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EPIGRAPH

I believe there exists, and I feel within me,
an instinct for the truth, or knowledge or discovery,

of something of the same nature as the instinct of virtue,
and that our having such an instinct is reason enough

for scientific researches without any practical
results ever ensuing from them.

Charles Darwin

Scientists may seek Truth, but
Science is the Art of Approximation.

Just as artists use their media to represent the truths they see about the world,
we scientists use our equations, models and case studies
to represent the truth as it has been revealed to us.

But in those dark weary hours in the dead of night, we acknowledge to
ourselves that we have provided only a representation of reality,

an approximation of a deeper truth.
Our models and conclusions are like shells in which we hope

to hear an echo of the great ocean beyond.

William Hooke

When you have a father and a mother
who work all their lives so you can have
an education and build your body - it’s a blessing.

Lou Gehrig

The world breaks everyone..
and afterwards, many are strong at the broken places.

Ernest Hemingway
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PREFACE

I begin this thesis with a feeling of mischievous satisfaction. As a child, I trained as

an actor and learned to improvise in order to evoke emotion in my audience. This was my

coping mechanism, of sorts, for an awkward and over-zealous personality. But, at my core,

I am an artist. The truth is that during the course of my life, I fooled a lot of people

into thinking that I was scientist and not an artist, including myself.

I sang before I could speak, danced before I could walk, and played with anything

made sound. Music was not explicitly encouraged by my father. To buy my first guitar,

he encouraged me to save my money and I did so, buying it myself at the age of 13 with

money that I earned from tutoring. Πέτρoς, my father, pushed me towards a career in

medicine and I studied hard in order to appease him. From my father, I inherited a thirst

for challenges and expanding my boundaries which allowed me to excel, and from my

grandfather, Mηνάς an obsession with music, which distracted me fully. My grandfather

was not fondest of my educational pursuits, offering marriage as the “logical” solution.

But my mother and grandmother pushed me to continue with my education to achieve

the dreams that they could never achieve.

In our village, Óλυµπoς Kαρπάθoυ, more than 80% of women never complete high

school. This meant that my grandmother longed for an education that she never had the

opportunity to have. Despite this precedent, my grandmother always encouraged me to

pursue my education. My mother was married with a child at the age of 21, and she never

completed college either. My grandfather never learned to formerly read and write in an

academic sense, and my father never completed grade school. I had no precedent, but I

did have encouragement.

Having gone to school in Greece during my early years and Greek schools throughout

my primary education, the Socratic method-dialogue, also known as “conversational

learning” or “learning with interruptions” was common. But my tendency towards hyper-

stimulation always caused me to ask “too many questions.” Most American teachers found
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it disruptive, but in the 9th grade, Ms. Primm asked me to stay after class; what I thought

would be some form of reprehension to which I was accustomed. Instead, she told me

that I “asked the best questions that [she] ever heard from a student.” She encouraged

me to become a scientist too, instilling within me the most important thing I’ve carried

throughout my educational career: belief in myself. She was the first person that made me

see myself as a scientist and helped me begin a journey that began with biology, seeded in

chemistry, and flourished with physics.

My love affair with physics began at 4 AM on a June summer night of 2012, while

laying on a couch in Baltimore, MD, USA. Exhausted from his shift at Hilltop Carry-out,

my συγχωριανóς Eλυµπίτης (fellow villager of Olympos) and dear friend Minas Giorgakis

laid in his bed and put on a documentary for me to watch about the mysteries of the

universe in hopes of occupying me enough so that he could get some sleep.

I fell deeply in love.

The vastness of the universe humbled me. The mere idea of combining chem-

istry with physics excited me. Just a year before, I was awarded a Bachelors degree in

Biochemistry from Manhattan College, and was admitted to the PhD program at the

University of California, San Diego, my dream school. After bearing witness to the vastness

of the universe, I found myself looking for professors to work with in the department that

studied cosmic chemistry. I quickly changed my mind when I realized that those beautiful

fly-through images of space took decades to systematically study and acquire knowledge

about. I was reminded of the advice of my beloved Physical Chemistry professor, Jianwei

Fan, PhD: “Sophia, stick to your strengths.”

At first, I was offended by Dr. Fan’s suggestion that I stick to the study of organic

chemistry, though I admittedly had intuition for synthesis. The Greeks have a word for

my response: πείσµα (péizma). I encourage the reader to decide upon a definition for this
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poly-semantic word. With ισχυρoγνωµoσύνη (ishchyrognomośini), a bull-headed will and

stubbornness, I decided I would take the middle road, combining my love for biochemistry

with my thirst to understand why we observe what we do, in the study of biophysics.

I packed up my life in my 2007 Spyder Eclipse named “Angie” after the legendary

Rolling Stones song and along with my best friend, Yianna (Rodriguez) Zois, took off on

a ten day adventure to go to the place I always wanted to be, San Diego, California, USA.

The brisk air, the green mountains; those sandy valleys and glorious sunsets of San Diego

acted as a mere substitute for the place which I had never been able to call home, my

beloved Karpathos.

In retrospect, I sometimes wish I had listened to Dr. Fan. I often wish that I took Dr.

(Kyriacos Costas) K.C. Nicolaou’s invitation to join his lab at Scripps. I would have likely

finished my PhD earlier, since I had a strength for synthesis; but the number of gray hairs

in exchange for total synthesis over biophysics might never be known.

But something drew me to biophysics–the ability to “see” what I learned about as a

biochemist. Using mathematically-accurate artistic and computational approximations of

proteins and cells, I could finally fully understand the concepts that Dr. Chiara Indiani

drilled deep into my mind. It felt intuitive to examine proteins and see how their secondary

structure was disrupted by molecular motions. The challenges, however, were more than I

anticipated.

The learning curve for biophysics was incredibly steep. In addition to the complexities

of the mathematics I was learning, I suffered endlessly by exchanging “a” with α and

“b” with β, a pain that my beloved professor Katja Lindenberg found comical, since

Greek is my first language. But at the end of statistical mechanics, I had the pleasure of

understanding the elegance with which quantum mechanics and physical chemistry describe

molecular motion with each integration of each time step. This, “mathematical magic”

coupled with my ability to visualize the biophysical implications of system alterations on

the level of the protein convinced me that I was on the right path. I had my heart set on
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biophysical chemistry, but still I yearned for more. I yearned to apply my understanding

of biochemistry to the complexities of diseases.

Early on in my life, I developed a kind of obsession with identifying and understanding

illnesses. This started as soon as I could read. My mother had a book by H. Winter

Griffith called “A Complete Guide to Pediatric Symptoms, Illnesses and Medications.” I

would often find myself correlating my siblings’ symptoms to illnesses suggesting doctors

visits, way before WebMD was a thought. My curiosity blossomed in my later years as I

learned more about biology and the ways that mutations lead to phenotypical differences

that cause diseases; diseases that I would one day witness the real effects of.

In college, I worked for three years in the Department of Surgery Research at Johns

Hopkins University Bayview Medical Center. In partnership with the Firefighters Asso-

ciation of Baltimore, MD, we aimed to treat burn wounds on animals and humans with

the use of protein cocktails. As a biochemist interested in serious medical conditions, this

fascinated me–the concept that small proteins (nm) could heal damaged tissues for the

regeneration of skin cells to form collagen and hair follicles to generate α-keratin. I later

worked in the Department of Surgical Pathology at Montefiore Medical Center where I

dissected human organs. Morbid, I know but I worked with diseased organs daily, trying

to understand why patients were sick. It was here that I learned the true meaning of

multiscale biochemistry.

Like true scientists, after receiving any surgically removed organ during or after

surgery, we followed a very strict protocol. The organ would be measured, visually

described, and the description dictated to a computer directly into a pathology report.

The organ would be fixed in a fixation agent, like formaldehyde, in order to preserve the

ultrastructure of the specimen. Successive dissections dependent on the tissue type would

be made until an interesting characteristic was identified. This could be, for instance, a

calcification of tissue or necrosis of a major artery. My job was to identify the morphology

of the disease on the cellular level using a light microscope. In this way, the multiscale
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nature of disease was revealed to me.

This experience sparked within me a desire to understand the cause of diseases.

In graduate school, my advisor, Dr. Rommie E. Amaro gave me an opportunity to do

just this in a way that I could have never imagined. Using a unique set of computational

tools, I have learned to tease out the factors that underlie diseases. The most satisfying

part of this experience is the use of tools that allow you to visually interpret the results of

our experiments. In the following dissertation, I will describe my adventures in using the

computational microscope to understand the motion of biological molecules as well as the

underlying causes of diseases.
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The evasive source and cause of a disease is oftentimes smaller than you think.

Imagine, though, chasing something that you can’t actually see. Fortunately for the modern-

day biomedical scientist, computational tools harnessing the power of physics using the

language of mathematics are able to see the invisible. Computational microscopy is a

tool developed to visualize the energetic behavior of biological systems. With progressive

advancements in computer graphics and the development of mathematical theories to
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explain biological behavior, computational microscopy has become a useful tool used by

many kinds scientists over the greater half of the last century to understand the energetic

underpinnings of a system’s behavior. Unlike most “microscopes,” it allows us to visualize

extremely small entities like atoms, molecules, proteins, and cells. More importantly, it

allows us to spatiotemporally transcend scales to understand the dynamics of our systems.

Like a biophysically detailed time-lapse, we are able to see through time, to understand

chemical “butterfly effects” that transcend the time and space scale at which they operate.

In this thesis, the computational microscope is applied to multiple systems to visualize

and analyze the physicochemical mechanisms that underlie biological function. Specifically,

the thesis is centered on the structure of proteins and subcellular mechanisms driving

cardiac function and dysfunction. In the first chapter, we address the concept of multiscale

biological simulations, integrating information from atomistic scales toward cellular models

of Protein Kinase A. The second chapter demonstrates the ways that atomistic simulations

can be applied to the study of the structural interactions in protein-protein complexes

vital to the infectious mechanisms of Group-A Streptococcus. In the third chapter, two

scales of biological simulation are used in tandem to understand the structure and the

kinetic behavior of Protein Kinase A RIα. The final chapter incorporates the kinetic

understanding of relevant species in a realistic subcellular geometry to investigate signaling

mechanisms that underlie calcium activation in healthy and diseased hearts. Particular

attention is paid to the way that structural alterations on the atomistic, molecular, and

membranous level alter the behavior of biological systems. Holistically, this thesis is

centered on the use of computational tools and the development of realistic models that

can reproduce experimental findings and predict the behavior of systems, driving the

creation of new hypotheses.
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Introduction

The Greek word, πoλυσήµαντα (poly-sêm-anta, english: polysemantic) translates

to the phrase: a symbol or word that has multiple meanings. Depending on where accents

are located in Greek and other accented languages, the meaning of a word can change

completely. As such, words can be misinterpreted when translating from one language to

another, especially because of the sociological implications of the passage of time. From

this phenomenon stems so much of the world’s fascination with science: the cycle of

observation and theoretical inquiry. Curious minds have learned simply that words cannot

properly encapsulate the meaning of something fully. Rather, it is feeling and bearing

witness that satisfies the understanding that the mind craves.

A language exists, which is not subject to misinterpretation of translation, and

that is the language of mathematics. From the first known records of mathematics which

date back to approximately 3000 B.C.E. until now, what has been common between four

sheep and four goats has always been their value, equaling to 4. With common units of

length, time, volume and the like, we can describe in exponential terms the quantitative

scale of a value. Using mathematics, humans can describe observable phenomena–from the

attractive forces that govern the behavior of the smallest atom, to the revolution of planets

in galaxies that are not our own. What is more, mathematics allows us to tease out simple

formulas that predict the future state of a system. In simple terms, mathematics is used

to encode, translate, and communicate energy.

To understand the power of mathematics, we must lend some consideration to the

ability to visualize energetic concepts. This concept is best demonstrated by one of the
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most amazing phenomenon known to mankind: the musical genius of Beethoven, a deaf

man. How could it be possible for a man who could not hear sound to produce such

melodic masterpieces? The answer is simply, his ability to visualize sound energy. Ludwig

van Beethoven once said,

“I always have a picture in my mind when composing, and follow its lines.”

Ludwig van Beethoven was able to see and feel the mathematical and energetic

relationship of musical notes relative to one another, even though he could not hear them.

His words allude to the existence of a phenomenon that so many non-traditional artists

and scientists live: a deepened understanding of something is somehow tied to ones ability

to feel it, and visualize it in their mind’s eye. The famous mathematician, James Joseph

Sylvester once said,

“The musician feels mathematics, the mathematician thinks music:

music the dream, mathematics the working life.”

Many of us do not know what it means to “visualize” energy, music, or mathematics.

But, if you have the ability to hear sound, you may recognize the note commonly known

as “A” or “La.” If you used a pressure reader near the source of the note, the pressure

recorder would record 440 energetic detections per second, or 440 Hz (see figure 0.1a).

Lower frequencies like the note “D” or “Re” at 240 Hz have longer wavelengths (see figure

0.1b). One can infer that the “lines” that Beethoven referred to are the amplitudes of the

sound frequencies.

If you have ever played a musical instrument, you may already know that these

notes compliment each other nicely, a phenomenon known in music as a “harmonious

interval.” Practically, this means when the two sound waves interact, their waves sum to

produce a complex wave (see figure 0.1b). This is but one example of how mathematics

and art can be used to visualize a physical phenomenon best described by the senses.
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Figure 0.1. A drawing of musical frequencies

(a) A drawing of the high frequency, 440Hz musical note,“A” or “La” (red);(b) A drawing of the
lower frequency, 294Hz musical note,“D” or “Re” (blue);(c) A drawing of the additive frequencies
of “A” and “D” to produce an complex wave function; Adapted from freely available lessons by
3Blue1Brown.

This begs the question: how is one able to perceive the energies that surround

them? The answer is quite complex but can be simplified with the following explanation:

biological organisms are master detectors. Every organism, from single-celled bacteria

to humans, to organisms that have yet to be discovered living in the deepest oceans and

the highest peaks, have the ability to detect energetic changes in their environment in

some form or another.

With properly functioning sensory faculties, we are able to perceive and interpret the

energies around us, allowing us to respond to stimuli, learn, and adapt to our environment.

This process, however, only works for phenomena that can be observed–at frequencies and

energies that can be detected by our sensory systems. More often than not, interesting

phenomena are too small/fast and large/slow to be observed and interpreted without

aide of technology. Fortunately, the language of mathematics can be used to describe

many observable and non-observable phenomena, allowing for contextualization and
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understanding by inquisitive minds.

0.1 Scaling up through the sciences

As noted earlier, our knowledge and understanding of the world around us is

timelessly encoded in the language of mathematics. The application of mathematics to the

laws that govern the physical world is termed, physics. The laws and theories of physics

applied to the study of matter are collectively, chemistry. The use of chemical principles

used to describe living systems is biochemistry. All of these disciplines are common in

their use of mathematics to prove the principles that are upheld by what we are able to

observe through our senses and detect with technology.

Oftentimes, biological systems are too complex, and detailed mathematical descrip-

tions of them become difficult to compute by hand. For this, scientists use computational

algorithms that describe and predict behaviors. But the more explicit we become in

describing a system, the more computational power we use. In 1965, Gordon Moore

published a paper entitled, “Cramming more components onto integrated circuits,” [1]

where he first theorized about the relationship between the passage of time and the growth

of computational power, known today as Moore’s law. Over half a century later, our

technology has grown to a point where almost every person carries a small, powerful

computer in their pocket that gives them access to volumes of up-to-date information at

the mere decision of the user. Though computation is at its most advanced state to date,

biological systems operate so fast and at such small time intervals, that computational

power is often the limiting factor in obtaining an answer to questions that go beyond the

spatiotemporal scale in question.

Nevertheless, using our currently available technology combined with sophisticated

mathematical algorithms, we computational biophysicists have collectively created a

powerful tool, the computational microscope. Like a true microscope, we can choose a
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Figure 0.2. Levels of protein structure

(a) α-helix structure;(b) Parallel β-sheet structure; (c) Tertiary structure of a protein comprised
of β-barrels and an α-helix

“magnification” or scale to visualize that which we seek to see. Using innovative methods

for artistic rendering of atoms, proteins, and cells, the invisible suddenly becomes visible.

Most importantly, we can see the biophysical ramifications of small changes that scale

upwards, a biophysical butterfly effect.

With humility, I ask the reader: join me in this journey across scales of microscopic

biophysical space-time to see the unseen, through the lens of the computational microscope.

0.2 The multiscale nature of biochemistry

The complexity of biological systems stems from the various scales of space and

time at which they operate. In terms of the field of biochemistry, there are many levels

that operate in unison to produce an observable phenomenon. This section will describe

the various mechanisms that underlie structure in biochemical systems.

Firstly, atoms, joined by attractive forces called bonds, link together to produce

molecules called amino acids (also known as residues). Atoms come in different sizes and

shapes but are generally on the order of 1x10−10m (1Å). There are twenty different amino

acids, all differing in their side-chain structure and therefore, their physical properties.
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Each amino acid molecule has a common backbone which begins with a reduced nitrogen

atom (amino) and ends with an oxidized carbon atom (acid) with a width of about 4Å.

Some amino acids are polar and charged, interacting with other charged species and water.

Others are hydrophobic and “hide from water,” through water-exclusion forces. These acid

interactions dictate the structure or the “fold” of the protein. Figure 0.2 demonstrates the

levels of protein structure: from hydrogen bonding in alpha helices (a) and beta sheets

(b), to folds that result in tertiary structure (c).

The structure and dynamics of a protein are determined by its sequence. The

amino acid sequence is specified by the genetic code of the organism, known as deoxyribose

nucleic acid (DNA). Our DNA is translated to messenger ribonucleic acid (mRNA) and

transcribed to the protein sequence. The linkage of amino acids in a linear “code” is known

as the primary structure of a protein. When the protein chain lengthens, the protein

backbone folds onto itself using non-bonding interactions between the backbone hydrogen

and oxygen atoms called hydrogen bonds. These interactions lead to the formation of

secondary structure like α-helices and β-sheets (see Figure 1a,b). Collections of secondary

structural moieties folded on top of one another are the protein’s tertiary structure (see

Figure 1c). Several proteins within the same system are a “complex” and the individual

proteins are known as subunits. For example, a protein complex of two regulatory (R) and

two catalytic (C) subunits can be written as R2C2. Two or more subunits within a complex

is termed the quaternary structure of the protein. Different quantities and arrangements of

the same subunits can have different structures and functions. Thus, quaternary structure

yields multiplicity in the number of structures a single protein complex can have.

A slight change in amino acid sequence can alter the structure of a protein drastically,

and oftentimes, affect its function. For example, residues like Glycine (G) confer lots

of flexibility in helices, often causing helices to break reversibly. A simple mutation to

a more-rigid residue like Proline (P) lead to a physical turn in the structure and this

can break a helix without allowing for flexible return the helical moiety. Mutations thus
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oftentimes affect the way the protein moves and interacts with other molecules, leading to

large-scale changes in signaling cascades on the cellular level. Such is true with changes in

expression levels of DNA, RNA, proteins, In this way, atomic-level alterations can have

a “biophysical butterfly effect”, leading to the presentation of disease phenotypes in the

organism harboring the mutation. Protein Kinase A (PKA), one of the systems examined

by this thesis, is a prime example of a case in which a single-point mutation can alter

structure and chemical interactions, and is discussed in more detail below.

0.3 How mutations affect protein structure: a mul-
tiscale perspective

Protein Kinase A is found in every multicellular organism. It is responsible for

responding to extracellular signals and eliciting an intracellular response; a signal translator

and amplifier of sorts. PKA binds a molecule named cyclic adenosine monophosphate

(cAMP) in the cyclic-nucleotide binding domain (CBD) regulatory subunit. Once enough

cAMP is bound to PKA, the regulatory subunit relieves its inhibition on the catalytic

subunit, which is responsible for phosphorylating protein targets, effectively deactivating or

activating them in response to an extracellular signal. This tightly controlled mechanism

is vital to the function of the cell. Any dysregulation in the response of PKA has major

detrimental effects that are common in cancer [2], and endocrine disorders like Carney

Complex [3].

There are several isoforms of the Regulatory subunit, denoted by Types I and II

and subtypes α and β. In the RIα isoform, a positively charged reside in PKA, Arginine

(R), in position 333 of the regulatory subunit interacts directly with the first molecule of

cAMP sensed by PKA. Because of its flexibility, the tetrameric for PKA RIα structure has

proven difficult to elucidate [4], but scientists figured out that with a mutation of Arginine

333, the dynamics of PKA are stabilized enough for structural biochemists to be able to
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Figure 0.3. The interface of the Regulatory and Catalytic subunit of Protein Kinase A (PKA),
comparing the mutant to the wild-type

(a) The mutant Regulatory subunit (R) R333K (purple) in complex with the Catalytic subunit
(C). The B/C helix (gold) connecting the two cyclic nucleotide binding domains (CBDs) is
extended in the heterodimeric crystal structure; (b) The wild-type R subunit adopts a stable
conformation with a break in the B/C helix at Glycine 235 (black star). The structure is
juxtaposed with the R333K mutant (transparent purple) to show the consistency of the WT
conformation with the solvent-exposed regions in the C subunit (green) determined by solution
experiments

visualize it using crystallography [5].

When Arginine (R) 333 is mutated to a Lysine (K), which is also positively charged,

the shape of the PKA molecule changes significantly (see Figure 0.3). This mutation

also affects PKA function, altering the way the protein responds to the cAMP signal.

In the wild-type (WT) R333 case, the protein is dynamic, with a swinging domain that

creates a “butterfly” motion in the protein. It responds to cAMP by dissociating the

regulatory subunit from the catalytic subunit, relieving inhibition and activating PKA. In

contrast, the K333 mutation makes the protein more globular, neutralizing the motion

of swinging domain [6] and changes the interaction between cAMP and the regulatory

subunit, completely altering the way that PKA is activated. This and other mutations

are known to be the root cause of diseases like Carney complex [7] and Adrenocortical

Cushing’s adenoma [8]. In this way, a single residue mutation effects the dynamics of a
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protein, and the way that the protein interacts with its environment.

0.4 Structural methodologies for visualization of
biology

As the specialization of this degree is centered on Multiscale Biology, the following

chapters will discuss experimental techniques that utilize information gathered from

different structure elucidation methods with range in spatial scales from small molecule (Å),

to proteins (nm), to membranous structures on the sub-cellular level (µm). The following

subsections review the pertinent methodologies for biological structure determination

and alludes to the ways these methods facilitated scientific investigations in the coming

chapters.

0.4.1 X-ray Crystallography

Crystal x-ray diffraction also known as X-ray Crystallography is popular and widely

used method for determining the atomic positions of small molecules and proteins. First

developed in 1912 by Max von Laue and later further developed by William Henry Bragg

and Sir William Lawrence Bragg [9], crystallography is based on the principal of X-ray

diffraction by the atoms in an ordered crystalline substance.

As the name indicates, the subject of interest is suspended in a crystallographic

form and a beam of X-rays at a particular energy, marked by its wavelength, λ, is shot at

the sample. Using the angle, θ of the diffracted X-ray beams and a mathematical equation

known as the Bragg equation:

nλ= 2dsinθ (0.1)

Where n is an integer multiple of the wavelength, λ, d is the distance between the planes

of the crystals, and θ is the scattering angle, one can understand the structure of the

biological specimen. From the interference and diffraction pattern produced by the X-ray
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beam after hitting the crystal lattice structure, one can back-calculate the atomic positions

of a molecule.

X-ray crystal structures yield Å-level resolution of structure; a real asset for

computational chemists and biophysicists who use the atomic positions as inputs for their

models. Section 0.5 of the introduction will elaborate more on how atomistic positions are

used to understand dynamics and functions of small molecules and proteins.

It is important to note that an X-ray structure is but a snapshot of a molecule

in a single state of its ensemble of conformational states. Although crystal structures

are unparalleled in their accuracy of single structure, by their nature, they do not give

information about molecular flexibility. Furthermore, the resolution of atomic positions

falls off as molecules increase in size. Therefore, crystallography is limited in the size

of the molecules that can be investigated with sufficient accuracy. Fortunately, X-ray

structures can be complimented with other structural determination and computational

methodologies, which will be discussed in the coming sections.

Chapter 2 combines X-ray Crystallography with molecular dynamics (discussed in

section 0.5.1) in an investigative study of common structural motifs used by an infectious

organism. Chapter 3 demonstrates the ways that molecular dynamics can expand on

structural information not offered by crystallographic snapshots of proteins.

0.4.2 Hydrogen/Deuterium Exchange Mass Spectrometry

A remedy for the limited structural states that can be understood with X-ray

crystallography is offered by Hydrogen/Deuterium Exchange Mass Spectrometry(H/DxMS).

Since the discovery of the “heavy” hydrogen isotope, deuterium in 1932 by Harold Urey et

al. [10], deuterium has been used in a myriad of experimental techniques. Early in the

21st century, the application of the deuterium to the study of proteins appeared [11].

As indicated by the name, in H/DxMS, hydrogen and its isotope, deuterium

exchange (H/Dx) for one another. This happens specifically with labile hydrogen atoms
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on the backbone nitrogen of the amino acid, which exchange nearly instantaneously. In a

solution of D2O (the deuterium version of H2O), exchange is rapid if backbone nitrogen

are surface-exposed or located in an unstructured region of the protein, and slower if the

nitrogen is buried in the core of a protein. Exchange can happen at a rate on the order of

milliseconds to seconds if amide nitrogen are not hydrogen bonded, but can take minutes

to days if hydrogen bonds are stable. Timescales of exchange translate to the “degree of

protection” of the amide, and indicate the degree of flexibility of the structural regions that

comprise the protein.The exchange reaction of hydrogen for deuterium is then quenched

by acidification of the protein (pH 2.5), which “freezes” the deuteration of the protein.

Proteolysis then follows–a method that degrades the protein into smaller fragments to be

analyzed by Mass Spectrometry (MS). Mass Spectrometry determines the atomic weight of

the fragments, yielding the information of which nitrogen have exchanged their hydrogen

for deuterium [12].

This technique is used to understand the comparative changes in dynamics induced

by protein-protein interactions, ligand binding, as well as signaling modes of a protein

[13]. H/DxMS analysis gives a dynamic picture of the protein, allowing biophysicists to

understand the flexibility of a molecule. Moreover, the technique is less limited in the size

of molecules that can be investigated.

This method compliments computational methods like Molecular Dynamics which

examine the flexibility of proteins. Chapter 3 details how H/DxMS in combination with

Molecular Dynamics have brought us closer to a more holistic understanding of the

structure of the RIα Protein Kinase A complex, as was briefly discussed earlier.

While X-ray crystallography and H/DxMS give information about protein structure

on the angstrom level, a multitude of methods exist that reveal insights about global

structural features of proteins on the nanometer scale.
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0.4.3 Small-Angle X-ray Scattering

As discussed earlier, X-ray crystallography utilizes the diffraction, or “bending”, of

X-rays to resolve the atomic positions comprising molecular structure. But X-rays can also

interact with a sample, altering the momentum of the beam in a phenomenon known as

scattering. In the phenomenon of scattering, the photons in an X-ray beam interact with

electrons in a specimen. The scattering pattern indicates the fluctuation of the electron

density of the matter being investigated. Put more simply, the scattering profile gives

information about the overall shape of a molecule. This is accomplished by measuring the

scattering profile in the following way: a photon of wavelength λ scatters off the molecular

sample at an angle, 2θ, is related to the scattering vector, q through equation 0.2. The

intensity of the scattering vector, I(q) is a function of a multitude of factors, including

molecular volume, size, electron density.

q = 4π sin(θ)
λ

(0.2)

The elegant mathematical theories used to obtain information SAXS experiments are

explained best by experts in the literature [14], but to summarize: experimental scattering

profile, information such as the molecular weight, molecular volume, and radius of gyration

can be determined. What is important to note is that SAXS provides information about

an ensemble of structural states, in stark contrast to X-ray Crystallography, which resolve

explicit conformations of a molecule. This means that multiple structural states can be

“lumped” together in the same SAXS profile if a molecule is flexible.

Molecular structure is, by nature, affected by its environment. SAXS has been

used to understand molecular structure under particular conditions such as temperature,

pH [15], and in complex with other molecules and proteins [6]. Thus, SAXS profile of a

protein in its apo or “unbound” state will undoubtedly differ from its profile in a “bound”

complex with a small molecule, another protein or even another copy of the same protein
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(homodimers, homotrimers, etc.)

In the same way, mutations can affect molecular structure resulting in different

SAXS profiles when compared to wild-type (WT). Such is the case of a system examined

in chapter 3 of this thesis. Using SAXS as a guide, we contextualized the crystallographic

structure of PKA combined with the H/DxMS in order to validate the existence of

an unresolved conformation of the regulatory subunit obtained by MD, the Flipback

conformation.

As is the true with most technologies, crystallography and solution-structure

methodologies like H/DxMS and SAXS crystallography have their limitations. That

limitation being, molecular size. As the molecular size increases, so often does the difficulty

in resolving fine details from the system. As we transcend spatiotemporal scales, we can

utilize methods that take advantage of different technologies to gain insight into larger

systems.

0.4.4 Cryo-electron Microscopy

Just two years ago, the 2017 Nobel Prize in chemistry was awarded to Jacques

Dubochet, Joachim Frank and Richard Henderson for the development of Cryo-electron

microscopy (Cryo-EM) in resolving structures of biomolecules in solution. Cryo-EM utilizes

an electron beam as an illuminating source to visualize proteins and large molecular species

that are flash-frozen in their native structural states.

Cryo-EM remedies the “single crystalline conformation” limitations of X-ray crystal-

lography and combines the strength of solution structural methods that describe ensembles

of structural states, as discussed in the earlier introductory sections. The ingenious method

behind Cryo-EM completely avoids the cumbersome crystallization of biomolecules by

flash-freezing the subject of study in an aqueous solution. This method, also known

as vitrification was developed by James Dubochet along with Jean Lepault nearly 40

years ago [16–18]. The original spray-freezing method evolved further with the use of
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Figure 0.4. Angstrom-level representations of biomolecules
The Sarco/Endoplasmic Reticulum Calcium-ATPase, SERCA2a, (PDBID:5MPM) crystal-
lized at 3.3Å resolution (green, left) and the Ryanodine Receptor, RyR2, (PDBID:5GOA)
resolved at 4.2Å with Cryo-EM.

high-pressure which increases the depth of vitrification [19].

Vitrification involves cooling the sample to very low, cryogenic temperatures thus,

embedding it a glass-like, irregularly frozen vitreous state upon treatment with liquid

ethane. This is a significant advantage over X-ray crystallography, as many proteins will

not crystallize easily due to the inherent dynamic nature of proteins in general. It is

also especially advantageous for large membrane proteins which are notoriously hard to

crystallize.

Cryo-EM is a popular method for understanding the structure large proteins

which can be too “noisy” for solution experiments like H/DxMS and Nuclear Magnetic

Resonance [20]. In fact, the larger the system, the more intriguing the results of Cryo-EM

can be [21–23]. Figure 0.4 compares the size of SERCA2a, a protein resolved using X-ray

crystallography at 3.3Å (PDBID:5MPM, unpublished) and RyR2, a large (>2MDa) protein
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at 4.2Å resolved with Cryo-EM [24]. The larger the system, the more possible projections

of the molecule that can exist. This is because molecules are not oriented when they are

captured in vitreous water. Thus, part of the “magic” of Cryo-EM stems from its use in

resolving information from randomly oriented molecules.

Our ability to visualize dynamic, large, and complex Cryo-EM structures is a direct

result of Joachim Frank’s work in analyzing and processing the images derived from Cryo-

EM [25]. The algorithm, known as cross-correlation, averages ensembles of structural states

to resolve what is known as a “single-particle reconstruction” of a biological specimen [26].

Using several thousand 2D images of the same molecule in random orientations, the

algorithm generates 3D reconstructions from 2D projections [27]. Cryo-EM gives molecular

detail on the order of several angstrom. The size-limitation problem still stands however:

the larger the protein, the lower the atomic resolution will be. But the popularity of this

method has and will undoubtedly continue to drive the development of both Cryo-EM and

the algorithms used to resolve molecular structures. One can only hope that the resolution

will improve, yielding atomistic detail. In the context of this thesis, Cryo-EM structures

gave us insights into the subcellular context of large structures like the Ryanodine Receptor.

0.4.5 Electron Tomography

As we scale up from atoms to molecules in living systems, the next “step” is towards

the subcellular level. This is realm within which we can see the direct effect of protein

function. The name, “subcellular,” alludes to the fact that this scale is a part of a cell. At

this level, organelles– boundaries that distinguish specialized regions of the cell–become the

subject of focus. To see within the cell, we can use a special technique used to determine

the 3D structure of a cell known as electron tomography.

As its name indicates, electron tomography uses an electron beam as its source

of a penetrating wave of energy. Tomography is an imaging technique that “sections” or

penetrates the object being visualized. In the case of electron tomography, a biological
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specimen undergoes a tilt-series, where the sample is exposed to the beam at different

angles resulting in different projections of the specimen [28,29]. The specimen itself is fixed

with chemicals that “lock-in” the physical structure and stained with heavy metals that

increase the contrast of lipids and proteins. Gold particles are used as fiduciary markers

to align projections. Upon alignment, the boundaries of important structures are traced

and used for reconstruction on the sub-volumes [30,31].

Three-dimensional reconstructions of subcellular volumes are used in this thesis to

understand the dynamics of calcium signaling in cardiac tissue [32] as first pioneered by

Hake et al [33]. In the fourth chapter these realistic geometries are used as a framework

within which we reconstitute the biochemical reactions that underlie calcium signaling.

Additional details will follow in the final section of the introduction and in chapter 4 of

the dissertation.

0.5 Biophysical structure modeling methodologies

Studying the dynamics of biological systems is no simple feat. Proteins are incredibly

small and their relevant motions are fast; oftentimes too fast to study with available

technology. Fortunately, a number of computational tools that simulate molecular motion

exist. This section contains a brief introduction to two such computational tools used to

model the dynamics of proteins, Molecular Dynamics and Brownian Dynamics.

0.5.1 Molecular Dynamics

Since the late 70’s, computers have been used in the field of biochemistry, providing

visual insights into dynamics of proteins [34, 35]. Since the first simulations of bovine

pancreatic trypsin inhibitor, the field of biomolecular simulation has expanded both in

the systems that have been investigated, along with the algorithms used to compute the

forces that govern molecular motion.

Molecular Dynamics (MD) is a computational technique used to compute the
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spatial and temporal atomic motions according to Newton’s equations of motion, where

F is force, m is mass, and a is acceleration (see equation 0.3). The gradient of potential

energy, U in space is described by equation 0.4 where ~R are the coordinates of all of the

atoms in the structure. These atomic positions oftentimes are often determined by X-ray

crystal structures as discussed in earlier sections.

F =ma (0.3)

F (~R) =−∇U(~R) (0.4)

For a large system, the analytic solution of this function is impossible to solve, but

a numerical solution is made possible using a collection of equations that describe the

forces that influence atomic motions. Time is discretized, or subdivided into small steps.

In MD, simulated time is on the order of 1 to 2 femtoseconds (fs), 1×10−15 s. After every

time step, we solve for the potential energy function by adding the forces acting on every

atom in the system. The forces can be split into bonding and non-bonding forces as they

are in equation 5, below.

U(~R) =
∑

bonds

kbond
i (ri− r0)2 +

∑
angles

k angle
i (θi− θ0)2

︸ ︷︷ ︸
Ubonding

+
∑

dihedrals

kdihe
i [1 + cos(niφi + δi)] +

∑
improper

kimpr
i (ϕ−ϕ0)2

︸ ︷︷ ︸
Ubonding

+
∑

i

∑
j 6=i

4εij

(Aij

rij

)12
−
(
Bij

rij

)6+
∑

i

∑
j 6=i

(
qiqj

εrij

)
︸ ︷︷ ︸

Unon-bonding

(0.5)

The bonding potential term is defined as the oscillation of the equilibrium bond

length. The angular potential is defined as the oscillation of three atoms forming an angle.

The dihedral potential is a torsional relation of four atoms oscillating about a central
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bonding axis. The improper dihedral potential is defined as the the torsional relation

of three atoms connected to a single common atom. All bonded forces are described by

corresponding spring constants (ki) with radial distances (r), angular (θ), proper dihedral

angle (φ), and improper dihedral angle (ϕ) terms. These terms have an initial value and

value after every time step (0 and i, respectively).

The van der Waals potential, which is synonymous with the total intermolecular

forces, is expressed as a “6-12” Lennard Jones potential, or the difference between experi-

mentally determined values Aij and Bij over the radial distances, rij multiplied by the

Lennard Jones well depth, εi. Finally, the electrostatic potential, the effective attraction

and repulsion of charged or partially charged atoms, is proportional to the partial atomic

charges of the atoms (qi qj), and inversely proportional to the interatomic distances (Rij).

The summation of the bonding and non-bonding forces over iterative timesteps

yields a spatial displacement of each atom in the system. Collectively, is results in the

motion of the atoms in the system, or intramolecular motion. Iterative solutions of these

equations through time result in a trajectory of atomic motion. This is, effectively, a

change in structure as a function of time, where the protein moves and responds to its

environment. The amount of linear time that can be simulated depends both on the size of

the protein (in number of atoms) and amount of computational power available. The larger

the system, the more computational power required and the longer it will take to compute

the dynamics. Today, it is routine to simulate nanosecond-microseconds of time with MD,

though there are methods that can access millisecond timescales and beyond [36,37].

The energetic terms associated with each atom in a system are collectively called

a molecular mechanics “force field.” Depending on what the user is modeling– lipids,

carbohydrates, nucleotides, proteins, metals–one can find force fields specialized in the

accurate prediction of the dynamics of the chosen system. Some examples of force fields are

AMBER [38], CHARMM [39], GROMACS [40], and OPLS [41]. The forcefields are used to

design the system in terms of energetics, and the potential energy function is calculated with
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a molecular mechanics engine. The engines have been developed with their own force fields

such as the GROMOS MD engine [42] that is used with the GROMACS force field. Some

popular molecular mechanics engines include AMBER [43], NAMD [44], GROMOS [42],

and Desmond [45]. Many force fields and engines can be mixed-and-matched, leaving the

decision up to the user on what combination best suits their study.

The protein being investigated using MD can represent the solvent in one of two

ways: explicitly or as a continuum. The explicit solvent description models models

every atom in the solvent including ions and water; sometimes even dummy atoms that

are meant to model the behavior of the electrons in the molecules. In the continuum

approach, the solvent is modeled inexplicitly as an electric field. The latter approach yields

increased computational power as water calculations take up significant amounts of time

and computational resources [46]. Nevertheless, water interactions with the system are

oftentimes important, so there is an information trade-off for inexplicit water modeling.

Additionally, there are a wide variety of explicit water models that can be used to simulate

a chosen system [47].

MD has a long, successful track record of uncovering the hidden features of protein

motions [48]. In these cases, that which is not revealed by crystallography or other

structure determination techniques can be further understood with the use of molecular

dynamics. In this thesis, MD will be applied to the intramolecular investigations of several

systems. The first chapter highlights ways that molecular dynamics simulations can yield

an understanding of the kinetic transitions as well as provide new structural states to be

interrogated by intermolecular investigation methods. Molecular dynamics is then used

to understand the effects of mutations in a protein-protein system in chapter 2. Finally,

in chapter 3, MD is used to elucidate a conformation of PKA that has been elusive to

crystallographers.
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Figure 0.4. Brownian Dynamics simulation with BrownDye
A molecule begins on the centrosymmetric b-surface and can either escape (red arrow)
beyond the q-surface or associate (green arrow) to the specified binding region (gold)

0.5.2 Brownian Dynamics

As we scale upwards through biomolecular space and time, the next level we reach

centers on the intermolecular interactions between molecules.Brownian Dynamics (BD)

is a method developed to model bimolecular diffusion that estimates kinetic association

events. This is especially useful for the step-wise understanding of complex biochemical

mechanisms.

BD is specifically focused on the determination of second-order association kinetics

between proteins and their binding partners, be they proteins, small molecules, or ions.

BD uses several main assumptions in order to accomplish this. Firstly the solvent is

modeled using a dielectric field and ionic continuum. In stark contrast to MD, most often,

BD models the atoms in a molecule as rigid bodies. Furthermore, each atom is modeled

as a hard-sphere and the atomic forces include mostly electrostatic forces.

The equation of molecular motion (equation 0.6) in a BD is a function of the
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position (x), rotation (φ), attractive and repulsive forces (F), and the torque (T) of a

particle index (i). A random vector (w) simulates the random “kicks” of water on the

diffusion of the particle, an effective “Brownian motion” factor. D is the diffusion tensor

and s the matrix square root of the diffusion tensor [49].

d

 xi

ϕi

= dt

kBT
D · (Ti) +

√
2dts ·w+∇·Ddt (0.6)

The algorithm used to compute rate constants from the Brownian trajectories was

developed by Northrup, Allison and McCammon [50] and is known in the field as the

NAM algorithm. Using the NAM algorithm, one can determine the spatial trajectory of

diffusing molecules in 3D space. A number of BD simulation programs exist, including

SDA [51,52], ReaDDy [53], Brownmove [54], BD_BOX [55], and BrownDye [49]. In order to

set up a simulation, one must parameterize system by assigning the appropriate parameters

to each atom. The relevant terms in the case of BD are van der Waals radial (r) and

charge (q) values that are assigned using MD force fields like the ones discussed in section

0.5.1, earlier. Using the charge and radial parameters, an electrostatic description of the

molecule in the form of a charge field can be calculated using programs like DelPhi [56]

and APBS [57]. In this thesis, the program BrownDye is used to perform BD simulations

and APBS is used for the electrostatic description of the biomolecules.

In BD simulations with BrownDye, diffusing molecules are placed at a radial

distance b from oneanother. The simulation begins by placing the diffusing molecules at

different distances of b distributed over a spherical surface, called the “b-surface” (see

figure 0.4). Molecular diffusion begins at the start of the simulation and ends in one of two

ways: 1) diffusion past a certain distance “q” or the “q-surface”; or 2) with association of

the two molecules after satisfying the contacts set by the user in the encounter complex

description [49]. The timescale of integration is typically on the order of picoseconds

(1 × 10−12s). With the speed of BrownDye, millions of trials can be run on a desktop
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computer to estimate β, or the probability that a binding partner located on the b-surface

will satisfy the encounter complex and “react” rather than escape beyond the q-surface.

Figure 0.5 demonstrates the basic principles of the BrownDye simulation package used to

determine the rate constant of bimolecular association, kon (see equation 0.7, below).

kon = kbβ (0.7)

The rate of diffusion of the ligand to the b-surface, kb can be calculated using

equation 0.8, below. kb is a function of U(r), the effective potential energy at a distance

r from the center of the sphere, the temperature, T, Boltzmann’s constant, kb, and the

diffusion coefficient, D, which varies with radial distance, (r).

kb = 4π[∫∞
b

exp( U (r)/kBT )
r2D(r) dr

] (0.8)

Models of the structural and kinetic properties of biomolecules are useful not only

to those experimentalists seeking to further understand and visualize the behavior of

biochemical systems, but also to computational biologists seeking to model biochemical

phenomena on the cellular level. Using BD simulations, we can tease out the association

rates between to molecules which is often difficult to measure with experiments. Chapter

1 will demonstrate the ways in which this kinetic information can be used in higher-order

cellular models. In chapter 3, Brownian Dynamics will be applied to the understanding of

cAMP association to PKA.

0.6 Subcellular biochemical modeling methodolo-
gies

As we continue transcending through the scales of space and time, having already

explored intramolecular and intermolecular biophysical methods, we arrive at the scales

within which these biochemical properties exert their effects: the subcellular level. Even
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the slightest alterations in chemical structure and function can have dramatic effect on the

dynamics of cellular systems; what I like to call “a biophysical butterfly effect.” Biological

modeling at this level allows for the holistic understanding of the biochemistry within the

subcellular space. This is especially useful for complex systems where multiple competing

reactions occur. More specifically, it is useful for the comparison and contextualization of

reactions in biological systems. A number of methods that model diffusion and reactions

on the molecular level have been developed and used extensively to explain and predict

biological observables.

0.6.1 Modeling biology with differential equations

Biochemical descriptions of biological systems are almost always complex. In a

given cell, anywhere from hundreds to thousands of different molecular species exist. The

reactions between these species only intensifies the complexity when you consider that

these molecules react with many different partners to create more molecules. Yet again,

mathematics comes to the rescue, giving biologists, chemists, and physicists a language

that can be used to model biological systems. One can describe the dynamical system in

terms of the change in molecular concentration and local density with respect to time.

Modeling the change of a single feature of a molecular system, say a given concen-

tration, with respect to time, is the essence of an Ordinary Differential Equation (ODE).

Reactions, too, can be described in this way, where the concentrations of molecular species

change as a function of the forward and reverse rate of consumption. Molecular diffusion

in single and multiple can also be modeled with ODEs making this a powerful method for

understanding the temporal evolution of gradients in cellular systems [58].

One can also model the change in a system as a function of several simultaneously

changing parameters. Consider for example, modeling the rate of change as a function of

time through a particular three-dimensional region, like an organelle. This is arguably a

more complex problem As it involves a spatial description of the system. To model systems
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like this, one could use spatial ODE solvers [13] which use specialized algorithms to model

diffusion through space. Partial differential Equations (PDEs) can also be used for this

purpose but are comparatively more computationally intensive to solve as space has to

be subdivided into elements within which diffusion is computed. What is common to

modeling with differential equations is a very important factor: the continuum assumption.

The fundamental component of all differential equations in biological simulation

methods is the use of non-discrete representations of molecular species, or a continuum.

That is, all the elements of a species are non-distinguishable from one-another. In ODE

and PDE biological simulations, molecular concentrations are modeled as a “field” that

evolves in its intensity with the passage of time according to the equations that describe

its temporal evolution. This approximation works well for large molecular quantities that

are well-mixed. It falls short, however, when we consider situations in which chemical

concentrations are extremely low.

0.6.2 Discrete subcellular spatial modeling

As insinuated in the earlier section, there are delicate systems in biology where

molecular concentrations are extremely low. For example, a region in the cardiac muscle

cell that sits between the plasma membrane and an organelle named the sarcoplasmic

reticulum (SR), the dyadic cleft, has a range of zero to three molecules in the subspace

at equilibrium [59]. In such cases, it is inappropriate to treat molecules as a continuum.

Instead, we can model the molecules discretely using algorithms that track the spatial

location of these ions. The more we seek to model realistic phenomena in biology, the

more we need to consider the importance of stochasticity and explicit spatial encounters

in biological systems. Using the program MCell [60,61], we can accomplish exactly this.

MCell is a Monte-Carlo is a simulation method that stochastically and explicitly

models the 3D diffusion and reaction of molecular species by treating them as particles. The

Monte-Carlo technique uses random number generator that “chooses” from an ensemble
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of values which correspond to the spatial displacement of molecules in the system. In the

context of subcellular modeling, Monte Carlo algorithms are are aimed at representing the

stochastic nature of a biochemical system. The algorithm describing motion in MCell is

a simplified, unbiased random walk. Molecules are modeled as volume-less points that

diffuse according to assigned diffusion parameters.

One of MCell’s most impressive attribute is that it is a master counter. At every

integration timestep, often on the scale of microseconds (1×10−6s) molecules have the

potential to either react, diffuse, or remain unchanged. MCell explicitly counts not only the

number of particles but tracks their spatial location in subcellular geometries. Molecular

reactions can be unimolecular or, upon spatial encounter of two species, bimolecular.

Reactions can happen with two freely diffusing “volume” molecules, or between membrane-

bound “surface” molecules and volume molecules. Surface molecules are also capable of

3D diffusion and changing their orientation in a membrane.

Using mesh generation tools like GaMer [30,31], cellular reconstructions obtained

from electron microscopy can be reconstructed into usable meshes for biological simulation.

These complex subcellular geometries can be imported into CellBlender [62], the graphical

user interface that is used to design the MCell simulation. Kinetic descriptions of the

subcellular system, taken from experiments or from simulation techniques like MD and

BD can be used to model the reactions between species in the system. The focus of the

final chapter is the use of MCell to understand cardiac function and dysfunction on the

subcellular level.

0.7 Conclusion of the Introduction

The following body of work examines cardiac function and dysfunction from the

perspective of the proteins that comprise the respective systems. This is no trivial feat,

as cardiac dysfunction can occur at multiple scales of space and time. How are these
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scales examined? How do changes at one spatiotemporal scale translate, resulting in heart

disease? How are mathematics and physics applied understand these invisible biological

phenomena?

Although the language of mathematics is common, the ability to learn mathematics

is often a matter of privilege. The same is true of any systematic study. To devote time

to the study of a discipline is likely to come with ones’ basic needs being met, though

examples to the contrary likely exist. Even more so, exposure to literature and teachers

that can aide in the understanding of the concepts underlying higher order mathematics

grants even more opportunity to expand the boundaries of mathematical study.

For those of us that have been so privileged to study a discipline systematically, it

remains our duty to communicate its power. The goal of this work is to show just how

stunningly visual biochemistry in the language of mathematics can be. It aims to highlight

the fruit yielded by the collaborative and independent labor of a world full of talented

mathematicians, physicists, and chemists alike. This thesis is an ode to the scientists

that came before me. It is but an example of the application of mathematical theory and

biophysical methods to the chemical understanding of molecular function through the lens

of the computational microscope.
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Chapter 1

Multiscale Modeling of protein sys-
tems

In the following manuscript, we demonstrate ways in which multiscale computational

methods can integrate structural and chemical information to better understand how,

for example, changes in protein sequence such as point mutations can alter organ-level

phenotypes like cardiac contraction. Our case study is focused on Protein Kinase A

(PKA) and the manuscript provides examples of multiscale methods that compliment each

other, showing how structural and kinetic information can be combined into an integrated

understanding of the protein system. Included in the manuscripts are examples of how

multiple short molecular dynamics (MD) simulations can be combined into an atomistic

Markov State Model (MSM) to provide mechanistic insights and kinetic information

about important structural transitions in the cyclic nucleotide binding domain (CBD) of

PKA. Moreover, classical and accelerated MD simulations can provide new structures

to understand the association kinetics of the second messenger, cAMP using Brownian

dynamics (BD) simulations. BD simulations yield kinetic rates of bimolecular association

reactions that can be used in protein-scale MSMs. Semi-analogous to MSMs are milestoning

methods that have been developed and optimized in the Amaro group at the University of

California San Diego that directly integrate MD and BD to understand on and off-rates of

ligands to their protein systems. Finally, we discuss how the information provided by the

aforementioned methods can be used in higher-order subcellular and whole cell models.

27



REVIEW
published: 09 September 2015
doi: 10.3389/fphys.2015.00250

Frontiers in Physiology | www.frontiersin.org September 2015 | Volume 6 | Article 250

Edited by:

Mario Nicodemi,

Universita’ di “Napoli Federico II,” Italy

Reviewed by:

Supriyo Bhattacharya,

City of Hope Medical Center, USA

Andrzej Stasiak,

University of Lausanne, Switzerland

*Correspondence:

Rommie E. Amaro,

Department of Chemistry and

Biochemistry, University of California,

San Diego, 9500 Gilman Drive,

La Jolla, CA 92093-0340, USA

ramaro@ucsd.edu;

Andrew D. McCulloch,

Departments of Bioengineering and

Medicine, University of California,

San Diego, 9500 Gilman Drive,

La Jolla, CA 92093-0412, USA

amcculloch@ucsd.edu

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Biophysics,

a section of the journal

Frontiers in Physiology

Received: 29 June 2015

Accepted: 24 August 2015

Published: 09 September 2015

Citation:

Boras BW, Hirakis SP, Votapka LW,

Malmstrom RD, Amaro RE and

McCulloch AD (2015) Bridging scales

through multiscale modeling: a case

study on protein kinase A.

Front. Physiol. 6:250.

doi: 10.3389/fphys.2015.00250

Bridging scales through multiscale
modeling: a case study on protein
kinase A
Britton W. Boras 1 †, Sophia P. Hirakis 2 †, Lane W. Votapka 2, Robert D. Malmstrom 3,

Rommie E. Amaro 2, 3* and Andrew D. McCulloch 1, 3, 4*

1Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA, 2Department of Chemistry and

Biochemistry, University of California, San Diego, La Jolla, CA, USA, 3National Biomedical Computation Resource, University

of California, San Diego, La Jolla, CA, USA, 4Department of Medicine, University of California, San Diego, La Jolla, CA, USA

The goal of multiscale modeling in biology is to use structurally based physico-chemical

models to integrate across temporal and spatial scales of biology and thereby

improve mechanistic understanding of, for example, how a single mutation can alter

organism-scale phenotypes. This approach may also inform therapeutic strategies or

identify candidate drug targets that might otherwise have been overlooked. However, in

many cases, it remains unclear how best to synthesize information obtained from various

scales and analysis approaches, such as atomistic molecular models, Markov state

models (MSM), subcellular network models, and whole cell models. In this paper, we use

protein kinase A (PKA) activation as a case study to explore how computational methods

that model different physical scales can complement each other and integrate into

an improved multiscale representation of the biological mechanisms. Using measured

crystal structures, we show how molecular dynamics (MD) simulations coupled with

atomic-scale MSMs can provide conformations for Brownian dynamics (BD) simulations

to feed transitional states and kinetic parameters into protein-scale MSMs. We discuss

how milestoning can give reaction probabilities and forward-rate constants of cAMP

association events by seamlessly integrating MD and BD simulation scales. These

rate constants coupled with MSMs provide a robust representation of the free energy

landscape, enabling access to kinetic, and thermodynamic parameters unavailable from

current experimental data. These approaches have helped to illuminate the cooperative

nature of PKA activation in response to distinct cAMP binding events. Collectively,

this approach exemplifies a general strategy for multiscale model development that is

applicable to a wide range of biological problems.

Keywords: protein kinase A, multiscale model, molecular dynamics, Brownian dynamics, Markov state model

Introduction

The goal of multiscale modeling is to understand how the hierarchy of biological structures
integrates to produce biochemical, cellular and physiological functions. At the single cell scale,
signaling networks are analyzed using system analysis methods to provide mechanistic they are

Abbreviations: PKA, Protein Kinase A; MD, Molecular Dynamics; MSM, Markov state model; BD, Brownian Dynamics.
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insights into the functional interactions between proteins and
second messengers. Network models of cell signaling have
recently been developed for neurons (Cowan et al., 2012),
myocytes (Bondarenko, 2014), and pancreatic beta cells (Wang
et al., 2012), to name a few. These cell-scale network models are
helpful to understanding normal cell physiology, pathobiology,
and therapeutic mechanisms. Interest in the phenomenological
effects of protein mutations (Kirchner et al., 2012; Cong
et al., 2013) are driving the development of new methods
to incorporate atomic and molecular-scale models and data
into whole cell simulations. To this end, advances in atomic-
scale modeling, particularly molecular dynamics (MD) and
Brownian dynamics (BD) simulations, have provided insights
into the effects of mutations on protein folding and protein-
protein interactions (Kozack and Subramaniam, 1993; Cregut
and Serrano, 1999; De Rienzo et al., 2001; Koukos and Glykos,
2014). However, bridging these scales and disciplines to create
models that can predict the effect of a point mutation or post-
translational modification on cellular phenotypes remains a
daunting task. Frequently, even nomenclature does not readily
transcend disciplines, making interdisciplinary collaborations
across scales more difficult. Furthermore, understanding the
limitations of models and methods at each scale to avoid error
propagation is essential to obtaining physiologically meaningful
solutions. In this article, we describe atomic and protein-scale
Markov state modeling (MSM), as well as milestoning, which
allow us to bridge atomic-scale molecular models to cell-scale
signaling networks (Figure 1).

Over the past decade, the availability of high-resolution
protein structures and the capabilities of atomistic molecular
modeling techniques has improved dramatically. MD and
atomic-scale MSMs use atomic-resolution structural data to
model the position of atoms in a protein and calculate the forces
between them. This is helpful in predicting functional states and
rates of conformational change. However, these methods cannot

FIGURE 1 | Bridging gaps through multiscale modeling. Simulation and

modeling methods are limited in the spatial and temporal scales that can be

represented. Arrows show the information that can be fed from one simulation

regime to another.

easily calculate the rates of interactions betweenmolecules, which
are needed for higher scale reaction network models.

Advances in BD simulations and milestoning have provided
tools that are specialized in calculating diffusion-limited
association rate constants. Previously, the data used for
parameterization of the transitions in protein-scale MSM came
almost exclusively from in vitro experiments where conditions
are controlled to limit the number of potential states. These
data included phosphorylation rates, kon/koff of binding events,
and ion channel transitions (Clancy and Rudy, 1999; Campbell
et al., 2010; Boras et al., 2014). However, many molecular
events occur at time-scales that cannot be easily accessed by
experiments (Zhou and Bates, 2013). Fortunately, computational
simulations have provided alternative methods for determining
parameters for whole-cell models. BD simulations rely on
simplifying assumptions that allow simulations of microscopic
events that span larger systems and timescales thanmore detailed
methods, such as MD, allow. BD can be used to determine
association rate constants (kon) for diffusion-limited protein-
protein and protein-small molecule interactions. It specifically
examines how electrostatic and steric properties of molecules
affect molecular encounter rates. Combining this information
with in vitro experiments and MD-derived states will enable
a new generation of protein-scale MSMs to be developed for
incorporation into whole cell models.

As an example problem necessitating the integration of
approaches across a broad range of spatial and temporal scales,
we focus here on protein kinase A (PKA), which is activated
by cAMP and is a key regulator of many cellular processes. In
cardiac myocytes, for example, PKA is a critical regulator of
intracellular calcium handling cycling, and its dysregulation is
well known to be a contributing factor in heart failure (Bers,
2001). The PKA holoenzyme consists of two regulatory (R)
subunits and two catalytic (C) subunits. Each R subunit has
two cAMP-binding domains (CBD), a DD-docking domain, and
a disordered linker region containing the inhibitory sequence
that interacts with the C subunit. PKA is activated upon cAMP
binding to the CBDs on the R subunit inducing release of the
C subunit. Over the last 15 years, several whole-cell models
of ventricular myocytes that incorporate calcium release and
beta-adrenergic stimulation through a simplified PKA activation
mechanismwere developed (Saucerman et al., 2003; Bondarenko,
2014). More recently, a mechanistic protein-scale MSM of PKA
holoenzyme activation was developed (Boras et al., 2014). Still,
incorporating an improved PKA MSM into existing whole
cell models will provide a more physiological testing of PKA
activation as well as the capability to predict the effects of PKA
mutations on the whole cell scale.

In this review, we highlight some of the tools and techniques
used to develop integrative models that span scales from
the molecule to the cell, including: MD, atomic MSM, BD,
milestoning models, protein MSM, and whole cell modeling. We
provide the nomenclature necessary to bridge these scales and
discuss the limitations of these approaches as well as ways to
minimize error propagation. Finally, we show the role of MD and
BD simulations have played in the development of a protein scale
MSM of PKA RIα and discuss the role this new protein-scale
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MSM of PKA will play in existing whole cell models of cardiac
function and disease states.

Nomenclature

This paper deals primarily with Markovian models, or models
that are only dependent on the current state of the model and not
the history of the states it has visited. Both MSM and milestoning
models operate under a Markovian assumption. Also, for this
paper we use “atomistic” or “atomic-scale” to describe any
model that treats atoms explicitly. This generally includes MD,
MSM, BD, and milestoning. These models stand in contrast to
“protein-scale” Markov models and cell-systems models which
primarily focus on protein and cell function and general protein-
protein and small molecule-protein binding events. Even though
atomistic MSM and protein MSM are both Markovian models,
they serve distinct purposes.

Accessing the Conformational Ensembles
of Proteins

A protein’s function is governed by its conformational ensemble,
which can be modulated though mutations and intermolecular
interactions (Tsai et al., 1999; Henzler-Wildman and Kern, 2007;
Boehr et al., 2009; Teilum et al., 2011; Marsh et al., 2012; Motlagh
et al., 2014). Therefore, to build multiscale models starting at
the atomic scale, one needs to elucidate the key conformational
states of a protein and the dynamics of those states from atomistic
data associated with those states. This can be achieved through
exploration and characterization of the protein’s conformational
ensemble. In this section, we review computational methods for
modeling the conformational ensembles of proteins important in
cell signaling. We begin with an overview of molecular dynamics
simulation methods and conclude with a discussion on the use of
MSM to determine the conformational ensemblemore efficiently.

Molecular Mechanics and Molecular Dynamics
Simulations
Atomistic models of conformational ensembles can be
computationally generated from molecular mechanics
simulations. These simulations require two components: a
force field that describes how the atoms interact with each
other and a method for exploring the conformational ensemble
(Karplus and McCammon, 2002; Adcock and McCammon,
2006).

To simplify the complex quantum mechanical interactions
between atoms, molecular mechanics simulations use empirical
force fields to describe the interactions between atoms. These
force fields are described in terms of classical mechanics (Wang
et al., 2001; Ponder and Case, 2003; Adcock and McCammon,
2006). For example, each atom of a system is described as
a charged particle in space. Bonding interactions between
atoms are described as springs using Hooke’s law. Nonbinding
interactions between atoms are described as Columbic and van
der Waals interactions. Commonly used force fields include
CHARMM (Brooks et al., 2009), AMBER (Cornell et al., 1995),

OPLS (Kaminski et al., 2001), and GROMOS (Oostenbrink et al.,
2004). While a discussion on force field selection is beyond
the scope of this review, it is important to understand the
assumptions and performance bias of a force field used in any
simulation (Guvench and Mackerell, 2008; Vitalini et al., 2015).

The motion of the atoms resulting from the force field
determines the conformational ensemble of the system. The
motions of these particles are generally simulated either with
Monte Carlo techniques that randomly sample conformational
space, or throughMD simulations, where Langevin’s or Newton’s
laws of motion are solved over time (Karplus and McCammon,
2002; Adcock and McCammon, 2006). While MD is more
computationally expensive than MC, it retains the temporal
relationship between conformations, which is advantageous
when quantification of kinetic parameters is desired. PopularMD
programs include AMBER (Pearlman et al., 1995), CHARMM
(Brooks et al., 2009), GROMOS (Christen et al., 2005), and
NAMD (Phillips et al., 2005).

Theoretically, MD simulations can sample the entire
conformational ensemble of a system given infinite simulation
time. While certain specialized supercomputers have been built
to sample into the millisecond range (Shaw et al., 2010), with
current commodity-level resources, MD simulations can only
continuously sample a system for a few microseconds at most,
which is insufficient to effectively sample most ensembles,
including the CBD. However, with the increasing performance of
supercomputers, GPU-accelerated MD simulations (Götz et al.,
2012; Pierce et al., 2012; Salomon-Ferrer et al., 2013), and the
use of highly distributed computing (Pande et al., 2003; Kohlhoff
et al., 2014), multiple parallel MD simulations can achieve
total non-continuous sampling time approaching the high-
microsecond to low-millisecond range. MSMs can subsequently
be used to stitch together the many short-timescale simulations
into one cohesive framework that allows the extrapolation of
longer-timescale data. This MSM framework was used for the
CBD system discussed below.

Atomic-scale Markov State Models of a
Conformational Ensemble
An atomic-scale MSM describes the conformational ensemble
of a protein as the probability of transitioning between discrete
collections of conformational states at a fixed time (Pande et al.,
2010; Chodera and Noé, 2014). This can be visualized as a
bidirectional graph, (see Figure 2), where each node represents
a cluster of similar conformations. The probability of transition
between states is indicated by the thickness of the connecting
lines in Figure 2. If the conformational states and the transitions
can be accurately determined, then the MSM describes the
thermodynamics and the kinetics of the system’s conformational
ensemble. Thus, one can derive the key parameters required for
higher scale models with a MSM (Prinz et al., 2011a).

Atomic-scale MSMs of the conformational ensemble of a
protein are built from MD simulations. Each conformation
sampled during the simulation is assigned to a discrete
conformational state, usually by clustering. Then the transitions
between the discrete states are determined from the MD
trajectory by counting the transitions. The transition counts
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FIGURE 2 | Protein Kinase A cyclic nucleotide binding domain Markov

state model. This figure shows a graph repensantion the transtions between

metastable states of the CBD with cAMP bound. Each node repesents the

conformational state. The edges the transition between the node with their

thickness being proportional to the probiblity of transtion.

are then used to generate a transition probability matrix, the
mathematical representation of the MSM (Pande et al., 2010;
Prinz et al., 2011a,b; Chodera and Noé, 2014). The transition
probability matrix can be analyzed to determine the equilibrium
population of each confrontational state, to identify metastable
conformational states, to understand the principal motions of
the protein, and to study the mechanisms of conformational will
change (Pande et al., 2010; Prinz et al., 2011a,b; Chodera andNoé,
2014).

Because a MSM depends on the probabilities of transitions
between discrete conformational states, the conformational
ensemble of the protein can be sampled more efficiently than
with traditional MD. To effectively sample the conformational
ensemble of a protein at equilibrium using traditional MD
simulations requires running the simulation long enough to
explore the conformational ensemble multiple times. However,
when building a MSM the MD simulations can be focused on
the transitions between states avoiding spending time sampling
stable conformations and improving the sampling of rare events.
For example, a hypothetical transition between active and
inactive states can be determined frommultiple short simulations
that explore the intervening conformations without requiring
a single simulation to bridge the two states. Additionally, once
a preliminary MSM is build poorly sampled transition can be
additionally sampled to improve the quality of overall MSM.

Detailed methods for building MSMs for MD simulations
have already been described (Sjoberg et al., 2010; Prinz et al.,
2011b). Here we highlight key considerations for building aMSM
that will be integrated with higher-scale models with examples
from a recently developed MSM of the cyclic-nucleotide binding
domain of the R subunit of PKA (Malmstrom et al., 2015). The
overall process of building a MSM is as follows: (1) defining the

conformational space; (2) initial molecular dynamics sampling;
(3) iterative refinement of the MSM; and finally (4) selection of
the final model for analysis.

The goal of our study was to determine the kinetics of
the conformational ensemble of the CBD with and without
cAMP bound. We defined the conformational space as the
atomic coordinates of the alpha carbons in a protein, dividing
the conformational states discrete into stats using RMSD-
based clustering. We started sampling the CBD in either a
crystallographic predetermined active or inactive state with and
without cAMP bound. Building the final MSMs required over
70µs of total sampling time comprised of both long-timescale
initial sampling and iterative adaptive sampling to refine the
models (Malmstrom et al., 2015).

Throughout the sampling and refinement process, the quality
of a MSM is judged using implied timescale plots (Pande et al.,
2010; Prinz et al., 2011b). Data points of the plot are constructed
with eigenvalues of the transition probability matrix populated at
different lag times, or times between events. The plots indicate
at what lag times the models are Markovian and if the models
are consistently capturing the principal conformational changes
of the system. Additionally, a Chapman-Kolmogorov-test is used
to validate the consistency of a MSM with molecular dynamics
simulations (Prinz et al., 2011b). Using these two metrics, a
final model is selected, the statistics of which are sampled at a
specific lag time, which represents the fastest transition within the
conformational ensemble that is alsoMarkovian. This finalmodel
can then be used to derive the parameters for the multiscale
model.

As described before, a MSM consists of the equilibrium
probabilities for each conformational state. These probabilities
are used to derive thermodynamic properties. Spectroscopic
analysis can be used to identify metastable states within the
conformational ensemble that can be used to build coarse-
grained models of the system (Prinz et al., 2011a; Malmstrom
et al., 2014). Transition path theory (Vanden-Eijnden and Tal,
2005) can be employed to approximate the kinetics of transitions
between states. These rates become the parameters to feed into
the multiscale model. For the CBD model we were able to obtain
the rates of transitions between the active and inactive states
and show how cAMP modulates the conformational ensemble,
changing the function of the CBD. These rates have been an
important benchmark in understanding the dynamics of the
CBD, and form the foundation for examining the total R subunit
and its interactions with the C subunit.

While the use of MSMs provides to conformational
ensembles, there are still several important considerations
and limitations to this method that should be considered in
context of integrating them into a multiscale model. First,
because conformational space is discretized, all kinetic rates are
artificially fast (Prinz et al., 2011a,b), and should be considered
an upper bound, especially when applied to high scale models.
Second, a recent study indicates that modern force fields used
in MD simulations produce varying transition kinetics (Vitalini
et al., 2015). Therefore, the same force field should be used for
all models of a system, and the limitations of the force fields
should be understood. Thirdly, while the MSM is somewhat
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robust to errors in clustering, give a sufficiently fine division of
conformational space (i.e., a lot of clusters) (Prinz et al., 2011b),
the MSM is still dependent on the starting conformation used to
initialize the simulations and the limitations of MD. Therefore, it
is possible to not have included important conformational states
leading to an incomplete model of the conformational landscape
and incorrect predictions. However, limitations can be overcome
using enhanced sampling methods (Bernardi et al., 2015) and
from understanding acquired in the large-scale models. Finally,
the MSMs are computationally demanding. This cost limits
their usefulness in multiscale models, as a significant amount
of time can be required to describe only one state in a higher
scale model. Other sampling methods may be sufficient to obtain
parameters for larger models. For example, if the opening and
closing of a flap on a protein is the only permutation of interest,
elastic network models are more computationally efficient in
estimating those rates than MSM.

Investigating Intermolecular Interactions

As we extend into larger spatial scales of modeling, the focus
of our discussion shifts from intramolecular investigations with
MD to the study of intermolecular encounters using BD. BD
simulations are used to estimate the rate constants of second-
order association events between two molecules. The output
of these simulations provides kinetic on-rates used directly in
higher levels of modeling. The application of BD simulations
has extended beyond bi-molecular encounters in simulations
of molecular crowding (McGuffee and Elcock, 2010) in cellular
environments. In this section, we discuss the methodology and
limitations of BD simulations, what can be gained from their use,
and a brief overview of their application to multiscale modeling.

Brownian Dynamics Simulations
In BD, molecular diffusion is modeled using the theory of
Brownian motion; where internal dynamics of each molecule are
frozen, constraining the molecules into rigid bodies that are free
to diffuse and tumble in solution, but may not change shape.
Popular programs used to carry out BD simulations include
BrownDye (Huber and McCammon, 2010), SDA (Gabdoulline
and Wade, 1997, 1998), ReaDDy (Geyer, 2011; Schöneberg and
Noé, 2013), Brownmove (Geyer, 2011), and BD_BOX (Dlugosz
et al., 2011). Similar to MD, one must choose a force field for
BD simulations of the molecular system: AMBER (Dickson et al.,
2014), CHARMM (Klauda et al., 2010), GROMOS (Oostenbrink
et al., 2004), etc. However, the only force field quantities utilized
in BD simulations are the partial charges and Van derWaals radii
of each of the atoms of the biomolecule. In conjunction, these
properties can be used to obtain the electrostatic potential from
software that can solve the Poisson–Boltzmann (PB) equation.
The electrostatic potentials of the biomolecules determine the
long-range forces that the molecules impose on each other. Thus,
electrostatics function as one of themost important determinants
of the outcomes of BD simulations. Popular software packages
that solve the PB equation include APBS (Baker et al., 2001;
Holst, 2001) and DelPhi (Honig and Nicholls, 1995; Rocchia
et al., 2002). Rigorous derivations and discussions of the form

and proper usage of the PB equation can be found in the literature
(Leach, 2001; Fogolari et al., 2002; Gu and Bourne, 2009).

In BD simulations, the solvent is modeled as a continuum;
that is, there are no water molecules or dissolved ions modeled
in atomic form in the simulation. Instead, the solvent is
modeled as a field that surrounds the biomolecules and can
have varying degrees of physical realism. This significantly
reduces the computational power necessary for BD simulations
in comparison to explicit solvent MD. The user typically specifies
parameters that control solvent dielectric, hydrodynamics,
desolvation, and ion screening, all which affect the realism of the
solvent model and the computational cost of the simulation.

In addition to the long-range forces imposed by inter-
molecular electrostatics, a stochastically determined force is also
imposed on the molecules in a BD simulation. This stochastic
force is directed randomly with a magnitude sampled from a
Gaussian distribution centered at zero whose variance depends
on the simulation time-step and the molecule’s diffusivity
properties. The stochastic force is intended to approximate the
random “kicks” that would be caused by the solvent, but are
otherwise absent in the continuum model.

Finally, the simulation must ensure that the Van der Waals
radii of the atoms of different molecules do not overlap; a
phenomenon known as a steric clash. Often, simulation steps
that result in a steric clash are discarded and recomputed.
Alternatively, many BD programs can impose a Lennard-Jones
force at close molecular proximity to prevent a steric clash
(Elcock, 2004; Huber and McCammon, 2010). BD simulation
and the theory behind it compose a rich and expansive field, and
many sources exist to allow the interested reader to improve his
or her knowledge and technique (Ermak and Mccammon, 1978;
Allen and Tildesley, 1987; Gabdoulline and Wade, 1996; Elcock
et al., 2001; Gabdoulline and Wade, 2002; Madura et al., 2002;
Elcock, 2004).

Considerations for Brownian Dynamics
Simulations
A key starting point for BD simulations is the selection of the
encounter complex, which describes the atomic interactions that
define a reaction between molecules. Ideally, crystal structures
will inform this step. If crystal structures of the encounter
complex do not exist, molecular docking programs can serve
as a substitute. In the case of PKA, two crystallized structures
of the regulatory subunit of protein kinase A RIα show very
different conformations when bound to either cAMP (Su et al.,
1995) or the catalytic subunit (Kim et al., 2007) To test the effects
of structure on cAMP association with BD methods, one can
use the crystal structure conformations of the regulatory subunit
in separate BD simulations. Alternatively, the two different
conformations can be used as starting points of separate MD
simulations. A number of structures in the conformational
ensemble will be generated and can serve as structures for
separate BD simulations.

At the start of a simulation, the ligand is placed at a
distance b from the receptor, at a location known as the b
surface, which is defined as the distance where forces between
the two molecules are centrosymmetric. Simulations terminate
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either upon the molecules reaching the predefined bimolecular
encounter complex (a binding event), or when the molecules
separate beyond a greater intermolecular distance q. The distance
q, the radius of the q surface, is typically 10–50 nm larger than
the distance b (Gabdoulline and Wade, 1998). The probability of
association vs. escape is then used to calculate the association rate
constant (kon). This schematic, including the surfaces at the b and
q distances, are depicted using PKA as the receptor and cAMP as
the ligand (Figure 3). BD can be used to model the association
of cAMP with PKA, and predict features of the binding event,
including the route of approach, the encounter complex, and the
rate constant of association.

A second important factor in BD simulations is the structure
of the molecules used in the simulations. Recall that BD
simulations use a rigid-body approximation of molecules,
meaning that the conformation of the molecule will not change
throughout the simulation as it does in MD. Typically, crystal
structure conformations are used. Another attractive possibility
is the use of conformations generated by MD as starting
points for BD simulations. Using this method, the user can

select meta-stable or even rare conformations of a protein
generated in MD simulations and compare the association
rates and probabilities with respect to structural changes in
the protein. MD trajectories can also be used to generate
ensemble-averaged electrostatics (Votapka et al., 2013) where
the simulated molecular motions are combined to form an
electrostatic potential that includes the dynamic properties of
the molecule. This effectively leads to a more holistic, dynamic
representation of the electrostatic potential, effectively mediating
some of the limitations of the rigid-body approximation of the
simulations.

Solutions to the Poisson-Boltzmann equation include
variations in the dipole moment and especially the charge
density, with respect to how the solute affects the solvent,
but also how the solvent affects itself. So while common
implementations of the Poisson-Boltzmann equation solvers do
not include many features of true aqueous solvents, it at least
does assume that certain aspects of the solvent are heterogeneous.
In addition, BD simulations themselves often model such things
as hydrodynamics and desolvation forces, which are intended

FIGURE 3 | Brownian dynamics simulation method. BD simulations begin by placing molecules at a distance b from one another, shown here as a b-surface

around PKA. When molecules diffuse toward the encounter complex (gold) a “reaction” (green arrow) occurs. Alternatively, molecules can “escape” (red arrow) by

diffusing past a distance equal to q, shown here as the q-surface.
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to approximate additional solvent features such as inertia and
entropy at a surface, respectively.

Despite their ability to calculate association rate constants
with respect to steric and electrostatic properties of molecules,
BD simulations have limitations that users should know and
recognize. First, the results of BD simulations depend on the
encounter complex criteria. Such criteria must usually be tested
and optimized in order to reproduce a reasonable association rate
constant. Incorrectly chosen encounter criteria can significantly
limit the accuracy of the simulation outcomes. Second, the rigid-
body approximation of molecules in BD can only represent one
part of the binding process: the diffusion—meaning that the
rate constant calculated by simulations is that of association
and not actual binding. Nevertheless, alternative methods that
combine intermolecular investigations of BDwith intramolecular
dynamics of MD are being developed that promise kinetic rate
estimations through simulation (Votapka and Amaro, 2015).
These developments represent an approach toward spanning
the MD and BD simulation regimes into a unified multiscale
framework.

To our knowledge, no systematic method yet exists for
estimating the true amount of error propagated by the
assumptions inherent in BD. However, general consensus agrees
that BD performs relatively well if the rate constants of an
event it is estimating can be classified as a diffusion-limited
process; that is, a process whose time to completion is primarily
limited by particle diffusion. In the case of binding, the range of
diffusion-limited rate constants is considered to include values of
approximately 108–109 M−1s−1(Bar-Even et al., 2011).

Schemes do exist to approximate the precision of a kon based
on the statistical sampling of a binding probability vs. escape.
Specifically, the uncertainty of the rate constant of binding
is proportional to the inverse square root of the number of
trajectories in BD simulations that have completed in a binding
event. Since millions or even billions of BD trajectories can
usually be completed at relatively little computational cost, it is
typically not difficult to obtain relatively high precision of a rate
constant using BD. However, while the estimated rate constant
may be precise, it still may be inaccurate if the rigid molecules,
implicit continuum solvent, or some other approximation
assumed by BD do not adequately model the system. Comparison
to experimental rate constants of the simulated ligand-receptor
system, or perhaps of similar systems, can give an indication of
the discrepancy between the “true” value, and the value obtained
using BD.

Unifying MD and BD Simulations through
Milestoning
The possibility of combining the speed of rigid-body BD
simulations with the flexibility of all-atom MD simulations to
predict kinetic and thermodynamic quantities of interest is an
attractive option. Ensembles of conformations or trajectories can
be sampled from each simulationmethod, and statistics involving
the probability and timescales of transitions between predefined
states from the simulations can be combined using MSMs or the
theory of milestoning (Faradjian and Elber, 2004) to model the
details of intermolecular interactions.

Milestoning is a technique that is similar to the theory used in
MSMs and can serve as an alternative approach to investigating
biomolecular events, such as conformational sampling (West
et al., 2007; Mugnai and Elber, 2015), diffusion (Mugnai and
Elber, 2015), and membrane permeation (Cardenas et al., 2012),
among others. Milestoning retrieves the kinetics as well as the
thermodynamics of chemical processes (Vanden-Eijnden et al.,
2008; Májek and Elber, 2010; Kirmizialtin and Elber, 2011), and
can make use of extensive parallelization. Although similar to
MSMs, milestoningmodels have a number of key differences, and
may or may not be well suited to address a particular biophysical
question. Unlike MSM states that are volumes in phase space
where the system exists until it crosses into another, milestones
are surfaces in phase space that the system traverses, and where
the system’s current “state” is the surface that the system has most
recently crossed.

To give an example, we examine the hypothetical case where
the kon of binding between PKA and cAMP can be predicted. In
this milestoning model, we define a set of concentric spheres of
different radii, all centered on the binding site of PKA (Figure 4).
These concentric spheres define the milestones. MD simulations
are started from conformations where cAMP is located on each
spherical milestone, and each simulation is similarly terminated
once cAMP diffuses to another surface. Thus, to the milestoning
model, whichever simulation method is used to populate the
transition kernels and incubation time vectors with statistics is of
no consequence. The most appropriate simulation method can
be chosen when cAMP is started on a particular surface.

Unlike MSMs, milestoning transitions may only occur to
states that are adjacent in the positional or conformational space
and lag times (or incubation times) can vary between inter-state
transitions. Therefore, milestoning may be a desirable technique
in situations where the system crossing surfaces would more
appropriately represent transitions than the system traversing
regions of space. For instance, because current implementations
of BD simulations make extensive use of surfaces, such as the
surfaces at the b and q distances and the encounter surfaces,
milestoning is a natural choice to utilize transition statistics
obtained in BD simulations. MD simulations modeling a binding
event can make use of either milestoning models or MSMs,
but when a combination with BD is desired, milestoning offers
a promising framework to combine statistics from the two
simulation methods.

Milestoning theory can be used to investigate a wide diversity
of biophysical scenarios, and has been applied in a variety
of contexts (Faradjian and Elber, 2004; Elber, 2007; West
et al., 2007; Elber and West, 2010; Cardenas et al., 2012).
In some physical situations, implementations of milestoning
outperformed MSMs in resemblance to experimental results
(Vanden-Eijnden et al., 2008). The application of milestoning
to intermolecular interactions is still a recent development, and
many possible improvements may enhance the efficiency and
accuracy of the estimation of binding rate constants. Examples
of these include further discretizing the system into grid-
like milestones, rotational milestones, or milestones that can
represent internal degrees of freedom. Extensive derivations
and discussions of milestoning theory are discussed elsewhere
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FIGURE 4 | Milestoning applied to unite MD and BD. MD and BD Simulations are run to populate transition times and probilities in a milestoning model of cAMP

binding to PKA. BD simulations are used to model an encounter event, and subsequent MD simulations model the details of the actual binding or reaction event.

(Faradjian and Elber, 2004; Vanden-Eijnden et al., 2008; Májek
and Elber, 2010; Kirmizialtin and Elber, 2011).

From Atomistic to Protein-scale Models

Bridging the gap from atomic simulations to whole cell models
is challenging. Protein-scale MSMs connect the atomistic scale
to cell or tissue phenomena by reducing the complexity of
molecular models. This enables simulations on larger time and
spatial scales, while maintaining structural details required for
protein function. These models simulate biological phenomena
relevant to a whole-cell model, including ionic currents, fraction
phosphorylated, or percent activation, and the output can be
compared to in vivo experiments.

Protein-scale MSMs have been used to represent protein
interactions since the early-1990’s (Edeson et al., 1990). Several
papers have been written on the development of protein-scale
MSM, particularly of ion channels (Edeson et al., 1990; Giugliano,
2000; Gurkiewicz et al., 2011; Lampert and Korngreen, 2014). Ion
channel MSMs have been made possible by the detailed statistical
data that comes from single channel patch clamp recordings (Qin
et al., 1996). These models have started to replace traditional
phenomenological Hodgkin-Huxley style models of ion channel
kinetics in whole cell action potential models (Rudy and Silva,
2006). They have been most useful when there is a need to model
the effects of specific channel modifications, such as drug binding
(Clancy et al., 2007), gene mutation (Rudy and Silva, 2006), or
post-translational modifications (Yang and Saucerman, 2012).

But the use of protein-scale MSMs is not limited to those systems
where dynamic biophysical recordings are available; instead,
these models can be built from BD and MD simulations.

Protein-scale MSM
The first step in model development is to determine the overall
structure of the model. Unlike atomic-scale MSMs, protein-
scale MSMs do not represent every conformation of atoms as
a state; instead, each state represents an ensemble of related
atomic conformations that comprise a functional structure.
This significantly limits the number of degrees of freedom
and decreases the computational power needed, which enables
multiple protein-scale MSMs to be combined into system-scale
models. However, because these models are a simplification of
the total potential states, the choice of which states are relevant
becomes essential to making a useful model of a protein.

Functional State Discovery through MD Simulations
Frequently, several different states are captured by molecular-
scale experiments, including X-ray crystallography and mass
spectrometry. These experimental approaches can provide data
on particular stable conformations (e.g., active or inactive states);
however, due to the static nature of these tools, significantly less
information is known about the transitions between states. For
example, there are published structures of the R subunit of PKA
bound either to cAMP or to the C subunit, but little is known
about the transition between these end states. MD simulations
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can suggest intermediate states for incorporation into protein-
scale MSMs. Similarly, atomic-scale MSMs provide insights into
which states are populated and the rates of transitions between
conformations.

Using BD Simulation to Inform Kinetics
For small molecule-protein interactions and protein-protein
interactions, BD and experimental data can serve complementary
roles in determining kinetics. Dissociation-rates are typically
slower than association rates and are therefore easier to measure
experimentally using techniques such as surface plasmon
resonance (Herberg et al., 1996). Additionally, most dissociation
events are limited by conformational changes and not by
diffusion—the latter of which BD is designed to model. For
these same problems, MD simulations would be required to
run for inaccessibly long periods of time (ms to s) to register
release events. Association-rates, on the other hand, tend to be
orders of magnitude faster and therefore are harder to measure
experimentally. BD simulations are ideal for measuring fast
interaction rates on the ns to µs time scales, many of which are
limited by diffusion. In combination with equilibrium data, these
techniques can be used synergistically to determine rates for small
molecule-protein and protein-protein interactions. By basing the
ensemble of states of the model on MD simulations, and the
kinetic interactions on BD simulations, it is possible to predict
the effect of a mutation on protein function and, by extension, on
the whole cell.

Testing with Empirical Data
Data from experiments, MD simulations, and BD simulations
can be integrated into a simplified protein-scale MSM with
states and interactions relevant to protein function. Frequently,
these combined methods will suggest several possible functional
state ensembles. Competing models are generated, with different
states or different relationships between the states. Subsequently,
the resulting models are tested to determine their ability to fit
relevant experimental data (Boras et al., 2014). For protein-scale
MSMs, the data used for fitting most often comes from in vitro
experiments. Ideally, the data used to differentiate between
competing models is collected under conditions that are most
relevant to a whole cell. For example, in the PKA-RIα model
developed by Boras et al. (2014) all of the data used for fitting
was collected in the presence of excess Mg2+ and ATP, both
of which have been shown to affect PKA activation (Neitzel
et al., 1991). These conditions are similar to what is found in
a cell; however, recently published data has also highlighted the
role of ADP in PKA activation (Khavrutskii et al., 2009), which
could affect the role of PKA in metabolism but is absent in the
current MSM.

The accuracy of each theoretical model is determined using
an error function based on the weighted sum of squares
difference between the model’s predictions and the available
experimental data. Minimizing this error function optimizes
unknown parameters. If the MSM are nested (all possible states
in a model with fewer degrees of freedom can be represented in
the model with more degrees of freedom) then a statistical F-test
can be performed to determine if the added degrees of freedom

significantly improve the fit (Anderson and Conder, 2011). This
ensures that MSMs do not become needlessly complex without
an improvement in the accuracy of the model’s predictions.

Frequently, data acquired with mutant proteins that cannot
reach specific states is used to differentiate competing models.
The MSMs are altered slightly by removing those states, without
refitting any parameters, and the output is compared against the
experimental results (Boras et al., 2014). For example Clancy
et al. used MSM of a cardiac sodium channel to show that a
mutation in its C terminus can lead to long-QT syndrome, which
causes life-threatening arrhythmias (Clancy and Rudy, 2002).
This highlights how protein-scale MSM based on atomistic data
can predict the effect a mutation will have on the whole cell and
eventually on the organ scale as well.

To mitigate error propagation when the protein-scale MSM
is added to whole cell models, a sensitivity analysis can be
performed to test the robustness of the solution (Campbell et al.,
2010). In this process each rate is perturbed to determine its
effect on the desired output of the model. States can also be
removed to see how essential they are to the final result. The
objective is to quantify how much the final result relies on any
individual rate or state and compare that to the uncertainty in the
experimental measurements. This technique can also highlight
which states predicted from atomic scale modeling would have
the greatest effect if mutated or pharmaceutically targeted. This
is especially useful in quantifying the potential effect of rare
conformations. Due to sampling bias theymay not be captured in
MD simulations but by adding them to the model their potential
effect can be determined even if precise kinetic parameters are
not known.

Applying to MD and BD Modeling to Protein
Scale PKA-RIα MSM
These techniques have been applied to the development of a
novel PKA protein scale MSM (Boras et al., 2014) (Figure 5).
First, the effects of cAMP binding on CBD-A of the regulatory
subunit of PKA were examined (Malmstrom et al., 2015). Using
extensive all atom molecular dynamics simulations integrated
with atomic-MSM, the conformation of the CBD with and
without cAMP bound was determined. Conformational selection
was identified as the general mechanism of allostery within a
single CBD, which transitions between an active and an inactive
conformation whether or not cAMP is bound. cAMP was found
to regulate the function of the CBD by deepening the free energy
landscape and selecting conformational states that favor the
active conformation. Interestingly, cAMPmodifies the transition
rate between the active and inactive conformation and not
the transition between the inactive and active conformations.
Additionally, the roles of each of the signaling motifs in the CBD
were elucidated.

Based on these findings and crystal structure data, five nested
protein scale MSM were considered. Each model was structured
to test competing theories of PKA R2C2 activation based on
MD simulations. The crystal structures suggested that a model
that treated each R-C heterodimer as independent would be
insufficient to fit the data, due to the compactness of the R2C2

holoenzyme. Atomistic MSM predicted that a conformational
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FIGURE 5 | The Markov State Model of PKA-RIα R2C2 holoenzyme. A representation of MSM states for the activation of PKA-RIα R2C2 holoenzyme by cAMP

first published in JBC (Boras et al., 2014). The red arrows represent the dominant pathway during activation. The two R- and C-subunits are identical but for simplicity

of naming the first R-subunit to bind C-subunit is named R, while the first R-subunit to bind cAMP is R′.

selection mechanism would most accurately fit the data for
isolated CBDs. The models were developed in the Virtual Cell
computational environment (Moraru et al., 2008) before being
translated into MATLAB to take advantage of optimization
programs (Marsden et al., 2008).The models were fitted to kinase
activity and cAMP binding data under physiological conditions
(Christensen et al., 2003). Additionally, the various models were
then compared to mutant PKA experimental data with either
an inhibited CBD-A or CBD-B binding site. One model was
shown to fit the wild type and predict the experimental results
better than any other. This model validated the atomistic MSM
by showing that CBD-B binding leads to release of the C-subunit
prior to CBD-A binding similar to a conformational selection
mechanism and created a thermodynamic protein-scale MSM of
PKA activation.

However, since the fitting data, as well as the mutant data,
were collected at long enough intervals that an assumption
of thermodynamic equilibrium was valid, the resulting MSM
could only reproduce equilibrium behavior. From a cellular
perspective, PKA’s response to a stimulus over time is essential
to understanding PKA function. The single turnover rate in
response to a stimulus has been implicated in activation due
to A kinase anchoring proteins that bind PKA near one target
(Scott and Santana, 2010). Therefore, the addition of kinetic rates
would significantly increase the utility of the MSM a whole cell
model.

Owing to the fast rate of activation of PKA in the presence
of cAMP, the amount of experimental kinetic data on PKA
activation, particularly on-rates, is limited. This is a problem
ideally suited to solving using atomic simulations. The atomic
scale MSM suggested that cAMP binding only affects the rate of
transition from active to inactive states but not the reverse. BD
simulations can be combined with experimental data to suggest
binding and release rates for R-C and R-cAMP interactions. In
conjunction with in vitro experimental data this type of data will
allow the thermodynamic MSM to become a kinetic MSM better
suited to whole cell scale analysis of signaling network properties.

Integrating Protein Scale MSM into Whole
Cell Models

The potential of molecular and protein-scale models culminate
in whole-cell and tissue-scale models that can predict phenotypes
andmechanistically explain disease states. Thesemodels combine
several MSMs to predict cellular responses to either internal
or external stimuli by tracing behavior down to molecular
interactions. When developing these protein-scale MSMs, it is
best to keep in mind what broader biological function will be
modeled at a larger scale since this will determine not only what
states are relevant but also what type of model is best for a given
phenomena.
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Stochastic and Deterministic MSM in the Whole
Cell
Some cell functions are best simulated using a continuum of
species concentrations and smooth probability distributions,
while statistically rare events are better modeled when individual
molecules are tracked and the stochasticity of interactions is
accounted for. Correspondingly, protein-scale MSM can be
either stochastic or deterministic in nature. The stochastic
models, like the atomic-scaleMSMdescribed earlier, are based on
Monte Carlo simulations where the probability of transitioning
between states is dependent on the kinetics of the binding
and/or the conformational shift that each transition represents.
This is the most accurate representation, where each event is
dependent on the chance that two molecules will interact or that
a conformation will be sampled based on random motion.

Many biological processes, such as calcium sparks in cardiac
myocytes, can be explained with stochastic simulations. Calcium
sparks occur when calcium is released from the sarcoplasmic
reticulum via an isolated cluster of ryanodine receptor calcium
release channels in the absence of a depolarizing event. In other
words, a single cleft or a cluster of clefts acts differently than
the rest of the cell. Whole-cell deterministic models require that
every channel of a given type are identical and therefore every
channel could be fractionally open but no one channel could be
fully open while the others were fully closed without changing the
conditions. Therefore, to model phenomena like this, a stochastic
model is necessary. When translating these models up to the
whole cell, the stochastic models are ideal for agent based spatial
modeling tools, such as MCell (Kerr et al., 2008), where each
molecule is tracked and diffusion is represented by a random
walk; although, it is worth noting that a whole-cell model can
consist of a continuum diffusion approximation but still contain
stochastic protein-scale MSMs. Agent-based models are ideal for
small numbers of molecules or short time and spatial scales,
where tracking each molecule is computationally reasonable or
average approximations may be invalid.

Over a long enough time-scale or a large enough population
of molecules, the Monte Carlo simulation will approach the
deterministic solution. The deterministic solution is represented
by a system of ordinary differential equations, instead of being
represented by a transition matrix of probabilities. In these
models, the states of the MSM are frequently populated by
concentrations instead of a specific number of molecules.

Many biological processes can be represented
deterministically, most often when the system has a large
number of molecules, or covers a long time and spatial scales.
Models of the calcium concentration in a cell, for example, would
require a deterministic model because computationally there
are too many molecules to follow and the simulation becomes
intractable. However, even on a small scale a deterministic
approximation can be valid. For example, Hake et al. (2014)
showed that for a single dyadic cleft in a cardiac myocyte, the
random walk and the deterministic continuum approximation
gives the same result for a calcium induced calcium release event,
even though a continuum approximation of the calcium in the
cleft is unrealistic due to the scarcity of calcium ions. By treating
the continuum as deterministic but the protein-scale MSMs as

stochastic we can reproduce the stochastic sparks while limiting
the required computational power.

Advantages in Whole Cell Modeling
The potential of molecular and protein-scale models culminate
in whole-cell and tissue-scale models that can predict phenotypes
andmechanistically explain disease states. Thesemodels combine
several MSMs to predict cellular responses to either internal
or external stimuli by tracing behavior down to molecular
interactions. The power of building atomic-scale and protein-
scale MSMs for wild type and disease mutants comes from
their integration into whole cell models. At the whole cell scale,
differences in sub-cellular dynamics of protein mutations can be
studied comparatively with their wild-type counterparts. Several
disease states come from known protein mutations. For example,
in the case of PKA-RIα, 117 polymorphisms and mutations have
already been discovered (Horvath et al., 2010). Owing to the
complexity of signaling pathways, how these mutations affect cell
function is frequently unclear but by creating a whole cell model
from molecular mechanisms it is possible to predict how a given
mutation will lead to a particular a cellular phenotype.

Whole cell models based on atomic resolution information
have opened entirely new avenues of research into drug
discovery. In addition to suggesting which protein is a viable
target, mechanistic whole cell models can suggest which protein
conformation is most favorable and even the chemical shape of
a small molecule necessary to inhibit/promote activation. This
allows a scale of specificity that could decrease toxicity and limit
side effects.

Cardiac arrhythmias are a prime example of the potential
relevance of whole cell models. Currently, one of the most
commonly prescribed classes of drugs to treat arrhythmias are
beta-blockers. Beta blockers bind the beta adrenergic receptors
to inhibit epinephrine and norepinephrine binding to reduce the
chance of a second heart attack (Cruickshank, 2010). However,
this inhibits the entire beta-adrenergic pathway. By combining
this new PKA protein-scale MSM with previously published
adrenergic signaling models of the heart (Saucerman et al., 2003;
Bondarenko, 2014), it is possible to suggest drug targets and even
specific binding pockets to inhibit parts of the pathway while
limiting their effect on the rest of the cell.

Conclusions

For years, atomic-resolution protein structures have aided our
understanding of protein function not only through static
structures provided by NMR and crystallographic experiments,
but also through the prediction of dynamic properties with
MD simulations. MD has revealed ensembles of structures that
comprise the conformational landscape of a protein. Due to
computational limitations, classical MD simulations are only
able to generate microseconds (or less) of simulated time. This
significantly limits the extent of the protein conformational
ensemble sampled. However, information generated by MD
simulations can be integrated into atomic scale MSMs, which
are used to link states generated in a conformational ensemble
through a kinetic scheme. The outputs of structures from MD
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simulations are analyzed according to a chosen conformational
state description and are discretized into microstates. The MD
trajectory informs which transitory states are most favorable and
calculates the transition rates between these states to be used in
different scales of modeling.

MD simulations subsequently inform both the atomic scale
MSMs and BD simulations. BD simulations typically use
rigid-body representations; therefore selected conformations are
important for understanding the effect of different structures
on association probability. MD simulations provide relevant
conformations for BD by generating stable conformations. In
addition, ensemble-averaged electrostatics can be generated
from the MD trajectories, reflecting the dynamic properties
of a molecule in a static electrostatic potential map. Finally,
MD and BD simulations can be directly integrated through
milestoning to derive association rate constants (kon) of
diffusion-limited processes; a process that combines the two
distinct simulation regimes—utilizing the advantages and
minimizing the disadvantages of each. Such a scheme can
vastly expand the time and length scales accessible in the
simulation of multimolecular interactions between proteins and
small molecules and/or other proteins to be combined with
experimental data in protein-scale MSMs.

Protein-scale MSMs draw on every facet of the atomistic
models to bridge the atomic and cellular scales. MD simulations
and atomistic-scale MSMs suggest which ensemble of states will
reproduce a molecular function. BD simulations combined with
milestoning predict association rate constants that would be
difficult to experimentally reproduce. This information, when
combined with in vitro experimental data and statistical analysis
tools, leads to the development of protein-scale MSM’s for
incorporation into whole cell models. Whole cell models based
on atomic level details provide a new scale of specificity. The
ability to scale up the effects of a protein mutation on a cellular
level function is the ideal goal of a robust MSM of this kind.

As discussed throughout this paper, during the process of
multiscale modeling it is essential to consider error propagation,
or the effect of inaccuracies in small-scale models and the

translation of this error into higher levels. For example,
conditions such as molecular crowding in the cell likely affect
the energetic landscape of a protein, a phenomenon not explicitly
represented in an MD simulation. The limited sampling time
of MD simulations can bias the conformational landscape of
the protein, affecting the kinetic rates determined by the MSM.
Structures and kinetics abstracted from biased simulations can
further limit the accuracy of BD simulations and protein-scale
MSM, respectively. Furthermore, coarser-grained simulations
such as BD and protein-scale MSMs are not free of their own
inaccuracies. The sources of errors in many modeling methods
may or may not be easy to recognized and the best practices for
quantifying the errors is still an active area of research. Iterating
through the multiscale modeling process is extremely time
consuming, since frequently MSMs must be fully recreated when
new constrains are added. With ample computational resources,
a multiscale modeler can incorporate recursive feedback loops
from multiple scales to converge to a steady solution of the
represented system.

Building a multiscale model, despite inaccuracies, is extremely
useful. The findings of larger scale models can be used to
inform the finer scales, like the identification of unknown
conformational states in protein-small molecule energetic
landscape. Carefully considering the whole-cell constraints of a
given disease state or drug target before creating the initial model
can allow these multiscale models to be a powerful and efficient
tool for understanding the mechanisms behind some of the most
intriguing biological questions.
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Chapter 2

Broad recognition in the interaction
of group A Streptococcus M protein
hypervariable regions with human
C4b-binding protein

The following manuscript demonstrates the ways that protein-protein contacts

involved in bacterial infectious mechanisms can be elucidated by protein crystallography

and further understood using MD simulations. The subject of the manuscript, Group

A Streptococcus (GAS), is incredibly infectious with a wide range of symptoms ranging

from sore throat to flesh-eating bacteria that affects the skin and internal organs such as

the heart. Development of a vaccine treatment for GAS has been slow due to the large

variance in sequence of its surface antigen, the M protein. Over 200 different types of

M proteins have been identified and antibodies recognize a hypervariable region (HVR)

of the M protein, offering narrow specificity due to sequence variability. The infectious

mechanism of the protein is quite remarkable, as the Human C4b-binding protein (C4BP)

interacts with around 90% of M proteins, making it a great candidate for understanding

the broad specificity of the HVR. In this study, crystal structures of C4BP in complex

with four different M-proteins reveal the uniform and sequence-variant “tolerant” reading

head of the protein-protein complex.

In context of the thesis, this manuscript demonstrates how observations made by

crystallographic methods are enhanced by molecular simulation. The MD study in this
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manuscript allowed us to visualize and understanding of the atomistic contacts which

could not be explained by the static structure itself. A number of mutants of the WT,

which strengthened and weakened the contacts of the M protein-C4BP complex. Most

notably, the MD showed how water is able to penetrate the protein complex due to a point

mutation of a hydrophobic reside and how charged reside mutations counter-intuitively

strengthen the interactions between C4BP and M protein complexes.

2.1 Abstract

Group A Streptococcus (GAS) is a leading cause of worldwide morbidity and

mortality. A severe hurdle for the development of a GAS vaccine is the hypervariability of

its major antigen, the M protein, with over 200 different M types in existence. Neutralizing

antibodies typically recognize the hypervariable region (HVR) of M proteins, and thus

confer narrow specificity directed against a single M type. In stark contrast, human

C4b-binding protein (C4BP) interacts with a remarkably large number of M protein HVRs

(~89%). Broad recognition such as this is rare, and we investigated it through structure

determination of four sequence-diverse M proteins in complex with C4BP. The structures

revealed a uniform and tolerant reading head in C4BP, which detected conserved sequence

patterns hidden within hypervariability. Our work explains not only how sequence-divergent

M proteins capture C4BP, but also has implications for the design of a unique broadly

neutralizing antibody targeting GAS.

2.2 Introduction

Group A Streptococcus (GAS, S. pyogenes) is a major cause of worldwide morbidity

and mortality [63]. This bacterial pathogen is responsible for mucosal infections (e.g.

pharyngitis), acute invasive diseases (e.g. necrotizing fasciitis) and autoimmune sequelae
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(e.g. rheumatic heart disease) [64]. Currently, no vaccine against GAS exists [65,66]. A

major impediment to immunization is the hypervariability of the antigenic M protein, a

surface-anchored virulence factor [67, 68] that is also the target of neutralizing antibodies.

These antibodies typically recognize the hypervariable region (HVR, N-terminal ~50 amino

acids) [69–71] of M proteins, which are dimeric α-helical coiled coils, and thus confer M

type-specific immunity. One approach to overcoming hypervariability is to include multiple

M protein HVRs in a vaccine, and indeed a vaccine candidate that includes 30 HVRs [72]

has advanced into early clinical testing. However, with >200 distinct M protein HVRs [73]

and the complexity of global GAS epidemiology [63], even the most extensive multivalent

vaccine is unlikely to offer universal protection. Here, we offer structural details that

inform an alternative approach to overcoming M protein hypervariability for vaccine design.

This approach is based on the finding that human C4b-binding protein (C4BP) binds M

protein HVRs with broad specificity [74], in stark contrast to the narrow type-specificity

displayed by antibodies. In one study, a remarkable ~89% of GAS strains of differing M

types bound C4BP [75]. C4BP [76] is a negative regulator of the complement system

and binds the complement protein C4b, and thereby disables the C3 convertase of the

classical and lectin pathways. GAS recruits C4BP to its surface, like a number of others

pathogens [77,78], to evade opsonophagocytic killing [79,80].

Broad specificity in recognition is a rare phenomenon, having been observed only in

a few cases. A prominent one is the interaction between major histocompatibility complex

(MHC) glycoproteins and peptides [81, 82]. The breadth of this interaction is explained by

the fact that MHC glycoproteins contact mainly the main chain of peptides. To understand

the basis for broad specificity in the case of M protein and C4BP, co-crystal structures of

four M protein HVRs (M2, M22, M28, and M49) bound to the first two domains of the

C4BP α chain were determined (Figs. 1a and 5, Table 1). C4BP consists of 7 α chains

disulfide-bonded to a single β chain, with each of these chains being composed of multiple

~60-residue complement control protein (CCP) domains [83]. The first two CCP domains
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Figure 2.1. Structures of M-C4BP complexes

(a) Schematic of C4BP (blue) bound to surface-associated M protein (black), highlighting the
M HVR-C4BPα1-2 interaction; (b) C4BPα1-2 (cyan) in complex with M2 (red), M49 (yellow),
M22 (blue), and M28 (magenta). Terminal residues are numbered; (c) Superposition of M-C4BP
complexes, based on the C4BPα1-2 molecule shown at right in cyan. M2 is red and its second
bound C4BPα1-2 molecule green; M49 is yellow and its second bound C4BPα1-2 orange; M22 is
blue and its second bound C4BPα1-2 is omitted (because a crystal contact restricts its orienation
into an artifactual conformation); and M28 is magenta and its second bound C4BPα1-2 pink.

of the α chain (C4BPα1-2) are sufficient to bind M protein HVRs [84] and C4b [84,85]

(Fig. 2.1a). Overlapping but non-identical sites on C4BP are engaged by M protein HVRs

and C4b [85].

2.3 Structural similarity

The structures of the four M protein-C4BP complexes (determined between 2.54-

3.02 angstrom resolution limits) were astonishingly similar, given the lack of sequence

relationship among the M proteins (fig. 2.5). The M protein HVRs form parallel, dimeric
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α-helical coiled coils, with two C4BPα1-2 molecules bound to each M protein dimer, as

prior reports suggested [83,86] (Figs. 1b-c; detailed view of M2 shown later, and detailed

views of M22, M28, and M49 are in Figs. 6-8). The portions of the M proteins that contact

C4BPα1-2 are in canonical coiled-coil conformation, except for M2, which is underwound

(fig. 2.19). C4BPα1 is proximal to the C-terminal portion of the M protein HVR and

C4BPα2 to the N-terminal portion, in agreement with the approach of intact C4BP to

the streptococcal surface (Fig 1a). The C4BPα1 and α2 domains are relatively unchanged

from their unbound NMR structures [83] (average RMSD ~1.5 and ~1.0 angstrom for

domains 1 and 2, respectively), except that domain 1 is rotated 180°with respect to

domain 2 (Figs. 10 and 11). This rotation is consistent with evidence from mutagenic [85]

and structural [83] studies, and is discussed further below. The M-C4BP interface is

extensive, with a total of ~1450-1690 angstrom2 of surface area being buried (in the 2:2

complex). Most of this surface area is polar, and the fit is far from hand-in-glove (surface

complementarities 0.56-0.66) [87], except for M22 which has a better fit (0.72). These

observations suggest a modest binding affinity, consistent with the 0.5 µM Kd [83] for the

interaction between C4BPα1-2 and the M4 HVR. A much tighter association of picomolar

Kd [88] results from avidity between multi-armed C4BP and surface-localized M protein.

2.4 Uniform reading head

Most significantly, the four structures revealed a uniform set of amino acids in C4BP

that act as a reading head for recognizing M protein HVRs. Most of this reading head

resides in C4BPα2 (fig. 2.2a) and takes the form of a quadrilateral that is composed of: (1)

a hydrophobic pocket that contains C4BP H67, I78, and L82; (2) a hydrogen bonding group

in the form of the main chain nitrogen of C4BP H67; and two positively charged residues,

C4BP (3) R64 and (4) R66. The segment that holds this quadrilateral is structurally

invariant, being stabilized by a disulfide bond at C65 and limited in conformation by
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P68 (not depicted). The M proteins supply amino acid side chains that interact with

these C4BP residues and form complementary quadrilaterals (fig. 2.2b). In all four

M-C4BP structures, a hydrophobic M protein residue (usually an aromatic) fits into the

(1) hydrophobic pocket, and a polar M protein residue immediately following in sequence

hydrogen bonds to the (2) main chain nitrogen of H67. The contacts to C4BP (3) R64

and (4) R66 are predominantly electrostatic (usually salt bridges), but in the case of M49,

a polar residue is absent and instead R64 makes hydrophobic contacts, extending its alkyl

chains across several M49 residues. Substitution of C4BP residues R64, R66, or H67 with

Gln affects binding to M4 and M22 [85]. Decreased affinity results in the case of R64Q and

H67Q, but increased affinity occurs for R66Q (likely a gain-of-function). Uniform reading

head contacts from C4BPα1 were far fewer. The key C4BPα1 residue was R39, which

forms electrostatic contacts through its guanidinium group as well as hydrophobic contacts

through its alkyl chain, creating a hydrophobic nook in conjunction with main chain atoms

of C4BPα1 (Fig 2c). Thus, out of the six C4BP residues that form uniform contacts, three

are arginines. This high proportion is likely significant, as the combination of polar and

apolar atoms in Arg along with its chain length increase the possibilities for interactions

with variable residues. Substitution of C4BP R39 with Gln results in decreased binding

to M4 but increased binding to M22 [85] (again, likely a gain-of-function). All four M

proteins have hydrophobic residues that insert into the C4BPα1 hydrophobic nook. M2

and M49 also have negatively charged residues that interact with C4BP R39, whereas

neither M22 nor M28 do. The importance of C4BP R39 provided an explanation for the

aforementioned 180°rotation of C4BPα1 (around a hinge at K63, fig. 2.10). In free C4BP,

the C4BPα1 R39 nook and the C4BPα2 quadrilateral are on opposite sides, and require a

180°reorientation to interact simultaneously with M protein. This 180°rotation was seen

in all four structures. However, in one of the two C4BPα1-2 molecules bound to M22,

the 180°rotation was prevented due to a crystal contact (Figs. 10c, d and 11). A similar

180°rotation appears to be necessary for the interaction of C4BP with C4b [85]. The
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purpose of C4BP having different free and bound conformations is unclear.

2.5 Sequence conservation hidden within hypervari-
ability

The evidence gathered from these structures proved powerful in bringing to light

weak sequence conservation in M protein HVRs. Comparison of the heptad position of

M protein residues that interacted with C4BP made it clear that there were two binding

patterns observed in these structures (Fig. 2.3a): M2 and M49 belonged to one, and M22

and M28 to a second one. These two patterns were also evident in the way the coiled coils

interacted with C4BP. In the case of M2 and M49, the coiled coils ran roughly parallel to

C4BPα1-2, such that each α-helix contacted a single C4BPα1-2 molecule (Figs. 1b and

2b). But in the case of M22 and M28, the coiled coils lay crosswise across C4BPα1-2 such

that both α-helices contacted a single C4BPα1-2 molecule. Remarkably, these same two

patterns were evident in a larger number of M proteins (Fig. 2.3b, 12, and 13). We were

able to assign 13 M proteins to the M2/M49 pattern and 32 to the M22/M28 pattern,

suggesting that these two patterns explained the interaction of nearly half of the M strains

that were studied for C4BP binding [74]. A further 46 M proteins from this study [74]

could not be assigned to either pattern (Fig. 2.14), making it likely that there are still

other arrangements by which M proteins interact with C4BP.

2.6 Tolerance to hypervariability

We next sought to understand tolerance in C4BP to sequence variation in M protein,

as single amino acid changes have been shown to alter recognition by antibodies but not

C4BP [74]. Alanine substitutions were created in the M2 residues mentioned above that

make contact with the uniform reading head. In addition, substitutions were made in

two M2 residues, K65 and E83, that make contacts observed only for M2 (Fig. 2.4). The
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Figure 2.2. C4BP Binding Mode

(a) The C4BPα2 quadrilateral (blue dashed lines), with the C4BPα2 backbone shown in ribbon
representation and key side chains shown as bonds (here and in following panels). The chemical
character of M protein residues that interact with the quadrilateral is depicted: φ, hydrophobic;
-, negative; H, hydrogen bond forming; (b) M2, M49, M22, and M28 residues that interact with
the C4BPα2 quadrilateral, shown in open-book representation with respect to C4BPα2. The
M protein residues form the complementary quadrilateral (red dashed lines); (c) The C4BPα1
Arg39 nook. Symbols are as described for the first panel. (d) M2, M49, M22, and M28 residues
that interact with the C4BPα1 Arg39 nook shown in open-book representation.
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Figure 2.3. C4BP-binding modes of M proteins

(a) Heptad register of M2, M49 and M28 HVRs (a and d residues in grey). M protein residues
interacting with C4BPα1-2 residues are highlighted according to their corresponding C4BPα1-2
interaction ;(b) Sequence alignment of M protein HVRs that belong to the M2/M49 group (top)
or the M28/M22 group (bottom). Residues that contact or are predicted to contact C4BPα1-2
are in red. Protein H (PrtH) is an M-like protein expressed by certain M1 strains
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M2-C4BP interaction was evaluated by a Ni2+-NTA agarose coprecipitation assay using

His-tagged C4BPα1-2 (Figs. 4a and 15). Of the single-site substitutions, only F75A, which

binds in the C4BPα1 nook, showed decreased binding. Strikingly, all other residues could

be mutated to Ala without obvious loss in binding, and indeed in two cases, increased

binding was observed (see below). Providing verification for the structural observations,

two double substitutions resulted in loss of binding: D62A/E68A, which removed two of

the polar contacts to the C4BPα2 quadrilateral, and E76A/D79A, which removed the two

salt bridges to C4BPα1 R39.

Surprisingly, two of the single-site mutations, M2 K65A and N66A, increased

binding, as did the K65A/N66A double mutant (Fig 4a). The structure of M2 (K65A/N66A)

in complex with C4BPα1-2 was determined to 2.29 angstrom resolution limit, and no

re-ordering of the binding site was evident (RMSD 0.15 angstrom) (Fig. 2.16). This

result suggested that M2 K65 and N66 were tolerated in the binding site but not optimal.

While M2 K65 formed a hydrogen bond to the main chain oxygen of C4BP R64, it was

sandwiched between two positively charged side chains (i.e., C4BP R64 and R66), providing

an explanation for why Ala substitution of K65 led to enhanced binding. Molecular

dynamics (MD) simulations reinforced this interpretation, as Ala substitution of K65 led

to better contacts between M2 and C4BP, especially evident in the increased frequency

of hydrogen bonding between C4BP R66 and M2 N66 (Table 2.2). The simulations

suggested that the hydrogen bond between these two residues was otherwise infrequent

(Videos 2.1 and 2.2, Table 2.2), and indeed these two residues had the highest B-factors

in the binding site (Fig. 2.17). In other M proteins belonging to the M2/M49 pattern,

the equivalent of N66 is almost always Asp or Glu (Figs. 12 and 13). Consistent with

this notion, substitution of M2 N66 with Asp resulted in increased binding (Fig 4a),

and MD simulations provided evidence of the favorable interactions between C4BP R66

and negatively charged M protein amino acids (Video 2.3 and Table 2.3). Puzzlingly,

substitution of M2 N66 with Ala (and thus loss of hydrogen bonding to C4BP R66) also
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Figure 2.4. M2-C4BP interaction

(a) Association of His-tagged C4BPα1-2 with wild-type and mutant M2 HVR at 37°C, as assessed
by a Ni2+-NTA agarose coprecipitation assay and visualized by non-reducing, Coomassie-stained
SDS-PAGE. Only bound fractions are shown here. Input samples shown in Fig. 2.16. This gel is
representative of four experimental replicates. Molecular mass markers were not run on these
particular gels; their positions are based on measurements from equivalent gels;(b) Quantification
of the interaction between C4BPα1-2 and wild-type M2 or M2 mutants proteins. The values
shown are averages of four experimental replicates, corrected for the level of background binding
(i.e., no C4BPα1-2) and normalized to wild-type M2. Standard deviations are depicted; (c)
Structure of M2 (gray ribbon representation with key side chains in bonds representation, in
which carbons are yellow, oxygens red, and nitrogens blue) bound to C4BPα1-2 (cyan ribbon
representation, with key side chains in bonds representation, in which carbons are cyan and
nitrogens blue). Hydrogen bonds and salt bridges depicted by dashed magenta lines.
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Figure 2.5. Schematic of M protein domains
The sequences of M2, M22, M28, and M49 co-crystallized with C4BPα1-2 are depicted, with
the HVR in light blue and other regions of the protein in darker blue or black. M proteins
are hypervariable at their N-termini, with conservation increasing towards their C-termini;(b)
Multiple sequence alignment of the M2, M22, M28, and M49 HVRs is shown, as carried out using
MUSCLE. The asterisks indicate identical amino acids, the colons indicate amino acids with
strongly similar properties, and the periods indicate amino acids with weakly similar properties.

resulted in better binding. It is worth noting that C4BP R66 had an even higher relative

B-factor when contacting M2 (K65A/N66A) as compared to wild-type M2 (Fig. 2.17).

Thus, it appears that C4BP R66 prefers a salt bridge (e.g., N66D) or no interaction (e.g.,

N66A) to a hydrogen bond, because the salt bridge provides sufficient binding energy to

relieve the entropic cost of ordering the Arg, whereas the hydrogen bond does not. In

short, the mutagenesis experiments reinforced the notion that the reading head in C4BP

is highly tolerant to variation in the M protein.

Video Legends

Video 2.1 R39 nook in M2-C4BPα1-2.

Portion of the molecular dynamics simulation of the M2-C4BPα1-2 complex focusing on the R39

hydrophobic nook. M2 is in gold ribbon representation, and C4BP in cyan ribbon representation.

55



Figure 2.6. Electron density for the M49 HVR-C4BPα1-2 complex

(a) Electron density from a simulated annealing 2Fo-Fc omit map (contoured at 1sigma) for
the M49 HVR-C4BPα 1-2 structure. Residues M49 68-75 and C4BPα1-2 64-67 and 77-82 were
excluded along with a 3.5 angstrom sphere around these residues, prior to performing simulated
annealing (2500 K) and phase calculation. The final model is overlaid in bonds representation.
M49 is depicted with pink carbons, and C4BP with green carbons; nitrogens and oxygens are
blue and red, respectively, for both. The numbering of M proteins is such that the initiator Met
is residue 1
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Figure 2.7. Structure of M22-C4BP
M22 is in gold ribbon representation with key side chains in bonds representation, in which
carbon are yellow, oxygen red, and nitrogen blue. C4BPα1-2 is in cyan ribbon representation,
with key side chains in bonds representation, in which carbon are cyan, oxygen red, and nitrogen
are blue. Hydrogen bonds and salt bridges depicted by dashed magenta lines.
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Figure 2.8. Structure of M28-C4BP
M28 is in gold ribbon representation with key side chains in bonds representation, in which
carbon are yellow, oxygen red, and nitrogen blue. C4BPα1-2 is in cyan ribbon representation,
with key side chains in bonds representation, in which carbon are cyan, oxygen red, and nitrogen
are blue. Hydrogen bonds and salt bridges depicted by dashed magenta lines.
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Figure 2.9. Structure of M49-C4BP
M49 is in gold ribbon representation with key side chains in bonds representation, in which
carbon are yellow, oxygen red, and nitrogen blue. C4BPα1-2 is in cyan ribbon representation,
with key side chains in bonds representation, in which carbon are cyan, oxygen red, and nitrogen
are blue. Hydrogen bonds and salt bridges depicted by dashed magenta lines.
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Figure 2.10. Coiled coil parameters of M proteins
Radius and pitch of the M protein HVR α-helical coiled coils, reporting on the residues that are
at the interface with C4BPα1-2.
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Figure 2.11. Rotation of C4BPα1-2

(a) Superposition of free (magenta) and M protein-bound C4BPα1-2 (cyan) based on the C4BPα2
domain, showing the 180°rotation of C4BPα1 around Lys 63 (indicated by golden ball). The
molecules are depicted as Cα chain traces. The position of C4BP Arg 39 is shown in bonds
representation. The same depiction is used in the following panels;(b) A 90°rotated view of the
superposition shown in panel a, with one α-helix of the M2 coiled coil shown as a blue ribbon; (c)
One of the C4BPα1-2 molecules bound to M22 that is restricted from undergoing a 180°rotation
by a crystal contact is depicted. Superposition of free (magenta) and the M22 protein-bound
C4BPα1-2 (cyan) is based on the C4BPα2 domain. The bound C4BPα1 domain is related to
free C4BPα1-2 by a tilt rather than a rotation; (d) A 90°rotated view of the superposition shown
in panel c, with the M22 coiled coil shown as a blue ribbon.
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Figure 2.12. Structure of the M22-C4BP interaction in which C4BPα1 is tilted rather than
rotated
The depiction is as in Figure 7. M22 is denoted with an asterisk to indicate that in this complex,
the C4BPα1 domain is tilted rather than rotated.
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Figure 2.13. Sequence alignment of C4BP-binding M protein HVRs of the M2/M49 pattern
Residues that contact (first two lines) or are predicted to contact C4BP are in red, and the
heptad register is indicated above. Residues observed (first two lines) or predicted to be at core
d positions of the heptad register are highlighted in blue for visual reference.

Individual side chains are shown in bonds representation, with carbon cyan, nitrogen blue, and

oxygen red. Water molecules are shown as purple spheres. Of particular note is the lack of water

molecules at the M2-C4BPα1 interface, and the stability of the loop on which C4BP R39 is

located.

Video 2.2 R39 nook in M2 (F75A)-C4BPα1-2.

Portion of the molecular dynamics simulation of the M2 (F75A)-C4BPα1-2 complex. The

depiction is the same as in Video 2.1. Of particular note is the increased number of water

molecules at the M2 (F75A)-C4BPα1 interface, and the instability of the loop on which C4BP

R39 is located.

Video 2.3 C4BPα2 contacts in M2-C4BPα1-2.

Portion of the molecular dynamics simulation of the M2-C4BPα1-2 complex. The depiction is

the same as in Video 2.1. Of particular note is the infrequent interaction between C4BPα2 R66

and M2 N66.

Video 2.4 C4BPα2 contacts in M2 (K65A)-C4BPα1-2.

Portion of the molecular dynamics simulation of the M2 (K65A)-C4BPα1-2 complex. The

depiction is the same as in Video 2.1. Of particular note is the increased frequency of interaction
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Figure 2.14. Sequence alignment of C4BP-binding M protein HVRs of the M22/M28 pattern
Residues that contact (first two lines) or are predicted to contact C4BP are in red, and the
heptad register is indicated above. Residues observed (first two lines) or predicted to be at core
d positions of the heptad register are highlighted in blue for visual reference.
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Figure 2.15. C4BP-binding M protein HVRs that cannot be classified as belonging to either
M2/M49 or M22/M28 patterns
Residues predicted to be at core d positions of the heptad register are highlighted in blue.
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Figure 2.16. C4BP-M2 interaction

(a) Input samples from the experiment shown in Figure 4a visualized by non-reducing, Coomassie-
stained SDS-PAGE. Molecular mass markers were not run on these particular gels; their positions
are based on measurements from equivalent gels. ;(b) C4BPα1-2 visualized on Coomassie-stained
SDS-PAGE under non-reducing and reducing conditions, showing that C4BPα1-2 used in these
experiments is intact and not nicked. Molecular mass markers are in the leftmost lane.
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Figure 2.17. Molecular dynamics simulation of the Arg39 hydrophobic nook interaction with
wild-type M2 and M2 F75A.
Five overlaid replicates of simulated interactions between C4BPα1-2 (cyan, ribbon representation)
and wild-type M2 (upper panel) or M2 F75A (lower panel); C4BPα1-2 is in cyan ribbon
representation, and M2 in gold ribbon representation. The simulated coordinates of the five
replicates were aligned on M2 protein. The images highlight the hydrophobic C4BP α1 Arg39
hydrophobic nook.
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Figure 2.18. Interactions of M2 and M2 (K65A/N66A) with C4BPα2

(a) M2 is depicted as a green ribbon, with Lys 65 and Asn 66 in bonds representation (carbons
are green, oxygens red, and nitrogens blue). C4BPα2 is in cyan ribbon representation, with Arg
64 and its main chain carbonyl and Arg 66 in bonds representation (carbons are cyan, oxygens
red, and nitrogens blue). Hydrogen bonds are depicted as red dashed lines; (b) M2 (K65A/N66A)
is depicted as a gold ribbon, with Ala 65 and Ala 66 in bonds representation (carbons are light
gold). C4BPα2 is in gray ribbon representation, with the same groups as in panel a shown; (c)
Superposition of the structures shown in panels a and b.

between C4BPα2 R66 and M2 N66.

Video 2.5 C4BPα2 contacts in M2 (N66D)-C4BPα1-2.

Portion of the molecular dynamics simulation of the M2 (N66D)-C4BPα1-2 complex. The

depiction is the same as in Video 2.1. Of particular note is the increased frequency of interaction

between C4BPα2 R66 and M2 N66D.

2.7 Methods

2.7.1 DNA manipulation

The coding sequences of mature M2 (amino acids 42-367), M22 (42-335), M28 (42-363),

and M49 (42-359) proteins were cloned from GAS strains M2 (AP2), M22 (Sir22), M28 (strain

4039-05), and M49 (NZ131), respectively, into a modified version of the pET28a vector (Novagen)

modified such that it encoded an N-terminal His6-tag followed by a PreScissionTM protease (GE

Healthcare) cleavage site. Constructs that encoded truncated versions of these proteins, which

consisted of only the N-terminal 79, 86 or 100 amino acids, were generated through the insertion of
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Figure 2.19. B-factors of C4BPα2 bound to M2 or M2 (K65A/ N66A).
B-factors in the M2-C4BPα1-2 (left) and M2 (K65A/N66A)-C4BPα1-2 (right) structures repre-
sented by a color spectrum. The coloring of the M2-C4BPα1-2 complex is from the lowest to
highest B-factor in the structure. The scale for the M2 (K65A/N66A)-C4BPα1-2 complex was
set equivalent to that of the M2-C4BPα1-2 complex, but adjusted to account for the difference
in Wilson B-factors between these two structures. This was done by dividing the B-factors of the
M2-C4BPα1-2 structure by the ~2-fold lower Wilson B-factor of the M2 (K65A, N66A)-C4BPα1-2
structure (30.9 vs 59.7 angstrom2).
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Figure 2.20. Uncropped Gels
Uncropped gels from Figures 4a (top two) and Figure 16 (bottom three)
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Table 2.1. Data collection, phasing and refinement statistics for native and SAD (SeMet)
structures

M2-C4BP M2-C4BP(SeMet L46M/ L71M) M2-C4BP(SeMet L29M/ L46M) M28-C4BP M22-C4BP M49-C4BP(SeMet L29M/ L46M) M2 (K65A/ N66A)- C4BP
PDB ID 5HYU 5HYP 5HYT 5HZP 5I0Q
Data collection
Space group P 43 3 2 P 43 3 2 P 43 3 2 P 43 3 2 P 21 21 21 P 43 21 2 P 43 3 2
Cell dimensions
a, b, c(angstrom) 148.3 148.7 148.3 133.7 68.08 78.1 148.6

148.3 148.7 148.3 133.7 80.35 78.1 148.6
148.3 148.7 148.3 133.7 152.9 345.3 148.6

α, β, γ(°) 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90
Wavelength 0.984 angstrom 0.979 angstrom 0.979 angstrom 0.979 angstrom 0.979 angstrom 0.979 angstrom 0.979 angstrom
Resolution (angstrom) 50.00- 50.00- 50.00- 50.00- 80.40- 86.40- 50.00-

2.56(2.60- 2.90(2.95- 3.00(3.05- 3.02(3.07- 2.54(2.68- 2.74(2.89- 2.29(2.37-
2.56)a 2.90)a 3.00)a 3.02)a 2.54)a 2.74)a 2.29)a

Rmerge 0.18(1.00) 0.18(1.00) 0.15(1.00) 0.14(1.00) 0.14(1.00) 0.23(1.00) 0.13(1.00)
I / σI 67.3(4.17) 21.3(2.17) 22.4(3.44) 13.2(0.81) 10.7(1.2) 11.3(1.00) 46.4(3.22)
Completeness (%) 100(100) 99.9(100) 100(100) 99.8(100) 99.8(99.9) 99.8(99.1) 100(100)
Redundancy 42.8(43.1) 40.6(40.7) 22.9(22.6) 9.5(9.7) 6.6(6.7) 9.4(9.6) 40.5(32.6)
cc1/2 1.00(0.86) 0.99(0.86) 0.99(0.86) 0.99(0.48) 1.00(0.60) 1.00(0.61) 0.99(0.86)
Refinement
Resolution (angstrom) 35.97- 44.40- 76.50- 71.16- 49.54-

2.56(2.65- 3.02(3.21- 2.54(2.60- 2.74(2.84- 2.29(2.37-
2.56) 3.02) 2.54) 2.74) 2.29)

No. reflections 18514 7741 28328 28700 47375
(1808) (1084) (1975) (2449) (4655)

Rwork / Rfree 0.21(0.27)/ 0.25(0.33)/ 0.21(0.34)/ 0.25(0.42)/ 0.20(0.26)/
0.22(0.28) 0.29(0.39) 0.27(0.42) 0.31(0.43) 0.22(0.29)

No. atoms
Protein 1259 1197 4844 3146 1252
Ligand/ion 0 0 0 25 0
Water 76 0 70 20 132
B-factors
Protein 76.7 110.9 70.6 106.7 53.4
Ligand/ion 145.2
Water 103.8 54.6 68.2 67.0
R.m.s deviations
Bond lengths (43) 0.01 0.01 0.01 0.01 0.01
Bond angles (°) 1.35 1.31 1.48 1.21 1.35
MolProbity score 3.03[44th]b 3.33[52nd] b 2.49[78th] b 3.03[53rd]b 2.80[37th]b
Ramachandran
% preferred 90.3 86.7 92.6 90.4 92.9
% allowed 8.4 11.3 4.2 7.8 6.4
% disallowed 1.3 2.0 3.2 1.8 0.7
Clashscore 18.23[81st] 16.4[96th] 9.81[97th] 11.69[97th] 9.78[94th]

(a) Highest resolution bin in parentheses here and other rows. (b) Percentile in brackets here
and other rows.

an amber stop codon at an appropriate site by site-directed mutagenesis. Site-specific mutations

were also introduced into the M2 coding sequence by site-directed mutagenesis. All site-directed

mutagenesis was performed according to the Agilent QuickChangeTM manual, except that 50 µL

reactions were set up for polymerase chain reactions (PCR) instead of 12.5 µL reactions. The

coding sequence of the CCP1-2 domains of human C4BPα chain (C4BPα1-2) [83] (a kind gift

from G. Lindahl) was cloned into the modified pET28a vector described above, and also into

a pET28b vector that encoded a non-cleavable C-terminal His6-tag. The cleavable N-terminal

His6-tag version of C4BPα1-2 was used for crystallographic studies, and the non-cleavable C

terminal His6-tagged version for co-precipitation binding studies. To obtain selenomethionine

(SeMet)-substituted protein to be used in phase determination, methionines were introduced in

the coding sequence of C4BPα1-2 at amino acid positions 29, 46, and/or 71 by site-directed

mutagenesis.
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Table 2.2. Ionic Interaction Pair Occupancy in C4BP?2 for Quadrilateral Residues of M2 (%)

C4BP-M2 M2 Wild-type M2 (K65A) M2 (N66D) M2 (N66A) M2 (K65A/N66A)
H67-D62 64.3/94.4a 96.5/100 93.4/88.6 75.8/77.5 99.0/98.4
R64-E68 73.6/44.2 33.8/41.8 50.1/73.0 61.2/35.8 56.2/28.0
R66-N/D/A66 5.70/4.70 59.0/44.4 45.7/26.0 - -

(a) The two percentages reflect the two binding sites in the 2:2 C4BP-M protein complex

Table 2.3. Ionic Interaction Pair Occupancy in Quadrilateral for residues of M49, M22, and
M28 (%)

C4BP-M49 C4BP-M22 C4BP-M28
H67-D69 75.3/90.4a H67-N60 100/100 H67-N63 100/100

R64-E65 71.4/55.7 R64-E68 52.4/30.2
R66-D73 54.1/43.3 R66-D64 95.6/96.0 R66-E70 21.1/28.8
(a) The two percentages reflect the two binding sites in the 2:2 C4BP-M protein complex.

2.7.2 Protein Expression and Purification

M proteins were expressed in Escherichia coli BL21 (DE3) and purified as described [89]

with minor modifications to the procedure. Specifically, bacteria were lysed with a C-5 Emulsiflex

(Avestin Inc., Ottawa, Canada) and ion exchange chromatography was omitted, and in the case

of purification of M2 (wild-type and variants), imidazole was not included in the lysis and wash

buffers. C4BPα1-2 was expressed in E. coli Rosetta 2 (Novagen) cells. The protein was purified

and refolded as described [86], except for the use of a C 5 Emulsiflex for lysis. Where needed,

the N-terminal His6-tags of M proteins and C4BPα1-2 were removed by PreScissionTM protease

cleavage according to manufacturers instructions, and the cleaved protein was purified by reverse

Ni2+-NTA chromatography. M proteins and C4BPα1-2 were lastly purified by size-exclusion

chromatography (Superdex 200) in a buffer composed of 150 mM NaCl, 50 mM Tris, pH 8.5.

Proteins were then concentrated to ~20 mg/mL by ultrafiltration; protein concentrations were

determined by absorbance at 280 nm using calculated molar extinction coefficients. Aliquots of

concentrated protein were flash-frozen in liquid N2 and stored at -80 . SeMet was incorporated

into C4BPα1-2 (L29M/L46M), C4BPα1-2 (L29M/L71M), and C4BPα1-2 (L46M/L71M) using

methionine pathway inhibition as described4. SeMet-labeled C4BPα1-2 was purified as described

above.
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2.7.3 Crystallization and Data Collection

For preparation of complexes, M2 (amino acids 42-141), M2 (K65A/N66A) (42-141),

M22 (42-120), M28 (42-141), or M49 (42-127) protein was mixed with C4BPα1-2 (wild-type

or SeMet-substituted mutant) at a 1:1 molar ratio (final concentration of complex ~5 mg/mL),

and dialyzed overnight at 4 in 10 mM Tris, pH 8. The samples were then concentrated by

ultrafiltration to ~20 mg/mL. Crystallization was performed by the hanging drop vapor-diffusion

method. The M2-C4BPα1-2, M2 (K65A/N66A)-C4BPα1-2, and M28-C4BPα1-2 complexes and

the SeMet-labeled M2-C4BPα1-2 (L29M/L46M) and M2-C4BPα1-2 (L46M/L71M) complexes

were co-crystallized at 20 by mixing 1 µL of complex with 1 µL of the reservoir solution, which

was 1.5 M (NH4)2SO4, 0.1 M Bis-Tris Propane, pH 7.0. These crystals were transferred to the

reservoir solution supplemented with 20% ethylene glycol for cryopreservation, mounted in fiber

loops, and flash-cooled in liquid N2. Crystals containing SeMet-labeled protein were treated

similarly, except the reservoir solution was supplemented with freshly prepared 1 mM TCEP.

The M22-C4BPα1-2 complex was co-crystallized similarly, except the reservoir solution was 2 M

(NH4)2SO4, 2% PEG 400, and HEPES pH 7.5. The SeMet-labeled M49-C4BPα1-2 L29M/L46M

complex was also co-crystallized similarly, except the reservoir solution was 1.6 M Na/K PO4, pH

6.9. These two co-crystals were transferred to their respective reservoir solutions supplemented

with 20% glycerol before being flash-cooled in liquid N2. Diffraction data were collected from

crystals under cryogenic conditions. Diffraction data for M2-C4BPα1-2 were collected at the

Stanford Synchrotron Radiation Lightsource (SSRL) beamline 9-2, for M22-C4BPα1-2 at the

Advanced Photon Source (APS) beamline 24-ID-C, and for M2 (K65A/N66A)-C4BPα1-2 and

M28-C4BPα1-2 at the Advanced Lightsource (ALS) beamline 8.2.1. Single-wavelength anomalous

dispersion (SAD) data were collected from SeMet-labeled M2-C4BPα1-2 (L29M/L46M) and M2-

C4BPα1-2 (L46M/L71M) at the APS beamline 19-ID, and from SeMet-labeled M49-C4BPα1-2

(L29M/L46M) at the APS beamline 24-ID-E. Diffraction data from crystals of M22-C4BPα1-2

and M49-C4BPα1-2 (L29M/L46M) were indexed, integrated, and scaled using XDS [90], while

HKL2000 [91] was used for data from all other crystals.
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2.7.4 Structure Determination and Refinement

M2-C4BPα1-2

For structure determination of M2-C4BPα1-2, Se sites were located from SAD data

of SeMet-labeled M2-C4BPα1-2 (L29M/L46M) and M2-C4BPα1-2 (L46M/L71M), and phases

calculated for each data set using Autosol (within Phenix [92]). The two sets of phases were

combined using the Reflection File Editor program (within Phenix). From the combined phase

set, four Se sites, three at substituted methionines and one at the native Met 14, were identified

per asymmetric unit, which contained one M2 α-helix and one C4BPα1-2 molecule.

Here and in all cases below, model building was carried out with Coot [93] as guided by

inspection of SAD-phased maps or σA-weighted 2mFo-DFc and mFo-DFc maps, and refinement

was carried out with Refine (within Phenix) using default parameters. Between 15 and 75

iterative cycles of building and refinement, with each refinement step consisting of 1-10 rounds,

were performed in each case. In later stages of refinement, TLS parameterization was used

in Refine. Individual B-factors were refined isotropically. Water molecules were added in the

final stages of refinement using Phenix with default parameters (3σ peak height in σA-weighted

mFo-DFc maps).

In order to model M2-C4BPα1-2 (L29M/L46M/L71M), the NMR structure of C4BPα1-2

was manually fit into SAD-phased density, with the two domains of C4BPα1-2 being treated as

individual rigid bodies. The M2 molecule was then built into density, with the register of the

coiled coil being assigned from well-defined density corresponding to large side chains (i.e., His 20,

Phe 75, and His 85). The SeMet residues in the model were changed to leucines, and the model

was then refined against the higher resolution (2.56 angstrom resolution limit) data collected

from crystals of M2-C4BPα1-2. TLS parameterization involved the following groups: For M2,

53-57 and 58-86; for C4BPα1-2, 0-59 and 60-124. Continuous electron density was evident for the

entire main chain of C4BPα1-2 and for residues 53-86 of the M2 protein. Here and in all cases

below, side chains for the entire M protein were visible in electron density except certain solvent

exposed side chains with longer alkyl chains (i.e. Lys, Arg, Glu). Most side chains of C4BPα1-2

were also visible, except for some in long loops. All sidechains not visible were distant from the
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interface with M protein with the exception of C4BP Arg 66, which showed partial side chain

electron density. Here and in most cases, Ramachandran outliers were primarily confined to the

larger loop structures of C4BP where electron density was not as well defined. The only residue

with a Ramachandran outlier in the M2 protein was at Ala 58. This is probably due to multiple

possible conformations of the N-terminal resides of M2 within the crystal structure and such

flexibility results in this outlier during refinement. The structure of M2 (K65A/N66A)-C4BPα1-2

was determined by difference Fourier synthesis using the refined structure of M2-C4BPα1-2. The

set of reflections used for Rfree calculations for the refinement of M2-C4BPα1-2 were maintained.

TLS parameterization was equivalent to that for M2-C4BPα1-2.

M28-C4BPα1-2

The structure of M28-C4BPα1-2 was determined by molecular replacement using the

program Phaser (within Phenix [92]). The C4BPα1-2 molecule from the structure of the M2-

C4BPα1-2 complex served as the search model. The molecular replacement solution had a

log-likelihood gain score of 379. The asymmetric unit contained one C4BPα1-2 molecule and

one M28 α-helix, whose register was determined by well-defined density corresponding to large

side chains (i.e. Tyr 62, Tyr 76, Tyr 77). The model was first subjected to cycles of rigid body

refinement, followed by the refinement protocol described above. TLS parameterization involved

the following groups: For M28, 55-83; for C4BPα1-2, 0-59, 60-86, and 87-124. Continuous

electron density was evident for the entire main chain of C4BPα1-2, except for breaks in some of

the longer loops, and amino acids 53-83 of M28.

M22-C4BPα1-2

The structure of the M22-C4BPα1-2 complex was determined by molecular replacement

using the program Phaser. The search model consisted of an M28 α-helical, dimeric coiled-coil in

complex with a single C4BPα1-2 molecule. The solution, which had a log-likelihood gain score of

166, resulted in two copies of the search model in the asymmetric unit, while the solvent content

suggested that the asymmetric unit was composed of two M22 α-helical, dimeric coiled-coils and

four C4BPα1-2 molecules; this latter composition was found to be accurate. After refinement of
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the initial molecular replacement model, two additional C4BPα1-2 molecules became evident in

electron density maps, and were placed stepwise into density, with the two domains of C4BPα1-2

being treated as individual rigid bodies, between rounds of iterative refinement. Both these

additional copies had similar conformations to one another, and had a tilted orientation of the

C4BPα1 and C4BPα2 domains relative to these domains in unbound C4BPα1-2. This tilted

orientation differs from the 180°rotation observed in the two other copies of C4BPα1-2 bound to

M22, as well as in copies of C4BPα1-2 bound to M2, M28, and M49. Side chains for M22 were

subsequently built into density, with the register being assigned based on well-defined density

corresponding to large side chains (i.e., Tyr 66 and Tyr 67). The model was then subjected to

cycles of rigid body refinement followed by the refinement procedures described above. TLS

parameterization involved the following groups: For M22 chain A, 52-80; for M22 chain C, 52-79;

for M22 chain E, 52-79; for M22 chain G, 52-80; for C4BPα1-2 chain B, 1-13, 14-27, 28-59,

60-73, 74-86, 87-102, 103-109, 110-115, and 116-124; for C4BPα1-2 chain D, 0-59 and 60-124; for

C4BPα1-2 chain F, 1-59 and 60-124; for C4BPα1-2 chain H, 0-13, 14-33, 34-47, 48-59, 60-74,

75-86, 87-109, and 110-124. Continuous electron density was evident for the entire main chain of

C4BPα1-2, except for breaks in some of the longer loops, and for residues 52-79 (or 80, depending

on the chain) of M22.

M49-C4BPα1-2

For structure determination of M49-C4BPα1-2, Se sites were located from SAD data

collected for SeMet-labeled M49-C4BPα1-2 (L29M/L46M), and phases calculated using the

program Autosol. Six Se sites were identified per asymmetric unit, which was found to contain

an M49 α-helical, coiled-coil dimer and two C4BPα1-2 molecules. This is consistent with the

total of two SeMet substitutions introduced into C4BPα1-2. The crystal structure of C4BPα1-2

from the M2-C4BPα1-2 co-crystal structure was manually fit into SAD-phased density, with the

two domains of C4BPα1-2 being treated as individual rigid bodies. A model of the M49 protein

was then built into density, with the amino acid register for the coiled coil being assigned based

on well-defined density corresponding to large side chains (i.e., His 20, Phe 75, and His 85). TLS

parameterization involved the following groups: For M49 chain A, 56-60 and 61-126; for M49
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chain C, 56-126; for C4BPα1-2 chain B, 0-10, 11-62 and 63-124; for C4BPα1-2 chain D, 0-13,

14-27, 28-33, 34-44, 45-53, 54-62, 63-73, 74-86, 87-102, and 103-124. Continuous electron density

was evident for most of the main chain of C4BPα1-2, except for some of the longer loops of the

C4BPα1 domain, and for amino acids 56-124 (or 126, depending on the chain) of M49. The

only Ramachandran outlier in the M49 protein dimer was Ala 106 of chain A. This residue was

distant from the interface with C4BP.

Validation

Structural models were validated with MolProbity [94] (Table 2.1). Molecular figures

were made with PyMol (http://pymol.sourceforge.net). Coordinates and structure factors have

been deposited in the RSCB PDB.

2.7.5 Co-Precipitation Assays

Forty µg of C4BPα1-2-His6 protein was mixed with 120µg of intact M2 protein (wild-type

or mutant) in 50µL of phosphate buffered saline (PBS) at 37°C for 30min. Fifty µL of Ni2+-NTA

agarose beads were equilibrated in PBS, then added to the protein mix in a 1:1 beads:PBS (100

µL) slurry and incubated for 30âĂĽmin at 37âĂĽunder agitation. The beads were washed three

times with 0.5 mL of PBS supplemented with 15 mM imidazole, and eluted with 40 µL PBS

supplemented with 500 mM imidazole. Proteins in the input and eluted fractions were resolved

by non-reducing SDS-PAGE and visualized by Coomassie-staining.

2.7.6 Molecular Dynamics

System Preparation

Heavy atom coordinates were taken from the co-crystal structures of M protein-C4BPα1-

2 complexes. Structures of complexes containing M2 substitution mutants were created by

computational point mutations at the desired amino acid(s). Due to the varying resolutions of

crystal structures, crystallographic waters were removed prior to solvating the system. Each

structure was prepared for simulation using the Amber14SB force field [38,43,95]. The ionization

states of titratable residues at pH 7 were predicted using PROPKA 3.1 [96, 97] and visually
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inspected to ensure the accuracy of assigned states. Free cysteine residues were converted to

disulfide-bonded pairs manually and built using tLeap, a system preparation program from the

Amber Tools 2015 package [?]. The C-termini of proteins were capped to remove charges. The

solvent was modeled explicitly using the TIP4P water model [98] and a 0.15 M NaCl concentration

was applied after neutralizing the overall charge of the protein complexes. The Particle Mesh

Ewald electrostatic summation method [99,100] was employed to evaluate electrostatics during

simulation. In total, eight different M proteins in complex with C4BPα1-2 were simulated: 1)

M2 (amino acids 53-86), 2) M2 K65A (53-86), 3) M2 N66D (53-86), 4) M2 N66A (53-86), 5)

M2 K65A/N66A (53-86), 6) M22 (52-79), 7) M28 (55-80), and 8) M49 (56-126). All systems

contained residues 1 to 124 of C4BPα.

Minimization, Equilibration, and Production Molecular Dynamics

The NAMD simulation package [44, 101] was used to minimize, heat, equilibrate, and

simulate each system using a 2 fs time-step. Every system underwent a series of separate mini-

mization, heating, and equilibration stages in preparation for production runs. The minimization

spanned five stages in 10 ps intervals using the NVT ensemble: 1) 5,000 steps of hydrogen-only

minimization, 2) 5,000 steps of solvent minimization, 3) 5,000 steps of side-chain minimization,

4) 5,000 steps of protein-backbone minimization, and 5) 5,000 steps of full-system minimization.

Following minimization, the Langevin thermostat [102,103] was used to slowly heat the system

to 310 K using the NVT ensemble over 250,000 steps (500 ps). The system was then subjected

to three sequential equilibration stages using the NPT ensemble for 125,000 steps/stage (250

ps/stage). The pressure was set to 1 atm and maintained using the Beredensen barrostat [104].

In the first MD production run, atoms were assigned a random starting velocity, and sequential

steps carried over the velocities from the previous step. Five replicates of each system were

performed to enhance sampling of the conformational landscape [105] and the total simulation

time for each system was 25 ns/replicate. Therefore, the total aggregate simulation time for each

system was 125 ns.
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Percent Occupancy (Footprinting) Analysis

The five replicates comprising each system (125 ns total) were combined using cpptraj [106],

a simulation processing software in the AmberTools package [107]. Trajectories were aligned

against the first frame and an average structure was calculated using all atoms in the appropriate

protein complex. The average conformation was used to realign the trajectories with respect to Cα

atoms. The average conformation was then used to calculate the root mean squared fluctuation

(angstrom (RMSF) of individual residues in the protein complex. A single concatenated 125

ns trajectory consisting of the five replicates was written by cpptraj and used for the following

analysis. Using VMD [108], the radial distribution function (RDF) of pairwise interactions

for a number of protein-protein contacts was calculated over the duration of the concatenated

trajectory [85]. Distances in the RDF analysis were explicitly calculated for the following heavy

atoms of residues: backbone nitrogen of histidine; Cβ of alanine and valine; Cγ of aspartate,

leucine, and isoleucine; Cδ of glutamate; and Cζ of arginine. A 5 angstrom cutoff was applied to

all pairwise interactions to include salt bridges and hydrogen bonds between hydrogen atoms and

heavy atoms that were not explicitly analyzed. This was done to capture interactions between

equivalent atoms, e.g. Oδ and Oδ of aspartate interacting with Hω and Hω of arginine.

2.8 Concluding Remarks

Our work shows that broad recognition between M proteins and C4BP is not due to

contacts to the main chain, as it is for MHC-peptide complexes. Instead, the breadth of

recognition for the M-C4BP complexes is explained by two attributes. First, the C4BP binding

site is tolerant, notably due to the presence of arginines, and thus restrictions on the nature

of interacting M protein side chains are not stringent. Second, the M protein coiled coil can

align with C4BP in multiple ways, with at least two different arrangements being possible, which

enables M protein side chains to reside at different positions of the heptad repeat. Our work

importantly also has implications for vaccine design. Broadly neutralizing antibodies (bNAbs)

have been identified for several highly antigenically variable microbial pathogens, including HIV

and influenza virus [109,110]. These antibodies ignore hypervariable regions and instead focus on
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invariant but hidden structural regions, for example, hidden by glycosylation in HIV or sterically

occluded in influenza. The lack of ready accessibility to these structurally invariant regions

explains why such bNAbs are rare. A different approach to creating bNAbs is suggested by

our finding that C4BP, rather than ignoring hypervariability, detects conserved patterns that

are hidden within hypervariability. The structures described here provide the initial details for

the rational transplantation of the uniform and tolerant reading head of C4BP to the antigen-

combining site of an antibody. We predict such an antibody would have broad specificity against

M proteins as seen in C4BP, and would provide neutralization due to targeting of the M protein

HVR. A potential challenge is that such an antibody may recognize C4b, but differences in C4BP

binding modes between M protein HVRs and C4b suggest that selectivity would be possible [85].

A second challenge may be escape through further M protein variation. However, M protein

HVRs vary from strain to strain but are stable within the type [111], suggesting that their overall

sequence variation is limited by selection. Binding to C4BP appears to be a major selective

pressure [76], and escape from such a broadly neutralizing antibody through further sequence

variation may be limited by the pressure to maintain C4BP interaction.
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Chapter 3

Bridging structural and mechanis-
tic observations with computational
modeling techniques

In the following manuscript, we demonstrate how two distinct scales of molecular simula-

tions can be used to understand the structure of a protein complex and suggest paths for the

activation mechanism by a small molecule regulator. The subject of the manuscript is the RIα

heterotetrameric complex of Protein Kinase A (PKA). PKA is a ubiquitous eukaryotic protein

responsible for turning proteins on and off in response to an extracellular stimulus. PKA is

comprised of two catalytic (C) subunits that phosphorylate protein targets and regulatory (R)

subunits (R2C2). Each R subunit has two Cyclic-nucleotide binding Domains (CBD), which bind

a total of four equivalents of cAMP for each R dimer. Upon binding cAMP, the inhibition of the

catalytic subunits is relieved through dissociation, and the C subunits are free to phosphorylate

protein targets. The holoenzyme structure has been the subject of some controversy. Specifically,

the interface between the Type 1A R and C subunit has been debated extensively by those in the

PKA community. Solution-structure methodologies such as small-angle X-ray scattering (SAXS)

and Hydrogen/Deuterium exchange Mass Spectrometry (H/DxMS) suggest a protein-protein

interface that involves mostly CBD-A. Crystallography of the full-length R in the holoenzyme

complex proved challenging for the wild-type PKA, but a CBD-B mutant of R described a

more-extensive interface that involved both CBD-A and CBD-B.

In this manuscript, MD simulations helped bridge the gap between information obtained

from crystallographic and solution structures, revealing a stable conformation of the R subunit

that was elucidated after only a few nanoseconds of simulations starting from the extended
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conformation of the R subunit in the crystal structure. In the wild-type form, the R subunit

relaxes into a conformation which we named the Flipback conformation. With the new R subunit

structure, a model of the heterotetramer was constructed and proved extremely consistent

with the solution structure description. More specifically, the Flipback structure is consistent

with solvent-exposure of the C subunit determined by H/DxMS and the shape of the molecule

determined by SAXS.

Using the flipback model of the heterotetramer, we used Brownian Dynamics (BD) to

investigate the differential association kinetics of the small-molecule regulator cAMP to the two

proposed structures: 1) the (Holo) holoenzyme model derived from two crystal structures and

2) the Flipback model derived from our simulations and based on a crystal structure model of

the heterotetramer. Earlier studies determined that cAMP preferentially binds to CBD-B. This

observation was confirmed by our BD simulations. A novel insight from the simulations was the

association to the A-domain. In the heterotetrameric Flipback conformation, the association of

cAMP to CBD-A was two orders of magnitude higher than to CBD-A of the crystallographic

“Holo” model. In the heterodimeric forms, the association difference was more pronounced, with

four orders of magnitude higher association rates to the Flipback conformation over the Holo

conformation. The difference in association kinetics is due to a re-distribution of the electrostatic

charges as a result of the conformational differences between Holo and Flipback states. The

electrostatic potential on the surface of the protein is responsible for the long-range attractive

forces guide cAMP to the CBD target. These findings suggest that the R subunit may adopt

the Flipback conformation in order to bind cAMP in the A domain of PKA. With these new

insights from computational simulations, we have a better understanding of the heterotetrameric

structure of PKA, bridging the gap between solution and crystallographic observations.
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ABSTRACT: We identify a previously unresolved,
unrecognized, and highly stable conformation of the
protein kinase A (PKA) regulatory subunit RIα. This
conformation, which we term the “Flipback” structure,
bridges conflicting characteristics in crystallographic
structures and solution experiments of the PKA RIα
heterotetramer. Our simulations reveal a hinge residue,
G235, in the B/C helix that is conserved through all
isoforms of RI. Brownian dynamics simulations suggest
that the Flipback conformation plays a role in cAMP
association to the A domain of the R subunit.

Protein kinase A (PKA) is a ubiquitous eukaryotic kinase
that modulates the function of proteins through targeted

phosphorylation. An ancient cellular second messenger, cAMP,
modulates the activity of PKA in a diverse set of biological
processes, from synaptic plasticity1 to cardiac signaling.2

Inactive PKA exists as a heterotetramer (R2C2), where two
catalytic (C) subunits are maintained in the inactive state by
binding to the regulatory (R) subunit homodimer.3 In response
to extracellular signals like adrenaline,4 adenylyl cyclase activity
leads to an increase in the level of cAMP. When four molecules
of cAMP bind to the cyclic nucleotide binding domains (CBD)
of the R dimer, a global conformational change in R occurs,
releasing two active C subunits, free to phosphorylate protein
targets. This activation cycle is the generalized mechanism for
all nonredundant forms of R (RIα, RIβ, RIIα, and RIIβ) and C
(Cα, Cβ, and Cγ). PKA subtypes are expressed in every cell and
encoded by separate genes, differing in structure, activity, and
cellular localization.5,6 Thus, elucidating the structural organ-
ization of PKA complexes and their relationship to activation by
cAMP is important for the development of novel therapeutics
and the understanding of PKA’s fundamental biochemistry.
Structural biologists have elucidated PKA isoforms in various

stages of the activation cycle. Although the heterotetrameric
(R2C2) structure of the type IA protein kinase, RIα, has never
been fully resolved, it has been the subject of several studies and
models. Su et al. crystallized RIα in complex with two
molecules of cAMP.7 This structure of the PKA R subunit at
the end of the activation cycle, known as the “Bound”
conformation or “B form” (RBound), revealed the amino acid
residues that are important for coordinating cAMP. Each PKA
R subunit has two cyclic nucleotide binding domains (CBD-A
and CBD-B) joined by a helical moiety known as the B/C helix.

The CBD is a conserved sensor of cAMP and composed of
noncontiguous α helices and β barrel subdomains. At the N-
terminus, a 310 helix−loop region (N3A motif8) is followed by a
β sandwich containing cAMP binding residues, and a terminal
helical region (B and C-terminal helices). The cAMP-bound
structure has served as an invaluable resource for understanding
cAMP activation through molecular simulations9 and experi-
ments.
The first structure of the RC “holoenzyme” heterodimer

featured the C subunit in complex with RIα CBD-A (RAC).
10

Point mutations made at a key cAMP-interacting residue,
Arg333R in CBD-B, led to the crystallization of the dual-domain
R subunit with the C subunit,11 RCHolo. The R subunit
“Holoenzyme” conformation or “H form”, RHolo, is different
from the cAMP-bound structure, “Bound” or “B form”, RBound

(Figure 1). The Bound conformation is globular, with CBD
contacts resulting from a bent B/C/C′ helix. In B form, the B/
C helix breaks at L233 and Y244 (Figure 1A), bringing CBD-A
into contact with N3AB. In the RCHolo structure, the R subunit
wraps around the C subunit (Figure 1B), and the CBDs are
separated by an extended B/C helix. In the absence of the C
subunit, the H form is stabilized by cAMP analogues.12 The
cAMP-bound, “B” conformation cannot physically accommo-
date the C subunit because N3AB interacts with C in RCHolo

while N3AB interacts with CBD-A in RBound (Figure 1).
Despite extensive efforts, the structure of the full-length

(RAB), wild-type type IA (RIα) PKA heterotetramer remains
elusive. Structural models of the tetramer are available13 but not
fully consistent with the structure and dynamics of PKA in
solution. Specifically, the heterodimeric mutant R333K crystal
structure has an R/C interface larger than described by
hydrogen/deuterium exchange mass spectrometry (HDXMS)
(Figure 1B).14−16

Here, we use molecular simulation techniques to make sense
of discordant experimental findings from X-ray crystallography,
scattering, and HDXMS experiments. We present a novel
conformation of the regulatory subunit that resolves these
disparities, the “Flipback” or “F form”. Finally, we use
electrostatic descriptions of the biomolecules to understand
the effects of structural changes in cAMP association; offering a
role for Flipback in the regulatory mechanism of PKA RIα.
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To understand the flexibility of the apo WT R subunit, we
performed all-atom molecular dynamics (MD) simulations
starting from the H conformation in the absence of the C
subunit and cAMP. We simulated WT H in five 200 ns
replicates using the AMBER17 force field in the NTP ensemble
at 310 K. MD of WT-RHolo reveals a very flexible B/C helix as
observed in other simulations.18,19 Mutagenesis of B/C helix
residues recently showed pronounced effects on PKA
activation.14

Our MD simulations reveal a unique, stable conformation of
the R subunit (Figure 1C and Figure S1), which we call the
“Flipback” conformation or “F form”, RFlipback. Like RBound,
RFlipback features interdomain (CBD-A/B) interactions and a
break in the B/C helix. However, RFlipback breaks in the opposite
direction, with interactions between alternate CBDs and N3A
motifs. RB uses contacts between N3AB and CBD-A, while RF

uses N3AA to interact with CBD-B (Figure 1B,C). In RFlipback,
the B/C helix breaks at Gly235R early in the trajectory (∼20
ns), bringing the CBDs in contact for the rest of the simulation
in a stable conformation (Figure S1). Mutations limiting the
flexibility of the B/C helix (G235P) result in poor C subunit
binding,20 promoting activation. Residues 230−238 of the B/C
helix exhibit nearly equal hydrogen bond propensities in the
holoenzyme, cAMP-bound, and cAMP-free forms,15 suggesting
the B/C helix is equally flexible in all structures. Gly235 is
conserved among all forms of RI.21 Thus, a helical break at this
position may be important in the activation of other type I PKA
R subunits.

When RFlipback is aligned with CBD-A of RCHolo, it is apparent
that the Flipback conformation can accommodate the C
subunit, unlike RBound. We created a PKA R2C2 model using the
F form (R2C2

Flipback). As F and H are the only known
conformations that can accommodate the C subunit, we were
curious to understand how conformational changes in R affect
cAMP association. The diffusion of cAMP, a polar molecule, is
likely influenced by long-range electrostatic forces that are
estimated computationally by Brownian dynamics (BD)
simulation methods.22−24

Using the existing13 and newly constructed models of the
PKA heterotetramers and heterodimers (R2C2

Holo, R2C2
Flipback,

RCHolo, and RCFlipback, respectively), we examine the relative
rate of cAMP encounter to individual CBDs via BD simulations
to determine association rates (kassociation). An “encounter
complex” is formed when a specified distance between a set
of atoms is reached. We chose three conserved residues to
define encounter complexes in CBD-A/B: Val184/300,
Glu200/324, and Arg209/333 (Figure S2 and Table S1).
Using BrownDye,25 we compare the effect of Holo and
Flipback on cAMP association to tetrameric and heterodimeric
conformations.
Predicted BD rates are remarkably consistent with apparent

kon values from experiments: 4.52 × 106 and 1.00 × 105 (CBD-
B and CBD-A, respectively).26 The fastest rate of cAMP
encounter with PKA tetramers is that for R2C2

Holo CBD-B
(∼107 M−1 s−1), while CBD-A association is slowest [∼105 M−1

s−1 (see Table 1)]. Domain B preference in H validates the

standing “gatekeeper” theory of PKA RIα, which holds that
cAMP binds to CBD-B first.27 Domain B preference is
neutralized in R2C2

Flipback, where both CBD-A and CBD-B
bind on the order of ∼106 M−1 s−1 (Table 1 and Scheme 1).
Electrostatically, the systems differ in the distribution of

charge on the surfaces of PKA complexes. Flipback has a more
electropositive CBD-A than Holo (Figure S4), yielding a higher
cAMP association rate. The phenomenological preference for
CBD-A in Flipback is most pronounced in heterodimers, with
association rates being 2−4 orders of magnitude higher in F.
This difference in association rates is due to the very different
electrostatic potential surfaces of the heterodimer versus
heterotetramer forms in H and F conformations (see Figure
S4). From these results, we hypothesize that the Flipback
conformation is important for association of cAMP with CBD-
A. It is not known if RC heterodimers are important players in
the activation mechanism of PKA, but if they are, we predict
that the Flipback conformation plays a role in CBD-A
association.
The only resolved conformation of full-length R in complex

with C necessitated the R333K mutation to stabilize CBD-B.11

Figure 1. Comparison of the novel Flipback heterodimer with resolved
PKARIα conformations. (A) (PDB ID 1RGS) RBound:cAMP2, the
Bound or B conformation, RIα (purple ribbon) with two molecules of
cAMP (licorice). (B) (PDB ID 2QCS) RHolo:C, the Holo or H form,
RIα (purple ribbon) in complex with the C subunit (white ribbon).
(C) RFlipback:C, the Flipback conformation or F form, an MD-derived
metastable state, aligned with the Cα subunit (white ribbon). B/C
helices are shown as gold ribbons. The N3A motifs of A and B (N3AA

and N3AB) are colored light purple. In white, the C subunit is shown
with ATP (licorice). A blue surface representation highlights the H/D
exchanging regions of the C subunit measured by HDXMS.

Table 1. Rates of Association of cAMP with Cyclic
Nucleotide Binding Domains of PKA Complexes

cAMP binding domain (CBD) PKA conformation kassociation (M
−1 s−1)

A R2C2
Holo 3.07 × 105

B R2C2
Holo 2.57 × 107

A R2C2
Flipback 4.29 × 106

B R2C2
Flipback 4.16 × 106

A RCHolo 2.50 × 104

B RCHolo 2.72 × 104

A RCFlipback 1.38 × 108

B RCFlipback 1.98 × 106
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However, it has been shown that the R333K mutant (RCHolo)
has a solution structure different from that of WT. Small-angle
X-ray scattering (SAXS) of the full-length WT heterodimer and
heterotetramer28 exhibit a shouldering region, one not observed
in symmetric SAXS p(r) distributions of mutant RC (R333K)
and RAC, a heterodimer lacking the B domain.29

The Flipback heterotetramer structure corroborates obser-
vations from multiple solution experiments. First, the C subunit
interface of the WT full-length holoenzyme measured by
HDXMS is consistent with the R/C interface of the R2C2

Flipback

structure, where the amides of residues 212−221C and 278−
289C were reported to be unprotected.14 Second, structural
models from scattering experiments suggest that conforma-
tional changes in R cause the release of one set of R/C
contacts,30 consistent with the Flipback conformation (Scheme
1). It has been shown that binding of cAMP to CBD-B leads to
an increase in the rate of H/D exchange at the B/C helix.31 It is
likely that once binding to CBD-B has occurred, the Flipback
conformation is formed, resulting in CBD-A association.
Attempts to elucidate the heterotetrameric structure of PKA

RIα with SAXS have proposed a Flipback-like conformation.28

Finally, the majority of R/C on RIα contact have been traced to
in t e r a c t i on s i n CBD-A , con s i s t en t w i t h F l i p -
back.10,14−16,21,29,32,33

Flipback dynamics are consistent with other molecular
simulations and models.27,34 Guo and Zhou recently observed
a flexible B/C helix when simulating the apo-B form,9 the
opposite of the starting point of our H form simulations. A
backward-bending B/C helix is observed in these simulations,
in a conformation resembling Flipback. This suggests that F is a
state that can be accessed from both B and H forms.
An interesting role for Flipback emerges when we consider

the termination phase of PKA regulation. The phosphodiester-
ase enzyme (PDE) hydrolyzes cAMP to 5′AMP, regulating
concentration of the second messenger. Computational
docking and HDXMS determined that for PDE to bind RIα
subunit, the B/C helix requires a complete reorganization.35 It
is possible that Flipback is a binding partner of PDE, though
further exanimation of this hypothesis is necessary.
Our simulations, coupled with experimental data, make the

case for a viable and stable Flipback conformation of PKA RIα
that may play important roles in the cAMP regulatory
mechanism. Our work reveals a new structure of the WT
PKA R subunit, which supports observations from ensemble-
averaged solution structures and experiments. BD suggests a
role for the RFlipback conformation in the mechanism of PKA
activation. We hope our findings will lead to a re-examination
PKA, especially with regard to differences between the
conformations of WT and R333K mutants and the role of
structural ensembles in ligand binding and, ultimately, signal
transduction.
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Methods 
Molecular Dynamics using GPU accelerated AMBER 12 
We identified RFlipback as part of a series of molecular dynamics (MD) simulations studying the stability of the 
WT RHolo conformation (residues 113-379) in the absence of the catalytic subunit.  The atomic coordinates 
for the starting conformation of the regulatory subunit (RHolo) were taken from the heterodimeric structure of 
the R333K mutant, RCHolo. As a starting conformation for RHolo, we used the Protein Databank structure, 
2QCS.1 Residue K333 was changed back to R333 to undo the mutation and simulate wild-type (WT) R 
subunit. The system was prepared using Schrodinger’s Maestro (Suite 2012: Maestro, version 9.3, 
Schrödinger, LLC, New York, NY, 2012) PDB prep and Desmond system preparer. Terminal residues were 
capped to remove charges. Titratable residues were protonated at pH 7.0 using Maestro integrated 
PROPKA.2-5 The system was solvated in cubic water box with 10Å buffer using TIP3 waters6 and 0.15M NaCl. 
Using xleap from Ambertools7 the systems parameterized using AMBER ff99SB force field8 and periodic 
boundaries were applied.   The system was minimized in the following four stages: 1) 2,000 steps of hydrogen 
only minimization, 2) 4,000 steps of solvent minimization, 3) 20,000 steps with constrained backbone, and 4) 
40,000 steps full minimization. MD simulations were performed as an NTP ensemble, at 310K and 1 bar, with 
a 2 fs time step and a 10 Å non-bonding interaction cutoff with a partial mesh Ewald approximation for long-
range electrostatics interactions. The system was heated and then equilibrated over 1ps with harmonic 
constraints on the backbone. Production was performed as five parallel runs with new initial starting vectors 
for 200 ns each.  The Flipback structure (RFlipback) was observed in one of the five runs and was identified 
through visual inspection with VMD.9  

Preparation of Structures for Brownian Dynamics  
The atomic structure of R subunit from the cAMP-bound structure (RBound; PDBID:1RGS)11 was used to 
determine the encounter complex. The RCHolo heterodimer (PDBID:2QCS)1 was used for BD simulations of 
and RCHolo. The RFlipback structure was a configuration taken from one of five molecular dynamics simulations 
starting from the RHolo conformation. The Susan Taylor lab at the University of California, San Diego, provided 
the structural model of heterotetrameric R2C2

Holo to us. This structure was validated through mutational 
experiments and published in 201112. We created the R2C2

Flipback tetrameric structure by aligning the A-domain 
of the RFlipback

 conformation with the CBD-A with of the regulatory subunit of the R2C2
Holo structure using 

PyMol13. Residues 113 to 376 of the regulatory subunit were used for all simulations. Residues 13-350 were 
used for the Ca subunit. Titratable residues were assigned a protonation state using PROPKA 3.1 pKa 
prediction software3-5, 14 on the PDB2PQR server 2-5 and manually inspected for accurate state assignment at a 
pH of 7.0. 
To facilitate the crystallization of the heterotetramer trapped in the inactive conformation, RCHolo was 
crystallized with phosphoaminophosphonic acid-adenylate ester (ANP) and Manganese ions (Mn2+) in the 
active site of C subunit. To ensure the accurate electrostatic description of C subunit, we replaced ANP with 
adenosine triphosphate (ATP) and Mn2+ with Magnesium ions (Mg2+). Parameters for ATP and Mg2+ were 
obtained from the Bryce Group AMBER parameters database.15, 16 The edited PDB files were fed through 
tleap17 to create parameter topology and coordinate files consistent with the Amber ff14SB forcefield8. PQR 
files consistent with the addition of Mg2+ and ATP in the structures were exported and formatted using 
ambpdb.18 The atomic coordinates of cAMP from the RBound crystal structure and parameterized using 
Antechamber.19 

To eliminate the effects of simulated vs. crystal structure conformations of R, all structures were 
solvated and relaxed into a stable conformation. The NAMD simulation package20, 21 was used to minimize, 
heat, equilibrate, and simulate each system using a 2fs time-step. Every system underwent a series of separate 
minimization, heating, and equilibration stages in preparation for production runs in the following order. 
Minimization spanned five stages in 10ps intervals using the NVT ensemble: 1) 5,000 steps of hydrogen-only 
minimization, 2) 5,000 steps of solvent minimization, 3) 5,000 steps of side-chain minimization, 4) 5,000 
steps of protein-backbone minimization, and 5) 5,000 steps of full-system minimization. The Langevin 
thermostat22, 23 was used to slowly heat the system to 310K using the NVT ensemble over 250,000 steps 
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(500ps) following minimization. The system was then subject to three sequential equilibration stages using 
the NPT ensemble for 125,000 steps/stage (250ps/stage). The pressure was set to 1 atm and maintained using 
the Beredensen barrostat.24 The solvent was modeled explicitly using the TIP4P water model25 and a 0.15M 
sodium chloride concentration was applied after neutralizing the overall charge of the protein complexes. The 
Particle Mesh Ewald electrostatic summation method26, 27 was employed to evaluate electrostatics during 
simulation. 

Brownian Dynamics Simulations using BrownDye 
Brownian Dynamics simulations with BrownDye28 require PQR files as input, which list the position, 

charge, and radius of each atom in the respective molecules to be simulated. All necessary PQR files were 
generated using ambpdb—a program from the AMBER suite.7 PQR files were converted to XML format 
through pqr2xml, an accessory program of BrownDye. APBS29 was used to generate the electrostatic field of all 
molecules immersed in a 0.15M NaCl implicit solvent. Bd_top, an accessory program of BrownDye, generated 
all necessary input files for BD simulations. 5,000,000 single trajectory simulations were performed using 
nam_simulation from the BrownDye suite. Association rate constants and reaction probabilities were 
calculated using the compute_rate_constant function of BrownDye.  

The encounter complex is described by the distance between interacting atoms in a “bound” 
complex. The criteria for cAMP association to R subunit was based on cAMP interactions in CBD-A of RBound 
crystal structure.11 To control for the effect of sidechain orientation differences, CBD-A of RBound, RHolo, and 
RFlipback were aligned and atoms with less than 1.0 Å deviation were selected for the binding criteria. The atomic 
interactions chosen for the encounter complex are shown in Figure S1 and listed in Table S1. A distance of 7 Å 
was chosen for interacting atoms, consistent with the crystal structure conformation of RBound.  

FIGURE S1. The stability of the Flipback conformation. (A) Change in B/C helix angle over the course of the MD 
simulation. The angle was measured between Arg226-Gly235-Ser249; (B) Change in B/C helix dihedral angle over 
the course of the MD simulation. The angle was measured between Arg226-Ile233-Gly235-Ser249; (C) Change in 
conformation of R throughout the MD simulation. CBD-A and CBD-B are shown in pink. The B/C helix is shown 
in gold. The position of B/C helix residues used in Figure S1A and Figure S1B are shown in green dots. 
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Figure S2. Generalized Encounter complex of cAMP and the CBD-A/B. cAMP is shown in the cyclic-
nucleotide binding domain (CBD) of the regulatory subunit of Protein Kinase A RIa. Residue names are 
included next to the licorice representation of the sidechains and numbering of residues are numbered in 

CBD-A/CBD-B format. Hydrogen atoms are excluded. Interacting residues of the R subunit were chosen to 
be Valine, Arginine, and Glutamate for both CBD-A and CBD-B.  

Table S1.  Encounter Complex Description of R subunit and cAMP 
CBD R subunit 

residue number 
R subunit 

atom name 
cAMP Atom name  

and number 
A VAL 184 CB C8 (imidazole ring) 
A GLU 200 CA, CB O5 (ribose ring) 
A ARG 209 CB O1, O2 (α, β Phosphate) 
B VAL 300 CB C8 (imidazole ring) 
B GLU 324 CA, CB O5 (ribose ring) 
B ARG 333 CB O1, O2 (α, β Phosphate) 

Figure S3. Atomic numbering and naming of cAMP molecule in BD simulations. cAMP atoms are named and 
numbered according to PDB format. Carbon (gray), Nitrogen (blue), Oxygen (red), and Phosphorous 
(Orange) atoms are labeled with the corresponding atom name overlaid in white 
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Figure S4. Electrostatic descriptions of the four systems. (A) Electrostatic description of RCHolo; (B) 
Electrostatic description of RCFlipback;  (C) Electrostatic description of R2C2

Holo; (D) Electrostatic description 
of R2C2

Flipback; Domain A is highlighted in gold wire mesh. An isosurface value of 0.75 was used to create the 
positive and negative potentials. Electropositive potentials are shown in blue and electronegative potentials 
are shown in red.  
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Chapter 4

Subcellular spatial modeling in real-
istic geometries with stochastic par-
ticle methods to understand heart
disease

4.1 Abstract

The evasive source and cause of diseases is oftentimes smaller than you think. Imagine,

though, chasing something that you can’t actually see. This is the plight of almost all scientists

whose study does not involve the use of a microscope. Fortunately for the modern-day biomedical

scientist, computational advancements harnessing the near-limitless potential of mathematics

in the language of physics are able to see the unseen. Computational microscopy is a tool

developed by thousands of talented scientists that yields the power of visualization to the scientist

seeking to visually understand biological systems. With progressive advancements in the power of

computer graphics and the development of mathematical theories to explain biological behavior,

computational microscopy is a term given to a collection of methods developed by hundreds of

scientists throughout the greater half of the last century. Using this powerful tool, the artist

within the scientist is able to visualize what they know in their mind’s eye to be true through

their experiments. It also allows scientific discoveries to be translated without the explicit use of

language. With respect to diseases, the culprit is oftentimes an atomic-level alteration that has

a butterfly effect throughout the cell, scaling up through space and time to affect organs and
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eventually, the whole organism. In accordance with its name, the computational microscope not

only allows us to visualize extremely small entities like atoms, molecules, proteins, cells, and the

like. But it is especially unique, as it allows us to move through time in order to understand the

dynamics of the system we seek to “see”. Like a biophysically detailed time-lapse, we are able to

see through time, the development of a microscopic system and compare how small changes can

have large-scale effects.

4.2 Introduction

Over 135 years ago, Dr. Singer demonstrated that a human heart would not beat in

the absence of Ca2+ ions [112]. Yet, human heart is the size of a fist. Thus the process of the

heartbeat is an inherently multiscale process. The atria and ventricles of the heart make up the

“working chambers” which pump oxygenated blood through the body, and deliver deoxygenated

blood to the lungs. The thickness of these walls are several millimeters depending on the region

of the heart. Each cell is a complicated but regular structure of membranous invaginations that

range from 20-450 nm in diameter. Cardiomyocytes, or muscle cells, contain bundles of muscle

fibers that are responsible for the contraction of the heart. The thick filaments are made out of

myosin protein and are about that are 160-170 Å in diameter while thinner actin filaments are 6

to 10Å in diameter. Finally, large proteins in close contact with each other (roughly 20 nm) sense

calcium ions (roughly 231 pm radius), triggering processes the contraction and relaxation of

muscle fibers, resulting in the beating of the heart. Thus, cardiac function spans scales that can

be observed with the naked eye, to invisible phenomena that only a computational microscope

can see.

A healthy heart contracts in response to a synchronous electrical stimulation of the

plasma membrane, also known as the sarcolemma, initiated by the sinoatrial (SA) node. The

membrane action potential travels from the SA node and is propagated from cell to cell through

gap junctions [113]. This electrical stimulation results in membrane depolarization, to which

the cell responds with a muscular contraction, a phenomenon known as excitation-contraction

coupling (ECC) [114].
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Cardiomyocytes have specialized structures within which this process occurs. Invagi-

nations in the sarcolemma (cell membrane), known as axial and transverse-tubules (TT) are

positioned directly adjacent to the sarcoplasmic reticulum (SR), the intracellular calcium store.

Depolarization of the sarcolemma activates and opens L-Type Calcium Channels (LTCC), through

which calcium enters the cell. The LTCC are in close proximity large (> 2MDa) SR membrane

proteins called Ryanodine Receptors (RyR) [115]. The space between the extracellular membrane

and SR membrane is known as the dyadic junction and this is where the magic happens.

High calcium concentrations in the extracellular matrix cause influx of Ca2+ through

LTCC, into the cardiac muscle cells which maintain a very low Ca2+ concentration. Directly

adjacent to LTCC are RyR, which are regulated by more than 30 proteins [116]. When RyR

sense changes in cytosolic calcium, a signal amplification results, whereby RyR release thousands

of Ca2+ ions from the SR into the cell, an event known as a triggered calcium spark or Calcium

Induced Calcium Release (CICR). In response to the change in cytosolic Ca2+, the inhibition of

action and myosin is relieved by Troponin C (TnC) which directly bind Ca2+. This causes the

muscle fiber proteins to slide across each other leading to muscle fiber shortening, or muscular

contraction that squeezes blood out of the atrial chambers of the heart into the ventricles and

out towards the rest of the body. An important SR protein, the Sarco/Endoplasmic Reticulum

Ca2+-ATPase (SERCA) pump, clears the cytosol of the high Ca2+ levels, allowing for muscle

relaxation. This cycle is repeated every time the heart beats.

Early on, LTCC (also known as Dihydropyridine Receptors, and Voltage-Dependent

Calcium Channels) [117] and RyR [118] were implicated in the generation of calcium sparks.

Though theories about ECC existed [119], the first Ca2+ spark event was visualized and confirmed

25 years ago using laser-scanning confocal microscopy [120] and quickly confirmed in subsequent

studies [121,122]. Within a few years, computer simulations were applied to this system to model

the elementary events responsible to elucidate the subcellular mechanisms responsible for what

was visualized with the early fluorescence measurements [123].

Microscopic fluorescence imaging techniques have limitations in terms of their ability to

resolve spatial changes in calcium levels; especially at short space and timescales. Therefore,
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computational models have played an important role to tease out important features of CICR

and ECC. The field of computational cardiology has an impressive track-record of over 30 years

of computational modeling of cardiac excitation phenomena that have explained and predicted

mechanisms that underlie calcium signaling [124]. Almost all of the existing models use idealized

geometries of myocardium that do not encapsulate the structural complexities of cardiac cells.

Moreover, the field largely uses continuum approaches to model the dynamics of cardiac systems.

At low molecular concentrations such as those exhibited in the cardiomyocyte.

The first use of stochastic, explicit-particle simulations with MCell to investigate cardiac

Ca2+ signaling mechanisms was performed by Koh et al. in 2006 [125]. Their study showed the

effects of altering dyadic distances had a pronounced effect on Ca2+ SR fluxes. It featured the

use of simplistic planar geometries to model the SR and plasma membrane, but paved the way

for future discrete-modeling methods in cardiac systems. In 2012, Hake et al. debuted the first

subcellular model of a Ca2+ spark [33] using realistic geometries of a cardiac calcium release

unit [32]. The methods used in the study were continuum-based and deterministic, and modeled

phenomenological calcium activation.

In the present study, we combine the realistic geometries used by Hake et al. with

stochastic models approaches using particle-based, spatial reaction-diffusion modeling methods

[125] by Koh to debut the first-ever model of discrete calcium dynamics in realistic geometries

of mouse myocardium. We use our model to investigate the effects of disease phenotypes,

such as T-Tubule deformation [126], RyR dispersion [127], and alterations of the mouse action

potential [128] on calcium signaling.

4.3 Methods

4.3.1 Building the Geometric Model

The our model builds upon and extends the model built by Hake et al. [33], which was

the first to use electron tomography-derived geometries for calcium spark simulations. We used

the same realistic geometry of the calcium release unit (CRU) imaged by Hayashi et al. [32]

which were segmented by IMOD [129] and meshed with GAMer [30, 31]. The geometry files
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Figure 4.1. The Calcium Release Unit geometry
The Sarcoplasmic Reticulum (SR) (green, yellow, orange) is subdivided into network SR (nSR1,
nSR2, nSR3, nSR4, nSR5, nSR6) Z-line SR (SRZ1, SRZ2) and junctional SR (jSR in red). The
Axial T-Tubule (TT1) and Transverse T-Tubule (TT2) (blue) are in close proximity to the SR.

A single mitochondrion (Mito in pink) is shown in the geometry.

were graciously provided to us through correspondence with Dr. Johan E. Hake, the primary

author of the original realistic CRU paper [33]. We were also very fortunate to have access to

the original EM images through the local National Computational Microscopy Imaging Resource

(NCMIR) at UCSD. Although the original segmented images did not include the explicit locations

of the Ryanodine Receptors (RyR) in the junctional SR, images of the locations were graciously

provided to us by Masahiko Hoshijima of NCMIR. In total, 96 RyR were observed in the original

CRU tomograms and this number of RyR were used in our simulations and manually placed in

the CRU.

The geometry features a contiguous sarcoplasmic reticulum (SR), two mitochondria, and

one axial and one transverse tubule (TT1 and TT2 respectively). In order for the geometry

mush to be usable by our simulation interface and simulation engine, (CellBlender and MCell)

it was necessary to further refine the mesh. For this, we used an improved version of GAMer

developed locally at the National Biomedical Computational Resource (NBCR) at UC San Diego

(UCSD) [30,31].

To divide the mesh into “model objects” usable by MCell and Cellblender, we used the
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colors attributed to the original meshes as a way to classify the objects into separate regions.

The model objects were named as follows: 1) T-Tubule 1 (TT1, axial); 2) T-Tubule 2 (TT2,

transverse); 3) Mitochondrion 1 (Mito1); 4) Mitochondrion 2 (Mito2); 5) Sarcoplasmic Reticulum

(SR). The SR was further subdivided into network SR, Z-line SR, and junctional SR subdivided

in the following ways: a) nSR1, nSR2, nSR3, nSR4, nSR5, nSR6; b) SRZ1, SRZ2; c) jSR release

site, jSR rim, jSR back, preserving the original nomenclature used by Hake et al. [33] (see figure

4.1 for reference).

4.3.2 The MCell model of the CRU

Our model uses a stochastic modeling engine named MCell [60, 61, 130] to track the

positions of each molecule in the system individually. This approach treats molecules as points-

particles in space, able to diffuse in three dimensions . Reactions between species happen only

when two molecules spatially encounter each other. Each molecule is accounted for explicitly in

contrast to the continuum methods used by Hake et al. [33].

The same cytosolic and SR Ca2+ buffers were used in our MCell model; namely, ATP

[33, 131, 132], Calmodulin (CMDN) [132–135], Troponin C (TRPN) [136], and Fluo-4 [132] in

the cytosol and Calsequestrin (CSQN) [131,132,137] and Fluo-5 in the SR [132]. The models of

the sarcolemmal (T-Tubule) pumps and SR pumps used by Hake et al. did not use elementary

reactions, and so we used analogous models well-suited to model the behavior of the Plasma

Membrane Calcium-ATPase (PMCA) [138–140], Sodium-Calcium Exchanger (NCX) [140,141],

Sarco/Endoplasmic Reticulum Calcium-ATPase (SERCA) pump [140,142], and (RyR) [143]. The

most important feature of these models is the ability to model the kinetics of individual calcium

ions. Considerable adaptation of the models was necessary to achieve steady-state behavior in

the absence of stimulus, which is detailed in the corresponding molecule descriptions below.

The CRU model of a Ca2+ spark by Hake et al. [33] was not designed to model the

phenomenon known as Calcium Induced Calcium Release(CICR); an action potential-mediated

excitation mechanism of L-Type Calcium Channel (LTCC) fluxes triggering Ca2+ efflux from

the SR through RyR channels. Instead, Hake’s original model was used to understand spark
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termination. It utilized a phenomenological model of the Ryanodine Receptor that occupied

one of two states, on or off. Ryanodine receptors were not activated in response to a particular

signal, and the number of open receptors was set to a constant number. Moreover, the Ca2+

signal terminated in response an SR Ca2+ concentration pre-set by the model builders. We

sought out to simulate CICR stochastically in response to sarcolemmal excitation. To do this,

we implemented a Markov Model of RyR [143] as well as a model of the LTCC action [144] that

features both voltage dependent and calcium dependent activation and inactivation properties.

Effectively, our RyR respond dynamically to an calcium sparklet generated by LTCC openings

in response to a membrane voltage change. Most importantly, our RyR are activated only upon

the spatial interactions of Ca2+ with RyR in the junctional SR.

4.3.3 Experimental design

One major difference between our model and the earlier model that used the same

geometry [33] is our use of stochastic simulations to understand Ca2+ spark dynamics in the CRU.

The discretization of the system is an important advancement in the modeling of CICR because

the resting level of Ca2+ in the CRU is extremely low (140µM). In our particular volume, the

number of Ca2+ ions are on average, 35. Owning to the low number of ions at rest, the spatial

location of the ions is more representative of biological reality than a continuum representation

of the concentration which is traditionally used [59,124].

Utilizing the power of MCell, we can count the exact positions and numbers of the

molecules that comprise our system. The molecules in our systems are modeled as point particles

that diffuse according to a specified molecular diffusion rate according to the equations of

Brownian motion [60]. The reactions in our systems can be unimolecular (state transitions) or

bimolecular. Bimolecular reactions occur only upon spatial encounter, and can occur between two

cytosolically diffusing molecules (volume molecules) or with membrane-bound species (surface

molecules). The Monte Carlo algorithm used by MCell ensures that each simulation gives an

independent result that is non-deterministic.

Another major difference between our model and Hake’s CRU model is the use of an
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electrical stimulus to induce a Ca2+ spark. As noted earlier, the model by Hake et al. used a

phenomenological discription of the RyR in the dyadic junction, whereby the number of RyR

open was set to a constant. When set to open, RyR would “release” Ca2+ from the SR that is

equivalent to a concentration gradient. Our model requires the use of an electrical stimulus to

activate LTCC in the T-Tubules. Upon binding Ca2+ on the cytosolic side, the of the Ryanodine

Receptor releases discrete Ca2+ ions from the sarcoplasmic reticulum into the cytosol. It is

important to note that a calcium spark can be triggered by an LTCC “sparklet” or the spark

can be spontaneous. With these improvements, we are able to investigate cases that were not

possible to test using the earlier model design.

The use of stimulus-induced LTCC opening allowed for interrogation of the effects of

action potential alteration on calcium spark genesis. We accomplished this by using action

potentials derived from healthy and diseased left ventricle myocytes. More specifically, we used a

model of over-expressed Calmodulin-dependent Kinase II (CaMKII-OE) [128,145]. Our goal in

comparing the action potentials is to see whether or not the action potential alone can alter the

activation of the RyR in the single CRU.

The use of the realistic geometry also to allowed us to interrogate the effects of morpho-

logical changes in membranous structures. Disrupted T-tubule networks have been observed in

diseased cardiomyocytes [126, 146, 147] This disruption oftentimes results in increased dyadic

junction distances [148] which effectively decouple LTCC and RyR spatially. Using the open-

source 3D graphics software, Blender, we deformed the junctional T-Tubule (TT2) to recreate

the deformations observed in diseased tissues. The T-Tubule was altered in such a way that

minimally affected the volume and surface area of the mesh but doubled the dyadic volume.

This permutation was intended to model the phenomenon known as “detubulation” where the

T-tubule network becomes disrupted in diseased forms of cardiac tissue. The original, WT

or “normal” T-Tubule and the “deformed” T-Tubule simulations were then compared against

one-another to understand the effects of the deformations in cardiac signaling.
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Figure 4.2. Geometries of Normal and Deformed T-Tubules

(a) The original, Wild-Type, “Normal” T-Tubule (blue) has an approximate distance of 20nm
from the Sarcoplasmic Reticulum; (b) The deformed T-Tubule has a distance of around 60 nm
with total displacement of about 40nm from the original position of the T-Tubule
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4.3.4 Cytosolic and SR Ca2+ Buffering

The kinetics for our cytosolic and SR Ca2+ buffers were modeled similarly to Hake et al

(2012) according to equation 4.1. The cytosolic buffers in our simulations are ATP, Calmodulin

(CMDN), Troponin-C (TRPN), and Fluo-4 and our SR buffers are Calsequestrin (CSQN) and

Fluo-5. The buffer reaction mechanism is a simple two-step reaction, where the buffer an exist in

either apo or Ca2+-bound states.

B+Ca2+ kf−−⇀↽−−
kr

B ·Ca2+
Calcium-bound Buffer

(4.1)

At equilibrium, the product of the forward rate constant, kf and the concentration of

Ca2+ and the buffer is equal to the product of the concentration of the Ca2+-bound buffer and

the reverse rate constant, kr, according to equation 4.2.

kf [B][Ca2+] = kr[B ·Ca2+] (4.2)

At equilibrium, the concentration of Ca2+ is assumed to be constant. In this way, we

can assume a pseudo-first order rate constant, k, equaling to the product of the forward rate

constant kf multiplied by the concentration of Calcium (140µM), according to equation 4.3.

k = kf · [Ca2+] (4.3)

The pseudo-first order relationship in equation 4.3 can be substituted into equation 4.2,

yielding equation 4.4.

k[B] = kr[B ·Ca2+] (4.4)

The above equation can be rearranged to give a ratio of the concentrations of the apo

and Calcium-bound buffer state equaling to the ratio of the reverse and pseudo-first order rate

constants.
[B]

[B ·Ca2+] = kr
k

(4.5)
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Since the buffer exists in either apo or calcium-bound states, according to equation 4.6,

the relationship can be substituted into equation 4.5 solving for the concentration of the apo

buffer species in 4.7.

[TotalB] = [B]+ [B ·Ca2+] (4.6)

[B] =

(
kr
k

)
[TotalB]

1+
(
kr
k

) (4.7)

Using this relationship, we are able to solve for the concentration of the buffer species in

either apo or Ca2+-bound states according to their total concentrations used by Hake et al. The

values for the initial concentrations can be found in Table 4.1.

4.3.5 Sarcolemmal (T-Tubule) Fluxes

PMCA and NCX fluxes

There are two major sarcolemmal pumps known to maintain homeostasis in cardiomy-

ocytes, the Plasma Membrane Calcium-ATPase (PMCA) pump and the Sodium-Calcium ex-

changer (NCX) pump [59]. Hake et al. originally modeled the sarcolemmal pumps using three

separate fluxes, PMCA (termed pCa in Hake et al.), NCX, and a background calcium flux,

(termed Cab in Hake et al.). In our model, we capture the background calcium flux utilizing

“leak” reactions in both our PMCA and NCX models (see figure 4.3a/b).

The PMCA pump is modeled as a two-state reaction where one ion of Ca2+ can reversibly

bind to the first state, and in a seperate, irreversible reaction, calcium is pumped out of the

cytosol (see figure 4.3a and equation 4.8).

PMCA0 +Ca2+ k1−−⇀↽−−
k−1

PMCA1
Calcium-bound Pump

pump
PMCA0 (4.8)

The concentration of either state is defined, then, by the total concentration minus the

concentration of the other state, according to equation 4.8.

[PMCA1] = [PMCATotal]− [PMCA0] (4.9)
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Figure 4.3. Sarcolemmal (T-Tubule) Fluxes

(a) Plasma Membrane Calcium-ATPase Model. Adapted from the model by Bartol et al. (2015)
and based on measurements by Brini and Carafoli (2009) and Penheiter et al (2003). Both states
are capable of leaking calcium into the cytoplasm (red), corresponding to a background calcium
level of 140mM. The transition from state PMCA1 to state PMCA0 pumps one Calcium ion
per reaction to the extracellular space (blue). Reaction rate constants can be found in Table
4.2; (b) Sodium/Calcium Exchanger Model. Adapted from the model by Bartol et al. (2015)
and based on measurements by Hilgemann (1991). Both states are capable of leaking calcium
into the cytoplasm (red), corresponding to a background calcium level of 140mM.The transition
from state NCX1 to state NCX0 pumps one Calcium ion per reaction to the extracellular space
(blue). Reaction rate constants can be found in Table 4.2; (c)Sodium/Calcium Exchanger Model.
Adapted from the model by Bartol et al. (2015) and based on measurements by Hilgemann
(1991). Both states are capable of leaking calcium into the cytoplasm (red), corresponding to a
background calcium level of 140mM.The transition from state NCX1 to state NCX0 pumps one
Calcium ion per reaction to the extracellular space (blue). Reaction rate constants can be found
in Table 4.2
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At equilibrium the concentration of Ca2+ is constant, and thus, a pseudo-first order rate

constant, kf , can be assumed, as in equation 4.10.

kf = [Ca2+] ·k1 (4.10)

The rate of change of a state, for example, PMCA0, can be written as the equation in

4.11, which is simply the sum of the PMCA0 producing reactions minus the PMCA0 consuming

reactions.
d [PMCA0]

dt
= [PMCA1]k−1 +[PMCA1]kpump− [PMCA0]kf (4.11)

At equilibrium, the rate of change is zero, and can be used to solve for the concentration

of one of the two states as in equations 4.12-4.15.

0 = d [PMCA0]
dt

(4.12)

0 = (k−1−kpump)([PMCATotal]− [PMCA0])− [PMCA0]kf (4.13)

0 = [PMCATotal] (k−1 +kpump)− [PMCA0] (k−1 +kpump)− [PMCA0]kf (4.14)

[PMCA0] = [PMCATotal] (k−1 +kpump)− [PMCA0] (k−1 +kpump)
kf

(4.15)

To account for the background Ca2+ level that maintains an equilibrium of 140µM, each

state of the pump was assigned to a leak rate which is defined as the ratio of the product of the

forward pump rate constants over all the produce of the total rate constants.

kleak = kpump ·kf
kf +k−1 +kpump

(4.16)

In this way, we can solve for the steady state concentrations of PMCA in either state.

The same relationships were used to model the NCX pump, but are not shown in the interest of

brevity.
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Figure 4.4. L-Type Calcium Channel Action Potentials
Healthy (black) and Diseased (red) action potentials used to stimulate the LTCC, based on the
model by Morotto et al (2014).

L-Type Calcium Channel flux

In an effort to further improve upon the the original Calcium Release Unit mode, we aimed

to model a triggered Ca2+ spark, or the process known as Calcium-Induced Calcium Release.

In order to do this, we included a model of the voltage-dependent Calcium Channel, known as

the L-Type Calcium Channel (LTCC). We adapted the model of LTCC dynamics developed by

Greenstein and Winslow [144] to be used in our system. We used two different action potentials

to stimulatie our LTCC 1) “healthy” or WT and 2) “diseased” or Calmodulin-Dependent Kinase

II over-expression (CaMKII-OE) action potentials as modelled by Morotti et al. [128] (see figure

4.4). The LTCC model has both voltage-dependent modes and Calcium-dependednt modes.

Using this LTCC model we were able to model the rate constants of LTCC state transitions

as a function of membrane calcium reactions, voltage and time, according to the relationships

described by Greenstein and Winslow (see figure 4.3c), described below.

The forward rate constants of the voltage-dependent modes, α are a function of the
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membrane voltage, according to equation 4.17.

α= 2.0e0.012(Vm−35) (4.17)

The reverse rate constants of the voltage-dependent modes, β are a function of the

membrane voltage, according to equation 4.18.

β = 0.0882e−0.05(Vm−35) (4.18)

The forward rate constants of the calcium-dependent modes, α′ are a scalar multiple of

α given by equation 4.19.

α′ = aα (4.19)

The reverse rate constants of the calcium-dependent modes, β′ are a scalar multiple of β

given by equation 4.20.

β′ = bβ (4.20)

The parameters defining the forward rate constant, kfy, and reverse rate constant, kry,

of the voltage and calcium-dependent inactivation are defined by equations 4.21 through 4.24.

y∞ = 0.4/
(
1+e(Vm+12.5)/5

)
+0.6 (4.21)

τy = 340/
(
1+e(Vm+30)/12

)
+60 (4.22)

kf,y = y∞/τy (4.23)

kb,y = (1−y∞)/τy (4.24)

In order to calculate the inward flux of calcium through the LTCC kIV in and the outward

flux kIV out, we converted the permeability of Ca2+ PCa to units ions/sec using equation 4.25 and

4.26. We assume 2mM extracellular calcium concentration. We use the following two equations

where NA is Avogadro’s number, z is charge/ion, Vm is the membrane voltage and F is Faraday’s
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Figure 4.5. SERCA Models

(a) Sarco/Endoplasmic Reticulum Calcium-ATPase (SERCA) Model by Higgins et al. Two
cytoplasmic-facing states (X) and two sarcoplasmic reticulum-facing states (Y) translocate
cytosolic Calcium (red) to the sarcoplasmic reticulum (green).

(b) Sarco/Endoplasmic Reticulum Model. Adapted from the model by Higgins et al 2006 by
separating the event of two Ca2+ binding/unbinding into individual Ca2+ binding/unbinding
reactions. Three cytoplasmic-facing states (X) and three sarcoplasmic reticulum-facing states
(Y) translocate cytosolic Calcium (red) to the sarcoplasmic reticulum (green). Reaction rate
constants can be found in Table 4.5

constant, R is the universal gas constant, and T is temperature (see table 4.3).

kIV in =
[Ca2+]NA

z PCa4VmF0.341
RTe

2VmF
RT

−1
(4.25)

kIV out =
NA
z PCa4VmFe

2VmF
RT

RTe
2VmF

RT
−1

(4.26)

4.3.6 Sarcoplasmic Reticulum Fluxes

Sarco/Endoplasmic Reticulum Calcium-ATPase (SERCA) pump kinetics

Of utmost importance in the dynamics of Ca2+ during the phenomenon of CICR is the

action of the SERCA pump, which is estimated to be responsible for the clearing of 70-90% of

cardiomyocyte Ca2+ after a release event event [59]. In a single forward cycle of the SERCA

pump, one molecule of ATP is consumed to translocate two ions of Ca2+ from the cytoplasm into

the SR, the intracellular Ca2+ store. In order to explicitly model the dynamics of Ca2+ in the

myoplasm and inside the SR, it is necessary to use models that treat calcium as individual species.
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In order to achieve this, we adapted a model of SERCA by Higgins et al. [142] as modeled in our

previous work [140] to reproduce the dynamics of SERCA2a, maintaining 140nM cytoplasmic

Ca2+ while satisfying microscopic reversibility.

The four-state model by Higgins et al. [142] (Figure 4.5) groups both Ca2+ binding and

unbinding events into a single step (see Figure 4.5,a) K1 and K3, respectively). In our adapted

version of the Higgins model, we model SERCA as a six-state pump that binds (see Figure

4.5,b) Kα and KB) and unbinds (see figure 4.3,b) Kγ and Kδ) Ca2+ ions discretely. In order

to accomplish this, the equilibrium constants for binding and unbinding Ca2+ (K1 and K3,

respectively) needed to be split up into two equilibrium constants for the individual binding (Kα

and Kβ) and unbinding (Kγ and Kδ) events. This was accomplished using the theory of ligand

occupancy developed by Sine and Taylor [149–151].

Firstly, we assume that the Ca2+ equilibrium constant for the binding of 2 Ca2+ ions,

K2
1 is the product of the individual equilibrium constants, Kα and Kβ, according to equations

4.27-4.30, below.

K2
1 =Kα×Kβ (4.27)

Kα = kX1X0
kX0X1

(4.28)

Kβ = kX2X1
kX1X2

(4.29)

K2
1 = kX1X0

kX0X1
× kX2X1
kX1X2

(4.30)

Because there are two sites to which Ca2+ can bind in state X0 and only one state to

which Ca2+ can bind to in state X1, the relationship of the Ca2+ binding rate constants in

equation 4.31 is assumed.

kX0X1 = 2×kX1X2 (4.31)

Likewise and in the same way, there are two sites from which Ca2+ can unbind in state

X2 and only one site to which Ca2+ can unbind to in state X1. And so, the relationship of the
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Ca2+ unbinding rate constants in equation 4.32 is assumed.

kX2X1 = 2×kX1X0 (4.32)

Substituting into equation 4.30 for the rate constant relationships 4.31 and 4.32, yields

equation 4.34.

K2
1 = kX1X0

2×kX1X2
× 2×kX1X0

kX1X2
=
(
kX1X0
kX1X2

)2
(4.33)

According to the relationship of the equilibrium constants in equations 4.31-32, the

relationship between the equilibrium constants Kα and Kβ is the one given by equation 4.34.

Kα = Kβ

4 (4.34)

We solve for the individual rate constants by substituting the relationship given in 4.34

into equation 4.35 yielding equations 4.36-38.

K1 =
√
Kα×Kβ (4.35)

K1 =

√
K2
β

4 (4.36)

Kα = K1
2 (4.37)

Kβ =K1×2 (4.38)

In the same way, we can derive the individual rate constants, Kγ and Kδ from the

equilibrium constant for the unbinding of 2 Ca2+ ions, K2
3 .

K2
3 =Kγ×Kδ (4.39)

Kγ = kY 1Y 2
kY 2Y 1

(4.40)

Kδ = kY 0Y 1
kY 1Y 0

(4.41)
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K2
3 = kY 1Y 2

kY 2Y 1
× kY 0Y 1
kY 1Y 0

(4.42)

There are two sites to which Ca2+ can unbind from in state Y2 and only one state from

which Ca2+ can unbind state Y1. Thus, the relationship between Ca2+ unbinding rate constants

in equation 4.43 is assumed.

kY 1Y 0 = 2×kY 2Y 1 (4.43)

There are two sites to which Ca2+ can bind in state Y0 and only one site to which Ca2+

can bind to in state Y1. As such, the relationship of the Ca2+ binding rate constants in equation

4.44 is assumed.

kY 0Y 1 = 2×kY 1Y 2 (4.44)

Substituting into equation 4.42 for the rate constant relationships 4.43 and 4.44, yields

equation 4.45.

K2
3 = kY 1Y 2

2×kY 1Y 0
× 2×kY 1Y 2

kY 1Y 0
=
(
kY 1Y 2
kY 1Y 0

)2
(4.45)

According to the relationship of the equilibrium constants in equations 4.43 and 4.44, the

relationship between the rate constants Kγ and Kδ is the one given by equation 4.46.

Kδ = Kγ

4 (4.46)

We solve for the individual rate constants by substituting the relationship given in 4.46

into equation 4.47 yielding equations 4.48-4.50.

K3 =
√
Kγ×Kδ (4.47)

K3 =

√
K2
γ

4 (4.48)

Kγ =K3×2 (4.49)
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Kδ = K3
2 (4.50)

According to Higgins et al., the relationship between the Gibbs Free energy of 1 molecule

of ATP and the kinetic cycle is given by equation 4.51.

K2
1K2K

2
3K4 = e∆G0

ATP/RT (4.51)

Using the rate constants described in Table 4.5 and the relationships described above,

yields a Gibbs free energy of -47.0943 kJ/mol. The product of the forward rates constants equals

the product of the reverse rate constants. At steady state, this is also true for the product of the

forward reaction rates and the product of the reverse reaction rates, satisfying detailed balance.

Lastly, the pump reaches steady state at a cytosolic concentration, Ca2+
cytss

, of 140nM and a SR

concentration, Ca2+
srss , of 1.3mM.

Ca2+
srss =

Ca2+
cytss

K1K3
√
K2K4

(4.52)

Ryanodine Receptor (RyR) kinetics

In order to simulate a triggered Ca2+ spark, it was necessary to model the complexities

of the Sarcoplasmic Reticulum Ca2+ release channel, the Ryanodine Receptor. Hake’s original

simulations used a simplistic, binary model of RyR that could exist in either an open or a closed

state. Once a certain voltage was sensed, the RyR would close and never re-open. Most notably

the RyR in these simulations did not activate in response to an action potential stimulus or

change in dyadic Ca2+ levels, but instead were set to “open” to initiate the spark. RyR is known

to interact with 30+ binding partners [152], and thus, can exist in a multitude of states. In an

attempt model this complexity, we incorporated a Markov model of RyR that captures its low

and high gating modes as well as its ability to bind Ca2+ as a basis for its activation.

We adapted the Markov model of RyR dynamics by Saftenku et al. [143] for use in MCell

simulations (see Figure 4.6a). Coincidentally, this was the same model of RyR used by Koh et al

in their MCell simulations using simplistic geometries [125].
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Figure 4.6. Sarcoplasmic Reticulum Fluxes

(a) Ryanodine Receptor Markov Model. Adapted from the Markov Model by Saftenku et
al. (2001); Nine closed (C) states and five open (O) states describe the kinetic scheme of the
Ryanodine Receptor. Cytosolic Calcium (Red) binds to closed states in High (H1) and Low (L)
gating modes. In open states, Sarcoplasmic Reticulum Calcium (Green) and Cytosolic Calcium
are translocated through the receptors. Reaction rates can be found in Table 4.4.

(b) Sarco/Endoplasmic Reticulum Model. Adapted from the model by Higgins et al 2006. Three
cytoplasmic-facing states (X) and three sarcoplasmic reticulum-facing states (Y) translocate
cytosolic Calcium (red) to Calcium the sarcoplasmic reticulum (green). Reaction rate constants
can be found in Table 4.5
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The parameters for the RyR model (see Table 4.4) were used with little adaptation with

the exception of the RyR flux. For the purpose of our simulations, the RyR flux had to be

converted to units of Ca2+ ions/second. This was accomplished using the single-channel current,

measured at 0.35 pA at 1mM by Guo et al [153] and the relationship described in equation 4.53,

below.

kRyRflux =
IRyR6.242×1018 Charge

Coulomb

[Ca2+]z = 9.01×10−9Ca2+ions

s
(4.53)

Amps are defined as units of Coulomb
second . Thus, the RyR current, IRyR in pA can be

converted to charges by multiplying the conversion factor, 6.242× 1018 Charge
Coulomb . Using the

1mM concentration of Calcium and a charge or, z, value of 2, equals to a rate constant of

9.01×10−9Ca2+ions
s .

4.4 Results and Discussion

4.4.1 Buffer and Fluorophore Dynamics

We began our investigations by building the model from a baseline, using cytosolic

buffers, sarcolemmal pumps, and fluorophores as the subjects of our simulations. To make sure

equilibrium is maintained in our simulations, we investigated the dynamics of Calcium and

its buffers in simulations lacking the sarcollemal stimulus, L-Type Calcium Channel. Because

Ryanodine receptors are known to spontaneously activate in the presence of Calcium [120,122],

and SERCA itself is known to act as a buffer [142] we sought to eliminate these effects to establish

that our “baseline system,” comprised of cytosloic and SR buffers and fluorophores, maintains

equilibrium. A question addressed by Hake et al. in their original investigation centered on

the effect of fluorophores in the simulations. We also decided to test this effect in our initial

simulations.

The system dynamics comparing the effects of the fluorophores on the baseline system

(containing only buffers and sarcollemal pumps) are nearly identical (see Figure 4.7). The most

pronounced effect is on the cytosolic buffer, Troponin C (See Figure 4.7e) which differs, on

average, only 14 molecules between simulations with and without fluorophores. Due to a high
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concentration of TRPN and TRPN-Ca2+ in the simulations (70 µM total, 13.2 µM bound to

Calcium, 56.8 µM free), this corresponds to a difference of 0.036% on average between the two

systems, which is arguably negligible.

4.4.2 Ryanodine Receptor activation profiles

Spontaneous calcium sparks in absence of LTCC

In order to validate our model, we sought confirmation that that our system could generate

spontaneous Ca2+ sparks without an LTCC stimulus as observed in experiments [120,122,154].

In order to test this, we simulated our CRU system in absence of an action potential stimulus

but in the presence of RyR with and without SERCA (see Figure 4.8). Though the average of

total number of RyR openings (n=128) are low, there is a non-zero probability that RyR in be

triggered spontaneously.

Triggered calcium sparks: RyR response to LTCC alterations

Having established that RyR are capable of firing spontaneously in the absence of an

AP stimulus, we sought to confirm that a single LTCC could activate RyRs as previously

demonstrated by Sobie et al [155]. Figure 4.9 demonstrates that one LTCC with a single action

potential is sufficient to activate RyR.

Following our simulations with 1 LTCC, we sought to understand the effect that increasing

the number of LTCC would have on triggered Calcium release. We comparatively investigated

CICR with 1, 2, 4, 6, 8, and 10 LTCC. We predicted that increasing LTCC would result in

increased gain, or SR Ca2+ efflux through RyR. Consistent with experimental findings, [122]

increasing the LTCC results in positive gain as demonstrated in figure 4.10.

4.4.3 Examining disease phenotypes

Alterations in L-Type Calcium Channel Action Potential stimulii

With the use of the LTCC model developed by Greenstein and Winslow [144], we

were able to interrogate the effect of diseases sarcolemmal action potential stimuli on Ca2+

signaling (see figure 4.4). A number of recent studies have examined disease electrical stimulus
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Figure 4.7. Molecular species in absence of LTCC, RyR and SERCA

(a) Cytosolic Calcium dynamics; (b) Sarcoplasmic Reticulum Calcium dynamics; (c) Calcium-
bound ATP; (d) Calcium-bound Calmodulin; (e) Calcium-bound Troponin-C; (f) Calcium-bound
Calsequestrin; Comparing simulations with only RyR (blue) and RyR and SERCA(red)
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Figure 4.8. Ryanodine Receptor gating modes in absence of L-Type Calcium Channels

(a) All open Ryanodine Receptors; (b) High-gating open Ryanodine Receptors; (c) Low-gating
open Ryanodine Receptors; RyR and SERCA (red) and only RyR (blue)
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Figure 4.9. Ryanodine Receptor flux after a single action potential stimulus with a single
L-Type Calcium Channel
Average number of openings of RyR in normal T-Tubules simulated with a single L-Type Calcium
Channel and the healthy action potential (purple). Standard deviations are shown in light blue.

Figure 4.10. Ryanodine Receptor flux after a single action potential stimulus compared across
different levels L-Type Calcium Channels
Average number of openings of RyR in normal T-Tubules with a healthy action potential compared
across a series of LTCC numbers: 10 LTCC (red), 8 LTCC (orange), 6 LTCC (yellow), 4 LTCC
(green), 2 LTCC (blue), 1 LTCC (purple)
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phenotypes [128,156], demonstrating that indeed, diseased left-ventricle mouse action potentials

have pronounced differences from that of healthy myocytes. We chose to model the effect of

Calcium-Calmodulin Kinase II over-expression (CaMKII-OE) which leads to heart-failure in

mice.

The effect of the diseased action potential on Calcium signaling is the same across all

L-Type Calcium channels levels. The diseased AP leads to an overall increase in calcium levels

in the cytosol (see figure 4.11) as a result of frequent activations of Ryanodine Receptors in

disease AP cases (see figure 4.12, 4.13). This is an expected result, as depolarization of the

membrane is relatively higher in the later half of the AP in the CAMKII-OE disease state. Most

interesting is the later-stage RyR activation seen in the disease states. Significantly more RyR

fire at later stages of the AP in diseased states compared to those with a healthy AP. This will

likely lead to asynchronous firing of the calcium release units. In the case of CAMKII-OE, the

disease phenotype known as Late Ca2+ Sparks (LCS) [157]. It should be noted that his effect is

seen in all variations of LTCC numbers but only the cases of 1 LTCC and 4 LTCC are shown

here in the interest of brevity. Our model result is consistent with the Ca2+ signaling profile

CAMKII-OE models in mouse models, which indicate more frequent sparks as well as greater

time to peak calcium and larger maximal rate of rise [158]. This effect that is most apparent

in figure 4.11, where levels of Ca2+ release are higher overall in diseased AP cases and time to

achieve maximum calcium efflux is increased.

Geometric alterations

In an additional effort to understand disease phenotypes in heart failure, we investigated

the effects of T-Tubule deformations on cardiac calcium release units. In the literature, is effect

is termed “de-tubulation” of myocyte tissue [126]. Because of the close juxtaposition of T-Tubule

membranes and SR membranes, we predicted an increase in the dyadic space would result in

significantly less RyR activation and overall low rates SR calcium efflux, resulting in low cytosolic

calcium.

Our results validated our hypothesis, showing little to no calcium spark activity in

deformed cells when compared to healthy cells (see figure 4.13). A similar distance (40 nm
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Figure 4.11. Cytosolic Calcium comparing action potential alterations

(a) Cytosolic calcium in Normal T-Tubules with healthy action potential across range of L-Type
Calcium Channels; (b) Cytosolic calcium in Normal T-Tubules with diseased action potential
across range of L-Type Calcium Channels;

Figure 4.12. Ryanodine Receptor gating modes with 1 L-Type Calcium Channel comparing
action potential alterations

(a) All open Ryanodine Receptors; (b) High-gating open Ryanodine Receptors; (c) Low-gating
open Ryanodine Receptors: Healthy action potential (purple), Diseased action potential (blue)
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Figure 4.13. Ryanodine Receptor gating modes with 4 L-Type Calcium Channels comparing
action potential alterations

(a) All open Ryanodine Receptors; (b) High-gating open Ryanodine Receptors; (c) Low-gating
open Ryanodine Receptors; Healthy action potential (purple), Diseased action potential (blue)

Figure 4.13. Cytosolic Calcium Calcium dynamics comparing T-Tubule geometry alterations

(a) Normal T-Tubule with Healthy action potential showing Calcium dynamics in the cytosol;
(b) Deformed T-Tubule with Healthy action potential showing Calcium dynamics in the cytosol;
10 LTCC (red), 8 LTCC (orange), 6 LTCC (yellow), 4 LTCC (green), 2 LTCC (blue), 1 LTCC
(purple)
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Figure 4.14. Ryanodine Receptor gating modes with 10 L-Type Calcium Channel in deformed
T-Tubules comparing action potential alterations

(a) All open Ryanodine Receptors; (b) High-gating open Ryanodine Receptors; (c) Low-gating
open Ryanodine Receptors; Healthy action potential (black), Diseased action potential (green)

displacement of TT2) was used by Koh et al. [125], who reported similar results. In future

simulations, we will successively increase the dyadic volume in order to further analyze the effect

of disease progression, systematically.

An interesting result of our simulations was the compensation effect exhibited by disease

action potentials in simulations of diseased geometries. We compared the activation profiles

of healthy and diseased action potentials in diseased geometries in our experiments. Under

these conditions, the disease action potentials lead to more RyR flux events even in the diseased

morphologies (see figure 14). Even with a dramatic detubulation, this effect is still visible.

We hypothesize that at less severe levels of T-Tubule deformations, the disease AP

compensation effect will be pronounced enough to compensate for the deformity. Ideally, we will

apply our MCell model to new tomographic CRU geometries from both healthy and diseased

myocytes to gain more insights into the potential for compensation by affected action potentials.

Modeling Ryanodine Receptor dispersion

The use of a stochastic spatial technique combined Markov Model of RyR marks a

significant advancement in the realistic modeling of calcium sparks, in stark contrast to phe-
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nomenological, deterministic, continuum models of RyR that are traditionally used to describe

Ca2+ sparks [124]. With the use of Markov Model descriptions of RyR, we are able to directly

investigate the phenomenon of Calcium-Induced Calcium Release. The spatial representations

exhibited in our model of the CRU importantly allow for investigation of the effects of disease

phenotypes that implicate RyR.

It has been shown by multiple investigators that RyR function and localization are

affected by heart failure [159]. More specifically, regulators of RyR including PKA [160] and

CaMKII [145] have been implicated in altered calcium signaling. In heartfailure, RyR dispersion,

or loss of RyR in junctional SR has been observed and shown to have pronounced effects on

Ca2+ signaling [127]. Earlier reports have determined that 50% RyR loss results in significant

alterations in firing propensity at the level that can be detected by cellular imaging and biochemical

measurements [161]. In order to visualize these effects on the molecular level, we performed

simulations within our CRU and successively removed clusters of RyR in the junctional space.

Starting from a baseline of 96 RyR as imaged in the original CRU [32], we successively deleted

clusters of RyR for a total of 80, 60, 40, 20, and 10 Ryanodine Receptors juxtaposed against 10

L-Type Calcium Channels, the results of which are shown in figure 15.

As we decrease the number of RyR from 96 to 80 (figure 15 a-d) we see a dramatic

decrease in the disease AP case. This is likely because of the phenomenon of CICR, where RyR

efflux activates neighboring RyR. The decreae also affects the peak levels of RyR which in the

former case are 7-10 RyR open at a time, and in the latter case 5-7. Decreasing the number of

RyR to 60 (figure 15 e,f) significantly affects the number of RyR that can be activated as well as

the total range of RyR that are open. As we decrease the number of RyR by more than half,

to 40 (figure 15 g-i), it becomes nearly impossible to see activation of RyR. These results are

consistent with previous reports that demonstrate a 50% decrease in junctional SR RyR results

in significant alterations in activation [161].
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Figure 4.15. Non-zero numbers of RyR opening with 10 L-Type Calcium Channels comparing
RyR loss

(a) Number of RyR open of 96 total with healthy AP; (b) Number of RyR open of 96 total with
diseased AP; (c) Number of RyR open of 80 total with healthy AP; (d) Number of RyR open of
80 total with diseased AP; (e) Number of RyR open after 3 normal action potential stimuli in
healthy t-tubules; (f)Number of RyR open after 3 diseased action potential stimuli in healthy
t-tubules; (g) Number of RyR open after 4 normal action potential stimuli in healthy t-tubules;
(g)Number of RyR open after 4 diseased action potential stimuli in healthy t-tubules; (i) Number
of RyR open after 5 normal action potential stimuli in healthy t-tubules; (j)Number of RyR open
after 5 diseased action potential stimuli in healthy t-tubules; Healthy action potential (pink),
Diseased action potential (blue).
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4.4.4 Simulating “heartbeats” with successive action poten-
tials

The single action potential stimulation of Ryanodine receptors in the realistic geometry

is a significant step towards realistic modeling of CICR. However, there are caveats to usage of

single action potentials. Namely, these action potentials affect systems starting from equilibrium.

In rapidly stimulated cells such as the mouse heart, which beats at a rate of 600 bpm, the system

is hardly at equilibrium ever. The constant stimulation of these cells means that to accurately

depict the complexity of the subcellular landscape, we must subject the cell to similar stimulation.

In order to model this successive stimulation that underlies the heartbeat of a mouse,

we performed simulations that feature successive LTCC impulses for both healthy and diseased

cases AP cases. We then examined the open probability of RyR opening at successive APs, the

results of which are shown in figure 16. Similarly to our earlier experiments, the disease action

potential is, overall, more pronounced than the healthy action potential (figure 16 a-i). Between

the first and the second action potential, the differences are slightly increased, meaning that

the CRUs are more sensitized after a second AP. By the third AP, the differences between the

healthy and diseased APs become more significant, with the peak number of RyR firing shifting

towards the range of number of RyR open shifting from a single RyR opening to a range of four

to seven (figure 16 c,d). Additionally, the probability of firing increases significantly from under

0.01 after a single AP to about 0.02 as we move to the third AP (figure 16 e,f). By the third

AP, the cell peaks at a range of seven to ten RyR open at a time of stimulation by a healthy

AP. This peak number of open RyR is maintained as the action potentials increase (figure 16

g-i). Most interestingly, the diseased AP stimulated RyR are twice more likely to open in similar

ranges of number of RyR activated (seven to ten). The successive action potentials (4AP and

5AP) only serve to sensitize the cell further. The ranges of RyR likely to fire after the 5th AP

are at a maximal level in the diseased case. In future simulations, it will be important to gather

our observations after the system has equilibrated, giving similar activation profiles after each

AP. This will potentially require ten to fifteen successive APs because RyR are known to activate

one-another in CICR, which at present, is computationally prohibitive (10 days/10 APs in a
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Figure 4.17. Non-zero probability of RyR opening with 10 L-Type Calcium Channels during
an action potential train

(a) Number of RyR open after 1 normal action potential stimulus in healthy t-tubules; (b)
Number of RyR open after 1 diseased action potential stimulus in healthy t-tubules; (c) Number
of RyR open after 2 normal action potential stimuli in healthy t-tubules; (d) Number of RyR
open after 2 diseased action potential stimuli in healthy t-tubules; (e) Number of RyR open after
3 normal action potential stimuli in healthy t-tubules; (f)Number of RyR open after 3 diseased
action potential stimuli in healthy t-tubules; (g) Number of RyR open after 4 normal action
potential stimuli in healthy t-tubules; (g)Number of RyR open after 4 diseased action potential
stimuli in healthy t-tubules; (i) Number of RyR open after 5 normal action potential stimuli in
healthy t-tubules; (j)Number of RyR open after 5 diseased action potential stimuli in healthy
t-tubules; Healthy action potential (pink), Diseased action potential (blue)
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single system).

4.4.5 Model caveats and future directions

Though our model yields significant insights into subcellular Ca2+ dynamics in myocardial

CRUs, it is not without its shortcomings. First, the CRU geometry offers an n=1, meaning a

low sample size with regards to spatial geometry variation, specifically the SR. An advantage

of using MCell is the ability to import new segmented meshes within which the dynamics can

be computed. With the development of new technologies to image [127] and reconstruct [31]

cellular ultrastructure, this limitation can be remedied through the application of the system

dynamics to new geometries.

Secondly, our model samples the dynamics of a small slice of the myocyte which is bound

by a cytosolic region of size 1.43×9.40×4.06µM. This geometry is not large enough to fully

encapsulate the effects that neighboring CRUs have on activation by CICR. To capture these

dynamics, it is necessary to modulate the boundary condition of our cytosolic compartment.

We plan to test different boundary conditions, whether they be reflective or absorptive, or

even the addition of more cytosolic compartments as was done Hake et al. [33]. As of yet, our

conversations with our continuum-modeling collaborators have not converged to what is “best-fit”

for an explicit particle system like our own.

Because our system tracks the individual motions of every molecule in the system explicitly

as well as all molecular reactions, large compute resources are required for sampling. Our present

simulations are results from a total of 128 simulations per system (Normal T-Tubule, Healthy

AP, etc). The systems that sampled only a single action potential equal to 3,840 independent

simulations/30 systems. Adding in the simulations of RyR permutations sets us at over 5,000

individial simulations. Gathering accurate statistics for events that are rare to sample, such

as single AP activated CICR, requires larger sampling of the system (on the order of 10,000

simulations or more). The results we report here are preliminary and likely to be exhibited in

larger population sampling cases. Nevertheless, we admit that additional sampling is required to

gain insight about confidence intervals and errors.
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Molecular distribution is a key facet of spatial modeling methods.It is extremely likely that

molecular distribution is non-linear. That is, molecular microdomains exist within the cytoplasmic

region. At present, our model has not investigated the potential for protein localization alterations

to influence our results. In future simulations, these effects can be directly interrogated using

the special modeling techniques that we employ. The totality of the complex biochemical

underpinnings of CICR are only partially explored by this model. Additional complexity is added

when considering the regulation of the proteins on membranous surfaces like SERCA and RyR

and of proteins in the cytosol like actin and myosin. To move towards a holistic and realistic

understanding of CICR, it is necessary to include these species as they are known to play a vital

role in cell function and disease states [159].

Our system required very little parameterization in order to produce the results that

have been discussed. A study addressing the sensitivity of parameters in our system is required

To determine which variables are most likely to influence simulation results.For the purpose of

peer review, it will be necessary to produce such reports.

Finally, to understand the effects of molecular crowding in systems with low molecular

concentrations, it is not sufficient to represent molecular species as point particles.To address this,

we have formed a collaboration with investigators at the Scripps Research Institute who have

developed molecular packing algorithms that yield an accurate, atomic-level description Of our

system. The program we used for molecular packing is called cellPACK [162], And has been used

in the past to visualize molecular dynamics simulations of an entire virus (unpublished). This

cutting-edge visualization and packing technology can be combined with the reaction-diffusion

powers of MCell to visualize the subcellular dynamics of our system at the finest level of molecular

detail.

4.5 Conclusion

This chapter has laid out the details used to build the first-ever spatial, discrete model

of subcellular calcium signaling mechanisms in realistic geometries of left ventricle mouse

myocardium. The power of this model is not to be understated, as it can easily translate
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and be applied to any segmented and meshed geometry obtained from electron microscopy

methods. Arguably the most important facet of the model is the ability to count low numbers

of calcium ions in parts of our geometry. Our simulations confirm the suspicions of those who

intuit cardiomyocyte mechanics. Namely, that the average number of Ca2+ ions in the junctional

dyadic cleft are zero at equilibrium [59].

Our model features a stochastic representation of Ryanodine Receptor dynamics that

responds to local increases of cytosolic calcium. Coupling this advancement with the introduction

of a voltage activated L-Type Calcium Channel model makes our model a suitable candidate for

more-accurate description of the molecular-level details underlying cardiac calcium activation

mechanisms. We incorporate discrete adaptations to existing SERCA model dynamics that

satisfy microscopic reversibility [142]. Building upon the sophistication of the original CRU

model by Hake et al. [33], we have moved towards towards a more realistic representation of the

subcellular biochemistry.

Our investigations have determined that disease phenotypes are detectable on the level of

single molecules in subcellular geometries. Our interrogation of disease action potentials resemble

late calcium sparks that have been reported in the literature [157]. Using realistic geometries [32],

we explored the effects of deformation on the junctional T-Tubule and demonstrated that drastic

detubulation severely affects subcellular calcium handling, consistent with the observations of

others [126,147]. Finally, we suggest that disease APs have a compensatory effect for deformations

on the subcellular level.
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4.7 Supplementary Information

Table 4.1. Parameters of Calcium buffering species

Parameter Description Value Units Reference
Dcyt

Ca Diffusion constant of Ca2+ (in cytosol and SR) 2.2 x 106 cm2s−1 Hake et al. (2012); Louch et al. (2010)
Dcyt

AT P _Ca Diffusion constant of Ca2+-bound ATP in cytosol 1.4 x 10−6 cm2s−1 Hake et al. (2012); Valent et al (2007)
[Ca2+]cyt Initial Concentration of Ca2+ in cytosol 140 x 10−9 M Hake et al. (2012)
[ATP]cyt Free ATP concentration in cytosol 454.682 x 10 −6 M Hake et al. (2012); Bers (2001)

[ATP-Ca]cyt Ca2+-bound ATP concentration in cytosol 318 x 10−9 M Hake et al. (2012)
AT Pkon ATP Ca2+ on rate constant 2.25 x 108 M−1s−1 Hake et al. (2012); Picht et al. (2011); Bers (2001)

AT Pkoff ATP Ca2+ off rate constant 450 x 102 s−1 Hake et al. (2012); Picht et al. (2011)
Dcyt

CMDN Diffusion constant of Calmodulin in cytosol 25 x 10−8 cm2s−1 Hake et al. (2012); Michailova et al. (2002)
Dcyt

CMDN_Ca Diffusion constant of Ca2+-bound Calmodulin in cytosol x 10−6 cm2s−1 Hake et al. (2012);
[CMDN]cyt Free Calmodulin concentration in cytosol 23.529 x 10−6 M Hake et al. (2012); Fabiato (1983)

[CMDN-Ca]cyt Ca2+-bound Calmodulin concentration in cytosol 471 x 10−9 M Hake et al. (2012)
CMDNkon Calmodulin Ca2+ on rate constant 34 x 106 M−1s−1 Hake et al. (2012); Robertson et al (1981); Picht et al. (2011)

CMDNkoff Calmodulin Ca2+ off rate constant 238 s −1 Hake et al. (2012); Robertson et al (1981)
Dcyt

T RP N Diffusion constant of Troponin-C in cytosol 0 cm2s−1 Hake et al. (2012)
Dcyt

T RP N_Ca Diffusion constant of Ca2+-bound Troponin-C in cytosol 0 cm2s−1 Hake et al. (2012)
[TRPN]cyt Free Troponin-C concentration in cytosol 56.8 x 10−6 M Hake et al. (2012); Bondarenko et al. (2004)

[TRPN-Ca]cyt Ca2+-bound Troponin-C concentration in cytosol 13.2 x 10−6 M Hake et al. (2012)
T RP Nkon Troponin-C Ca2+ on rate constant 32.7 x 10 6 M−1s−1 Hake et al. (2012); Bondarenko et al. (2004)

T RP Nkoff Troponin-C Ca2+ off rate constant 19.6 s −1 Hake et al. (2012); Bondarenko et al. (2004)
Dcyt

F luo4 Diffusion constant of Fluo-4 in cytosol 42 x 10−8 cm2s−1 Hake et al. (2012); Picht et al. (2011)
Dcyt

F luo4_Ca Diffusion constant of Ca2+ -bound Fluo-4 in cytosol 42 x 10−8 cm2s−1 Hake et al. (2012)
[Fluo4]cyt Free Fluo-4 concentration in cytosol 22.186 x 10−6 M Hake et al. (2012); Picht et al. (2011)

[Fluo4-Ca]cyt Ca2+-bound Fluo-4 concentration in cytosol 2.82 x 10−6 M Hake et al. (2012)
F luo4kon Fluo-4 Ca2+ on rate constant 110 x 106 M−1s−1 Hake et al. (2012); Picht et al. (2011)

F luo4koff Fluo-4 Ca2+ off rate constant 110 s−1 Hake et al. (2012); Picht et al. (2011)
Dcyt

F luo5 Diffusion constant of Fluo-5 in cytosol 8 x 10−8 cm2s−1 Hake et al. (2012); Picht et al. (2011)
Dcyt

F luo5_Ca Diffusion constant of Ca2+ -bound Fluo-5 in cytosol 8 x 10−8 cm2s−1 Hake et al. (2012)
[Fluo5]cyt Free Fluo-5 concentration in cytosol 5.9 x 10 −6 M Hake et al. (2012); Picht et al. (2011)

[Fluo5-Ca]cyt Ca2+-bound Fluo-5 concentration in cytosol 19.1 x 10−6 M Hake et al. (2012)
F luo5kon Fluo-5 Ca2+ on rate constant 110 x 106 M−1s−1 Hake et al. (2012); Picht et al. (2011)

F luo5koff Fluo-5 Ca2+ off rate constant 110 s−1 Hake et al. (2012)
Dsr

CSQN Diffusion constant of Calsequestrin in cytosol 0 cm2s−1 Hake et al. (2012)
Dsr

CSQN_Ca Diffusion constant of Ca2+-bound Calsequestrin in SR 0 cm2s−1 Hake et al. (2012)
[CSQN]cyt Free Calsequestrin concentration in SR 56.8 x 10−6 M Hake et al. (2012); Bondarenko et al. (2004)

[CSQN-Ca]cyt Ca2+-bound Calsequestrin concentration in SR 13.2 x 10−6 M Hake et al. (2012)
CSQNkon Calsequestrin Ca2+ on rate constant 32.7 x 10 6 M−1s−1 Hake et al. (2012); Bondarenko et al. (2004)

CSQNkoff Calsequestrin Ca2+ off rate constant 19.6 s−1 Hake et al. (2012); Bondarenko et al. (2004)

133



Table 4.2. Parameters for Sodium-Calcium Exchanger (NCX) and Plasma Membrane Calcium-
ATPase (PMCA) pump models

Parameter Value Units Reference
kP 0P 1 1.5 x 108 M−1s−1 Bartol et al. (2015); Brini and Carafoli (2009); Penheiter et al. (2003)
kP 0P 1 15 s−1 Bartol et al. (2015); Brini and Carafoli (2009); Penheiter et al. (2003)

kP 0P 1_pump 12 s−1 Bartol et al. (2015); Brini and Carafoli (2009); Penheiter et al. (2003)
kP MCA_leak 5.25 s−1 Yields 140nM Cytosolic Calcium

kN0N1 3.0 x 108 M−1s−1 Bartol et al. (2015); Hilgemann(1991)
kN1N0 300 s−1 Bartol et al. (2015); Hilgemann(1991)

kN1N0_pump 600 s−1 Bartol et al. (2015); Hilgemann(1991)
kNCX_leak 26.75 s−1 Yields 140nM Cytosolic Calcium

Table 4.3. Parameters for L-Type Calcium Channel model

Parameter Value Units Reference
a 2 - Greenstein and Winslow (2002)
b 1.9356 - Greenstein and Winslow (2002)
f 850 s−1 Greenstein and Winslow (2002)
g 2000 s−1 Greenstein and Winslow (2002)
f’ 5 s−1 Greenstein and Winslow (2002)
g’ 7000 s−1 Greenstein and Winslow (2002)
γ 0.44 x 106 M−1s−1 Greenstein and Winslow (2002)
ω 0.02158 x 103 s−1 Greenstein and Winslow (2002)
T 310 K -
F 96.485 x 103 C/mol -
NA 6.02214 x 1023 #/mol -
PCa 9.13 x 10−16 L/s -
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Table 4.4. Parameters for Ryanodine Receptor Markov model

Parameter Value Units Reference
kC1C2_H1 3.26 x 106 M−1s−1 Saftenku et al. (2001)
kC2C1_H1 116 s−1 Saftenku et al. (2001)
kC2C3_H1 0.66 x 106 M−1s−1 Saftenku et al. (2001)
kC3C2_H1 163 s−1 Saftenku et al. (2001)
kC1C2_L 1.24 x 106 M−1s−1 Saftenku et al. (2001)
kC2C1_L 13.6 s−1 Saftenku et al. (2001)
kC2C3_L 29.8 x 106 M−1s−1 Saftenku et al. (2001)
kC3C2_L 3867 s−1 Saftenku et al. (2001)
kC2C5_L 1.81 s−1 Saftenku et al. (2001)
kC5C2_L 3.63 s−1 Saftenku et al. (2001)

kC1C2_LH1 6.67 x 102 M−1s−1 Saftenku et al. (2001)
kC2C1_H1L 0.0833 s−1 Saftenku et al. (2001)
kC2C3_LH1 6.67 x 102 M−1s−1 Saftenku et al. (2001)
kC3C2_H1L 0.0833 s−1 Saftenku et al. (2001)
kC3C4_LH1 6.67 x 102 M−1s−1 Saftenku et al. (2001)
kC4C3_H1L 0.0833 s−1 Saftenku et al. (2001)
kC2O1_H1 7.86 x 106 M−1s−1 Saftenku et al. (2001)
kO1C2_H1 1480 s−1 Saftenku et al. (2001)
kC3O2_H1 7.77 x 106 M−1s−1 Saftenku et al. (2001)
kO2C3_H1 330 s−1 Saftenku et al. (2001)
kC3O1_L 731.2 s−1 Saftenku et al. (2001)
kO1C3_L 4185 s−1 Saftenku et al. (2001)
kC3O2_L 24.5 s−1 Saftenku et al. (2001)
kO2C3_L 156.5 s−1 Saftenku et al. (2001)
kC3O3_L 8.5 s−1 Saftenku et al. (2001)
kO3C3_L 111.7 s−1 Saftenku et al. (2001)
kC4O2_L 415.3 s−1 Saftenku et al. (2001)
kO2C4_L 1995 s−1 Saftenku et al. (2001)
kC4O3_L 43.3 s−1 Saftenku et al. (2001)
kO3C4_L 253.3 s−1 Saftenku et al. (2001)
kC4O2_H1 2390 s−1 Saftenku et al. (2001)
kO2C4_H1 298 s−1 Saftenku et al. (2001)
kRyR_flux 1.09 x 109 M−1s−1 Guo et al. (2012)
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Table 4.5. Parameters for Sarco/Endoplasmic Reticulum Calcium-ATPase (SERCA) pump

Parameter Value Units Reference
kX0X1 2 x 108 M−1s−1 Bartol et al. (2015); Higgins et al. (2006)
kX1X0 146.775 s−1 Bartol et al. (2015); Higgins et al (2006
kX1X2 1 x 108 M−1s−1 Bartol et al. (2015); Higgins et al. (2006)
kX2X1 293.551 s−1 Bartol et al. (2015); Higgins et al. (2006)
kX2Y 2 0.6 s−1 Bartol et al. (2015); Higgins et al. (2006)
kY 2X2 0.097 s−1 Bartol et al. (2015); Higgins et al. (2006)
kY 2Y 1 60.03 s−1 Bartol et al. (2015); Higgins et al. (2006)
kY 1Y 2 1 x 105 M−1s−1 Bartol et al. (2015); Higgins et al. (2006)
kY 1Y 0 30.015 s−1 Bartol et al. (2015); Higgins et al. (2006)
kY 0Y 1 2 x 105 M−1s−1 Bartol et al. (2015); Higgins et al. (2006)
kY 0X0 0.4 s−1 Bartol et al. (2015); Higgins et al. (2006)
kX0Y 0 0.0012 s−1 Bartol et al. (2015); Higgins et al. (2006)
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