
UCSF
UC San Francisco Previously Published Works

Title
The LC3-conjugation machinery specifies the loading of RNA-binding proteins into 
extracellular vesicles

Permalink
https://escholarship.org/uc/item/30p4n65t

Journal
Nature Cell Biology, 22(2)

ISSN
1465-7392

Authors
Leidal, Andrew M
Huang, Hector H
Marsh, Timothy
et al.

Publication Date
2020-02-01

DOI
10.1038/s41556-019-0450-y
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/30p4n65t
https://escholarship.org/uc/item/30p4n65t#author
https://escholarship.org
http://www.cdlib.org/


The LC3-Conjugation Machinery Specifies the Loading of RNA-
Binding Proteins into Extracellular Vesicles

Andrew M. Leidal1, Hector H. Huang2, Timothy Marsh1, Tina Solvik1, Dachuan Zhang3, 
Jordan Ye1, FuiBoon Kai4, Juliet Goldsmith1, Jennifer Y. Liu1, Yu-Hsin Huang1, Teresa 
Monkkonen1, Ariadne Vlahakis1, Eric J. Huang1, Hani Goodarzi5, Li Yu3, Arun P. Wiita2, 
Jayanta Debnath1

1Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of 
California San Francisco, San Francisco, California 94143 USA

2Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 
94143, USA.

3State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center 
for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

4Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.

5Department of Biochemistry and Biophysics, Department of Urology, and Helen Diller Family 
Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 
94158, USA.

Abstract

Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; 

however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that 

components of the autophagy machinery specify secretion within extracellular vesicles (EVs). 

Using a proximity-dependent biotinylation proteomics strategy, we identify 200 putative targets of 

LC3-dependent secretion. This secretome consists of a highly interconnected network enriched in 

RNA-binding proteins (RBPs) and EV cargoes. Proteomic and RNA-profiling of EVs identifies 

diverse RBPs and small non-coding RNAs requiring the LC3-conjugation machinery for 

packaging and secretion. Focusing on two RBPs, heterogeneous nuclear ribonucleoprotein K 

(HNRNPK) and scaffold-attachment factor B (SAFB), we demonstrate these proteins interact with 

LC3 and are secreted within EVs enriched with lipidated LC3. Furthermore, their secretion 
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requires the LC3-conjugation machinery, neutral sphingomyelinase 2 (nSMase2), and LC3-

dependent recruitment of Factor-associated with nSMase2 activity (FAN). Hence, the LC3-

conjugation pathway controls EV cargo loading and secretion.

Introduction

Although autophagy is classically viewed as a lysosomal degradation process1, genetic 

evidence implicates autophagy pathway components (ATGs) in secretion, including the 

conventional secretion of inflammatory cytokines2, extracellular release of lysozyme3, 

efficient egress of secretory lysosomes4, extracellular vesicle (EV) production5, 6 and 

unconventional secretion of proteins lacking N-terminal leader peptides or signal 

sequences7–10. These processes, collectively termed secretory autophagy, implicate the 

autophagy pathway in non-cell autonomous control of cell fate decisions and tissue 

microenvironments, both normally and during disease11–13. Nevertheless, our understanding 

of secretory autophagy remains rudimentary. First, apart from a limited number of protein 

targets, the autophagy-dependent secretome remains uncharacterized. Furthermore, studies 

to date largely rely on phenotypic analysis following ATG genetic loss-of-function, which 

fail to discern whether secretory defects represent a direct versus indirect consequence of 

impaired autophagy. Here, we describe a secretory autophagy pathway in which LC3/ATG8 

mediates the loading of protein and RNA cargoes into extracellular vesicles (EVs) for 

secretion outside of cells.

Results

LC3 proximity-dependent biotinylation identifies proteins secreted via autophagy-
dependent pathways

We developed a proximity-dependent biotinylation (BioID)14 strategy to label proteins 

within autophagic intermediates that are subsequently secreted outside of cells (Fig. 1a). 

Hypothesizing such secreted proteins interact with or reside near MAP1LC3B (LC3), an 

ATG8 orthologue that captures substrates for autophagy, we fused the mutant E. coli biotin 

ligase (BirA*) to the LC3 N-terminus. BirA*-LC3 (myc epitope-tagged) was lipidated with 

phosphatidylethanolamine (PE), localized at autophagosomes, and degraded within 

lysosomes (Extended Data Fig. 1a,b,c). Biotin incubation triggered robust labelling of 

intracellular targets in BirA*-LC3 cells (Fig. 1b, Extended Data Fig. 1d) including multiple 

well-known LC3-interacting intracellular proteins (Fig. 1c). However, these molecules were 

not detectably secreted into conditioned media (CM). Instead, numerous unique biotin-

labelled proteins were detected in CM of BirA*-LC3 cells compared to BirA* controls (Fig. 

1b). Importantly, the BirA*-LC3-labeled secretome represented secretion of proteins that 

were biotin-labelled inside cells, not promiscuous biotinylation following extracellular 

release (Extended Data Fig. 1e,f).

Combining this strategy with stable isotope labelling in cell culture (SILAC) as a 

quantitative proteomics approach to detect differences in secreted protein abundance 

between BirA*-LC3 and BirA* via mass spectrometry (Fig. 1d), we identified >350 secreted 

proteins in three independent biological replicates (Supplementary Table 1). Candidates 
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were selected based on significantly increased log2(BirA*-LC3:BirA*) ratios and the 

presence of two or more peptides. A total of 31 proteins exhibited statistically significant 

enrichment (log2(BirA*-LC3:BirA*)>1; p<0.05) in all three replicates and an additional 170 

proteins were enriched in two of three replicates (Fig. 1e,f,g, Extended Data Fig. 2a). We 

refer to hits enriched in all replicates as class I proteins and those in two of three as class II 

proteins (Supplementary Table 1).

In the class I dataset, we identified two autophagy proteins, MAP1LC3B and ATG3, along 

with multiple RNA-binding proteins (RBPs) previously shown to interact with LC3 or other 

ATG8 family proteins15 (Fig. 1g, Extended Data Fig. 2a,b,c). Together, the class I + II 

datasets contained 42 and 76 proteins in common with the LC3 interactome and entire ATG8 

interactome, respectively15. Notably, five LC3/ATG8 family members ranked amongst the 

top proteins connected to the identified secreted targets (Extended Data Fig. 2d). 83% of the 

proteins enriched in the BirA*-LC3 labelled secretome were previously identified in 

proteomics of human plasma, consistent with a role for autophagy in controlling secretion in 
vivo16 (Fig. 1h). Importantly, an interaction map of the class I + II datasets revealed a highly 

interconnected network enriched in protein-protein interactions (PPIs)17 (Extended Data Fig. 

2e). Gene Ontology (GO) analyses demonstrated the BirA*-LC3 labelled secretome was 

highly enriched in RBPs and proteins released within EVs (Fig. 1i; Extended Data Fig. 2e); 

33% of the candidates identified in our proteomic screen were previously detected in EVs 

and 113 out of 200 proteins have functions in mRNA binding18 (Extended Data Fig. 2e,f,g; 

Supplementary Table 1). Collectively, these results broached that LC3 and the autophagy 

machinery control the loading and secretion of specific proteins such as RBPs within EVs.

LC3-II and BirA*-LC3 biotinylated targets are secreted within small EVs

CM from biotin-pulsed BirA*-LC3 cells was subject to serial differential ultracentrifugation 

to recover large EVs (at 10,000g), small EVs (at 100,000g)19 and soluble proteins 

precipitated from the remaining sample. BirA*-LC3-labelled secreted proteins were 

enriched in the 100,000g pellet along with multiple EV markers (Fig. 2a,b). Remarkably, 

these 100,000g fractions were also enriched in the lipidated, membrane-bound form of 

endogenous LC3 (LC3-II), suggesting LC3-II itself was secreted via EVs. Upon further 

purifying EVs via linear sucrose density gradient, we found endogenous LC3-II co-

fractionated with well-defined EV markers at characteristic buoyant densities, with a slightly 

broader distribution into less dense fractions19 (Fig. 2c). Transmission electron microscopy 

(TEM) further corroborated that samples isolated by ultracentrifugation were enriched in 

EVs. Importantly, endogenous LC3-II resided inside the lumen of EVs, evidenced by its 

protease protection in the absence of detergent, and co-purified with EVs immuno-isolated 

from concentrated preparations using antibodies against EV-associated tetraspanins (Fig. 

2d,e,f). Finally, LC3-II was secreted within EVs from multiple cell types comprising diverse 

lineages, including primary astrocytes, and detected in vivo within EVs isolated from mouse 

plasma (Extended Data Fig. 3 a–g).

A subset of EVs are produced by intraluminal budding from the limiting membrane of 

multivesicular bodies (MVBs)20–23. To determine if intracellular LC3 localized to MVBs, 

we employed an APEX-LC3 recombinant probe24 to visualize LC3 via TEM, which 
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revealed numerous MVBs containing subpopulations of LC3-positive intraluminal vesicles 

(ILVs) (Figure 2g). To determine whether endogenous LC3 is delivered into the lumen to 

MVBs, we immunostained for LC3 in cells expressing constitutively active mutant 

mCherry-Rab5Q79L, which impairs endosomal trafficking and promotes the formation of 

enlarged terminal early endosomes exhibiting intraluminal budding25, 26. We detected 

endogenous LC3 at the limiting membrane and in ILVs within mCherry-Rab5Q79L 

endosomes of wild-type cells, but not in cells lacking ATG7, an autophagy regulator 

essential for LC3/ATG8 lipidation27 (Fig. 3a). Furthermore, LC3 co-localized with CD63 in 

these enlarged vesicular intermediates (Extended data 3h). In contrast, ATG14, an ATG 

needed for classical degradative autophagy28, 29, did not reduce formation of LC3-positive 

ILVs in mCherry-Rab5Q79L endosomes (Fig 3a), broaching a specific requirement for the 

LC3-conjugation pathway in incorporating LC3 into ILVs. Finally, in the absence of 

Rab5Q79L expression, we observed significant co-localization of endogenous LC3 and 

CD63, further supporting that LC3 is packaged and released within EVs by an ATG7, but 

not ATG14 dependent pathway (Fig 3b,c,d).

LC3-conjugation pathway is required for EV loading and secretion of RNA-binding proteins

These phenotypic differences between ATG7 versus ATG14 deletion suggested that LC3-

conjugation pathways specifically packaged proteins into EVs for secretion outside the cell1. 

To further elucidate the LC3-dependent EV proteome, we performed tandem-mass tag 

(TMT)-based quantitative proteomics comparing EVs purified from wild-type versus cells 

lacking ATG7 or ATG12, two essential components of the LC3-conjugation machinery27 

(Fig. 4a,b; Supplementary Table 2). Overall, 81% of targets enriched in the BirA*-LC3B-

labelled secretome were detected in the global EV proteome, further supporting EVs as a 

principal route for autophagy-dependent unconventional secretion (Fig 2a,b; Extended Data 

Fig. 4a). 815 proteins were enriched in EVs from wild-type relative to ATG7 and ATG12 

deficient cells (Fig. 4c; Supplementary Table 2), including 55 proteins overlapping with the 

BirA*-LC3B-labeled secretome, such as the RNA-binding proteins SAFB, HNRNPK, 

LARP1, SF3A1 and G3BP1. Although we were unable to detect LC3B, likely due its small 

size and lipid modification, five LC3/ATG8 family members ranked amongst the top 

proteins connected to the 815 proteins enriched in the LC3-dependent EV proteome (Fig. 

4c). Moreover, similar to the BirA*-LC3 secretome, GO analyses highlighted a profound 

enrichment in RBPs and proteins that function in RNA metabolism (Fig. 1i, Fig. 4e). Among 

the 815 EV proteins requiring the LC3-conjugation machinery for secretion, 112 have been 

identified in stress granules and 206 in processing bodies (P-bodies), two ribonucleoprotein 

assemblies that functionally sequester RNAs to control gene expression in response to 

diverse cellular stresses30 (Extended Data Fig. 4b,c; Supplementary Table 2). Finally, among 

the proteins enriched within the BirA*-LC3 secretome, but not the LC3-dependent EV 

proteome, histones made up a significant proportion, consistent with reports that autophagy 

may facilitate the secretion of histones and DNA via EV-independent mechanisms31 

(Supplementary Table 2).

Little is known regarding the pathways specifying cargo loading into EVs20–23. Analogous 

to its role in sequestering cargo during degradative autophagy32, we hypothesized that 

lipidated LC3-II captures proteins at the MVB limiting membrane, incorporating them into 

Leidal et al. Page 4

Nat Cell Biol. Author manuscript; available in PMC 2020 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intraluminal vesicles (ILVs) for subsequent release as EVs. To test this prediction, we 

focused on SAFB and HNRNPK, two RBPs enriched in both the BirA*-LC3B secretome 

and LC3-dependent EV proteome (Fig. 1g; Fig. 4a,b,c; Extended Data Fig. 4a). Endogenous 

SAFB and HNRNPK co-fractionated with membrane-bound LC3-II in purified EVs (Fig. 

5a), interacted with LC3 (Fig. 5b), co-localized with LC3 in the lumen of a subset of 

mCherry-Rab5Q79L endosomes (Extended Data Fig. 4d) and were detected in EVs purified 

from multiple cell types (Extended Data Fig. 3a). In contrast to p62/SQSTM1, these LC3-

binding RBPs were not degraded during starvation-induced autophagy (Fig. 5c).

We next assessed whether various autophagy pathway components were required for SAFB 

and HNRNPK secretion. Deletion of the LC3-conjugation pathway components, ATG7 and 

ATG12, reduced overall EV production and protein content relative to controls (Fig. 5d), but 

did not impact the size of EVs (Fig. 5e). To control for these differences in EV production 

among ATG null cells, we normalized EV lysates based on protein concentration and 

assayed for LC3-binding RBPs. EVs from ATG7 and ATG12 deleted cells were devoid of 

LC3-II, HNRNPK, and SAFB, but still contained EV marker proteins (Fig. 5f,g). Similarly, 

reduced EV secretion of these targets was observed in cells deficient for ATG3, another 

essential component of the LC3-conjugation machinery27 (Extended Data Fig. 4e,f). 

Impaired secretion was not due to changes in intracellular HNRNPK and SAFB protein 

levels or cell death (Fig. 5f,g; Extended Data Fig. 4e,f,g,h). In contrast, loss of ATG14 and 

FIP200, two ATGs required for the early initiation steps of classical autophagy, but 

dispensable for LC3-conjugation28, 29, 33, did not attenuate EV production (Fig. 5d) or EV 

release of LC3-II and LC3-binding RBPs (Fig. 5f,g). Taken together with the results above 

that ATG14 deletion does not impair LC3-positive ILV formation or LC3 co-localization 

with tetraspanins (Fig. 3a,b,c,d; Extended Data Fig. 3a), our results substantiate a specific 

requirement for the LC3-conjugation machinery in loading LC3-II and LC3-binding RBPs 

into EVs. In further support, LC3-II is not secreted within plasma EVs in vivo in mice 

systemically deleted for Atg12 (Extended Data Fig. 3b–d). Because proteins that bind LC3/

ATG8 frequently contain a motif called an LC3 interaction region (LIR), we asked whether 

the loading of LC3-binding RBPs into EVs involved LIR-dependent interactions. Primary 

sequence analyses revealed a putative LIR consensus motif within SAFB (Extended Data 

Fig. 5d), whereas HNRNPK only contained regions with minimal overlap. Mutation of the 

core hydrophobic amino acid within this motif to alanine (F199A) was sufficient to disrupt 

LC3 binding (Fig. 4h,i), which potently suppressed EV secretion of SAFB (Fig. 4j,k).

Overall, this secretory autophagy pathway, which we term LC3-Dependent EV Loading and 

Secretion (LDELS), is distinct from classical autophagy. In support, treating cells with 

rapamycin stimulates classical autophagy, but conversely reduces EV secretion of LC3-II 

and LC3-binding RBPs (Extended Data Fig. 4i,j). In addition, other LC3/ATG8 family 

members are released in EVs via mechanisms requiring the LC3-conjugation machinery 

(Extended Data Fig. 5a) and recent unbiased proteomic analyses have detected multiple 

LC3/ATG8 family members in EVs from diverse cell lines34. Notably, we corroborated 

several additional RBPs identified from our proteomic screens, including G3BP1, LARP1 

and SF3A1, to be secreted in EVs in an ATG7-dependent manner; similar to SAFB and 

HNRNPK, these targets interacted with diverse LC3/ATG8 family members (Extended Data 
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Fig. 5b,c). Together, these data support that the LC3-conjugation machinery and LC3/ATG8 

family proteins mediate the cargo loading and secretion of RBPs via EVs.

LDELS Regulates Extracellular RNA Secretion via EVs

We further reasoned that LDELS influences extracellular RNA secretion via EVs. EVs 

contain diverse nucleic acids including mRNA, non-coding RNAs, and DNA, but the 

mechanisms incorporating genetic material into EVs remain poorly defined23, 35. To 

scrutinize how LDELS impacted extracellular RNA secretion, we performed quantitative 

RNA sequencing (RNA-seq) from EVs isolated from wild-type, ATG7 and ATG12 deficient 

cells; in parallel, RNA-seq of corresponding cell samples was performed to assess 

intracellular gene expression differences. We observed profound differences in the small 

RNA bio-types isolated from EVs from wild-type versus LDELS deficient cells, with 

minimal differences in the intracellular small RNA species (Fig. 6a,b; Supplementary Table 

3). EVs derived from ATG7 and ATG12 deficient cells had relatively fewer RNA-seq reads 

mapping to small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs), particularly in 

ATG7 knockout conditions. Whereas 23% and 15% of the small RNA sequences in EVs 

from wild-type cells were snoRNAs and miRNAs, respectively, snoRNAs and miRNAs 

constituted 6% and 5% of EV small RNA sequences from ATG7 deficient cells and 18% and 

5% from ATG12 deficient cells. Reduced levels of snoRNA and miRNA sequences in EVs 

from LDELS deficient cells correlated with a relatively increased proportion of reads 

mapping to transfer RNA (tRNA) species. In contrast, ATG7/12 deletion minimally 

impacted extracellular release of large RNAs within EVs (Extended Data Fig. 5e,f,g; 

Supplementary Table 3). More detailed analysis revealed 252 and 105 small non-coding 

RNAs to be statistically enriched in EVs from relative to ATG7 and ATG12 deficient cells, 

respectively (Fig. 6c,d); overlap between these two datasets highlighted 88 distinct RNAs 

requiring the LC3-conjugation machinery for efficient EV secretion (Fig. 6e; Supplementary 

Table 3). Most significantly, 76% of EV small non-coding RNAs regulated by LDELS were 

snoRNAs (or fragments thereof), a class of small RNAs canonically involved the ribosomal 

RNA modification36 (Fig. 6f). Furthermore, 30% of snoRNAs secreted in an ATG7/12-

dependent manner were enriched within EVs relative to total cellular RNA, consistent with 

their incorporation into EVs through an active packaging mechanism (Fig. 6g). Hence, 

LDELS influences the spectrum of extracellular small non-coding RNA species secreted 

within EVs.

LDELS requires neutral sphingomyelinase 2

We next scrutinized whether pathways promoting inward budding and ILV formation from 

the MVB limiting membrane contribute to LDELS. Although the best-characterized process 

involves the endosomal sorting complexes required for transport (ESCRT) machinery20–23, 

siRNA against most ESCRT components, except CHMP4b, failed to abrogate incorporation 

of endogenous LC3 into mCherry-Rab5Q79L endosomes (Extended Data Fig. 6a,b,c). In 

parallel, we evaluated an alternative pathway in which ceramide produced by neutral 

sphingomyelinase 2 (nSMase2) induces vesicle curvature and inward budding from the 

MVB26. Indeed, siRNA-mediated depletion of nSMase2 functionally impaired the 

incorporation of endogenous LC3 into mCherry-Rab5Q79L endosomes (Extended Data Fig. 

6a,d). Furthermore, treatment with the nSMase2 catalytic inhibitor GW4869 or shRNA 
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depletion targeting nSMase2 potently suppressed secretion of LC3-II and LC3-binding 

RBPs (Fig. 7a,b,c,d; Extended Data Fig. 7a,b). Although nSMase2 ceramide production has 

been implicated in ILV formation, the mechanisms regulating nSMase2 activity and cargo 

selection remain obscure32. Bioinformatic analyses of the intracellular LC3/ATG8 

interactome15 identified Factor-associated with nSMase2 activity (FAN/NSMAF)37 as a 

potential LC3/ATG8-associated regulator of nSMase2. Indeed, FAN robustly interacted with 

multiple LC3/ATG8 isoforms, including LC3B, but itself was not degraded via autophagy 

(Fig. 7e; Extended Data Fig. 7d). Moreover, FAN knockdown suppressed EV secretion of 

LC3-II, SAFB and HNRNPK, whereas classical autophagy was unaltered (Fig. 7f,g; 

Extended Data Fig. 7e); siRNA-mediated depletion of FAN also impeded the incorporation 

of endogenous LC3 into mCherry-Rab5Q79L endosomes (Extended Data Fig. 7f,g,h). 

Finally, we identified a putative LIR motif within FAN, whose mutation (F602A) impaired 

binding to LC3/ATG8 isoforms (Fig. 7h–i). Re-expression of FANF602A in FAN-deficient 

cells failed to rescue LDELS (Fig. 7j,k; Extended Data Fig. 7i), whereas wild-type FAN 

fully restored EV secretion of LC3 and LC3-binding RBPs (Fig. 7j,k; Extended Data Fig. 

7i). Thus, FAN interaction with LC3 is crucial for an LC3-dependent circuit that coordinates 

cargo loading and biogenesis for nSMase pathway-derived EVs (Extended Data Fig. 7j).

Discussion

Here, we demonstrate that LC3/ATG8 and the LC3-conjugation machinery specifies cargo 

loading into extracellular vesicles (EVs). Previous work has intimated interconnections 

between the autophagy and EV production. For example, we previously demonstrated a 

complex between ATG12 and ATG3 that interacts with the ESCRT accessory protein ALIX 

(PDCDIP6), and regulates small EV release6. In addition, the autophagy proteins ATG5 and 

LC3 were found to co-ordinately regulate MVB acidification and exosome production via 

control of ATP6V1E1 interactions with the V1V0-ATPase complex5. Moreover, because late 

endosomes can fuse to immature autophagosomes, EV biogenesis and autophagy are 

proposed to be functionally connected 38, 39. In this study, we delineate a process called 

LDELS, highlighting a unique and previously unappreciated role for the LC3-conjugation 

machinery in specifying the cargo packaged into EVs.

Importantly, these functions for LC3/ATG8 and the conjugation machinery in LDELS are 

distinct from their established roles in classical autophagy. We propose that instead of using 

LC3/ATG8 located at early autophagic intermediates, LDELS employs a pool of LC3-II 

located at the MVB limiting membrane to directly capture RBPs and package them into 

ILVs; these are subsequently released as EVs via MVB fusion with the plasma membrane 

(Extended Data Fig. 7j). Hence, LDELS bears similarity to a growing list of autophagy-

related pathways, in which LC3-II is delivered to single membranes in the endolysosomal 

system, including LC3-associated endocytosis (LANDO), LC3-associated phagocytosis 

(LAP), entosis, and macroendocytic processing40–43. LDELS also requires nSMase2 and 

LC3-dependent recruitment of FAN. Indeed, ceramides produced by nSMase2 can drive 

formation of membrane microdomains that impose negative membrane curvature and 

facilitate ESCRT-independent intraluminal budding at the MVB limiting membrane26. 

Unlike many ESCRT components, we have not detected FAN within EVs, suggesting FAN 

can only transiently interact with LC3 at the limiting membrane of MVBs or may act 
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remotely to facilitate LDELS from other compartments such as the ER or Golgi apparatus, 

consistent with emerging roles for inter-organelle communication in MVB cargo 

sorting44, 45.

Our studies also suggest that LDELS is largely independent of the ESCRT machinery; only 

genetic depletion of CHMP4b leads to reduced LC3 incorporation into Rab5Q79L 

endosomes. CHMP4b has recently been implicated in endosomal microautophagy42, 

suggesting that these two pathways may be interconnected. However, in contrast to 

endosomal microautophagy, LDELS does not appear to require VPS4a/b. Further 

scrutinizing whether LDELS requires additional components of the ESCRT machinery and 

its relationship to degradative pathways such as endosomal microautophagy and LC3-

associated endocytosis (LANDO) remains an important topic for future study41, 42.

Amongst the array of identified LDELS cargoes, RBPs represent the most prominent 

functional class of proteins. Though EVs are known to contain diverse RBPs, the 

mechanisms specifying their loading and secretion remain largely unclear23, 35. We 

demonstrate here that LC3 and ATG8 family members interact with multiple secreted RBPs, 

many of which contain LIR consensus motifs, and show that mutation of the LIR within 

SAFB (SAFBF199A) is sufficient to impair its secretion via EVs. Interestingly, many LDELS 

targets are detected in RNA granules, including stress granules and P-bodies46, 47. 

Autophagy is proposed to regulate stress granule clearance48, but its role in RNA granule 

homeostasis appears more complex and nuanced beyond simple turnover of stress granule 

components49–52. We are actively investigating how LDELS interacts with classical 

autophagy to regulate the dynamic remodelling of RNA granules.

Consistent with its role in RBP secretion, the loss of LDELS via genetic ablation of ATG7 

and ATG12 leads to profound changes in the extracellular small non-coding RNA profiles 

present in EVs. EVs contain diverse small RNA bio-types and the mechanisms that 

contribute to the packaging and secretion of small RNAs are only beginning to be 

unraveled35, 53–56. Although LDELS affects secretion of multiple small RNA bio-types, its 

greatest impact is on snoRNAs, a class of nuclear small non-coding RNAs involved in 

ribosomal RNA modification36. Indeed, snoRNAs (or fragments thereof) are readily 

detected in EVs purified from human plasma and cell culture conditioned media57–63. 

However, the mechanisms specifying snoRNA secretion and the functions of extracellular 

snoRNAs remain largely unclear. Interestingly, a number of RBPs secreted via LDELS can 

preferentially bind snoRNAs, including SAFB64. Furthermore, processed forms of snoRNAs 

interact with hnRNPs and cellular stresses such as starvation and oxidative damage promote 

the accumulation of snoRNAs in the cytoplasm65–67. Deciphering whether LDELS directs 

the EV secretion of snoRNAs as a means of regulating protein homeostasis during cell stress 

remains an intriguing question for future investigation.

Originally described as a mechanism to selectively eliminate proteins, lipids and nucleic 

acids from cells, EVs are emerging as an important mode of intercellular communication in 

diverse physiological and pathological processes20–23. Elaborating how LDELS impacts 

intercellular communication and non-cell autonomous functions in vivo remains an 

important topic for future study. Overall, our studies expand the repertoire of putative targets 
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of secretory autophagy and define a previously unrecognized mechanism by which the LC3-

conjugation machinery specifies cargo loading into a subpopulation of EVs.

Materials and Methods

Cell culture

HEK-293T cells (ATCC, CRL-3216), including all cell derivatives generated in this study, 

were cultured in DMEM (ThermoFisher, 11995065) supplemented with 10% FBS, 25 mM 

HEPES, 100U/ml penicillin, and 100μg/ml streptomycin (ThermoFisher, 15140163). Murine 

RAW 264.7 macrophages and murine B16F10 were gifts from Matthew Krummel (UCSF) 

and were cultured in DMEM (ThermoFisher, 11995065) supplemented with 10% FBS, 25 

mM HEPES, penicillin, and streptomycin. Murine LLC1 cells were purchased from ATCC 

(CRL-1642) and were cultured in DMEM (ThermoFisher, 11995065) supplemented with 

10% FBS, 25 mM HEPES, penicillin, and streptomycin. All cell lines were authenticated 

using STR profiling (IDEXX BioResearch) and routinely tested for mycoplasma 

contamination (Sigma, MP0025).

To induce biotin-labelling, HEK293T cells expressing myc-BirA* or myc-BirA*-LC3B 

were incubated with 50 μM biotin in DMEM with all supplements except FBS for 24h. 

Unless indicated, conditioned media and EV preparations were collected following 24h 

incubation in DMEM containing all supplements except FBS. For autophagy flux assays, 

cells were incubated with 50 μM chloroquine (Sigma, C6628) or 50 μM Bafilomycin A1 

(Sigma, B1793) as indicated for 1 h prior to lysis. Treatment with 5μM GW4869 (Cayman, 

13127) or vehicle (DMSO, Sigma) in serum free DMEM for 24h was used to inhibit nSMase 

activity.

Plasmid constructs

The following plasmids were obtained or are available on Addgene: pcDNA3.1-myc-BirA* 

(mycBioID; Addgene #35700), pBABE-GFP-LC3B (Addgene #22405), pBABE-HRasV12 

(Addgene #9051), mCherry-Rab5Q79L (Addgene #35138). Human LC3B (NM_022818.4), 

SAFB (NM_001201338.1), HNRNPK (NM_002140.4), LC3A (NM_032514.3), LC3C 

(NM_001004343.2), GABARAP (NM_007278.1), GABARAPL1 (NM_031412.2), 

GABARAPL2 (NM_007285.6), SF3A1 (NM_005877.5), LARP1 (NM_015315.4), G3BP1 

(NM_005754), FAN (NM_003580.3) were subcloned from mRNA isolated from human cell 

lines that was reverse transcribed using AccuScript High Fidelity Reverse Transcriptase 

(Agilent) and cDNA amplified using PfuUltra II Hot Start DNA polymerase and gene 

specific primers (LC3B Fwd: agtcggatccatgccgtcggagaagacct; LC3B Rev: 

gactctcgagttacactgacaatt tcatcccg; SAFB Fwd: agctggatccatggcggagactctgtcag; SAFB Rev: 

agctgtcgac tcagtagcggcgagtgaag; HNRNPK Fwd: agtcggaattcgcatggaaactgaacagccagaag; 

HNRNPK Rev: agtcctcgagttagaatccttcaacatctgcata; LC3A Fwd: 

agtcggatccatgccctcagaccggcct; LC3A Rev: gact ctcgagtcagaagccgaaggtttcct; LC3C Fwd: 

agtcggatccatgccgcctccacagaaaat LC3C Rev: gact ctcgagctagagaggattgcagggtc GABARAP 

Fwd: agtcggatccatgaagttcgtgtacaaagaaga GABARAP Rev: gactctcgagttaaagaccgtagacactttc; 

GABARAPL1 Fwd: agtcggatccatgaagttccagtacaaggac; GABARAPL1 Rev: 

gactctcgagtcatttcccatagacactctc; GABARAPL2 Fwd: agtcagatctatgaagtggatgttcaaggag; 
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GABARAPL2 Rev: gactctcgagtcagaagccaaaagtgttctc; SF3A1 Fwd: 

agtctgatcaatgccggccggacccgtg; SF3A1 Rev: gatcctcgagctacttcttcctcccgcctc; LARP1 Fwd: 

agctagatctatgctttggagggtgcttttg; LARP1 Rev: agctctcgagtcactttcccaaagtctgtgt; G3BP1 Fwd: 

agct ggatccatggtgatggagaagcctagt; G3BP1 Rev: agctgtcgactcactgccgtggcgcaagc; FAN Fwd: 

agcttgatcaatggcgtttatccggaagaag; FAN Rev: agctctcgagttaatactgcaatttccagaatata). 

Subsequently, the cDNAs were subcloned into pcDNA3 between the BamHI and XhoI or 

EcoRI and XhoI restriction sites downstream of an N-terminal myc-tag or 3xFlag-tag. All 

constructs were verified by sequencing.

To generate pBABE-myc-BirA*, myc-BirA* was amplified with flanking primers (Fwd: 

agctaagcttaccggtgccaccatggaacaaaaactc; Rev: gactctcgagttacttctctgcgcttctcagg) from 

pcDNA3.1-myc-BirA* and sub-cloned into pBABE-GFP-LC3 between AgeI and SalI, 

entirely replacing the GFP-LC3 open reading frame. To generate pBABE-myc-BirA*-LC3, 

myc-BirA* was amplified with flanking primers (Fwd: 

agctaagcttaccggtgccaccatggaacaaaaactc; Rev: gactggatcccttctctgcgcttctcagg) from 

pcDNA3.1-myc-BirA* and sub-cloned into the HindIII and BamHI sites in front of 

pcDNA3-FLAG-LC3, replacing the FLAG sequence. Subsequently, the myc-BirA*-LC3 

fragment was sub-cloned from pcDNA3-myc-BirA*-LC3 using AgeI (introduced 3’ to the 

HindIII site) and XhoI into pBABE-GFP-LC3 between AgeI and SalI, replacing the GFP-

LC3 open reading frame. All constructs were verified by sequencing.

Site-directed mutagenesis of FLAG-tagged SAFB and FAN was performed via QuikChange 

PCR. Overlapping primers carrying the desired mutation (SAFB Fwd: ttagatacttca 

tcatctgacgccactatattacaggaaattgaa; SAFB Rev: ttagatacttcatcatctgacgccactatattacaggaaattgaa; 

FAN Fwd: gattccccaggtgaagagtctgccgaagacctgaccgaagaaagc; FAN Rev: 

gctttcttcggtcaggtcttcggcagactcttcacctggggaatc) were used to amplify pcDNA3 FLAG-SAFB 

and FLAG-FAN, respectively, and template plasmid was eliminated via DpnI digestion. 

Subsequently, individual clones were sequenced to verify mutagenesis of the desired sites. 

Finally, for FAN rescue experiments, wild-type FAN and FAN F602A were amplified with 

primers incorporating an N-terminal myc-tag (myc-FAN/F602A Fwd: 

agcttgatcaaccatggaacaaaaacttatttctgaagaggatctgggctccatggcgttt atccggaagaag; Rev: 

agctctcgagttaatactgcaatttccagaatata) and cloned between the BamHI and XhoI of pLenti-

CMV-blast (Addgene: #17486).

Retroviral and lentiviral packaging, infection and selection

Retroviral pBABE expression vectors were packaged and target cells transduced according 

to established protocols68. Briefly, Phoenix-AMPHO cells (gift from Craig McCormick, 

Dalhousie University) were seeded and transfected with retroviral vectors using 

polyethylenimine (PEI). Virus-containing conditioned media was collected 2 days after 

transfection and clarified using a 0.45 μM filter. Prior to infection, virus-containing media 

was diluted 1:4 in DMEM growth media and the mix was supplemented with polybrene to a 

final concentration of 8 μg/ml. Subsequently, the viral transduction mix (5 ml total 

volume/10 cm culture dish) was incubated with HEK293T cells for 24h. Cells were selected 

24 h post-transduction with 1μg/ml puromycin for 2 days. To package lentivirus, HEK293T 

cells were seeded and co-transfected with packaging vectors psPAX2 and pMD2.G, and 
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individual pLKO.1 transfer vectors. Virus collection, infection, and puromycin selection of 

stable cell pools was carried as above.

Stable isotope labelling with amino acids in cell culture (SILAC), proximity-dependent 
biotinylation, and affinity purification of biotin-labelled secretome

For experimental replicates #1 and #2, HEK293T stably expressing myc-BirA* were grown 

in Lys- and Arg-free DMEM supplemented with 10% dialysed FBS (ThermoFisher), 25 mM 

HEPES, penicillin-streptomycin, and light (K0) Lys (50 μg/ml) and light (R0) Arg (50 μg/

ml), whereas HEK293T stably expressing myc-BirA*-LC3 were grown in Lys- and Arg-free 

DMEM media with supplements and the heavy isotopes K8 Lys (Cambridge Isotopes) and 

R10 Arg (Cambridge Isotopes). For experimental replicate #3, a label swap was performed 

to rule out potential labelling artefacts; the heavy and light labelling was reversed between 

myc-BirA* and myc-BirA*-LC3 cells. Cells were labelled in SILAC media and expanded 

into 18 × 15 cm culture dishes of equal cell density (80% confluent).

Cells were gently washed twice in 20 ml EBSS and incubated with 15 ml serum free SILAC 

media supplemented with 50 μM biotin to trigger biotin labelling according to standard 

protocols69. Conditioned media (CM) was collected 24 h later and centrifuged serially at 

200g for 10 min to pellet cells, followed by 2000g for 20 min to pellet cellular debris and 

apoptotic bodies. CM was routinely stored at −80oC prior to analysis. CM was precipitated 

by adding trichloroacetic acid (TCA) to a final concentration of 15% and incubating on ice 

for 1 h. Subsequently, precipitated protein was pelleted by ultracentrifugation at 200,000g 

for 18 h. Pellets were washed with 10 ml of ice-cold acetone, re-centrifuged at 200,000g for 

1 h, and air dried. To solubilize protein, pellets were resuspended in 8M guanidine 

hydrochloride (Sigma G3272), 100 mM Tris hydrochloride pH 8.0 for 1 h with manual 

trituration every 15 min. Re-solubilized protein from myc-BirA* or myc-BirA*-LC3 was 

pooled separately and protein concentrations were quantified via BCA protein assays 

(ThermoFisher, 23225), diluting samples below BCA threshold limits for chaotropic agents. 

Subsequently, samples from light myc-BirA* and heavy myc-BirA*-LC3 were mixed in 

equal protein proportions and the combined sample was diluted to 2.5 mM guanidine 

hydrochloride with 50 mM Tris pH 8.0. Biotin-labelled proteins were captured on 120 μl of 

packed high capacity neutravidin sepharose (ThermoFisher, 29204) overnight at 4°C, 

followed by 3 washes with 5 ml 2.5 mM guanidine hydrochloride, 50 mM Tris HCl pH 8.0 

prior to analysis by immunoblotting or mass spectrometry.

Mass spectrometry of affinity purified proteins—Sample preparation, LC-MS/MS, peptide 
identification, and protein quantification

Neutravidin sepharose and affinity purified proteins were resuspended and mildly denatured 

in 1 M guanidine hydrochloride, 1 mM calcium chloride and 100 mM Tris buffer pH 8.0. 

Disulfide bonds were reduced with 4 mM tris(2-carboxyethyl)phosphine (Sigma, C4706), 

and free thiols were alkylated with 10 mM iodoacetamide (Sigma, I1149). Subsequently, 10 

μg of mass spectrometry (MS) grade trypsin (ThermoFisher) dissolved in 10 μL 50 mM 

acetic acid was added to proteins on beads, and incubated at 37° C for at least 18 h. The 

eluate was transferred to a new tube, acidified to a final concentration of 0.3% trifluoroacetic 

acid (pH < 3) and desalted by reversed phase C18 solid phase extraction (SPE) cartridge, 
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using either a Sep-pak (Waters Corp.) or SOLA SPE (ThermoFisher), and then dried down 

in a speed-vac. Dried peptides were stored at −20°C, and resuspended in 2% acetonitrile, 

0.1% formic acid in a bath sonicator for 5 min to a concentration of 2 μg/μL before MS 

analysis.

Peptides (0.5 – 1 μg) were submitted for nano-LC-ESI-MS/MS, using a 195 min reversed 

phase (2.4 – 32% acetonitrile, 0.1 – 0.08% formic acid) buffer gradient with a 15 cm 

Acclaim™ PepMap™ 100 C18 analytical column (2 μm beads, 75 μm i.d.), running at 200 

nL/min on a Dionex Ultimate 3000 RSLCnano pump, in-line with a hybrid quadrupole-

Orbitrap Q-Exactive Plus mass spectrometer (ThermoFisher). A data dependent method with 

a parent ion scan at a resolving power of 70,000 was run on each sample and a top 12 

method for replicates 1 and 2 and top 15 method for replicate 3 selected for the 12 and 15 

most intense peaks for MS/MS using HCD fragmentation (normalized collision energy 27), 

respectively. Dynamic exclusion was activated such that parent ions are excluded from 

MS/MS fragmentation for 20s after initial selection.

For protein identification and quantification, Thermo.RAW files were analyzed by 

Maxquant70. The recorded spectra from three independent biological replicates were 

searched against the human reference proteome from UniProt (2014–11-16 release, with 

20,193 unique proteins, including isoforms, on SwissProt and 47,673 entries in TrEMBL) 

using MaxQuant, version 1.5.1.2. Maxquant uses the Andromeda search engine to identify 

peptides. Search parameters allowed for 4.5 ppm peptide ion search tolerance, 7.5 ppm 

centroided fragment ion tolerance, and 2 missed tryptic cleavages. Oxidation of methionine, 

phosphorylation of serine/threonine/tyrosines, and N-terminal acetylation were allowed as 

variable modifications, while carbamidomethylation of cysteines was selected as a constant 

modification and a threshold peptide spectrum match (PSM) false discovery rate (FDR) and 

protein FDR of 1% was allowed. Quantification of SILAC ratios was performed by 

Maxquant on the MS1 level and the resulting ratios for all replicates were compared using 

statistical tools found in the Perseus bioinformatics analysis package71. Proteins with ratio 

quantification in only one replicate were filtered out. Statistical significance was determined 

by applying a one-sample student T-test to the replicates with a p-value cut off of p = 0.05. 

Protein group ratios and p-values are included in Supplementary Table 1.

Extracellular Vesicle Preparation and Characterization

Extracellular vesicles were purified according to standard differential centrifugation 

protocols72. Briefly, cells seeded in 15 cm culture dishes at approximately 70% confluence 

were incubated with serum free DMEM for 24 h. Conditioned media was collected and 

centrifuged serially at 200g for 10 min to pellet cells, 2000g for 20 min to pellet cellular 

debris and apoptotic bodies, 10,000g for 30 min to pellet large extracellular vesicles, and 

100,000g in an ultracentrifuge for 2 h to pellet extracellular vesicles (EVs). Crude EVs 

pellets were then gently triturated in PBS using a P1000 pipette, diluted further in PBS (12 

ml), and ultracentrifuged for an additional 70 min at 100,000g to generate EV preparations 

for further analysis as described below. Importantly, for all comparisons of EVs between 

experimental conditions, results from individual cohorts were corrected as indicated based 
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on total cell number or whole cell lysate protein concentration to ensure that EV or EV 

protein quantification was not confounded by seeding differences.

Sucrose density gradient separation was utilized to generate highly purified EV preparations 

and to analyse the co-fractionation of LC3-II and LC3 binding proteins with EV marker 

proteins on linear sucrose gradients. Briefly, the 100,000g EV pellets generated via 

differential centrifugation as described above were thoroughly resuspended in 100 μl 10% 

sucrose solution and gently layered on to a continuous 10–60% sucrose gradient formed on a 

gradient station (BioComp Instruments) and then ultracentrifuged at 210,000g for 18h. 

Subsequently, 1 ml fractions from the gradient were top unloaded, weighed, and diluted in 

10 ml of PBS. The diluted fractions were spun at 100,000 for 70 min and pellets 

resuspended in urea lysis buffer for analysis by immunoblotting.

For protease protection assays, equal amounts of EVs were resuspended in PBS or PBS 

containing 1% TritonX-100 in the absence or presence of 100 μg/ml trypsin for 30 min at 

4°C. Subsequently, the reactions were stopped by the addition of 2x protein sample buffer 

and the lysates subjected to immunoblotting. Established protocols were used to perform 

transmission electron microscopy of HEK293T EVs prepared by differential centrifugation5.

Nanoparticle tracking analysis (NTA) for EV preparations was performed with a LM10 

nanoparticle analyser (NanoSight, Worchestershire, UK). Camera level was set at 9 for all 

recordings. Camera focus was adjusted to make the particles appear as individual dots with 

surrounding refractory rings. Five 60 s videos were recorded for each sample with a delay of 

10 seconds between each recording. All post-acquisition functions were set at automatic, 

with the exception of detection threshold, which was set to 2. Protein content in EV pellets 

was quantified via BCA assay (ThermoFisher, 23225), diluting samples below the threshold 

limits for interfering detergents and chaotropic agents.

Mass spectrometry of Extracellular Vesicle Proteins—Sample preparation, Tandem Mass 
Tag (TMT) Labelling, LC-MS/MS, peptide identification, and protein quantification

Serum free media conditioned for 24 h from 4 bioreplicates of approximately 5 × 109 wild-

type, ATG7−/− and ATG12−/− HEK293T cells was collected and extracellular vesicles 

(EVs) were isolated using the standard differential centrifugation protocols described above. 

Upon purification, EVs from each condition were lysed in 800 μL of 

radioimmunoprecipitation (RIPA) buffer (25mM Tris•HCl pH 7.6, 150mM NaCl, 1% 

NP-40, 1% sodium deoxycholate, 0.1% SDS), supplemented with 2% SDS and sonicated 

with a probe sonicator set to an amplitude of 8 for 10 bursts of 10s. Each 800 μL sample was 

then diluted in 3.5 mL ice-cold 100% acetone and incubated at −20° for 12 h. Subsequently, 

samples were spun in an ultracentrifuge at 200,000g for 18 h, the acetone decanted, and 

pelleted protein was left to air dry. Dried pellets were stored at −80° prior to solubilization 

and tandem mass tag (TMT) labelling.

Biological replicates of HEK293T WT, ATG7−/−, and ATG12−/− of precipitated EV proteins 

were resuspended in 30 μL 6 M guanidine-chloride (Gdn), 100 mM Tris pH 8.0, 10 mM 

TCEP, 40 mM 2-Chloroacetamide (CAA). Proteins were denatured for 1h at 37°C and 

quantified with 660nm Protein Assay Reagent (Thermo). The 4 bioreplicates from each 
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condition were pooled into 2 separate samples and subsequently diluted six-fold with 150 μL 

100 mM Tris pH 8.0. 200 μg of protein for each sample was trypsinized with 4 μg trypsin 

(Thermo) in an orbital shaker at 250 rpm, 37°C for ~ 20 h. After 20 h, trypsin digestion was 

stopped by acidifying samples with 10% trifluoroacetic acid (TFA) to a final concentration 

of 0.5% TFA, then desalted with SOLA C18 reverse phase SPE columns (Thermo), where 

the samples were washed with 1.5 mL 0.1% TFA, then 0.5 mL 0.1% formic acid (FA), 2% 

acetonitrile (ACN), and eluted with 450 μL 0.1% FA, 50% ACN. These samples were dried 

by speed-vac, then resuspended in 10 μL 50 mM HEPES (pH 8.5) and quantified by peptide 

quantification kit (Thermo).

For Tandem Mass Tag (TMT) labelling, 800 μg of each TMT six-plex (Thermo #90061) 

isobaric compound was resuspended with 41 μL 100% anhydrous acetonitrile (Sigma). 15 

μg of peptides for each one replicate were individually combined with 7.69 μL (or 150 μg) 

of the TMT isobaric tags. Samples were incubated at 25°C for 1 h, and then the reaction was 

quenched with 8 μL 5% hydroxylamine for 15 min. After labelling, the six individually 

labelled samples are pooled and 1/3 of the pooled sample (30 μg is fractionated by high-pH 

reverse phase fractionation into 8 fractions and dried down by speed-vac. The fractions are 

then resuspended in 0.1% FA, 2% ACN before LC-MS/MS analysis.

For LC-MS/MS analysis, 1 μg TMT-labelled peptides were analysed on a 15 cm C18 

analytical column, in-line with a Q-Exactive Plus mass spectrometer. The peptides were 

separated on a multi-slope, 100 min gradient (6.4% - 27.2% ACN with 0.1% FA for 80 min 

at 0.2 uL/min, then 27.2% - 40% ACN with 0.09% FA for 15 min at 0.3 uL/min, then 40% - 

56% ACN with 0.09% FA for 5 min at 0.3 μL/min, and then washed for 3 min). Data 

dependent acquisition with MS1 resolution of 70,000, top15 method, and HCD normalized 

collision energy of 32 was used, with MS2 resolution of 35,000 and an isolation window of 

0.7 m/z. Dynamic exclusion was activated for 30s after initial parent ion selection.

Eight injections of the different fractions of TMT-labelled exosome peptides, were analysed 

together via Maxquant (v1.6.0.16). Search parameters for peptide search tolerance was 4.5 

ppm, for centroided MS2 tolerance was 7.5 ppm, and allowed for 2 missed tryptic cleavages. 

Constant modification of carbamidomethylation of cysteines and variable modifications of 

N-terminal acetylation, methionine oxidation, and Ser/Thr/Tyr phosphorylation were 

allowed. Peptide spectrum match FDR and protein FDR was set at 1%. Match between runs 

was enabled to increase peptide identifications. Type is set to “Reporter ion MS2,” and 

TMT6plex-Nter126 to 131, TMT6plex-Lys126 to 131 labels are selected. The resulting 

quantifications are then median normalized for each protein group and statistical analysis 

(two-sample two-sided T-test) was applied in Perseus, with a statistical significance 

threshold of p < 0.05.

Isolation and sequencing of small and large RNA species in EVs

Serum free media conditioned for 24h from 4.5 × 108 wild-type (WT), ATG7−/− and 

ATG12−/− HEK293T cells was collected and extracellular vesicles (EVs) isolated according 

to the standard differential centrifugation protocols described above. Small and large RNA 

was isolated from EVs and cells using the Macherey-Nagel NucleoSpin kit (# 740971) 

according to the manufacturer’s protocol.
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Short RNA libraries were prepared using the SMARTer smRNA-Seq Kit for Illumina 

(Takara #635030). Briefly, input RNA from 3 bio-replicates of wild-type, ATG7−/− and 

ATG12−/− cell and EV RNA samples were first polyadenylated and then reverse transcribed 

using Primescript Reverse Transcriptase and oligo(dT) and SMART smRNA oligos. 

Subsequently, primers with unique Illumina i5 and i7 adapter sequences were used to PCR 

amplify the cDNA from the different samples for 12 cycles. Libraries were then subjected to 

size selection to enrich for small RNA species using SPRI AMPure Beads (Beckman 

Coulter, #A63880) and the yield and concentration were assessed using a Qubit 2.0 

Fluorometer (Invitrogen) and DNA 1000 chips on an Agilent 2100 Bioanalyzer (Applied 

Biosystems), respectively. Libraries were then diluted to 8 nM and pooled together.

Large RNA libraries were prepared using the SMARTer Stranded Total RNA Sample Prep 

Kit - HI (Takara # 634875). Input RNA from 3 bio-replicates of wild-type, ATG7−/− and 

ATG12−/− cell and EV RNA samples were depleted of ribosomal RNA, chemically 

fragmented and then reverse transcribed using Primescript Reverse Transcriptase, random 

primers and SMART stranded oligos. The cDNA was then purified using SPRI AMPure 

Beads (Beckman Coulter, #A63880). Subsequently, primers with unique Illumina i5 and i7 

adapter sequences were used to PCR amplify the cDNA from the different samples for 22 

cycles. Libraries were then purified using SPRI AMPure Beads (Beckman Coulter, 

#A63880) and the yield and concentration were assessed using a Qubit 2.0 Fluorometer 

(Invitrogen) and DNA 1000 chips on an Agilent 2100 Bioanalyzer (Applied Biosystems), 

respectively.

Each library was diluted a final concentration of 4.2 nM and pooled prior to single-end, 50-

bp sequencing on two separate lanes of a HiSeq 4000 (UCSF Center for Advanced 

Technology, San Francisco, CA). For small RNAs, raw reads were first trimmed using 

cutadapt (v2.3) by removing the polyA tail and the tri-nucleotide template switch. Trimmed 

reads were then mapped to the human reference genome (GRCh38/hg38) using bowtie2 

(v2.3). Bedtoold (intersectBed) was used to count the number of reads that overlap 

annotated small RNA species (DASHRv2.073). Differential expression analysis was 

performed using DESeq2. For RNA-seq, salmon (v0.14) was used to map reads to the 

human transcriptome (Gencode v28). Tximport was used to import the data into R and 

DESeq2 were then used to perform differential gene expression analysis.

Bioinformatic Analyses

Candidate proteins identified by mass spectrometry of the BirA*-LC3 labelled secretome 

were subdivided into Class I proteins, which were statistically enriched (log2 BirA*-LC3/

BirA* > 1) in the three quantitative mass spectrometry bioreplicates, and Class II proteins, 

which were enriched in 2 out of 3 biological replicates. Unless indicated, higher stringency 

Class I and lower stringency Class II data sets were combined to generate the BirA*-LC3 

labelled secretome for all bioinformatic analyses. The proportion of candidates detected in 

human plasma was established by searching the BirA*-LC3 labelled secretome against the 

Plasma Proteome Database74. Gene Ontology (GO) analysis was performed using protein 

analysis through evolutionary relationships (PANTHER) and the top 10 terms for molecular 

function and cellular component plotted according to their -log10 false discovery rate75. The 
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network map of the BirA*-LC3 labelled secretome was plotted with Search Tool for the 

Retrieval of Interacting Genes/Proteins (STRING) using experiments and databases for 

interaction sources with a minimum interaction confidence score of 0.40076. Extracellular 

exosome and RNA-binding proteins within the network were identified using PANTHER 

GO analyses for individual candidates. The number of candidate proteins associated with the 

GO term extracellular exosome was obtained using PANTHER. The top ten proteins with 

the greatest connectivity to the combined class I and class II data were identified using the 

protein-protein interaction tool (PPI) in the Enrichr gene set enrichment analysis suite and 

plotted according to their adjusted p-values77. Overlap between data sets, including 

individual Q-MS bioreplicates, LC3 and broader ATG8 interactome15 and mRNA binding 

proteome78 were performed using Biovenn79.

For tandem mass tag (TMT) Q-MS, the overlap between candidates statistically enriched in 

EVs from wild-type versus EVs from ATG7−/− and ATG12−/− (p-value <0.05; log2 WT/

ATG7−/− or WT/ATG12−/− >0.5; n=2) and the BirA*-LC3 labelled secretome (class I and 

II), as well the ATG7 and ATG12-dependent EV proteome versus the stress granule47 and 

processing body46 proteomes were performed using Biovenn13. The top ten proteins with 

the greatest connectivity to the ATG7 and ATG12-dependent EV proteome were identified 

using the protein-protein interaction tool (PPI) in the Enrichr gene set enrichment analysis 

suite and plotted according to their adjusted p-values10. GO analysis of the ATG7 and 

ATG12-dependent EV proteome was performed with PANTHER and the top 10 non-

redundant terms for molecular function plotted according to their -log10 false discovery rate 
8.

For RNA sequencing data, the overlap between RNA candidates statistically enriched in EVs 

from wild-type (WT) versus EVs from ATG7−/− and ATG12−/− (p-value <0.05; log2 WT 

EV RNA/ WT cell RNA vs ATG7−/− EV RNA/ATG7−/− cell RNA or WT EV RNA/WT 

cell RNA vs ATG12−/− EV RNA/ ATG12−/− cell RNA >0.5) using were performed using 

Biovenn13. The classes of different RNA species identified were annotated using 

metascape80 and the heatmap of snoRNA species enriched in WT EVs relative to ATG7−/− 

and ATG12−/− EVs was plotted using Prism statistical analysis software.

Antibodies

Immunoblotting: Streptavidin-HRP (Thermo Fisher, Cat#21130, Lot# TA263511, 

SB241752A; 1:40000)), rabbit anti-MAP1LC3 is commercially available (Millipore, 

Cat#ABC232; 1:1,000), rabbit anti-myc (Cell Signaling Technology, Cat#2278S. 

Clone#71D10; Lot#5 1:1000), mouse anti-myc (Sigma, Cat#M5546, Clone#9E10, 

Lot#128M4898V; 1:1000), mouse anti-GAPDH (Millipore, Cat#MAB374, Lot#3075597; 

1:1000), guinea pig anti-p62/SQSTM1 (Progen/Cedarlane, Cat#GP62-C, Lot# 703241–1; 

1:1000), rabbit anti-OPTN (Abcam, Cat#ab23666, Lot# GR3270251; 1:1000), goat anti-

ATG7 (Santa Cruz Biotechnology, Cat#sc-8668, Clone#N-20, Lot#B0316; 1:1000), mouse 

anti-Nbr1 (Santa Cruz Biotechnology, Cat#sc-130380, Clone#4BR, Lot#B2019; 1:1000), 

mouse anti-ALIX (Cell Signaling Technology, Cat#2171S, Clone#3A9, Lot#5; 1:1000), 

rabbit anti-Hsc70 (Cell Signaling Technology, Cat#8444, Clone#D12F2, Lot#1; 1:1000), 

rabbit anti-TSG101 (BD Biosciences, Cat#612696, Lot#8172853; 1:1000), mouse anti-CD9 
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(Millipore, Cat#CBL162, Clone#MM2–57, Lot#2691299; 1:1000),mouse anti-FLAG-M2 

(Sigma-Aldrich, Cat#F3165, Clone#M2, Lot#SLBN8915V, SLCC4005, SLBF1225; 1: 

5000), rabbit anti-FLAG/DYKDDDDK (Cell Signaling Technology, Cat#2368S, Lot#12; 

1:1000), rabbit anti-SAFB (Abcam, Cat#ab187650, Clone#EPR13588, Lot#GR167184–1, 

GR167184–4, GR167184–5; 1:500), mouse anti-HNRNPK (Abcam, Cat#ab39975, 

Clone#3C2, Lot#GR275360–20, GR275360–6, GR275360–8, GR148352–24; 1:1000), 

rabbit anti-ATG12 (Cell Signaling Technology, Cat#2010S, Clone#human specific, Lot#2, 5; 

1:1000), rabbit anti-ATG14 (MBL, Cat#PD026, Lot#5; 1:1000), rabbit anti-VPS24/CHMP3 

(Abcam, Cat#ab175930, Clone#EPR12821, Lot# YK032912CS; 1:1000), rabbit anti-VPS4a 

(Sigma, Cat#SAB4200022, Lot#119K4789; 1:1000), rabbit anti-VPS4b (Abcam, 

Cat#ab102687, Lot# GR60499–4; 1:1000), rabbit anti-CHMP4b (Abcam, Cat#ab76334, 

Lot# GR26679–7; 1:1000), rabbit anti-FIP200/RB1CC1 (Proteintech, Cat#17250–1-AP, 

Lot#/Barcode#00012978; 1:1000), rabbit anti-phospho-S6 (Cell Signaling Technology, 

Cat#4858S, D57.2.2E, Lot#3; 1:1000), rabbit anti-S6 (Cell Signaling Technology, 

Cat#2217L, Clone#5G10, Lot#3; 1:1000), rabbit anti-nSMase2 (Santa Cruz Biotechnology, 

Cat#sc-67305, Clone#H-195, Lot#E1116; 1:1000), rabbit anti-CD9 (Abcam, Cat#ab92726, 

Clone#EPR2949, Lot#GR260186–21, 1:1000), rabbit anti-CD63 (Abcam, Cat#ab134045, 

Clone#EPR5702, Lot#GR3212162–2; 1:1000), rabbit anti-CD81/TAPA (Abcam, 

Cat#ab109201, Clone# EPR4244, Lot#GR181359; 1:1000), rabbit anti-FAN/NSMAF 

(Abcam, Cat#ab81260, Lot#GR32198–5; 1:1000), rabbit anti-ATG3 (Sigma-Aldrich, 

Cat#A3231, Lot#NA;1:500), rabbit anti-LC3A (Cell Signaling Technology, Cat#4599T, 

Clone#D50G8, Lot#5; 1:1000), rabbit anti-LC3B (Cell Signaling Technology, Cat#3868T, 

Clone#D11, Lot#11; 1:1000), rabbit anti-LC3C (Cell Signaling Technology, Cat#14736T, 

Lot#1; 1:1000), rabbit anti-GABARAP (Cell Signaling Technology, Cat#13733T, 

Clone#E1J4E, Lot#3; 1:1000), rabbit anti-GABARAPL1 (Cell Signaling Technology, 

Cat#26632T, Clone#D5R9Y, Lot#1; 1:1000), rabbit anti-GABARAPL2 (Cell Signaling 

Technology, 14256T, Clone#D1W9T, Lot#3; 1:1000), rabbit anti-LARP1 (Cell Signaling 

Technology, Cat#14763S, Lot#1; 1:500), mouse anti-G3BP1 (BD Biosciences, Cat#611126, 

Clone#23/G3BP, Lot#39834, 1:500), mouse anti-SF3A1 (Abcam, Cat#ab139271, 

Clone#OTI2C4, Lot#GR128640–10, 1:500), Peroxidase-AffiniPure Donkey Anti-Rabbit 

IgG (H+L) (Jackson, Cat#711–035-152, Lot#143451; 1:5000), Peroxidase-AffiniPure 

Donkey Anti-Guinea Pig IgG (H+L) (Jackson, Cat#706–035-148, Lot#108535; 1:5000), 

Peroxidase-AffiniPure Donkey Anti-Goat IgG (H+L) (Jackson, Cat#705–035-147, 

Lot#125729; 1:5000), and Peroxidase-AffiniPure Donkey Anti-Mouse IgG (H+L) (Jackson, 

Cat#715–035-150, Lot#142341;1:5000).

EV immuno-isolation: mouse anti-CD9 (Millipore, Cat#CBL162, Clone#MM2–57, 

Lot#2691299), mouse anti-CD63 (Abcam, Cat#ab8219, Clone#MEM-259, 

Lot#GR3196070–12), mouse anti-CD81 (BD Biosciences, Cat#555675, Lot#7096566).

Immunofluorescence

rabbit anti-LC3B (1:500, MBL, Cat#PM036, Lot#031) and mouse anti-CD63 (1:200, 

Abcam, Cat#ab8219, Clone#MEM-259, Lot#GR3196070–12), mouse anti-LC3(1:200, 

Nanotools, Cat# 0231–100/LC3–5F10, Clone#5F10, Lot#0231S), rabbit anti-CD9 (1:200, 

Abcam, Cat#ab92726, Clone#EPR2949, Lot#GR260186–21), rabbit anti-LC3B (1:200, Cell 
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Signaling Technology, Cat#3868T, Clone#D11, Lot#11), AlexaFluor goat anti-rabbit 488 

(1:500, ThermoFisher, Cat#A-11034, Lot#52700A), goat anti-mouse 647 (1:500, 

ThermoFisher, Cat#A21235, Lot#490187).

Immunoblotting

To generate whole cell lysate, cells were lysed in NP40 buffer (25 mM Tris, pH 8.0, 150 mM 

NaCl, 1% NP40, 5% glycerol) plus protease inhibitor cocktail (Sigma-Aldrich), 2 mM 

EDTA, 2 mM EGTA, 10 mM β-glycerophosphate, 2.5 mM sodium pyrophosphate, 10 mM 

NaF, 1 mM Na3VO4. For EV lysate and re-solubilization of precipitated material for 

immunoblotting, samples were resuspended in Urea buffer (50mM Tris-HCl, pH 8.0, 8M 

urea, 2% SDS, 10mM Sodium Fluoride, 5mM EDTA) plus protease inhibitor cocktail. 

Lysates were cleared by centrifugation, quantified by BCA assay (ThermoFisher, 23225), 

mixed with sample buffer, resolved by SDS-PAGE, and transferred to polyvinylidene 

fluoride membrane (PVDF). Membranes were blocked for 1 h in 5% milk in PBS with 0.1% 

Tween 20, incubated in primary antibody overnight at 4°C, washed, incubated for 1h at RT 

with HRP-conjugated secondary antibodies (1:5,000; Jackson), washed, and visualized via 

enhanced chemiluminescence (Thermo Fisher) on film. Immunoblots were quantified by 

densitometry using Fiji.

Immunoprecipitation

For immunoprecipitation of endogenous SAFB and HNRNPK, cells transiently transfected 

with myc-tagged BirA*, LC3B were lysed 24 h post-transfection in NP40 buffer (25 mM 

Tris, pH 8.0, 150 mM NaCl, 1% NP40, 5% glycerol) plus protease inhibitor cocktail 

(Sigma-Aldrich), 2 mM EDTA, 2 mM EGTA, 10 mM β-glycerophosphate, 2.5 mM sodium 

pyrophosphate, 10 mM NaF, 1 mM Na3VO4. Lysates were pre-cleared with protein A/G 

beads (Santa Cruz, sc-2003) and normal mouse IgG (Santa Cruz, sc-2025) at 4°C and 

incubated overnight with mouse anti-myc antibody (Sigma, M5546; 1 μg/200 μg lysate) at 

4°C. Immune complexes were captured by incubation with protein A/G beads for 4h at 4°C 

and then washed 5 times with NP40 buffer plus inhibitors, eluted with sample buffer, and 

analysed by immunoblotting. For immunoprecipitation epitope-tagged prey, cells transiently 

transfected with myc-tagged BirA*, LC3B (or individual LC3/ATG8 family members) and 

FLAG-SAFB, FLAG-G3BP1, FLAG-LARP1, FLAG-SF3A1, FLAG-FAN or mutants 

thereof were lysed 24 h post-transfection and captured using methods identical to those 

employed for endogenous protein immunoprecipitations.

Immuno-isolation of EVs

The following antibodies were employed for immune-isolation of EVs: mouse anti-CD9 

(Millipore, CBL162), mouse anti-CD63 (Abcam, ab8219), mouse anti-CD81 (BD, 555675). 

Briefly, EVs purified from approximately 4.5 × 108 cells by differential centrifugation were 

resuspended in 100 μL of PBS, split equally between 4 eppendorf tubes (25 μL each), and 

resuspended in 500 μL PBS. Each sample was mixed with 2 μg of normal mouse IgG and 50 

μL of MACs microbeads (Miltenyi Biotec) for 1 h and then pre-cleared through a MACs 

magnetic μ Column (Miltenyi Biotec). Flow through from each of the samples was collected, 

mixed with 2 μg of antibody against 1 of 3 different EV-associated tetraspanins or normal 

mouse IgG, 50 μL of MACs microbeads (Miltenyi Biotec) and left to capture overnight at 
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4oC. The following day, bound EVs were captured separately on MACs magnetic μ 

Columns, washed with 1500 μL PBS, and then eluted with 100 μL of hot 2x sample buffer. 

Samples were then resolved via SDS-PAGE and immunoblotted for LC3 and EV marker 

proteins.

Immunofluorescence and Fluorescence Microscopy

For immunofluorescence of myc-BirA* and myc-BirA*-LC3, cells stably expressing GFP-

LC3 and myc-BirA* probes were seeded on coverslips coated with 10 μg/ml fibronectin (BD 

Biosciences, 356008) diluted in PBS. The next day cells were briefly washed with PBS, 

fixed with 4% paraformaldehyde (PFA) for 20 min at room temperature (RT), quenched with 

PBS-glycine and permeabilized with 0.2% Triton X-100 in PBS. Cells were blocked for 1 h 

in blocking buffer (5% goat serum in PBS), incubated with mouse anti-myc antibody 

(1:1000) overnight at 4oC, washed, incubated with Alexa Fluor 594 goat anti mouse-

secondary antibodies (1:500; Life Technologies) for 1h at RT, washed, and mounted using 

Prolong Gold Anti-Fade mounting medium (ThermoFisher, P36934). For 

immunofluorescence of endogenous LC3, cells stably expressing myc-BirA* probes were 

processed similar to above with the exception that rabbit anti-LC3 antibody (1:500, MBL 

PM036) and Alexa Fluor 488 goat anti rabbit-secondary antibody (1:500; Life Technologies) 

were incorporated into primary and secondary staining steps, respectively. Confocal imaging 

was performed using a TI-inverted microscope stand (Nikon) equipped with a Borealis-

modified Yokogawa CSU-X1 confocal head (Spectral Applied Research), solid-state 488-nm 

(for GFP) and 561-nm (for Alexa Fluor 594) lasers, and a Clara cooled scientific-grade 

interline CCD camera (Andor) or a CoolSNAP MYO cooled scientific-grade CCD camera 

(Photometrics). Intracellular fluorescent-tagged protein and immunofluorescence images 

were acquired at 37°C using a 100× (NA, 1.49; oil) objective (CFI Aprochromat; Nikon). 

Microscope hardware was controlled with Nikon Elements Advanced (version 4.5.1) and the 

images were prepared in Fiji and Adobe Photoshop.

For immunofluorescence detection of endogenous LC3, CD63, SAFB and HNRNPK in 

enlarged Rab5-positive endosomes, cells of the indicated genotypes were transiently 

transfected with mCherry-Rab5CA(Q79L) at 70% confluency with Lipofectamine 2000 

(ThermoFisher, 11668027) according to manufacturer’s instructions; in RNA interference 

experiments, cells were first transfected with siRNA SMARTpools and 24h later mCherry-

Rab5Q79L was transfected using Lipofectamine 2000 (ThermoFisher, 11668027). After 6 h, 

DNA transfected cells were plated onto coverslips coated with fibronectin. Cells were 

incubated on coverslips for 72 h and then fixed with 4% PFA in PBS for 15 min at RT, 

permeabilized with ice cold methanol and incubated at −20°C for 5min before quenching 

with PBS/Glycine. Cells were blocked in blocking buffer (PBS + 0.1% Tween + 10% Goat 

Serum) for 1h at room temp, incubated with rabbit anti-LC3B (1:200, MBL PM036), mouse 

anti-CD63 (1:200, Abcam ab8219) or mouse anti-LC3 (1:200, Axxora 5F10) and rabbit anti-

SAFB (1:200, Abcam ab187650) or rabbit anti-LC3B (1:200, CST 3868) and mouse anti-

HNRNPK (1:200, Abcam ab39975) antibodies diluted in blocking buffer overnight at 4oC, 

washed with PBS, and then incubated with AlexaFluor goat anti-rabbit 488 (1:500, 

ThermoFisher, A-11034) and goat anti-mouse 647 (1:500, ThermoFisher, A21235) 

secondary antibodies in blocking buffer for 1h at RT. Coverslips were washed with PBS and 
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mounted using Prolong Gold (ThermoFisher, P36934). For immunofluorescence of 

endogenous LC3 and CD63 in the absence of Rab5CA(Q79L) perturbation, cells were 

processed as above using rabbit anti-LC3B (1:200, CST 3868) and mouse anti-CD63 (1:200, 

Abcam ab8219) antibodies for primary staining. Cells were visualized using a DeltaVision 

microscope (Applied Precision Ltd.) fitted with a 60Å~, 1.4-NA objective and CoolSnap HQ 

camera (Photometrics). Images were acquired using softWoRx software (Applied Precision 

Ltd.) and prepared in Fiji and Adobe Photoshop. Costes significance tests for co-

occurance81 and the Mander’s overlap co-efficient for LC3 with CD63 was performed by 

drawing a region of interest (ROI) around individual cells and then employing the Coloc 2 

analysis function within Fiji (PSF:20, Costes Randomizations:10). Furthermore, the 

proportion of mCherry-Rab5Q79L endosomal area that overlaps with endogenous LC3 in 

siRNA treated cells was quantified using Fiji.

APEX Staining and Transmission Electron Microscopy

APEX staining and transmission electron microscopy was performed as previously 

described82. Briefly, cells transfected with APEX-LC3 or APEX-GFP were fixed using 

room temperature 2.5% glutaraldehyde (Electron Microscopy Sciences) in buffer (100 mM 

sodium cacodylate with 2 mM CaCl2, pH 7.4), then transferred to ice. All subsequent steps 

until resin infiltration were performed at 4°.After 30 min, cells were rinsed 5 × 2 min in cold 

buffer (100 mM sodium cacodylate with 2 mM CaCl2, pH 7.4), then incubated for 5 min in 

buffer containing 20 mM glycine, followed by 5 × 2 min washes in cold buffer. Freshly 

prepared 1 mg/mL 3,3′-diaminobenzidine (DAB) tetrahydrochloride (Sigma, 32750) 

dissolved in 0.1 M HCl was combined with 0.03% (v/v) (10 mM) H2O2 in chilled buffer, 

and the solution was added to cells for 2 min. The reaction was terminated by removal of the 

DAB solution, and cells were rinsed 5 × 2 min with cold buffer. Post-fixation staining was 

performed with 2% osmium tetroxide (Electron Microscopy Sciences, 19152) for 30 min in 

chilled buffer. Cells were washed 5 × 2 min in ice-cold distilled water, then placed in 2% 

aqueous uranyl acetate (Electron Microscopy Sciences, 22400) at 4° overnight. Samples 

were then incubated in cold graded ethanol series (20%, 50%, 70%, 90%, 100%, 100%) 2 

min each, washed once in RT anhydrous ethanol, and infiltrated in Durcupan ACM resin 

(Electron Microscopy Sciences, 14040) using 1:1 (v/v) anhydrous ethanol and resin for 30 

min, then 100% resin 2 × 1 h, and finally into fresh resin and polymerized in a vacuum oven 

at 60°C for 48 h.

For transmission electron microscopy, DAB-stained areas of resin-embedded cultured cells 

were identified by bright-field microscopy. Areas of interest were sawed out using a 

jeweler’s saw and mounted onto dummy blocks using cyanoacrylic glue, with the glass 

coverslip opposite the dummy block. The coverslip was carefully removed, the block 

trimmed, and ultrathin (80 nm thick) sections were cut using an ultramicrotome (Leica 

Ultracut UTC6). Electron micrographs were recorded using a JEOL 1200 TEM operating at 

80 keV.

In vivo EV Isolation from Mice

All experimental procedures and treatments were conducted in compliance with UCSF 

Institutional Animal Care and Use Committee (IACUC) guidelines under an approved 
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animal protocol (#AN170608). Compound transgenic C57bl/6 male and female mice of 

harbouring floxed alleles of Atg12 (Atg12f/f) or Atg5 (Atg5f/f) and Cre-recombinase under 

the ubiquitous CAG promoter (Cag-CreER) were generated by cross-breeding of Atg12f/f or 

Atg5f/f mice15 and CagCreER mice83. Offspring were genotyped with the following 

polymerase chain reaction (PCR) primers: ATG12 wild-type and f/f: 5’-

atgtgaatcagtcctttgccc-3’, 5’-actctgaaggcgttcacggc-3’, 5’-ctctgaaggcgttcacaaca-3’; ATG5 

wild-type and f/f: 5’-gaatatgaaggcacacccctgaaatg-3’, 5’-acaacgtcgagcacagctgcgcaagg-3’, 5’-

gtactgcataatggtttaactcttgc-3’; Cag-CreER: 5’- gcctgcattaccggtcgatgc-3’, 5’-

cagggtgttataagcaatccc-3’.

Primary astrocyte cultures were prepared as previously described84. Briefly, cerebral cortices 

were harvested from P3–4 Atg5f/f and Cag-CreER;Atg5f/f pups (8 male and 8 female across 

conditions). The meninges were removed and the cerebral cortices were dissected into 

smaller pieces with forceps and then triturated in DMEM, 20% FBS, Penicillin/

Streptomycin (P/S), and 20 ng/ml of GM-CSF (PeproTech, Rocky Hill, NJ). The cells were 

grown in poly-L-lysine coated flasks. The media was replenished 3d after the initial harvest. 

Microglia were removed from the astrocyte layer 6–10d later by shaking flasks at 200 rpm 

for 1–2 hours at 37° C. The remaining primary astrocytes were trypsinized and expanded in 

DMEM, 20% FBS, Penicillin/Streptomycin (P/S), and 20 ng/ml of GM-CSF (PeproTech, 

Rocky Hill, NJ) for 11 days. Finally, astrocyte cultures were treated with media containing 2 

μM 4-hydroxytamoxifen (4-OHT) for 3d, washed with PBS, and replenished with 

Neurobasal media supplemented with N2, L-glutamine, and P/S. After 5d the conditioned 

media from primary astrocyte cultures was collected for EV purification by differential 

centrifugation (see section on EV preparation above) and cells were lysed to assess genetic 

deletion.

For plasma and kidney analysis, 6-week old Cag-CreER;Atg12f/f animals or controls 

received either Tamoxifen (TAM; 0.2mg/gram mouse) or vehicle (peanut oil) via oral gavage 

for 5 consecutive days (8 male and 8 female across conditions). At 10 weeks after the first 

TAM treatment, tissues were collected. Kidney was homogenized and lysed prior to 

immunoblotting. Whole blood was collected in heparin coated tubes (Sarstedt, CB 300 LH), 

centrifuged at 2,000xg for 5 minutes at RT and the plasma phase was collected. For 

purification of plasma EVs, approximately 1 mL of platelet-free murine plasma (pooled 

from 4 mice per cohort) was diluted in 10 mL of PBS and clarified through a 0.22 μm filter. 

Subsequently, filtered samples were ultracentrifuged at 100,000g for 2 h at 4° and purified 

EV pellets resuspended in lysis buffer for analysis.

Cell Viability Assays

To quantify EV-independent release of lactate dehydrogenase (LDH), cells were seeded in 6 

well culture plates and serum starved for 24h; cells treated with 100 μM etoposide for 24h 

served as a positive control for cell death. After 24h, conditioned media was collected and 

EVs pelleted via differential centrifugation. The supernatant from these samples was then 

collected and soluble proteins precipitated by adding trichloroacetic acid (TCA) to a final 

concentration of 20% and incubating on ice for 1h. Subsequently, precipitated protein was 

pelleted by ultracentrifugation at 200,000g for 1h. Pellets were washed with 5 ml of ice-cold 
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acetone, re-centrifuged at 200,000g for 1h, and air dried. Urea lysis buffer was added to re-

solubilize the pellets and the levels of LDH quantified by western blot.

To quantify viability following serum starvation, cells were seeded on to coverslips coated 

with fibronectin and subject to serum starvation or control media with full serum for 24h. 

Cells were then stained with for viability using Calcein AM and Ethidium homodimer-1 

(ThermoFisher, MP 03224) according to manufacturer’s instructions, visualized on Axiovert 

200 epifluorescent microscope, and dead cells (Ethidium positive, Calcein negative) were 

enumerated.

CRISPR/Cas9 gene-deletion

HEK293T knockout cell lines were generated by transient transfection of pSpCas9(BB)-2A-

Puro (Addgene #48139) encoding U6 driven expression of sgRNAs (Scramble Guide: 

GCACTACCAGAGCTAACTCA; ATG7 Guide: ACACACTCGAGTCTTTCAAG; ATG12 

Guide: CCGTCTTCCGCTGCAGTTTC; ATG14 Guide: CTACTTCGACGGCCGCGACC; 

FIP200 Guide: AGAGTGTGTACCTACAGTGC). Cells were selected 48–72 hours post-

transfection with 1μg/ml puromycin for 48 h. Polyclonal populations were collected for 

Surveyor analysis (IDT, 706020) and were sorted into single-cell populations by limiting 

dilution at 1.5 cells/well per 96-well plate. For DNA analysis, genomic DNA samples were 

prepared using QuickExtract (Epicentre). The PCR products were column purified and 

analysed with Surveyor Mutation Detection Kit (IDT). For genotyping of single-sorted cells, 

PCR amplified products encompassing the edited region (ATG7 Fw: 

TGGGGGACAGTAGAACAGCA, ATG7 Rev: CCTGGATGTCCTCTCCCTGA; ATG12 

Fw: AGCCGGGAACACCAAGTTT, ATG12 Rev: GTGGCAGCCAAGTATCAGGC; 

ATG14 Fw: AAAATCCCACGTGACTGGCT, ATG14 Rev: 

AATGGCAGCAACGGGAAAAC; FIP200 Fw: ATTCTCTGGCTTGACAGGACAG, 

FIP200 Rev: AAATACTGAGCGTGCACATTGC) were cloned into pCR™4-TOPO® TA 

vector using the TOPO-TA cloning kit (Thermo Fisher #450030) and sequence verified. 

Sequencing is available upon request.

RNA interference

For transient siRNA-mediated knockdown, cells were first transfected with siRNA and using 

DharmaFECT #1 (Dharmacon T-2001–03) according to the manufacturer’s instructions, and 

after 24h transfected with plasmid encoding mCherry-Rab5Q79L. ON-TARGETplus smart 

pools against ATG7 (10533; L-020112–00-0005), ALIX (10015; L-004233–00-0005), 

TSG101 (7251; L-003549–00-0005), CHMP3/VPS24 (51652; L-004696–00-0005), VPS4a 

(27183; L-013092–00-0005), VPS4b (9525; L-013119–00-0005), CHMP4b (128866; 

L-018075–01-0005), nSMase2/SMPD3 (55512, L-006678–00-0005), FAN/NSMAF (8439; 

L-017920–00-0005) and non-targeting siRNA (D-001810–01-20) were purchased from 

Dharmacon. To generate stable knockdowns, cells were transduced with pLKO.1 lentiviral 

vectors (Sigma-Aldrich) expressing shRNAs targeting ATG7 (TRCN0000007584), ATG3 

(#1 TRCN0000148120; #2 TRCN0000146846; #3 TRCN0000147381), SMPD3/nSMase2 

(#1; TRCN0000048944; #2 TRCN0000048945), FAN/NSMAF (#1 TRCN0000145430; #2 

TRCN0000143925) and non-targeting shRNA (SHC002).
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Quantitative PCR

For qPCR analysis, total RNA from cells isolated using QIAzol lysis reagent (Qiagen). RNA 

was reverse transcribed using MMLV reverse transcriptase (Roche) and the resulting cDNA 

was analysed via real-time quantitative PCR using QuantiTect SYBR Green PCR Master 

Mix and gene specific primers (GAPDH Fwd: TGTCAAGCTCATTTCCTGGTATG, 

GAPDH Rev: CTCTCTTCCTCTTGTGCTCTTG; SMPD3/nSMase2 Fwd: 

CAACAAGTGTAACGACGATGCC, nSMase2 Rev: CGATTCTTTGGTCCTGAGGTGT) 

according to manufacturer’s instructions. Ct values for intracellular transcripts were 

converted to fold expression changes (2−ΔΔCt values) following normalization to 

intracellular GAPDH. Quantitative real-time PCR was performed using an Applied 

Biosystems StepOneplus Real-Time PCR System (ThermoFisher).

Statistics and Reproducibility

Statistical analyses were performed using Prism GraphPad 5 software. Groups were 

compared using unpaired or paired Student’s t-test where indicated for pairwise comparisons 

or one-way analysis of variance followed by Tukey’s post-hoc test for multiple comparisons. 

Sample size was chosen based upon the size of the effect and variance for the different 

experimental approaches. Details regarding the statistical analysis of proteomic data and 

bioinformatics analysis of the BirA*-LC3 labelled secretome (both Class I and Class II 

datasets), ATG7 and ATG12-dependent EV proteome and RNA profiles are provided in the 

corresponding figure legends and/or methods sections above. P values of less than 0.05 are 

considered to be significant.

Data Availability

The mass spectrometry proteomics data associated with this study has been deposited into 

the ProteomeXchange Consortium via the PRIDE85 partner repository with the dataset 

identifier PXD015479. RNA sequencing data has been deposited in GEO: GSE137618. 

Furthermore, the data and/or reagents that support the findings of this study are available 

from the corresponding author, JD, upon reasonable request.

Extended Data
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Extended Data Fig. 1: Functional validation of the BirA*-LC3 recombinant probe.
a, Cells stably expressing myc-BirA*-LC3, myc-BirA* or vector control were incubated in 

either full (F) or serum free media (S) for 4h in the absence or presence of 50 μM 

chloroquine (CQ) for the last 1h. Cells were lysed and subject to immunoblotting for 

indicated proteins (n=2 biologically independent experiments). b, Representative images of 

cells stably expressing GFP-LC3 and myc-BirA*-LC3 or myc-BirA* and immunostained 

with anti-myc antibody (n=3 biologically independent samples). c, Representative images of 

cells stably expressing myc-BirA*-LC3 or myc-BirA* and co-immunostained with anti-LC3 
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(green) and anti-myc (magenta) antibody (n=3 biologically independent samples). d, 

Biotinylation blots reproduced from Fig. 1b with accompanying Ponceau S stained 

membranes of whole cell lysate (WCL) and conditioned media (CM) (n=3 biologically 

independent experiments). e, Schematic of experiment to test for intracellular versus 

extracellular origin of BirA* and BirA*-LC3-mediated biotinylated targets isolated from 

CM. f, Representative Strep-HRP blot for biotinylated proteins in the precipitated CM from 

myc-BirA*-LC3 or myc-BirA* cells co-incubated (Co) or post-incubated (Post) with 50 μM 

biotin for 24h and negative control (Neg). CM was probed to validate expression and 

secretion of the myc-tagged recombinant proteins (n=2 biologically independent 

experiments). Unprocessed blots available in Source Data Extended Data Fig. 1.
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Extended Data Fig. 2: BirA*-LC3B-labelled secretome is enriched in RBPs.
a, Volcano plot of BirA*-LC3-labeled secretome quantified by mass spectrometry. SILAC 

labelled biotin-tagged proteins plotted according to -log10 p-values as determined by two-

tailed t-test and log2 fold enrichment (BirA*-LC3/BirA*) (n=3 biologically independent 

samples). Grey horizontal dotted line: significance cut-off with p-value of 0.05. Log2 fold 

change reflects LC3-BirA* to BirA* alone ratio. Grey vertical dotted line: 2-fold enriched 

and de-enriched cut-off. Pink: significantly enriched proteins relative to BirA* alone. Red: 

Class I enriched proteins represented in heat map in Figure 1. Inset: Expanded view of 
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significantly enriched proteins. b, Venn diagram showing overlap of secretory autophagy 

candidates (Class I and II hits) with the LC3B intracellular interactome defined in Behrends 

et al. 2010. c, Venn diagram showing the overlap of secretory autophagy candidates (Class I 

and II hits) with the entire ATG8 intracellular interactome defined in Behrends et al. 2010. d, 

Ranked list of proteins with greatest connectivity to secretory autophagy candidates as 

determined by the Enrichr gene enrichment analysis tool (n=3 biologically independent 

samples; 200 enriched proteins in Class I + II datasets). Statistical significance calculated by 

one-way Fisher’s exact test and adjusted using the Benjamini–Hochberg method. LC3/ATG8 

family members highlighted in red. e, Network map of autophagy-dependent secretion 

candidates. Class I and II secretory autophagy candidates mapped to zero-order protein 

interaction network using Search Tool for the Retrieval of Interacting Genes/Proteins 

(STRING) and proteins associated with extracellular exosomes or with RNA-binding 

functions coloured in red and blue, respectively. f, Pie chart plotting percentage of Class I 

and II secretory autophagy candidates assigned to Gene Ontology (GO) term extracellular 

exosome by PANTHER. g, Venn diagram showing overlap of class I and II secretory 

autophagy candidates with the mRNA binding proteins from Castello et al. 2012. Data 

available in Source Data Extended Data Fig. 2.
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Extended Data Fig. 3: Endogenous LC3-II is secreted within EVs isolated from cultured cells 
and murine plasma.
a, Whole cell lysate (WCL) and extracellular vesicle lysates (EVs) from murine RAW264.7 

macrophages treated with 100 ng/ml LPS for 24h and 20 μM nigericin for 1 h, murine 

B16F10 melanoma cells, and murine LLC1 cells were immunoblotted for LC3, SAFB, 

HNRNPK and extracellular vesicle marker proteins (n=2 biologically independent 

experiments). b, Workflow employed to obtain plasma and tissue from CAG-
CreER;Atg12flox/flox mice in which Atg12 was systemically deleted via tamoxifen treatment. 
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c, Extracellular vesicles (EVs) isolated from the plasma of naïve wild-type mice (CAG-
CreER or Atg12flox/flox) and mice in which Atg12 was systemically deleted by 4-OHT 

treatment (CAG-CreER; Atg12flox/flox) were lysed and immunoblotted for LC3 and the 

indicated extracellular vesicle marker proteins (n=2 biologically independent experiments). 

d, Whole cell lysates (WCL) derived from the renal tissue of mice in Panel c were 

immunoblotted for LC3 and the indicated marker proteins (n=2 biologically independent 

experiments). e, Workflow employed to obtain CM from murine astrocytes (CAG-
CreER;Atg5flox/flox) in which Atg12 was deleted ex vivo via 4-OHT treatment. f, 
Extracellular vesicles (EVs) isolated from the conditioned media of naive wild-type 

(Atg5flox/flox) primary astrocytes and astrocyte cultures in which Atg12 was deleted ex vivo 
(CAG-CreER; Atg5flox/flox) by 4-OHT treatment were lysed and immunoblotted for LC3 and 

CD9 (n=2 biologically independent experiments). g, Whole cell lysates (WCL) primary 

astrocyte cultures in Panel d were immunoblotted for LC3 and CD9 (n=2 biologically 

independent experiments). h, Representative fluorescence micrographs from wild-type, 

ATG7−/− and ATG14−/− HEK293T cells transfected with mCherry-Rab5Q79L (yellow). 

Cells were immunostained for endogenous LC3 (green) and CD63 (magenta) (n=3 

biologically independent samples). Scale bar=10μm. Unprocessed blots available in Source 

Data Extended Data Fig. 3.
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Extended Data Fig. 4: Components of stress granules and P-bodies secreted in EVs through 
mechanisms requiring the LC3-conjugation machinery.
a, Proportion of BirA*-LC3B- labelled secretome (Class I, II candidates) detected in the 

total extracellular vesicle (EV) proteome defined by TMT quantitative mass spectrometry. b, 

Venn diagram showing overlap of EV components requiring ATG7 and ATG12 for secretion 

with the fixed and unfixed stress granule proteome from Jain et al., 2016. c, Venn diagram 

showing the overlap of EV components requiring ATG7 and ATG12 for secretion with the 

P-body proteome from Hubstenberger et al., 2017. d, Representative fluorescence 
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micrographs from wild-type HEK293T cells transfected with mCherry-Rab5Q79L (blue) 

and immunostained for endogenous LC3 (green) and SAFB or HNRNPK (magenta) (n=3 

biologically independent samples). Scale bar=10μm. e, Whole cell (WCL) and EV lysates 

harvested from equal numbers of cells stably expressing non-targeting (NT) or ATG3 

shRNA were immunoblotted for indicated proteins (n=3 biologically independent samples). 

f, Quantification of indicated protein levels in EVs from cells stably expressing shRNAs 

targeting ATG3 relative to non-targeting shRNA (mean ±s.e.m.; n=3 biologically 

independent samples). g, Quantification of Lactate Dehydrogenase (LDH) in EV-depleted 

conditioned media from wild-type (WT) HEK293T cells treated 100 μM Etoposide (Etop) 

for 24h or WT and ATG knockout cells serum starved for 24h (mean ±s.e.m.; n=3 

biologically independent experiments). h, Cell death in wild-type (WT) and ATG knockout 

cells (KO) after 24h in full serum media (FM) or serum starved media (SS) quantified using 

Calcein-AM and ethidium bromide staining (mean ±s.e.m.; n=3 biologically independent 

experiments). i, Whole cell and EV lysates from wild-type cells grown in EV-depleted full 

serum media (FM) or EV-depleted FM with 100 nM Rapamycin (Rap) for 24h. 

Immunoblots probed against the indicated proteins (n=2 biologically independent 

experiments). j, Quantification of the relative levels of indicated proteins in EVs from Rap-

treated cells in Panel d (line=mean; n=2 biologically independent experiments ). Data and 

unprocessed blots available in Source Data Extended Data Fig. 4.
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Extended Data Fig. 5: LC3-conjugation machinery controls EV-mediated secretion of diverse 
RBPs.
a, EVs from WT and ATG deficient cells normalized for protein concentration and 

immunoblotted to detect endogenous LC3A, LC3B, LC3C, GABARAP (GR), 

GABARAPL1 (GRL1), GABARAPL2 (GRL2), and indicated marker proteins (n=2 

biologically independent experiments). b, Whole cell (WCL) and EV lysates from WT and 

ATG7−/− cells were normalized for protein concentration and immunoblotted for indicated 

proteins (n=3 biologically independent experiments). c, HEK293T cells co-transfected with 

FLAG-tagged G3BP1, LARP1 or SF3A1, and myc-tagged LC3B, GABARAP (GR), LC3C 

respectively, or myc-BirA* were lysed, immunoprecipitated (IP) with anti-myc antibody and 

immunoblotted (WB) with indicated antibodies (n=3 biologically independent experiments). 

d, Diagram mapping the domains and primary LC3-interaction region (LIR) in SAFB. e, 

Volcano plot of mRNA and long non-coding RNA (large RNA) detected in EVs from WT 
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and ATG7−/− cells. Results plotted according to -log10 p-values as determined by DESeq2 

and log2 fold enrichment (n=3 biologically independent samples; WT/ATG7−/−). Grey dots: 

RNAs not enriched in EVs from WT or ATG7−/− cells identified with a p-value >0.05 

and/or log2 fold change between −0.5 and 0.5 (−0.5<log2FC<0.5). Black dots: Large RNAs 

enriched in EVs from WT cells or ATG7−/− cells. f, Volcano plot of mRNA and long non-

coding RNA (large RNA) detected in EVs from WT and ATG12−/− cells. Results plotted 

according to -log10 p-values as determined by DESeq2 and log2 fold enrichment (n=3 

biologically independent samples; WT/ATG12−/−). Grey dots: RNAs not enriched in EVs 

from WT or ATG12−/− cells identified with a p-value >0.05 and/or log2 fold change 

between −0.5 and 0.5 (−0.5<log2FC<0.5). Black dots: Large RNAs enriched in EVs from 

WT or ATG12−/− cells. g, Venn diagram showing the overlap of mRNA and long non-

coding RNAs (large RNAs) enriched in EVs from WT relative to ATG7−/− cells and EVs 

from WT relative to ATG12−/− cells. Data and unprocessed blots available in Source Data 

Extended Data Fig. 5.
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Extended Data Fig. 6: LC3 delivery into ILVs of Rab5Q79L endosomes requires CHMP4b and 
nSMase2, but is independent of other ESCRT machinery components.
a, Representative fluorescence micrographs from wild-type HEK293T cells co-transfected 

with mCherry-Rab5Q79L (magenta) and non-targeting (NT) control siRNA or siRNAs 

targeting ATG7, ALIX, TSG101, VPS4a/b, CHMP3, CHMP4b and nSMase2. Cells were 

immunostained for endogenous LC3 (green) (n=2 biologically independent experiments). 

Scale bar=10μm. b, Scatter plot of the proportion of mCherry-Rab5Q79L endosomes that 

overlap with LC3 in immuno-stained cells in Panel a (mean ± s.e.m.; n=23 biologically 
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independent samples). Statistical significance calculated by one-way ANOVA coupled with 

Fisher’s least significant difference test. c, Lysates from cells in Panel a were immunoblotted 

with antibodies the various siRNA targets and GAPDH as a loading control. Representative 

blots are shown (n=2 biologically independent experiments). Non-specific bands are 

indicated with an asterisk (*). d, Quantitative PCR (QPCR) measurement of nSMase2 

mRNA in HEK293T cells transfected with siRNAs targeting nSMase2, nSMase2 (nSM2) 

relative to non-targeting siRNA (NT) control cells (line=mean; n=1, 2 technical replicates). 

Data and unprocessed blots available in Source Data Extended Data Fig. 6.
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Extended Data Fig. 7: LC3-dependent EV loading and secretion (LDELS) requires FAN and 
nSMase2.
a, Whole cell lysate harvested from equal numbers of HEK293Ts stably expressing non-

targeting (NT), ATG7 or nSMase2(nSM2) shRNAs immunoblotted for indicated proteins 

(n=2 biologically independent experiments). b, Quantitative PCR (QPCR) for nSMase2 
mRNA in HEK293Ts stably expressing shRNAs targeting ATG7, nSMase2 (nSM2) relative 

to non-targeting shRNA (NT) control cells (line=mean; n=1, 2 technical replicates). c, 

Whole cell lysates from HEK293Ts stably expressing non-targeting shRNA (NT) or 
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shRNAs targeting ATG7 or FAN were immunoblotted with antibodies for the indicated 

proteins (n=2 biologically independent experiments). d, HEK293Ts were EBSS starved for 

the indicated times, treated with DMSO or 50nM Bafilomycin A1 (Baf A1) for 1 h prior to 

lysis, lysed and immunoblotted for FAN and the indicated proteins (n=2 biologically 

independent experiments). e, HEK293Ts expressing non-targeting (NT) or FAN shRNA 

were starved in EBSS for 4h, treated with DMSO or 50nM Bafilomycin A1 (Baf A1) for 1h 

prior to lysis, lysed and immunoblotted for the indicated proteins (n=2 biologically 

independent experiments). f, Representative fluorescence micrographs from wild-type cells 

co-transfected with mCherry-Rab5Q79L (magenta) and non-targeting (NT) control siRNA 

or siRNAs targeting FAN. Cells were immunostained for endogenous LC3 (green)(n=2 

biologically experiments). Scale bar=10μm. g, Lysates from cells in Panel f were 

immunoblotted with antibodies against FAN and GAPDH as a loading control (n=2 

biologically independent experiments). h, Scatter plot of the proportion of mCherry-

Rab5Q79L endosomes overlapping with LC3 in immuno-stained cells in Panel f (mean 

±s.e.m.; n=22 biologically independent samples). Statistical significance calculated by 

unpaired two-tailed t-test. i, Whole cell lysate from HEK293Ts analysed in Fig. 7j that were 

co-expressing non-targeting (NT) or FAN shRNA along with FLAG-tagged wild-type FAN 

(WT) or mutant FAN (F199A) were immunoblotted for the indicated proteins (n=2 

biologically independent experiments). j, Proposed model for LC3-dependent EV loading 

and secretion (LDELS) in comparison to classical autophagy. Data and unprocessed blots 

available in Source Data Extended Data Fig. 7.
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Figure 1. Identification of proteins secreted via autophagy-dependent pathways using LC3 
proximity-dependent biotinylation and quantitative secretomics.
a, Proximity-dependent biotinylation strategy to label secretory autophagy targets. b, Protein 

biotinylation in whole cell lysate (WCL, intracellular) and conditioned media (CM, secreted) 

harvested from HEK293T cells stably expressing myc-BirA*-LC3, myc-BirA* or empty 

vector (Control) following 24h incubation with (+) or without (−) 50 μM biotin. Equal 

amounts of protein from trichloroacetic acid precipitated CM or WCL were probed with 

Streptavidin-HRP (Strep-HRP) to detect biotinylated proteins, myc or GAPDH (n=3 
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biologically independent experiments). c, Streptavidin affinity purification (Strep AP) and 

immunoblotting to detect known LC3-interacting proteins within WCL and CM of cells 

expressing myc-BirA*-LC3 (n=2 biologically independent experiments). d, Autophagy-

dependent secretion substrate enrichment and quantitative secretomics workflow. e, 

Log2(H:L) histogram for CM proteins identified in bioreplicate #2 and scheme for 

identification of autophagy-dependent secretion candidates. f, Putative secretory autophagy 

candidates identified in n=3 independent experiments (Exp.). Among the 40 hits enriched in 

all three experiments, 31 were statistically significant overall (see Extended Data Fig. 2) and 

classified as Class I candidates. The remaining proteins along with hits enriched in 2 out of 

n=3 experiments (170 proteins total) were designated Class II candidates. Full list of 

candidates provided in Supplementary Table 1. g, Log2(BirA*-LC3:BirA*) heat map of 

Class I candidates. h, Proportion of secreted candidates (Class I, II) detected in human 

plasma. i, Gene Ontology (GO) enrichment analysis of secreted candidates (Class I, II) with 

the top terms for molecular function and cellular component plotted according to -log10 

False Discovery Rate. Statistical significance was calculated by one-way Fisher’s exact test. 

Sample size, n=3 independent biological replicates, yielding 200 enriched proteins in the 

Class I + Class II datasets. Data and unprocessed blots available in Source Data Fig. 1.
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Figure 2. LC3-II and BirA*-LC3 biotinylated targets are secreted within EVs.
a, Protein biotinylation in whole cell lysates (WCL, intracellular) and fractionated 

conditioned media (CM) harvested from BirA*-LC3 HEK293T cells incubated with 50 μM 

biotin for 24h. CM subject to differential ultracentrifugation to recover large extracellular 

vesicles (10,000g; 10K), small extracellular vesicles (100,000g; 100K), and precipitated free 

soluble protein (TCA). Equal amounts of protein from WCL and fractionated CM probed 

with Streptavidin-HRP (Strep-HRP) or antibodies for the indicated extracellular vesicle 

marker proteins, LC3 and myc-tagged BirA*-LC3 (n=3 biologically independent replicates). 

b, Quantification of global protein biotinylation in the indicated fractions of CM relative to 

WCL (mean ± s.e.m.; n=3 biologically independent experiments). Statistical significance 

between CM fractions calculated by one-way analysis of variance (ANOVA) coupled with 

Tukey’s post hoc test. c, EVs from CM separated via linear sucrose density gradient 
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ultracentrifugation, fractionated and immunoblotted to detect endogenous levels of the 

indicated markers and LC3 (n=3 biologically independent experiments). d, Representative 

transmission electron micrograph of EVs isolated via differential ultracentrifugation (n=3 

biologically independent samples). Scale bar= 200nm. e, Representative immunoblots of 

indicated proteins from untreated EVs or EVs incubated with 100 μg/ml trypsin and/or 1% 

Triton X-100 (TX-100) for 30 min at 4°C (n=3 biologically independent experiments). f, 
Representative immunoblots of EVs immuno-purified from concentrated CM fractions using 

antibodies targeting the tetraspanins CD9, CD63, CD81 or a normal mouse IgG isotype 

control and immunoblotted to detect endogenous levels of the indicated markers and LC3 

(n=3 biologically independent experiments). g, Representative transmission electron 

micrographs of normal rat kidney epithelial cells expressing an APEX2-LC3 recombinant 

fusion protein of APEX2-GFP control and stained with 3,3-diaminobenzidine (DAB) and 

hydrogen peroxide (H2O2) (n=3 biologically independent samples). Scale bar=500nm. Data 

and unprocessed blots available in Source Data Fig. 2.

Leidal et al. Page 45

Nat Cell Biol. Author manuscript; available in PMC 2020 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Endogenous LC3 localizes with endosomes and EV-associated tetraspanins.
a, Representative fluorescence micrographs from WT, ATG7−/−, and ATG14−/− HEK293T 

cells transfected with mCherry-Rab5Q79L (magenta). Cells were immunostained for 

endogenous LC3 (green) (n=3 biologically independent experiments). Scale bar=10μm. b, 

Representative fluorescence micrographs from wild-type, ATG7−/− and ATG14−/− cells 

immunostained for endogenous LC3 (green) and CD63 (magenta) (n=3 biologically 

independent experiments). Scale bar=10μm. c, Scatter plot of p-values obtained from Costes 

significance tests to assess whether the overlap of LC3 and CD63 staining observed in Panel 
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b exceeds thresholds of random co-occurrence. Statistical significance calculated by one-

way ANOVA coupled with Tukey’s post hoc (mean ± s.e.m.; WT, n=28; ATG7−/−, n=33; 

ATG14−/−, n=27 biologically independent samples). d, Scatter plot of Mander’s coefficients 

for co-occurrence of LC3 with CD63 in immuno-stained cells in Panel b. Statistical 

significance calculated by unpaired two-tailed t-test (mean ± s.e.m.; WT, n=27; ATG14−/−, 

n=27 biologically independent samples). Numerical data available in Source Data Fig. 3.
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Figure 4. Tandem mass tag (TMT) quantitative secretomics identifies EV proteins secreted via 
the LC3-conjugation machinery.
a, Volcano plot of proteins identified within EVs from wild-type (WT) and ATG7−/− 

HEK293T cells quantified by TMT mass spectrometry. TMT labelled proteins plotted 

according to their -log10 p-values as determined by two-tailed t-test and log2 fold 

enrichment (WT/ATG7−/−; n=4 biologically independent samples). Grey dots: Proteins not 

relatively enriched in EVs from WT or ATG7−/− cells identified with p-value >0.05 and/or 

log2 fold change between −0.5 and 0.5 (−0.5<log2FC<0.5). Red dots: Proteins significantly 

enriched in EVs from WT cells relative to ATG7−/− cells. Blue dots: Proteins significantly 

enriched in EVs from ATG7−/− cells relative to WT cells. Dot size proportional to sum of 

the signal intensity for identified proteins. b, Volcano plot of proteins identified within EVs 
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from WT and ATG12−/− cells. TMT labelled proteins according to their -log10 p-values as 

determined by two-tailed t-test and log2 fold enrichment (WT/ATG12−/−; n=4 biologically 

independent samples). Grey dots: Proteins not relatively enriched in EVs from WT or 

ATG7−/− cells identified with p-value >0.05 and/or log2 fold change between −0.5 and 0.5 

(−0.5<log2FC<0.5). Red dots: Proteins significantly enriched in EVs from WT cells relative 

to ATG12−/− cells. Blue dots: Proteins significantly enriched in EVs from ATG12−/− cells 

relative to WT cells. Dot size proportional to sum of the signal intensity for identified 

proteins. c, Venn diagram showing overlap of proteins enriched in EVs from WT cells 

relative to ATG7−/− cells, EVs from WT cells relative to ATG12−/− cells, and proteins 

enriched within the BirA*-LC3B labelled secretome. d, Ranked list of proteins with greatest 

connectivity to the 815 proteins enriched in EVs from WT cells relative to ATG7−/− and 

ATG12−/− cells. Statistical significance calculated in Enrichr by one-way Fisher’s exact test 

and adjusted using the Benjamini–Hochberg method. LC3/ATG8 family members 

highlighted in red. e, Gene Ontology (GO) enrichment analysis of 815 proteins enriched in 

EVs from WT cells relative to ATG7−/− and ATG12−/− cells with the top terms for 

molecular function plotted according to -log10 False Discovery Rate. Statistical significance 

calculated by one-way Fisher’s exact test. Data available in Source Data Fig. 4.
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Figure 5. LC3-conjugation machinery is required for EV loading and secretion of SAFB and 
HNRNPK.
a, EVs from HEK293T CM separated via linear sucrose density gradient fractionation were 

immunoblotted to detect endogenous levels of indicated markers (n=2 biologically 

independent experiments). b, HEK293T cells transfected with myc-tagged LC3B or myc-

BirA* were lysed, immunoprecipitated (IP) with anti-myc antibody, and immunoblotted 

with indicated antibodies (n=3 biologically independent experiments). c, Cells were EBSS 

starved for the indicated times, lysed and immunoblotted for the indicated proteins. Baf 
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A1=50nM Bafilomycin A1 for 1h prior to lysis (n=2 biologically independent experiments). 

d, CM from equal numbers of indicated cell types subject to nanoparticle tracking analysis 

(open circles, left axis) to determine EV number or relative protein content measured using 

BCA from 100,000g EV fractions (black triangles, right axis). (mean ± s.e.m.; n=3 

biologically independent experiments). Statistical significance calculated by one-way 

ANOVA coupled with Dunnett’s test. e, EV size distribution from a representative 

experiment for the indicated cell types in Panel d (SE=standard error; n=3 biologically 

independent experiments). f, WCL and 100,000g EV fractions harvested from indicated cell 

types were collected, normalized for protein concentration, and immunoblotted to detect 

indicated proteins at endogenous levels (n=4 biologically independent experiments). g, 

Quantification of LC3 (red circles), SAFB (blue squares), and HNRNPK (green triangles) 

levels in EVs from the indicated ATG−/− cell lines relative to WT (mean ± s.e.m.; n=4 

biologically independent experiments). Statistical significance calculated by one-way 

ANOVA coupled with Tukey’s post hoc test. h, HEK293T cells co-transfected with FLAG-

tagged SAFB and myc-tagged LC3A, LC3B, LC3C, GABARAP (GR), GABARAPL1 

(GRL1), GABARAPL2 (GRL2) or myc-BirA* were lysed, immunoprecipitated (IP) with 

anti-myc antibody and immunoblotted with indicated antibodies (n=2 biologically 

independent experiments). i, Cells co-transfected with FLAG-tagged wild-type SAFB (WT) 

or mutant SAFB (F199A) and myc-tagged LC3A, LC3B or myc-BirA* were lysed, 

immunoprecipitated (IP) with anti-myc antibody and immunoblotted with indicated 

antibodies (n=2 biologically independent experiments). j, Whole cell lysate (WCL) and EVs 

harvested from cells expressing WT or LIR mutant SAFB (F199A) were collected and 

immunoblotted for FLAG-SAFB and LC3 (n=3 biologically independent experiments). k, 

Quantification WT and LIR mutant SAFB (F199A) secretion in EVs from cells (mean ± 

s.e.m.; n=3 biologically independent experiments). Statistical significance calculated by 

paired two-tailed t-test. Data and unprocessed blots available in Source Data Fig. 5.
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Figure 6. LC3-dependent EV loading and secretion (LDELS) regulates the small non-coding 
RNA composition of EVs.
a, Proportion of RNA sequencing (RNA-seq) reads in total cellular RNA from WT, ATG7−/

− and ATG12−/− HEK293T cells from the different classes of small non-coding RNA (n=3 

biologically independent samples). b, Proportion of RNA-seq reads in total EV RNA from 

WT, ATG7−/− and ATG12−/− HEK293T cells from the different classes of small non-

coding RNA (n=3 biologically independent samples). c, Volcano plot of small non-coding 

RNAs detected in EVs from WT and ATG7−/− cells quantified by RNA-seq. Results plotted 
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according to -log10 p-values as determined by DESeq2 and log2 fold enrichment (n=3 

biologically independent samples; WT/ATG7−/−). Grey dots: RNAs identified with p-value 

>0.05 and/or log2 fold change between −0.5 and 0.5 (−0.5<log2FC<0.5), and thus, not 

relatively enriched in EVs from WT or ATG7−/− cells. Log2 fold change reflects WT EV 

RNA/WT Cell RNA to ATG7−/− EV RNA/ATG7−/− Cell RNA ratio. Black dots: Small 

non-coding RNAs significantly enriched in EVs from WT or ATG7−/− cells. Red dots: 

snoRNAs significantly enriched in EVs from WT or ATG7−/− cells. d, Volcano plot of small 

non-coding RNAs detected in EVs from WT and ATG12−/− cells quantified by RNA-seq. 

Results were plotted according to -log10 p-values as determined by DESeq2 and log2 fold 

enrichment (n=3 biologically independent samples; WT/ATG12−/−). Grey dots: RNAs with 

a p-value >0.05 and/or log2 fold change between −0.5 and 0.5 (−0.5<log2FC<0.5), and thus, 

not relatively enriched in EVs from WT or ATG12−/− cells. Log2 fold change reflects WT 

EV RNA/WT Cell RNA to ATG12−/− EV RNA/ATG12−/− Cell RNA ratio. Black dots: 

Small non-coding RNAs significantly enriched in EVs from WT or ATG12−/− cells. Red 

dots: snoRNAs significantly enriched in EVs from WT or ATG12−/− cells. e, Venn diagram 

showing overlap of small non-coding RNAs enriched in EVs from WT cells relative to 

ATG7−/− or ATG12−/− cells. f, Proportion of different classes of small RNAs enriched in 

EVs from WT vs. ATG-deficient cells. g, Heatmap of the 67 snoRNAs enriched in EVs from 

WT cells across all genetic conditions and sample types. Scale indicates intensity, defined as 

Δ(read counts -mean read count)/SD. Data available in Source Data Fig. 6.
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Figure 7. LC3-dependent EV loading and secretion (LDELS) requires neutral sphingomyelinase 
2 (nSMase2) and FAN.
a, Whole cell (WCL) and EV lysates from cells treated in the absence or presence of 5μM 

GW4869 for 24h and immunoblotted for the indicated marker proteins (n=2 biologically 

independent experiments). b, Nanoparticle counting for a representative experiment in Panel 

a (line=mean; n=1, 3 technical replicates). c, Whole cell (WCL) and EV lysates harvested 

from equal numbers of HEK293T cells stably expressing non-targeting (NT), ATG7 or 

nSMase2 (nSM2) shRNAs were immunoblotted for indicated proteins (n=3 biologically 

independent experiments). d, Quantification of indicated protein levels in EVs from equal 

numbers of stable knockdown cells in Panel c relative to non-targeting (NT) shRNA (mean 
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±s.e.m.; n=3 biologically independent experiments). Statistical significance calculated by 

one-way analysis of variance (ANOVA) coupled with Tukey’s post hoc. e, HEK293T cells 

co-transfected with FLAG-tagged FAN and myc-tagged LC3A, LC3B, LC3C, GABARAP 

(GR), GABARAPL1 (GRL1), GABARAPL2 (GRL2) or myc-BirA* were lysed, 

immunoprecipitated (IP) with anti-myc antibody, and immunoblotted (WB) with indicated 

antibodies (n=2 biologically independent experiments). f, Whole cell (WCL) and 

extracellular vesicle (EV) lysates harvested from equal numbers of HEK293T cells stably 

expressing non-targeting (NT), ATG7 or FAN shRNAs were immunoblotted for indicated 

proteins (n=3 biologically independent experiments). g, Quantification of indicated protein 

levels in EVs from equal numbers of stable knockdown cells in Panel c relative to non-

targeting (NT) shRNA (mean ± s.e.m.; n=3 biologically independent experiments). 

Statistical significance calculated by one-way ANOVA coupled with Tukey’s post hoc test. 

h, Domain map and primary LC3-interaction region (LIR) in FAN. i,, Cells co-transfected 

with FLAG-tagged FAN and myc-tagged LC3A, LC3B, LC3C, GABARAP (GR), 

GABARAPL1 (GRL1), GABARAPL2 (GRL2) or myc-BirA* were lysed, 

immunoprecipitated (IP) with anti-myc antibody, and immunoblotted (WB) with indicated 

antibodies (n=2 biologically independent experiments). j, Whole cell lysate (WCL) and EV 

fractions from cells stably co-expressing non-targeting (NT) or FAN shRNA along with 

FLAG-tagged wild-type FAN (WT) or mutant FAN (F602A) were immunoblotted for 

indicated markers (n=2 biologically independent experiments). k, Quantification of 

indicated proteins in EVs from equal numbers of FAN knockdown HEK293T cells 

expressing FLAG-tagged wild-type FAN (WT) versus mutant FAN (F602A) (mean ± s.e.m.; 

n=3 biologically independent experiments). Statistical significance calculated by paired two-

tailed t-test. Data and unprocessed blots available in Source Data Fig. 7.
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