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Regarding Assumptions Made of Authenticated Encryption

Abstract

Authenticated encryption (AE) is a cryptographic primitive providing message privacy and

authenticity simultaneously. From a standard definition of AE, several natural assumptions may

arise. (1) An observer of an encrypted message learns nothing about its origin. (2) If one attempts

to decrypt a ciphertext using a different key (or any other decryption input) from what was used at

encryption, then decryption should fail. One might conclude the former from promises of privacy

and the latter from promises of authenticity.

We observe that the validity of those assumptions do not follow from standard AE definitions

of privacy and authenticity. For (1), when sending a ciphertext, there is typically other information

sent along with it. This information, commonly referred to as metadata, can be message numbers

that mark the message’s position in a sequence or information that identifies the sender among other

possibilities. For (2), it is possible to validly decrypt a ciphertext with the “wrong” arguments.

This dissertation’s main contribution consists of definitions and constructions that address these

assumptions. With respect to the first, it offers an AE variant, anonymous AE (anAE)—a primitive

that folds all cryptographically relevant metadata directly into its ciphertexts. For the second, it

furthers the study of committing AE (cAE)—a variant of AE that ensures that decryption of a

ciphertext is only possible with the “correct” inputs. These two primitives provide security that

users may have mistakenly assumed AE satisfied. Lastly, we give concrete constructions for these

primitives along with their proofs of security.
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Thanks to Joël Porquet who encouraged me to keep pressing forward when I was met with

uncertainty during this journey. Also thank you for the hellish first experience in teaching. It was

a lot of fun.

And of course I need to thank the countless other people in my life who provided unending

support. Many thanks to my mom and dad, Anh Huynh and Yin Chan; your support was espe-

cially fierce and relentless. Special thanks to my brother, Eric Chan; our conversations never fail

to challenge and amuse me. Thank yous to Mark Celones, Mark Nguyen, Yvie Tsui, and Josh

Kohlbecker; all of whom I could write dissertation-length letters of gratitude for as our friendships

have brought me nothing but joy. Lastly, maybe the real doctorate is the friends we made along

the way; special thanks to Keshav Dasu, Sandra Bae, and Meghann Ma—thank you all for helping

me find myself on this arduous journey.

vi



CHAPTER 1

Introduction

As a primitive that provides both privacy and authenticity, authenticated encryption (AE) is

a crucial component in securing many modern communication systems. Take, for example, the

transport layer security (TLS) protocol [54]. This protocol is used to facilitate communications

between clients and servers on the Internet in a secure fashion. In its latest version, the record

protocol of TLS strictly employs authenticated encryption with associated data (AEAD) algorithms

to protect records sent between servers and clients. We say strictly as all other symmetric encryption

algorithms have since been deprecated. As such protocols are widely used, it is important to

understand what exactly it means for a protocol to use AEAD. What are the limits to standard

definitions that we use to capture the security of these AE schemes?

In this dissertation, we focus on nonce-based authenticated encryption with associated data

(nAE) schemes. A conventional way to define nAE schemes consists of an encryption algorithm

and a decryption algorithm. Occasionally, they are defined with a key generation algorithm as well.

For inputs, nAE encryption takes in a key, a nonce, some associated data (AD), and a message.

It outputs a ciphertext. For nAE decryption, such a ciphertext is used as input along with a key,

nonce, and AD to produce either a message or some error indicating decryption failure.

When one says that such an nAE scheme is secure, one means that it has both privacy and

authenticity. Informally, privacy means that the ciphertexts produced by the scheme are indis-

tinguishable from random bits. This implies that an adversary that acquires a ciphertext learns

nothing from it. Authenticity, on the other hand, means that the ciphertexts are authentic—the

message received is truly from the claimed sender. To paraphrase, the adversary cannot produce a

ciphertext or modify one in any way such that the ciphertext decrypts without failure.

Although these descriptions are informal and thus imprecise, they capture ideas that demand

precision. When one discusses the privacy and authenticity of AE, one should understand the limits

of these properties. Any leaps of logic one might make can lead to incorrect assumptions about
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AE. This dissertation looks at two such assumptions, one pertaining to privacy and the other to

authenticity.

1.1. Assumptions on AE

One may assume, from privacy, that the phrasing “an adversary that acquires a ciphertext

learns nothing from it” is absolute—that there are no cases in which the adversary might learn

something. A problem with this assumption stems from something typically considered out of scope

for AE. To elaborate, when a ciphertext C is made through the encryption of message M using

key K, nonce N , and AD A, it is expected that decryption uses the same K, N , and A to recover

M from C. How, then, is the decrypting party supposed to know what K, N , and A to use? The

answer to this question is usually that it’s not AE’s job to answer. So, since it is now up to the

higher level protocol, information related to K, N , and A are often sent alongside the ciphertext

to the decrypting party. Using the datagram variant of TLS (DTLS) as an example, nonces used

by the underlying nAE schemes are derived from sequence numbers, which are sent in the clear

alongside the encrypted record [55]. Any observer of this protocol or a protocol handling nonces

similarly would then learn a particular message’s position in a sequence of messages.

This is then contrary to the assumption that AE privacy means absolutely no information is

granted to adversaries. Certainly, one cannot hope to learn anything from communications that

one cannot distinguish from random bits. But in order for the decrypting party to decrypt the

ciphertext, other information is often sent along with the ciphertext. The ciphertext alone does

not encompass the full communications. From the other information sent, the adversary can learn

things about the communications. This is both a usability and a security concern. In the usability

sense, why does the decrypting party need more than a ciphertext (and perhaps the knowledge of

some potential keys for it) to decrypt? If we consider the full ciphertext to be everything that the

decrypting party needs to decrypt (so the full communication), then we have a security concern as

we may be sending the nonce or AD in the clear. If we do so, then the full ciphertext would likely

not actually satisfy nAE privacy definitions.

To address these concerns, this work proposes a new primitive: anonymous nonce-based authen-

ticated encryption (anAE). Encryption is unchanged from standard nAE—the user supplies a key,
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nonce, AD, and message to produce a ciphertext. However, decryption takes in the full ciphertext

but only the full ciphertext. Furthermore, not only is decryption expected to recover the message

from the full ciphertext, but the nonce, AD, and a handle representing the key that was used to

produce it as well. To assist decryption in this tall task, we consider decryption to be stateful

(maintaining at the very least a vector of keys that it shares with other communicants) and give

it a handful of state manipulation algorithms. By only allowing decryption the singular input of

a ciphertext, any necessary transmission of the nonce, AD, and the like falls within the scope of

anAE. As a result, anAE provides the level of privacy that one may fallaciously expect from the

standard nAE privacy definition.

The other assumption is one that may be drawn from standard nAE authenticity definitions.

Suppose ciphertext C is the result of encrypting message M with some K,N,A. Now suppose that

one tries to decrypt C using some K ′, N ′, A′ where at least one of K ′, N ′, A′ are different from

their respective arguments used for encryption. If it was established that the scheme used satisfied

conventional nAE authenticity, then one may wrongfully assume that decrypting in such a way

would almost certainly fail. However, this is not the case. One can, for example, find two valid

and distinct decryptions for an AES-GCM (a secure nAE scheme [44]) ciphertext so long as one

has knowledge of two different keys to do so with [29].

Why does this assumption fall flat when nAE authenticity seemingly ought to prevent something

like this from occurring? It is important to recognize that nAE security definitions themselves have

their own assumptions. That is, nAE security definitions assume that the key the scheme uses is

chosen uniformly at random and remains a secret to the adversary. Any security guarantees are

null if the adversary learns the key or has control over the key. To execute the attack on AES-GCM

described in [29], the attacker only needs knowledge of the keys.

Within the scope of nAE, there is nothing that prevents the construction of ciphertexts with

multiple easily found decryptions. Generally, this is not seen as an undesirable thing. In fact, the

property of deniability is sometimes viewed as desirable. An encryption scheme is deniable if an

encrypting party is able to make a ciphertext appear as if it is the encryption of a different plaintext

than it actually is [25].
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The opposite, then, are schemes where given a ciphertext and a plaintext, one can be confident

that the ciphertext emerged from that plaintext. Such schemes are called committing encryption

schemes, wherein ciphertexts serve as commitments to plaintexts [32]. When casting this to the

context of nAE, it is natural to ask if a ciphertext can serve as a commitment to all encryption

inputs: the key, the nonce, and the AD as well as the plaintext. From that, a follow-up ques-

tion: can one do so efficiently? This dissertation answers both of these questions (with a yes) by

contextualizing committing encryption in the nAE setting as committing authenticated encryption

(cAE). It merges prior cAE definitions that targeted different goals into a unifying framework then

demonstrates how to transform a plain old nAE scheme into a cAE one simply and efficiently. Our

definition of cAE covers the initially discussed assumption of AE authenticity. That is, by our

definition, a secure cAE scheme produces ciphertexts where it is difficult to decrypt validly unless

one uses the exact same key, nonce, and AD inputs that were used for encryption.

1.2. Dissertation Objectives and Overview

When using cryptographic primitives, it is important that one understands the limits to their

security guarantees. This motivates our study of the aforementioned assumptions. We liken this

to the study of misuse-resistant AE (mrAE) [63]. The privacy and authenticity properties of nAE

are only guaranteed assuming that the user of the secure nAE scheme never repeats a nonce across

their encryption calls. Users do not always realize this is the case, unfortunately. This gap between

user comprehension and nAE definitions led to the studying of mrAE, a primitive that is forgiving

of such user error.

Following this perspective, we take two misguided assumptions that users may have of nAE. We

present a new primitive (anAE) and build upon an emerging one (cAE) wherein these primitives

are AE variants that account for such assumptions. We hold the (somewhat obvious) opinion that

when people make assumptions of a tool, they expect that tool to satisfy those assumptions when

they use it. AE is no different. Users of AE may assume things of its privacy and authenticity,

then proceed to build applications using it with those assumptions in mind. When it turns out

that those assumptions aren’t completely true, the results can be disastrous for the security of the
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application. Instead, users should turn to different primitives that satisfy the assumptions and

needs they have for their application.

The above summed up leads to the thesis of this dissertation: Motivated by some incorrect

assumptions users may have on the privacy and authenticity of authenticated encryption, we offer

two primitives, anonymous nonce-based AE and committing AE, that capture the properties users

initially may have thought AE satisfied. Moving forward, the dissertation is organized in such a

way that the discussions of anAE and cAE are mostly disjoint. They will appear as follows:

Nonce-based AE with Associated Data. We first recall various definitions for nonce-based

authenticated encryption with associated data (nAE) as it serves as both the intellectual and

motivational starting point for both anAE and cAE. This primitive simultaneously provides message

privacy and authenticity while allowing the provision of associated data (AD). The AD is historically

understood to be data that requires authenticity, but not privacy. As an extensively studied

primitive, nAE has a number of different definitions and we review several that will be useful in

our analysis of anAE and cAE.

Anonymous Nonce-based AE. The customary formulation of authenticated encryption (AE)

requires the decrypting party to supply the correct nonce with each ciphertext it decrypts. To

enable this, the nonce is often sent in the clear alongside the ciphertext. But doing this can

forfeit anonymity and degrade usability. Anonymity can also be lost by transmitting associated

data (AD) or a session-ID (used to identify the operative key). To address these issues, we intro-

duce anonymous AE, wherein ciphertexts must conceal their origin even when they are understood

to encompass everything needed to decrypt (apart from the receiver’s secret state). We formal-

ize a type of anonymous AE we call anAE, anonymous nonce-based AE, which generalizes and

strengthens conventional nonce-based AE, nAE. We provide an efficient construction for anAE,

NonceWrap, from an nAE scheme and a blockcipher. We prove NonceWrap secure. While anAE

does not address privacy loss through traffic-flow analysis, it does ensure that ciphertexts, now

more expansively construed, do not by themselves compromise privacy.

Committing AE. We provide a strong definition for committing authenticated-encryption (cAE),

as well as a framework that encompasses earlier, weaker definitions. The framework attends not
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only to what is committed but also the extent to which the adversary knows or controls keys. We

slot into our framework strengthened cAE-attacks on GCM and OCB. Our main result is a simple

and efficient construction, CTX, that makes a nonce-based AE (nAE) scheme committing. The

transformed scheme achieves the strongest security notion in our framework. Just the same, the

added computational cost (on top of the nAE scheme’s cost) is a single hash over a short string, a

cost independent of the plaintext’s length. And there is no increase in ciphertext length compared

to the base nAE scheme. That such a thing is possible, let alone easy, upends the (incorrect)

intuition that you can’t commit to a plaintext or ciphertext without hashing one or the other. And

it motivates a simple and practical tweak to AE-schemes to make them committing.

Concluding Remarks. We summarize the major contributions of this dissertation, then discuss

some future work. Specifically, we discuss how one might strengthen our anAE security defini-

tion and whether NonceWrap would satisfy this definition. Our initial motivation for studying

committing AE was the observation that the anAE definition could be strengthened.

1.3. Related Work

Works from Author. This dissertation is based on two papers from the author, referred to as

CR19 and CR22:

– CR19 [26] appeared as “Anonymous AE” in Advances in Cryptology - Asiacrypt 2019,

Part II, volume 11922 of Lecture Notes in Computer Science.

– CR22 [27] “On Committing Authenticated Encryption” appeared at ESORICS 2022

The dissertation also contains some discussion about a prototype implementation of some anony-

mous AE schemes. This discussion does not appear in the publication of CR19.

While anAE and cAE stem from works on nonce-based AE, we do not discuss those works in

this chapter. Instead, we go over various nAE definitions from these works in greater detail in

Chapter 2.

Anonymous AE Related Works. In the CAESAR call for AE algorithms, Bernstein introduced

the notion of a secret message number (SMN) as a possible alternative to a nonce, which he renamed

the public message number (PMN) [21]. When the party encrypting a message specifies an SMN, the
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decrypting party doesn’t need to know it. It was an innovative idea, but few CAESAR submissions

supported it [3], and none became finalists. Namprempre, Rogaway, and Shrimpton formalized

Bernstein’s idea by adjusting the nAE syntax and security notion [46]. Their definition didn’t

capture any privacy properties or advantages of SMNs.

It was also Bernstein who asked (personal communication, 2017) if one could quickly identify

which session an AE-encrypted ciphertext belonged to if one was unwilling to explicitly annotate

it. NonceWrap does this, assuming a stateful receiver using what we would call a constant-breadth

nonce policy.

Coming to the problem from a different angle, Bellare, Ng, and Tackmann contemporaneously

investigated the danger of flowing nonces, and recast decryption so that a nonce needn’t be pro-

vided [15]. Their concern lies in the fact that an encrypting party can’t select any non-repeating

nonce (it shouldn’t depend on the plaintext or key), and emphasize that the nAE definition fails

to specify which choices are fine.

Our approach to parameterizing anAE’s goal using a nonce policy Nx benefits from the evolution

of treatments on stateful AE [13,23,38,64]. The introduction of Lx (likely nonces) as something

distinct from Nx (permissible nonces) is new.

A privacy goal for semantically secure encryption has been formalized as key privacy [10] in

the public-key setting and as which-key concealing encryption [1] in the shared-key one. But the

intent there was narrow: probabilistic encryption (not AE), when the correct key is known, out of

band, by the decrypting party.

For nAE, one justification for moving from ind-style privacy [11,33] to ind$-style privacy [58,61]

was to achieve anonymity. But this benefit evaporates if a cleartext nonce or session-ID accompanies

a ciphertext.

Banfi and Maurer also study anonymity for authenticated encryption [8]. Their starting point

differs from ours as they start from probabilistic authenticated encryption without associated data.

Committing AE Related Works. Prior work has been leading towards a definition for fully

committing AE (the cAE-xx notion), but didn’t quite get there. There has also been movement

towards efficient schemes for this end.
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The notion of committing encryption goes back to 2003 with Gertner and Herzberg [32], who

consider the problem in both the symmetric and asymmetric settings. The authors do not look at

deterministic or authenticated encryption.

Abdalla, Bellare, and Neven give definitions for what they term robustness [2]. The work is

in the asymmetric setting and requires an adversary to produce a ciphertext that validly decrypts

under two different keys. Their notion encompasses keys that are honestly generated. Later,

Farshim, Libert, Paterson, and Quaglia point out that, for some applications, robustness against

adversarially-chosen keys is critical [30]. They strengthen Abdalla et al.’s notion to address this

observation.

Farshim, Orlandi, and Roşie (FOR17) [31] contextualized Abdalla et al.’s robustness in the

AE setting, initializing the study of what we call committing AE. Shortly after, Grubbs, Lu, and

Ristenpart (GLR17) [36] defined a variant of committing AE with the goal of constructing schemes

that support message franking. Dodis, Grubbs, Ristenpart, and Woodage (DGRW18) [29] also

target message franking and further develop GLR17’s definitions. These two works have goals

beyond preventing misattributions. We are after simpler aims, with the syntax of classical nAE.

Albertini, Duong, Gueron, Kölbl, Luykx, and Schmieg (ADGKLS20) [4] observe the possibility of

mitigating the attacks described by GLR17 and DGRW18 under a weaker form of misattribution

prevention. Their observation led them to develop a more efficient construction—one that avoids

additional passes over the message.

Bellare and Hoang (BH22), in a contemporary work, offer a range of committing AE definitions,

with starting points of both standard nAE and misuse-resistant AE [12]. The strongest of their

definitions, like ours, requires that the ciphertext commit to everything– the key, nonce, AD, and

plaintext. They also consider multi-input committing security, where an adversary is required to

create misattributions of more than just two valid explanations.

Len, Grubbs, and Ristenpart demonstrate password-recovery attacks on non-committing pass-

word-based AEAD schemes [40]. Their attacks are built on efficiently creating ciphertexts that

successfully decrypt under many keys.
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As one of the goals of our cAE work is to merge committing AE definitions into a unifying

framework, we give a more detailed comparison of most of these related works in Chapter 4.4,

looking at both their definitions and some of their constructions.
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CHAPTER 2

Nonce-Based Authenticated Encryption with Associated Data

In this chapter, we recall various definitions of nonce-based authenticated encryption with asso-

ciated data (nAE). These definitions are the foundational starting points for anonymous AE and

committing AE and will be useful in the analysis of the schemes presented in this dissertation.

2.1. Nonce-based AE Definitions

Standard nAE. To start, we present a standard nAE definition close to that from [58], which

formalizes an nAE scheme as a triple of algorithms Π = (K, E ,D)—key generation, encryption,

and decryption. Some formalizations may omit the key generation algorithm. The key generation

algorithm K returns a string from some non-empty finite set of strings call the key space. The

Encryption algorithm E : K × N × A ×M → C takes as input a key, nonce, AD, and message and

outputs a ciphertext. Some formulations may also allow encryption to output an error symbol

⊥, insisting that if given invalid inputs (a key, nonce, AD, and message that are not elements of

their appropriate sets) then encryption outputs ⊥. Otherwise encryption always outputs non-⊥

values. The Decryption algorithm D: K×N×A× C→M ∪ {⊥} takes as input a key, nonce, AD,

and a ciphertext and either outputs a message or the symbol ⊥ indicating failure. Occasionally,

E(K,N,A,M) and D(K,N,A,C) are written as EN,A
K (M) and DN,A

K (C) respectively. We may also

write Π.E(K,N,A,M) to specify that we are calling the scheme Π’s encryption algorithm, but will

sometimes omit Π if it is obvious from context.

An nAE scheme is said to be correct if decryption reverses encryption. That is, if C ←

E(K,N,A,M) then D(K,N,A,C) = M . Otherwise D returns ⊥. For a correct scheme, one can

observe that E(K,N,A, ·) is injective for any K,N,A. In our usage of nAE, we will require that

the message space M ⊆ {0, 1}∗ be a set of strings for which M ∈ M implies that {0, 1}|M | ⊆ M.

Furthermore, we assume that |EN,A
K (M)| = |M | + τ where τ is a constant that we refer to as the

nAE scheme’s expansion.
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In our anAE chapter (Chapter 3), we treat nAE encryption schemes as just the encryption

function E itself instead of the standard triple. We can do so since the injectivity of E(K,N,A, ·)

for correct schemes naturally gives rise to the decryption function D = E−1.

Let Π be an nAE encryption scheme with an expansion of τ . One customary way to define

nAE security [47,63] associates to an adversary A the real number, its advantage, Advnae
E (A) =

Pr[K↞K : AEK(·,·,·), DK(·,·,·) ⇒ 1] − Pr[A$(·,·,·), ⊥(·,·,·) ⇒ 1] where the four oracles have the follow-

ing behavior: the oracle EK(·, ·, ·) on input N,A,M returns Π.EN,A
K (M); the oracle DK(·, ·, ·) on

input N,A,C returns Π.DN,A
K (C); the oracle $(·, ·, ·) on input N,A,M returns a string of sampled

uniformly at random from {0, 1}|M |+τ ; the oracle ⊥(·, ·, ·) on input N,A,C always returns ⊥. The

oracles are sometimes referred to as the real encryption, real decryption, ideal or fake encryption,

and ideal or fake decryption oracles respectively. The paired real oracles are referred to as the

real game and the paired ideal oracles are the ideal game. The advantage quantifies how well the

adversary A does in distinguishing the real oracles from the ideal oracles. The adversary A is

forbidden from asking its first oracle (either EK or $) a query (N,A,M) if it previously asked a

query (N,A′,M ′). Adversaries that adhere to this restriction are said to be nonce-respecting. It

may also not ask its second oracle (N,A,C) if it previously asked its first oracle (N,A,M) and got

back an answer C. These two restrictions are in place to prevent A from trivially distinguishing

the two games.

This security definition is sometimes referred to as the all-in-one definition for nAE security as

it captures both privacy and authenticity “all-in-one” package. Privacy comes from the adversary

having to discern between real ciphertexts and uniformly random bits of the appropriate length.

Authenticity comes from the adversary having to produce a ciphertext that decrypts without error.

These are the two ways in which an adversary can distinguish between the real and ideal games.

Privacy and Authenticity. While the all-in-one definition is convenient in that it captures a

strong notion of security in one simple definition, it is sometimes useful to think of privacy and

authenticity as separate notions. We start with the games capturing these two notions from [61]

albeit the notions from this paper are for nonce-based symmetric encryption—meaning they do not

include AD. Quick adjustments can bring them to the nAE setting.
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Let Π be an nAE scheme. Let A be a nonce-respecting adversary attacking the privacy of Π.

Adversary A is asked to distinguish between a “real” and “ideal” encryption oracle. The real oracle

E is initialized with a key K sampled uniformly at random and uses it to output Π.E(K,N,A,M)

for any queries (N,A,M) that A makes. The ideal oracle $ always outputs a uniformly random

string of length |M | + τ where τ is the expansion of Π. The advantage of A in this privacy game

is then quantified as:

Advpriv
Π (A) = Pr[K↞K;AEK(·,·,·) ⇒ 1]− Pr[A$(·,·,·) ⇒ 1].

The authenticity game asks that the nonce-respecting adversary A forges. That is, A is asked

to output a tuple (N,A,C) such that Π.D(K,N,A,C) ̸= ⊥ for some key K sampled uniformly

at random upon initialization of the game. Adversary A has access to an encryption oracle that

performs encryption under K. Its authenticity advantage is defined as:

Advauth
Π (A) = Pr[K↞K;AEK(·,·,·) forges ].

To prevent trivial wins, if A made an encryption query (N,A,M) that returned C, it may not

output (N,A,C) as its forgery.

Multi-user Security. Classic nAE definitions like those described above are in the single user

setting, meaning they deal with an adversary attacking a scheme using a single hidden key. Both of

the main contributions of this dissertation, anonymous AE and committing AE, naturally give rise

to a setting that concerns multiple keys. As such, the multi-user nAE security definition of [18] will

be useful. There will be a couple differences in its presentation here: (1) The definition we use will

be in the standard model as opposed to the ideal-cipher model. (2) Instead of having a verification

oracle, the definition here will use standard decryption oracles. (3) In place of an oracle that allows

the adversary to ask for a new secret key to be generated, the definition here will have all the keys

pre-generated at initialization for the real game. In regards to (2) and (3), [18] asserts that the

two can be shown to be equivalent using standard hybrid arguments and techniques from [14].

Let Π be an nAE scheme. The games in Fig. 2.1 capture the multi-user nAE security of Π. In

the pseudocode, we write X↞S to mean that an element of S is picked uniformly at random and
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RealnaemΠ

procedure Initialize()

00 for ℓ ∈ N do Kℓ↞K; NE[ℓ]← ∅

procedure ENC(i,N,A,M)

10 if N ∈ NE[ℓ] then ret ⊥
11 NE[ℓ]← N ; ret Π.E(Ki, N,A,M)

procedure DEC(i,N,A,C)

20 ret Π.D(Ki, N,A,C)

IdealnaemΠ

procedure ENC(i,N,A,M)

30 if N ∈ NE[ℓ] then ret ⊥
31 NE[ℓ]← N
32 C↞{0, 1}|M |+τ ; ret C

procedure DEC(i,N,A,C)
40 ret ⊥

Figure 2.1. Games defining multi-user security for nAE schemes.

assigned to X. Like single user nAE security, the adversary interacts with either the real game

or the ideal game and has to guess which. The advantage of an adversary A attacking Π is then

quantified as

Advnaem
Π (A) = Pr[ARealnaemΠ → 1]− Pr[AIdealnaemΠ → 1].

Lastly, a nonce-respecting adversary in the multi-user setting is one that does not repeat a nonce

for a particular key for its ENC queries. This is enforced by the check on table NE in lines 10 and

30 in the game code. The letters N and E are intended to evoke nonces used for encryption.

Pseudorandom Injection Variant. There is yet another nAE definition variant that we will

find useful to recall. This variant asks that for an adversary to distinguish between E(K,N,A, ·)

from a random injective function with the appropriate domain and range. This treatment of nAE

comes from the PRI (pseudorandom injection) characterization of misuse-resistant nAE schemes

in [62]. We adapt it to the multi-user setting following [18].

Recall that the expansion of an nAE scheme E is a constant τ such that |EN,A
K (M)| = |M |+ τ .

Let E and τ be an nAE scheme and its expansion. Let T be an arbitrary nonempty set. Let InjTτ (M)

be the set of all functions f : T ×M → {0, 1}∗ such that |f(T,M)| = |M | + τ for all M ∈ {0, 1}∗

and f(T, ·) is an injection for all T ∈ T. For f ∈ InjTτ define f−1 : T × {0, 1}∗ → M ∪ {⊥} by
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f−1(T, Y ) = X when f(T,X) = Y for some (unique) X ∈M, and f−1(T, Y ) = ⊥ otherwise. Now

given an adversary A, define its advantage in attacking the nae∗-security of E as the real number

Advnae∗
E (A) = Pr[for i ∈ N do Ki↞K: AEK(·,·,·,·),DK(·,·,·,·)⇒1]−

Pr[f↞InjN×N×A
τ (M): Af(·,·,·,·),f−1(··,·,·) ⇒ 1]

where the oracles behave as follows: oracle EK , on query (i,N,A,M), returns E(Ki, N,A,M);

oracle DK , on query (i,N,A,C), returns E−1(Ki, N,A,C); oracle f , on query (i,N,A,M), re-

turns f((i,N,A),M); and oracle f−1, on query (i,N,A,C), returns f−1((i,N,A), C). The adver-

sary A is forbidden from asking its first oracle any query (i,N,A,M) if it previously asked a query

(i,N,A′,M ′).

It is a standard exercise to show the equivalence of standard nae defined at the beginning of this

chapter, and this formalization nae∗ following the PRI treatment and multi-key treatment of [62]

and [18].

2.2. Privacy and Usability-Violating Assumptions of Nonce-based AE

With those definitions established, we now discuss the privacy and usability-violating nuances

of nAE in greater detail. Beginning with the syntax, decryption D is understood to be performed

directly by the function. However, this function requires K,N, and A as inputs. This implies

that the decrypting party knows what key to use. Suppose this decrypting party is communicating

with multiple senders as a server might have connections with multiple clients. How, then, is the

receiver supposed to know which of its keys to use? This dilemma suggests that the ciphertext will

be delivered within some context that explicitly identifies the session associated with the ciphertext,

which is synonymous to identifying the sender.

This is evident in practice in our most common standard secure Internet communications,

HTTPS [53]. This protocol is HTTP secured by TLS [19, 54]. Hence, like its base protocol,

HTTPS relies on TCP/IP as its transport and Internet protocols [24, 56, 57]. When a receiver

such as a server gets a packet from a client over HTTP(S), it typically arrives on port 80—the

official port number reserved for HTTP communications. Since all such packets arrive at the same
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destination, the receiver needs to know what key to use to decrypt them, which contextualizes the

problem described above. To identify the sender and thus the associated key, the receiver relies

on TCP/IP. Every TCP/IP connection or “session” can be uniquely identified by a four-tuple that

consists of the source IP address, the destination IP address, the source port number, and the

destination port number. This information is all sent in the clear and provides no anonymity.

It is important to note that this example described here can seem “out of scope” in some sense

as a large part of the above pertains to packet routing and not so much nAE. After all, without

the IP addresses and port numbers, how would one know where the packet should go and where

to send a response to that packet? We admit that without the destination parts of the four-tuple,

significant changes to the architecture of the Internet would need to be made to deliver a packet

to its correct destination. However, we’d like to point out that a more privacy-minded routing

protocol could put source information in a packet’s encrypted payload without affecting routing

(source addresses can be spoofed after all). This would, at the very least, obfuscate the identity of

the sender. For such a protocol, nAE would be a poor fit as it expects to be given an explicit key,

which would naturally lead to tagging the ciphertext with sender identity in some way.

Moreover, nAE’s privacy issues do not end at key identification. For decryption, nAE also

requires a nonce and AD. Associated data, historically, has been understood as data that needs to

be authenticated but need not be confidential such as the header for a packet. But like a packet

header, as previously described, flowing such information with the ciphertext can be damaging to

privacy.

As for the nonce, popular nAE schemes such as AES-GCM [45] use a counter-based one. When

flowed explicitly with the ciphertext, such a nonce then reveals a message’s ordinality—its position

in a sequence of messages within a session. Counter-based nonces can also expose the identities of

senders based on their volume of messages. Such nonces may, for example, be all that is needed

to distinguish between a high-frequency stock trader (large counters) from a low-frequency stock

trader (small counters). Furthermore, streams of messages from multiple sessions at different points

of their counter can be sorted by their origin. Conventional nAE definitions effectively define the

leakage of such information through the nonce as harmless, but perhaps it is nothing but tradition

that has led us to accept this to be the case.
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Regarding the privacy definition of nAE, indistinguishability from random bits is conventionally

understood to provide anonymity. This is postulated by [1] and later proved by [8]. After all, it

fits natural intuition: if the encryption of M under keys K and K ′ are both indistinguishable from

random bits, then they are indistinguishable from each other. But the scoping of nAE overlooks

the basic problem that the thing—the ciphertext—that is indistinguishable from random bits isn’t

everything the adversary will see—what we refer to as the full ciphertext.

While we focused primarily on the privacy-violating implications in our discussion here, we

note that there are usability issues embedded in the nAE definition as well. After all, there is no

direction as to how a user ought to supply a nonce and AD to the decryption algorithm–and if the

user is in a context where identities are hidden, the key as well.

We turn to the design choices of several cryptographic libraries for some examples. In particular,

we look at Google’s Tink and Bernstein, Lange, and Schwabe’s (BLS) NaCl [20, 22, 35]. When

BLS published [22] detailing their design choices in 2012, they emphasized that they wanted to

“avoid various types of cryptographic disasters suffered by previous libraries such as OpenSSL [49],”

effectively putting usability as a priority. To encrypt and decrypt with NaCl, a user must supply a

key, nonce, and message (the base library does not support AD). Regarding the nonce in the API,

BLS states that they do not believe that the nonce is the user’s responsibility. They stress that

they “believe that cryptographers should take responsibility not just for nonces but also for other

security aspects of high-level network protocols” [22]. It is not difficult to see why; developers

with little to no cryptographic familiarity might not even know what a nonce is, let alone that the

security of nAE is contingent on them not repeating one. The nonce surfacing in the NaCl interface

is an artifact of how nonces are used by higher level protocols in different ways, which ultimately

led them to leave it up to the user. Nonetheless, to take away the burden of nonce handling from

the user was a consideration to improve usability at the time of NaCl’s design.

Google’s Tink is a more recent library [35] and they execute on that consideration. The

Tink API supports a number of a languages including Python, Java, and C++. Regardless of

which language, for key handling, a cipher object is instantiated with a key and this object is

used subsequently for any encryption and decryption calls with respect to that key. (This is not

uncommon among cryptographic libraries [51], but not every popular library does it [42].) Tink
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offers an nAE interface where the user only provides an AD and plaintext to the keyed cipher object

per encryption call. Internally, a fresh nonce is generated every time encryption is called. This

prevents any potential nonce misuse by users.

One can argue that since AD is traditionally understood to be data sent in the clear that

requires authenticity and not privacy, having to supply the AD is not a usability issue for the

decrypting party. This argument is fine for standard nAE, but if one wants a stronger notion of

privacy—one including anonymity, then one needs to hide the AD as it can have identity revealing

information. It is not clear how the decrypting party obtains the AD if it is hidden since this goes

against conventional usage of AD. This is one of the issues we address in anonymous AE.

But usability issues don’t end at just necessary provision of nonce and AD. Conventional nAE is

in the single key setting; a sender and receiver share a secret key and use it to encrypt and decrypt

messages. But in practice, systems using nAE do not always have just one active key in use. Some

systems store a number of secret keys and need to identify which key to use before decrypting a

ciphertext. It is not always obvious which key to use for a given ciphertext. Real world applications

for which this is applicable include key management services (Amazon Web Services KMS, Oracle

Key Vault, Microsoft Azure Key Vault to name a few [6,7,50]) and the Shadowsocks protocol. For

cryptographic libraries, Google’s Tink offers key labeling as a means to identify the appropriate

key among a set of candidate keys [35].

The need for key identification can extend beyond a usability issue and become a security issue.

For example, Grubbs, Len, and Ristenpart exploit ciphertexts that can decrypt under multiple

keys to mount password recovery attacks on the Shadowsocks protocol in [41]. Dodis, Grubbs,

Ristenpart, and Woodage show how to create AES-GCM ciphertexts to decrypt into an innocuous

image under one key and a malicious one under a different key [29]. These issues would not arise if

given a ciphertext, the decrypting party knows which of its keys to use. Appropriate means of key

identification may allow just this. Alternatively, Key robustness is a property of an nAE scheme

that ensures that decryption for a ciphertext fails unless it is decrypted with the “correct” key.

This property is closely tied to committing AE, which we define and compare with key robustness

in Chapter 4.
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But in remedying all of the issues discussed here, we first present anonymous AE—a variant

of nAE that will include anonymity in its notion of privacy. To move in this direction, we expand

the scope of nAE’s understanding of its ciphertext to what we called the full ciphertext, then the

nonce, AD, and session identifier sent alongside the encrypted message is part of the ciphertext as

well. This “other” data flowed with the encrypted message is what we will refer to as metadata.

Anonymous AE has the goal of protecting exactly this metadata from adversarial parties.
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CHAPTER 3

Anonymous Authenticated Encryption

This chapter presents anonymous nonce-based authenticated encryption (anAE), one of two

major primitives and contributions of this dissertation. More precisely, this chapter formalizes

anAE, provides an efficient anAE construction called NonceWrap, and proves NonceWrap secure.

Traditional formulations of authenticated encryption (AE) implicitly assume that auxiliary

information is flowed alongside the ciphertext. This information, necessary to decrypt but not

normally regarded as part of the ciphertext, may include a nonce, a session-ID (SID), and associated

data (AD). But flowing these values in the clear may reveal the sender’s identity.

To realize a more private form of encryption, we introduce a primitive we call anonymous

nonce-based AE, or anAE. Unlike traditional AE [16,37,58,61,63], anAE treats privacy as a

first-class goal. When we speak of privacy here and for this entire chapter, we mean in the sense

of anonymity along with the conventional understanding of privacy. We insist that ciphertexts

contain everything the receiver needs to decrypt other than its secret state (including its keys), and

ask for indistinguishability from random bits even then. We show how to achieve anAE, providing

a transform, NonceWrap, that turns a conventional nonce-based AE (nAE) scheme into an anAE

scheme. We claim that anAE can improve not only on privacy, but on usability, too.

Background. The customary formulation for AE, nAE, requires the user to provide a nonce not

only to encrypt a plaintext, but also to decrypt a ciphertext [47,58,63]. Decryption fails if the

wrong nonce is provided.

How is the decrypting party supposed to know the right nonce to use? Sometimes it will know

it a priori , as when communicants speak over a reliable channel and maintain matching counters.

But at least as often the nonce is flowed, in the clear, alongside the ciphertext. The full ciphertext

should be understood as including that nonce, as the decrypting party needs it to decrypt.
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Yet transmitting a nonce along with the ciphertext raises both usability and security concerns.

Usability is harmed because the ciphertext is no longer self-contained: information beyond it and

the operative key are needed to decrypt. At the same time, confidentiality and privacy are harmed

because the transmitted nonce is information, and information likely correlated to identity. Sending

a counter-based nonce, which is the norm, will reveal a message’s ordinality—its position is the

sequence of messages that comprise a session. While the usual definition for nAE effectively defines

this leakage as harmless, is it always so? A counter-based nonce may be all that is needed to

distinguish, say, a high-frequency stock trader (large counters) from a low-frequency stock trader

(small counters). With a counter-based nonce, multiple sessions at different points in the sequence

can be sorted by point of origin. Perhaps it is nothing but tradition that has led us to accept that

nAE schemes, conventionally used, may leak a message’s ordinality and the sender’s identify.

This chapter is about defining and constructing nonce-based AE schemes that are more protec-

tive of such metadata. We imagine multiple senders simultaneously communicating with a receiver,

as though by broadcast, each session protected by its own key. When a ciphertext arrives, the re-

ceiver must decide which session it belongs to. But ciphertexts shouldn’t get packaged with a nonce,

or even an SID (session identifier) or AD (associated data), any of which would destroy anonymity.

Instead, decryption should return these values, along with the underlying plaintext.

A lousy approach. One way to conceal the operative nonce and SID would be to encrypt those

things under a public key belonging to the receiver. The resulting ciphertext would flow along with

an ind$-secure nAE-encrypted ciphertext (where ind$ refers to indistinguishability from uniform

random bits [61]). While this approach can work, moving to the public-key setting would decimate

the trust model, lengthen each ciphertext, and substantially slow each encryption and decryption,

augmenting every symmetric-key operation with a public-key one. We prefer an approach that

preserves the symmetric trust model and has minimal impact on message lengths and computation

time.

Contributions: definitions. We provide a formalization of anonymous AE that we call anAE,

anonymous nonce-based AE. Our treatment makes anAE encryption identical to encryption under
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nAE. Either way, encryption is accomplished with a deterministic algorithm C = EN,A
K (M) operat-

ing on the key K, nonce N , associated data A, and plaintext M . As usual, ciphertexts so produced

can be decrypted by an algorithm M = DN,A
K (C). But the receiver employing a privacy-conscious

protocol might not know what K, N , or A to use, as flowing N or A, or identifying K in any direct

way, would damage privacy. So an anAE scheme supplements the decryption algorithm D with a

constellation of alternative algorithms. They let the receiver: initialize a session (Init); terminate

a session (Term); associate an AD with a session, or with all sessions (Asso); disassociate an AD

with a session, or with all sessions (Disa); and decrypt a ciphertext, given nothing else (Dec). The

last returns not only the plaintext but, also, the nonce, SID, and AD.

After formalizing the syntax for anAE we define security, doing this in the concrete-security,

game-based tradition. A single game formalizes confidentiality, privacy, and authenticity, unified

as a single notion. It is parameterized by a nonce policy, Nx, which defines what nonces a receiver

should consider permissible at some point in time. We distinguish this from the nonce or nonces

that are anticipated, or likely, at some point in time, formalized by a different function, Lx. Our

treatment of permissible nonces vs. likely nonces may be useful beyond anonymity, and can be used

to speed up decryption.

Anonymous AE can be formalized without a user-supplied nonce as an input to encryption,

going back to a probabilistic or stateful definition of AE. For this reason, anAE should be un-

derstood as one way to treat anonymous AE, not the only way possible. That said, our choice

to build on nAE was carefully considered. Maintaining nAE-style encryption, right down to the

API, should facilitate backward compatibility and a cleaner migration path from something now

quite standard. Beyond this, the reasons for a nonce-based treatment of AE remain valid after pri-

vacy (and anonymity) become a concern. These include minimizing requirements on user-supplied

randomness/IVs.

Contributions: constructions. We next investigate how to achieve anAE. Ignoring the AD,

an obvious construction is to encipher the nonce using a blockcipher, creating a header Head =

EK1(N). This is sent along with an nAE-encrypted Body = EN,A
K2

(M). But the ciphertext C =

Head ∥ Body so produced would be slow to decrypt, as one would need to trial-decrypt Body

under each receiver-known key K ′
2 until the (apparently) right one is found (according to the nAE
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scheme’s authenticity-check). If the receiver has s active sessions and the message has |M | = m

bits, one can expect a decryption time of Θ(ms).

To do better we put redundancy in the header, replacing it with Head = EK1(N ∥ 0ρ ∥H(AD)).

Look ahead to Fig. 3.2 for our scheme, NonceWrap. As a concrete example, if the nonce N is

12 bytes [43] and we use the degenerate hash H(x) = ε (the empty string), then one could encrypt

a plaintext M as C = AESK1(N ∥ 032) ∥ GCMN,A
K2

(M). Using the header Head to screen candidate

keys (only those that produce the right redundancy) and assuming ρ ≥ lg s we can now expect a

decryption time of Θ(m+ s) for s blockcipher calls and a single nAE decryption.

In many situations, we can do better, as the receiver will be able to anticipate each nonce for

each session. If the receiver is stateful and maintains a dictionary ADT (abstract data type) of all

anticipated headers expected to arrive, then a single lookup operation replaces the trial decryptions

of Head under each prospective key. Using standard data-structure techniques based on hashing

or balanced binary trees, the expected run time drops to Θ(m + lg(s)) for decrypting a length-m

string. And one can always fall back to the Θ(m + s)-time process if an unanticipated nonce was

used.

Finally, in some situations one can do better still, when all permissible nonces can be anticipated.

In such a case the decrypting party need never invert the blockcipher E and the header can be

truncated, or some other PRF can be used. In practice, the header could be reduced from 16 bytes

to one or two bytes—a savings over a conventional nAE scheme that transmits the nonce.

While NonceWrap encryption is simple, decryption is not; look ahead to Figs. 3.3 and 3.4. Even

on the encryption side, there are multiple approaches for handling the AD. Among them we have

chosen the one that is most bandwidth-efficient and that seems to make the least fuss over the AD.

3.1. Anonymous Nonce-based AE (anAE) Definition

A foundational principle of secure encryption is that parties that do not possess the key should

not learn any information from just the ciphertext (although typically leakage of the message length

is allowed). If we exclude metadata, nAE notions follow this principle just fine. But once we expand

our understanding of the typical nAE ciphertext to a full ciphertext—everything needed to decrypt

other than the key itself—then this falls apart for nAE. On the other hand, our anAE notion
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follows this principle and adheres to it strictly by including identity in that which should not be

leaked, hence the name anonymous AE. Any metadata attached to a ciphertext can be identity-

compromising, so anAE seeks to protect it. We rewrite this principle in a stricter fashion explicitly

here:

Privacy Principle. A ciphertext should not by itself compromise the identity of

its sender. This should hold even when the term “ciphertext” is understood as the

full ciphertext—everything the receiver needs to decrypt and that the adversary

might see.

This assertion of the principle forbids our exclusion of metadata from our understanding of the

word ciphertext. It emphasizes that although metadata is necessary to decrypt, we cannot ignore

the fact that data is a privacy-violating part of transmitting a ciphertext.

Stated as above, the privacy principle may seem obvious. But the fact that nAE blatantly

violates this principle, despite being understood as an extremely strong notion of security, suggests

otherwise. As such, in moving towards a formalization of anAE, attending to the full ciphertext

seems appropriate. Our anAE notion captures the privacy that this principle demands while at-

tending to conventional notions of confidentiality and authenticity. We now turn to demonstrating

that.

Syntax. An anAE scheme is an extension of an nAE scheme with five additional algorithms.

Formally, an anAE scheme is a six-tuple of deterministic algorithms Π = (Init, Term, Asso, Disa,

Enc, Dec) These algorithms create a session, tear down a session, register an associated data, de-

register an AD, encrypt a message, and decrypt a ciphertext respectively. Their interfaces are

explicitly as follows:

– Init, the receiver’s session initialization algorithm. It takes as input a key K ∈ K and

outputs a session identifier (SID) ℓ ∈ L that will be subsequently used as the name for the

key’s session. We will assume that all session-IDs outputted are unique.

– Term, the receiver’s session termination algorithm. It takes as input an SID ℓ ∈ L and

returns nothing.
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– Asso, the receiver’s AD-association algorithm. It takes as input either an AD A ∈ A or a

pair (A, ℓ) ∈ A× L. It outputs nothing.

– Disa, the receiver’s AD-disassociation algorithm. On an input of either an AD A ∈ A or

a pair (A, ℓ) ∈ A× L, it returns nothing.

– Enc, the sender’s encryption algorithm. By itself, this algorithm is an nAE scheme, mean-

ing Enc = E . Recall that nAE encryption takes as input a key K ∈ K, a nonce N ∈ N, an

AD A ∈ A, and a plaintext M ∈M, and outputs a ciphertext C ∈ C.

– Dec, the receiver’s decryption algorithm. This algorithm takes as input only a ciphertext

C ∈ C. It outputs either a four-tuple (ℓ,N,A,M) ∈ L × N × A ×M or the symbol ⊥,

indicating rejection. Observe that Dec ̸= D = Enc−1 as is the case with conventional nAE

encryption.

The sets, all non-empty, referred to above are as follows:

– A, the AD space, is an arbitrary set.

– C, the ciphertext space, is a set of strings.

– K, the key space, is a finite set of strings.

– L, the SID space, is an arbitrary set. However, for the remainder of this text, we will

assume L = N, treating all SIDs as natural numbers for simplicity.

– M, the message Space, is a set of strings. Since anAE encryption is in itself an nAE

scheme, the same assumption on the message space applies. That is, if M ∈ M then

{0, 1}|M | ⊆M.

– N, the nonce space, is a finite set of strings.

We stress that, while it follows from nAE injectivity that Enc has some inverse D = Enc−1,

this is distinct from Dec. The Dec algorithm is asked to recover not just the message, but all of its

relevant metadata when given just a ciphertext. In accomplishing this task, the decrypting party is

equipped with a persistent state K ∈K where K is some arbitrary set. The four other algorithms

Init, Term, Asso, and Disa are algorithms for the decryptor to manipulate its state. One can think

of these four algorithms and Dec as an alternative to D. After all, for any ciphertext C made by

Enc, one can explicitly supply a key K, nonce N , and AD A to perform DN,A
K (C) since Enc is an

nAE scheme. The four algorithms and Dec simply offer an option to preserve anonymity.
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Nonce Policy. In an AE scheme with stateful decryption [13,23,38,64], at any given point in

time, the receiver will have some set of nonces that it deems acceptable. Typically, this set depends

on the nonces already received and nothing else. We formalize this as a function we call a nonce

policy Nx: N≤d → P(N) where d ≥ 0. The notation P(S) denotes the set of all subsets of the set S.

The set Nx(N) is the set of permissible nonces given the history of nonces N . The history

is an ordered list of previously received nonces. The value d = depth(Nx) ∈ N ∪ {∞} is the

depth of the policy. This value captures the number of nonces that needs to be recorded in the

history for the policy to give an appropriate set of valid nonces. The value b = breadth(Nx) =

maxN∈dom(Nx) |Nx(N)| is the breadth of the policy. This value is the maximum number of nonces

that are deemed possible across all possible histories for the policy. For a function F : A → B, we

write dom(F ) = A to indicate the domain of F and range(F ) = B to indicate its range. Lastly,

the naming of the function Nx is intended to suggest the words next and nonce.

We highlight that the input of the nonce policy is bounded by its depth as opposed to allowing

an input of N∗. This is because any practical nonce policy would have a bounded depth, as it

would otherwise require the receiver to maintain an unlimited state and slow down decryption as

connections grow old.

It is worth mentioning two different nonce policy extremes. There is what we refer to as the

permissive policy Nx(Λ) = N, which allows all nonces and needs not keep track of history. This

policy captures a stateless nAE scheme where repetitions, omissions, and out-of-order deliveries are

all permitted. We use the symbol Λ to denote the empty list. The permissive policy has a depth

d = 0 and a breadth b = |N|. Note that while a decryption algorithm employing this policy treats

all nonces as permissible, a higher-level process using the algorithm could still restrict nonces. On

the other end of the spectrum is the strict policy. For a nonce space of N = {0..Nmax}, the strict

policy is defined by Nx(Λ) = 0, Nx((N)) = {N + 1} (for N < Nmax), and Nx(Nmax) = ∅. It

demands the absence of repetitions, omissions, and out-of-order deliveries. With a breadth and

dept of b = d = 1, the nonces for this policy must start at zero and strictly increment until all

nonces are exhausted. On a reliable channel, the strict policy is a natural choice. There is a rich

set of policies between these two extremes [13,23,38,64].
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Associated Data. In the context of AE, associated data has historically been understood as

additional information that needs to be authenticated, but need not be private [58]. This can, for

example, be the header for a packet. It is not difficult to see that usage of AD can be identity-

compromising. So, anAE targets the privacy of AD as well as its authenticity.

Now, one might interject and claim that it is unreasonable to require both privacy and authen-

ticity for AD. Such a requirement would not only contradict how AD is traditionally defined, but

also blurs the distinction between it and the message. After all, the whole point of encrypting the

message with AE is to give it privacy and authenticity. Since AD now requires the same security,

this defeats the purpose of having the AD. Why not just treat it the same as the message and do

away with the concept of AD altogether?

We argue that this reasoning is specious—despite all there is distinction between the AD and

the message. First put aside the usage of AE where one encrypts an empty message solely to

authenticate the AD. Then, the sender of a message turns to encryption in the first place because

they possess that they want to communicate to a receiver. The sender does not typically expect

the receiver to know the contents of the message a priori to decryption. This is not the case

with AD. Take the usage of AD in TLS for example. As of TLS 1.3, the AD is the header of the

encrypted record, which usually consists of two protocol-related constants and the length of the

ciphertext. The constants are known to the receiver as they are defined by the protocol specification

and the length of the ciphertext can be gleaned simply by receiving the encrypted record. All this

information is known to the receiver a priori to decryption.

Our treatment of AD in the anAE context will be limited to exactly this kind of AD—data

that is known a priori to the receiver, but AD will be supported nonetheless. Recall that anAE is

only an extension of nAE and anAE only offers a more privacy-ambitious decryption. Should one

need to use AD that the receiver cannot know a priori to decryption, then one can simply fall back

to using the anAE scheme as an nAE one. Obviously, one loses the privacy benefits of anAE from

doing so. One can also reconsider the distinction between message and AD. That is, the original

argument against a private and authentic AD is that it lumps AD too closely with the message.

So, one can consider instead lumping all information that cannot be learned before decryption with
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the message and anything that can be known by the receiver a priori with the AD. Pivoting one’s

understanding of AD in this way may also allow one to enjoy the privacy benefits of using anAE.

With the inclusion of AD in the anAE definition justified, we now turn to the peculiar inter-

face that supports it. The two algorithms responsible for managing AD are the AD registration

algorithm Asso and the AD disassociation algorithm Disa. These algorithms take in either an

SID and AD pair, or a standalone AD. The former follows the intuition that for a specific session,

one might have specific AD values that are expected from the sender. Therefore, per session, the

receiver can maintain a set of AD values that it expects to receive. The latter addresses the use

case where some AD values would not be specific to a session. In reference to the above example

of TLS 1.3’s usage of AD, one can observe that AD values like the two protocol-related constants

can apply to multiple or all sessions that a receiver has open. To support such a use case, we allow

the registration of AD values that apply across all active sessions. We call such AD values global

ADs as opposed to the session-specific ADs. For a received ciphertext, only AD values registered

globally or to the session specific to the ciphertext, which decryption is responsible for identifying,

can match it. Registration and de-registration of ADs with this interface is possible because the

decrypting party can determine a priori what ADs may be applicable to the ciphertexts it expects

to receive.

We anticipate that for most settings, users will only need to associate a single AD to a session

at any given time. This single AD may be session-specific or global, but once that AD is identified,

it is understood as the AD for it. If this is the case for the decrypting party, we say that the receiver

abides by the one-AD-per-session restriction, which we write as 1AD/session. Later in our anAE

construction, such receivers will enjoy efficiency benefits.

Stateless Schemes. Our formalization of anAE schemes treats the decrypting party as stateful.

Even if there is a only single key K and a single AD A to be associated with it, the decrypting

party would still initialize the session for K with an Init call, register A with an Asso call, and

then call Dec on any incoming ciphertexts. This seemingly roundabout usage of state is an artifact

of the generality of our formulation. For distinction between statefulness and statelessness in the

anAE context, we say that a scheme is stateless if the decryption algorith Dec does not modify the

state.
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For stateless anAE, one might provide an alternative API in which keys and ADs are provided

on each call—an interface like Dec′(K,A,C) for example. One may also initialize a read-only data

structure managing operative key and AD values that is given to decryption each call. Many

popular crypto libraries today do something similar to this. That is, they do not pass in string-

valued keys to encryption or decryption algorithms, but rather an opaque data structure is created

during a key-preprocessing step and that structure is then used for subsequent encryption and

decryption calls [34,49,51].

Defining Security. Let Π = (Init, Term, Asso, Disa, Enc, Dec) be an anAE scheme and let Nx

be a nonce policy. The anAE security of Π with respect to Nx is captured by the pair of games in

Fig. 3.1. The adversary interacts with either the real game RealanaeΠ,Nx or the ideal game IdealanaeΠ,Nx

and tries to guess which of the two its interacting with. The advantage of A attacking Π with

respect to Nx is defined as

Advanae
Π,Nx(A) = Pr[ ARealanaeΠ,Nx→1 ]−Pr[ AIdealanaeΠ,Nx→1 ] ,

the difference in probability that the adversary outputs “1” in each of the games.

In our pseudocode, integers, strings, lists, and associative arrays are silently intialized to 0, ε,Λ,

and ∅ respectively. For a nonempty list x = (x1, . . . , xn) we let tail(x) = (x2, . . . , xn). We write

A
∪← B, A

∖← B, and A
∥← B to denote A ← A ∪ B, A ← A \ B, and A ← A ∥ B. When iterating

through a string-valued set, we do so in lexicographic order.

Our security games (and later our anAE scheme itself) makes extensive use of associative arrays

(also called maps or dictionaries). These are collections of (key, value) pairs with at most one value

per key. For an array A and a key K, we write A[K] for the value in A associated with the key

K. To add a new value, or modify an existing one, we write A[K]getsV to (re)assign the value V

to the key K in A. We write A.keys to denote the set of all keys in A Similarly, we use A.values

to denote the set of all values in A These last two operations are not always mentioned in abstract

treatments of dictionaries, but programming languages like Python do support these methods and

realizations of dictionaries invariably enable them.
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RealanaeΠ,Nx

procedure INIT()
100 K↞K

101 ℓ← Π.Init(K) Guaranteed new

102 K[ℓ]← K; L
∪← {ℓ}; NE[ℓ]← ∅

103 ret ℓ

procedure TERM(ℓ)
110 Π.Term(ℓ); L

∖← {ℓ}

procedure ASSO(A)
120 Π.Asso(A)
procedure ASSO(A, ℓ)
121 Π.Asso(A, ℓ)

procedure DISA(A)
130 Π.Disa(A)
procedure DISA(A, ℓ)
131 Π.Disa(A, ℓ)

procedure ENC(ℓ,N,A,M)
140 if ℓ ̸∈ L or N ∈ NE[ℓ] then
141 ret ⊥
142 NE[ℓ]

∪← {N}
143 ret Π.Enc(K[ℓ], N,A,M)

procedure DEC(C)
150 ret Π.Dec(C)

IdealanaeΠ,Nx

procedure INIT()
200 K↞K

201 ℓ← Π.Init(K)
202 A[ℓ]← ∅; L ∪← {ℓ}
203 NE[ℓ]← ∅; ND[ℓ]← Λ
204 ret ℓ

procedure TERM(ℓ)
210 L

∖← {ℓ}

procedure ASSO(A)
220 AD

∪← {A}
procedure ASSO(A, ℓ)
221 A[ℓ]

∪← {A}

procedure DISA(A)
230 AD

∖← {A}
procedure DISA(A, ℓ)
231 A[ℓ]

∖← {A}

procedure ENC(ℓ,N,A,M)
240 if ℓ /∈ L or N ∈ NE[ℓ] then
241 ret ⊥
242 C↞{0, 1}|M |+τ

243 NE[ℓ]
∪← {N}

244 H[C]
∪← {(ℓ,N,A,M)}

245 ret C

procedure DEC(C)
250 if H[C] = ∅ then ret ⊥
251 if ∃ unique (ℓ,N,A,M) ∈ H[C] s.t.
252 ℓ ∈ L and N ∈ Nx(ND[ℓ]) and
253 A ∈ AD ∪A[ℓ] then
254 ND[ℓ]

∥← N
255 if |ND[ℓ]| > d then
256 ND[ℓ]← tail(ND[ℓ])
257 ret (ℓ,N,A,M)
258 ret ⊥

Figure 3.1. Defining anAE security. The games depend on an anAE scheme Π
and a nonce policy Nx. The adversary must distinguish the game on the left from
the one on the right. Privacy, confidentiality, and authenticity are simultaneously
captured.
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Explanation. The “real” anAE game surfaces to the adversary six procedures, each corresponding

to the algorithms of an anAE scheme. Modeling correct use, the Init algorithm generates random

keys, while calls Encmay not repeat nonces within a given session. Further restrictions on requesting

encryption for uninitialized SIDs or the SIDs of a terminated session apply (which is a restriction

in-line with previous multi-user AE definitions [18]). Some bookkeeping is necessary for the game

to enforce these restrictions, namely, Kℓ being the key associated to session ℓ and L being the

set of all active session labels. The set NE[ℓ] is the set of nonces that have already been used

for session ℓ (nested within the associative array NE). Enforcing these restrictions aside, the real

game allows the adversary to interact with each of the algorithms of Π through its procedures in a

straightforward manner.

Similarly, the “ideal” game provides the same six entry points as the “real” game, but only

employs the scheme Π insofar as ensuring the procedure INIT returns the same sequence of session

labels as the scheme’s session initialization algorithm Init. By ensuring that the labels of the INIT

oracle match that of the Init algorithm, we prevent an adversary from trivially distinguishing

the two games simply by observing a mismatch in session labels. One other aspect of Π used in

the ideal game is the expansion constant τ of its encryption algorithm. Recall that the expansion

of an nAE scheme is the length increase that a message undergoes when it is encrypted into a

ciphertext. Using the constant, ideal encryption oracle ENC can return uniformly random bits

of the appropriate length regardless of SID, nonce, AD, or plaintext (line 242 in the code). This

captures both confidentiality and anonymity in a strong sense. The same idea is used by the ind$-

form of the nonce-based symmetric encryption definition except that does not attend to the full

ciphertext [59].

Following the all-in-one definition for nAE security [62], authenticity is ensured by having the

ideal counterpart of the real decryption oracle routinely return ⊥. When should ideal decryption

not return ⊥? Just like nAE, we want ideal decryption to return ⊥ if the ciphertext C was not

previously returned from an ENC query (line 250 ). (Common nAE definitions like the one presented

in Chapter 2.2 forbid the adversary from making a decryption query with encryption output and

always returning ⊥. But one could write an identical ideal decryption oracle where such a query

is allowed and is the only time a non-⊥ response is given.) We also want ideal DEC to return ⊥
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if the relevant session had been torn down, if the relevant nonce is out-of-policy, or if the relevant

AD is unregistered as these would be impermissible decryptions. By relevant we mean associated

with the ciphertext that is being queried for decryption. These are captured by lines 252 -253 .

There is one more case where ideal decryption returns ⊥. This occurs when a query can result

in more than one valid explanation for the ciphertext (captured by the word “unique” on line 251

). Ambiguity arises when multiple valid decryptions are possible. Instead of dictating what secure

behavior is when this occurs, we choose to give the adversary a win when it does. This effectively

demands that it must be difficult for an adversary to create colliding ciphertexts using secure anAE

schemes when keys are sampled uniformly at random. It is important to note that the definition

does not address the possibility of adversaries that can learn the keys of communicants or even

install their own keys. As in-depth discussion surrounding colliding ciphertexts naturally moves

towards committing AE, we save further discussion on this for a later chapter.

It is worth touching on the bookkeeping used in the ideal game as well. There is a dictionary

H (for “history”) that is used in recording which (ℓ,N,A,M) values gave rise to a ciphertext C

during encryption (line 244 ). This is later used in decryption to correctly respond to the adversary

(line 251). The list ND[ℓ] records the sequence of already-observed nonces for session ℓ, which is

used to compute the acceptable nonces using the policy Nx. The lines 255 -256 truncate this nonce

history to only that which is needed to compute Nx. Lastly, the associative arrays AD and A[ℓ]

keep track of globally registered ADs and ADs registered specific to session ℓ respectively.

3.2. The NonceWrap Scheme

Ciphertext Structure. Encryption under NonceWrap is illustrated in Fig. 3.2. The construction

uses two main primitives: an n-bit blockcipher E and an nAE scheme E . The blockcipher is invoked

once per encryption call, while the nAE scheme does the majority of the work. NonceWrap also

employs a hash function H, but it is used only for processing the AD. The hash function only

outputs a few bits as we do not seek collision-resistance from it. In fact, we do not depend on any

security property of H whatsoever. A poor choice of H (like the constant function) would only

slow down decryption (in the case where there are multiple AD values for each session), but would
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Figure 3.2. Scheme illustration. NonceWrap encryption outputs a ciphertext
that consists of two parts: a header Head, which is produced from a blockcipher E,
and a body Body, which is produced from an nAE scheme E . The hashed AD in
the header can be omitted in the customary case where there is one AD per session
at any time.

otherwise have no adverse effect. If the 1AD/session restriction is being followed, then NonceWrap

does not need to use a hash function at all.

There are two parts to a NonceWrap-produced ciphertext: a header and a body. The header

Head would usually be sixteen bytes. It not only encodes the nonce N , which would typically be

twelve bytes [43], but also some redundancy (a length ρ string of zero bits) and a hash of the

AD. The body Body is created by standard nAE encryption using the given key, nonce, AD, and

message. To get the full ciphertext, NonceWrap simply prepends the header to the body. We stress

that this is the full ciphertext as this is all the encrypting party needs to send to the decrypting

one. In total, the length of the ciphertext for a message M is |M | + λ + τ where λ is the length

of the header and τ is the expansion of the nAE scheme. For now, the header length λ = n is the

same as the blocksize of E.

NonceWrap employs distinct keys for the blockcipher and the nAE scheme. The two keys

together make up a single NonceWrap session key.

Upon receiving a ciphertext C = Head ∥ Body, a receiver will often be able to determine that

the ciphertext does not belong to a candidate session just by examining the prefix Head. The header
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is deciphered using the candidate session key and if the mandated string of redundant zero bits is

not present, then the receiver immediately knows that this ciphertext cannot be for the candidate

key. If the zero bits are present, it can check whether the deciphered nonce is within the session’s

nonce policy, or whether the deciphered AD hash is the hash of an AD registered for the session.

If any of these checks fail, then it knows that the ciphertext as a whole is not associated with the

candidate session. If all of them pass, then the body Body itself still needs to be decrypted under

the session’s key, which can very well still reject the ciphertext. But, the point that we want to

emphasize is that the receiver may skip trial-decryption for the body if these checks on the header

do not pass. This is valuable as trial-decryption may be expensive, especially if the ciphertext is

long.

If one is employing the 1AD/session assumption, then the hash of the AD can be omitted (which

is equivalent to treating the hash function as a constant function that always returns the empty

string). With a 16-byte header encrypting a 12-byte nonce, there would then be a 4-byte string of

zeroes. From this, there is roughly a 2−32 chance that a header for one session would be considered

a plausible candidate for another. When that does happen, trial-decryption of the ciphertext body

Body is performed, not the attribution of the ciphertext to an incorrect session. For misattribution

to occur, the ciphertext body would also have to verify as authentic when decrypted under the

inccorect key. For an nAE-secure encryption scheme and two honestly chosen random keys, it is

difficult to find two distinct explanations of the same encrypted message. This is a result that we

show in our later chapter on committing AE.

Precomputing Headers. Since the header is computed from the nonce and the AD, it is possible

for the receiver to precompute a header before it actually arrives. This is possible because the

receiver knows what nonces are within the policy its employing and it knows what AD values

are registered to particular sessions and globally across sessions. Recall that AD values in anAE

schemes are known to the receiver a priori to decryption, so it would be able to register the AD

values it is willing to accept. For efficiency purposes, NonceWrap will find it useful to precompute

headers in this way.

Suppose that the protocol is using the 1AD/session assumption, and thus the AD component

of header generation is omitted. Even in this case, the number of potential headers to precompute
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would be large if the breadth of the nonce policy is large– for example, under the permissive policy

Nx(Λ) = N. It is not practical to precompute headers under such a policy. To get around this,

we introduce another function that yields the anticipated (or likely) nonces, Lx. The function,

given the last few nonces received so far (some history), returns a set of nonces that are likely to

come next. Like the nonce policy function Nx, the signature of the anticipated-nonce function is

Lx : N≤d → P(N). While its signature is identical to that of Nx, it is distinct from Nx, which

names the set of nonces that are permissible given a history of received nonces as opposed to naming

what is likely. We keep in mind that anything outside of Nx’s returned set should be considered

inauthentic. As such, we require that anything that is likely is also permissible: Lx(n) ⊆ Nx(n)

for all n ∈ N≤d.

We call an anAE scheme sharp if it employs nonce policy and anticipated nonce functions such

that Lx = Nx. For a sharp scheme, any nonce that it does not anticipate is considered out of policy.

Through precomputing headers by anticipating incoming nonces and leveraging a priori knowledge

of ADs, NonceWrap will enjoy some efficiency benefits in the general case. Sharpness can improve

efficiency even more.

NonceWrap Data Structures. We now delve more deeply into the structure of NonceWrap.

The construction is defined in Fig. 3.3 and a list of the data structures it employs is given in Fig. 3.4.

The scheme in full NonceWrap[E,H, E ,Lx,Nx] is built from a blockcipher E : {0, 1}k1 × {0, 1}n →

{0, 1}n, a hash function H : {0, 1}∗ → {0, 1}β, an nAE scheme E : K × N × A ×M → C, a nonce

policy Nx : {0, 1}≤d → P(N), and an anticipated nonce function Lx (with the same signature as

that of Nx), which always outputs a subset of what Nx permits.

NonceWrap heavily utilizes dictionaries for efficiency. The most significant of these dictionaries

is K.LNA, which maps headers to sets of (SID, nonce, AD) triples. (Recall that K is the state of

NonceWrap). The set contains the triples that “explain” the header. When a session is initialized,

the dictionary is populated with headers based on anticipated nonces from an empty nonce history

and the set of globally registered ADs. When a session ℓ is torn down, all the triples associated

with the terminated session are expunged from the dictionary. When a new global AD is registered,

new headers are precomputed and entered into K.LNA for each of the sessions and their currently

anticipated nonces. When a session-specific AD is registered, new headers based on the registered
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Π.Init(K)

00 ℓ←K.ctr++

01 K.K1[ℓ] ∥K.K2[ℓ]← K

02 where |K.K1[ℓ]| = k1

03 K.L
∪← {ℓ}; K.A[ℓ]← ∅

04 K.N[ℓ]← Λ; K1←K.K1[ℓ]

05 for N ∈ Lx(Λ) do

06 for ADs ∈K.AD.values do

07 for A ∈ ADs do

08 head← N ∥ 0ρ ∥H(A)

09 Head← EK1(head))

0A K.LNA[Head]
∪← {(ℓ,N,A)}

0B ret ℓ

Π.Term(ℓ)

10 for S ∈K.LNA.values do

11 S
∖← {ℓ} ×N ×A

12 K.L
∖← {ℓ}

Π.Asso(A)

20 B ← H(A); K.AD[B]
∪← {A}

21 for ℓ ∈K.L do

22 for N ∈ Lx(K.N[ℓ]) do

23 Head← EK.K1[ℓ](N ∥ 0ρ ∥B)

24 K.LNA[Head]
∪← {(ℓ,N,A)}

Π.Asso(A, ℓ)

25 B ← H(A); K.A[ℓ][B]
∪← {A}

26 for N ∈ Lx(K.N[ℓ]) do

27 Head← EK.K1[ℓ](N ∥ 0ρ ∥B)

28 K.LNA[Head]
∪← {(ℓ,N,A)}

Π.Disa(A)

30 B ← H(A); K.AD[B]
∖← {A}

31 for S ∈K.LNA.values do

32 S
∖← L×N × {A}

Π.Disa(A, ℓ)

33 B ← H(A); K.A[ℓ][B]
∖← {A}

34 for S ∈K.LNA.values do

35 S
∖← {ℓ} ×N × {A}

Π.Enc(K,N,A,M)

40 K1 ∥ K2 ← K where |K1| = k1

41 Head← EK1
(N ∥ 0ρ ∥ H(A))

42 Body← E(K2, N,A,M)

43 ret C ← Head ∥ Body

Π.Dec(C) Phase-1 (starting at 51)

50 Head ∥ Body← C where |Head| = n

51 for (ℓ,N,A) ∈K.LNA[Head] do

52 K1 ←K.K1[ℓ]; K2 ←K.K2[ℓ]

53 M ← D(K2, N,A,Body)

54 if M ̸= ⊥ then goto 5F

55 for ℓ ∈K.L do Phase-2

56 K1 ←K.K1[ℓ]; K2 ←K.K2[ℓ]

57 N ∥ R ∥ B ← E−1
K1

(Head)

58 where |N | = η and |R| = ρ

59 if R ̸= 0ρ or N /∈ Nx(K.N[ℓ]) then

5A continue

5B for A ∈K.A[ℓ][B] ∪K.AD[B] do

5C M ← D(K2, N,A,Body)

5D if M ̸= ⊥ then goto 5F

5E ret ⊥

5F Old← Lx(K.N[ℓ]) Phase-3

5G K.N[ℓ]
∥← N

5H if |K.N[ℓ]| > d then

5I K.N[ℓ]← tail(K.N[ℓ])

5J New← Lx(K.N[ℓ])

5K for N ′ ∈ Old \New do

5L for S ∈K.LNA.values do

5M S
∖← {ℓ} × {N ′} ×A

5N for N ′ ∈ New \Old do

5O for B ∈K.A[ℓ].keys ∪K.AD.keys do

5P Head← EK1
(N ′ ∥ 0ρ ∥B)

5Q for A′ ∈K.A[ℓ][B] ∪K.AD[B] do

5R K.LNA[Head]
∪← {(ℓ,N ′, A′)}

5S ret (ℓ,N,A,M)

Figure 3.3. NonceWrap. The scheme Π = NonceWrap[E,H, E ,Lx,Nx]. Data
structures employed are described in Fig. 3.4.
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K.L Set of SIDs

K.K1 Dictionary mapping an SID to a key for the blockcipher E

K.K2 Dictionary mapping an SID to a key for the nAE scheme E
K.N Dictionary mapping an SID to a list of nonces

K.A Dictionary mapping an SID to a dict. mapping a hashed AD to a set of ADs

K.AD Dictionary mapping a hashed AD to a set of ADs

K.LNA Dictionary mapping a header to a set of (SID, nonce, AD) triples

Figure 3.4. Data structures employed for NonceWrap. To achieve good
decryption-time efficiency, NonceWrap employs a set ADT and multiple dictionaries,
one of which has dictionary-valued entries. Some simplifications are possible for the
customary case of 1AD/session.

AD are computed just for that session and its anticipated nonces. Removing an AD through Disa

will remove all the triples associated with that AD from K.LNA. We note that the nonces in the

triples recorded in K.LNA: all the nonces must belong to an active session’s anticipated nonce set.

From this and the way headers and tuples are entered and removed from K.LNA, an invariant

property of the dictionary arises: for any tuple (ℓ,N,A) extracted from K.LNA using any header

as a key, it must be the case that ℓ is an active session, N is within the nonce policy of ℓ by Nx,

and A is registered either globally or specifically to ℓ.

There are two dictionaries used for managing AD values. The straightforward one is the dictio-

nary K.AD, which maps hashes of AD values to sets of AD values. As it does not manage anything

related to SIDs, this dictionary is reserved specifically for global ADs The other dictionary, K.A

maps an SID to another dictionary that maps hashed ADs to sets of AD values.

There is some complexity to these dictionaries as there is some data structure nesting. The

reason that the dictionaries use sets as their values (in terms of their key and value pairs) is that

it is possible for there to be multiple explanations of the same header or AD hash. For the header,

after q headers are inserted into K.LNA, a rough upper bound of there being a collision is q2/2n+1.

Since headers are made with the blockcipher E, multiple headers for the same session will never

collide because they are enciphered under the same key. The only effect of header collisions is that

the receiver may have to perform more nAE decryptions as it must do a trial-decryption for each

collided header. Any collisions in AD hashing depends on the hash function used. We make no

assumptions of the hash function and any collisions resulting from it only impact efficiency (the
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receiver might have to execute multiple trial-decryptions in case of collision). There is also the

dictionary K.A that maps SIDs to other dictionaries. Since SIDs are assumed to be unique, one

can think of this as creating a dictionary like the global AD dictionary AD for each session that

keeps track of session-specific ADs.

The remaining data structures are straightforward. The dictionary K.N keeps track of this

history of received nonces for each session. The dictionaries K.K1 and K.K2 map SIDs to block-

cipher and nAE scheme keys respectively. These do not have to worry about collisions due to the

uniqueness of SIDs. Finally, K.L is a simple set of all active SIDs.

NonceWrap Decryption. Decryption is the most complicated of NonceWrap’s algorithm. Ex-

pectedly so, as the anAE definition requires schemes to recover the SID, the nonce, the AD, and

the plaintext from just the ciphertext.

NonceWrap decryption can be broken into three phases. Phase-1 attempts to decrypt the

ciphertext in the most efficient way. Upon receiving a ciphertext C = Head ∥ Body, decryption

looks up the header Head in its dictionary K.LNA, which would contain the precomputed headers

with anticipated nonces. If the header is there, then decryption immediately knows the SID, nonce,

and AD triples that are associated with the header. There is an entire set of these triples, but we

do not expect the set to be large. Decryption then iterates over this small set and trial-decrypts the

ciphertext body using the SID, nonce, and AD the triples provide. If one of the nAE decryption

attempts succeeds, then the message has been recovered and the procedure skips to phase-3.

If all the trial-decryptions fail, or if Head is not inK.LNA (perhaps the nonce used for Head was

not anticipated), then NonceWrap will try to decrypt with phase-2. This phase iterates over every

session, using each session key to trial-decipher the header. For a candidate deciphered header, it

checks to see whether there are ρ 0-bits present and whether the nonce found is within the candidate

session’s policy. If not, NonceWrap can quickly reject this session for this ciphertext without having

to process the ciphertext body. If so, NonceWrap tries all the ADs, both global and specific to the

candidate session, associated with the hash value found in the deciphered header and decrypts the

body. If no valid decryption is found, then decryption outputs ⊥, rejecting this ciphertext for all

of NonceWrap’s active sessions. If one of the attempts is successful, then the message has been

recovered and decryption goes into phase-3.
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Phase-3 is where precomputation of the next anticipated headers is done. Entering phase-3

means that decryption knows the (ℓ,N,A,M) for the queried ciphertext regardless of which of the

previous phases it came in from. After updating the nonce history for session ℓ using N , NonceWrap

can then compute the next set of anticipated nonces using Lx, a set called New in the code. With

the newly anticipated nonces, the NonceWrap can compute new headers and add them to K.LNA

as the next expected headers. It also removes any headers that have to do with nonces that are no

longer anticipated, which is the set Old \ New where Old is the set of nonces anticipated with the

nonce history before the update. Because of this, the only headers that populate K.LNA at any

point in time are headers that the receiver expects to receive next.

Efficiency. Let s denote the maximum number of active sessions. Let t be the time it takes to

compute the E or E−1. Assume an anticipated-nonce policy Lx whose breadth is a small constant.

Assume the maximum number of AD values registered either globally or to any one session is a

small constant. Assume an amount of redundancy ρ ∈ O(lg s) used to create headers. Assume the

nAE scheme E uses time O(m + a) to decrypt a length m + τ ciphertext with AD A. Assume a

nonce can be checked as being in-policy, according to Nx, in constant time. Assume dictionaries

are implemented in some customary way, with expected log-time operations. Then the expected

time to decrypt a valid ciphertext that used an anticipated nonce will be O(m+ a+ t+ lg s). The

expected time to decrypt an invalid ciphertext, or a valid ciphertext that used an unanticipated

nonce, will be O(m+ a+ st).

For any sharp scheme, phase-2 is never executed as any nonce not anticipated is not within

policy. Hence, the headers recorded in K.LNA consist of everything that is acceptable. This results

in sharp schemes having a decryption time of O(m+ a+ t+ lg s) for any ciphertext. This does not

just improve run-time efficiency; we can leverage sharpness to improve bandwidth efficiency as well.

Notice that without running phase-2, the blockcipher’s inverse E−1 is never computed. As such,

the blockcipher EK1 : {0, 1}n → {0, 1}n can be replaced by a PRF FK1 : {0, 1}n → {0, 1}λ where λ

is considerably smaller than n. Only one or two bytes is necessary for λ as the header collisions

only cause the receiver to have to do more than one trial-decryptions. Compare this to plain old

nAE where a sender may be required to transmit the 12-byte nonce in the clear. By encoding the
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nonce with the PRF, we can actually save significant bandwidth while hiding it from observers of

the transmission.

3.3. NonceWrap Security

Multi-key strong-PRP security. We will find it convenient to define a notion of multi-key

strong PRP security, which we denote as prp∗-security. In customary strong PRP security, like

conventional PRP security, the adversary has access to a forward direction oracle that computes

a real or ideal permutation. Strong PRP security adds a backward direction oracle that computes

the inverse. To adapt this to the multi-key setting, we treat the PRP as a length-preserving PRI.

Define InjT({0, 1}n) = InjT0({0, 1}n). For an adversary A, we define its advantage in attacking the

prp∗-security of an n-bit PRP E as the real number

Advprp∗
E (A) = Pr[for i ∈ N do Ki↞K: AFK(·,·),GK(·,·)⇒1]−

Pr[p↞InjN({0, 1}n): AFp(·,·),Gp(·,·) ⇒ 1]

where the oracles behave as follows: oracle FK , on query (i,X), returns E(Ki, X); oracle GK , on

query (i,X), returns E−1(Ki, X); oracle Fp, on query (i,X), returns p(i,X); and oracle Gp, on

query (i,X), returns p−1(i,X).

NonceWrap security. To show the security of NonceWrap, we establish that its anae-security

is good if E is prp∗-secure and E is nae∗-secure.

Theorem 3.3.1. There exists a reduction �, explicitly given in the proof of this theorem, as

follows: Let E : {0, 1}k1 × {0, 1}n → {0, 1}n be a blockcipher, let H : {0, 1}∗ → {0, 1}β be a hash

function, let E : KE × N × A × M → CE be an nAE scheme, and let Nx : N≤d → P(N) be a

nonce policy with depth d. Let Lx be an anticipated-nonce function with the same signature as Nx

such that Lx(n) ⊆ Nx(n) for all n ∈ N≤d. Let Π = NonceWrap[E,H, E ,Lx,Nx] be a NonceWrap

scheme. Let σ be the expansion of Π and τ be the expansion of E. Let A be an adversary that

attacks Π. Then � transforms A into a pair of adversaries (B1,B2) such that
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Advanae
Π,Nx(A) ≤ Advprp∗

E (B1) +Advnae∗
E (B2)+

q2e
2n+1

+
q2e

2τ+1
+

q2e + q2d
2σ+1

+
q4e

2n+τ+2

where qe and qd are the number of encryption and decryption queries that A makes. The resource

usage of B1 and B2 are similar to that of A.

Proof. We define a sequence of hybrid games that transition the real anae game to the ideal

anae game, where the games are using Π and Nx. The first of these hybrids, G1 replaces the

blockcipher E with a random function P from InjN({0, 1}n). Note that P (i, ·) is an injection for all

i ∈ N and is length-preserving, so it is a permutation. We construct an adversary B1 that attacks

the blockcipher E by having it simulate these two games. Whenever A makes a query, B1 follows

the protocol defined in the real anae game. If the query requires a blockcipher operation, B1 would

query its own forward direction oracle and use that output for the operation instead. It can use

its backward direction oracle for inverting the blockcipher. At the end, B1 outputs the same bit A

returns. The advantage of B1 is equivalent to A’s advantage in distinguishing the games it simulates

as the ciphertexts that the simulated encryption oracles would produce would be identical with the

exception of the header, which depends on whether B1’s oracle is using P or the real blockcipher

E. With that, we have:

Pr[ ARealanaeΠ ]−Pr[ AG1 ] ≤ Advprp∗
E (B1)

The next hybrid G2 replaces NonceWrap’s underlying nAE scheme E with a random function F

from InjN×N×A
τ (M). We construct an adversary B2 that attacks the nAE scheme by simulating

the two hybrid games. Like B1, adversary B2 will just follow protocol except it replaces any nAE

operations with its oracles. For any blockcipher operations, it simulates P as described in the

previous step. It returns the same bit that A returns. The advantage of B2 is equivalent to A’s

advantage in distinguishing the games it simulates as the only difference between the simulated

games is how the ciphertext body is produced, which depends on whether B2’s oracle is using F or

the real nAE scheme E . With that, we have:
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Pr[ AG2 ]−Pr[ AG3 ] ≤ Advnae∗
E (B2)

At this point we have a real anae game using a NonceWrap scheme built on ideal primitives and we

want to measure how well A can distinguish it from the ideal anae game. For the upcoming parts,

we modify the ideal game step-by-step until it is indistinguishable from the real game.

The first hybrid, G7, makes a simple change to the decryption oracle. Referring to the code

in Fig. 3.1, on line 251, there is a condition that the tuple in the history must be unique. This

hybrid simply removes the “unique” condition. Instead, if there are multiple valid tuples that map

to a queried ciphertext, the oracle will return the lexicographically first tuple instead of returning

⊥. Clearly, to distinguish between G7 and the ideal game, A would need to call decryption on a

ciphertext with multiple valid tuples as the former would return a tuple and the latter would return

⊥. The probability that this occurs is upper-bounded by the probability that two ciphertexts from

encryption are the same as multiple tuples need to be mapped to the same ciphertext in H for

there to be multiple valid tuples. Hence, the advantage A has for distinguishing between these two

games is

Pr[ AIdealanaeΠ ]−Pr[ AG7 ] ≤ q2e
2σ+1

The next modification only changes how ciphertexts are generated. Instead of randomly sam-

pling from {0, 1}|M |+τ on an encryption query, the encryption oracle will instead use a pair of PRIs

to generate a “header” and “body” to create the ciphertext. To do this, we modify the code for the

ENC oracle to use the procedure F defined in the top half of Fig. 3.5. The bottom half of the figure

shows the modified encryption oracle. The procedure captures the lazy-sampling of the forward

direction of a random function or injection depending on whether the code in grey is executed.

Without the grey, the code simulates a function for each tweak T ; With the grey, it simulates an

injection for each T . Having that, we can use F to capture the pair of PRIs: one from InjN×N×A
τ (M)

for creating the body and one from InjN({0, 1}n) for creating the header.

We can think of G7 as using two different instances of F , which we label as FE and FE , without

the grey to generate a header and body and concatenating the two results. This is the same as
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procedure F (T,X)

900 if X ∥ 0w−u ∈ dom(f(t, ·)) then
901 ret f(T,X)

902 Y↞{0, 1}v

903 if Y ∈ range(f(T, ·)) then
904 bad← true

905 Y↞{0, 1}v \ range(f(T, ·))
906 f(T,X ∥ 0w−u)← Y

907 ret Y

procedure F−1(T, Y )

910 if Y ∈ range(f(T, ·))
911 X ′ ∥ R← f−1(T, Y )

912 where |X ′| = u

913 if R = 0w−u then ret X ′

914 ret ⊥
915 X↞{0, 1}w

916 if X ∈ dom(f(T, ·)) then
917 bad← true

918 X↞{0, 1}v \ dom(f(T, ·))
919 f(T,X)← Y

91A X ′ ∥ R← X where |X ′| = u

91B if R = 0w−u then ret X ′

91C ret ⊥

procedure G6.ENC(ℓ,N,A,M)

640 if ℓ ̸∈ L or N ∈ NE[ℓ] then ret ⊥
641 NE[ℓ]

∪← {N}
642 Head← FE(ℓ,N ∥ 0ρ ∥ H(A))

643 Body← FE((ℓ,N,A),M)

644 C ← Head ∥ Body
645 H[C]

∪← {(ℓ,N,A,M)}; ret C

Figure 3.5. Top. Lazy-sampling of random functions or injections in the multi-key
setting. With the code in grey, the procedures simulate a random injection for each
T from u bits to w bits. Without the code in grey, the procedures simulate a random
function for each T . Bottom. Modified encryption oracle that uses either random
functions or random injections to generate the ciphertext. Here, ρ = n−η−β where
η is the length of the nonce. The game using injections is called G6.

generating a random string of the same length since queries to the encryption oracle can’t be

repeated, so a random header and body is sampled each time. When we replace the random

ciphertext generation with the pair of PRIs, we use FE and FE with the grey code. We refer to the

game using F for the PRIs as G6.

To distinguish between G6 and G7, A would need to distinguish the difference between F with

and without the grey code. This is the probability that bad gets set to true in F . For now, we

don’t need to worry about F−1 as the adversary has no way of accessing it. On the ith encryption

query, the probability that bad gets set to true is at most (i−1)/2w. It follows that the probability
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procedure G5.DEC(C)

550 Head ∥ Body← C where |Head| = n

551 for ℓ ∈ L do

552 for N ∈ Nx(ND[ℓ]) do

553 for A ∈ A[ℓ] ∪AD do

554 M ← F−1
E ((ℓ,N,A),Body)

555 if (ℓ,N,A,M) ∈ H[C] then

556 ND[ℓ]
∥← N

557 if ND[ℓ] /∈ dom(Nx) then ND[ℓ]← tail(ND[ℓ])

558 ret (ℓ,N,A,M)

559 ret ⊥

Figure 3.6. G5’s decryption oracle. This decryption oracle searches for a
(ℓ,N,A) triple to use to recover M . It then validates the resulting quadruple by
making sure that it maps to the ciphertext in the history H.

bad gets set to true is at most q2e/2
w+1 for qe encryption queries. The adversary may observe this

event in either FE or FE . Thus, A’s advantage here is

Pr[ AG7 ]−Pr[ AG6 ] ≤ q2e
2n+1

+
q2e

2τ+1

Our next hybrid G5 changes the decryption oracle and is shown in Fig. 3.6. The other oracles

remain the same. Instead of identifying the SID, nonce, and AD using H[C] right away, the oracle

will search for the tuple by going through all ℓ ∈ L, N ∈ Nx(ND[ℓ]), and A ∈ A[ℓ] ∪AD. For each

of those tuples, it will try to invert the injection on Body to recover M . Now it’s possible that the

inversion results in an M that wasn’t recorded in H since F−1 as defined in Fig. 3.5 can return

values that weren’t given by the forward oracle. However, we check on line 555 to make sure that

the (ℓ,N,A,M) we found is actually mapped to C, which is something required to return a valid

tuple in G6’s decryption. The other validity conditions on ℓ, N , and A are already accounted for

since we iterate through the sets that validate them. We also iterate through them in lexicographic

order, which guarantees that if there are multiple valid tuples, we return the lexicographically first

one. Essentially, G5 does the same as G6’s decryption; it just does it in a roundabout way by

searching for the tuple. Hence, G5 and G6 are indistinguishable from each other to A.

Instead of looping through the permitted nonces and ADs, we can use the header to figure out

the nonce and AD. The header as generated in the previous hybrid’s encryption contains the nonce
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procedure G4.ASSO(A)

420 B ← H(A); AD[B]
∪← {A}

procedure G4.ASSO(A, ℓ)

421 B ← H(A); A[ℓ][B]
∪← {A}

procedure G4.DISA(A)

430 B ← H(A); AD[B]
∖← {A}

procedure G4.DISA(A, ℓ)

431 B ← H(A); A[ℓ][B]
∖← {A}

procedure G4.DEC(C) Resembles phase-2

450 Head ∥ Body← C where |Head| = n

451 for ℓ ∈ L do

452 N ∥ R ∥ B ← F−1
E (ℓ,Head)

453 where |N | = η and |R| = r

454 if R ̸= 0ρ or N /∈ Nx(ND[ℓ])

455 then continue

456 for A ∈ A[ℓ][B] ∪AD[B] do

457 M ← f−1
E ((ℓ,N,A),Body)

458 if (ℓ,N,A,M) ∈ H[C] then

459 ND[ℓ]
∥← N

45A if ND[ℓ] /∈ dom(Nx) then

45B ND[ℓ]← tail(ND[ℓ])

45C ret (ℓ,N,A,M)

45D ret ⊥

Figure 3.7. G4’s decryption oracle. This decryption oracle resembles phase-2
of NonceWrap. Functionally, it does what the ideal decryption oracle does except
instead of looking up a valid tuple in the ciphertext history it iterates through every
possibility to search for one.

and a hash of the AD. This is just like in NonceWrap encryption. We make modifications to the

decryption oracle to do just this. For us to use the AD hash, we also need to modify the ASSO

and DISA oracles. The result of these modifications leaves us with hybrid G4, which is presented

in Fig. 3.7.

Note that decryption now resembles phase-2 of NonceWrap decryption. It’s clear that any

session it returns is active and any nonce it returns is within the policy as the former is found

through iteration and there is an explicit check of the latter. It’s also clear that any AD that it

returns is registered as A[ℓ][B] ∪AD[B] is a subset of all the ℓ’s ADs and all the global ADs.

But does G4 decryption always behave like G5’s decryption? If queried with a C that did not

come from the encryption oracle, then both of them return ⊥ as they both check to make sure

(ℓ,N,A,M) ∈ H[C] before returning a tuple. If queried with a C that did, assuming that C was

made with an active session key, a nonce under the session’s policy, and a properly registered AD,

then both decryptions return the same tuple. It’s clear that G5 will find the first lexicographic
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tuple due to its iteration. If there’s only one valid tuple explaining C, then, trivially, the first tuple

is returned.

But if there are multiple valid tuples, what happens? If the tuples are under different SIDs,

then we arrive at the lexicographically first SID by iteration. If the SIDs are the same, then the

header is deciphered and the nonce and AD hash are found. This SID can only have one valid

nonce mapped to this header since the header was generated by an injection. Even though G5

doesn’t decipher the header, it still checks the association between nonce and header since it checks

whether the tuple is in H[C]. This means that G5, for a fixed session, can only find one nonce—the

same nonce as G4—that is in H[C] even if it iterated through the entirety of the policy. Similarly,

the SID can only have one AD hash mapped to this header for the same reason. Even though G5

iterates through all registered ADs, the ones that it finds that are in H[C] would have their hashes

associated to the header. Since G4 lexicographically iterates through the A[ℓ][B]∪AD[B] subset of

registered ADs, it would arrive at the same AD as G5. Hence, G5 and G4 always arrive at the same

result for a given ciphertext, making the two indistinguishable.

The next modification adds dictionary LNA from NonceWrap into the game. To start, suppose

that we add LNA into the ideal game without actually using it for decryption yet. All other data

structures that are needed to support LNA are already exist in our hybrids up to this point; we

already manage the active SIDs in the set L and the nonce history of a session in ND[ℓ]. The

structures for ADs were modified from sets into dictionaries in G4, but we can still derive the set of

all valid ADs for a session ℓ from them. The union of all sets in A[ℓ].values∪AD.values is just that.

We’ll denote this set as Aℓ. All of these data structures are needed to add or remove tuples from

LNA. The code for this hybrid G3 is presented in Fig. 3.8, but disregard the phase-1 decryption

block for now. First, we want to assert a property of LNA.

Lemma 3.3.1. Let L, ND, A, AD, and LNA be the data structures used in hybrid game G3.

Let X be the union of all sets in LNA.values. For any SID ℓ, let Aℓ be the union of all sets in

A[ℓ].values ∪AD.values. If (ℓ,N,A) ∈ X then ℓ ∈ L, N ∈ Nx(ND[ℓ]), and A ∈ A.

Proof. Suppose there exists some (ℓ,N,A) ∈ X such that one of the conditions described in

the lemma is false. There are two ways that this can happen: either a value was added into LNA
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that violated one of the conditions or the condition itself was modified, but LNA was not modified

accordingly. We exhaustively check for a case in which this can occur, specifically looking at when

we add a tuple or modify the condition.

• Case: (ℓ,N,A) ∈ X and ℓ /∈ L.

– When tuple is added in INIT, ℓ ∈ L since INIT adds it to L.

– When tuple is added in ASSO(A), ℓ ∈ L since the procedure iterates through ℓ to

add it.

– When tuple is added in ASSO(A, ℓ), ℓ ∈ L by assumption.

– When tuple is added in DEC, ℓ ∈ L since the tuple is added on successful decryption,

which happens by iterating through L and finding ℓ.

– When ℓ is removed from L, all tuples with ℓ as an element are removed from LNA.

• Case: (ℓ,N,A) ∈ X and A /∈ Aℓ.

– When tuple is added in INIT, A ∈ Aℓ since the procedure iterates through AD to get

A.

– When tuple is added in ASSO(A), A ∈ Aℓ since the procedure adds A to AD before

adding the tuple to LNA.

– When tuple added in ASSO(A, ℓ), A ∈ Aℓ since the procedure adds A to A[ℓ] before

adding the tuple to LNA.

– When tuple is added in DEC, A ∈ Aℓ since the procedure iterates through Aℓ to add

each A.

– When A is removed in DISA(A), all tuples with A as an element are removed from

LNA.

– When A is removed in DISA(A, ℓ), all tuples with both ℓ and A are removed from

LNA. If a tuple containing A is still in X, then it must have a different SID from ℓ.

• Case: (ℓ,N,A) ∈ X and N /∈ Nx(ND[ℓ]).

– When tuple is added in INIT, N ∈ Nx(ND[ℓ]) since ND[ℓ] is initialized to the empty

list and the procedure iterates over Lx(Λ), which is a subset of Nx(Λ).

– When tuple is added in either ASSO, N ∈ Nx(ND[ℓ]) since the procedure iterates

through each nonce in Lx(ND[ℓ]), which is a subset of Nx(ND[ℓ]).
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– When tuple is added in DEC, ND[ℓ] is appended with a new nonce N ′ first. Two sets

are generated here: Lx(ND[ℓ]) and Lx(ND[ℓ] ∥ N ′). The former is Old and the latter

is New in the pseudocode. The procedure iterates over New \Old, which is a subset

of Nx(ND[ℓ] ∥ N ′) when adding new tuples.

– When tuple is removed in DEC, the sets Old and New are used again. The procedure

iterates over Old\New and removes tuples containing those nonces from LNA. Hence,

any tuple with a nonce not in Lx(ND[ℓ] ∥ N ′) is removed.

None of these cases provide a situation where (ℓ,N,A) ∈ X such that ℓ /∈ L, N /∈ Nx(ND[ℓ]),

or A /∈ Aℓ. The lemma follows. □

As per lemma 3.3.1, we have that all tuples recorded in LNA satisfy the validity conditions

in ideal decryption. Now when phase-1 decryption is accounted for in G3 we observe that any

successful decryption that occurs must have happened on a tuple in LNA, meeting the validity

conditions. Here, success is defined as executing the goto instruction on line 354, which instructs

the procedure to enter phase-3. The third phase does not modify the tuple being returned in any

way; it only does bookkeeping to update the data structures, making sure that they are compliant

to the validity conditions. So, whatever tuple was acquired in phase-1 would be returned. If no

tuple was found in phase-1, the procedure will enter phase-2 where it iterates through every session

as done in G4’s decryption. Whether the valid tuple (ℓ,N,A,M) being returned is found in phase-1

or phase-2, the conditions placed on each component of the tuple remains the same: ℓ must be in

L, N must be in Nx(ND[ℓ]), A must be in A[ℓ] ∪AD, and the entire tuple must be in H[C]. Thus,

G3 decryption always returns a valid tuple under the same conditions as G4.

However, in some cases, G3 does not return the lexicographically first tuple. Suppose that the

adversary makes two encryption queries with tuples T1 and T2 such that the tuples are different

and their parameters are valid for decryption. Suppose it gets back the same ciphertext C both

times. Let’s say T1 is the lexicographically first tuple, but its nonce is not within Lx(·). Let’s say

T2’s nonce is within Lx(·). When the adversary queries decryption with C, in G4, it gets back

T1. On the other hand, it gets back T2 in G3 since phase-1 decryption would find T2 first. The

probability this occurs is upper-bounded by the probability of getting the same ciphertext from

the encryption oracle, which occurs if the same header and body are outputted by their respective
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procedure G3.INIT()

300 K↞K

301 ℓ← Π.Init(K)

302 K[ℓ]← K; L
∪← {ℓ}; NE[ℓ]← ∅

303 for N ∈ Lx(Λ) do

304 for ADs ∈ AD.values do

305 for A ∈ ADs do

306 head← N ∥ 0ρ ∥H(A)

307 Head← FE(ℓ,head)

308 LNA[Head]
∪← {(ℓ,N,A)}

309 ret ℓ

procedure G3.TERM(ℓ)

310 for S ∈ LNA.values do

311 S
∖← {ℓ} ×N ×A

312 L
∖← {ℓ}

procedure G3.ASSO(A)

320 B ← H(A); AD[B]
∪← {A}

321 for ℓ ∈ L do

322 for N ∈ Lx(ND[ℓ]) do

323 Head← FE(ℓ,N ∥ 0ρ ∥ B)

324 LNA[Head]
∪← {(ℓ,N,A)}

procedure G3.ASSO(A, ℓ)

325 B ← H(A); A[ℓ][B]
∪← {A}

326 for N ∈ Lx(ND[ℓ]) do

323 Head← FE(ℓ,N ∥ 0ρ ∥ B)

324 LNA[Head]
∪← {(ℓ,N,A)}

procedure G3.DISA(A)

330 B ← H(A); AD[B]
∖← {A}

331 for S ∈ LNA.values do

332 S
∖← L×N × {A}

procedure G3.DISA(A, ℓ)

333 B ← H(A); A[ℓ][B]
∖← {A}

334 for S ∈ LNA.values do

335 S
∖← {ℓ} ×N × {A}

procedure G3.DEC(C) Phase-1

350 Head ∥ Body← C where |Head| = n

351 for (ℓ,N,A) ∈ LNA[Head] do

352 M ← F−1
E ((ℓ,N,A),Body)

353 if (ℓ,N,A,M) ∈ H[C] then

354 goto 35F

355 for ℓ ∈ L do P-2, same as G4’s

356 N ∥ R ∥ B ← F−1
E (ℓ,Head)

357 where |N | = η and |R| = r

358 if R ̸= 0r or N /∈ Nx(ND[ℓ])

359 then continue

35A for A ∈ A[ℓ][B] ∪AD[B] do

35B M ← F−1
E ((ℓ,N,A),Body)

35C if (ℓ,N,A,M) ∈ H[C] then

35D goto 35F

35E ret ⊥

35F Old← Lx(ND[ℓ]) Phase-3

35G ND[ℓ]
∥← N

35H if |ND[ℓ]| > d then

35I ND[ℓ]← tail(ND[ℓ])

35J New← Lx(ND[ℓ])

35K for N ′ ∈ Old \New do

35L for S ∈ LNA.values do

35M S
∖← {ℓ} × {N ′} ×A

35N for N ′ ∈ New \Old do

35O for B ∈ A[ℓ].keys ∪AD.keys do

35P Head← FE(ℓ,N
′ ∥ 0ρ ∥ B)

35Q for A′ ∈ A[ℓ][B] ∪AD[B] do

35R LNA.[Head]
∪← {(ℓ,N ′, A′)}

35S ret (ℓ,N,A,M)

Figure 3.8. Hybrid resembling NonceWrap. Game G3 executes procedures
similar to those of NonceWrap. For decryption to succeed, it follows the ideal game.
The encryption oracle is omitted as it is the same as G5’s, which is in Fig. 3.6.
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injections. In regards to just the header, the probability that any two headers is the same is 1/2n.

After qe encryption queries, any of those pairs of queries can have such a collision. There are about

q2e/2 ways to choose such a pair. Applying the same logic to the ciphertext body, A gets a collision

in both header and body and distinguishes the two hybrids with probability

Pr[ AG4 ]−Pr[ AG3 ] ≤ q2e
2n+1

· q2e
2τ+1

=
q4e

2n+τ+2

Observe that G3 executes almost exactly the same as G2, which is the real game with ideal

primitives does. The only differences in code are the checks for successful decryption. On lines 353

and 35C for G3, we verify that the tuple was actually used in encryption. On the other hand, in G2,

we move to phase-3 if M ̸= ⊥. This difference can result in the two returning different values. More

precisely, if queried with a ciphertext C that was not the result of an encryption query, G2 may

return a tuple while G3 would never return a tuple. The probability this occurs is upper-bounded

by the probability that the function F−1
E on query (T, Y ) returns a non-⊥ value given that Y was

not an output of FE . This is the probability that line 91B in the top half of Fig. 3.5 returns. That

is, the advantage A has in distinguishing G3 and G2 is

Pr[ AG3 ]−Pr[ AG2 ] ≤
q2d

2σ+1

Summing up all of the bounds computed over the hybrid argument, we get the bound in the

theorem statement.

□

3.4. Anonymous AE Prototype Implementations

A prototype implementation of NonceWrap from the author is available at [48]. The code is

written in Python (2.7.14 [52]) as this was the version compatible with the Python Cryptography

(2.3.1) at the time [51].

Along with NonceWrap, there are several other anAE schemes in the prototype. These are the

schemes aAENaive, aAEBase, and aAEDict. They are primarily historical artifacts of the develop-

ment and design of NonceWrap.

49



The scheme aAENaive takes the most näıve and brute force approach to decrypting an anony-

mous ciphertext. It simply iterates over all active keys, each of the nonces within their respective

nonce policies, and all the ADs that are registered with a given key, and trial decrypts until it

finds some input that successfully decrypts. It is not meant to be a good scheme, but is present for

benchmarking purposes.

The schemes aAEBase and aAEDict are the phases of NonceWrap decryption broken up into

individual schemes. The scheme aAEBase’s decryption is phase-2 of NonceWrap decryption—the

phase where decryption iterates over its keys and deciphers the header for candidate nonces and

AD hash values before trial decrypting. The scheme aAEDict’s decryption consists of phase-1 and

phase-3 of NonceWrap decryption—the phase that uses a dictionary and anticipated nonces in order

to quickly identify the inputs to use for decryption. There is no fallback phase-2 for this scheme

and as such it must be a sharp scheme. That is, what is anticipated is what is in policy for the

nonces of aAEDict. It should be noted that aAEDict has two headers, one for the nonce and one for

the AD hash. NonceWrap is the product of merging the two headers and combining the schemes

aAEBase and aAEDict.

3.5. Anonymous AE Remarks

Complexity. While we don’t find the anAE definition excessively complex, NonceWrap de-

cryption is quite complicated. One complicating factor is the rich support we have provided for AD

values—despite our expectation that implementations will assume the 1AD/Session restriction. Yet

we have found that building in the 1AD/Session restriction would only simplify matters modestly.

It didn’t seem worth it.

We suspect that, no matter what, decryption in anonymous-AE schemes is going to be com-

plicated compared to decryption under conventional nAE. The privacy principle demands that

ciphertexts contain everything the receiver needs to decrypt, yet no adversarially worthwhile meta-

data. The decrypting party must infer this metadata, and it should do so quite efficiently.

Timing side-channels. Our anAE definition does not address timing side-channels, and it is

worth noting NonceWrap raises several concerns with leaking identity information through decryp-

tion times. Timing information might leak how many sessions a header can belong to. In phase-2,
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nAE decryption is likely to be the operation that takes the longest, and it is possible that an

observer might learn information on the number of sessions that produced a valid-looking header.

Then there is the timing side-channel that arises from the usage of Lx and Nx. Phase-1 only works

on headers in Lx, and is expected to be faster than phase-2, leaking information about whether a

nonce was anticipated. We leave the modeling, analysis, and elimination of timing side-channels as

an open problem.

The usage puzzle. There is an apparent paradox in the use of anonymous AE. If used in an

application-layer protocol over something like TCP/IP, then anonymous AE would seem irrelevant

because communicated packets already reveal identity. But if used over an anonymity layer like

Tor [28], then use of that service would seem to obviate the need for privacy protection. It would

seem as though anonymous AE is pointless if the transport provides anonymity, and that pointless

if the transport does not provide anonymity.

This reasoning is specious. First, an anonymity layer like Tor only protects a packet while

it traverses the Tor network; once it leaves an exit node, the Tor-associated encryption is gone,

and end-to-end privacy may still be desired. Second, it simply is not the case that every low-level

transport completely leaks identity. For example, while a UDP packet includes a source port, the

field need not be used.

To give a concrete example for potential use, consider how NonceWrap (and anAE in general)

might fit in with DTLS 1.3 over UDP [55]. Unlike TLS, where session information is presumptively

gathered from the underlying transport, DTLS transmits with each record an explicit (sometimes

partially explicit) epoch and sequence number (SN). Since UDP itself does not use SNs, the explicit

SNs of DTLS are used for replay protection. While DTLS has a mechanism for SN encryption in

its latest draft, NonceWrap would seem to improve upon it. The way DTLS associates a key with

encrypted records is through the sender’s IP and port number at the UDP level. Using NonceWrap,

these identifiers could be omitted. If the receiver needs to know source IP and port in order to

reply, those values can be moved to the encrypted payload.

Further features of DTLS over UDP might be facilitated by NonceWrap. It provides a mecha-

nism in which an invalid record can often be quickly identified, a feature useful in DTLS. In DTLS,
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when an SN greater than the next expected one is received, there is an option to either discard the

message or keep it in a queue for later. This aligns with NonceWrap’s formulation of Lx and Nx.

It is rarely straightforward to deploy encryption in an efficient, privacy-preserving way, and

anAE is no panacea. But who’s to say how privacy protocols might evolve if one of our most basic

tools, AE, is re-envisioned as something more privacy friendly?
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CHAPTER 4

Committing Authenticated Encryption

This chapter presents committing authenticated encryption (cAE), the other major primitive

and contribution of this dissertation. This chapter examines definitions of previous committing AE

works and highlights their subtle differences. It presents its own definitional framework for cAE,

one that requires commitment to all encryption inputs in contrast to previous cAE definitions.

Furthermore, the fully committing CTX construction is presented in this chapter along with security

analysis. Lastly, this chapter gives new attacks on the committing security of AES-GCM and OCB.

A natural misconception about authenticated encryption (AE) is the belief that a ciphertext

produced by encrypting a plaintext with a key, nonce, and associated data (AD) effectively commits

to those things: decrypting it with some other key, nonce, or AD will usually fail, the transmission

deemed invalid. And why not? One wouldn’t expect to successfully open a lock when using an

incorrect key. The intuition is even memorialized in the name authenticated encryption: things

aren’t just private, the name implies, but authentic.

Yet Farshim, Orlandi, and Roşie [31] (FOR17) point out that AE provides no such guarantee—

not if the adversary can select any keys. Subsequent work demonstrated that just knowing the keys

suffices to construct a ciphertext that decrypts into different valid messages [29,36]. A variety of

work has also made clear just how wrong things can go when designers implicitly and incorrectly

assume that their encryption is committing [4,29,40].

We call the event of a ciphertext being “explained” in multiple and valid ways a misattribution.

The cited works offer definitions and schemes that seek to protect against misattribution. But these

definitions are mostly incomparable, weak, and fold in aims beyond avoiding misattribution.

Definitional framework. To begin, we revisit definitions for committing AE. We offer a defini-

tional framework that unifies and strengthens previous definitions targeting misattribution. We call

the security goals committing-AE (cAE). The framework applies to schemes for nonce-based AE
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with associated data (nAE). Encryption takes in a key K, a nonce N , an associated data A, and a

message M , and outputs a ciphertext C. Under our framework, an adversary succeeds in an attack

when it creates a misattribution. That happens when C results from known and distinct tuples

(K,N,A,M) and (K ′, N ′, A′,M ′) for valid messagesM,M ′. We say “results from” because C could

be output by encryption or input to decryption—anything that results in adversarial knowledge of

the pair (K,N,A,M), (K ′, N ′, A′,M ′).

Previous definitions consider only some forms of misattribution. For example, the full robustness

and key-commitment notions [4,31] require that the keys differ, K ̸= K ′, but ignore the possibility

of misattribution under the same key. Our framework can encompass all possible types of misat-

tribution (see Appendix 4.5). That said, we regard the desired target as the strongest definition,

AE that is fully committing, where the adversary wins if it manages any form of misattribution.

Our framework attends also to the status of keys held by parties. To model different levels of

adversarial activity, we include a definitional parameter t. This two-character string dictates what

types of keys the adversary might employ for a misattribution to occur. Keys are either: honest

(represented by the character 0), meaning they are generated uniformly at random and remain

unknown to the adversary; revealed (represented by a 1), meaning they were honestly generated,

but the adversary knows their value; or corrupted (an X), meaning the adversary itself chose the key.

This gives rise to six different definitions. This “knob” is useful for describing and understanding

attacks. The weakest of these notions models when both keys are honest. We show that ordinary

nAE-security implies this notion assuming the adversaries do not repeat nonces for the same key.

Many applications that require cAE security would work just fine with 0X-security, and stronger

quantitative bounds might be obtained for this case.

Main construction. Our main result is a method to convert an arbitrary (tag-based) nAE

scheme into a similarly efficient cAE scheme. We set high bars for security and efficiency. Security

is with respect to the strongest form of commitment: K, N , A, and M must all be “fixed” by a

ciphertext, even if the adversary controls all keys.

Our CTX construction is extremely simple. Starting from an nAE scheme whose encryption

algorithm E(K,N,A,M) produces a ciphertext C = C ∥ T consisting of a ciphertext core C (with

|C| = |M |) and a tag T (with |T | = τ), just replace the tag T with an alternative tag T ∗ =
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H(K,N,A, T ) (this tag of length µ). Decryption does the obvious, verifying T ∗. The function H

is a cryptographic hash function that, in the security proofs, is modeled as a random oracle. The

remarkable fact is that this extremely simple tweak to the nAE scheme not only works to commit

to K, N , and A, but also to the underlying message M . This ultimately follows from the injectivity

of the map from the ciphertext core C to the plaintext M when K, N , and A are all fixed.

The CTX construction is computationally efficient insofar as the work on top of the base nAE

scheme is a hash computation over a string that does not grow with the plaintext or ciphertext.

And the nAE scheme’s minimal ciphertext expansion is preserved, going from the τ (typically 128)

extra bits that are needed to provide authenticity to the µ (typically 160) extra bits that are needed

to provide authenticity and the binding (commitment) of all inputs.

Attacks on GCM and OCB. Previous misattribution attacks on GCM were mounted with

adversarial control of the keys [29,36]. It is mentioned by those same authors that knowledge of

the keys is sufficient. Under our terminology, this would be a CAEXX-attack and a CAE11-attack

respectively.

We present a new attack on GCM for a weaker adversary, a CAE01-attack. That is, the

adversary can create a misattribution knowing just one key. For any ciphertext C generated under

a perfectly honest key, one can find a valid decryption for it under a known key. The attack

strategy involves computing an AD that validates the decryption of the ciphertext. Intuitively,

for any key, nonce, message, and ciphertext, there are an infinite number of ADs that validly

decrypt the ciphertext—we only need to find one of them. The strategy extends to mounting a

CAE01-attack on OCB as well. These attacks demonstrate that nAE-security is insufficient for even

CAE01-security.

4.1. Committing AE Definition

Committing AE. Informally, we call an nAE scheme a committing AE scheme (cAE) if it commits

to any of the elements used to produce a ciphertext. We are primarily interested in cAE schemes

that commit to all of these elements. By the definition of standard nAE from Chapter 2, those

elements would be the key, nonce, AD, and message. The CAE game that captures this property

is presented in Fig. 4.1.
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An adversary attacking the CAE-security of an nAE scheme Π aims to produce a cipher-

text C that has two distinct valid “explanations.” That is, ciphertext C could decrypt to a

messages M using (Ki, N,A), or it could decrypt to a message M ′ using (Kj , N
′, A′) such that

(Ki, N,A,M) ̸= (Kj , N
′, A′,M ′) and M,M ′ ̸= ⊥. When either of these occur, we say that the ci-

phertext is misattributed. We sometimes refer to C as the colliding ciphertext and the (K,N,A,M)

associated to it as one of its attributions. In the game code, we write S
∪← {x} as shorthand for

S
∪← S ∪ {x}, adding x to the set S.

The adversary initializes the game with the Initialize procedure, which generates an infinite

number of uniformly random keys indexed by the natural numbers. Several sets are also initialized,

one of which is the set S which keeps track of (K,N,A,M,C) tuples that constitute encryption

and decryption queries and responses made by the adversary. The game terminates with the

Finalize procedure, which checks the tuples of S in a pairwise fashion for an adversarial win. That

is, it searches for a pair of tuples where the ciphertexts are equivalent and that the explanations

are distinct and valid. There is an additional condition checked that pertains to the function chk

that we describe later.

There are four other game procedures surfaced to the adversary: ENC,DEC,REV,COR. These

are the encryption, decryption, reveal, and corruption oracles. The first two oracles let the adversary

use Π’s encryption and decryption algorithms using a key specified by an index i. Any ciphertext

or message generated by the call to Π’s algorithms is stored alongside the queried Ki, N,A,M (or

C) are stored in the set S. The reveal oracle allows the adversary to query an index i and learn the

key Ki. For the corruption oracle, the adversary queries an index i and a key K and supplants Ki

with K. Keys that are affected by these two oracles are added to the sets Kr and Kc respectively.

Note that ENC queries are restricted to be nonce-respecting for honest keys. That is, an

adversary cannot repeat nonces for its encryption queries to an honest key Ki. This is reflected in

the game code. The purpose of this is to prevent possibilities of an adversary in learning an honest

key through abuse of the nonce as this would otherwise blur the distinction between revealed and

honest keys.

When the adversary yields a colliding ciphertext with two distinct valid explanations, there

is one more condition to check before the adversary is considered to have won. That is, the chk
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CAEΠ,t

procedure Initialize()

00 for i ∈ N do Ki↞K; N i ← ∅
01 S,Kc,Kr ← ∅

procedure Finalize()

10 ret ∃(Ki, N,A,M,C), (Kj , N
′, A′,M ′, C ′) ∈ S s.t.

11 (M ̸= ⊥ ∧M ′ ̸= ⊥)∧
12 (C = C ′)∧
13 (Ki, N,A,M) ̸= (Kj , N

′, A′,M ′)∧
14 (chk(Ki,Kj) ∨ chk(Kj ,Ki))

chk(Ki,Kj)

16 if t = 00 ∧Ki /∈ Kc ∪ Kr ∧Kj /∈ Kc ∪ Kr then ret 1

17 if t = 01 ∧Ki /∈ Kr ∪ Kc ∧Kj /∈ Kc then ret 1

18 if t = 0X ∧Ki /∈ Kr ∪ Kc then ret 1

19 if t = 11 ∧Ki /∈ Kc ∧Kj /∈ Kc then ret 1

1A if t = 1X ∧Ki /∈ Kc then ret 1

1B if t = XX then ret 1

1C ret 0

procedure ENC(i,N,A,M)

20 if Ki /∈ Kr ∪ Kc ∧N ∈N i

21 then ret ⊥
22 C ← Π.E(Ki, N,A,M)

23 S
∪← {(Ki, N,A,M,C)}

24 ret C

procedure DEC(i,N,A,C)

30 M ← Π.D(Ki, N,A,C)

31 S
∪← {(Ki, N,A,M,C)}

32 ret M

procedure REV(i)

40 Kr
∪← {Ki}; ret Ki

procedure COR(i,K)

50 Ki ← K; Kc
∪← {Ki}

Figure 4.1. The CAE-security game. The encryption, decryption, reveal, and
corruption oracles are on the right. On the left, the game finalization procedure
depends on the collision check function chk, which in turn relies on the collision
type parameter t of the game. This function places restrictions on the keys that the
adversary may win with.

function is ran on the keys of the explanations. This function is the collision check function and

relies on a parameter of the CAE game, t, which we refer to as the collision type. For any key

Ki in the game, the key can either be corrupted, revealed, or honest. A key is corrupted when it

is added to the game through the corruption oracle COR and thus part of the set Kc. A key is

revealed when the adversary learns of it through the reveal oracle REV and thus part of the set

Kr. If the key is part of neither set, meaning it was chosen uniformly at random and unaffected by

the adversary, then it is considered honest. Whether keys are corrupted, revealed, and honest are

represented by X, 1, and 0 bits respectively. Six different types of collisions arise from these types
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of keys. The parameter t is a two-bit string that describes the kind of collision the adversary may

win with.

Finally, the advantage of an adversary A attacking the CAE-security of an nAE scheme Π in

regards to a collision type t is quantified as Advcae
Π,t(A) = Pr[CAEA

Π,t → 1]. When discussing

CAE-security with a specific type of collision, we denote the collision with a subscript i.e. CAEXX-

security.

Other committing notions. Most other committing AE definitions focused on cases where

the adversary has control over both keys when creating a colliding ciphertext, which would be a

corrupted-corrupted (or t = XX) collision [4,29,36]. Farshim et al. consider one definition of key-

robustness, called semi-full robustness, where the adversary is asked to come up with a ciphertext

that decrypts under an honest key and a key that it knows (what we would call a 01-collision) [31].

Bellare gives another robustness notion for randomized symmetric encryption called random-key

robustness in [9] that is comparable to the CAE00 notion and shows that authenticity implies

random-key robustness. Our definitional framework can be tuned to consider these collisions and

more, allowing flexibility when using the definition to model real systems.

Our definition considers the strongest level of misattributions. That is, we require that (Ki, N,

A,M) ̸= (Kj , N
′, A′,M ′). This means the adversary wins as long as one of the inputs to encryption

differ when creating the colliding ciphertext. We call a cAE scheme that attends to all encryption

inputs fully committing.

Most other works only consider sub-tuples. For example, the notion of key commitment from

Albertini et al. only requires that Ki ̸= Kj from the adversary when it creates a collision [4]. They

show that key commitment is important for several real world systems. Nonetheless, this definition

does not capture colliding ciphertexts that are generated under the same key. In Chapter 4.2, we

give a transform as efficient as theirs while protecting against misattributions over the entire tuple

of encryption inputs. (In a way, our transform is more efficient as it does not need to re-key every

encryption call).

Contemporary work from Bellare and Hoang considers fully committing cAE schemes as well as

sub-tuples [12]. Their argument for fully committing schemes is to provide ease of use. Prior defi-

nitions required different inputs to be committed to achieve the different security goals demanded
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by their relevant applications. The designer of an application may not know exactly what they

need to be committed. So, if full commitment is inexpensive, then one should aim to do so.

Nonetheless, we provide an alternative CAE-security game that considers weaker misattribu-

tions, which we present in Appendix 4.5. It uses an additional parameter allowing the specification

of which encryption inputs are important when considering misattributions. However, we do note

our construction CTX presented in Chapter 4.2 achieves full commitment efficiently.

Relationship with nAE security. Previously, DGRW18 show how to construct a ciphertext

for AES-GCM in such a way that it decrypts validly under two different keys [29]. This shows that

nae-secure schemes do not achieve CAEXX-security. In fact, the attack presented by DGRW18 does

not require the adversary to have full control over the keys; it is possible to do the attack with only

knowledge of the keys, which means nae-secure schemes do not achieve CAE11-security either.

We show that nAE schemes that are nae-secure in the multi-key sense—nae∗-secure, are already

CAE00-secure. That is, when an adversary may not affect the keys in any way, it is already difficult

to find colliding ciphertexts for nae-secure schemes.

Theorem 4.1.1. Any authenticated encryption scheme Π that is nae∗-secure is also CAE00-

secure. That is, for any adversary A attacking the CAE00-security of Π, there exists an adversary

B against the nae∗-security of Π such that

Advcae−00
Π (A) ≤ 3 ·Advnae∗

Π (B) + q2e
2τ+1

where qe is the number of encryption queries made by A and τ is the expansion of the scheme

Π. Furthermore, B makes the same number of encryption and decryption queries that A makes.

That is, B makes Θ(qe) encryption queries and Θ(qd) decryption queries where qd is the number of

decryption queries made by A.

Proof. Let A be an adversary attacking the CAE00-security of Π. We assume that A is

nonce-respecting and that it does not query output of encryption to decryption as it would already

know the answers of those queries and those queries would not help A in obtaining a win. We also

assume that A never calls the reveal or corruption oracles as it can only win with a collision on a

pair of honest keys. We can construct an adversary B attacking the nae-security of Π as follows.
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Adversary B sets up the CAE game as described in Fig. 4.1, maintaining its own set S to keep track

of query and response tuples. Whenever A makes encryption or decryption queries, B queries its

own encryption and decryption oracles to provide a response for A. When A terminates, B checks

S to see if A has created a colliding ciphertext. If it has, then B returns 1. Otherwise, it returns 0.

Consider the three different ways that A can add a winning ciphertext and its associated

explanations to S. Either they were added through two decryption queries, an encryption and a

decryption query, or two encryption queries. Let E1, E2, E3 be the events that those yielded A a

win respectively. As these three events are all the ways to win, A’s advantage is upper-bounded by

the sum of the probabilities that each of these occur.

We bound the probabilities of each event by examining what happens when B’s oracles are real

or fake. For E1 it is impossible for a winning tuple to be added to S when B’s decryption oracle is

fake as that oracle only ever returns ⊥ and a winning tuple must have a valid message. As such, B

only ever returns 0. However, if B’s oracle is real, then B will return 1. Hence, Pr[E1] ≤ Advnae
B .

For E2 a fake decryption oracle for B makes winning through this event impossible by the same

reasoning as that of E1, meaning B only returns 0 here as well. Similarly, B will return 1 if its

oracles are real in this event. As such, the probability follows: Pr[E2] ≤ Advnae
B .

For E3, B can return 1 with a fake encryption oracle so long as A gets a collision through its

encryption queries. We can get the probability that this occurs by a birthday bound on the number

of encryption queries made by A. The birthday bound is over the random ciphertexts generated

by the fake encryption oracle. With a real encryption oracle, B always returns 1. This gives the

probability Pr[E3] ≤ Advnae
B + q2e

2τ+1 .

□

4.2. The CTX Construction

Collision-resistant hash functions. We briefly recall the definition for collision-resistant

(CR) hash functions as it will be useful in analyzing our CTX construction. A hash function

H : D → {0, 1}h maps strings from some domain D ⊂ {0, 1}∗ to strings of length h. Informally,

a hash function is collision-resistant if it is difficult for an adversary A to find two unique inputs

that map to the same output. This notion is captured by a collision resistance game CR where
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A is ran and outputs a pair (M,M ′). The game outputs true if H(M) = H(M ′) and M ̸= M ′.

The adversary A’s advantage against H is then quantified as Advcol
H (A) = Pr[CRA

H ⇒ true]. This

definition of collision-resistance of unkeyed hash functions follows the human-ignorance approach

of [60].

The CTX scheme. Recall that a cAE scheme is fully committing if it commits to the key,

nonce, AD, and message and not some subset of them. We say that a scheme is efficient if its cost

of getting cAE security on top of nAE security is independent of the message length. We call a

scheme strong if it achieves CAEXX security. Our CTX construction is fully committing, efficient,

and strong.

Let Π = (Enc, Dec) be a tag-based nAE scheme. That is, ciphertexts it outputs consist of a

ciphertext core C and an authentication tag T . We assume that the encryption algorithm Enc can

be split into two independent algorithms E1 and E2 such that on inputs K,N,A,M , E1 produces the

core C and E2 outputs the tag T . The core C is the same length as M . As such, E1 is bijective when

K,N,A are fixed. The inverse of E1 is then decryption’s subroutine D1, which takes in K,N,A and

just the core C, and outputs M . That is, D1(K,N,A, E1(K,N,A,M)) = M . Common schemes

like GCM and OCB satisfy these structural demands.

From such an nAE scheme Π and a collision-resistant hash function H, we can construct a

CAEXX-secure cAE scheme, CTX[Π, H]. CTX’s main mechanism is hashing the authentication tag

T along with K,N,A into a new tag T ∗. This effectively makes T ∗ function as the nAE authenticity

check and a commitment to K,N,A. The name CTX captures the scheme’s ciphertext structure,

which is a ciphertext core followed by a modified tag. The ‘X’ in the name suggests the scheme’s

XX-security level. The scheme is presented in Fig. 4.2.

We claim that CTX is CAEXX-secure as long as H is collision-resistant.

Theorem 4.2.1. Let Π = (Enc, Dec) be a tag-based nAE scheme and let H be a collision-

resistant hash function. Let E1, E2,D1 be the algorithms used by Π to encrypt messages into cipher-

text cores, create authentication tags, and decrypt cores into messages respectively. Let CTX[Π, H]

be an nAE scheme constructed from Π and H as described in Fig. 4.2. Then, for any adversary A

attacking the CAEXX-security of Π′, there exists an adversary B, explicitly given in the proof of this

theorem and depending only on A as a black-box, such that
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CTX.Enc(K,N,A,M)

20 C ← Π.E1(K,N,A,M)

21 T ← Π.E2(K,N,A,M)

22 T ∗ ← H(K,N,A, T )

23 ret C ∥ T ∗

CTX.Dec(K,N,A, C)
30 C ∥ T ← C
31 M ← Π.D1(K,N,A,C)

32 T ′ ← Π.E2(K,N,A,M)

33 if T ̸= H(K,N,A, T ′) then ret ⊥
34 ret M

Figure 4.2. A CAEXX-secure cAE scheme CTX[Π, H] built from a tag-based nAE
scheme Π and a collision-resistant hash function H. The nAE encryption and de-
cryption algorithms can be broken down into E1, E2, and D1. These create the
ciphertext core, create the authentication tag, and recover the message from the
core respectively.

Advcae-XX
CTX (A) ≤ Advcol

H (B).

Proof. We construct adversary B to find a winning collision for H as follows. Adversary B sets

up the CAE game and runs A, answering its queries appropriately. When A terminates, it will have

produced a pair of winning tuples for the CAE game: (Ki, N,A,M,C ∥ T ∗), (Kj , N
′, A′,M ′, C ∥ T ∗).

Then, B can compute T = Π.E2(Ki, N,A,M) and T ′ = Π.E2(Kj , N
′, A′,M ′) to produce authenti-

cation tags for the winning tuples. Furthermore, it must be the case that T ∗ = H(Ki, N,A, T ) =

H(Kj , N
′, A′, T ′) as that is how C ∥ T ∗ of the winning tuples was produced in the first place.

So for (Ki, N,A, T ), (Kj , N
′, A′, T ′) to be a winning collision for B, the two tuples must not be

equivalent. Suppose for contradiction that they are equivalent. Then for A’s tuples to have won

the CAE game it must be the case that M ̸= M ′. But this is impossible as it would violate the

bijectivity of E1. Since core C is fixed and (Ki, N,A) = (Kj , N
′, A′) are fixed from the collision,

there exists only one M ′′ such that E1(Ki, N,A,M ′′) = C = E1(Kj , N
′, A′,M ′′). Thus M ̸= M ′ is

a contradiction and (Ki, N,A, T ) ̸= (Kj , N
′, A′, T ′) follows. In conclusion, the winning collision for

B is H(Ki, N,A, T ) = H(Kj , N
′, A′, T ′) = T ∗. □

It remains to show that CTX remains nAE-secure after its transform. We do so in the random

oracle model (ROM), denoting CTX as CTX[Π] (as opposed to CTX[Π, H]) when it is in the ROM.

The separate privacy and authenticity notions used in Theorem 4.2.2 were recalled in Chapter 2

and can be found in [61].
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Theorem 4.2.2. Let Π = (E ,D) be a tag-based nAE scheme with an expansion of τ . Let CTX[Π]

be the scheme described in Fig. 4.2. Fix an integer δ ≥ 0. Then, in the random oracle model, for

any adversary A1 attacking the privacy of CTX, we can construct nonce-respecting (explicitly given)

adversaries B1 and B2 attacking the privacy of Π such that

Advpriv
CTX[Π](A

H
1 ) ≤ Advpriv

Π (B1) +Advpriv
Π (B2) +

qH
2δ+τ

where qH is the number of random oracle queries made by A1. Let qe be the number of encryption

queries made by A1. Then B1 also makes qe queries to its own encryption oracle and B2 makes

qe + 1 such queries.

Furthermore, for any adversary A2 attacking the authenticity of CTX, there exists adversary

B3 attacking the authenticity of Π with advantage

Advauth
CTX[Π](A

H
2 ) ≤ Advauth

Π (B3) +
1

2µ

where µ is the output length of the random oracle. We give B3 explicitly in the proof. If A2 makes

qe encryption oracle queries, then B3 makes qe + 1 queries to its own oracle.

Note that the last term in the privacy bound
q2H

2δ+τ can be made small by choice of δ, so it will

not result in much loss.

Proof. (1) We begin with the privacy part of the theorem. Let G0 and G1 be the games

presented in Fig. 4.3. Note G0 uses the boxed code whereas G1 does not. Let G2 be the game

presented in Fig. 4.4. We claim that the advantage of adversary A1 is

(4.1) Advpriv
CTX[Π](A1) = Pr[G0(A1)]− Pr[G2(A2)]

where Pr[G(A)] denotes the probability that running adversary A in game G results in the Finalize

procedure of G returning true.

One can observe that G0 is exactly the real privacy game of nAE security using CTX as the

scheme. There are two tables keeping track of random oracle entries, HT and ET. The former

records new random oracle (RO) entries generated by direct calls to H and the latter by calls to
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Games G0 /G1

procedure Initialize()

00 K↞K

procedure ENC(N,A,M)

10 C ∥ T ← Π.EncK(N,A,M)

11 T ∗↞{0, 1}µ

12 if HT[K,N,A, T ] ̸= ⊥ then bad← true; T ∗ ← HT[K,N,A, T ]

13 ET[K,N,A, T ]← T ∗

14 ret C ∥ T ∗

procedure H(L,N,A, T )

20 if HT[L,N,A, T ] ̸= ⊥ then ret HT[L,N,A, T ]

21 HT[L,N,A, T ]↞{0, 1}µ
22 if ET[L,N,A, T ] ̸= ⊥ then

23 bad← true; HT[L,N,A, T ]← ET[L,N,A, T ]

24 ret HT[L,N,A, T ]

procedure Finalize(d)

30 ret d

Figure 4.3. Games G0 and G1 for the privacy proof of Theorem 4.2.2. The two
games are identical except G0 contains the boxed code and G1 does not.

Games G2

procedure ENC(N,A,M)

40 C↞{0, 1}|M |; T ∗↞{0, 1}µ; ret C ∥ T ∗

procedure H(L,N,A, T )

50 if HT[L,N,A, T ] = ⊥ then HT[L,N,A, T ]↞{0, 1}µ
51 ret HT[L,N,A, T ]

procedure Finalize(d)

60 ret d

Figure 4.4. Games G2 for the proof of Theorem 4.2.2.

ENC. On the other hand, G2 is the ideal privacy game for nAE security, coupled with access to
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a random oracle. Hence, Equation 4.1 follows by the definition of nAE privacy. Equation 4.1 is

equivalent to the following:

(4.2) Advpriv
CTX[Π](A1) = Pr[G0(A1)]− Pr[G1(A1)] + Pr[G1(A1)]− Pr[G2(A1)]

From here, we can build adversary B1 such that

(4.3) Pr[G1(A1)]− Pr[G2(A1)] ≤ Advpriv
Π (B1).

Adversary B1 behaves as follows. First, it initializes a table HT that it will maintain during its

execution. Then, it runs adversary A1. When A1 makes a query of:

– ENC(N,A,M) - Adversary B1 calls its own encryption oracle with the same N,A,M ,

getting back C ∥ T as a response. It then samples T ∗↞{0, 1}µ and returns C ∥ T ∗ to A1.

– H(L,N,A, T ) - Adversary B1 checks to see if there is an entry in HT[L,N,A, T ]. If not,

then it samples a string uniformly at random from {0, 1}µ and records it at HT[L,N,A, T ].

It always responds to A1 with HT[L,N,A, T ].

When A1 terminates and outputs a bit, B1 outputs the same bit. When B1’s encryption oracle is

fake, then it perfectly simulates G2 as the ciphertext bodies C it returns to A1 will be uniformly

random strings. When B1’s encryption oracle is real, then it perfectly simulates G1 as C would be

generated through encryption with Π under some hidden key (which is unknown to B1). This gives

the advantage term of Equation 4.3.

Games G0 and G1 are identical-until-bad. By the Fundamental Lemma of Game Playing [17],

we have that the advantage of an adversary distinguishing these two games is at most the probability

of bad being set. That is, we have

(4.4) Pr[G0(A1)]− Pr[G1(A1)] ≤ Pr[G1(A1) sets bad].
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In the games, bad gets set to true on lines 12 and 22 in Fig. 4.3 when the tables HT and ET

are checked for an entry. Recall that the table ET records mappings of K,N,A, T quadruples to

random T ∗ that are generated during encryption. The key K here is fixed to the one sampled at

game initialization. The table HT, on the other hand, tracks mappings from L,N,A, T quadruples

to random T ∗ generated during random oracle queries. The key L here is part of the adversary’s

query. The flag bad gets set to true if one oracle (either encryption or the random oracle) finds an

entry already recorded in the other’s table when trying to generate the random T ∗. For example,

suppose the adversary makes a query (K,N,A, T ) to H that results in some T ∗. If the adversary

later queries encryption with N,A,M such that C ∥ T is the result of Π’s encryption, then the T ∗

returned to the adversary needs to be the T ∗ in the random oracle query. This is covered by the

table HT. The other table ET covers the other direction– when a later RO query needs a tag from

a previous encryption query.

Observe that for bad to be set true, the adversary will need to make a query to H with K,

the secret key, as the argument L. It has to in order to satisfy the conditions of either 12 or 22 .

Following this, game G3 in Fig. 4.5 is set up in a way such that an adversary wins if it queries the

random oracle with the secret key. It runs its encryption oracle like G1. Hence, we have that

(4.5) Pr[G1(A1) sets bad] ≤ Pr[G3(A1)].

Now, we build adversary B2 such that

(4.6) Pr[G3(A1)] ≤ Advpriv
Π (B2) +

qH
2δ+τ

Adversary B2 initializes with a table HT and a set S. It runs A1 and responds to encryption

queries just like adversary B1. For queries H(L,N,A, T ), B2 answers like B1 except it also adds L

to its set S.

When A1 terminates, B2 ignores its output. It then picks a nonce N∗ that was not used by

A1 in any of its ENC queries. It picks a message M∗↞{0, 1}δ. Recall that δ ≥ 0 is the adjustable

parameter from the theorem statement. Then it queries its own ENC with N∗, ε,M∗ and gets back
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Games G3

procedure Initialize()

70 K↞K; S← ∅

procedure ENC(N,A,M)

80 C ∥ T ← Π.EncK(N,A,M); T ∗↞{0, 1}µ; ret C ∥ T ∗

procedure H(L,N,A, T )

90 if HT[L,N,A, T ] = ⊥ then HT[L,N,A, T ]↞{0, 1}µ
91 S← S ∪ {L}; ret HT[L,N,A, T ]

procedure Finalize(d)

A0 ret (K ∈ S)

Figure 4.5. Games G3 for the proof of Theorem 4.2.2.

a response C∗ of the length δ+ τ . Next, it sets a flag b← 0 before executing a loop, iterating over

every key L ∈ S. Each iteration, it checks whether Π.EncL(N
∗, ε,M∗) outputs C∗, setting b← 1 if

one does. Finally, B2 outputs b as its output.

Let E1 be the event that B2 outputs 1 in its real game and E0 be the event it does so in

its ideal game. Then, we have that Pr[E1] ≥ Pr[G3(A1)] because if the key K (the key to B2’s

real game) is in the set S, then b is set to 1 when L = K during B2’s loop. For E0, we have

that Pr[E0] ≤ qH/2δ+τ . Since S is fixed independently of the random C∗ returned by the ideal

encryption oracle, each iteration of B2’s loop sets b to 1 is at most 2−δ+τ . Applying the union

bound across iterations, we get the bound for Pr[E0]. Finally, we get

Advpriv
Π (B2) = Pr[E1]− Pr[E0] ≥ Pr[G3(A1]−

qH
2δ+τ

which gives Equation 4.6. Combining Equations 4.1, 4.3, and 4.6 yields the stated privacy bound

in the theorem.

(2) We now proceed with the authenticity part of Theorem 4.2.2. Let A2 be the adversary

attacking the authenticity of CTX[Π]. We can construct an adversary B3 attacking the authenticity

of Π such that
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(4.7) Advauth
CTX[Π](A2) ≤ Advauth

Π (B3) +
1

2µ
.

We define B3 as follows. Adversary B3 responds to A2’s ENC and H queries the same way that

B1 does. When A2 terminates with a forgery (N2, A2, C2 ∥ T2), adversary B3 then picks a message

M∗ of length δ, and a nonce N∗ that has not been used by A2 in its ENC queries and is not the

nonce in A2’s forgery (N∗ ̸= N2). It then makes a query to its own encryption oracle ENC with

N∗, ε,M∗, getting back a response C∗.

Now B3 selects particular entries in its table HT. We write these entries as quintuples (L,N,A, T, T ∗)

to succinctly denote the mapping of (L,N,A, T ) to T ∗. Specifically, B3 picks entries (L,N,A, T, T ∗)

such that N = N2, A = A2, and T ∗ = T2. It then iterates through all such entries and tests whether

Π.EL(N,A,M∗) = C∗. Let S be the set of entries that satisfy this condition. Adversary B3 then

executes the following:

for (L,N,A, T, T ∗) ∈ S do

M ← Π.D1(L,N,A,C2)

T ′ ← Π.E2(L,N,A,M)

if T = T ′ then ret (N,A,C2 ∥ T )

Recall that E2 and D1 are the algorithms of a tag-based nAE scheme that produce the authen-

tication tag and decrypt the ciphertext core respectively. This loop checks which of the candidate

entries contains a forgery B3 can use for C2 by verifying a tag (for the scheme Π) for it. If the loop

finishes without successfully verifying a tag, this means that A2 failed its own forgery, which would

cause B3 to fail as well. When A2 succeeds in forging, then B3 can recover a tag T appropriate for

its own forgery. This gives us the authenticity advantage term for B3 in the bound.

It is possible for A2 to forge without B3 being able to recover the tag it needs. Suppose A2’s

forgery is (N,A,C ∥ T ∗). Then, for example, A2 could never ask H the appropriate query to fill in

HT with T ∗. However, all responses to H queries are independent of one another, so one response

for H tells A2 nothing about another response for H. This is also true for the random tags generated

by any ENC queries made by A2. So, without querying to H the exact (L,N,A, T ) used by B3’s
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encryption oracle to make C, the best A2 can do to come up with a valid T ∗ for its forgery is by

guessing. For a fixed key, nonce, AD, and ciphertext core, there is exactly one tag that verifies.

Following this, the probability A2 creates a valid tag T ∗ and forges by guessing is 1/2µ as it has a

single guess for its forgery over 2µ possible tags. This gives us the last term in the bound. □

4.3. Commitment Security of GCM and OCB

Prior work from GLR17 and DGRW18 has shown that it is possible to construct a colliding

ciphertext with GCM when the attacker has control of both keys [29, 36]. DGRW18 mentions

that with their attack, control over the keys is not necessary, only knowledge of the keys is. Here,

we show that it is possible for an attacker to create a colliding ciphertext with knowledge of only

one key. That is, there exists an attack that violates the CAE01-security of GCM. As GCM is

nae-secure, this attack means that nae-security does not imply CAE01-security.

A simple nAE Scheme. Before we present the attack, consider a simple nAE scheme NAE[G,H]

built on a PRG G and a MAC H. The definition of NAE[G,H] is given in Fig. 4.6. In our

pseudocode, we write S[0..n] to denote a substring of the bitstring S starting from the 0th bit to

the nth bit.

However, NAE is vulnerable to a variety of CAE attacks given that the MAC H is targetable.

Suppose that the key K used for computing H is known and there exists an arbitrary target tag T

that an adversary is interested in producing. We call H targetable if there exists a target function

target that takes in K and T and outputs a message M such that H(K,M) = T . We say that H is

prefix-targetable if there exists a prefixed target function may also take in an additional argument

NAE.Enc(K,N,A,M)

00 K1 ∥ K2 ← K; P ← G(K1, N)

01 C ←M ⊕ P [0..|M | − 1]

02 T ← H(K2, C ∥ A)

03 ret C ∥ T

NAE.Dec(K,N,A,C)

10 K1 ∥ K2 ← K; C ∥ T ← C

11 if H(K2, C ∥ A) ̸= T then ret ⊥
12 P ← G(K1, N)

13 M ← C ⊕ P [0..|M | − 1]; ret M

Figure 4.6. A simple nAE scheme given a PRG G and a MAC H. GCM has a
comparable structure if one considers the counter-mode operations as the PRG and
GHASH as the MAC.
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C, a prefix, such that H(K,C ∥M) = T . GHASH, the MAC used by GCM, is prefix-targetable,

and we will show how shortly.

Attack on GCM. The simple nAE scheme described has structure similar to GCM. For concrete-

ness, we assume the blockcipher GCM employs E has a block size of 128 bits. GCM uses E in

counter mode with the nonce as part of the initial counter in order to generate a one-time pad.

This acts like the PRG that the simple scheme uses. For a key K, GCM uses K ′ = EK(0128) when

computing its MAC, GHASH. For a ciphertext C, the tag T = H(K ′, A,C) ⊕ EK(N ∥ 0311) where

A is the AD, C is the ciphertext, N is the nonce and H is the GHASH function. We follow the

GCM specification of [44,45].

GHASH works by computing a polynomial over the field GF(2128) using EK′(0128) as the

variable and the ciphertext and AD blocks as coefficients. By block, we mean blocks of b bits that

can be used as input into a blockcipher. If the last block isn’t a full 128 bits, GCM pads it with

zeroes until it is. Let there be c ciphertext blocks and a AD blocks in the ciphertext and AD.

Let len be a function where given some input, it outputs a 64-bit representation of said input.

Let P = EK′(0128). Then GHASH is computed as follows (addition and multiplication done over

GF(2128)):

(4.8) GHASH(K ′, A,C) =

[
a∑

i=1

Ai · P a+c+2−i

]
+

[
c∑

i=1

Ci · P c+2−i

]
+ (len(A) ∥ len(C)) · P

And the tag T is finalized as:

(4.9) T = GHASH(K ′, A,C) ⊕ EK′(N ∥ 0311)

where N is the nonce.

Observe that the entire MAC is prefix-targetable as if one knows K ′ and T , one can compute

A = ptarget(K ′, T, C) for a ciphertext C by evaluating the polynomial. Explicitly, we can solve for

a single block AD A as follows:
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A =

[
T ⊕ EK′(N ∥ 0311) + (len(A) ∥ len(C)) · P+[

c∑
i=1

Ci · P c+2−i

]]
· (P c+2)−1

(4.10)

Once we can compute A with the prefix-targeting function, we have an CAE01 attack, call it

adversary A, as follows: A selects an arbitrary nonce N and AD A; A queries its encryption

oracle, asking for the encryption of a string of 0’s of length m under K0, N , and A, and receives

C ∥ T back; A uses its reveal oracle to learn K1; A computes a one-time pad P in the style of

GCM using K1 and the nonce N ; A computes a message M ′ as the xor of P and C; A uses the

prefix-target function ptarget(K ′, T, C) as shown in Equation 4.10 where K ′ is the blockcipher E

applied to 0128 with K1 (how GHASH is keyed) and acquires an AD A′; A queries its encryption

oracle with K1, N,A′,M ′ and receives a winning collision on C ∥ T . This attack on GCM prove

that nae-security does not imply even CAE01-security as GCM is nae-secure.

While Equation 4.10 computes a single AD block that allows us to obtain a target tag, this is

actually not restrictive. An attack can use an arbitrary AD A, perhaps with actually relevant header

information, and search for a single block A′ that they can add to that AD to satisfy the equation.

To capture this in terms of prefix-targeting, one would compute A′ = ptarget(K ′, T, A ∥ C) instead

of ptarget(K ′, T, C). Keep in mind that the dummy block can be placed anywhere in A, but we

limit our description to prepending for simplicity.

Attack on OCB. We now turn to performing a CAE01 attack on OCB. We follow the specification

of OCB as described in [39].

During encryption, OCB computes an offset ∆ for each message block using the key and the

nonce. This offset is xor-ed with each message block before being processed by a blockcipher under

the key. The output of the blockcipher is then xor-ed with the offset again, finalizing a ciphertext

block. Since the adversary has a revealed key Kj and a nonce of its choice N , it can freely compute

the offsets for each block. This allows it to decrypt the target colliding ciphertext C ∥ T , where C

is the ciphertext core and T is the authentication tag, into some message M . The next step requires

the adversary to ensure that T verifies for M under Kj and N . In OCB, tag T is generated first
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ACAE
OCB,01

20 N↞N; M↞{0, 1}m; C ∥ T ← ENC(0, N, ε,M)

21 C1 ∥ C2 ∥ ... ∥ Cn ← C where |Ci| = b for all i ∈ [1..n]

22 K ← REV(1); ∆← init(K,N)

23 for i = 1 to n do

24 ∆← incri(∆)

25 P ← Ci ⊕ ∆; M ′
i ← E−1

K (P ) ⊕ ∆

26 chk ←M ′
1 ⊕ M ′

2 ⊕ ... ⊕ M ′
n

27 F ← chk ⊕ incr$(∆); F ← EK(F )

28 ∆← incr1(0
128)

29 auth← T ⊕ F ; A← E−1
K (auth) ⊕ ∆

2A ENC(1, N,A,M ′
1 ∥ ... ∥M ′

n)

Figure 4.7. An CAE01 attack on OCB. For simplicity, this attack assumes that
the length of the ciphertext is a multiple of the blockcipher E’s block size b. In
the case that it is not, on lines 24 and 25, one would instead compute the offset
∆ for the last block, apply the blockcipher on it, then xor the result with the last
ciphertext block to recover the last message block. The attack written here shows
how to compute a single associated data block to get a colliding ciphertext (line
26-29). But it should be noted that it is possible to mount the attack by choosing
an arbitrary AD first and computing a single block that satisfies a necessary value
for auth to get the colliding tag.

with a checksum that consists of an xor over all message blocks. The adversary can do this over

the bogus message M it got from decryption. This checksum is then xor-ed with a special offset,

again computable with knowledge of key and nonce, before being processed by the blockcipher.

This output, F , is xor-ed with a block called “auth” which finalizes the tag T .

The adversary then needs auth = F ⊕ T for T to that remain valid with Kj , N,M,C To do so,

it has a choice of AD A. OCB computes auth by computing offsets for each block of AD, xor-ing

the offsets and blocks together, and applying the blockcipher on the results (a process identical to

how the message blocks are processed with the exception of how the offsets are initialized). Each

of these blocks are then xor-ed with each other, finalizing a single block auth. To acquire an A

that finishes the attack, the adversary deciphers F ⊕ T with the blockcipher, xors the result with

the appropriate offset, and uses that for its final query ENC(j,N,A,M). The attack is described

in code in Fig. 4.7.

Like the attack on GCM, it should be noted that the attack is not limited to a single AD block.

An adversary may select an arbitrary AD A′ that it wants to use to mount the attack. It can
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then compute a single dummy block B′ to append to the end of A′ to create an AD that validates

decryption. Specifically, the adversary first computes F as described above. Then it computes a

value auth′ over the blocks of A′. The value B = auth′ ⊕ F ⊕ T will then be the “enciphered” AD

block corresponding to B′. So the adversary only needs to decipher B and apply the appropriate

offset to compute B′. The final AD it uses is A = A′ ∥ B′.

4.4. Other Committing AE Notions

Here we describe the committing AE notions of previous authors and highlight their differences.

A summary of each of their definitions can be found in Table 4.1. The first to study committing

encryption in the AE setting was Farshim, Orlandi, and Roşie (FOR17) [31]. Calling the property

key-robustness, FOR17 give a set of definitions capturing different adversarial behaviors that can

result in the misattribution of a ciphertext. Their strongest notion, full robustness, requires an

adversary to produce two keys and a ciphertext (K,K ′, C) such that C decrypts validly under both

keys. It needs to be noted that FOR17 study randomized AE without AD support.

An interesting result from FOR17 is that security for such AE schemes implies semi-full robust-

ness. In this notion, two keys are generated uniformly at random and one of them is shown to the

adversary. With the help of encryption and decryption oracles for the hidden key, the adversary

must find a ciphertext that validly decrypts under both keys. This definition is comparable to

our CAE01 notion, where the adversary must find a misattribution with a revealed and an honest

key. One of our results is the existence of CAE01-attacks against AES-GCM and OCB, which

implies that nAE security does not grant 01-security. This seemingly contradicts FOR17’s result

of semi-full robustness because their analysis is for AE schemes without AD support.

In the same year as FOR17, Grubbs, Lu, and Ristenpart (GLR17) study message franking,

which as they describe it, is the verifiable reporting of abusive messages in encrypted messaging

systems [36]. To accomplish this goal, they use committing AE, focusing on randomized AE with

AD support (AEAD) as it is more applicable to current encrypted messaging systems. In their

model, there is a sender, a receiver, and a third party that verifies abuse reports. Every ciphertext

comes with a commitment tag that serves as a commitment to the message and AD. Decryption

produces an opening for the commitment alongside recovering the message. Their committing
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Paper AE Variant Committing AE Definition

FOR17 [31]
Probabilistic AE,
No AD support

Full robustness - A finds (K,K ′, C)
s.t. decryption of C with
both keys is successful.

GLR17 [36]
Probabilistic and

deterministic AEAD

Receiver-binding - A finds
((K,A,M), (K ′, A′,M ′), C)

s.t. decryption of C
with both sub-tuples is

successful and (A,M)) ̸= (A′,M ′).

DGRW18 [29] Probabilistic AEAD
Strong Receiver-binding -

Same as receiver-binding except
(K,A,M) ̸= (K ′, A′,M ′).

ADGKLS20 [4] Deterministic AEAD

Key-commitment - A finds
((K,N,A,M), (K ′, N,A′,M ′), C)

through ENC, DEC queries
s.t. K ̸= K ′ and M,M ′ ̸= ⊥.

BH22 [12]
Deterministic AEAD +
misuse-resistant AE

CMT(D)s-ℓ security - A finds
(K1, N1, A1,M1), .., (Ks, Ns, As,Ms)

such that what is committed
from each tuple is distinct.
The parameter ℓ specifies
“what is committed.”

Our work Deterministic AEAD

CAEt-security - A finds
((K,N,A,M), (K ′, N ′, A′,M ′), C)

through ENC,DEC queries
s.t. (K,N,A,M) ̸= (K ′, N ′, A′,M ′)

and M,M ′ ̸= ⊥.
The parameter t specifies how
A interacts with the keys.

Table 4.1. A comparison of the subtly different definitions in CAE literature.

AE notion adds an additional verification algorithm as it is the third party’s role to verify the

commitment using that opening. We conflate their decryption and verification algorithms for ease

of discussion and comparison to other notions.

There are several parts of their committing AE notion that make it difficult to compare as they

tend to other things besides preventing misattributions. The part that attends to misattributions

is their notion of receiver binding. This notion asks the adversary to find a ciphertext C and two

tuples (K,A,M), (K ′, A′,M ′) such that decrypting C with those keys and ADs results in those

(valid) messages. The adversary must do so in a way such that (A,M) ̸= (A′,M ′). This definition

74



does not prevent the possibility of an adversary finding two keys that can validly decrypt C into

M using A.

Dodis, Grubbs, Ristenpart, and Woodage (DGRW18) [29] extend GLR17’s receiver binding to

strong receiver binding. This notion accounts for the key to address the way receiver binding does

not. One can argue that strong receiver binding commits to all encryption inputs for randomized

AEAD. As a building block for cAE, DGRW18 introduce a new primitive encryptment that serves

as a one-time use, deterministic encryption and commitment of a message.

One goal that GLR17 and DGRW18 consider that other works do not (including ours) is that

of multiple-opening security. This security notion allows different ciphertexts encrypted under the

same key to be “opened” and verified without jeopardizing the security of unopened ciphertexts.

This is particularly useful in the message franking context as it allows a receiver to report a

ciphertext to the verifying party without having to reveal the secret key, which would ruin the

security of all other ciphertexts sent under that key.

Working with deterministic AEAD, Albertini, Duong, Gueron, Kölbl, Luykx, and Schmieg

(ADGKLS20) [4] define their security goal as key-commitment. The adversary, in this notion, is

tasked with finding a ciphertext C and two “explanations” (K,N,A,M), (K ′, N,A′,M ′) such that

the messages are valid and K ̸= K ′.

Bellare and Hoang (BH22), in a contemporary work, target fully committing schemes [12]. They

attend to deterministic AEAD as well as misuse-resistant AE with encryption inputs K,N,A,M .

Their committing security notion is CMT(D)s-ℓ where s is an integer and ℓ ∈ {1, 3, 4}. The

presence or absence “D” denotes whether the notion is decryption or encryption-based– adversary

finding multiple decryption inputs that validly decrypt the same ciphertext or multiple encryption

inputs that encrypt to the same ciphertext. The parameter ℓ determines what is committed:

ℓ = 1 denotes just the key, ℓ = 3 denotes everything but the plaintext, and ℓ = 4 denotes full

commitment. Comparatively, our cAE definition presented in Chapter 4.1 does not allow for

tweaking for commitments of sub-tuples of inputs, but the alternative framework given in Appendix

4.5 does. The s parameter generalizes their definition to capture misattributions with more than

two valid explanations– what they call multi-input committing security. That is, s is the number of

distinct (K,N,A,M) tuples the adversary needs to find that encrypt to the same C. While s = 2
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implies all s ≥ 2, Bellare and Hoang motivate this dimension of their definition by giving schemes

where bounds on adversarial advantage improve as s grows. All in all, they are the first to study

misuse-resistant AE and multi-input committing security in the cAE space.

Constructions. We describe a number of selected constructions from the above works. These

constructions, each satisfying the committing AE notion defined in the work of their origin, are

presented in Table 4.2.

Recall that FOR17 are in the probabilistic AE setting without associated data. Their con-

struction EtM[E , H] creates a tag that provides authenticity while serving as a commitment to the

encryption key as well. This is comparable to how CTX’s tag provides authenticity while committing

to all of K,N,A, T .

The scheme CEP[G,F, F cr] is the deterministic AEAD construction from GLR17. It makes two

passes over the message—one to encrypt it one-time-pad-style using output from the PRG G and

the other to commit to the message and AD using the collision-resistant PRF F cr. The ciphertext

output is expanded by both a tag for authenticity and a commitment—the output lengths of the

two PRFs. Comparatively, our CTX construction requires no passes over the message and would

typically expand ciphertexts from a 128-bit authentication tag to a 160-bit hash function output

that gives both cAE security and nAE authenticity. An advantage of CEP is that one can verify

the commitment without revealing the encryption key. One only needs to reveal K0 to do so. This

is in line with GLR17’s additional goal of multiple opening security.

DGRW18 had similar goals to GLR17 as they both investigated committing AE for the purpose

of message franking. They propose a new primitive, encryptment, that we do not describe in detail

here. Encryptment is a a primitive that simultaneously encrypts and commits a message and is

one-time use. They give a concrete encryptment scheme HFC that uses a compression function and

a padding scheme. They give a simple transform that builds a cAE scheme out of an encryptment

scheme and a probabilistic nAE scheme. We note that HFC requires a pass over the message to

apply encrypt and commit it.

The CommitKey scheme from ADGKLS20 comes in four flavors. We describe the variant

CommitKeyIV here. It consists of an nAE scheme and two independent collision-resistant PRFs, On

encryption, the PRFs are used on the nonce to generate an encryption key and a “key-commitment.”
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Construction Description

EtM[E , H] [31]

E is AE scheme, H is CR MAC.
Encrypt M w/ E under key Ke to get C.

Get T by using MAC w/ key Kh on (C,Ke).
Output C ∥ T .

CEP[G,F, F cr] [36]

G is PRG. F, F cr are PRFs. F cr is CR
Use G w/ K and N to get K0,K1, P .

Use P ⊕ M to get C1. Use F cr w/ K0 on A,M for C2.
Use F w/ K1 on C2 to get T . Output C1 ∥ T ∥ C2.

HFC* [29]

HFC is an encryptment scheme built
from a compression function and a padding scheme.
DGRW18 show a simple transform that promotes

an encryptment scheme into a cAE scheme.

CommitKeyIV [4]

E is nAE scheme. F0, F1 are independent CR PRFs.
Get Ke from using F0 w/ K on nonce N .
Get Kc from using F1 w/ K on nonce N ′.

Use E on N,A,M to get C. Output C ∥ Kc.

UtC[E ,F] [12]
E is nAE scheme. F is committing PRF.

Get (P,L) from F(K,N). Get C from E(L,N,A,M).
Output P ∥ C.

HtE[E , H] [12]
E is a CMT-1 nAE scheme. H is a CR function.
Get L from H(K, (N,A)). Output E(L,N, ε,M).

Table 4.2. A comparison of selected constructions targeting their respective cAE
security goals. *Not a committing AE scheme, but closely related.

The encryption key is then used to perform routine nAE encryption on the message, producing a

ciphertext. Encryption returns both the ciphertext and the key-commitment. It commits only to

the key and as such, does not require any passes over the plaintext. With this scheme, it is possible

to find a misattribution where different AD lead to valid decryptions.

One can argue that this kind of misattribution may not be impactful to real-world systems.

But CTX protects against these misattributions as well and without giving up efficiency. In fact,

CTX enjoys the efficiency benefit of not having the re-key with each message encrypted.

That argument is specious, in any case. It is difficult for designers of systems to know exactly

what needs to be committed to achieve their security goals. GLR17 and DGRW18 showed message

franking requires the commitment of the header and message. ADGKLS20 found that various real-

world systems (key management services, envelope encryption, and Subscribe with Google [5]) had

potential vulnerabilities from lack of key commitment. It is not always clear what exactly needs to
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be committed, so a scheme that can inexpensively commit to everything would provide a way to

cover all bases for application designers.

Bellare and Hoang give a fully committing cAE construction that builds off of one that only

commits to a key. Their UtC construction only commits to the key (CMT-1 secure going by their

notions). It uses a primitive they call a committing PRF which informally outputs a commitment

to the key and the PRF input along with the conventional PRF output. They describe an efficient

committing PRF in their paper.

To promote a CMT-1 secure scheme to a fully committing (CMT-4) one, BH22 give the HtE

transform. Like our CTX construction, the application of HtE to UtC commits to everything without

having to make a pass over the plaintext beyond encrypting it. The ciphertext expansion of BH22’s

transform however is expected to be at least 128-bits—the block length of the blockcipher that their

committing PRF employs. On the other hand, CTX is expected to replace a conventional nAE tag,

say 128-bits, to a 160-bit tag that provides both nAE authenticity and the commitment to all

encryption inputs. This would be a 32-bit expansion compared to the expansion by a full block.

4.5. CAE with Misattribution Types

Modeling weaker misattributions. The CAE definition presented in 4.1 only attends to

the strongest level of misattributions. Specifically, a ciphertext C experiences the strongest level of

misattribution if an adversary finds two distinct explanations (K,N,A,M) ̸= (K ′, N ′, A′,M ′) for

it. We call schemes that are resistant against this type of misattribution fully committing.

However, one may be interested in schemes that protect against weaker misattributions. After

all, other works have investigated these weaker notions [4,29,31,36] and contemporary work by [12]

give a framework that supports committing to subsets of the encryption inputs.

In addressing this, we have an alternative definition given in Fig. 4.8. In this definition, the

game is parametrized with an additional four-bit string u. This string allows the specification of

which elements of the (K,N,A,M) tuple one should commit to. The first bit corresponds to the

key, the second the nonce, and so on. This framework is finer-grained than the contemporary

framework of [12] as theirs only captures three kinds of commitments: committing to just the key;
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CAEΠ,t,u

procedure Finalize()

10 ret ∃(Ki, N,A,M,C), (Kj , N
′, A′,M ′, C ′) ∈ S s.t.

11 (M ̸= ⊥ ∧M ′ ̸= ⊥)∧
12 (C = C ′)∧
13 tup((Ki, N,A,M), (Kj , N

′, A′,M ′))∧
14 (chk(Ki,Kj) ∨ chk(Kj ,Ki))

chk(Ki,Kj)

16 if t = 00 ∧Ki /∈ Kc ∪ Kr ∧Kj /∈ Kc ∪ Kr then ret 1

17 if t = 01 ∧Ki /∈ Kr ∪ Kc ∧Kj /∈ Kc then ret 1

18 if t = 0X ∧Ki /∈ Kr ∪ Kc then ret 1

19 if t = 11 ∧Ki /∈ Kc ∧Kj /∈ Kc then ret 1

1A if t = 1X ∧Ki /∈ Kc then ret 1

1B if t = XX then ret 1

1C ret 0

tup((Ki, N,A,M), (Kj , N
′, A′,M ′))

1D Ti, Tj ← (⊥,⊥,⊥,⊥)
1E if u[0] = 1 then Ti[0]← Ki; Tj [0]← Kj

1F if u[1] = 1 then Ti[1]← N ; Tj [1]← N ′

1G if u[2] = 1 then Ti[2]← A; Tj [2]← A′

1H if u[3] = 1 then Ti[3]←M ; Tj [3]←M ′

1I ret Ti ̸= Tj

procedure Initialize()

00 for i ∈ N do

01 Ki↞K; N i ← ∅
02 S,Kc,Kr ← ∅

procedure ENC(i,N,A,M)

20 if Ki /∈ Kr ∪ Kc ∧N ∈N i

21 then ret ⊥
22 C ← Π.E(Ki, N,A,M)

23 S
∪← {(Ki, N,A,M,C)}

24 ret C

procedure DEC(i,N,A,C)

30 M ← Π.D(Ki, N,A,C)

31 S
∪← {(Ki, N,A,M,C)}

32 ret M

procedure REV(i)

40 Kr
∪← {Ki}; ret Ki

procedure COR(i,K)

50 Ki ← K; Kc
∪← {Ki}

Figure 4.8. An alternative CAE-security game. This definition of CAE-
security parametrizes the game with a four-bit string u that dictates which
elements—key, nonce, AD, message—should count as an adversarial win when mis-
attributed.

committing to the key, nonce, and AD; and committing to everything. The framework here allows

the expression of all sixteen ways one can commit to encryption inputs.
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CHAPTER 5

Concluding Remarks

5.1. Summary

This work targets two misguided assumptions that users may have of nonce-based AE. In

particular, one may assume from an nAE privacy definition that anonymity comes with nAE privacy.

One may also assume from an nAE authenticity definition that decrypting a ciphertext with inputs

other than the one used to create it would result in failure. Neither of these assumptions hold. In

this dissertation, we give two primitives that actually satisfy these assumptions: anonymous AE

and committing AE.

Anonymous AE. We give an anonymous nonce-based AE syntax that serves as an extension of

an nAE scheme by adding an alternative decryption algorithm accompanied with four other state

modification algorithms. This alternative decryption algorithm takes in only a ciphertext and is

asked to recover the message, the operative nonce, the operative AD, and a pointer to the operative

key. The result of this kind of interface is that the ciphertext given to decryption is understood

as the full ciphertext, meaning everything that is required to decrypt. We then give a security

definition for anAE that captures both privacy (along with anonymity) and authenticity.

We propose a construction NonceWrap for achieving anonymous nAE. Each NonceWrap-encrypted

ciphertext consists of a header and a body. The body is the conventional nAE ciphertext. The

header contains an enciphering of the nonce, some redundant bits used for rapid rejection, and a

hash of an AD value. NonceWrap is able to utilize a number of dictionaries and header precomputa-

tion to quickly identify the operative key, nonce, and AD for a given ciphertext. Should NonceWrap

not be able to identify these inputs through its dictionaries, it can fall back to trial decrypting.

Even so, its trial decrypting is fast, as it first deciphers the headers and checks the presence of the

redundant bits among other checks. This allows it to immediately reject candidate inputs without
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having to actually decrypt the body. We show that NonceWrap satisfies our security definition. A

prototype implementation of NonceWrap as well as some of its predecessors are also described.

Committing AE.We give a committing AE security definition for nonce-based AE with associated

data. The definition asks that an adversary find a colliding ciphertext. The definition is fully

committing, meaning it requires all encryption inputs—the key, nonce, AD, and plaintext—to all

be committed in the ciphertext. Furthermore, our definition considers adversarial relationships

with the keys involved in constructing its colliding ciphertext. That is, either the key remains

honest and hidden from the adversary, the key is known to the adversary, or the key is chosen by

the adversary. Recall that we represent these as 0, 1, and X respectively. We show that conventional

nAE implies CAE00-security.

We then present our scheme CTX for achieving fully committing AE. It is a simple transform

that uses a tag-based nAE scheme to generate a ciphertext C and its tag T . CTX then exploits

the injectivity of nAE encryption to commit to the message without having to process it. A CTX

ciphertext consists of C ∥ T ∗ where T ∗ is the collision-resistant hash of K,N,A, T . We show that

this provides CAEXX security in the standard model while showing that CTX has nAE privacy and

authenticity in the random oracle model Lastly, we compare CTX and our cAE-security definition

with other cAE-related definitions and constructions.

5.2. Future Work

Strengthening the anAE Definition. Although the anAE definition that we present in Chap-

ter 3 captures a strong notion of privacy that encompasses anonymity, we discuss one of the ways

to strengthen it further here. One issue with the anAE definition is that it assumes that all the

keys in the anAE security game are chosen uniformly at random. Due to this assumption, the

definition fails to capture security against adversaries who may learn the keys of some parties or

register their own keys with the receiver.

An adversary may break the anAE security of an anAE scheme is by creating a misattribution.

We show in Chapter 3.3 that, for NonceWrap, this is difficult for any adversary to do assuming the

blockcipher and nAE scheme it uses are prp∗-secure and nae∗-secure respectively. This is consistent

with what we know about creating colliding ciphertexts, which is needed for an adversary to create
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a misattribution. For nAE-secure nAE schemes, it is difficult to find a ciphertext that decrypts

validly under two different honestly chosen and hidden keys. We prove this in Chapter 4.1.

But if we adjust our anAE definition to account for potential adversarial keys, then misattri-

butions may be possible in NonceWrap. Will such misattributions be meaningful in undermining

anonymity? While we do not formalize it, one can imagine the addition of an oracle, say a key-

installation oracle, to the anAE security games. This oracle in the real game adds an adversarial

key input to the vector of active keys with some SID. The ideal one will ignore the adversarial key,

but set up the bookkeeping necessary to keep track of the SID associated with it.

Suppose the adversary in this modified anAE game initializes some honest keys and installs

some of its own malicious keys. Then suppose it is able to create a misattribution—it submits a

ciphertext that decrypts validly under two of the keys. If the two keys that the ciphertext decrypts

under are both adversarial keys, then we argue that this is not a meaningful misattribution. In

attacking an anAE scheme, an adversary may want to disrupt service or spoof messages for the

receiver. Spoofing messages under its own identity does not matter nor would disrupting service

for itself. Hence, the modified anAE game would need a mechanism to identify misattributions

that involve at least one honest key in order for the adversary to win. In the language of our cAE

framework, XX-type collisions do not seem to be meaningful against anAE schemes.

However, we show in Chapter 4.3 that for nAE schemes AES-GCM and OCB, an adversary can

create a colliding ciphertext under two keys—one that it has knowledge of and one honestly chosen

and completely hidden from the adversary. This extends to an installed key as if the adversary has

control over it, then it also has knowledge of it. Following this, an adversary may be able to create

a winning misattribution for the modified anAE game against NonceWrap should NonceWrap be

instantiated with AES-GCM or OCB. We suspect that this is possible, but have not investigated

it further. We also suspect that one can mitigate such misattributions for NonceWrap by using an

CAEXX-secure scheme as its nAE component like CTX. We leave the exploration of a strengthened

anAE definition, this potential weakness in NonceWrap, and the mitigation of this weakness for

future work.
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Regarding non-CAEXX security. As demonstrated by the above modified anAE definition,

there are contexts where CAE00-security is insufficient but stronger notions such as CAEXX is not

required.

Looking back at Theorem 4.2.1 from Chapter 4.2, we see that the CAEXX-security of CTX

is bounded by the collision-resistance of the hash function it employs. One can break this with

about 2µ/2 operations doing a birthday-attack, which is why we recommend having CTX tag length

be 160-bits over, say 128-bits. This raises a question: Can one lower the security requirement

(something weaker than CAEXX) and avoid the birthday bound?

The answer is that with CTX, you cannot unless there are further assumptions made of the

nAE scheme Π that it uses. There exists an attack on the CAE0X-security of CTX using a birthday

attack under standard assumptions on Π.

Let Π′ be a tag-based nAE scheme that uses a PRG G to generate a one time pad for the

plaintext M using the key K and the nonce N to get a ciphertext core C and a tagging function

E2(K,N,A,M) for an AD A to produce a tag T . It returns C ∥ T as its final ciphertext. AES-GCM

is an example of such a scheme. Now let Π be a scheme that runs exactly the same as Π′ except if

the key input is a special reserved key, say K∗ = 0k where k is the key length of Π, then E2 outputs

a tag T = 0t for all N,A,M where t is the tag length of Π.

We give an adversary A against CTX[Π, H] even if H is a collision-resistant hash function. Let

µ be the output length of H and q be the number of encryption queries A makes. Adversary A fixes

N1, . . . , Nq distinct nonces as well as some message M and some AD A. It then makes q queries to

its encryption oracle where the ith query is in the form Ci ∥ Ti ← ENC(Ni, A,M). Note that these

queries are made under some hidden key K where K is the target honest key that A is trying to

collide with.

Now A chooses a fresh nonce N distinct from its previous nonces and chooses distinct AD values

A1, . . . , Aq that are different from the previous A. It then computes a q candidate tags where the

jth hash computation is in the form Uj ← H(0k, N,Aj , 0
t).

By the birthday paradox, with probability Ω(q2/2µ), there are indices i, j such that Ti = Uj .

Now A computes Mj ← G(0k, N) ⊕ Ci. We end up with the misattribution Π.E(0k, N,Aj ,Mj) =

Ci ∥ Ti through the following equations:
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Π.E(0k, N,Aj ,Mj) = G(0k, N) ⊕ Mj ∥ H(0k, N,Aj , E2(0k, N,Aj ,Mj))

= G(0k, N) ⊕ G(0k, N) ⊕ Ci ∥ H(0k, N,Aj , 0
t) // by def of Mj and E2

= Ci ∥ Uj = Ci ∥ Ti // by def of Uj and birthday collision

So, CTX is unable to avoid a birthday bound even for CAE0X-security. It is possible that it may

be able to do so with additional assumptions on the nAE scheme it uses. We leave the investigation

of such assumptions and the possibility of other cAE schemes with better CAE0X-security to future

work.

Beyond Anonymous AE and Committing AE. We sketch another variant of AE that enhances

usability beyond the ones provided by anAE with security goals further than that of anAE and

cAE. We refer to it as usability-optimized, metadata-concealing AE or µAE.

The metadata-concealing goal is mostly covered by anAE, which hides the nonce, AD, and any

identifier for a key used to create a particular ciphertext. However, even anAE leaks the length of

the message. This is potentially identity-revealing; one can imagine an adversary that can identify,

with some probability, the sender of ciphertexts based on their lengths and its knowledge of which

senders are predisposed to sending longer or shorter messages.

To address this, µAE would target message length obfuscation on top of the goals of anAE. It

would do so by padding plaintexts before encrypting them. This can only hide message lengths

to an extent. An observer will always knows that the plaintext length is less than or the same

as that of the ciphertext regardless of the encryption scheme used. However, suppose one knows

the high-level application that is employing the µAE scheme and knows that there will never be

communications of more than n bits at a time. Padding messages to n bits before encrypting

would then prevent any adversary from learning the true message’s length from just observing the

ciphertext.

On the usability end, there is room for a number of improvements. First off, we propose

flexible keying. Typically, AE schemes assume that users possess a fixed-length, uniformly-random

key. However, users may instead possess a password or a low-entropy key. Hence, there is some

disconnect between what AE schemes expect and what users might possess. Usually, a tool outside

of the AE scheme is expected to transform what the user possesses into something usable by the
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AE scheme. We want such a tool to be a component of the scheme itself in µAE, guaranteeing

some level of security when arbitrary passwords are used as keys.

Some other desirable features may be ciphertext encoding and self-documenting ciphertexts.

For the former, secure AE schemes produce apparently random bytes when encrypting a plaintext.

These bytes, however, may not be compatible with the user’s application. For example, their usage

might demand a base64url-encoded string or human-readable characters. Having the encoding be

part of the encryption pipeline can enhance usability. For the latter, within AE, there are a variety

of choices one can make for ciphers and parameters to encrypt a message. Rarely is it mentioned

how the receiver of a ciphertext is supposed to know what parameters to use to decrypt. Like

the transfer of metadata, this is usually considered out-of-scope. This feature would annotate

ciphertexts in such a way that receivers can discern which ciphers and parameters were used in

their creation.

We imagine that all of these features are bundled up into a single primitive: µAE. The primitive

would shift away as much burden from the user as possible. It takes whatever they possess as

a key (perhaps they do not even possess a password) and outputs a metadata-protected, length-

obfuscated, encoded ciphertext with parameter annotations, fully ready for decryption. This covers

an entire pipeline going from what little a user may provide (a plaintext and maybe a password)

to a ciphertext that only needs a key to decrypt (as per anAE in addition to the documenting and

encoding features). We leave the studying and development of such a primitive and the exploration

of any other desirable features to future work.
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