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ABSTRACT 

Numerical methods are discussed for solving the partial differential 

equation describing the equilibrium free surface of a liquid in a vertical 

cylindrical container whose cross section has corners. Both the cases for 

which the free surface is bounded and for which it climbs infinitely high 

at a corner are considered. For the model problem of a container with 

square cross section comparative results of numerical e~periments are 

given for a nonlinear relaxation method, for a conjugate gradient method, 

and for several techniques for handling the corner singularity utilizing 

the known asymptotic form of the solution. Representative solution 

surfaces are depicted graphically. 

*Present address: Mathematics Department, University of Southern 
California, Los Angeles, CA 90007. 
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1. Introduction 

In this paper, we discuss algorithms for solving numerically the 

nonlinear partial differential equation describing the equilibrium 

free surface of a liquid under surface and gravitational forces. We 

are interested particularly in the case of a liquid partly filling a 

vertical cylinder, the cross section of which has corners. We assume that 

the surface height u(x, y) is a single-valued smooth function of x and y, 

that there is sufficient liquid tci cover the cylinder base entirely, and 

that the_gravitational field is uniform and directed vertically down-

ward. Then the function u(x,y) satisfies 

a ( .!_ au ) a ( 1 au ) Bu 
ax wax + ay ·way = + ZH, 

(1) 

where B =· p g/o with p the difference in densities between the gas and 
0 . 0 

liquid phases, g the gravitational acceleration (positive when directed 

downward), and a the gas-liquid interfacial surface tension. The quantity 

2H is a constant determined, in general, by the shape of the cylinder 

cross section, the volume of liquid, and the boundary condition between 

the liquid surface and the cylinder wall. The mean curvature of the 

surface is H at points were u=O. We consider only the case B > 0. The 

parameter B is the (dimensionless) Bond number, if (1) is considered to 

habe been made nondimensional with respect to a characteristic length of 

unity. 

Let the prescribed angle of contact between the liquid free-surface 

and the cylinder wall, measured interior to the liquid, be denoted by 
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the constant y. This condition can be written as 

1 au W Cln ;::: cos y at the cylinder wall, (2) 

where du/Cln is the derivative of u with respect to 

the outward normal. We consider here only the case of wetting liquids, 
\ 

~~<n/2. (The complementary case of non-wetting liquids can be derived 

from it directly by means of a simple transformation.) 

The value of the contact angle plays a crucial role in determining 

the qualitative nature of the solution when the domain under investigation 

contains corners. Let the interior angle of a corner be 2a.; it is proved 

in {6~7] that the solution at the vertex of the corner is bounded if and 

only if Cl + y ;;> n/2. · For 'the case Cl + y < TI/2 set K=sin Cl sec y and 

introduce polar coordinates p, a with origin at the vertex and a 

measured from the interior angle bisector. Consider the function 

v(x,y;y) = [ cosa - (K
2

- sin2a)~] /(KBp), (3) 

for -Cl ~ a ~ Cl, p > 0. It is shown in [5] that there exists a constant 

C such that the solution u(x,y) satisfies lu(x,y)- v(x,y)j < C for 

sufficently small p. Because of the differing qualitative natures of 

the bounded an:J unbounded solutions, we treat these two cases separately. 

We take the 2 x 2 square as th'e domain for our model problem. Because 

of the symmetry, we consider only the equivalent problem on a 1 x 1 square 

with boundary conditions as shown in·Figure 1. We place a uniform square 

grid of width h=l/N on the domain and discretize (1) in a manner similar 

to that used in [3] ,for the minimal surface equation (B=H=O), which is 

related to the general procedure in [11] for linear elliptic equations. 
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We write the integral form of (1), as obtained by use of Green's theorem, 

over a sub-domain D of n, which yields 

(4) 

where n is the outward unit normal and an is the boundary of D. 

Then we place on n an auxiliary mesh (the dotted lines bisecting 

the original 'Jilesh lines in Fig. 2). We denote an h x h square bounded 

by the original grid lines as a cell, and we denote a rectangle bounded 

by auxiliary grid lines, and possibly an, as an auxiliary cell. By 

imposing (4) on e~ch of the auxiliary cells and using the midpoint rule 

for integration, we obtain a set of (nonlinear) algebraic equations. The 

equation corresponding to a typical interior point u(x,y)=u(ih,jh)=Ui,j 

is given by 

f.. 
l.,J 

- w-i ( 2 u . . -u. 1 . -u.i . . 1) = -: -: l.,J ].- ,] . ,]-
]., J . 

( 2u. ·.-u.+1 .-u .. 1) l.,J l. ,] l.,J-

-+W-1 ( 2u .. -ui 1 .-u .. +1.) 
i,j+l . l.,J - ,] l.,J 

+ w-1 
( 2u. . -u -u ) 

i+I,j+l l.,J i+l,j i,j+l 

+2h
2 

( BUi,j+2H) = 0, 
(5) 

._ .... 

... j 
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where w = [1+ t Ia: + o= + ni -: + ni-l j-)'ll/2, 
\ i,j i,j-1 ,J , ~ i,j 

i,j 
= (u: .-u. 1 .)/hand ni -: =fu .. -ui . 1)/h. 

1,] 1- ,J ,J \ 1,] ,J-
with 

Notice that the 

cell, and we use the 

integration of (4) is performed over each auxiliary 

approximation {{ (Bu+2H)dA::!:(BUi .+2H) •:(area of D). 
. . ~ ,J 

Note also that in the discrete equations we take W to be constant over 

each cell =(wi,j for the cell centered at (i-1/2, j -1/~ • For a 

boundary segment an of an we have s 

cosy • (length of ans), if w-1autan=cosy 

, if au/an = 0. 

In the following sections, we shall discuss and compare different 

methods for solving the discrete equations,. for the bounded and unbounded 

cases. 

2. The Bounded Case 

In this section, we investigate two methods for obtaining the 

solution of the discrete form of (1), (2) for the bounded case 

(a + y ~ 7T I 2), which for the square (a = TI/4) is the case y ~ TI/4. 
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2.1. Block SOR-Newton 

Here, we use the nonlinear block successive overrelaxation method 

investigated in [4] for solving the minimal surface equation and 

described in [10] as the one-step block successive overi:'elaxation-

Newton (BSOR-Newton) method. A block SOR iteration, corresponding to 

a row of mesh points, is performed using a single Newton iteration to 

solve approximately the resulting system of nonlinear equations. We 

thus "solve" for one row of mesh points (see figure 2) at a time by 

considering the function values in that row Ui ., 0 ~ i ~ N, to be 
,] 

the only unknowns and using the latest values for all other U ..• 
1,] 

If we denote by u3 , f
3 

the vectors u3 = (U . u-. . ... , UN . ) , 
o,J, 1,], ,J 

fJ = (f . f .. ) ••• , fN .) , and by JJJ the matrix 
O,J, 1,] . ,] 

JJJ =(of . ./oU .. ),i,k=O,l, ••. ,N evaluated at the current value of U .. 
1, J k, J. . 1 'J ' 

we have the iteration 

u<t+l) 
J 

where w is the relaxation parameter. 

u(Q,) - wx 
J 

JJJ is symmetric, positive-definite, 

and tridiagonal, thus the solution of J
33

x = fJ can be obtained effic~ently 

using Gauss elimination without pivoting, or Cholesky decomposition. 
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By differentiating (5), we obtain explicit expressions for the 

partial derivatives at a general interior point: 

()f •• 
1,] 

au .. 
1,J 

= 2 fw-l + w-1 + w-1 + w-1 + Bh2' 
\'r,j t+l,j . i,j+l · i+l,J+l 1 

+ w~~i ( \j + \.~2 + w~~l,j (-oj:+l,j + ni.s 

+ "'ti+l ( 0 i,j- ni,I+J +. wi:~.I+l to i + l,j + ni,j+l) , 

a~i,j 
au. 1 . 

1- ,J 
-w-1 -w-1 

i,j I,j+l 

+ w-1 (a +' n )( -o + n ) 
I,j i,J i~I I,j i-l,j 

+W 
7 7 o_ - n ~ -o_ - n _ ·-1 ~ )( 
1 ,J+l \ i,j i,j+l i,j i-l,j+l)' 

and, by symmetry, a£ .. /au.+l j = afi+l ./aui . Here 
1,J 1 ' ,J ,J. 

W-l =fd(w-1)/diVulil = -1: (l+U2+u2)-312 evaluated for cell i,j - - r J- - 2 x y i,j i,j 

(see [3][4]). . . 



0 u 7 u ~; 0 4 

-9-

After each iteration we adjust the value of H, using (4) integrated 

over ~. The left hand side yields 2 cosy and the right hand side, after 

discretization, BU+ 2H, where U is the area-weighted average of U ... 
1,] 

The adjustment of H, which enhances the rate of convergence. corresponds 

to an adjustment of the volume of liquid. A final adjustment can be 

made, if desired, after the solution has beeri obtained, by moving the 

solution vertically to correspond to a particular liquid volume. 

The convergence rate of the BSOR-Newton method depends critically 

on the choice of the relaxation parameter w. Table 1 compares the 

number of iterations required to decrease the residual llf 11 2 from its 

-6 initial value of approximately 0.5 to ~10 , with zero initial approxima-

tion~ y = ~/3, B=lOO, and h=l/40. 

As obtained from our experiments, the estimated asymptotically 

optimal value of w for the above case is 1.58. In general, it may be 

necessary to use a value of w smaller than the optimal one to ensure 

convergence for a given initial approximation (see Tables 1 and 2). The 

number of iterations required for convergence can be reduced in these 

cases by adjusting w towards the asymptotically optimal value as the 

iteration proceeds, once the approximation to U becomes sufficiently 

good to permit doing so. Each complete SOR sweep (for the 41 x 41 grid) 

I I 

takes approximately 0.055 sec. on the CDC 7600 computer (using a FORTRAN 

program with the FTN4 compiler, OPT= 2). 
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Table 1. Number of iterations required for convergence for 

y = n/3, a=1oo, u<o>=o and h=l/40. 

w 1.2 1.3 1.4 1.5 1.6 1.7 1.8 
number of 

iterations >100 90 72 56 44 divergence divergence 

.. 

. . 
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We have tri.ed an initial approximation of zero for this problem, 

and the one of U equ'l.l to the portion of the lower hemisphere satisfying 

(1) and (2) for B =0 and y n/4. For these two initial approximations, 

the number of iterations required for convergence was essentially the 

same, when convergence occurred. Changing the contact angle did not 

affect the convergence rate substantially either, except that convergence 

was more rapid when y was close to TI/2. 

Table 2. Number of iterations for convergence for B=lOO, h=l/40, ·and 

u(o) = a 

.. w 
1.4 1.5 1.6 

TI/4 72 56 divergence 

TI/3 72 56 44 

The size of B substantially affects the number of iterations required 

for convergence. The smaller B is, the larger the number' of {terations 

required to reduce the relative error below the desired tolerance, and 

· the stronger: the dependence on w. Table 3 compares behavior for a few 

values .of w for the problemy = TI/4, B=l with zero initial approximation, 
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Table 3. Number of iterations for convergence for B=l, y = n/4, h=l/40, 

u(o)= o. 

w 

numher 
of 

iterations 

1..5 

>200 

1.8* 1.84* 

191 123 

* w was set equal to 1.5 initially to prevent divergence and was 

later increased progressively to the indicated value. 

The slower convergence for smaller B should be expected, since for the 

boundary conditions (2), or those in Fig. 1, the problem becomes 

singular when B=O. 

Judging from the experimental results, if either we have a priori 

knowledge of an optimal value for w or if a scheme for improving w is 

incorporated into the program, this overrelaxation method is quite 

efficient for larger values of B. We should add here that this 

method works .also for the ·case B=O, for which a closed-form solution is 

known. We discuss further experimental results for the behavior of 

the BSOR-Newton method in Sec. 2.3, where a comparison is made with 

results for the method discussed in the following section. 

2.2. Hybrid conjugate gradient method 

In this section, the conjugate gradient method is combined with 

a fast Helmholtz solver to obtain iteratively the solution to the discrete 
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form of (1) and (2). This method proceeds as follows (seel8]): 

(i) Given an initial approximation U(o)(U(o) is a vector of length 

. (N+l) 2). ' ' ' (-1) . 
Arbitrarily define p . For k = 0, 1, 2' ... 

· (:ii) Compute 

and solve Mz (k) = -f (k). 

(iii) Compute the search direction 
' -.~ 

P (k) = z(k)+ B p(k-1) 
k ' 

(f(k+l), z(k+l)) 
where Bit= ( . ) k-:1= 0, m, 2m, 3m, ... 

. f (k)' z (k) . 

B0 = Bm = B 2m = = 0. 

(iv) Compute the new approximation 

and J is the Jacobian matrix (af. j/au ) evaluated.at U(k). In our 
1, '!:\ s . 

experiments we choose the restart parameter to be m = 9, as in [8], and we 

continue the iteration until lf(k)~ 2~ EPS, where EPS is the desired 

tolerance. 

We choose the matrix M in step (ii) to be one that approximates J in 

some sense and for which a fast-direct method can be used to solve 

Mz(k)= -f(k). Our choice is the discrete Helmholtz operator scaled by a 
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diagonal matrix (see [8]). 1/2 1/2 Specifically, M = D (-2~h+KI)D , where D 

is a diagonal matrix whose 
. 2 . 

entries are (af. j/aui .-2Bh )/[2 diag (-A )], 
1, ,J n 

and 2~h is twice the discrete five-point Laplace operator on a mesh 

' 
of width h, obtained by setting W ::1 in the discrete form of (1), (2). 

make the choice K=2Bh2, so that M is identical to the discrete form 

(1), (2) when W:: 1. 

To solve Mz(k) = -f(k) we follow steps a to c below: 

(b) Use a fast solver to find x, where 

(-2~h + 2Bh2)x -D-l/2f(k). 

Z 
(k > __ n-1 1 2x. (c) Compute 

We 

of 

The multiplication of Jp(k)in the calculation of~ in step (iv) of 

the algorithm is carried out utilizing fully the sparsity of J. Since 

J is block tridiagonal and each block is itself tridiagonal the 

multiplication takes less than 9(N+l) 2 oper~tions. 

In the table below, we list the number of iterations to obtain 

~~-f(k)ll 2 ~ EPS for different y and B with h = 1/40, EPS = 10-6 , and H - 1. 

Table 4. Number of iterations required for convergence for· h = 1/40 

d u<o)= 0 an - • 

B 100 1 0.1 0.01 

rr/4 13 22 28 40 

rr/ 3 8 10 10 10 
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Each iteration takes approximately .139 sec., which includes .073 sec. 

for the fast solver, except for the first iteration, which requires 0.183 
,;· .. 

sec. including preprocessing. The program GMA (with parameter K=2) [2] was 

. . used to obtain the fast solution of Helmholtz's equation in our experiments • 

Notice that the dependence on the value of y in Table 4 is much stronger 

than it is for the BSOR-Newton method. The smaller the angle, the more 

nonlinear the problem, and the more iterations required because M is less 

good an approximation to J and hence to f. Here, the value of B also 

influences the number of iterations required for convergence, more so in 

the case y rr/4, for which W becomes very large near the. corner (0,0). 

The singular case B=O can also be handled by this method when used with 

an appr6priate fast solver. 

2.3. Comparisons 

We summarize· the data from some of our experiments in the following 

tables. In all cases h · · · 1 · · u(o) - 0 · d d h t e 1n1t1a approx1mat1on = lS use an t e 

number of iterations given are those required to obtain a .residual 

II f <k> II 
2 

.;;;; EPS. 

It appears, from the data in Tables 5 and 6, that the hybrid conjugate 

gradient method performs consistently better in terms of computer time 

for the model problem than does the block overrelaxation-Newton method. 

The conjugate gradient method has the further advantage of not requiring 

the estimation of an acceleration parameter such as (u (the dependence on 

the value of the restart parameter m is not as significant), and it is 

,-



Table 5. Number of iterations (CPU seconds) for the BSOR-Newton iteration 

' Estimated w W· EPS= 
best for first after 20 10-3 10-4 10-5 

h B y w 20 iterations iterations 

100 TT/3 1.58 1.6 1.6 21 (1.13) 29(1.56) 37 (1. 99) 

100 rr/4 1.59 1.5 1.55 25(1.34) 34 (1. 83) 43(2.31) 

1 1 rr/3 1.84 1.5 1.84 - 79(4.24) 98(5.26) - ll6(6. 22) 
4o 

1 rr/4 1.84 1.5 1.84 77(4.13) 90(4.83) 107(5.74) 
- ,_ 

.01 TT/3 1.85 1.5 1.8 116(6.22) >120(6.44) 

• 01 TT/4 1.85 1.5 1.8 118(6.33) >120(6.44) 

1CO TT/3 1.52 1.2 1.5 15(.21) 20(. 28) 24 (. 34) 

100 rr/4 1.52 1.2 1.5 15(.21) 22(.31) 24(.34) 

1 1 TT/3 1.71 1.5 1.7 46(. 64) 56(.78) 66(.92) 
20 

1 TT/4 1.71 1.5 1.7 46(.64) 55(.77) 65(.91) 

.01 TT/3 1.81 1.5 1.8 48 (. 67) 58 (. 81) 66(.92) 

.01 rr/4 1.82 1.5 1.8 49(.69} 58(.81) 67 (. 94) 
L__.~~--------~ 

-
10-6 

44(2.36) 

51(2.74) 

>120(6.44) 

>120(6.44) 

27(.38) 

27(.38) 1 

I 

76(1.06) 

75(1.05) 

79 (1.11) 

79 (1.11) 

•• ...... 
c-
1 

.;· .. 
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TABLE 6. Number of iterations (CPU seconds) for the conjugate gradient iteration 

I ~EPS~ -] 
10-4 10-5 I 

' h B y 10-6 

L:- ,
1 

10 

100 rr/3 4 (. 60) 5(.74) 6 (. 88) 8(1.16) 
0 
<1'•4.. 

'-'• 
100 rr/4 6(.79) 8(1.16) 10 (1. 44) 13(1.90) 

1 .... ,~ ... 

' 
c ,, 

1 rr/3 5(. 74) 
1 

. 7 (1.02) 8(1.16) 10 (1. 44) ..&:... 

40 1 rr/4 13 (1. 90) 15(2.18) 18(2.59) 22(3.19) ""-.! 

r-~..:. 

"""" 
-

.01 rr/3 5(.74) 6 (. 88) 8(1.16) 10(1.44) 
~#': 

.01 rr/4 15(2.18) 29(4.16) 34(4.91) 40(5.74) 
Ci;;:· I ,_. 
C· 

-..,J 
. I 

m 
100 rr/3 

l 
4 ( .14) 5(.17) 6(. 21) 7(.24) 

rr/4 5(.17) 6 (. 21) 7(.24) 9 ( .30) 100 [I 

I 
I 

1 rr/3 i 5(.17) 7(.24) 8(.27) 9 (. 30) 
1 

20 1 rr/4 10(.34) 14( .48) 16(.54) 19(. 64) 

.01 rr/ 3 I 5(.17) 6 (. 21) 8 (. 27) 9 (. 30) 

.01 rr/4 I 13( .44) 22(.74) 25(.84) 35 (1.18) 

I 
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less sensitive to the initial approximation, although it does require more 

computer storage than is required for the BSOR-Newton method [8]. For 

nonrectangular domains the conjugate gradient method would lose some of 

its competitive advantage of speed since more computer time is required 

by fast-direct methods in this case for the solution of the Helmholtz 

equation. See [8] for other possible choices for M and for comparisons 

of the conjugate gradient method with the BSOR-Newton method for the 

case B = H = 0 with boundary conditions for which the problem is not 

singular. 

In order to estimate the discretization error, the numerical solution 

for B=O, y = TI/4, h = 1/20 was compared with the known closed-form 

solution. We found the relative error of the computed solution in the 

infinity norm to be less than abou't 1/2% everywhere beyond 3 gria 

points from the corner, 18% right at the corner, and 1 to 4% in between. 

The relative difference between the computed solutions on the grids for 

h = 1/40 and h = 1/20 was about 2% in the infinity norm for this case. 

3. The unbounded case 

As pointed out in Sec. 1, there is a critical contact angle y , 
0 

which is TI/4 for our model problem, such that the solution is unbounded 

at the corner of the cylinder cross section for all y < y • The 
0 

asymptotic form of the solution in a neighborhood of the corner is given 

by (3). If y < y , we use this asymptotic solution in conjunction with 
0 

discrete methods away from the corner to solve our problem. 
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We investigate two methods that use different discretization proce-

dures over the portion of the domain away from the corner. In the first 

method, a neighborhood of the corner is deleted entirely from the domain 

to be discretized. In the second, the asymptotic solution is extended 

into part of this domain. We consider, as in the previous section, only 

the model problem of a square on which has been placed a uniform square 

mesh. 

3.1. Method A 

Here we assume that the asymptotic behavior (3) holds from the 

vertex of the corner with the singularity up to one or several grid 

points away. We term this portion of ,the domain the asymptotic domain 

and the remaining portion the numerical domain (see figure 3). 

A natural way .to obtain the numerical domain is to cut along a 

level curve of the asymptotic solution. The analytical solution in this 

domairi.theri can provide' an upper bound on the solution u of (1),(2) [9]. 

Although the level curves of the asymptotic solution are circular arcs, 

the limitations of our experimentalcomputer program require us to 

approx·imate such an arc by a straight line passing through mesh points 

and making an angle of 45° with. the edges of the square. Thus, we solve 

equations (1) and (2) numerically in the domain shown in figure 4. 

The boundary conditions of the previous_section apply at all bound-

ary points, except those on r, where we use a normal-derivative matching 

condition obtained by differentiating (3). After solving the resulting 

problem in the numerical domain, we can obtain a value for v - u in the 
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Fig. 3 

Division of the domain for Method A. 

.Fig. 4 

The numerical domain for the test 
problem. 
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asymptotic domain by matching at one (or more) points of r. In this 

way, we obtain an approximation to the solution over the entire domain 

st. 

We use the sa~e discrete equation(S) at a generai int~rior point 

of the numerical domain as in Sec. 2.1. On f, the discrete equation 

at a general point is (see figure 5) 

where 

w 

w 

f .. 
1,] 

I,j+1 

i+1,j 

i+l,j J -1 ( ) -u -w u -u 
i,j+ I,j+l i,j+l i,j 

= w-1 (zu· 
i+l,j+l i,j 

-u 

-1 ( ) -w u -u . 
' i+l-,j i+1,j i,j 

. i. 1 au 2 ( 
:-2 -W -;;-- dQ, + h BU. • r on 1,] 

i· 

+ 21: ) = 0' 

= [1 + fu. .+1 -u. 1. 
\

1

1,]. 1-, )
2 2 

.+1 /h J . 

. · r/2 
+fu . . +1 -u .. /12; h2 

\1,] 1,] .. 

= [ 1 + (u. . -u. . )2 

1 h 
2 

+ (u 
.. 1+1,] 1,] i+1,j 
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and J ..!. aau dR. is evaluated by Simpson's rule using the directional 
r w n 

i 

derivative from (3) for the values of w-1av/an, 

where 

1 au 
wan r 

(6) 

a1 = - (cos 9 -[K2 
- sin

2 
9 ]

1
'
2 )! (K B p

2
) 

( 
2 2 . ] -1/2 ) {. 2) 

a 2 = (sin 9 cos 9. K - sin 9. -sin 9 I \K B p 

(9, K, B, p as defined in (3)). 

The discrete equation for points one mesh interval away from r 

in the interior of the numerical domain is the same as (5), except 

that for (i, j) on r, 
i,j 

is given by W = 
i,j 

w 

(
1 + (u. : -u ... 1).2/hz +(u .. -u. 1 .)z/hz )1/2 

J.,] J.,]- J.,] J.- ,] 

We consider only the BSOR-Newton method for solving the discretized 

equations in the numerical domain. General purpose programs for solving 

the discrete Helmholtz equation are being developed and were not 

available for use with the conjugate gradient method during our study. 

These programs require, in general, more computer time than ones for a 

rectangular domain. 

The determination ·Of how far into the domain f should be placed 

for optimal accuracy poses an essential difficulty for the method: If 
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r is too far into the domain, the boundary condition obtained from the 

.asymptotic representation on r will be inaccu!'ate; if r is too close to 

the corner, the discretization in the numerical domain near r may not be 

able to represent well the steepness of the solution. Considering these 

two alternatives, it appears that it is better to put r close to the 

corner, because one can, in principle, always refine the mesh locally 

or use higher-order or other methods to handle the steepness of the 

solution, while errors committed by pushing r too far into the domain 

cannot be compensated for easily. 

In our numerical ·experiments, we choose r to be sufficiently 

close to the corner so that at p, the midpoint of r, w-1av/an ~ 

0.999 = cos-12.5°. We solve the resulting problem on the numerical 

domain with a mesh size h of 1/40 and 1/80, to give an indication of the 

discretization error for the particular choice of r. We also solve 

problems for nearby choices of r to determine the sensitivity to the 

positioning of r. 

Of course, the matching conditions (6) on r may not be accurate. 

Although the difference between u and the asymptotic solution V is 

bounded by a constant as the corner is approached, the difference between 
-=i~~~ 

the{~ derivatives may be large. If r is chosen to be an actual level 

curve of v, close enough to the vertex so that IVvl is large and 

w-1av/an is essentially 1 there, then IVul would also be large and 

choosing w-1au/3n to be essentially 1 along r should then be sufficiently 
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accurate to be in keeping with the discretization error.s in the interior. 

However, along the straight-line approximation to the level curve required 

-1 by our test program, w av/an can vary appreciably, and attempting to 

. -1 
match to W au/an as in (6) might lead to errors. Our goal is to 

obtain from our experimental program not necessarily solutions of the 

highest accuracy but rather an indication of the feasibility of our use 

of the asymptotic solution (3) near the corner singularity in conjunction 

with a discrete method elsewhere. 

We give here a sunnnary of some of the typical behavior found in 

our numerical experiments. 

For the case y. = 0 ° , B = 1, and f at the position where 

w- 1av/an I =o. 999 (i.e., r is on the 17th grid point of the first row in an 
p 

81 x 81 mesh, or the 9th grid point of the first row in a 41 x 41 mesh), 

moving f one grid point in the 81 X 81 mesh produces less than .1% 

relative difference in the solution in the interior 90% of the domain, 

between .1% and 1% relative difference in a band closer tor covering 

about 7% of the domain, and between 1% and 3.5% for the points in the 

innnediate neighborhood of r. The relative difference is correspondingly 

about twice as much in the 41 x 41 case when r is moved by one mesh 

point. The relative difference in the solution resulting from refining 

the mesh from 1/40 to 1/80, keeping r fixed, is less than 0.2% over the 

interior 50% of the domain, between 0.2% and 1% over 30% of the domain, 

between 1% and 5% over 10% of the domain, and between 5% and 15% on the 

points in the immediate neighborhood of r. 
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For y = 30°, B = 1, and w-1av/anl =0.999, the relative differences 
p . . . 

are about one-fourth of those of the above experiments for y = 0°. 

Less sensitivity is to be expected because the solution surface is 

generally not as steep in this case. For similar reasons, the case for 

y = 0°, B = 10, w-1av/anl =0.999, has about only half of the relative 
.. · p 

differences found for the casey= 0°, B = 1. 

-1 I If we choose r so that W av/an p:::0.9999, then the relative differences 

from refining the mesh were found to be two to three times as large as 

they were for placing r at a position for which w-1av/anl =0.999. 
p 

Based on the above information, we choose r so that w-1av/anl =0.999 . p 

for most of our experiments. 

For the case of y = 0°, B = 1, the solution height in the numerical 

domain was found to be Ul =1.46 for the 81 x 81 grid. We compare 
p 

solution heights obtained from placing r on the 9th grid point on the 
-1 . 

first row (in this case, w av/anl =o.9999)and placing r on the 17th grid 
p 

point on the first row (in this case, w-1av/anl =0.999) on a 81 x 81 
p 

grid. Although rather large relative differences exist for points close 

to r, we observe that over 75% of the domain less than a 1% change occurs. 

This indicates that the solution over a large portion of the domain is 

rather insensitive to where r is placed. As mentioned previously, 
I 

over the same large portion, refining the mesh from 1/40 to 1/80 also 

produces only minor changes. Thus, for that portion of the domain, 

a medium size mesh (say, h = 1/40) seems sufficient to produce acceptably 
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accurate results. We observe also that for fixed r the numerical solution 

appears to be converging as h tends to zero through the different mesh 

sizes. 

For the unbounded case, the convergence of the BSOR-Newton method 

is even more sensitive to changes of w than for the bounded case, 

especially for y = 0°. For U(o) = .Q, one must begin the iteration with 

w close to 1 to prevent divergence, and theri quickly (within 20 iterations, 

say) increase w toward the estimated optimal value in order to obtain 

an acceptably rapid convergence rate. Overestimating w essentially 

always leads to divergence. For y = 0°, the observed optimal values 

of w found experimentally are listed in Table 7. 

Table 7. Observed optimal w for y oo. 

B 
h 1 10 100 

1/20 1. 70 1. 61 1.33 

1/40 1. 84 . 1. 78 1. 50 

l/80 1. 92 1.88 not 
available 

The optimal values of w for y = 30° are about the same as for y 0°. 

One can see from Table 7 that both the grid size and value of B 

influence the value of the optimal w. 

Table 8 summarizes our experimental results for a range of values 

of y, B, and h. The number of iterations 



TABLE 8. Number of iterations (CPU seconds) for method A 

Initialt 
DEL = w after w opt 

y B h r* approx. starting 20 steps (estimated) 10-3 10-4 

0 1 1 4 s 20 1.5 1.69 1. 70 31(.46) 42 (. 63) 

0 1 
1 

40 8 s 1. 79 1.84 1.84 37(2.04) 56(3.08) 

0 1 
1 

16 s 1. 79 1.84** 1.92 70(16.1) 112(25.76) 80 

0 10 
1 

1 0 1.5 1.59 1.61 ·24(.35) 33 (. 49) 20 

1 
0 10 40 1 0 1.55 1. 75 1. 78 46(2.53) 64(3.53) 

0 10 1 
80 4 0 1.55 1. 79"1-t 1.89 90(20.70) 141(32.43) 

1T 1 1 
3 s 1.5 1.69 1. 71 24 (. 36) 38( .57) 20 6 

1T 1 
1 

6 1. 79 1.84 1.84 26 (1.43) 50(2.75) 6 40 s 

1T 10 1 
1 6 20 0 1.5 1.59 1.61 25(. 37) 34( .51) 

-
1T 10 1 1 0 1.55 1. 75 1.78 . 48(2.64) 66(3.64) 6 40 

* 
** 

The number of grid intervals from the corner at which r meets an edge of Q. 

w = 1.9 after 100 iterations. 
t 
0- identically zero; S-portion of a sphere (i.e. exact solution for B=O, y=1T/4). 

+t ' w = 1.87 after 100 iterations. 

10-5 

'51(.76) 

71(3.91) 

170(39.10) 

41(. 61) 

81(4.46) 

178(40.94) 

48(.71) 

68(3.74) 

42(.63) 

84(4.63) 

' 

10-6 

61(.91) 

85(4.68) 

48(. 72) I 

I 
97(5.34) 1 

I 

' ' 
I 

I 
I 

59 (. 88) I 
' 

84(4.62) 

50(.75) 

102(5.62) 

-- -

I 
N 
00 
I 
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given in Table 8 are those required for llu(k)_u(k-l)ll/ llu(k)ll
2 
~DEL . 

. , 
A major difficulty for this method is the representation of the 

steep gradients of the solution in the,numerical domain near f. In 

the next section, we investigate the possibility of handling this 

difficulty by overlapping a portion of the numerical with the 

asymptotic domain. 

3.2. Method B 

Here ~e investigate the possibility of improving the previous 

method by overlapping the asymptotic and numerical solutions over part 

of the domain. We divide the entire domain into the three regions 

shown in Figure 6. Region I is a small portion of the domain near the 

corner in which we assume that the asymptotic behavior (3) holds. 

Region III~ including boundary 2 in Figure 6, is the purely numerical 

domain, in which we assume that the solution u is not too steep and can 

be c;omputed accurately with the discretization used previously. The 

,. I 

region between. i.s RegioD. l:I, where we couple. the asymptotic and numerical 

solutions under the assumption that u and v differ there by a lower-

order. quantity that is not steep and thus can be computed more accurately 

with a discretization than can either u or v.. The staircase-shaped 

domain boundaries are used rat'her than the '45° lines of Method A to 

approximate level .,curves because the limitations of our study permitted 

us to use only those boundaries that were simplest to include in the 

computer program. 

Let u be the solution to (1) and (2), then in Region I and II we 
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write u = V + £, where V is given by the asymptotic expression (3) and 

1£1 is bounded by a constant. Over Region II, we consider £(x,y) = 

u(x,y)- V(x,y) and we derive discrete equations for £(x,y) involving 

the known quantity v, keeping only the first-order terms in £/V and in 

the derivatives of £ divided by those of v. Over Region I, we take 

£ = £ , as in Method A, where £ and its derivatives are negligible 
0 0 

compared with v and its derivatives . 
. ' 

In Region II; the le-ft- hand side of (4) becomes 

When we perform the integration along a direction parallel to y-axis, 

then the normai direction in (7) is parallel to the x-axis, and the 

right-hand side of (7) becomes (see figure 7) 

1/2 
+j £ l+vy

2 

c x [...--1 +-v-/,--+_v_Y_2~J,..--,3...,/-=-2 

+ higher order terms. 
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If the norma1 direction~ is parallel to they-axis, as along C', then 

the right-hand side of (6) becomes 

f 
l+v 2 

+ E:y [ ; 2 ] 3/2 - dQ, 
c' l+vx +vy 

-! 
C' 

(7b) 

+ higher order terms. 

To form discrete equations for£ .. , we evaluate (7a) along C, for 
1,] 

example, by using Simpson's rule with the five indicated node points for 

computing the three integrals involving v, with E:x replaced by 

(t:.+l . - £ .. )/hand £ replaced by (£ .. 1 - £ .. + £.+1 '+l - £
1
.+l,j)/2h 

1 ,] 1,] y 1,]- 1,] 1 ,J 

for the upper half of C and by (t:i,j - E:i,j-l + E:i+l,j - Ei+l,j-l)/2h 

for the lower half of C. If we then ignore terms that contain powers 

greater than one of £/V and of the ratio of their derivatives, we obtain 

a system of linear equations for£. j" The associated matrix is symmetric 
. 1, 

and banded. 

3.2.1. The iteration 

In solving the discrete·equations in Region II, the boundary 

condition on boundary 1 is obtained from the directional derivative of the 

asymptotic formula (3), and the boundary condition at each iteration for 

boundary 2 is obtained by keeping the value of u fixed at its Region 

III value. We use the IMSL subroutine LEQTlB, designed to solve banded 

systems, to obtain the solution. Note that for the different boundary 
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conditions on boundary 2. arising from each iteration, only the right 

hand side of the system to be solved in Region II needs to be changed. 

Therefore, it is necessary to perform the associated .triangular 

decomposition only for the first iteration. 

The method of solution for Region III is the BSOR-Newton method 

of the previous sections. The boundary condition on bo~ndary 2 is that 

of keeping the value of U(i.e. £) fixed at its value obtained previously 

in Region II. Afterwards, we adjust the value of H in the same way as 

before, using theboundary of Region III as the contour for (3). 

Each iteration thus consists of solving for £ in Region II 

followed by solving for U in Region III and then adjusting H. 

3.2.2. Experimental Results 

We have experimented with this method for y = 0°, B = 1 and B = 10 
I 

on a 41 x 41 grid. We took boundary 1 to intersect the edge of the 

square one grid point from the corner, and boundary 2 to intersect the 

edge at the lOth grid point for B = 1 and the 4th grid point for B = 10. 

We found the solutions generally insensitive to these boundaries being 

moved by one or two mesh intervals. The time required for convergence 

was about three times greater than for Method A. 

Of importance is the observation, that in our experiments the 

value of IV£1 obtained was not necessarily small compared with that of 

!Vvl. In fact, IV£! was almost half of IVvl for most points in Region 

II, including the points close to the vertex. Thus the assumption, on 

which the numerical scheme in Region II is based, that IV£1 / IVvl is 

small does not hold even though 1£1 I lvl ~ 0 as the vertex is approached •. 



0 0 u 7 i·;i 
b 7 

-35-

3.3. Conclusion 

Since the results from Method B indicate that the assumption on 

which it is based does not generally hold, we conclude that Method B is 

not a suitable technique for improving Method A for this problem. The 

experimental results for Method A for the 21 x 21, 41 x 41, 81 x 81 grids, 

for a fixed position of r indicate convergence of the numerical solution 

as h(the mesh siz~) + 0. In addition, the valued of U on the bulk of 

the domain change very little as the mesh is retined, indicating that 

reasonable accuracycan be obtained away from the corner even for the 

coarser grids. 

From the experimental data, it appears that taking f to be the 

line on which the value of v /W at the midpoint is about 0.999 is 
n 

reasonably satisfactory. Moving r one or two mesh intervals produc~s 

less than 0.5% relative difference in the numerical solution over 90% 

of the grid points. As for the points close tor, one should consider 

using a finer mesh or higher-order discretization than in the rest of 

the domain and taking r to be a level curve of the asymptotic solution 

with.an irregular mesh nearby. These matters are considered further 

in a related study [1]. 

In Figures 9 to 18, we present graphical computer output depicting 

perspective views with contours for some of the numerical solutions 
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that were obtained with the methods of Section 2 for the bounded case 

and with Method A for the unbounded case. The perspective views 

displayed are those indicated in figure 8. The height contours are 

drawn at intervals of 0.1, measured from the center (1,1) where the 

height is taken to be zero. 

Solution surfaces for B=l are depicted in figure 9 for y=60° 

(a bounded case) and in figures 10 to 13 for y=30° and y=0° (unbounded 

cases). Those for B=lO are depicted in figure 14 for y=60° and 

figures 15 to 18 for y=30° and y=0°. All perspective views are at 

an inclination angle of 20° and a viewpoint distance of 100 units. 
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Figure 9 

Perspective view for B ; 1 from 
direction (a), y = 60°. 
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..• 

Figure 10. Perspective view forB= 1 from direction (a), y = 30°. 
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• 

Figure 11. Perspective view for B • 1 from direction (b), y • 30°. 
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Fig. 12 

Perspective view for B 1 from direction (a), y =0°. 
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Fig. 13 

Perspective view forB= 1 from direction (b), y = 0°. 
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Figure 14 

Perspective view for B = 10 from 
. 0 

direction (a), y = 60. 
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Figure 15 

Perspective view for B = 10 from 
direction (a), y = 30°. 
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Fig. 16 

Perspective view for B 10 from direction (b), y = 30°. 
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Fig. 17 

Perspective view for B : 10 from direction (a), Y: o•. 
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Figure 18 

Perspective view for B = 10 from 
direction (b), y = 0° 
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