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ABSTRACT OF THE DISSERTATION

Diboraanthracene-Based Platforms for the Redox Activation of Small Molecules

by

Jordan Wayne Taylor

Doctor of Philosophy, Graduate Program in Chemistry
University of California, Riverside, June 2019
Dr. Hill Harman, Chairperson

The efficient multielectron reduction of small molecules (e.g. CO,, N») is a key
step in the renewable synthesis of both fuels and fertilizers. Due to their intrinsic
redox activity and reactivity, transition metals have been targetted as catalysts for
these processes. Recently, p-block systems have been developed that affect the
activation of small molecules however the limited redox activity of these systems
limits their use as catalysts. To address this challenge, we have targeted the
9,10-dihydro-9,10-diboraanthracene (DBA) framework, due to its synthetic
modularity and reversible two-electron redox activity. Conventional derivatives of
the DBA scaffold require very negative potentials to access their two-electron
reduced states (ca. -2.4 V vs Fc/Fc"), limiting their prospects as efficient
electrocatalysts. We have targeted two approaches to modulate the redox

potentials and facilitate small molecule activation chemistry at DBA derivatives:
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1) N-heterocyclic carbene (NHC) stabilization; 2) transition metal coordination via
tethered phosphine ligands.

The use of NHCs enables the reduction of DBA at potentials over a volt
positive of DBA derivatives with aryl substitution (—1.07 and —1.40 V vs Fc/Fc").
The reduced species is a rare example of a 1,4-diboron analogue of a parent
acene and is capable of binding CO,, ethylene, and O, via apparent [4+2]
cycloaddition reactions across the two boron atoms. This platform captures key
features of transition metal complexes despite being comprised exclusively of
light elements. Complimentary to the NHC system, we developed a novel
diphosphine tethered diboraanthracene ligand (B.P2) and explored the redox
chemistry of its transition metal complexes. In the course of these studies, we
synthesized the first molecular complex of anionic gold (auride). The auride-B,P-
complex was accessed at modest potentials for a DBA-containing molecule (—
2.05 V vs. Fc/Fc') and was found capable of activating a range of small
molecules including CO,, H,, H>O, formaldehyde, benzaldehyde, and acetone.
Furthermore, the copper-, silver-, iron-, cobalt- and nickel-B,P, complexes were
synthesized, revealing multiple coordination modes and varying electron-
accepting properties of the B,P» ligand. Collectively, these studies establish the

feasibility of redox small molecule activation at conjugated boranes.
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Chapter 1) Introduction
1.1) The Beginnings of 1,4-disposed Diboron Rings

Of the multitude types of compounds boron can form, its incorporation into
ring systems has captured the interest of the chemistry community for decades.
The fundamental interest for incorporating boron into rings systems relies on
boron having a [He]2s?2p' electronic configuration that results in boron
traditionally forming three covalent bonds while possessing an unoccupied Tt-
orbital. When replacing carbon with boron in conjugated ring systems, the ring
becomes electron deficient and the unoccupied t-orbital on boron effectively
lowers the energy of the HOMO-LUMO gap of the resulting boron-doped 1t

conjugated cyclic molecule. This HOMO-LUMO modulation allows for synthetic

Herberich
_ _ Br—
@ OBBrZ = N
_ i warming C|0
50 g "I &
4 N 50 C\v C\B/Br b,
[Co(Cp),I[Br] “ph
Ashe Li*
3 O Q=[O
t-BulLi |
Sn BroSn(n-C4Hy) B/
(n-C4He) Nn-CiHg) - o)z L

Figure 1.1. Synthesis of 1-phenylboratabenzene in situ (top) and directly (bottom)



control over the redox and optoelectronic properties of the resulting heterocycle,
and it is this fundamental property that chemists have been exploiting for
applications spanning catalysis, optoelectronics, semiconductors and more.

The simplest boron containing heterocycle, where a single carbon in benzene is
replaced by a boron atom, was first reported by Herberich' in 1970 who used the
electron rich Co(Cp) fragment to stabilize the in situ generated 1-
phenylborabenzene anion that was isolated as the parent anion by Ashe? a year
later, Figure 1.1. Around this time, incorporation of a second boron atom into a
six-membered ring system to generate 1,4-disposed diboron heterocycles was
also being investigated. The 9,10-dihydro-9,10-diboraanthracene (9,10-dihydro-
DBA\) class of molecules was first synthesized in 1965 by Clement® through the
reaction of the highly toxic diphenylenedimercury with BCls or BBro(NMe») to
afford 9,10-dichloro-DBA and 9,10-dimethylamino-DBA, respectively, Scheme

1.1.

Scheme 1.1. First synthesis of 9,10-dichloro-DBA

corkNeve

This finding proved serendipitous as benzannulated 1,4-diboron rings are
more synthetically accessible and chemically robust than their non-

benzannulated, 1,4-dibora-2,5-cyclohexadiene analogs. Efforts to produce 1,4-



diboraabenzenes was originally carried out by Timms*® in 1968 who reacted
elemental boron with BF3 at 2000 °C to produce boron monofluoride prior to the
addition of acetylene, Scheme 1.2. Through painstaking hydrolysis experiments

and characterization of the byproducts by mass spectrometry the heterocyclic

Scheme 1.2. Synthesis 1,4-difluoro-1,4-dibora-2,5-cyclohexadiene

]
B
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|

nature of the predominant product, 1,4-dibora-2,5-cyclohexadiene, was correctly

inferred with experiments in 1975° confirming its assignment. The extreme
conditions utilized in these experiments were not adopted by the general
academic community however and further studies by Herberich and Hessner’ in
1978 on the formation of 1,4-dibora-2,5-cyclohexadienes initially produced these
rings via transmetallation with 1,1,4,4-tetramethyl-1,4-distanna-2,5-
cyclohexadiene and alkyldihaloboranes at low temperature, Scheme 1.3.

Scheme 1.3. Synthesis of 1,4-dibora-2,5-cyclohexadienes using alkyldihaloboranes

|
B
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However, these reaction mixtures displayed a propensity for intermolecular
rearrangements and an updated method employing ferrocenyldibromoborane
produced monomeric, 1,4-bis(ferrocenyl)-1,4-dibora-2,5-cyclohexadiene that
could be converted to 1,4-methoxy-1,4-dibora-2,5-cyclohexadiene with MeOH,
Scheme 1.4. Overall, the reactivity and arduous synthesis of 1,4-dibora-2,5-
cyclohexadienes resulted in 9,10-dihydro-DBA molecules being the most
investigated 1,4-disposed diboron ring system to date. Additionally, recent
breakthroughs in the synthesis of 9,10-dihydro-DBA derivatives by Wagner® and
Luliiski and Durka® have made access to large amounts of these materials
possible for the first time.

Ultimately, while the synthesis of many of the fundamental boron-doped
ring structures have been known for 50+ years, current societal problems
including energy production, energy storage and the need for improved
conducting and optic materials for devices has launched a renaissance in the
chemistry of boron-doped ring systems.

Scheme 1.4. Synthesis of 1,4-dibora-2,5-cyclohexadienes using ferrocenylboranes

N L 5
n
| | FCBBI'Q _ ‘ | MeOH | |
- Mezan|2 B
Sn B B
/ \ Fc = ferrocenyl ||:C Cl)Me



1.2) Synthesis of Diboraanthracene Molecules
The 9,10-dihydro-DBA molecule is formally anti-aromatic with 12 pi-

electrons. The naming formalism of DBA molecules is based on carbonaceous

CEBJ@ 1S9

9,1 0-dihydro-9,1 0-diboraanthracene ~ 9,10-diboraathracene
(boranthrene)

Figure 1.2. Nomenclature and counting formalisms for DBA molecules

anthracene and is outlined in Figure 1.2. By addition of two electrons to these
systems, formally Hlckel aromatic 14 pi-electron species are obtained. These
systems are rare examples of main-group only molecules that undergo multiple
reversible redox events at reasonably mild potentials (<3 V). DBA-based
molecules have garnered interest as components in organic optoelectronics and
have thus been the subject of extensive studies on their synthesis and physical
properties, including their redox chemistry. Following the original synthesis of
9,10-dihydro-DBA by Clement,® various synthetic approaches have appeared
over the years with two main procedures being utilized currently.

The first method, and perhaps best for large-scale production, is the
cyclocondensation of 1,2-bistrimethylsilyl benzene with BX3 in n-alkane solvents
at 120 °C to afford 9,10-dihalo-DBAs.? This method is general for symmetric 1,2-

bis(trimethylsilyl)benzene derivatives however late-stage modification of the



phenylene units (C1-C8) has not been realized and functionalized 1,2-
bis(trimethylsilyl)lbenzenes are required. The haloborane unit at each boron site
in 9,10-dihalo-DBA is easily interchanged by nucleophilic substitution with
organolithium or Grignard reagents. Alternatively, addition of HSiEt; exchanges
Br for H, producing the parent 9,10-dihydro-DBA that can then perform
hydroboration chemistry to enable further organic substitution at the 9,10-
positions.

The other method to produce 9,10-DBAs is the double-nucelophilic
substitution method.'® Here, lithium-halogen exchange with BuLi at —78 °C
produces an ortho-lithiated phenylboronic acid that upon warming to room

temperature dimerizes in a head-to-tail arrangement thereby forming two new B-

Cyclocondensation

SiMe

X : BBy _ /

|
X1 5 — Y =Br

P T120°C HS|Et3

SiMeS —»Y=H
X=F, Cl,Br

Double-nucleophilic substitution

1. tBuli —  Y=0H
2. H,OH* BBr,
—> Y =Br
B(OMe),

X=F Cl, Br

Figure 1.3. Methods to synthesis 9,10-DBA molecules
C bonds. Acidic, aqueous workup produces 9,10-dihydroxy-DBA derivatives that

can undergo reaction with BX; to produce 9,10-dihalo-DBAs. This method



alleviates the need for symmetric 1,2-bis(trimethylsilyl)benzenes and allows
additional organic functionalities to be introduced at the C1-C8 positions. Both

synthetic methods are outlined in in Figure 1.3.

1.3) Properties of Diboraanthracene Molecules

Synthetic control over the optoelectronic properties and redox chemistry of
DBA molecules has been achieved by either direct modification of the atoms
bound to boron or through extension, by modification of the r-conjugated network
the boron atoms reside in. Both of these methods seek to either enhance the
Lewis acidity of the C4B> core (i.e. ring halogenation) or extend the conjugated m-
system the C4B: heterocycle resides in (i.e. annulation, acene substitution).
Efforts in both of these veins have mostly come from Wagner and coworkers
however a critical discovery by Kawashima'' that enabled the proliferation of
DBA chemistry was that by attaching phenyl substituents to boron that possess
o-steric bulk, the r-orbitals of the C4B, core become effectively shielded from
attack by water and oxygen, thus yielding these derivatives benchtop stable.
Without o-flanking substituents on the phenyl substituent attached to boron, DBA
derivatives are exceedingly air and moisture sensitive, rapidly decomposing

when removed from an inert atmosphere.



The optoelectronic properties of DBA molecules were originally presented

in 2009 by Wagner through the formation of polymeric DBA-containing

g 8 | |
=0 e

n L _in

Figure 1.4. Select Examples of Polymeric DBA molecules
materials.”" Hydroboration of 1,4-diethynylbenzenes with 9,10-dihydro-DBA

produced polymeric materials (Figure 1.4, left) that displayed solid-state
luminescence with a concomitant bathochromic shift of emission with increasing
solvent polarity, suggesting a significant polarization of the excited state.
Additionally, methods to produce symmetric'? and asymmetric'® polymeric DBAs
have been presented that allow for fine tuning of the material’s luminescent
properties, with more conjugated and strained materials displaying enhanced
absorbance and fluorescence at longer wavelengths. DBA containing oligomers
with thiophene linkers (Figure 1.4, right) have also been prepared that display the
maximum effective conjugation length (the lower limit of the HOMO-LUMO band
gap) and exhibit dark orange fluorescence in both solution and as thin films.'
The redox chemistry of DBA derivatives often displays two reversible
redox events assigned to the radical anion and dianions, respectively. While

initial studies of DBA molecules featured 9,10-dimethyl-DBA,'® the 9,10-Mes-



DBA molecule has served as a proxy for the “free” DBA core amongst the DBA
research community given its enhanced air-stability. 9,10-Mes»-DBA features two
reversible redox events at E1» =—1.82 and —2.78 V (vs. Fc/Fc*, THF, 100 mV/s,
[nBusN][CIO4)) in its cyclic voltammogram,'" with each member of the redox
series being isolated by Wagner.'® Since report of 9,10-dimethyl- and 9,10-Mes,-
DBA, derivatives possessing extended r-conjugated substituents including
napthyl and anthracenyl groups have been synthesized.'”"'® The incorporation of
n-conjugated substituents (Figure 1.5, left) has a modest effect on the redox
chemistry of the DBA molecule however, as the orthogonal binding nature of the
aryl substituent to the B atom limits the effective r-overlap with the DBA
framework.

Investigation into direct changes to the DBA heterocycle framework have
also been investigated by the incorporation of halogens, heterocycles and
expanding the anthracene framework in efforts to further delocalize the electron

density of the DBA core. Towards this end, chloride, bromide, fluoride, thiophene,
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Figure 1.5. Established methods to manipulate DBA redox



aniline and ferrocenyl substituted DBAs have been prepared (Figure 1.5, middle),
each with reported redox chemistry.'® Halide incorporation into the DBA
heterocycle shifts the 1% reduction potential anodically, however irreversibility of
the 2" redox process is often observed, likely representing a competing
reductive coupling reaction. The largest effect on DBA redox chemistry using this
technique was octafluorination of the C4B; flanking phenylene groups, resulting in
~ 600 m/V positive shift of the first reduction event. Incorporation of thiophenes
has a modest effect on DBA redox events as sequential thiophene addition
results in an anodic shift of ~5-10 mV per thiophene unit. Additionally, ferrocenyl
substituted DBA molecules feature an additional redox event representing the
Fc/Fc* couple however the DBA redox events remain largely unaffected.

Finally, annulation (Figure 1.5, right) is a method for tuning the redox
chemistry of DBA derivatives. The first annulated derivative of DBA was prepared
by Ashe® as the 6,13-dihydro-6,13-diboraapentacene with later results from
Yamaguchi?®' assembling an extended boron-doped graphene flake through
intramolecular dehydrogenative coupling of a 6,13-dianthryl-6,13-dihydro-6,13-
diborapentacene. Most recently, Wagner presented an improved synthesis for
the pentacene DBA derivative along with napthyl and biphenylene annulated
molecules.?? Electrochemistry was performed on each member of the annulated
series and, while two-reversible redox events were observed for each molecule,

the biphenylene DBA derivative featured the most positive redox potentials. A
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priori, this result was counterintuitive as the most r-conjugated DBA molecule did
not possess the most energetically accessible LUMO. The effective Lewis acidity
of each member of the acene system was also probed by Lewis base titration
experiments. Here it was found that the biphenylene DBA molecule possesses a
greater affinity to complex a host of Lewis bases, including MeCN, DMF and F~
and collectively these findings suggest the Lewis acidity of the boron heterocycle
is perhaps a more significant measure for its redox chemistry than extensive -

conjugation.®
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Chapter 2) NHC-Stabilized Boranthrene as a Metal-Free
Platform for the Activation of Small Molecules

2.1) Introduction

The storage of renewable electricity in the form of chemical fuels is a
promising strategy for scalable carbon-neutral energy production.' This approach
requires catalysts capable of efficiently coupling multiple electron transfers to the
formation and cleavage of chemical bonds in energy conversion reactions.’
Owing to their intrinsic re-dox activity, flexible coordination sphere, and ability to
activate small molecules of energy consequence, transition metals have long

been targeted in this role (Figure 2.1, top).” More recently, approaches to multi-

. _ X
L, M2+ 2e. L, MO X=Y L,.,M\lY
B 12+
. XY
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Figure 2.1. Small-molecule activation with transition metals (top) and ligand supported
boranthrene (bottom)
electron small-molecule activation that forego transition metals have emerged,*

including frustrated Lewis pairs (FLPs),” unsaturated main-group centers such as
carbenes® and related species,’” and weak element-element multiple bonds.® As

they lack the empty d-orbitals of the transition metals, one challenge for these
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main group systems is their limited redox activity. Redox-active ligands provide
one way of addressing this issue on main-group metals.’

Inspired by reports that materials based on graphitic (sp?) carbon, often
doped with other light atoms, can serve as electrocatalysts for energy conversion
reactions,'’ we have been exploring molecular platforms based on carbon and
other 2p elements that attain redox activity via extended conjugation. We were
drawn to the 9,10-diboraanthracene skeleton due to its synthetic tractability'' and
precedent for reversible two-electron redox chemistry.'? Furthermore, boron-
containing heteroarenes have been shown to undergo reactions with small
molecules of interest such as O,, CO,, H,, and organic substrates."

Unfortunately, very negative potentials are required to access the two-
electron reduced states of 9,10-dihydrocarbyl-DBA scaffolds (ca. —2.4 V vs.
Fc/Fc"), limiting their prospects as efficient electrocatalysts. Given the
widespread success of N-heterocyclic carbenes (NHCs) in stabilizing reactive
main-group species'* (including those containing boron"), we reasoned that
neutral boranthrene'® (BA; 9,10-diboraanthracene, C1,HgB.) supported by NHCs
might be accessed at relatively positive potentials and react readily with small
molecules—key criteria for the development of potential electrocatalysts (Figure
2.1, bottom). Herein, we report the synthesis of NHC-stabilized boranthrene, its
one- and two-electron oxidized congeners, as well as its reactivity with CO,,

C2oHy4, and O.. These results demonstrate that molecular compounds based on
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aromatic hydrocarbons can exhibit many of the desirable features of transition
metal complexes, including reversible ligand binding, multielectron redox
chemistry at mild potentials, and the ability to activate small molecules of energy

consequence.

2.2) Results and Discussion

The synthesis of NHC-stabilized BA is shown in Scheme 2.1. Bis-NHC
adduct IPr2(BA)Br. (1) was accessed by the addition of two equivalents of 1,3-
bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) to 9,10-Br>-DBA. Dissolution of
1 in acetonitrile induces bromide dissociation allowing the isolation of the

Scheme 2.1. Synthesis of NHC-Stabilized Boranthrene
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acetonitrile-ligated diborenium dication [IPrg(BA)(CHSCN)Q]2+ with outer-sphere

bromide counteranions (2). The solid-state structures of 1 and 2 were

determined by single crystal X-ray diffraction (XRD, Figures 2.2a and 2.2b).
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Although both 1 and 2 have similar connectivities, they exhibit significant
structural differences. Crystallized from THF, 1 retains its B-Br linkages and
features approximate Cs symmetry. The puckered C4B; ring exhibits a pseudo-
boat configuration with trans-disposed bromines and nearly orthogonal IPr
ligands. Low-temperature 'H and "*C NMR spectra (-50 °C, THF-dj) of 1 are
consistent with the preservation of this structure in solution. Although 2
possesses a similar trans orientation of the boron-bound substituents, its
diboraanthracene core is nearly planar, with approximate overall Cz, symmetry.
Efforts to isolate an unligated form of [2]** using noncoordinating counterions
and/or solvents have been unsuccessful, presumably due to the extreme Lewis
acidity of the targeted species. Compound 2 is itself very hydrolytically sensitive
and must be handled under rigorously anhydrous conditions.

Magnesium reduction of 1 in diethyl ether affords the dark green, NHC-

stabilized boranthrene IPry(BA) (3). This reduction is accompanied by a dramatic

@-—g
Figure 2.2. Thermal ellipsoid plots (30% probability) of (a) IPro(BA)Br, (1) and (b)

[IPra(BA)(CH3CN)JI[Brl» (2) (bromide counterions not shown)

17



Scheme 2.2. Synthesis of [IPry(BA)][Br] (4)
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downfield shift in the ''B NMR resonance of 3 to 20.1 ppm, compared to —3.6

ppm in 1, consistent with equivalent, three-coordinate boron centers. The solid-
state structure of 3 confirms this geometry and reveals an approximately planar
DBA core (Figures 2.3a). Although the 'H NMR spectrum of 2 in C¢Ds is
broadened due to fluxionality at room temperature, both the low (=50 °C) and
high (80 °C) temperature '"H NMR spectra in toluene-ds are consistent with Dz,
symmetry in solution. After Braunschweig’s CAAC-stabilized 1,4-diborabenzene,

3 is only the second example of a neutral 1,4-diboron acene homologue.

a) b)

Figure 2.3. Thermal ellipsoid plots (30% probability) of (a) IPro(BA) (3) and (b)
[IPr2(BA)][Br] (4)
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To complete the three-membered redox series, we targeted the radical
cation [IPro(BA)]™". Comproportionation of 1 and 3 provides ready access to this
compound as the bromide salt [IPro(BA)][Br] (4) (Scheme 2.2). In the solid state
(Figure 2.3b), 4 features a planar DBA core with three-coordinate boron centers
very similar to 3 and an outer sphere bromide counteranion. Electron
paramagnetic resonance (EPR) studies are consistent with a symmetric, ionized
structure for 4 in solution. At room temperature in a 1:1 mixture of

CHxClx/toluene, the X-band EPR spectrum of 4 shows a broad singlet centered at

exp

sim

IIIIIIIIIIIIIIII
325 330 335 340

B (mT)

Figure 2.4. Left: Spin density isosurface (isovalue = 0.003) calculated for [IPr,(BA)]™ by
DFT at the MO6L//TZV(2d) (H)/TZV(2d) (B, C, and N) Right: Experimental and simulated
X-band EPR spectra of 4 collected in a 1:1 toluene/CH.CI; glass at 107 K. Simulation
parameters are g = [2.0034, 2.0015, 2.0002]; A(''B, 80.1%) = [3, 32, 0] MHz; A(*°B,
19.9%) =11, 11, 01 MHz (for two B nuclei).
g = 2.00 with no resolved hyperfine interactions (Figure 2.5.36). When the same

solution is frozen, a seven-line hyperfine structure is resolved that is well-

simulated by strongly axial interactions with two equivalent boron nuclei such that
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A("'B) = [3, 32, 0] MHz (Figure 2.4, right). The highly anisotropic boron hyperfine
interactions suggest a SOMO with predominant boron p-character, and the spin
density map computed via density functional theory (DFT) for 4 (Figure 2.4, left)
supports this description. Isolable cationic boron-centered radicals are rare, with
carbene-supported diborene'” and borylene radical cations being two noteworthy
examples.

Cyclic voltammetry performed on 2 (0.1 M ["BusN][Br] in CH3CN), revealed
an initial broad reduction with E;» = —1.07 V corresponding to the reduction of
[2]** to [4]" followed by a fully reversible redox event at E;,» = —1.40 V assigned to
the [4]"/3 redox couple (Figure 2.5). The oxidative event at E;» = —0.76 V
corresponds to the oxidation of [4]*. The electrochemical irreversibility of the first
reduction process is likely a result of the dissociation of the two coordinated

acetonitrile ligands that occurs upon one-electron reduction of [2]** (vide supra).

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
0 -0.2 -04 -06 -08 -1 -12 14 -1.6

E (V vs. Fc/Fc™)

Figure 2.5. Cyclic voltammogram of 1 in CHzCN with 0.1 M ["Bu,sN][Br] at a scan rate of
100 mV/s.
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These redox potentials are remarkably positive for a DBA-derived molecule. For
example, under similar conditions, the one- and two-electron reductions of 9,10-
Mes,-DBA occur at —1.62 and —2.48 V, respectively.'® This anodic shift (ca. 1 V)
highlights the profound effect of NHC coordination in stabilizing the reduced
forms of [IPr2(BA)] (3 and 4).

Having characterized the redox chemistry of the [IPro(BA)]” system, we
explored its ability to activate small molecules in the reduced state (3). Exposure
of a benzene solution of 3 to an atmosphere of dry air results in the rapid

formation of IPra(BA)(O2) (5) via the formal cycloaddition of O, across the central

Figure 2.6. Reaction of IPro(BA) with O,, CO,, and C,H,4. Thermal ellipsoid plots (30%
probability) are shown clockwise from the respective line drawing with grey, red, pink,
and blue ellipsoids corresponding to carbon, oxygen, boron, and nitrogen, respectively.
Isopropyl groups, molecules of solvation, and most hydrogens have been omitted for
clarity.
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ring of the boranthrene core (Figure 2.6). The ''B NMR spectrum of 5 features a
single resonance at 4.9 ppm, shifted over 15 ppm upfield of that for 3. Single-
crystal XRD confirmed the structure of 5 as possessing an endoperoxide core
(doo = 1.4733(14) A) similar to the NHC-stabilized boraanthracene endoperoxide
reported by Piers. Analogous reactivity is observed for both CO, and ethylene
(Figure 2.6), although these reactions are significantly slower. The CO, adduct
IPro(BA)(CO,) (6) forms over the course of hours at 60 °C and features ''B NMR
resonances at 0.95 and —8.17 corresponding to the O- and C-bound sites,
respectively. The XRD structure of 6 reveals a long C—O bond (dco = 1.342(2) A)
spanning the two B atoms with a shorter, terminal C=0 bond of 1.229(2) A In
contrast to 5, the IPr coordinated to the C-bound B center is approximately
orthogonal to the CO, moiety, presumably to accommodate the larger three-atom
substrate. The isotopically enriched compound IPrz(BA)('*CO,) (6-'°C) was

synthesized from *CO, and confirmed the '*C chemical shift of the bound CO»
unit at 198.4 ppm in CgDs (Figure 2.5.18). Formation of the ethylene adduct
IPra(BA)(C2H4) (7) is complete after 20 hours at 70 °C under 1 atm of ethylene.
The boron-bound CzH, unit of 7 exhibits an upfield 'H singlet at —0.81 ppm which
was correlated via ['H-"2C] HSQC experiment to a '*C resonance at 17.6 ppm
(Figure 2.5.27). Degassed solutions of 5, 6, and 7 proved stable to extended
heating in contrast to the reversible binding of both CO, and ethylene to related

diazaborinine derivatives reported by Kinjo.

22



The rapid rate of formation of 5 compared to 6 and 7 warrants some
comment. As O, is smaller than both CO, and ethylene, a steric component may
contribute to the more rapid reactivity of 3 with O,. However, O is reduced to Oz~
in acetonitrile at £, = —1.29 V vs. Fc/Fc*? and is thus susceptible to outer-sphere
reduction by 3 (Ex» = —1.4 V vs. Fc/Fc"). Electron transfer may therefore play a
role in the formation of 5. As neither CO, nor ethylene are able to oxidize 3,
concerted cycloaddition mechanisms are likely to be operative in the formation of

6 and 7.

2.3) Concluding Remarks

In conclusion, we have prepared an NHC-stabilized boranthrene (3) and
its one- and two-electron oxidized congeners. Boranthrene 3 reacts with a range
of unsaturated molecules including O, CO., and ethylene via formal [4+2]
cycloaddition to the diborabutadiene core. Although [IPr2(BA)] is composed
entirely of light elements, it features many of the properties of transition metal
complexes that make them attractive targets for small molecule activation: multi-
electron redox chemistry at mild potentials, reversible ligand binding, and
reactivity with important small molecule substrates. B-doped graphene (BDG)
has shown great promise for electrochemical energy storage.?' As a molecular

analogue of BDG or “nanographene,” the chemistry [IPr(BA)]" and related
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systems may provide insight the operation and design of boron-doped planar

carbon materials.

2.4) Experimental Section

2.4.1) General Considerations

Unless otherwise noted, all manipulations were carried out using standard
Schlenk or glovebox techniques under a N> atmosphere. Hexanes, benzene,
toluene, and acetonitrile were dried and deoxygenated by argon sparge followed
by passage through activated alumina in a solvent purification system from JC
Meyer Solvent Systems followed by storage over 4 A molecular sieves. THF and
Et,O were distilled from sodium-benzophenone ketyl under N, followed by
storage over 4A molecular sieves for at least 24 hours prior to use. Non-
halogenated and non-nitrile containing solvents were tested with a standard
purple solution of sodium benzophenone ketyl in THF to confirm effective oxygen
and moisture removal prior to use. Hexamethyldisiloxane (HMDSQO) was distilled
from sodium metal and stored over 4A molecular sieves for 24 hours prior to use.
All reagents were purchased from commercial suppliers and used without further
purification unless otherwise noted. 9,10-dibromo-9,10-diboraanthracene (9,10-
Br.-DBA),*1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr),** and Rieke
magnesium® were synthesized according to literature procedures. Elemental

analyses were performed by Midwest Microlab, LLC, Indianapolis, IN. Deuterated
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solvents were purchased from Cambridge Isotope Laboratories Inc., degassed,
and dried over activated 3A molecular sieves for at least 24 h prior to use. Dry air
used for the synthesis of 5 was generated by passage of air through a sulfuric
acid bubbler followed by passage through a drying tube packed with P,Os. NMR
spectra were recorded on Varian Inova 500 MHz, Bruker Avance 600 MHz, and
Bruker Avance 700 MHz spectrometers. 'H and '*C chemical shifts are reported
in ppm relative to tetramethylsilane using residual solvent as an internal
standard. ''B chemical shifts are reported in ppm relative to BFs*Et,0. Original
"B NMR spectra were processed using MestReNova 10.0.2 with a backwards-
linear prediction applied to eliminate background signal from the borosilicate
NMR tube.? For ''B NMR spectra with peaks overlapping the borosilicate signal,
a manual baseline correction was applied. EPR X-band spectra were obtained on
a Bruker EMX spectrometer with the aid of Bruker Win-EPR software suite
version 3.0. EPR spectral simulations were performed using the Easyspin
software suite.”” UV-Vis spectra were recorded using a Cary Bio 500
spectrometer using a 1 cm path length quartz cuvette with a solvent background
subtraction applied. IR spectra were recorded using a Bruker Alpha FT-IR with a
universal sampling module collecting at 4 cm™ resolution with 32 scans. X-ray
diffraction studies were performed using a Bruker-AXS diffractometer. Cyclic
Voltammetry (CV) experiments were performed using a Pine AFP1 potentiostat.

The cell consisted of a glassy carbon working electrode, a Pt wire auxiliary
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electrode and a Pt wire pseudo-reference electrode. All potentials are referenced
vs. the Fc/Fc* couple measured as an internal standard.

2.4.2) IPry(BA)Br. (1).

IPr (0.885 g, 2.28 mmol) and Br,-DBA (0.362 g, 1.09 mmol) were added as solids
to a 20 mL vial and placed in a liquid nitrogen cooled bath. Toluene (8 mL) was
cooled to —78 °C and added to the vial containing the two solids. The mixture
was allowed to warm to room temperature and stirred for 2 hours during which
time a microcrystalline, colorless solid separated. Hexane (2 mL) was added to
aid precipitation and stirring continued for several more minutes. The product
was collected by filtration and quickly washed with toluene (2 mL) then Et,O (5
mL) and dried in vacuo. Overall yield: 0.819 g, 68%. X-ray quality crystals of 1
were grown by layering a concentrated THF solution with Et,O and letting stand
at —-15 °C. X-ray quality crystals of the acetonitrile adduct [IPr2(BA)(CH3CN)2][Br]2
(2) were grown by dissolving 1 in minimal MeCN (ca. 1 mL/0.05g) and cooling to
—15 °C overnight. '"H NMR (600 MHz, THF-ds, —50 °C) & 7.73 (s, 1H), 7.67 (s,
1H), 7.43 (t, J = 7.5 Hz, 1H), 7.31 (d, J = 7.7 Hz, 2H), 7.27 (s, 4H), 7.25 (s, 2H),
7.03 (d, J = 7.6 Hz, 2H), 6.84 (d, J = 6.8 Hz, 2H), 6.78 (t, J = 7.6 Hz, 1H), 6.69
(dd, J = 6.4, 1.9 Hz, 2H), 6.64 (d, J = 7.7 Hz, 2H), 6.27 (t, J = 6.9 Hz, 2H), 5.71 (t,
J = 7.3 Hz, 2H), 3.62 (dqg, J = 13.0, 6.5 Hz, 2H), 3.28 (dq, J = 13.2, 6.7 Hz, 2H),
2.66 (dg, J = 13.0, 6.3 Hz, 2H), 1.77 (dq, J = 13.4, 6.4 Hz, 2H), 1.59 (d, J = 6.1

Hz, 2H), 1.54 (d, J = 6.2 Hz, 2H), 1.22 (d, J = 5.9 Hz, 2H), 1.06 (d, J = 6.6 Hz,
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2H), 0.85 (d, J = 5.8 Hz, 2H), 0.66 (d, J = 6.3 Hz, 2H), 0.55 (d, J = 6.7 Hz, 2H),
0.48 (d, J = 5.8 Hz, 2H). "'B{'H} (192 MHz, THF-ds, —50 °C) & —3.58 (bs). *C{'H}
NMR (151 MHz, THF-dg, -50 °C) & 170.5, 165.0, 152.4, 148.4, 146.8 (d, J = 78.9
Hz), 146.2 (d, J = 75.6 Hz), 139.5, 138.6, 138.3 (d, J = 40.2 Hz), 132.8, 130.6,
130.2, 129.9, 129.2, 128.9, 126.6, 126.3, 124.3 (d, J = 32.7 Hz), 124.2, 124.1 (d,
J =52.0 Hz), 122.0, 35.6, 33.1, 31.2, 31.0, 30.3, 29.7, 29.3, 28.6, 27.1, 26.9,
26.4, 26.1, 24.5, 24.0, 23.4, 22.4, 21.8, 15.0. Anal. Calcd. for CesHgoB2BraN4: C,
71.36 H, 7.26 N, 5.04. Found: C, 71.55 H, 7.36 N, 4.95.

2.4.3) IPry(BA) (3).

A single portion of Rieke magnesium (0.097 g, 10 mol. eq.) was added to a slurry
of 1 (0.441 g, 0.397 mmol) in Et,O (7 mL). The mixture was stirred vigorously for
5 hours during which time the reaction became dark black-green. The mixture
was filtered through a pad of celite and the solvent removed in vacuo. The
residue was extracted with benzene (2 x 4 mL), filtered again through a celite pad
and diluted with half a volume of acetonitrile. The solution was concentrated to
ca. 3 mL in vacuo and the resulting crystalline precipitate collected by filtration,
washed with acetonitrile (1 mL) and dried in vacuo. Several additional crops were
obtained by concentrating the mother liquor in vacuo. Overall yield: 0.357 g, 94%.
X-ray quality crystals were grown by layering a concentrated benzene solution
with HMDSO. "H NMR (600 MHz, toluene-ds, —50 °C) & 7.71 (s, 4H), 7.04 (t, J =

7.5 Hz, 4H), 6.96 (s, 4H), 6.81 (d, J = 7.7 Hz, 8H), 6.70 (s, 4H), 3.38 (sept, J =
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6.3, Hz, 8H), 1.00 (d, J = 6.2 Hz, 24H), 0.80 (d, J = 5.9 Hz, 24H). ""B{'H} (160
MHz, C¢Dg, 25 °C) 5 20.1 (bs). "*C{'H} (125 MHz, CsDs, 25 °C) & 145.6, 145.4,
135.0, 133.1, 128.9, 124.1, 122.8, 116.4, 29.1, 26.6, 22.2. UV-vis (THF): Amax
(nm) (Emax (M'em™)) 314 (sh, 8.3 x 10%), 417 (sh, 1.1 x 10°), 450 (1.2 x 10°), 517
(sh, 1.4 x 10°), 680 (1.8 x 10°), 727 (1.9 x 10°), 865 (2.3 x 10°), 910 (2.4 x 10°).
Anal. Calcd. for CesHgoB2N4 (2 x MeCN): C, 81.28 H, 8.39 N, 8.13. Found: C,
80.93 H, 8.62 N, 8.01.

2.4.4) [IPr(BA)][Br] (4).

To a slurry of 1 (0.049 g, 0.044 mmol) in toluene (1 mL) was added a solution of 3
(0.042 g, 1 mol.eq.) in toluene (1 mL). The mixture was stirred for 1 hour during
which time a golden-brown crystalline solid separated. The solvent was decanted
and the golden/brown solid rinsed with toluene (2 mL) before being dried in
vacuo. The solid was dissolved in the minimum CH.Cl, (ca. 2 mL), filtered
through a pad of celite, then diluted with toluene (6 mL). Concentration of the
solution to ca. 5 mL in vacuo caused the product to crystallize. The toluene was
decanted, the golden crystals rinsed with toluene (1 mL) and dried in vacuo.
Yield: 0.074 g, 81%. X-ray quality crystals were grown by layering a concentrated
THF solution with toluene at —15 °C. UV-vis (THF): Amax (M) (€max (M~'ecm™))
315 (sh, 1.2 x 10°), 363 (sh, 1.4 x 10°), 393 (1.5 x 10°), 412 (1.6 x 10°), 515 (sh,

2.0 x 10°), 645 (sh, 2.5 x 10°), 708 (sh, 2.7 x 10°), 765 (2.9 x 10°), 864 (3.3 x
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10°). Anal. Calcd. for CesHgoB2BrN4: C, 76.90 H, 7.82 N, 5.43. Found: C, 77.15 H,
791N, 5.12.

2.4.5) IPry(BA)(O2) (5).

A solution of 3 (0.050 g, 0.053 mmol) in benzene (10 mL) was subjected to three
freeze-pump-thaw cycles before adding 1 atm. of dry air (vide supra). After 5
minutes volatiles were removed in vacuo to afford the product as a pale-yellow
solid. Yield: 0.47 g, 92%. Recrystallization from THF/HMDSO gave an analytical
sample. X-ray quality crystals were grown by slow evaporation of a
hexanes:HMDSO (1:10) solution. 'H NMR (500 MHz, CsDs) & 7.25 (t, J = 7.7 Hz,
4H), 7.06 (d, J = 7.6 Hz, 8H,), 6.75 (dd, J = 4.6 Hz, 4H), 6.34 (s, 4H), 6.12 (bs,
4H), 2.92 (bs, 8H), 1.07 (d, J = 5.2 Hz, 24H) 0.82 (d, J = 7.1 Hz, 24H). "'B{'H}
(160 MHz, C¢Dg) & 4.93. "*C{"H} NMR (176 MHz, CsDs) 146.0, 137.9, 129.5,
128.6, 126.8, 124.6, 124.1, 121.3, 29.0, 25.4, 24.0. UV-vis (THF): Amax (NM) (Emax
(M~'em™)) 330 (1.0 x 10°), 380 (sh, 1.2 x 10°), 912 (2.8 x 10°). Anal. Calcd. for
CesHs0B2N4O2 « C4HsO: C, 79.68 H, 8.41 N, 5.31. Found: C, 80.03 H, 8.38 N,
5.56.

2.4.6) IPro(BA)(CO.) (6).

A solution of 3 (0.050 g, 0.053 mmol) in toluene (10 mL) was subjected to three
freeze-pump-thaw cycles before adding 1 atm. CO.. The reaction was heated at
60 °C for 8 hours during which time the reaction became colorless. Volatiles were

removed in vacuo to afford the product as a colorless solid. Yield: 0.048 g, 92 %.
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X-ray quality crystals were grown by layering a concentrated THF solution with
HMDSO. "H NMR (500 MHz, CsDg, 25 °C) & 7.26 (t, J = 7.6 Hz, 2H), 7.18 (t, J =
7.6 Hz, 2H), 7.11 (d, J= 7.1 Hz, 4H), 7.00 (bs, 4H), 6.48 (s, 2H), 6.45 (t, J= 7.4
Hz, 2H), 6.40 (s, 4H), 6.39 (s, 2H), 6.34 (t, J = 7.4 Hz, 2H), 6.02 (bs, 2H), 3.75
(bs, 2H), 3.06 (bs, 4H), 2.77 (bs, 2H), 1.04 (dd, J = 7.2 Hz, 42H), 0.74 (bs, 6H).
""B{"H} (160 MHz, CsDs) d 0.95, —8.17. "*C{'H} NMR (151 MHz, CsDs¢) 198.4,
175.6, 174.0, 156.7, 148.2, 146.1, 138.4, 137.4, 130.2 (d, J = 20 Hz), 129.0 (d, J
=15 Hz), 126.9 (d, J = 17 Hz), 125.5 (d, J = 14 Hz), 125.2 (d, J =19 Hz), 124.6
(d, d =16 Hz), 123.4, 120.2, 116.1, 29.1, 27.9, 26.3, 25.5, 24.0, 23.4. FTIR: vmax
(cm™") 1655 (C=0). Anal. Calcd. for Cs7HgoB2N4O> + C7Hs: C, 81.76 H, 8.16 N,
5.15. Found: C, 81.82 H, 8.24 N, 5.00.

2.4.7) IPr(BA)(**CO) (6-'°C).

The "*C-labeled compound was synthesized similarly to 6 using *CO.. 'H and
"B NMR data was identical to 6. No "*C-'"B coupling could be resolved in the ''B
NMR spectrum at 25 °C, likely due to the broadness of the ''B resonances (See
Figure 2.6.17). The isotopically enriched carbon appears at 198.4 ppm in the '*C
NMR spectrum.

2.4.8) IPr2(BA)(C2H4) (7).

A solution of 3 (0.050 g, 0.053 mmol) in benzene (10 mL) was subjected to three
freeze-pump-thaw cycles before adding 1 atm. of ethylene. The reaction was

heated at 70 °C for 20 hours during which time the reaction became colorless.
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Volatiles were removed in vacuo to afford the product as a colorless solid. Yield:
0.045 g, 88 %. X-ray quality crystals were grown by layering a concentrated THF
solution with HMDSO. 'H NMR (600 MHz, C¢D¢) 5 7.11-6.63 (bs, 12H), 6.83 (dd,
J=5.0, 3.4 Hz, 4H), 6.76 (dd, J= 5.0, 3.4 Hz, 4H), 6.63-6.31 (bs, 4H), 3.31 (bs,
8H), 1.03 (d, J = 6.8 Hz, 4H), 0.91 (bs, 24H), -0.81 (s, 4H). ''B{"H} (160 MHz,
CsDs) 8 —9.80 (bs). "*C{'"H} NMR (176 MHz, C¢D¢) 183.6, 159.0, 147.0, 145.4,
137.2,129.8, 127.7, 125.8, 124.0, 122.8, 119.9, 29.3, 27.3, 26.2, 23.4, 22.0,
17.7. Anal. Calcd. for CegHgsB2oN4: C, 83.42 H, 8.65 N, 5.72. Found: C, 83.32 H,

8.73 N, 5.64.

31



2.5) Spectroscopic Data
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Figure 2.5.1."H NMR spectrum of IPry(BA)Br; recorded at 600 MHz in THF-ds at =50 °C.
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Figure 2.5.2. '"H NMR spectrum of IPry(BA)Br, recorded at 600 MHz in THF-ds at —50
°C. Letter-labels, “A-U”, denote unique protons in the molecule as labeled. Prime labels
denote protons that are chemically similar but were unable to be unambiguously
assigned. Peaks labeled “X” denote residual solvent. The bromine atoms attached to
each boron have been excluded in the inlayed diagram for clarity.
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Figure 2.5.3. ?D['H-"H]-COSY spectrum of IPry(BA)Br, recorded at 600 MHz in THF-ds
at -50 °C.
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Figure 2.5.4. ''B NMR spectrum of IPry(BA)Br, recorded at 193 MHz in THF-ds at —50
°C.
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Figure 2.5.5. '"H NMR spectrum of IPry(BA) recorded at 600 MHz in toluene-d; at —50

°C.
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Figure 2.5.6. '°C NMR spectrum of IPry(BA)Br; recorded at 151 MHz in THF-ds at -50
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Figure 2.5.7. 2D['H-"H]-COSY spectrum of IPry(BA) recorded at 600 MHz in toluene-ds

at =50 °C.
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Figure 2.5.8. 'H NMR spectrum of IPry(BA) recorded at 500 MHz in C¢Dg at 25 °C.
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Figure 2.5.9. ''B NMR spectrum of IPry(BA) recorded at 160 MHz in C¢Dg at 25 °C.
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Figure 2.5.10. '*C NMR spectrum of IPry(BA) recorded at 176 MHz in CsDg at 25 °C.
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Figure 2.5.11. Variable Temperature 'H NMR spectrum of IPry(BA) recorded at 600
MHz in toluene-ds. Spectra 1-6 were collected at 25, 40, 60, 80, and 100 °C,

respectively.
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Figure 2.5.13. "H NMR spectrum of IPry(BA)(CO,) recorded at 500 MHz in C¢Dg at 25

°C.
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Figure 2.5.14. ''B NMR spectrum of IPry(BA)(CO,) recorded at 160 MHz in CsDs at 25
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Figure 2.5.15. '*C NMR spectrum of IPry(BA)(CO,) recorded at 176 MHz in C¢Dg at 25
°C.
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Figure 2.5.16. '"H NMR spectrum of IPry(BA)(**CO,) recorded at 500 MHz in C¢Dg at 25
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Figure 2.5.17. ''B NMR spectrum of IPry(BA)(**CO,) recorded at 160 MHz in CsDg at 25

°C.
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Figure 2.5.19. Variable Temperature 'H NMR spectra of IPr(BA)(*3CO,) recorded at
600 MHz in CgDg. Spectra 1-5 were collected at 25, 40, 50, 60, and 70 °C, respectively.
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Figure 2.5.20. '"H NMR spectrum of IPry(BA)(**CO,) recorded at 600 MHz in C¢Ds at 70
°C.
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Figure 2.5.21. 'H NMR spectrum of IPry(BA)(O,) recorded at 500 MHz in C¢Dg at 25 °C.
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Figure 2.5.23. '°C NMR spectrum of IPry(BA)(O>) recorded at 176 MHz in C¢Dg at 25 °C.

44



NOOS — 0= b

DN, ™ (=¥} g

©O6 O o) -o B

NP [ N \
|

/ / | |
I.- /

nooa
nuowvo

10 9 8 7 6 5 4 3 2
ppm
Figure 2.5.24. 'H NMR spectrum of IPry(BA)(C2H,) recorded at 600 MHz in C¢Dg at 25
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Figure 2.5.25. Variable Temperature '"H NMR spectra of IPr,(BA)(C2H,) recorded at 600
MHz in C¢Ds. Spectra 1-5 were collected at 25, 40, 50, 60, and 70 °C, respectively.
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Figure 2.5.26. 'H NMR spectrum of IPry(BA)(C2H,) recorded at 600 MHz in C¢Dg at 70
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Figure 2.5.27. 2D['H-"C]-HSQC spectrum of IPry(BA)(C;H,) recorded at 600 MHz in
CeDeat25 °C.
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OC' 0 m““"ﬁﬁ’%@%% NODONDL
i L_J’L)LJ il | A/W
50 200 150 100 50 0

ppm
Figure 2.5.29. *C NMR spectrum of IPry(BA)(C2H.) recorded at 176 MHz in C¢Ds

at 25 °C.
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Figure 2.5.30. FT-IR spectrum of IPry(BA)(CO,).
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Figure 2.5.31. FT-IR spectrum of IPrx(BA)(**CO,).
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Figure 2.5.32. UV-Vis spectrum of [IPr,(BA)][Br] in THF.
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Figure 2.5.33. UV-Vis spectrum of IPry(BA)in THF.
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Figure 2.5.34. UV-Vis spectrum of IPry(BA)(O,) in THF.
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Figure 2.5.35. X-band EPR spectrum (9.314 GHz) of [IPry(BA)][Br] in DCM:toluene
(1:1) at 107 K with a field modulation of 0.9 G (black) and its simulated spectrum (gray).
Simulation parameters: g4 = 2.0034, g, = 2.0015, g; = 2.0002; A4[B] = 3 MHz, A,[B] = 32
MHz, A3[B] = 0 MHz; A{[B] = 3 MHz, A,[B] = 32 MHz, A;3[B] = 0 MHz; HStrain, = 5.0229,
HStrain, = 7.6138, HStrains = 20.69; lw = 0.7.
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Figure 2.5.36. X-band EPR spectrum (9.314 GHz) of [IPry(BA)][Br]in DCM:toluene (1:1)
at 298 K with a field modulation of 0.5 G (black) and its simulated spectrum (gray).
Simulation parameters: g = 2.0014; A[B] =4 MHz, Iw =1.1.

2.6) X-Ray Crystallography

2.6.1) General Considerations

Single crystals were coated with paratone oil and mounted on cryo-loop glass
fibers. X-ray intensity data were collected at 100(2) K on a Bruker APEX2%
platform-CCD X-ray diffractometer system using fine-focus Mo K, radiation (1 =
0.71073 A, 50kV/30mA power). The CCD detector was placed at 5.0600 cm from
the crystal. Frames were integrated using the Bruker SAINT software package®
and using a narrow-frame integration algorithm. Absorption corrections were
applied to the raw intensity data using the SADABS program.®® The Bruker

SHELXTL software package®' was used for phase determination and structure
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refinement. Atomic coordinates, isotropic and anisotropic displacement
parameters of all the non-hydrogen atoms were refined by means of a full matrix
least-squares procedure on F2. The H-atoms were included in the refinement in
calculated positions riding on the atoms to which they were attached. Relevant

details for individual data collections are reported in Tables 2.6.1-2.6.7.

Figure 2.6.1. Labelled thermal ellipsoid plot (50%) for IPry(BA)BFr,.
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Figure 2.6.2. Labelled thermal ellipsoid plot (50%) for [IPry(BA)(CHsCN),][Br].. The
second bromide is generated by a crystallographic symmetry operation.

Figure 2.6.3. Labelled thermal ellipsoid plot (50%) for [IPry(BA)][Br].
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Figure 2.6.7. Labelled thermal ellipsoid plot (50%) for IPry(BA)(C2H,).
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Table 2.6.1. Crystal data and structure refinement for IPr,(BA)Br,.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

0 range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to 6 = 25.242°
Absorption correction
Refinement method

Data / restraints / parameters
Goodness-of-fit on F

Final R indices [/ > 20)]
Rindices (all data)

Largest diff. peak and hole

hh168JT81_0m-5
C77H107.SOBZBr2N402.75

1314.60 g/mol

100(2) K

0.71073 A

Triclinic

P -1

a=14.0685(10) A  a=90.7365(11)°.
b=15.0125(10) A B =106.7863(11)°.
c=17.8170(12) A y=95.7848(11)°.
3580.8(4) A

2

1.219 mg/m®

1.180 mm™

1399

0.506 x 0.104 x 0.058 mm?

1.521 to 26.372°.
-17<h=<16,-18<k=<18,0< /<22
32577

14607 [Rint = 0.0297]

100.0 %

Semi-empirical from equivalents
Full-matrix least-squares on F?

14607 / 260 / 903

1.016

R; = 0.0436, wR, = 0.0955
R; = 0.0606, wR, = 0.1024
0.840 and -0.851 e/A®

Note: The Bruker CELL_NOW?®* program was used to obtain the two different
orientation matrices of the rotational twin components (the twin law is 180°
rotation about the 001 reciprocal axis). The absorption correction was applied
with TWINABS.? There was one molecule of IPra(BA)Br, and 2.75 molecules of
THF solvent present in the asymmetric unit of the unit cell. Two of the three
solvent molecules were modeled with disorder where one was located at the
inversion center (disordered site occupancy ratios were 59%/41% and
50%/25%). The major/minor component twin ratio was 92%/8%.
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Table 2.6.2. Crystal data and structure refinement for [IPry(BA)(CH;CN),][Br]..

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

105.4512(5)°.

Volume
Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

0 range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to 6 = 25.242°
Absorption correction

Refinement method
Data / restraints / parameters

Goodness-of-fit on F
Final R indices [/ > 20)]
Rindices (all data)

Largest diff. peak and hole

hh168JT81r_Om
CseH110B2BraN14
1521.31g/mol
100(2) K
0.71073 A
Triclinic

P -1
a=10.9914(4) A
b=12.4217(4) A
¢ =16.6359(6) A

2145.25(13) A°
1

1.178 mg/m3

0.995 mm_ '
804

o =90.8263(5)°.
B =

y=100.8307(5)°.

0.487 x 0.456 x 0.179 mm"

1.673 to 28.282°

-14<h<14,-16<k<16,-22< /<22

54967

10640 [Rint = 0.0292]

99.9 %

Semi-empirical from equivalents
Full-matrix least-squares on F2

10640 /0 /482
1.032

Ry =0.0319, wR> = 0.0790
Ry =0.0377, wR> =0.0817

0.801 and —0.328 /A
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Table 2.6.3. Crystal data and structure refinement for [IPry(BA)][Br]-

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume
Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

0 range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to 6 = 25.242°
Absorption correction

Refinement method
Data / restraints / parameters

Goodness-of-fit on F
Final R indices [/ > 20)]
Rindices (all data)

Largest diff. peak and hole

hh183JT90r_Om
CseH120B2BrN4Os

1391.38 g/mol

100(2) K

0.71073 A

Monoclinic

P21/c

a=13.9529(12) A  «a=90°.
b =36.527(3) A B =113.4464(12)°.
c=16.6593(14) A y=90°.
7789.5(12) A°

4

1.186 mg/m"

0.581 mm_ '
2996

0.425 x 0.257 x 0.177 mm’

1.591 to 27.484°.
-18<h=<18,-47<k<47,-21</<?21
98746

17851 [Rint= 0.0617]

100.0 %

Semi-empirical from equivalents

Full-matrix least-squares on F2
17851 /198 / 964

1.038

R; =0.0481, wR> = 0.0931

R; =0.0829, wR> =0.1034

0.536 and —0.591 e/A°

Note: There are five molecules of THF present in the asymmetric unit of the unit
cell. Two of the five solvent molecules of THF were modeled with disorder
(disordered site occupancy factor ratios were 56%/44% and 57%/43%).
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Table 2.6.4. Crystal data and structure refinement for IPr,(BA).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume
Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

0 range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to 6 = 25.242°
Absorption correction

Refinement method

Data / restraints / parameters
Goodness-of-fit on F°

Final R indices [/ > 20)]
Rindices (all data)

Absolute structure parameter

Largest diff. peak and hole

hh146JT67_0m

CesHsoB2N4

950.96 g/mol

100(2) K

0.71073 A

Orthorhombic

P 212121

a=12.2145(7) A a = 90°.
b=19.8453(11) A B =90°.
¢ =23.3976(13) A y = 90°.
5671.6(6) A’

4

1.114 mg/m’

0.064 mm_'
2056

0.620 x 0.558 x 0.505 mm"

1.741 to 30.507°.
-17<h=<17,-28<k=<28,-33</<33
135830

17325 [Rint = 0.0347]

100.0 %

Semi-empirical from equivalents

Full-matrix least-squares on F2
17325 /0 /656

1.047

R; =0.0369, wR, = 0.0956

R; =0.0424, wR, = 0.0999
-0.4(3)

0.349 and -0.151 e/A’
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Table 2.6.5. Crystal data and structure refinement for IPr,(BA)(O5).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume
Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

0 range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to 6 = 25.242°
Absorption correction

Refinement method

Data / restraints / parameters
Goodness-of-fit on F-

Final R indices [/ > 20)]
Rindices (all data)

Largest diff. peak and hole

hh153JT72_0m

CesHgoB2N4O2

982.96 g/mol

200(2) K

0.71073 A

Triclinic

P -1

a=12.2955(9) A a = 99.6469(13)°.
b=13.3751(10) A 8 =93.4959(13)°.
c=20.8112(15) A y=117.3094(12)°.
2960.6(4) A’

2

1.103 mg/m’

0.065 mm_ '
1060

0.253 x 0.237 x 0.179 mm’

1.757 to 26.372°.
-15<h=<15,-16<k=<16,-26< /<26
54175

12119 [Rint = 0.0396]

100.0 %

Semi-empirical from equivalents

Full-matrix least-squares on
12119/0/683

1.028

R; =0.0467, wR> = 0.1099
R; =0.0703, wR> =0.1223

0.471 and —-0.198 e/A°

Note: Crystals of IPro(BA)(O2) crack when cooled to 100 K. As a resoult, data was
collected at 200 K. The large solvent accessible voids (ca. 80 A% are likely
related to the onset of this phase transition at 200 K.
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Table 2.6.6. Crystal data and structure refinement for IPr,(BA)(CO,).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume
Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

0 range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to 6 = 25.242°
Absorption correction

Refinement method
Data / restraints / parameters

Goodness-of-fit on F
Final R indices [/ > 20)]
Rindices (all data)

Largest diff. peak and hole

hh181JT89_0m
Ce9Hs4.49B2N4O2 38

1031.02 g/mol

100(2) K

0.71073 A

Monoclinic

P21/c

a=37.9259(11) A a = 90°.
b=12.4199(3) B = 93.9393(5)°.
¢ = 25.2260(7) y = 90°.
11854.3(6) A’

8

1.155 mg/m3

0.069 mm_ '
4450

0.424 x 0.224 x 0.157 mm”

1.618 to 28.282°.

-50<h=<50,-16 <k=<16,-33</<33
202788

29428 [Rint = 0.0492]

100.0 %

Semi-empirical from equivalents

Full-matrix least-squares on
29428 /162 / 1470

1.024

R =0.0510, wR> =0.1194
R1=0.0704, wR» = 0.1297

0.416 and —0.452 e/A>

A
A

Note: There is one disordered THF/pentane solvent combination (disordered
THF/pentane site occupancy ratio was 75%/25%). The Level B checkcif alert is a

result of this disorder.
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Table 2.6.7. Crystal data and structure refinement for IPr,(BA)(C2H,).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume
Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

0 range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to 6 = 25.242°
Absorption correction

Refinement method

Data / restraints / parameters
Goodness-of-fit on F-

Final R indices [/ > 20)]
Rindices (all data)

Largest diff. peak and hole

hh174JT83_0m

C72H9282N4O

1051.11 g/mol

100(2) K

0.71073 A

Monoclinic

P21/c

a=13.8441(5) A a=90°.
b=40.4583(14) A  B=114.3143(5)°.
c=12.3400(4) A y=90°.
6298.7(4) A°

4

1.108 mg/m’

0.064 mm_"
2280

0.526 x 0.438 x 0.396 mm"

1.614 to 30.507°.
-199<h=<19,-57<k<b57,-17<1=<17
151735

19235 [Rint = 0.0364]

100.0 %

Semi-empirical from equivalents

Full-matrix least-squares on
19235/0/728

1.069

R; =0.0511, wR>, =0.1276
R =0.0617, wR>, =0.1348

0.703 and —-0.272 /A’
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2.7) Computational Procedures

2.7.1) General Considerations

Density functional theory calculations were performed on [IPro(BA)]* using the
MO6L* functional as implemented in the ORCA 3.0 computational chemistry
package™ with a custom Alrichs-type™ basis set (DefBas4): for H atoms, TZV(p);
for B, C, and N atoms, TZV(2d). The solid-state X-ray structure coordinates of 4
were used as a starting point. Successful optimization to a minimum was
confirmed by the absence of imaginary frequencies in a subsequent frequency

calculation.

Table 2.7.1. Optimized geometry of IPry(BA) (S = ).

©O©OONOOTAWN = H

atom

TOOWOIOIOITOITOOW

X
2.605761
1.188419
0.418714
0.831286

-0.836212
-1.39659
-1.385578
-2.383205
-0.652578
-1.099664
0.639279
1.439711
2.828956
3.578787
3.144223

63

y
10.390916

10.335639
9.156668
8.251918
9.098673
8.172188

10.244619

10.210767

11.4109

12.293032

11.501923

12.807705

12.877122

14.068368

14.983247

V4
2.979626
3.557099
3.565501
3.128101
4.131055
4.136239
4.707638
5.127279
4.732934
5.182592
4.180533
4.164176
3.528551
3.473382
3.863809



16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

ITOIITITOIOIIITOIIITOIOOIOIOIOOOIOIOZOZOTOITOIO

4.854209
5.407548
5.442135
6.443956
4.736069
5.202437
3.426778
4.29297
3.228472
2.788607
3.573739
3.401963
4.501626
5.286728
5.130523
6.484024
7.272041
8.319283
6.745486
7.379833
5.415145
5.015111
4.571585
7.130793
6.341079
8.022576
7.509034
8.34681
8.922195
7.953617
7.370819
8.780613
8.377726
3.149658
2.591893
3.141437
3.61027
2.11906
3.680186
2.432419
2.485933
2.861235

64

14.113077
15.043871
12.94365
12.976421
11.761851
10.866312
11.680772
8.362899
9.079738
8.431127
7.321565
6.680031
7.270734
6.563157
8.673278
8.967695
9.25758
9.489998
9.258125
9.492528
8.944396
8.923271
8.635699
8.956286
8.97709
10.173825
11.105233
10.206334
10.134374
7.681095
6.772685
7.648881
7.648626
8.204257
8.160055
6.79637
6.072961
6.467944
6.767634
9.192252
10.213647
9.186746

2.956547
2.933591
2.468363
2.057777
2.502833
2.103645
3.016732
2.776255
2.330636
1.220746
0.980115
0.135379
1.957938
2.150578
3.920426
3.68237
4.791798
4.646001
6.070077
6.915511
6.269322
7.275768
5.204876
2.307075
1.548427
2.070053
2.298366
1.030312
2.684125
2.106808
2.254836
2.817329
1.10324
5.502858
4.567731
6.09958
5.431584
6.288463
7.047797
6.42008
6.039665
7.423407



58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

OITIO0OO0O0OITOITOZOZIIITIOIIITOIOIIIOIIIOIOOIOIOIOOO

1.377253
1.697273
0.583413
-0.447635
-1.324654
-0.372771
-1.190769
0.755156
0.821723
1.824061
0.467759
1.216162
0.747184
1.717932
-0.005701
0.712178
-0.902931
-1.197728
-0.895757
-1.67501
3.080323
3.725326
2.784004
2.20854
2.223816
3.71265
3.853517
4.107039
4.780942
3.26896
0.517603
0.813456
0.441973
-0.093813
-0.466316
-0.033793
-0.323845
0.794004
-0.290263
0.005162
-0.806844
1.308569

65

8.933019
8.843416
7.996705
8.416183
7.790642
9.608721
9.914013
10.399526
11.315213
10.039007
6.64574
6.590658
5.517852
5.612637
5.514976
4.547424
6.430014
7.27491
5.533364
6.288731
10.887303
10.585069
12.374289
12.568479
12.773333
12.94057
10.631046
9.576718
11.204531
10.928525
14.272447
14.104503
15.260051
16.131196
17.097925
15.521574
15.85781
13.332119
12.801211
11.901271
11.468335
11.554659

6.513981
0.355985
0.24207
-0.593504
-0.700202
-1.288044
-1.928312
-1.182798
-1.757253
-0.366527
0.924666
1.721259
-0.072057
-0.557867
-0.861282
0.422897
1.562148
2.180264
2.181207
0.805681
-0.391993
0.433133
-0.217699
0.688426
-1.06477
-0.145466
-1.687003
-1.804341
-1.697753
-2.558859
6.154219
4.838518
4.228703
5.155886
4.871461
6.357936
7.33636
7.226158
7.942254
8.962688
9.532879
9.263013



100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

ITITOIITIITIOIOOIOIOIOOOIIIOIIIOIOIIITOIITITOIOOIIO™X

1.51083
2.354047
3.374134
2.130487
-1.737701
-1.815982
-2.675671
-2.314331
-3.670979
-2.783881
-2.196325
-1.566794
-2.169212
-3.220554
3.320286
2.992031
3.844881
3.071056
4.675946
4.204173
4.431656
4.065391
4.892978
5.217858
0.591945
1.450661

1.5798
2.233212
0.896271
1.019117
0.044417
-0.507479
-0.140603
2.206637

2.21155
3.662843
4.171033
4.203633
3.739234
1.517441
0.474046
1.533319

66

10.848029
12.126536
11.875879
13.03691
13.196297
13.692956
11.991641
11.209406
12.291418
11.558105
14.181494
15.069119
13.707226
14.506316
13.727652
14.219389
14.818922
15.547924
15.3521
14.392942
12.753211
11.94503
12.305505
13.271884
15.58496
16.644127
16.940778
17.749847
16.223741
16.472504
15.202558
14.662403
14.859402
17.490614
16.967419
17.720424
16.789016
18.207347
18.371494
18.843446
18.748861
19.412655

10.058018
8.563907
8.827719
7.534617
7.712928
6.740989
7.694937
7.031172
7.368433
8.689148
8.791461
8.848696
9.773341
8.608596
6.897386
5.981679
7.832869
8.077056
7.369836
8.770787
6.516403
5.881273
7.397919
5.968146
2.821393
2.479761
1.126613
0.825717
0.162395
-0.884036
0.535358
-0.223974
1.872548
3.490735
4.453106
3.090307
2.850019
3.901149
2.219691
3.684632
3.983207
2.754402



142 H 2.031807 19.433158 4.443304
143 C -1.17091 13.802731 2.217984
144 H -1.072517 13.546283 3.272769
145 C -2.580227 14.361965 2.01852

146 H -2.749663 15.252454 2.625153
147 H -3.328812 13.618582 2.293543
148 H -2.751308 14.635743 0.976365
149 C -0.969948 12.520406 1.414243
150 H 0.047247 12.138008 1.509722
151 H -1.170821 12.678844 0.35354

152 H -1.647317 11.739886 1.762465

Final Energy: -2832.37967003 E;,
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Chapter 3) Au Complexes of a Diphosphine-
Diboraanthracene Ligand: A Versatile Platform for Redox
Transformations of Small Molecules

3.1) A Molecular Boroauride: A Donor-Acceptor Complex of Anionic Gold
3.1.1.) Introduction

The ability to adopt multiple d-electron configurations (and hence oxidation
states) is a hallmark of the transition metals,” and much of the chemistry
associated with transition metal complexes, including electron transfer, oxidative
addition/reductive elimination, and atom transfer, depends on this phenomenon.?
While the transition metals are typically regarded as cation-forming elements,
complexes with d-electron counts (d°~d'®) corresponding to apparent negative
oxidation states can be stabilized by electron-accepting ligands such as carbon
monoxide and arenes.® In this context, the chemistry of gold is remarkable, as it
alone among transition metals is stable as an isolated anion in the condensed
phase.* The stability of the 12-valence-electron auride anion (Au”), such as in the
salt [NMeg][Au],® thus highlights the unusual properties of Au in the context of
transition metal chemistry more generally. Owing in part to the relativistic
stabilization of the 6s orbital, the electron affinity of Au (2.3 eV)° is significantly
larger than most transition metals and rivals that of the halogens.” Unfortunately,

Au is only accessible by the direct reaction of metallic Au with elemental alkali
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metals such as Cs and Rb, and the solution chemistry of auride compounds is
restricted to liquid ammonia.? Furthermore, the intermediacy of Au(0) and its
propensity to aggregate into metallic gold® complicates the electrochemical
conversion of Au™ to more well-known monometallic gold complexes in positive
oxidation states. As a result, a molecular system capable of reversible
interconversion between Au(l) and Au(-I) states is unknown.

Intrigued by the possibility of accessing redox chemistry associated with
the auride anion in a molecular setting, we began to explore ligand scaffolds
capable of circumventing two central problems with a hypothetically reversible
Au(l)/Au(-I1) system: 1) the potential intermediacy of Au(0) that could lead to the
precipitation of elemental gold and 2) the electronically saturated and highly
reducing Au(-I) state, which should require strong acceptor interactions'® for
stability within a molecular framework. By utilizing concepts including ligand
redox-activity and hemilability, respectively, we designed the ligand B,P- (1,
Scheme 3.2.1) to overcome these challenges, which features trans-disposed
phosphine donors straddling a 9,10-dihydro-9,10-diboraanthracene (DBA) core.
Agapie, et al. have recently used metal complexes of related noninnocent
terphenyl diphosphines for the activation of small molecules, including CO'! and
0,."2 The phosphine donors are poised to stabilize a linear Au(l) cation, while the
intrinsic redox activity and Lewis acidity of the DBA core give it the ability to both

serve as an electron reservoir and engage in acceptor interactions with a highly
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reduced metal atom as needed. Herein, we report the synthesis and reversible
redox chemistry of [Au(BzP2)]" (2", n = -1, 0, +1), which is isolable in three states
of charge. Both the cationic and neutral forms of this molecule possess Au(l)
centers, with the first reduction event taking place at the DBA core. The anionic
form, however, is best described as a bridging boroauride featuring a three-
center, two-electron (3c-2e) B—Au—B interaction. Taken together, these results
detail a strategy for accessing an unprecedented reversible Au(l)/Au(—I) redox

couple in a molecular system

3.1.2) Results and Discussion

The diphosphine-DBA ligand 1 is accessed by the addition of two
equivalents of 2-diisopropylphosphinophenyllithium to 9,10-dibromo-DBA in
toluene. Metallation of 1 with (Me>-S)AuCl in CH.Cl, affords a complex with the
stoichiometry [Au(B2P2)]CI (2-Cl) in 89% vyield. Single crystal X-ray diffraction
(XRD) reveals 2-Cl to be zwitterionic in the solid state with the chloride anion
bound to a tetrahedral boron center (Figure 3.1.1, left).”® The geometry at the
pseudo-two-coordinate Au(l) center is modestly bent (2P—Au—P = 153.7°) with an
intermediate length contact with the second planar, three-coordinate boron atom
(dau-B = 2.5645(16) A). In a 3:1 mixture of THF:benzene, 2-Cl exhibits a pair of
inequivalent and strongly coupled ®'P resonances by NMR at 57.3 and 53.9 ppm

(Je.p = 240 Hz, Figure 3.1.5.6), consistent with the preservation of the
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zwitterionic form in solution. In CDCls, however, a single *'P resonance is

Scheme 3.1.1. Synthesis of the ligand B,P, and its Au complexes.
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observed for 2-Cl at 57.1 ppm (Figure 3.1.5.5), suggesting either complete

chloride dissociation or its rapid exchange between the two boron sites.
Anion metathesis of 2-ClI with Na[BAr",] (Ar" = 3,5-
bis(trifluoromethyl)phenyl) gives the complex salt [Au(B2P2)][BAr 4] (2-BAr*,)

(Scheme 3.1.1). The single-crystal XRD structure of 2-BAr", reveals a
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Figure 3.1.1. Thermal ellipsoid plots (50%) of [Au(B2P)]CI (2-Cl, left) and the cation in
[(AuB2P.)][BArT,] (2-BAr",, right).

symmetrical [Au(B2P2)]" cation ([2]*) with a significantly bent P-Au—P linkage
(£P—Au-P = 141.6°) that situates the gold center within 2.7 A of each boron atom
(dau- = 2.6101(17), 2.6785(18) A) (Figure 3.1.1, right). While long, these Au-B
distances are consistent with those observed in related Au(l) borane complexes
for which weak donor acceptor interactions are thought to exist.'* Given the
electron deficiency of the central C4B; ring of the DBA core, this interaction in [2]"
can be viewed as an inverse cation-rrinteraction, wherein an electron-rich cation
interacts with an electron deficient resystem.

Cyclic voltammetry performed on 2-BArF4 (0.1 M [NBu4][PFs] in CH3sCN,
100 mV/s scan rate) revealed two reversible redox processes at —1.60 and —2.05
V versus Fc/Fc* (Fc = (CsHs)oFe, Figure 3.1.2). By comparison, the gold-free
DBA derivative 9,10-Mes»-DBA (Mes = 2,4,6-trimethylphenyl),'® a proxy for the
DBA core in [2]*, undergoes reversible reduction events at —1.62 and —2.48 V

versus Fc/Fc* under these conditions.'® While the first reduction of [2]* occurs at
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a potential comparable to that of its gold-free analogue, the second reduction is
positively shifted by over 400 mV relative to 9,10-Mes»-DBA. These data imply a

crucial role for Au in the observed redox chemistry of the [Au(B2P2)] platform.

~ a —_ -~ -

E/V vs. Fc/Fc*

Figure 3.1.2. Normalized cyclic voltammograms of [Au(B2P.)][BAr",] (solid) and 9,10-
Mes,-DBA (dashed)

To understand roles of both the Au center and the DBA core in the redox
chemistry of [Au(B2P-)], especially the remarkable anodic shift in the second
reduction event, we sought to isolate and characterize the one- and two-electron
reduced products. Chemical reduction of 2-Cl with 1 equivalent of K(C1oHsg) in
THF gives the neutral radical Au(B2P-) (2) as a purple crystalline solid (Scheme
3.1.1). The solid-state structure of 2 was determined by XRD and features a
slightly bent diphosphine-gold moiety (£P—Au—P = 158.97(2)°) spanning a planar
DBA core (Figure 3.1.3, left). In contrast to [2]*, the Au—B interactions in 2 are
lengthened substantially (dau-s = 3.013(2) and 3.084(3) A). The 'H NMR spectra

of 2 are consistent with paramagnetism (Figure 3.1.5.11), and the X-band
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Figure 3.1.3. Thermal ellipsoid plots (50%) of Au(B,P,) (2, left), and the anion in
[Au(B2P2)][K(18-c-6)] ([2]-, right).

electron paramagnetic resonance (EPR) spectrum of 2 in fluid 2-
methyltetrahydrofuran (2-MeTHF) reveals a broad triplet centered at g = 1.99
(Figure 3.1.4, left). The observed feature is consistent with hyperfine interactions
with two equivalent ®'P nuclei (/ = 1/2, Aso(*'P) = 55 MHz), and while this signal
broadens upon cooling to 100 K, no additional fine structure was resolved (Figure
3.1.5.22). Although the ®'P hyperfine interactions in 2 could be taken to indicate
significant spin density (and hence reduction) at Au, the established redox
chemistry of DBA derivatives and lack of precedent for authentic coordination
complexes of Au(0)'” suggest that 2 is best formulated as a zwitterion containing
a Au(l) cation linked to a DBA radical anion. Indeed, DFT calculations performed

on a slightly truncated'® model suggest that the spin-density of 2 is localized
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330 335 340
B/ mT

Figure 3.1.4. Left: X-band EPR spectrum (9.309 GHz) of (BoP2)Au collected in 2-
MeTHF solution at 298 K (solid) along with its simulation (dashed). Simulation
parameters are g = 1.99215 and Aio(*'P) = [56.5, 56.5] MHz with a linewidth of
1.54 mT. Right: spin-density plot for a truncated model of 2 calculated by DFT (see
Computational Procedures for details).

primarily on the DBA core (Figure 3.1.4, right), with natural spin populations of

0.26 e on each boron and most of the remaining spin delocalized over the
carbons of the DBA unit (See Computational Procedures). This electronic
structure nonetheless gives rise to a significant calculated hyperfine interaction
(via the IGLO method, see Computational Procedures for details)'® with the *'P
nuclear spins (calc. Aso(*'P) = 37.0 MHz) and much smaller boron hyperfine
interactions (calc. Aiso(''B) = 9.7 MHz) in qualitative agreement with the
experimental spectrum. The large, isotropic *'P hyperfine interaction is
presumably mediated by hyperconjugation® either through the phenylene linker
or the Au center. In either case, very small spin densities at *'P can lead to large

EPR hyperfine interactions so long as there is significant involvement of the 3s
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orbital on P.?' To wit, the natural spin density at each P atom is calculated to be
ca. 0.005 e for 2, 43% of which is hosted in the 3s orbital. From a structural
perspective, the lengthening of the Au—B distances in 2 is consistent with the
population of the DBA-based orbital that served as the acceptor for the weak
interaction observed in [2]" (vide supra).

Reduction of 2-Cl with 2 equivalents of K(C1oHs) gives the diamagnetic
crimson anion [Au(BzP2)]” ([2]7), which features a sharp singlet in its ''B NMR
spectrum at 11.1 ppm, a significant upfield shift relative to the broad feature at
32.0 ppm observed for [2]*. Addition of 18-crown-6 (18-c-6) to the reaction
mixture affords crystals of the complex salt [Au(B2P2)][K(18-c-6)] (2-K(18-c-6)).
Single crystal XRD on this material reveals a dramatic rearrangement of the
AuB,P, core, with very short Au—B distances (dau-s = 2.241(2), 2.237(2) A) and
pyramidalized boron centers (3 2C-B-C = 343.8°, 343.9°) (Figure 3.1.3, right).
Although complexes with gold-borane donor-acceptor interactions have been
reported, they typically feature a Au(l) donor to a single borane acceptor and
longer Au-B distances in the range of 2.3-2.9 A. In contrast, [2]” is formally
composed of an auride anion interacting with two cis-disposed borane ligands
and is the only example of a mononuclear transition metal complex featuring two
such short metal-organoborane (BRs) interactions. The short Au-B distances in

[2]” are comparable to those found in gold complexes featuring base-stabilized
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boryl?? and borylene? ligands, multimetallic boride complexes,?* as well as
metallaborane cluster compounds.?®

There are in principle two qualitative descriptions of the B—Au—B bonding
in [2]7, either as two, two-center, two-electron (2c-2e) bonds or a single three-
center, two-electron (3c-2e) bond. Given the well-established isolobal relationship
between gold and hydrogen? we favor the latter description wherein [2] is
understood as a donor-acceptor complex between an auride anion and DBA.
Thus [2] is analogous to a borohydride, and would therefore be described as a
bridging boroauride ([RsB(u-Au)BRs]"). We stress the plausibility of the auridic
description of the gold center in [2]” by emphasizing that Au is stable in anionic
form (vide supra) and significantly more electronegative than hydrogen (xau =
2.54 and xn = 2.20 on the Pauling Scale). In fact, the Au atom is the most
electronegative atom in [2]". We also highlight that the tetraauridoborate anion
([BAu4]") has been explored computationally and found to exhibit significant
similarities with the tetrahydridoborate anion ([BH4]").%

Further insight into this question was provided by DFT calculations on a
model of [2]". ® A Quantum Theory of Atoms In Molecules (QTAIM)? analysis of
the calculated electron density reveals a straight bond path connecting the Au
center to each B atom (Figure 3.1.5A). Interestingly, the corresponding bond
critical point (BCP) is found in a negative region of the Laplacian, i.e. a region

with local accumulation of electron density, indicative of a strongly covalent
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interaction, which sets it apart from typical coordination bonds such as the P—Au
interaction in the same compound. In addition, a natural bond orbital (NBO)?°
analysis reveals that the Au atom and the two B atoms engage in a 3c-2e bond,
akin to that found in hydride-bridged boranes such as B,Hg, which is described
by one filled (t) and two empty (t*™ and %) orbitals formed by linear
combinations of the 6s(Au) with two boron-centered hybrid orbitals of mostly p
character (sp®2: 90.3% p, 9.7% s) (Figure 3.1.5B).The filled T orbital arises from
a fully in-phase combination (37.6 % Au, 2 x 31.2% B); the T™ orbital has a
nodal plane containing the Au atom and is purely boron-centered, while the @
orbital has a nodal surface containing both boron atoms and consists of 62.4%
6s(Au) and 2 x 18.8% sp®?(B). Two main delocalization effects are identified by
second-order perturbation theory. First, a strong donation from P-centered lone
pairs into the T orbital (57.1 kcal/mol) describes the expected P—Au dative
bonds. Second, the in-plane d-orbital of Au is somewhat delocalized into the T*™
orbital (31.4 kcal/mol). Taken together, these data support the description of [2]”
as a boroauride compound.

Interestingly, the covalent bonding picture of the [B—Au—B] linkage arising
from NBO analysis contrasts with the more ionic description obtained for the [B—
Cu] unit in the related [(TPB)Cu]™ anion (TPB = tris[2-
(diispropylphosphino)phenyl]borane).*>®' There, the bonding electron pair

principally resides on the boron atom and engages in a dative bond with the
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copper center, and the compound is best described as a boron(l) dianion
stabilized by coordination to a Cu(l) center rather than an authentic cupride. This
is likely a consequence of the comparatively higher electronegativity (xau = 2.54;
Xcu = 1.9) and electron affinity (EAa, = 2.3 eV; EAc, = 1.2 eV)* of gold,
highlighting its unique ability among transition metals to afford a molecular

complex derived from an d’%s® electronic configuration.
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Figure 3.1.5. Computational analysis of the Au—B interaction. (A) Contour map (negative
values in dashed red) of the Laplacian distribution V?p(r) in the B-Au—B plane. Bond
paths are depicted as black lines, bond (BCP) and ring (RCP) critical points as blue and
orange circles, respectively. (B) Natural bonding orbitals (NBOs) describing the B—Au—B
3-center/2-electrons bond and their electronic population (in parenthesis).

3.1.3) Concluding Remarks

In conclusion, through the use of a ligand capable of both redox activity
and strong acceptor interactions, we have synthesized a coordination complex of
the auride anion and demonstrated its reversible interconversion between Au(l)

and Au(-I) states. The strategy outlined herein provides a blueprint for unlocking
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the redox chemistry of auride in mild solution-based processes. Access to an
auride equivalent under such conditions may have significant implications for
both molecular catalysis and nanotechnology, given the importance of gold

chemistry to both fields and ongoing studies are aimed at realizing these goals.

3.1.4) Experimental Section
3.1.4.1) General Considerations

Unless otherwise noted, all manipulations were carried out using standard
Schlenk or glovebox techniques under a purified dinitrogen atmosphere.
Tetrahydrofuran (THF), dichloromethane (DCM), diethyl ether, toluene, benzene,
and n-hexane were dried and deoxygenated by sparging with argon and passage
through activated alumina in a solvent purification system from JC Meyer Solvent
Systems. Hexamethyldisiloxane (HMDSO) was distilled from sodium metal and
stored over 4A molecular sieves for 24 hours prior to use. 2-
Methyltetrahydrofuran(2-MeTHF) was distilled from purple sodium benzophenone
ketyl and stored over 4A molecular sieves for at least 24 hr prior to use. Non-
halogenated solvents were tested with a standard purple solution of sodium
benzophenone ketyl in tetrahydrofuran to confirm effective oxygen and moisture
removal. All reagents were purchased from commercial suppliers and used
without further purification unless otherwise noted. (2-

bromophenyl)diisopropylphosphine® (9,10-dibromo-9,10-diboraanthracene, **
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sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBAr"4)* and
K(C1oH10)(THF)o 5 % were synthesized according to literature procedures.
Elemental analyses were performed by Midwest Microlab, LLC, Indianapolis, IN.
Deuterated solvents were purchased from Cambridge Isotope Laboratories Inc.,
degassed, and dried over activated 4A molecular sieves for at least 24 hr prior to
use. NMR spectra were recorded on Varian Inova 500MHz and Bruker Avance
600MHz spectrometers. 'H chemical shifts are reported in ppm relative to
tetramethylsilane using residual solvent as internal standards. *'P and ''B
chemical shifts are reported in ppm relative to 85% aqueous H3PO,4 and
BFs-Et,0, respectively. ''B NMR spectra were manipulated with MestReNova
10.0.2. and had a backwards LP applied to eliminate background signal from the
borosilicate NMR tube.>” NMR spectral resonances are assigned as Ar” and DBA
for those in the phosphino-phenyl and diboraanthracene ring systems,
respectively. EPR X-band spectra were obtained on a Bruker EMX spectrometer
controlled by Bruker Win-EPR software suite version 3.0. Simulations were
performed using the Easyspin software suite.*® UV-Vis spectra were recorded
using a Cary Bio 500 spectrometer using a 1 cm path length quartz cuvette with a
solvent background subtraction applied. Mass spectra were recorded using a
Waters GCT high-resolution mass spectrometer operating in liquid injected field
desorption ionization (LIFDI) mode. X-ray diffraction studies were performed

using a Bruker-AXS diffractometer. Cyclic Voltammetry (CV) experiments were
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performed using a Pine AFP1 potentiostat. The cell consisted of a glassy carbon
working electrode, a Pt wire auxiliary electrode and a Pt wire pseudo-reference
electrode. All potentials are referenced vs. the Fc/Fc* couple measured as an

internal standard.
3.1.4.2) 9,10-bis(2-(diisopropylphosphino)phenyl)-9,10-dihydro-9,10
diboraanthracene (B2P-) (1).

A solution of (2-bromophenyl)diisopropylphosphine (18.01 g, 65.93 mmol) in
ether (50 mL) was cooled to —78 °C and "BuLi (41.2 mL of a 1.6 M solution in
hexanes, 66 mmol) added drop-wise with stirring. The resulting pale-orange
solution was warmed slowly to room temperature and the solvent removed in
vacuo. The residue was re-dissolved in toluene (30 mL) and added dropwise to a
cooled (—78°C) solution of 9,10-dibromo-9,10-diboraanthracene (10.00 g, 29.97
mmol) in toluene (20 mL). The resulting suspension was allowed to warm to room
temperature overnight and filtered. The solvent was removed in vacuo and the
crude solid dissolved in the minimum pentane (ca. 100 mL). Addition of HMDSO
(10 mL) caused a small amount of amorphous solid to precipitate that was
removed by filtration through celite. Concentration of the solution in vacuo
caused the product to precipitate as a pale-yellow solid which was collected by
filtration and washed once with HMDSO (5 mL). Concentration of the mother
liquor yielded an additional crop of material that was sufficiently pure for the
synthesis of metal complexes. Overall yield: 9.85 g, 59%. 'H NMR (500 MHz,

CeDs) 6 7.68 (ddd, J = 8.5, 3.7, 1.4 Hz, 4H, 4x 2-DBAH), 7.50 (d, J = 7.3 Hz, 2H,
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2x 6-Ar"H), 7.40 (t, J = 7.3 Hz, 2H, 2x 5-Ar"H), 7.39 (d, J = 7.5 Hz, 2H, 2x 3-
Ar°H), 7.28 (t, J= 7.5 Hz, 2H, 2x 4-Ar"H), 7.21 (ddd, J= 1.3, 5.5, 8.5 Hz, 4H, 4x
1-DBAH), 1.99 (sept, J = 7.0 Hz, 4H, 4x CH(Me).), 0.88 (d, J = 7.0 Hz, 12H, 4x
CH(Me)), 0.86 (d, J = 7.0 Hz, 12H, 4x CH(Me)). "*C{'H} (125.7 MHz, CgDs) d
162.6 (d, Jep = 38.7 Hz), 152.6, 137.4 (d, Jcp = 20.1 Hz), 136.9, 131.8 (d, Jop =
30.6 Hz), 130.5 (d, Jcp = 16.2 Hz), 126.8, 24.8, 19.9, 19.8. *'P{'H} NMR (202
MHz, CsDs) d 18.40 (s). '"B{'"H} (160 MHz, CsDs) d 34.13 (s). LIFDI MS: m/z
Found: 560.3124; Calc. for [B2P2]*: 560.3104.

3.1.4.3) Au(B2P.)CI (2-Cl).

B2P» (0.100 g, 0.179 mmol) in DCM (5 mL) was added dropwise to a cooled (-15
°C) slurry of AuCISMe, (0.053 g, 0.180 mmol) in DCM (3 mL) with stirring. The
mixture was stirred at —15 °C for 30 mins before being allowed to warm slowly to
room temperature. After stirring an additional 1-hour, the mixture was filtered and
diluted with toluene (8 mL). Concentration in vacuo caused the product to
crystallize. The solid was collected by filtration and washed with a small portion
of benzene (1 mL) and diethyl ether (2 mL). Yield: 0.126 g, 89%. X-ray quality
crystals were grown by layering a concentrated THF solution with toluene. 'H
NMR (500 MHz, CDCl3) & 8.52 (bs, 2H, 2x 6-Ar" H), 7.64 (t, J = 7.0 Hz, 2H, 2x
4/5-ArPH), 7.52 (td, J = 4.0, 7.5 Hz, 2H, 2x 3-Ar"H), 7.43 (t, J= 7.5 Hz, 2H, 2x
4/5-Ar"H), 7.23 (dd, J = 4.5, 6.0 Hz, 4H, 2x 1-DBAH), 7.09 (dd, J = 3.0, 6.0 Hz,

4H, 2x 2-DBAH), 2.41 (m, 4H, 4x CH(Me)y), 0.96 (d, J = 8.5 Hz, 6H, 2x CH(Me)),
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0.94 (d, J = 8.5 Hz, 6H, 2x CH(Me)), 0.83 (d, J = 7.5 Hz, 6H, 2x CH(Me)), 0.81 (d,
J=7.5Hz, 6H, 2x CH(Me)). *'P{'H} NMR (202 MHz, CDCls) & 57.08 (s). *'P{'H}

NMR (243 MHz, THF:Benzene, 3:1) 8 57.33 (d, Jp.p = 239.4 Hz), 53.94 (d, Jp-p =

240 Hz). "'B{'"H} (193 MHz, THF:Benzene, 3:1) & 0.10 (s). Anal. Calcd for

036H44AUBQC|P2(1X CDC|3) C, 48.67 H, 5.08. Found: C, 48.47 H, 5.26.
3.1.4.4) [Au(B2P2)][BArF4] (2-BAr",).

To a solution of 2-Cl (0.050 g, 0.065 mmol) in THF (4 mL) was added Na[BAr4]
(0.055 g, 0.065 mmol) in Et,O (2 mL) and the mixture stirred for 30 minutes.
Precipitated NaCl was removed via filtration and volatiles removed in vacuo. The
solid residue was re-dissolved in the minimum THF (ca. 8 mL) and diluted with an
equal volume of hexane. Concentration of the solution in vacuo caused the
product to crystallize. The solid was collected by filtration and washed with a
small amount of cold Et,O (ca. 0.5 mL). Yield: 0.016 g, 79%. X-ray quality
crystals were grown by layering a concentrated THF solution with hexanes. 'H
NMR (500 MHz, CDCl3) & 7.83 (m, 4H, 4x DBAH), 7.70 (m, br, 8H, 8x BAr"4H),
7.59-7.68 (m, 4H, 4x Ar"H), 7.51 (s, br 4H, 4x BAr 4H), 7.47 (m, 8H, 4x DBAH +
4x Ar"H), 2.43 (m, 4H, 4x CH(Me)z), 0.76—0.94 (m, br, 24H, 8x CH(Me)). *'P{'H}
NMR (202 MHz, CDCls) & 58.75 (s). "'B{'"H} (193 MHz, CDCls) & 32.00 (DBAB),
—6.69 (BAr",). LIFDI MS: m/z Found: 757.2765; Calc. for [AuB2P2]*: 757.2770.

Anal. Calcd for ngH56AUBsF24P2: C, 50.40 H, 3.48. Found: C, 50.41 H, 3.38.
3.1 .4.5) AU(B2P2) (2)

K(C1oH10)(THF)o5 (7.7 mg, 0.038 mmol) in THF (4 mL) was added dropwise to a
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slurry of 2-Cl (0.030 g, 0.038 mmol) in benzene (2 mL) with stirring. The resulting
dark purple mixture was stirred for 10 minutes before volatiles were removed in
vacuo. The solid residue was washed with several portions of hexane, re-
dissolved in benzene (5 mL) and filtered through celite. Removal of all volatiles in
vacuo gave the pure compound as a purple crystalline solid. Yield: 0.020 g
(70%). X-Ray quality crystals were grown by layering a concentrated toluene
solution of the compound with HMDSO. 'H NMR (500 MHz, CsDs) & 6.37, 1.20,
1.14. UV-vis (THF): Amax (M) (€max (M~' cm™)) 375 (sh, 8.1 x 10°), 446 (3.2 x
10%), 473 (3.4 x 10°), 569 (4.4 x 10%). As a result of its extreme sensitivity and
despite multiple attempts, good elemental analysis of this compound was not
obtained.

3.1.4.6) [Au(B2P>)][K(18-c-6)] (2-K(18-c-6)).

K(C1oH10)(THF)o5 (18.7 mg, 0.092 mmol) in THF (2 mL) was added dropwise to a
slurry of Au(B2P2Cl) (0.037g, 0.046 mmol) in benzene (5 mL). The resulting
crimson mixture was stirred 30 minutes before volatiles were removed in vacuo.
The solid was washed with several portions of hexane, re-dissolved in the
minimum benzene (ca. 4 mL) and filtered through celite. A solution of 18-crown-6
(0.013 g, 0.049 mmol) in hexane (8 mL) was then added. Storage at —-15 °C
overnight gave dark red crystals, which were collected by filtration and washed
with hexane (1 mL). Yield (0.036 g, 74%). X-Ray quality crystals were grown by

layering a concentrated benzene solution with HMDSO. 'H NMR (500 MHz,
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CeDe) 8.14 (d, J = 7.2 Hz, 2H, 2x Ar"H), 7.73 (t, J = 6.6 Hz, 2H, 2x Ar"H), 7.61 (d,
br, J = 6.0 Hz, 2H, 2x Ar°H), 7.43 (t, J = 7.4 Hz, 2H, 2x Ar"H), 7.02 (m, br, 4H, 4x
DBAH), 6.64 (m, br, 4H, 4x DBAH), 3.05 (s, br, 24H, 18-c-6), 2.44 (m, br, 4x
CH(Me),), 1.13 (d, J = 7.0 Hz, 6H, 4x CH(Me)), 1.09 (d, J = 7.4 Hz, 6H, 4x
CH(Me)), 1.03 (d, J = 6.9 Hz, 6H, 4x CH(Me)), 1.01 (d, J = 6.8 Hz, 6H, 4x
CH(Me)). *C NMR (126 MHz, CsDs) d 170.45 (br), 139.11 (br), 134.09, 131.45,
127.85, 122.89, 121.20 (br), 120.27, 69.98 (18-c-6), 26.41, 20.04, 19.07. *'P{'H}
NMR (121 MHz, CgDs¢) 3 85.30 (s). ''B{"H} (193 MHz, CsDs) d 11.09 (s). UV-vis
(THF): Amax (NM) (gmax (M~'em™)) 370 (sh, 6.8 x 10%), 485 (2.5 x 10°), 550 (sh,
1.8 x 10°). Anal. Calcd for C4sHssAuB2P2KOg: C, 54.35 H, 6.46. Found: C, 53.95

H, 6.49.
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3.1.5) Spectroscopic Data
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Figure 3.1.5.1. 'H NMR spectrum of B,P, recorded at 500 MHz in C¢Ds.
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Figure 3.1.5.2. *'P NMR spectrum of B,P, recorded at 202 MHz in CgDs.
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Figure 3.1.5.3. ''B NMR spectrum of B,P, recorded at 202 MHz in C¢Ds.
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Figure 3.1.5.4. 'H NMR spectrum of Au(B,P,)Cl recorded at 500 MHz in CDCls
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Figure 3.1.5.5. *'P NMR spectrum of Au(B,P2)CI recorded at 202 MHz in CDCls.
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Figure 3.1.5.6. >'P NMR spectrum of Au(BP2)Cl recorded at 202 MHz in
THF:Benzene (3:1).
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Figure 3.1.5.7. "'B NMR spectrum of Au(B,P)CI recorded at 193 MHz in
THF:Benzene (3:1).
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Figure 3.1.5.8. 'H NMR spectrum of [Au(B2P,)][BAr",] recorded at 600 MHz in
CD3;CN. 8
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Figure 3.1.5.9. *'P NMR spectrum of [Au(BP2)][BArf,] recorded at 202 MHz in

CDsCN.
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Figure 3.1.5.10. ''B NMR spectrum of [Au(B;P2)][BAr 4] recorded at 193 MHz in
CDsCN. 5 SR
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Figure 3.1.5.11. 'H NMR spectrum of Au(B2P5) recorded at 500 MHz in C¢Ds.
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Figure 3.1.5.12. 'H NMR spectrum of [Au(B2P,)][K(18-c-6)] recorded at 500 MHz in
CeDs. 8
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Figure 3.1.5.13. *'P NMR spectrum of [Au(BP2)][K(18-c-6)] recorded at 242 MHz in
CeDe.

96



11.09

) 80 70 60 50 40 p%% 20 10 0 40 20 -3
Figure 3.1.5.14. ''B NMR spectrum of [Au(B,P,)][K(18-c-6)] recorded at 193

MHz in CGDG.
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Figure 3.1.5.15. °C NMR spectrum of [Au(B.P2)][K(18-c-6)] recorded at 126 MHz in

CeDes.
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Figure 3.1.5.16. UV-vis spectrum of [Au(B2P,)][K(18-c-6)] (red trace) and Au(B.Py)
(purple trace).
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Figure 3.1.5.17. X-band EPR spectrum (9.310 GHz) of Au(B,P,) in 2-MeTHF at 298 K
with a field modulation of 1.0 G (black) and its simulated spectrum (gray). Simulation
parameters: g = 1.99216, A[31P] = 56 MHz, A[31P] = 56 MHz, lw = 1.54 mT.
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Figure 3.1.5.18. X-band EPR spectrum (9.602 GHz) of Au(B,P>) in 2-MeTHF at 108 K
with a field modulation of 2.0 G

99



3.1.6) Cyclic Voltammetry Analysis

1st Oxidation
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Figure 3.1.6.1. Plot of peak current vs. square root of the scan rate for the anodic

peak corresponding to [Au(B.P2)]”*" oxidation at ca. -1.6 V.
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Figure 3.1.6.2. Plot of peak current vs. square root (scan rate) for the cathodic
peak corresponding to [Au(B2P2)]"" reduction at ca. -1.6 V.
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Figure 3.1.6.3. Plot of peak current vs. square root (scan rate) for the cathodic peak
corresponding to [Au(B,P2)]”™

2nd Reduction
7 1

y =-2.0377E-01x - 2.0314E-01
] R2 = 9.9983E-01
_6 -'
5 -

-4 4 - .
< ] Experimental
= )
= ] Trendline

-3 1
2]
-1 -'
0 ] 1 " " " " 1 " " " " 1 " " " " 1 " " " " 1 1
0 5 10 15 20 25

\v (mVs-)

reduction atca. -2.0 V

2nd Oxidation
31
2.5 1 y = 8.1450E-02x - 1.2527E-01
] R?=9.9763E-01
2 4
<
215
1 ] ®  Experimental
— Trendline
0.5 ]
b | |
0 T
0

15 20

30

35

Figure 3.1.6.4. Plot of peak current vs. square root (scan rate) for the anodic peak

2I5 I 3I0 I
\v (mVs-1)

corresponding to [Au(B,P2)]-1/0 oxidation at ca. -2.0 V.
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3.1.7) X-Ray Crystallography
3.1.7.1.) General Considerations

Single crystals were coated with paratone oil and mounted on cryo-loop glass
fibers. X-ray intensity data were collected at 100(2) K on a Bruker APEX2 [39]
platform-CCD X-ray diffractometer system using fine-focus Mo K, radiation (1 =
0.71073 A, 50kV/30mA power). The CCD detector was placed at 5.0600 cm from
the crystal. Frames were integrated using the Bruker SAINT software package [40]
and using a narrow-frame integration algorithm. Absorption corrections were
applied to the raw intensity data using the SADABS program.'*"! The Bruker
SHELXTL software package 21 was used for phase determination and structure
refinement. Atomic coordinates, isotropic and anisotropic displacement
parameters of all the non-hydrogen atoms were refined by means of a full matrix
least-squares procedure on F2. The H-atoms were included in the refinement in
calculated positions riding on the atoms to which they were attached. Relevant
details for individual data collections are reported below in Tables 3.1.7.1-3.1.7.4.
For [Au(B2P2)][BAr"4], there was one cation of CssHasAuB,P» and one
disordered anion of B(CgH3Fs)4 present in the asymmetric unit of the unit cell.
Two of the eight CF3 groups of the anion were modeled with disorder (disordered

site occupancy factor ratios were 92%/8% and 63%/33%/4%, see Figure 3.1.7.2).
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Figure 3.1.7.1. Labelled thermal ellipsoid plot (50%) for Au(B,P,)CI.
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Figure 3.1.7.3. Labelled thermal ellipsoid plot (50%) for Au(B2P,)
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Figure 3.1.7.4. Labelled thermal ellipsoid plot (50%) for [Au(B.P>)][K(18-c-6)].
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Table 3.1.7.1. Crystal data and structure refinement for Au(B,P,)CI.

Identification code hh113JT57_0m

Empirical formula C36H44AuB,CIP2

Formula weight 792.69 g/mol

Temperature 100(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2:/n (#14)

Unit cell dimensions a=9.6386(3) A a=90°
b=21.2333(6) A B =96.8338(5)°
c=16.4415(5) A y=90°

Volume 3341.00(17) A®

Z 4

Density (calculated) 1.576 mg/m®

Absorption coefficient 4.604 mm™

F(000) 1584

Crystal size 0.295 x 0.176 x 0.127 mm?®

0 range for data collection 1.573 to 30.508°

Index ranges -183<h=<13,-30=<k=<30,-23</<23

Reflections collected 97387

Independent reflections 10212 [Rint = 0.0340]

Completeness to 6 = 25.242° 100.0 %

Absorption correction Semi-empirical from equivalents

Refinement method Full-matrix least-squares on F?

Data / restraints / parameters 10212 /0 /387

Goodness-of-fit on F? 1.051

Final R indices [/ > 20]] Ry =0.0164, wR> = 0.0363

Rindices (all data) R: =0.0201, wR» = 0.0376

Largest diff. peak and hole 0.583 and —0.340 e/A®
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Table 3.1.7.2. Crystal data and structure refinement for [Au(B.P2)I[BAr,].

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

0 range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to 6 = 25.242°
Absorption correction
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [/ > 20]]
Rindices (all data)

Largest diff. peak and hole

hh112JT56_0m
CeeH56AU BS F24 P2
1620.46 g/mol

100(2) K

0.71073 A

Monoclinic

P2./c (#14)

a=17.6953(5) A  a=90°.
b=16.0112(5) A  p=90.3287(5)°.
c=23.6625(7) A y=090°.
6704.0(3) A3

4

1.606 mg/m®

2.350 mm™’

3216

0.435 x 0.211 x 0.127 mm?

1.715 to 30.034°.
—24<h<?24,-22<k<22,-33</<33
189676

19617 [Rint = 0.0362]

100.0 %

Semi-empirical from equivalents

Full-matrix least-squares on F?

19617 / 38 / 940

1.034

R; = 0.0222, wR, = 0.0525
R; = 0.0283, wR, = 0.0549
0.833 and -0.777 e/A®
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Table 3.1.7.3. Crystal data and structure refinement for Au(B2P5).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

0 range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to 6 = 25.242°
Absorption correction
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [/ > 20]]
Rindices (all data)

Largest diff. peak and hole

hh96JT44 Om
CssHa4AuB2P>
757.24 g/mol

100(2) K

0.71073 A

Monoclinic

P21/n (#14)

a=11.8407(4) A  a=90°.
b=15.9041(6) A p=92.2581(6)°.
c=17.6890(6) A  y=90°.
3328.5(2) A®

4

1.511 mg/m®

4.540 mm™’

1516

0.384 x 0.213 x 0.157 mm?

1.722 t0 29.130°.
—-16<h<16,-21<k<?21,-24</<24
88422

8961 [Rint = 0.0426]

100.0 %

Semi-empirical from equivalents

Full-matrix least-squares on F?

8961/0/378

1.035

R; = 0.0203, wR, = 0.0444
R; = 0.0266, wR,» = 0.0466
1.961 and -0.728 e/A®
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Table 3.1.7.4. Crystal data and structure refinement for [Au(B,P,)][K(18-c-6)].

Identification code
Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

0 range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to 8 = 25.242°
Absorption correction
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [/ > 20]]
Rindices (all data)

Largest diff. peak and hole

hh109JT53_0m
CengoAU Bg K06P2
1216.86 g/mol

100(2) K

0.71073 A

Monoclinic

P2./c (#14)

a=13.6976(7) A a=90°.
b=236.5297(19) A B =118.6446(7)°.
c=13.4336(7) A y=90°.
5899.1(5) A®

4

1.370 mg/m®

2.666 mm™’

2504

0.585 x 0.182 x 0.029 mm?

1.783 to 30.034°.
-19<h<19,-51<k<51,-18</<18
137019

17234 [Riy; = 0.0458]

99.9 %

Semi-empirical from equivalents

Full-matrix least-squares on F?

17234/ 24 / 657
1.065

R; = 0.0247, wR,» = 0.0465
R; = 0.0332, wR, = 0.0486
0.667 and -1.274 e/A®

110



3.1.8) Computational Procedures

3.1.8.1) General Considerations

All DFT calculations were performed using the Gaussian 09 software package. *°
Geometry optimizations were performed using the BSLYP (Becke, three-
parameter, Lee-Yang-Parr) functional, the relativistic Stuttgart-Dresden (SDD)
pseudopotential and basis set on Au, and the 6-31g(d,p) basis set on all other
atoms. To avoid an extensive conformational search, the calculations were
performed on a slightly truncated model in which isopropyl groups (—CH(CHjs)2)
are replaced by methyl group (CHs). The structures were optimized without any
symmetry restraints. Frequency analyses were performed on all calculations to
verify that the obtained stationary points are in fact energy minima. Electronic
density analyses (NBO and QTAIM) were performed on the density obtained
from a single point calculation at the B3LYP/6-311+G(d,p); SDD (Au) level. NBO
analyses up to the NLMO basis set were performed using the NBO6 program.*
QTAIM* analysis was performed using the Multiwfn package*® EPR parameters
were evaluated on a single-point calculation using the SDD pseudopotential and

147

basis sets on Au and the IGLO lll basis set™ on all other atoms. Details are

reported in Figures 3.1.7.1-3.1.7.2 and Tables 3.1.7.1-3.1.7.2.
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J

Figure 3.1.8.1. Spin density of compound Au(B.P,) calculated at the B3LYP/6-
311+G(d,p);SDD(Au) level on a geometry optimized at the B3LYP/6-31G(d,p);SDD(Au)
level.
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Figure 3.1.8.2. Contour map (black) and gradient lines (gray) of the electron density in
the B—Au-B plane. Bond paths are depicted as black lines, bond (BCP) and ring
(RCP) critical points as blue and orange circles, respectively

Table 3.1.8.1. Calculated Geometry of [Au(B:P,"®)]

Au -0.00013091 -0.80937913 0.00230276
B 1.30961904 1.05289684 0.03608214
C 0.74930850 1.79589229 -1.29972300
C 1.45984160 2.38036399 -2.34735754
H 2.54991874 2.37865741 -2.33443524
C 0.79117034 2.95696157 -3.44635675
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1.36317107
-0.59733956
-1.12190463
-1.32755564
-2.41622460
-0.67831569
-1.30901388
-0.74845254
-1.45880640
-2.54888411
-0.78989572
-1.36169724

0.59864316

1.12334825

1.32866422

2.41732751

0.67920159

2.87475824

3.39746403

4.78360114

5.16697115

5.68965652

6.75973584

5.20113693

5.89451675

3.82792451

3.46592223

2.21167653
-2.87421332
-3.39724492
-4.78341299
-5.16684593
-5.68926049
-6.75936674
-5.20042611
-5.89363170
-3.82720034
-3.46501747
-2.21234669

2.71346599

2.41684673

3.79346970

3.39524598
2.95288911
3.38711455
2.37382687
2.36552813
1.79379194
1.05358833
1.79530894
2.37882870
2.37748260
2.95403075
3.39163642
2.94938233
3.38248986
2.37112520
2.36230935
1.79256898
0.65730398
-0.65850489
-0.89534442
-1.91385004
0.15964855
-0.03466613
1.46932306
2.30725161
1.70181819
2.72685982
-2.07001405
0.65826729
-0.65734567
-0.89396933
-1.91248929
0.16110101
-0.03299693
1.47067990
2.30871917
1.70294480
2.72790655
-2.06951836
-2.91251471
-2.27616861
-3.08907003

-4.26371349
-3.48799711
-4.33865047
-2.43032020
-2.48431657
-1.34124320
-0.03637121
1.30004563
2.34835875
2.33542868
3.44791022
4.26576834
3.48952244
4.34065853
2.43130070
2.48527254
1.34154136
0.07092618
0.03719853
0.05594101
0.02248101
0.11377886
0.12940380
0.14978421
0.19372536
0.12716977
0.15202910
-0.06345368
-0.07094561
-0.03622177
-0.05585784
-0.02248165
-0.11477577
-0.13096887
-0.15102857
-0.19559332
-0.12802196
-0.15327783
0.06538954
-1.64698396
-2.48483263
-1.70154279
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2.18719187
2.87039269
3.93833933
2.70565690
2.31006800
-2.72978728
-2.44239578
-3.81002526
-2.20317336
-2.85885489
-2.30168043
-3.92861221
-2.68243781

-3.86850276
-3.27979036
-3.49385037
-2.86779503
-4.21659306
-2.92493294
-2.29506597
-3.10347029
-3.88093099
-3.26833232
-4.20713000
-3.48018975
-2.84885738

Total Energy: —1952.18114432

-1.73501078
1.19638920
1.07518218
2.19572344
1.11412581
1.63712786
2.48308159
1.67976383
1.72281053

-1.21069322

-1.12971155

-1.10234963

-2.20488960

Table 3.1.8.2. Calculated Geometry of Au(B,P,")

Au

OIOIOIOIOOWOIOIOIOIOON

-0.00002613
-1.47564568
-0.86999379
-1.67915041
-2.76059491
-1.13670980
-1.78444503
0.26236965
0.69354237
1.08256566
2.15995771
0.56512230
1.47571516
0.87005341
1.67920046
2.76064271
1.13675058
1.78447947
-0.26232393
-0.69350451
-1.08251222
-2.15990183
-0.56505765

-1.26243390
1.56120977
1.71237105
1.85683039
1.89735948
1.97075761
2.10265958
1.91873449
2.00129966
1.77071382
1.73466371
1.68847557
1.56160643
1.71004751
1.85247594
1.89327849
1.96409521
2.09449335
1.91168959
1.99247587
1.76560656
1.72923902
1.68575659

0.00104824
-0.17279707
1.23798384
2.39633285
2.27881322
3.66746361
4.53117100
3.83608147
4.83094398
2.72890981
2.87381017
1.40897065
0.17020642
-1.24086395
-2.39946523
-2.28202234
-3.67080223
-4.53474129
-3.83932300
-4.83432964
-2.73188725
-2.87671813
-1.41180413
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-2.32127376
-3.00846782
-3.47895156
-4.84073614
-5.19781672
-5.76133522
-6.81074975
-5.31959467
-6.02763267
-3.96975274
-3.64233860
2.32122835
3.00851398
3.47895471
4.84073819
5.19778046
5.76137121
6.81078203
5.31966690
6.02772612
3.96983323
3.64244505
2.61234964
2.05290087
2.26087875
3.67901673
-2.97826509
-2.32172312
-3.99357950
-2.97178142
-2.61258345
-3.67929346
-2.05328295
-2.26108665
2.97835532
2.32165407
3.99352030
2.97233807

-1.46154800
1.16801391
-0.14455791
-0.46738899
-1.47231279
0.49619282
0.23552012
1.79199954
2.55251907
2.11139792
3.12583007
-1.46232417
1.16860174
-0.14439811
-0.46704037
-1.47230013
0.49714393
0.23660679
1.79338334
2.55437704
2.11259871
3.12736946
-1.65687821
-2.52054879
-0.75800799
-1.79690014
-3.04182420
-3.85775557
-3.25658520
-2.98851009
-1.65285316
-1.79235257
-2.51590715
-0.75309722
-3.04136185
-3.85784492
-3.25677789
-2.98601231

Total Energy: —1952.16316476

0.48321587
-0.33769800
-0.07568013
-0.21443550
-0.00823302
-0.61868879
-0.72178473
-0.89150391
-1.21039785
-0.75243618
-0.96541061
-0.48073509

0.33578522

0.07583162

0.21506395

0.01043827

0.61778861

0.72126103

0.88861029

1.20632352

0.74906281

0.96045796
-2.29165909
-2.66187861
-2.80325213
-2.49194509
-0.21473524

0.09823818

0.12881150
-1.30598724

2.29445226

2.49486010

2.66632416

2.80446835

0.21991160
-0.09127763
-0.12367280

1.31106424
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3.2) CO; Reduction with Protons and Electrons with the Au(B.P2) Platform
3.2.1.) Introduction

Since their discovery by Schlesinger and Brown in the 1940s,’
borohydrides have become ubiquitous reducing agents in the synthesis of fine
and commodity chemicals.? More recently, borohydrides have attracted interest
in energy storage applications,® both as a dense and readily handled source of
Hz and in the reduction of CO: to fuels such as formic acid and methanol. The
first report of the reaction if NaBH,4 with CO., dates back to 1955 when Wartick
and Pearson described the solution (dimethyl ether) and solid-state reactions
with mass-balance and hydrolysis analysis.* Additionally, in 1967 these
experiments were carried out in agueous conditions to produce sodium formate
from the reaction of NaBH, with CO,.® The intrinsic role of the borohydride ion in
CO: reduction was later investigated by Mizuta in 2014 who showed that, in the

presence of a catalytic amount of NaBH,, BH; + THF effectively reduces CO» to

trimethylboroxine.® A year later, Cummins et al. reported the direct reaction of
NaBH, with CO. under high pressures yields the trisformatohydroborate
Na[(HB(OCHO)s)] that could be hydrolyzed to yield formic acid.” Additional
studies over the last decades have found that in the presence of a suitable
catalyst, (HBpin) can reduce CO; to give HCO2BPin,® CH;OH,’ HCOOH,™ CO,"

and/or CH4."?
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Despite their broad utility, one drawback to these reagents is the
substantial energy required for their production owing to the use of alkali metal
reductants. For example, millions of kg of NaBH,4 are produced each year by the
NaH reduction of B(OMe)s in the Brown-Schlesinger process (Eq 1).'

B(OCHjs)s + 4 NaH — NaBH4 + 3 NaOCHj; (Eq 1)
NaH is prepared from the reaction of metallic Na with H» gas, and the reduction
of NaCl to metallic Na is one of the most energy demanding electrochemical
processes undertaken on a large scale. The process is carried out at high
temperature (> 600 °C), and although the thermodynamic potential of the reaction
is already large at ca. 4 V, practical reaction rates require operating potentials of
8 V or more. As a result, the reduction of CO, with NaBH4 (or reagents derived
therefrom) produced in this way is wildly inefficient as a means of energy storage.
Synthesis of B—H bonds from protons and electrons at modest potentials may be
a way to alleviate these costs. Despite the significantly negative redox potentials
required to access doubly reduced boranes (~ < -2.2 V vs. Fc/Fc+),' there are
several reports of protonation of a reduced boron center yielding a B-H bond. In
2006, Nozaki reported the isolation of the boryllithium compound LiB(2,6-
iPrCsH4)NCHy>)., which reacts as a boryl anion equivalent, and showed that it
could be protonated with H,O to give the corresponding hydroborane.'® Bertrand
et al. have prepared the carbene-stabilized borylene (CAAC).BH (CAAC = cyclic

(alkyl)(amino)carbene) that could be protonated with trifluoromethanesulfonic
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acid (TfOH) to yield the corresponding boronium salt.’® A related bis(oxazol-2-
ylidene)—phenylborylene system reported by Kinjo et al. produced a hydroborate
via TfOH."” Furthermore, Wagner et. Al synthesized a diborylmethane anion that
could be protonated with TfOH to yield the hydride bridged B-H-B species.'® In

none of these cases has the reactivity of the B—H bonds formed via protonation

i N N H,0 N N Nozaki
Dipp~~ \?/ ~Ar 2~ . AT \||3/ ~Dipp
Li H
Dlpp Dlpp Dlpp Dlpp

TfOH /Y Y\
Bertrand
CF3S0,~

tBu 2Li tBu Li

5 S % S

‘ i T ‘ H i

JPr P iP
iPr i r
'Pr\ :/'Pr 'Pr Pr
F’\Au

\ / DBU-HCI
This Work
B.,_‘.B

23 [K(18-c-6)]
1

Figure 3.2.1. Previously reported examples of protonation yielding B-H bonds and this
work.
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been reported.

We recently reported the synthesis of the disphosphine tethered
diboraanthracene ligand B.P2 (9,10-bis(2-(diisopropylphosphino)phenyl)-9,10-
dihydroboranthrene) and its gold complexes. The anionic complex,
[Au(B2P2)][K(18-c-6)] (1), which features an unprecedented boroauride moiety,
could be accessed at remarkably mild potentials (—2.05 V vs. Fc/Fc*, MeCN)
owing to the formation of a strong 3-centered, 2-electron bond between Au and
the two B atoms.'® Considering that 1 can be thought of as a masked boron
dianion, we wondered if protonation of this complex could provide direct access
to a hydridic B—H unit, akin to the Mn/Cr-mediated reduction and protonation

series of borazine presented by Szymczak et al.?°

We herein report the synthesis
and characterization of this borohydride complex, [Au(B2P2)]H (2), which can be
generated via direct hydride reduction of [Au(B2P2)]CI (3), FLP-type dihydrogen
activation, H-atom addition to the boron-centered radical complex Au(B2P-) (4)
or, most notably, by protonation of 1 with mild organic acids. Borohydride 2 is
sufficiently reactive to reduce CO- to formate, and cleavage of the resulting B—
OCHO bond can be achieved either by addition of an electrophile (including HY)
or by one electron reduction. These results collectively represent a synthetic
cycle for CO. reduction to formate with protons and electrons, with the key finding

being the ability to generate a hydridic borohydride unit via protonation of a

reduced borane accessed at reasonably mild potentials. This reaction sequence
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establishes the chemical feasibility of electroreduction of CO,, an area dominated
by transition metal chemistry, via boron-centered reactivity. Further, given the
recent application of boron-doped graphene to CO, electroreduction,?’ these
molecules offer well-defined molecular models® of fundamental chemical
processes that may underlie small molecule reactivity at doped graphitic carbon

surfaces.

3.2.2.) Results and Discussions

Our initial synthetic approaches to a B—H containing derivative of
[Au(B2P-)] targeted direct hydride for halide substitution. Addition of 1 equiv. K-
selectride to 3 gave borohydride 2 in 89% vyield. This complex could also be
prepared in good yield by exposing 3 to a large excess (>10 eq.) of Et3SiH.
Additionally, 2 could be synthesized via FLP-type H, activation in the presence of
DBU. Exposure of a THF solution of equimolar 3 and DBU to 1 atm H, resulted in
the immediate formation of 2 as judged by 'H, ''B, and *'P NMR spectroscopies.
Single-crystal X-ray diffraction (XRD) studies of 2 show it to be a zwitterion in the
solid state with an intact B-H bond on the DBA face opposite the Au center,
analogous to the previously reported structure of zwitterion 3 (Figure 3.2.2). The
H atom was located in the electron difference map and is bound to a quasi-
tetrahedral B atom (Z£CBC = 340.5°). On the opposite side of the DBA linker,
the Au ion is bound by both P donors in a roughly linear fashion (£PAuP =

156.8°) with a single Au—B interaction (daus = 2.644(1) A) to one nearly-planar B
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atom (££CBC = 359.8°). The 'H NMR spectrum of 2 features a signal at 5.09
ppm for a B—H proton resonance with the expected four-line pattern for coupling
to a single ''B atom (Jgn = 80 Hz). The ''B NMR shows a corresponding doublet
at —10.01 ppm (Jsn = 80 Hz) while the *'P NMR spectrum features two doublets
at 58.4 and 55.9 ppm (Jrp = 255.0 Hz), consistent with inequivalent phosphine
ligands on the NMR timescale.

Given the precedent for H-atom transfer reactivity at boron,?® we also
targeted the synthesis of 2 from the neutral radical species 4 via H-atom addition.
Reaction of Au(B2P2) with one equivalent of BusSnH produces 2 and

BusSnSnBus over 12 hours via apparent H-atom addition as judged by 'H NMR

Scheme 3.2.1. Synthesis of 2 via reaction with H™, H and H".
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