3) 4))

(equal (times 2 3) &) (equal (black 3)
(timas (black 2) 3))

(equal (times 6 4) 24) (equal (black 2)
(times (black 1) 2))

(equal (white 4) 24) (equal (black 1) 1).

Assume that, successively embedding the segments in the
WHITE data set, we obtained the nested formula:

(egual (white 4) (times (limes (times 1 2) 3) 4)).

Note that, if we identify (times (times 1 2) 3) with (black 3), and
also identify “white™ with "black", then the formula matches the
first segment in the above BLACK set:

(equal (black 4) (times (black 3) 4)).

This kind of correspondence holds also for the first and second
data sets. Generalization at this point, which vyields the
correspondence between (times (times ( ... (times (times 12) 3) ...)
n-1} n) and (black n), provides the procedural basis for the
recursive definition of the factonal function, which is based on
nested arithmetic calculation.
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Discussion

The relation between conceptual and procedural understanding
in problem solving has raised many issues complex but central for
cognitive science. Al some deeper level of understanding, a
person can both handle with knowledge procedurally, and
appreciate it declaratively. Recursion provides a simple example
for this matter: since it is usually formulated in a compact form, its
declarative representation may be simpler than the corresponding
iterative form. But such declarative representation must be
accompanied by procedural knowledge for actual computation,
and this knowledge might be cognitively compiex. The argument
presented in this paper suggests that such knowledge can be
acquired not directly, but by working on iterative data.

An example of the process of learning a recursive strategy by
discovering a nested structure in knowledge of results obtained by
weaker, nonrecursive strategies was presented in Anzai & Simon
(1979). The strategy acquisition process reported there is
essentially similar to the recursion leaming process discussed in
this paper: the thesis shared by the two studies is that complex
recursive procedures for solving a problem may be acquired by
working on the problem, using already available, nonrecursive
knowledge.
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Which way of learning, by discovery or by instruction, is better
has long been a controversial problem in instructional psychology.
Learning by doing, which is along the line discussed here and in
Anzai & Simon, is basically a process of learning by discovery. In
this regard, as suggested in this paper, recursive procedures may
be learned by discovery. Recursive computation may be
intnnsically more difficult than iterative one, since execution of
recursive procedures may require more memary resources. But it
does not mean that they can not be acquired by discovery.

However, of course we do not deny the possibility of learning
recursive procedures by top-down instruction. The two ways of
learning are actually complementary in the real world, and bath
ways may play important and intertwined roles. Also, we should
be cautious when we try to extend the consideration to more
compiex domains such as computer pregramming. It is becauss a
complex task necessarily involves many different cognitive
subprocessas, and it is not always easy to extract from them only
the part played by recursion.
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