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'NUMERICAL SOLUTION OF THE CAPILLARY FREE
' SURFACE EQUATION ON A SQUARE

Nai-Fu Chen* and Paul Concus
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

November 1977

ABSTRACT

Numerical méthods are discussed for solving the partial differential
equation déscribing‘the equilibrium free surface of a'liduid in a vertical
éylindriéal container whose cross section has corners. Both the cases for
which the -free surface is bounded and fdr>which it climbs infinjtely high
at a corner are'qonéidered. For the model problem of a container with
square Cross seétiénicompara;ive results_of numerical experiments are
given for a nonlinear relaxation method, for a conjugate gradient method,
and for several teéhﬁiques for handling the corner singularity utilizing
the known asymptotic form of the solution. .RepresentatiVe solution

surfaces are depicted graphically.

*Present address: . Mathematics Department, University of Southern
California, Los Angeles, CA 90007.
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1. Introduction

In this papef;‘we,discuss algorithms for soiving numerically the
nonlinear partiai‘differential equation describing thé_ééﬁilibrium
free sufface of.é'iiquid under surface and gravitational forces. We
are interested particularly in the case of a liquié partly filling a
vertical cylinder; the cross section of which has corners. We assume that
the surface height f(x,y) is a single-valued smooth function of x and y,
that thefe is suffipient liquid to cover the cylinder base entirely, and
that the‘g;avitational field is ﬁnifofm énd directed vertically down-

ward. Then the function u(x,y) satisfies

,(%%) = Bu + 2H,
(D

W= [1 + (3u/3x)2 + (E)u/Sy)Z:‘l/2

where ﬁ ='pog/0vwi;h po the difference in‘densities between the gas and
liquid phases, g the gravitational acceleration (positi&e when directed
downward), and 0 the gas-liquid interfacial surface tension. The quantity
2H is_a constant determined, in general, by the shape ofvthe cylinder
cross section, the ;olume of liquid, and the boundary condition between
the liquid surface and’the cylinder wall. The mean curvature of the
surface is H at points were u=0. We coﬁsider only the case B > 0. The
parameter B is the (dimensionléss) Bond number, if (1) is considered to
habe been made nondimensional with respect to a characteristic length of
unity.

Let the prescribed angle of contact between the liquid free-surface

and the cylinder wall, measured interior to the liquid, be denoted by

!



the constant y. This condition can be written as

=~
F&

= cos Y at the cylinder wall, (2)

where du/dn is the derivative of u with respect to
the outward normal.‘ We consider here only the case of wetting liquids,
0§Y<ﬂ}2. (The complementary case of non-wetting liquids can be derivedv
from it directly by means of a simple transformation.) .

The value of nhe contact angle plays a crucial role in determining
_the qualitative natu;e of the solution when the domain unoer investigation
contains corneré. Loﬁ the interior angle of a corner.be 2a; it is proved
in'{6,7] that the solution at the vertex of the corner is,bonnded if and
only if a + y = m/2. - For the case o + Y < /2 set k=sin a sec} Y and
introduce polar coordinates p, O with origin at the vertex and 0

measured from the interior angle bisector. Consider the function

VYY) = [cose - - sinze)%]/(KBp), (3)

for -a< 6 <o, p>0. Itisshown in [5] that there exists a constant
C such that the solu;ion'u(x,y) satisfies Iu(x,y) - v(x,y) < C for
sufficently small'p; ~Because of the differing qualitative‘natures of
the bounded and unBounded solutions, we treat these two oases Separatoly.

We take the 2 x 2 square as the domain for our model problem. Because
of the symmetry, we consider only the equivalent problem on a 1 x 1 square
with boundary conditions as shown in-Figure 1. We place_a'uniform square
grid of width h=1/N on the domain and discretize (1) in a;manner sinilar
to that used in [3] .for the minimal surface equation (B=H=0), which is

related to the general procedure in [11] for linear elliptic equationms.

[
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We write the integral form of (1), as obtained by use of Green's theorem,

over a sub-domain D of 2, which yields
[ %(V'u.g)dl =[/ (Bu+2H)dA, ' (4)'
ab

whére n is the outward unit normal and 9D is the boundary’of D.

Then we place on ) an auxiliary mesh (the dotted lines bisecting
the originalnmesh'liﬁes in Fig. 2). We denote an h x h équare bounded
by the original_gfidilines as a ceil, and we denote a recténgle:bounded'
by auxiliaf& grid lines, and possibly 9, as an auxiliary cell. By
imposing (4) on egch of the auxiliary cells and using the midpoint rule
for integration, we obfain a set of (nonlinear) algebfaic équations. Tﬁe
equation corresponding tp a typical interior point Q(x,y)=u(ih,jh)=Ui,j

is given by
£ w'i 20, .U, . .-U,
i,j =% s\ 74,3 i-1,5 1,3-1
+ W 20, .-U. . .-U. .
1+1,3 ( i,j i+l,] 1,3-1)
S -1 - o
AT (_ZUi,j Uio1,3 Ui,j+1)

-1
+ W 2Uu, . -U -U
§+1’3+1( i,] i+l,] i,j+ﬂ>

of _ (5)
 +2h (BUi’j+2H)— 0, :



Nh=1

The domain with the original grid and the auxiliary grid.
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| T 1/2
.~ where = W_ _ = l-F_%— 63 + 6_2_ + ni - + ni_l -)] R
ij ij L1 b -3
| with 8 ={u, .-u, . J/h and - ={u, .-u, . ,}/n.
IJ (193 1_1’3) an ni’J '(193 i’J‘l)/
’ B T

Notice that "the integration of (4) is pérformed over each auxiliary
cell, and we use the approximationﬂ (Bu+2H)dA_é(BUi j+2H')":(area of D).
Note also that in the discrete equations we take W to be constant over

1,]

each cell =(W;,— - for the cell centered at (i-1/2, j—l/Z). ‘For a
boundary segment:‘:BQS of 9Q we have -

/ Vu'n e R ‘ cosYy + (length of BQS) , if W—laU/3n=cosY

ol R 0, if du/dn =o.

In the following sections, we shall discuss and compare different
methods for solving the discrete equationms, for the bounded and unbounded

cases.

2. The Bounded Case

In this section, we investigate two methods for obtaining the
solution of the d_i’sc“rete form of (1), (2) for the bounded case

(o + y = 7w/2), which for the square (0. = W/4) is the case Yy = m/4.



2.1. Block SOR-Newton

Here, we qsevfhe nonlinear block successive oveffélaxation method
investigéted in.[4] for solving the minimal surface equation and
described.in‘[IO] as the one—step block succeséive overrelaxation_
Newton (BSOR—Newt6p5 mefhod.' A block SOR iteration, corresponding to
a row of mesh poinfé, is performed‘using a single Newton'iteration to
solve approximately.the resulting system of nonlinear equations. We
thus "'solve" fdr 6he row of mésh points (see figure 2) at a time by

considering the function values in that row Ui i’ 0< i< N, to be
. . . s

the only unknowns -and using the latest values for all other U, ..
Sathat R
If we denote b U., £f_ the vectors U_ = (U , U, , ..., U_ . .
. Y J J J ( 0s]s 1,7, .N9J)’
Yeieey £

f_ = the matrix

j)’ and by JJJ

£, £,
J (-O,J, 1,] _ N, .
JJJ =(§fi,j/3Uk;j){i,k=0,l,;..,N'evaluated at the current value of Ui;j,
we have the iteration V
Jggx = 15

W) ()
U 3 =U 7 T wX

where w is the relaxation parameter. J is symmetric, positive-definite,

JJ

and tridiagonal, thus the solution of JJJX = fJ can be obtained efficiently

using Gauss elimination without pivoting, or'Cholesky decomposition.



By differentiating (5), we obtain ekplicit expressions ‘_for the

partial derivatives at a general interior point:

afi,j =2 w:l_ + w:l o+ wzl_ + w:l o+ Bh?
U, 3 \ 1,3 i+1,j i,j+1 i+l,3+1
o 2 2
+ 1;1:1_ §  +n + W:l -5 + 1
i,j i,] i,] i+lsj ;H"laj 1,]
. ‘2
+ ‘;J:l;_' § -n _ +, v'a_'l _ [ +n _
1,541\ 1,5 41,341 i+1,549\ 1 +1,j5 i,3+1
. . . 1]
zfi,j RS RE—
Y%-1,5 1,7 iu

. '._'1-
ITENLL; 1,34\ 1,30 1-1,3+1,

and, by symmetry, _afi,j/an-l-l,j = 3fi+1,j/an,j. Here

‘:’—1_ =[d (W—l) /d|VU|21_=_ --—% (1+U_}2(+U;) -3/2 evaluated for cell 1,j
,] i,3 :

(see [3]1[4)]).
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After each iteration we adjust the value of H, usihg (4) integrated
over Q. The left hand side yiéids 2 cosyY and the right'hand side, after
discretization, Bﬁ7+ 2H, where U is the area-weighted average of Ui i

: ' 3

The adjustment of H, which enhances the rate of convergence. corresponds

to an adjustment of the volume of liquid. A final adjustment can be

 made, if desired;fafter_the solution has been obtained,vby moving the

‘solution Verticaliy to correépond to a particular liquid volume.

The convergence rate of the BSOR-Newton method depend$ critically
on,thevchoice of the relaxatioﬁ parameter w. Table 1 compares the
humber of iterétipﬁs required to decrease the residual £ "2 from its
initial value of aﬁﬁroximately 0.5 to <10—6, with.zero initial approxima-
tion, y = m/3, B=100, and h=1/40. |

As obtainéd.fram our experiments, the estimated aéymptotically
optimal value of Q fdr_the above case is 1.58. In geﬂeral, it may be
necessary to use é value of w smaller than the optimal one to ensure
convergence for a.giQen initial approximation (see Tables 1 and 2). The
number of iterafioﬁs_required for convergence can be reduced in these

cases by adjusting w towards the asymptotically optimal value as the

‘iteration proceeds, once the approximation to U becomes sufficiently

good to permit doing so. Each complete SOR sweep (for the 41 x 41 grid)
takes apprdximately 0.055 sec. on the CDC 7600 computer (using a FORTRAN

program with the FTN4 compiler, OPT = 2).
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Table 1. Number of iterations required for convergence for
= m/3, B=100, u®)20 and h=1/40.

w 31,2 1.3 1.4 1.5 1.6 1.7

1.8

number of _ .
iterations >100 90 72 56 44  divergence

divergence
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We have tried,an initial approximation of zero fqr‘this problem,
and the‘one ofﬁﬂ;equﬂl to»the portion of the léwer hemisphere satisfying
(1) and (2) fova %O and Y = /4. TFor these two initial approximations,
the number of ité?ations required for convergence waé.essentially the
same, when conﬁeféencé occurred. Chaﬁging the‘contact angle did not

affect the convergence rate substantially either, except that convergence

was more rapid when Yy was close to T/2.

Table 2. Number of iterations for convergence for B=100,'h=1/40;‘and

H(c).z 0.
N ] B - ‘
Y 1.4 - 1.5 : 1.6
/4 72 56 ' divergencé_
3| o2 56 44

Tﬁe sizé of:Bﬁsﬁbsﬁantially affecfs the nﬁmber of iteratibhs required
for convergence. Tﬂe smaller B is, the larger the numﬁéftof iterations
| required to reducé.the relative error below the désired'tolerance, and
"the strongeg'ﬁhe*dépeﬁdénce on w. Table 3 compares béhévior fqr a few

values of w for the problem Y ='ﬂ/4, B=1 with zero initial approximation,

and 11 £ < 1078,
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Table 3. Number'bf.iterations-for convergence for B=1l, y = m/4, h=1/40,

U(O)E 0.
w | 1.5 1.8% - 1.84%*
numher >200 191 123
of
iterations

* » was set equal to 1.5 initially to prevent divergence and was

" later increased,progréssively to the indicated value.

The slower convergence for émaller B should be expected, since for the
boundary conditibns.(Z), or those in Fig. i, the problem becomes
singular when B=O. . | |

Judging from ;hé experimental results, if either we have a priori
knowledge of an optimal value for w or if a scheme for improving w is
incorporated i?to the program, this overrelaxation method is quite
efficient for iarger values of B. We should add here that this
method works‘alsb for the-caée B=0, for which a closed-form solution is
known. -We discués further experimental results for the behavior of
.the'BSOR—Newton me;hod in Sec. 2.3, where a comparison.is made with

results for the method discussed in the following sectiomn. .

2.2, Hybrid conjugate gradient method
In this section, the conjugate gradient method is combined with

a fast Helmholtz solver to obtain iteratively the solution to the discrete
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form of (1) and (2). This method proceeds as follows (éeelB]):
(0)(U(0)

(i) Given an initial approximation U is a vector of length

(-1)

2. Arbitrarily define p' . For k = 0, 1, 2,

7(ii) Computé
(k)_ (k)

N £ = fij(U )

(k) o _g(K)

and solve Mz = "

(iii) Compute the search direction

P10 (0, g D),
(U GeD))

where 8&_- (f(k); (k) ,{)

]

k# 0, m, 2m, 3m;;..

B =B, . = 0.

‘m 2m . "

.80'
(iv) Compute the new approximation

(k)
kP s

gL gy
where’é = (f(k:, Z(k»
_ k (p(k‘, Jp(k))

and J is the Jaéobién matrixc(afi j/BU_r S]'evaluated'at U(k), “In our

experiments we choose the restart parameter to be m = 9, as in [8], and we

(k)u
2

continue the iteration until Hf < EPS, where EPS is the desired

}
i

tolerance.
We choose the matrix M in step (ii) to be one that approximates J in

some sense and for which a fast-direct method can be used to solve

(k) (k).

Mz "= -f Our choice is the discrete Helmholtz operator scaled by a
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diagonal matrix (seé [8]). Specifically, M = Dl/z(—ZAh+KI)D1/2, where D
is a diagonal matrix whose entries are (3f, ,/dU .-2Bh2)/[2 diag (—Ah)],
, _ i,j° 1,3 _

and 2Ah is twice the discrete five-point Laplace operator on a mesh

of width h, obtained by setting W=lin the discrete form of (1), (2). We

make the choice K #'Zth, so that M is identical to the discrete form of
(1), (2) when W = 1.

To solve Mz(k)-='—f(k) we follow steps a to c below:
(a) Compute —D—l/Zf‘k).

(b) Use a fast solver to find ¥, where

(42A5,+ 2Bh2>x - —Dfl/zf(k)'

(c) Compute z(k) = D—1/2x.

(k)in the calculation of ak in step (iv) of

The multiplicatioh of Jp
the algorithm is cérfied out utilizing fully the sparsity of J. Since
J is block tridiagonal and each block is itself tridiagonal the
multiplication.takes iess than 9(N+1)2 operations.

In the table below, we list the number of iterations to obtain

k . : -
"Y( )"2 < EPS for differen; Y and B with h = 1/40, EPS = 10 6, and H = 1,

Table 4. Number of iterations required for convergence for h = 1/40

and U(O)E 0.
| 100 1 0.1 0.01
un 13 22 28 40
™/4 8 10 10 10
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Each iteration takés*approximately .139 sec., which includes .073 sec.

for the fast sqlvéf, except for tﬁe first iteration, which réquires 0.183
sec. including preﬁ;bcessing. The program GMA (with parameter K=2) [2] was
uéed to:obtain tﬁéifast'sblution of Helmholtz's equation in our experiments.
thicé that the dependence on the value of Y in Tablé 4 is much strbnger
than it»is for Ehé EsbR—NeWtOn method. The smaller the. angle, the more
nonlinear the problem, and the more iterations reqﬁired begause M is leés
good. an approximatioh tbbj aﬁd hence to f. Here,.fhe Valuevof B also
influences the nﬁmbér of'iterafions required for convefgehce, more so in
the case Y =iﬂ/4;'fo; which W becomes very large near the corner (0,0).
The singular cgséiﬁ=0‘can_also be handled by this method when used with

an appropriate fééﬁ's&lver.

2.3, Comparisons. »

We summarizeftﬁe data from some of our experiments in the following
tables. In all céseé.the initial approximation U(O) E_O‘is'used and the
number of iterations given are those required to obtaiﬁ a'residual
Ie 91 < ps. |

2 : v

It appears, from the data in Tables 5 and 6, that the hybrid conjugate
gradient method pé;forms consistently better in terms of computer time
vfor the model préblgm than does the blbck overrelaxétion-Newtén method.

The conjugate gradient method has,the fﬁrther_advéntagé-of7not requiring

the estimation of an acceleration parameter such as ® (the dependence on

the value of the restart parameter m is not as significant), and it is



Table 5. Number of iterations (CPU seconds) for the BSOR-Newton iteration

Estimated w w - EPS=
best . for first after 20 -3 -4 -5 -6
B Y w 20 iterations iterations 10 10 _ 10 10
100 /3 1.58 1.6 1.6 21(1.13)  29(1.56) 37(1.99) 44(2.36)
100 w/4 1.59 1.5 1.55 25(1.34)  34(1.83) 43(2.31) 51(2.74)
1] 1 w3 1.84 1.5 C1.84 . [79(4.24) 98(5.26) . Li6(6.22) - >120(6.44)| .
L 1318 L 8 904,207 98(3.26) . - >120¢ )
1 m/4 1.84 1.5 1.84 77(4.13)  90(4.83) 107(5.74)  >120(6.44)
.01 7/3 1.85 1.5 1.8 116(6.22) >120(6.44)
.01 m/4 1.85 1.5 1.8 118(6.33) >120(6.44)
100 /3. 1.52 1.2 1.5 15(.21)  20(.28) 24.(.24) 27(.38)
100 m/4 . 1.52 1.2 1.5 115(.21) 22(.31) 24(.34) 27(.38)
1 w/3 1.71 1.5 1.7 46(.64) 56(.78) .66(.92) 76(1.06)
1 w4 1.71 1.5 1.7 46(.64)  55(.77) 65(.91) 75(1.05)
01 m/3 1.81 1.5 1.8 - [48(.67)  58(.81) 66(.92)  79(1.11)
.01 m/4  1.82 1.5 1.8 [49(.69) 58(.81)  67(.94) 79(1.11)

-9T-~




TABLE 6. Number of iterations (CPU seconds) for the conjugate gfadient iteration

EPS= o ‘
ho|° B v 1073 107 107 1078
100 m/3 4(.60) 5(.74) 6(.88) 8(1.16)
100 /4 6(.79) 8(1.16) 10(1. 44) 13(1.90)
o1 /3 5C.74) - 7(1.02) 8(1.16) 10(1.44)
1
20 | 1 /4 13(1.90) 15(2.18) 18(2.59) 22(3.19)
.01 /3 5(.74). 6(.88) 8(1.16) 10(1.44)
.01 m/4 15(2.18) 29(4.16) 34(4.91) 40(5.74)
100 /3 4(.14) 5(.17) 6(.21) 7(.24)
100 /4 5(.17) 6(.21) 7(.24) 9(.30)
| 1 /3 5(.17) 7(.24) 8(.27) 9(.30) |
1 . _
20 | 1 A 10(.34) 14(.48) 16(.54) 19(.64)
.01 /3 5(.17) 6(.21) 8(.27) 9(.30)
.01 /b 13(.44) 22(.74) 25(.84) 35(1.18)

;L'[_.

Fd f‘;,
i

43
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less sensitiﬁé to the initial approximatioﬁ, although it does require more
computer storagé than is. required for the BSOR-Newton method [8]. For
nonfectangular domains the conjugate gradient method would iose some of
its competitive advantage of speed since more computer time is required
by fast-direct methods in this case for the soiution of the Helmholtz
equation. See [8] for other poésible choices for M and’fbr comparisons
of the conjugate gradient method with the BSOR-Newton method for the
case B = H = 0 with bdundar& cdnditions for which the problém is not
singular. | |

In order to eStiﬁate the discretization error, thevnumerical sqution.
for B=0, v = ﬂ/4,.h = 1/20 was compared with the known:closed-form
solution. .We found thé relative error of the.computed éoiution in the
infinity norm to be less than about 1/2% everywhere beyond 3 grid
points from the corner, 18% right at the corner, and 1 to 4% in between.
The relative diffefence between the computed solutions on fhe grids for

h = 1/40 and h = 1/20 was about 2% in the infinity norm for this case.

3. The unbounded case

As pointed out.in Sec. i, there is a critical contact-angie Yo’
which is m/4 for our model problem, such that the sblutipn'is unbounded
at the corner of fhe cylinder cross section for all y < Yo' The
asymptotic form of thevsolution in a neighborhood of the cofner is given
by (3). If v < Yoo we use this asymptotic solution in conjunction with

discrete methods away from the corner to solve our problem.
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We invéstigaté;two methods that use different discrétization proce-
dures over the ppftién of the dpmainzayay frpm.the corner. In the'first
method, a neighbdthbod of the c@rner is deletea entirely from the domain
to be discretized. ‘in the second, the asymptotic solution is extended
into part of thié.domain. We.éonsider, as iﬁ tﬁe-previous section, only

_ the model problem of a square on which has been placed a uniform square

mesh.

3.1. Method A

Here we-aséume'ghat the asymptotic behavior (3) hqlas_from the
vertex of the_cornér:with the singularity up to one or sevefal grid
points away. We term thisvportion of .the domain the asymptotic domain
and the remaining portion the numerical domain (see figdrev3).

A natural way_té.obtain the numerical domain is td;cut'along a
level curve of'tﬁémaéymptotic solution. Thg analytical solution, in this
domain then bén'ﬁfoﬁide’an’upper bound on the solution u of (1),(2) [9].
Although the levél'ég?ves of the asymptotic solution are circular arcs,
the limitations of;aﬁr experimental computer program reqﬁire us to
approximate such an'érc by a straight line passing through mesh points
and making an angie §fv45° withéﬁhé edges of the square. .Thus, we solve
equations (1) and (2)inumericall§ in the domain shown in figure 4.

The boundary qbnditions of the previous section apply at all bound-
ary points, except thoée on ', where we use a normal-derivative matching
condition obtained.b§_differentiating (3). After solving ﬁhe resulting

problem in the numerical domain, we can obtain a value for v - u in the
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~ Numerical
domain Fig. 3

Division of the domain for Mbthod A.

I

Asymptotic
domain

Fig. 4

The numerical domain for the test
problem.

\I"
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asymptotic domain by matching at one (or more) points of T'. In this

way, we obtain ah'éﬁprokimation to the solution over the entire domain
Q. . oy
We use the same discrete equation(5) at a general interior point

of the numerical domain as in Sec. 2.1. On I', the discrete equation

at a general point is (see figure 5)

£o.= w:l‘ - (?U -U -U 1>_w:l— U ~U
I T4, FH\ 1,50 i4l,3 4,34 I,FH\0 i+ 4,7

Wt v v
. ifl,j' i+l,] i,j

A

==
CES

% + h’ <BU, 4+ 2 >= 0,
) 1,]

where

\2
W _ ’ _ » 2
1,341 " [1* -(Ui-,jﬂ Vi1, j+1) /e

A 2 2
+(U‘i,j+1 'Ui,j) /b ]l

. : ’ ) ’ 1/2
' 2 2
W_ ~_=[1+AU ~U )/h +<U -U , /h]
i+1, ] i+l i,j i+l,j  i+l,j3- '
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and./ 1290 d2 is -evaluated by Simpson's rule using the difectionél
r . : .

W on
i

derivative from (3) for the values of W_lavlan,

- -a; (xy) + a,(y-x)

13u| = - /2 | (6)
W on rv [2 (x2+y2) (1+a12+322)] 1/2 |
where —— == (cos 8 —[%2 - sin2 9]1/2)/ (K'B 02)7

: - . 2 9 -1/2 2
a, (sin @ cos 9.[K - sin 9'] -sin 9)/ (K Bp )

(6; K, B, p as defined in_(3)).
The discrete'eqqation for points one mesh interval away from I

in the interior of the numerical domain is the same as (5), except

that for (i, j) oh‘F, W _is given by W_ _ =
o isj i:j

. , - , ' 1/2
o 2,2 2,2
(1 + [Ui_,j -Ui,j_._l)_ /h +(Ui’j —Ui_l,.] /b’ )

We consider only.the BSOR-Newton method for sblving the discretized
equations in the numéricél domain. - General purpose programs for solvihg
the discrete Helmﬁoltzfequation are being developed and wére not
available fdr use with the conjugate gradient method during our study.
These programé require, in general, more computer time than ones for a
rectangulér domain;

The determination -of how far into the domain T shouid be placed

for optimal accuracy poses an essential difficulty for the method: If
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I' is too far into the domain, the boundary condition obtained from the
.asymptotic représentatidn on I' will be inaccunate;)if P_is too close to
the corner, the discretization in the numerical domain ﬁeaf I' may not be
"~ able to representvweil the steepness of the solution. :Conéidering these
two alternatives, it.appéars that iﬁ‘is better to put-F close to the
cornef,'because oﬁe?éan, in principle, always :efine tﬁé'mesh locally
~ or use higher-order or other methods to handle the steepness of the
solution, wﬁile erf;rs committed by pushing ' too far into the domain
cannot be compensated'for easily.

In our numerical'exﬁeriments, we choose I' to be sufficiently
close to the corﬁer'so that at p, the midpoint of T, W'lav/an >
0.999 = cos-12.5°._3We solve the resulting problem on the numerical
domain with a mesh éiée h éf'l/40 and 1/80, to give an indication .of the
'discretization errof for the particular choice of T. Wé.also solve
broblems for nearby Ehéices of T to determine the sensitivity to the
positioning of F.:

of gourée, the.hatching conditions (6) on T may not be accurate.
Although the diffefence between u and the asymptofic solution Vv is

bounded by a constant as the corner is approached, the difference between

e
L

their derivatives may be large. If I' is chosen to be an actual level
curve of v, close enough to the vertex so that |vv| is large and
w’lav/an is essentially 1 there, then |Vu| would also be large and

choosing w‘lau/an to be essentially 1 along I' should then be sufficiently
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aeeurate_to-be in;keeping with the discretization_errors in the interior.
However, along ﬂuasttaight—line approximation to the level curve required
by our test progtah, w‘lav/an can vary appreciably, andvattempting to
match‘toiw—lau/an_es ih (6) might lead to errors.'.Our goal is to
obtaih from our ehperimentai program not neeessarily solutions of the
'highest accuraey'hutbrather ah indication of the feaeibility‘of our use
of the asymptdtic éolution.(B) near the corner singularity in conjunction
with a qiscrete'method elsewhere. |

:!We give hexe'a‘summary of some of the;typical behavior found in
eef_numer%cal exgefiments. i

For the ease Y:#()° s ﬁ = l, and [ at the p031t10n7where

‘ W Bv/Bn[p—O .999 (1 €., I'is' on the 17th grld point of the first row 1n an
x81 x 81 mesh, or the 9th grld p01nt of the first row in a 41 x 41 mesh),
mohlhg r one grid p01nt in the 81 x 81 mesh produces less than .1%
relatlve dlfference 1n.the solutlon in the 1nter10r 907 of ‘the domain,
.between 1% end'lz:telative difference in a.band closer to T covering
about 7% of the doﬁein, and hetweeh 1% and 3.5% for the peihts in the
immediate nelghborhood of P The relative differehce is correspondingly
babout twice as much in the 41 x 41 case when I' is moved by one mesh
point The relative.difference in the solution resulting from ref1n1ng
the mesh from 1/40 to 1/80, keeplng r flxed is less than 0.2% over the
interior 507 of the.domaln, between 0.27% and 1% over 30% of the domain,

. between 1% and 5% over 10% of the domain, and between 5% and 15% on the

points in the immediate neighborhood of T.
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For Y = 30°, B = 1, and wélav/anlpé0.999, the relative differences
are about one-foufth'of those of the above experiments for'f = 0°.

Less sensitivity ié‘to be expected because the solution éurface is
generally not as é;éép in’this case. For similar reasops,,theicase for
Yy =0° B =10, Wflab/anlpi0.999, has about onlylhalf of the relative
differences foun& for the éase Yy =0°B - 1.

If we choosé_F‘éo that w’lav/3n|pé0.§999,then the relative differences
from refining the ﬁesh were found to be two to. three timés as large asb
they were for plaqing I' at a position for which W-lav/anlpé0.999.

B#sed on the above information, we choose I so tha; W-lav/3n|pé0.999g
for most of our ékpefiments. |

For the.ca$e of Y = 0°, B =1, the solution:height.in the numerical
* domain was.found.tq be Ulpé1.46 for the 81 x 81 grid. We compare
solution heighté obﬁained from placing I' on the 9th grid point on the
first row (in thié case, W_lbv/anlp#0.9999)and placing I on the 17th grid
point on the first_rOw (in this case, W_13V/3n|pé0.999) on-a 81 x 81
_-grid. Although rafher large relative differences exist for points close
to I', we observe'that;pver 75% of the domain less than a i%lchange occurs.
This indicates that the solution over é large portion of the domain is
rather insensitive'to.where I' is placed. As mentioned previously,
over the s#me large_ﬁortion, regining the mesh from 1/40 to 1/80 also
produces only minor changes. Thus, for tﬁat portion of the domain,

a medium size mesh (say, h = 1/40) seems sufficient to produce acceptably
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accurate results..“We observe also that for fixed I' the numerical solution
appears to be coﬁverging as h tends to zero through ﬁhé.different mesh
sizes. | |

For the unbounded case, thg_cdﬂvergence of the BSOR—Newton method
is even more sénsitive t6 changes of w than for the bbﬁnded case,
especially for'Y1= Oéf For U(o) = 0, one must begin the iteration with
w close t§ 1 to pngenf divergence, and then quickly (within 20 iteratioms,
say) inqréase @ tb?ard the eétimated optimal value in order to obtain
an acceptably rapid convergence rate. Overestimating w eésentially

: aIWays leads fo'divergence. For y = 0°, the observed optimal values

ofvw found experimentally are listed in Table 7.

Table 7. Observed optimal w for y = 0°.

 h 1 10 100
1/20 1.70 1.61 1.33
140 | 1.84" 1.78 1.50
1/80 1.92 1.88 not
' available

The optimal Values of w for y = 30° are about the samé‘aS'for vy = 0°.
One can see from Table 7 that botﬂ the grid size and value of B
influence the valﬁevof therbptimal w.

Table 8_summafizes our experimental résults-for a range 6f values

of v, B, and h.  The number of itefations



TABﬁE 8. Number of iterations (CPU seconds) for method A

1.87 after 100 iterations.

-

. " DEL =
* Initial after opt -3 ) 4 -5 -6

Yy| B{ h |T approx. starting 20 steps | (estimated) 10 10 10 10

0ol 1 % 4 1.5 1.69 1.70 31(.46) | 42(.63) | - 51(.76) 61(.91)

01 Z%T 8 1.79 1.84 1.84 ©37(2.04) 56(3.08)> 71(3.91) 85(4.68)

ol 1 5%5 16‘ 1.79 1.84%* 1.92 70(16.1) 112(25.76) | 170(39.10)

0 {10 42% 1 1.5 1.59 161 24035 | 33¢.49) | arceny | 48(.72)

0 {10 Z%T 1 1.55° 1.75 1.78 46(2.53) 64(3.53) 81(4.46) - 97(5.34)
'0 10 g%— 4 1.55 1.79”+ 1.89 - 90(20.70) | 141(32.43) | 178(40.94)

%- 1 %6 3 1;5 1.69 1.71 24(.36) 38(.57) 48(.71) 59(.88)
%- _1 %6 6 1.79 1.84 1.84 26(1.43) |50(2.75) 68(3.74) 84(4.62)
-% 10 %6- 1 1.5 1.59 1.61 25(.37) | 34(.51) 42(.63) 50(.75)
; %- 10 f&; 1 1.55 1.75 1.78 - 48(2.64) 66(3.64) 84(4.63) 102(5.62)

*The number of grid intervals from the corner at which F.meets an edge of Q.

*

*w =1.9 afte? 100 iterations. ,

+0 - identically zero; S-portion of a sphere (i.e. exact solution for B=0, y=m/4).
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given in Table é:afe those required for "U(k)—U(k—l)”z/ “U(k)"2A< DEL.
A major diffiéulty for this method is the repre;entation of the
steep gradients éf the solution in the,numgrical domain near I'. In
the next sectioﬁ;'we investigate the possibility of handling this
difficulty by oVérlapping a portion of the numeriéal Wifh the

asymptotic domain.

3.2. Method B

‘ _Here we inVestigate the possibility of improving the previous
method by overlapping the asymptotic and numerical soiﬁtions over part
of the domain. WerdiviQe the éntire doﬁain into the three regions
shown in Figure,6. Région I is a small portion of the domain near the
corner in which We‘assume that the asympto£ic behavior (3) holds.
Region III; inci@@ing_poundary 2 in Figure 6, is the ﬁurely numerical
domain,‘in.which.ﬁe assume that the solution u is ﬁot too steep and can
be computed aCCuraﬁély withvthe discretizétion used préviously. The
regiph-betweentig Reéion 1I, where we couple.the asymptdtic and numerical
solutiohs uﬁder_?hé assumptioﬁ that u and v differ there by a lower-
order)quantity thaﬁ.is not steep and thus can be computed more accurately
with a'discretiéétién than can»either u or yv. The staircase—shaped
domain boundarie§ ére used rather than the 45° lines of Method A to
approximate level curves Beca#se the limitations of oﬁr study permitted
us to use only thosé boundarieé that were simplest to include in the
computer prograﬁ,  - |

Let u be the solution to (1) and (2), then in Region I and II we
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writey =V + 8; whére Vv is given by the asymptotic expression (3) and
|€| is boundedvby a constant. Over Region II, we consider e€(x,y) =
u(x,y)- v(x,y).éﬁd we derive discrete equations for e(x,y) involving
the known quantity Vv, keeping oniy fhe first-order terms in €/v and in
the derivatives of é-divided by those of V. Over Region:I, we take

€ = €o, as in Methpd A, where Eo and its gerivatives gre negligible
compared with 9  énd its derivatives.

In Région 1T, theﬁleft hand side of (4) becomes

Q,’ (v +€)
- = . as
[1 + '(\)’x-i_- ex)‘z + (\)y+ ey) 2]1/2

3D ) -
' _ . , 2 2
(v +¢€) : ' © =V E =V_E e~ + €
=/. o [1-+—lli~JLZ ol 22— ]dk
‘2 211/2 ' 2 2\ 2+ 2 :
aD[1+\)>< + \)y ] <l+\)x+\)y> .\)x \)y / 7

When we perform'thé integration along a direction parallel'to y-axis,

then the normal direction in (7) is parallel to the x-éxis, and the

¢ right-hand side of (7) becomes (see figure 7)
v de ' 142 V.V
X o +fe, Y ag - fe, dg
2 21 1/2° 2 213/2 : 2 273/2
C [1+vx +vy ] C [1+\)>< + vy ] c 1+-\)>< +vy ]

(7a)

+ higher order terms.
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If the normal difection‘g is parallel to the y-axis, as along C', then

the right-hand‘side of (6) becomes

v » 2 Ly
v df o 1+v V_V
/ y _ +/ey —. 73 dz-/ XY d2
2. 211/2. 4 2. 2 2 2 ]3/2
[ ] e [ y ] [1+\)x ‘|'\)y

c' | v, +vy l+\)x +v C!
(7b)
+ higher order terms.

To form discrete equations for ei j? we evaluate (7a) along C, for
. b
‘ example, by using Simpson's rule with the five indicated node points for

compﬁting:the three integrals involving v,‘with 8* replaced by

Cia1,5 7 54,3 3-1

£, ..)/h‘ and ey' replaced by (Si, - Ei,j + €i+1,j+i - €i+1,j)/2h
for the upper half of C and by (€5 5~ & 41 * ei+1,j';'ei+l,j_l)/2h
for the lower half‘of C. If we then ignore terms that contain powers
greatér than oneiof-e/v and Qf the ratio of their derivatives, we obtain
a‘system of linear gduations for ei,j' The associated matrix is symmetric
and banded.
'3;2.1. The iteration

.Iﬁ éolving the.diédrete‘equations in Region II, tﬁe bdundary
condition on bounaary 1 is obtained from the directional dérivative of the
asymptotic formula (3); and the boundary coﬁdi%ion at each iteration for
boundary 2 is obfained'by'keeping the value of u fixed at its Region -

III value. We use the IMSL subroutine LEQT1B, designed to solve banded

systems, to obtain the solution. Note that for the different boundary
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coqditions on boundary 2. arising from‘each iteration, only the right
hand side of thg‘system-to be solved in Region II needsvto be changed.
Therefore, it is nécessaryvto perform the associated triangular
decomposition only for the first iteration. .

The method of’éélution for Region III is the BSOR{Néwton method
of the previous seétions. The boundary‘condition on béundary 2 is that
of keeping the Qalﬁé of U(i.e. €) fixed at its valug.§b£51ned previoﬁsly.
in Region II. Aftéfwards, we adjust the value of ﬁ in the‘same~§ay as
before, using the_bpundafy<of Region II1I as the contpuf,for (3).

| Each iteration,thus consists of solving for € in Region II

followed by solViﬁg for U iﬁ Region IIT and then édjusfing_H.v
3.2.2. ‘Experimental Results . |

We have expéri%gnted with this method for y = 0°, B =1 and B = 10
on a 41 x 41 grid;,'We took boundary 1 to intersect the e&ge of the
square one grid point from the corner,.and boundary Z‘to intersect the
edge at the 10th gfid point for B = 1 and the 4th grid point for B = 10.
We found the1SOIUtions generally insensitive to these'bouﬁdaries being
moved by one orstﬁb_meéh intervals. The time required for convergence
was about three times greater than for Method A. |

of importancgjis the observation, that in our experiments the
value of |Ve| obtained was not necessarily small compared with that of
[Vv|. In fact, |Ve| was almost half of [Vv| for most points in Region
11, including tﬁe points close to the vertex. Thus the assﬁmption, on

which the numerical scheme in Region II is based, that_lVel / lel is

small does not hold even though le] / Ivl + 0 as the vertex is approached.
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- 3.3. Conclusion -

Since the‘£ésults from Method B indicate that the assumption on
which it is based does not generally hold, we conclude that Method B is
not a sﬁitable feéhnique for improving Method A for fhis problem. The
experimental resﬁifs for Method A for the 21 x 21, 41 x 41, 81 x 81 grids,
for a fixed poéitibn of T indicate convergence of the numérical solution
as'h(the mesh size) + 0. 1In addition, the values of U on the bulk of
the domain change.véry little as the mesh is refined,findicating that
reasonable accﬁrécy.can be obtained away froﬁ the corﬁer even for the
coarser grids.

| From the e%périmental data, it appears that taking T to be the
line on which thé‘yalue of vn/W at Fhe midpoint is about 0.999 is
reasonably satiéfactory. Moving T one or two mesh interals produces
less than 0.5% reiative difference in the numeriéal solution over 90%
of the grid pointsf; As for the points close to T, oné éhould consider
using a finer ﬁésh or highef—order discretization thaniiﬁ the rest of
the domain and féking T tolbe a level curve of the asymptotic solution
with an irregular mesh nearby. These matters are considered further
in a related study [1].

In Figureé 9 to 18, we present graphical camputer output depicting

perspective views with contours for some of the numerical solutions
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that were obtainéd with the methods of Section 2 for the bounded case
and with Methad A fqr the unbounded case. The perspective views
displayed are those indicated in figure 8. The height contours are
drawn at inﬁervals'qf 0.1, measured from tﬁe center (1,1) Qhere the
height is taken to be zero. \

Solution sﬁrféces for B=1 are depicted in figure 9 for Y=60;
(a bounded case).andbin figﬁres 10 to 13 for y=30° and Y=O§ (unbounded
cases). Those for B=10 are depicted in figure 14 for y=60° and |

figures 15 to 18 for y=30° and y=0°. All perspective views are at -

an inclination angle of 20° and a viewpoint distance.of'100 uhits,
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Test problem domain showing perspective
viewing directions.
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Figure 9

Perspeétive view for B = lofrom
direction (a), y = 60",
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Figure 10. Perspective view for B = 1 from direction (a), Yy = 30°.
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Figure 11. Perspective view for B = 1 from direction (b),_Y = 30°.
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Fig. 12

Perspective view for B = 1 from direction (a), vy =0°.
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. Fig. 13

Perspective view for B = 1 from direction (b), Y. =0
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Figure 14

Perspective view for B = 10 from
direction (a), y = 60°.
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Figure 15
Perspective view for B = 10 from
direction (a), vy = 30.
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Fig. 16

Perspective view for B = 10 from direction (b), vy = 30°.
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Fig. 17

P _
erspective viev for B = 10 from direction (a). Yy = 0°
, .
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Figure 18

Perspective view for B = 10 from
‘ direction (b), vy = 0°
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