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Abstract

A model of humans playing the simple game of Paper Rock
Scissors based on the ACT-R architecture (Anderson, 1993;
Anderson & Lebiere, 1998) is presented. This model stores in
long-term memory sequences of moves and attempts to
anticipate the opponent’s moves by retrieving from memory
the most active sequence. This results in a tightly linked
dynamical system in which each player drives the play of its
opponent. The performance of this model as a function of the
length of the sequences stored and the amount of noise in the
system is investigated, and is compared to the performance of
human subjects.

Introduction

From the point of view of classical game theory (e.g. von
Neumann & Morgenstern, 1944; Nash, 1950; Fudenberg &
Tirole, 1991), the simple game of Paper Rock Scissors
(PRS) is quite trivial. Each of the three possible moves is as
good as the other ones: Paper beats Rock, Rock beats
Scissors and Scissors beats Paper. Since the players make
their moves simultaneously without any a priori knowledge
of each other’s move, the optimal strategy is to play
randomly and thus guarantee the expected outcome of a tie.
However, it is generally accepted that game theory's
optimally rational strategies often do not accurately describe
human behavior due to the fact that human rationality is
bounded (Simon, 1972). Also, game theory does not provide
an account of how human players learn. Instead, human
game players are best viewed as cognitively limited learners
(Erev & Roth, 1998).

As Bracht, Lebiere and Wallach (1998) have
demonstrated, ACT-R can be used to model how strategies
are applied by conceptualizing the possible moves as
productions. There are two advantages to this approach.
The first is that ACT-R has been used to model many
behavioral phenomena and thus it integrates game playing
into the larger context of human cognition. The second is
that the method for selecting between productions is
consistent with the way game playing is understood in game
theory and in Experimental Economics. That is, each move
is associated with a probability that reflects its utility. Thus,
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while game theory can provide the optimal distribution of
the probabilities, ACT-R can provide a cognitively
justifiable account of how the actual probabilities are
learned.

However, recently West (1998a, 1998b, 1999) has
provided an alternative, dynamic systems account of how
simple games are played, based on the principle of
reciprocal causation. Reciprocal causation refers to a state
in which two systems are coupled together so that each
system’s outputs are affected by the other system’s behavior
(Clark, 1997, 1998). The importance of reciprocal causation
1s that it is often associated with “emergent behaviors whose
quality and complexity far exceeds that which either
subsystem could display in isolation” (Clark, 1998). The
approach of West (1998a, 1998b, 1999) is based on the
findings that humans are quite bad at generating random
outputs (see Tune, 1964, and Wagenaar, 1972 for reviews),
but quite good at detecting sequential dependencies (e.g.
Ward, 1973; Ward, Livingston, & Li, 1988). West (1998a,
1998b, 1999) assumed that players attempt to predict their
opponent’s next move by detecting sequential dependencies
in their opponent’s past moves and modeled the process
using neural networks. The result was that the modeled
players were in a state of reciprocal causation, i.e. each
player's moves were determined by their opponent’s
previous moves.

The reciprocal causation resulted in a chaos-like process
that caused both players to generate outputs that appeared
random. This result was consistent with the game theory
prediction but it was contingent on the players being evenly
matched in terms of how many previous moves (lags) they
could remember (it was assumed that the players could only
remember a limited number of lags back on each trial).
When the players were unequally matched in terms of how
many lags back they could remember, the player who could
remember more lags enjoyed a systematic advantage.
Importantly, this was also found to be the case for human
subjects (West, 1998a, 1998b, 1999).

This phenomena, which can be considered an emergent
property of the dynamic interaction between the players, is
very difficult to account for by treating the moves as
productions with associated, learned utility values.
However, unlike the various specialized models in
Experimental Economics, ACT-R is not limited to learning
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in this way. As Lebiere and Wallach (1998) have
demonstrated, the declarative memory system of ACT-R
can be used to account for implicit learning tasks without
relying on production-based learning. In this paper we
demonstrate how the neural network-like qualities of the
ACT-R declarative memory system can produce the same
phenomena found by West (1998a, 1998b, 1999) in a very
straightforward manner.

Model

To emulate the neural network model of West (1998a,
1998b, 1999), we used a simplified version of the ACT-R
Sequence Learning Model (Lebiere & Wallach, 1998) that
operated by building chunks encoding short sequences of
stimuli. For clarity, if the model builds sequences of moves
of length 3, we will call it a lag2 model because it
remembers the previous two moves of the opponent in
addition to its current move. Similarly, a lagl model refers
to sequences of length 2. We will describe below a lag2
model, but we will also report results for a lagl model.

ACT-R is a goal-directed architecture. At all times, the
system focuses on a single goal, and any production must
first match that goal before firing. In this model, the current
goal can be understood as the player’s working memory
(Lovett, Reder & Lebiere, in press). It holds a number of
the opponent’s previous moves in a chunk such as:

Goal
isa PRS
lag2 Paper
lagl Rock
lag0 nil

PRS is the type of the goal, and its slots are lag2, lagl and
lag0'. Lag0 holds the opponent’s current move (a value of
nil indicates that that move has not yet been played), lagl
holds the opponent’s previous move (Rock) and lag2 holds
the opponent’s move before that (Paper). After a move is
made and the lag0 value is filled in, the goal is popped and
becomes a chunk in declarative memory. If an identical
chunk already exists, then that chunk is reinforced instead of
creating a copy.

The model is composed of three productions. The main
production, Sequence Prediction, attempts to retrieve from
memory a chunk that encodes a sequence of three moves
(L2, L1, L) played by the opponent, the first two of which
match the opponent’s last two moves (L2, L1). Then given
the third move of that sequence (L), it retrieves the move
that beats it (M) and plays that move (M).

Sequence Prediction

IF no move has been played
and the opponent last played moves L2 and L1
and moves L2 and L1 are usually followed by move L
and move L is beaten by move M

THEN play move M

' PRS, lag2, lagl and lag0 are arbitrary names to designate the
goal type and its slots.
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This corresponds to trying to anticipate the move that the
opponent is going to make given his most recent moves and
making the move that defeats it. If no such sequence of the
opponent’s moves can be retrieved from memory (for
example, at the start of the game), then the second
production, Random Guess, applies. It simply selects a
move (L) at random and plays the move that defeats it (M).

Random Guess
IF no move has been played

and move L is beaten by move M
THEN play move M

Finally, after the players have each made their move, the
third production, Next Move, applies. It records the
opponent’s move (L) in the current goal, thus completing
the opponent’s most recent three-move sequence (L2, L1,
L). It then pops that goal, which becomes a chunk in
declarative memory (or reinforces an identical chunk if it
already exists), and focuses on a new goal which contains
the opponent’s two most recent moves (L1, L).

Next Move

IF the opponent has played move L after moves L2 and L1

THEN note move L in the current goal, pop that goal and
focus on a new goal holding previous moves L1 and L

The production cycle can then start anew. The crucial
part of this model is the retrieval from long-term declarative
memory in production Sequence Prediction of a chunk
holding the opponent’s move sequence matching the current
situation. Retrieval from memory depends upon a chunk’s
activation. Anderson and Schooler (1991) reported that the
odds of an item in the environment being needed decrease
as a power function of its past uses. In ACT-R, the
activation of a chunk” is interpreted as the logarithm of the
odds of that chunk being needed from memory, and thus
will be defined as:

n

A=Iny? M

A; is the activation of chunk i, n is the total number of
past references to that chunk, f; is the time since the jth
reference and d is the decay rate. This activation equation
incorporates both the power law of practice (through the
summation) and power law decay (of each reference). Past
references refer both to chunk creation (and re-creations)
and to retrievals from memory. If the references are
assumed to be evenly distributed over the chunk’s past
his}lory. then the activation of the chunk can be simplified to
be:

? Strictly speaking, this is only the base-level activation.
Additional components of activation include spreading activation
and mismatch penalties, but neither is relevant to this model.

* For efficiency reasons, the results reported in the next section
correspond to models for which Equation (2) is used instead of
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L is the life of the chunk, i.e. the length of time since its
creation (f;). If several chunks satisfy the condition, then
the one with the highest activation is retrieved. Zero-mean
Gaussian noise is added to the activations, which makes
retrieval a probabilistic process.  The probability of
retrieving chunk i among all the alternatives j is a function
of their respective activations and the magnitude of the
noise:

e
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1 is a measure of the noise proportional to its standard
deviation'. Assuming that all the chunks were created
around the same time, i.e. have a similar L, then Equations
(2) ad (3) can be simplified to yield:
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A noise value 7 of 1 would yield Luce's linear choice rule
(Luce, 1959). As Lebiere (1998) established, the noise
magnitude ¢ is the crucial parameter that determines the
dynamics of the retrieval process.  When r=1, the
probabilities of retrieval match the distribution of past
references’, and retrieval leaves the statistics of occurrence
unchanged. For values of ¢ larger than 1, the differences in
past references are reduced, and retrieval becomes
increasingly random. For values of ¢ smaller than 1, the
system becomes increasingly deterministic in selecting the
most active chunk. A rich-get-richer dynamics develops, in
which the most active chunks become even more so and the
less active ones gradually decay away.

Essentially, the model uses the declarative memory
system of ACT-R to detect sequential dependencies. Of
course, this is only the behavior of a single cognitive system
in isolation. Similar to West (1998a, 1998b, 1999), when
two of these systems are coupled together the result is a
state of reciprocal causation. Thus the important question
was whether this particular coupled system would produce
the same emergent pattern of behavior that West (1998a,
1998b, 1999) found in his models and human subjects.

Equation (1). There was little indication however that the
simplification altered in any way the behavior of the model.

% Formally, r=V60/m where o is the standard deviation.

* The phenomenon of reproducing in one's choices the
probabilities of occurrence of events in the environment is known
as probability-matching (Friedman et al., 1964, Myers, Fort, Katz,
and Suydam, 1963).
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Results

We will first describe the behavior of the model playing
against an identical copy of itself. The model is a lag2
model as described in the previous section. The only
parameter is the noise magnitude of 0.25. This parameter is
taken from the model of (Lebiere, 1998), which reflected
stochasticity in the learning of arithmetic. Examining the
difference in score across trials, the output resembles a
random walk, with possible fractal properties.

Lag2 Model Against ltself

Score Differential

205 20 40 60 80 100

Play

Figure 1: Score differential of lag2 model vs. itself,
5 sample runs of 100 plays. Mean of the 5 runs in squares.

The next question was whether an imbalance between the

players in terms of working memory would produce a bias
in favor of the player who processed more lags.

Lag2 Model Against Lag! Model

Score Differential (Lag2 - Lagl)

Play

Figure 2: Score differential of lag2 model vs. lagl model.
5 sample runs of 100 plays. Mean of the 5 runs in squares.



While the differential in score between the lag 2 and lagl
models fluctuates as it did between evenly matched models,
the long-term trend is clearly in favor of the more powerful
lag2 model. But how do these models compare to humans?
West (1998a, 1998b, 1999) found that humans play
similarly to a lag2 model in that they are able to beat a lag|
model. Following this approach we had human subjects play
against the ACT-R lagl model. The subjects were five
participants in the ACT-R summer school.®

Human Against Lag1 Model

Score Differential (Human - Lagl)

-10
0

Figure 3: Score differential of humans vs. lagl model.
5 sample runs of 100 plays. Mean of the 5 runs in squares.

The results were very similar to West (1998a, 1998b,
1999) and also to the performance of the lag2 model playing
against the lagl model (Figure 2), including the fluctuations
in the score differential and the average winning margin
against the lagl model. An intriguing feature is that in both
Figures 2 and 3 the superior (lag2) player initially loses
against the lagl model, then somewhere between
approximately 20 and 30 trials begins to win. This is
consistent with the fact that the lag2 model builds longer
chunks than the lagl model, and thus takes longer to
accumulate the proper set of sequences. Thus in this range
the prediction is reversed and the lagl model should
perform better than the lag2 model. To test this prediction
we had 8 human subjects from the University of Hong Kong
play short games of 30 trials each against both a lag]l model
and a lag2 model. The results, displayed in Figure 4, show
that early on the lagl model is indeed more difficult to beat
than the lag2 model. A paired t-test on the score differences
revealed that this difference was significant at P<.001.

S The model is available for playing on the world-wide web at
http://bk1.psy.cmu.edu/inter/models?

Human Against Lag! and Lag2 Models
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Figure 4: Score differential of humans vs. lagl and lag2
models for 30 plays. Mean of eight subject runs.

While a larger lag is clearly an advantage, what about the
other variable characteristic of our model, the noise? If two
models have the same lag and identical noise levels, then as
we have seen they will play evenly in the long run. If one
model has a very high noise level, it will play randomly (the
game theory solution) and will also draw in the long run.
This can be a good thing if a player is intrinsically at a
disadvantage, as when a lagl model plays a lag2 model.
But is randomness simply a way for a player to limit its
losses against a superior opponent? What if both networks
have the same lag but different limited noise levels? Is
noise an advantage or a disadvantage? Obviously the noisier
model is less predictable, but it is also a less powerful
learner, slower to pick up on existing sequential
dependencies.

Etfect of Noise (Lag2 Against Lag2)
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Figure 5: Average over 200 runs of 1000 plays of the final
difference in score between two lag2 models with different
noise levels.
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We see that all things being equal a higher noise level is
indeed an advantage. The advantage in differential score
increases for a while as the difference in noise levels
increases, then declines because the whole system just
becomes increasingly random. To further investigate, we ran
a lag2 model against a lag]l model at various noise levels.

Effect of Noise (Lag2 Against Lagl)
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Figure 6: Average over 100 runs of 1000 plays of the final
difference in score between a lag2 model and a lagl model
with different noise levels.

The results show that noise can override the lag factor
causing a lagl model to beat a lag2 model. This was
particularly true when the noise level of the lag2 model was
set Lo zero or was very low.

Discussion

By manipulating parameters of the model we were able to
recreate the phenomena found by West (1998a, 1998b,
1999) and generate further predictions (some of which have
yet to be confirmed with human subjects). It is tempting to
interpret our results in terms of the individual models. For
example, in terms of our findings for number of lags
processed and the amount of noise, one interpretation is that
the beneficial effect of behaving less predictably (more
noise) can outweigh the effects of being a more powerful
learner (more lags). However, the picture is potentially more
complex. When a model wins it does so by predicting its
opponent's moves from sequential dependencies present in
past behavior. The past behavior is generated by a reciprocal
causation process between the models that results in a
chaos-like process. This process produces sequential
dependencies as well as a random walk quality. The
problem is that it is very difficult to disentangle the process
that generates the outputs from the ability of the winning
network to detect sequential dependencies, since the action
of detecting sequential dependencies is also part of the
process that generates them. If we change the way the
models detect sequential dependencies we also change the
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way the sequential dependencies are generated. Thus, we
cannot, at this point, rule out the possibility that the noise
factor or the lag factor may operate by altering the type of
sequential dependencies produced by the system.

The noise factor can also be understood in another way.
Lebiere (1998) found that randomness serves a beneficial
cognitive function by keeping the system's dynamics fluid
and thus preventing errors from becoming entrenched facts.
In our model the opponent is always changing in response to
the history of the game. Facts are a short-lived phenomenon
in this constantly changing environment. Thus an injection
of stochasticity may have the effect of optimizing the
system for this environment. More generally, this type of
environment probably provides a much better replica of the
environment in which our cognitive system evolved than a
formal system of unchanging facts and rules such as
arithmetic.

The ACT-R model that we used has many features in
common with the neural network model of West (1998a,
1998b. 1999). They both work by storing sequences of the
opponent’s moves and using them to anticipate the
opponent’s next move. West's (1998a, 1998b, 1999) fixed-
length two-layer feedforward neural networks, whose inputs
are the opponent’s past moves and whose output is the
opponent’s next move, correspond closely to the ACT-R
model’s chunks, whose slots holding the opponent’s past
moves are primed during memory retricval and whose
output is the value of the slot holding the next move. Also,
both models resort to a random choice in the case of two
moves being equally weighted. However, (again in both
models) the main source of randomness is the chaos-like
effect generated by coupling the networks together in a state
of reciprocal causation. This effect is also the source of the
sequential dependencies, which would not occur if the
process were based on a truly random process.

However, the ACT-R model has several advantages. First,
because ACT-R is a unified cognitive architecture, the
model is more informative as to the cognitive structures
involved in the process. Specifically, the ACT-R model
situates the detection of sequential dependencies in
declarative memory, while the lag factor can be interpreted
in terms of the amount of working memory (Lovett, Reder
& Lebiere, in press). ACT-R also allows for a principled
investigation of background random noise, which turns out
to be an important factor. Also, ACT-R is capable of
modeling more complex games, involving knowledge and
strategy, through the use of productions. Because these
games also often involve an element of guessing, we
suggest that a full model of game playing will integrate both
processes. ACT-R is important in this respect because it
provides a ready-made model of how to structure this
integration.

The origins of this ACT-R model should be emphasized
to illustrate the lack of degrees of freedom in its conception.
The basic 1dea to play PRS by storing fixed-length
sequences of the opponent’s moves was adopted from West
(1998a, 1998b, 1999), as was the default length of those
sequences. The very simple chunks and productions used to
implement that idea were taken from an existing ACT-R
model of a seemingly very different paradigm from another



field. The default value of the only parameter, the
magnitude of the noise, came from an ACT-R model of a
separate phenomenon. Those elements were assembled
almost automatically and provided a very accurate model of
human playing. That it happened on the first try, without
any engineering or parameter tuning, is a demonstration of
the predictive power of unified architectures.

Conclusion

We proposed a model of human playing for Paper Rock
Scissors. This model was inspired by known psychological
limitations and inclinations instead of the ideal strategies of
classical game theory. The players were viewed not as
isolated cognitive entities but as part of a dynamical system
in which they constantly influence each other’s actions.
Crucial parameters of this cognitive system are the raw
power of the actors in terms of the length of sequences that
the players can process and the degree of stochasticity with
which they select their actions. This model was found to
closely account for human behavior, without the benefit of
unexamined degrees of freedom in its knowledge structures
or parameters.
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