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This retrospective study examined magnetic resonance imaging (MRI)–derived tumor sphericity (SPH) as a
quantitative measure of breast tumor morphology, and investigated the association between SPH and
reader-assessed morphological pattern (MP). In addition, association of SPH with pathologic complete
response was evaluated in patients enrolled in an adaptively randomized clinical trial designed to rap-
idly identify new agents for breast cancer. All patients underwent MRI examinations at multiple time
points during the treatment. SPH values from pretreatment (T0) and early-treatment (T1) were investigated
in this study. MP on T0 dynamic contrast-enhanced MRI was ranked from 1 to 5 in 220 patients. Mean
SPH values decreased with the increased order of MP. SPH was higher in patients with pathologic com-
plete response than in patients without (difference at T0: 0.04, 95% confidence interval [CI]: 0.02–0.05,
P< .001; difference at T1: 0.03, 95% CI: 0.02–0.04, P< .001). The area under the receiver operating
characteristic curve was estimated as 0.61 (95% CI, 0.57–0.65) at T0 and 0.58 (95% CI, 0.55–0.62)
at T1. When the analysis was performed by cancer subtype defined by hormone receptor (HR) and
human epidermal growth factor receptor 2 (HER2) status, highest area under the receiver operating char-
acteristic curve were observed in HR�/HER2þ: 0.67 (95% CI, 0.54–0.80) at T0, and 0.63 (95% CI,
0.51–0.76) at T1. Tumor SPH showed promise to quantify MRI MPs and as a biomarker for predicting
treatment outcome at pre- or early-treatment time points.

INTRODUCTION
For women receiving neoadjuvant chemotherapy (NAC) for
locally advanced breast cancer, achieving pathologic complete
response (pCR) after the treatment conveys a likelihood for excel-
lent outcome (1, 2). Dynamic contrast-enhanced magnetic reso-
nance imaging (DCE-MRI) can be used to determine the extent
of disease before, during, or after the NAC for breast cancer.
The functional tumor volume calculated using contrast kinetic
enhancement thresholds was found to be predictive of both pCR
and event-free survival (3, 4). However, tumor volume has limited
ability to assess tumor heterogeneity, which can be an important
prognostic factor and associated with NAC response (5, 6). DCE-

MRI can also be used to assess tumor heterogeneity, which may
reflect the underlying tumor biology and potential treatment
response (7–9). Previous studies have shown that distinct imaging
patterns of tumor morphology predict response to NAC (10, 11).
However, it is time-consuming and subject to reader variability to
manually assess MRI morphological patterns (MPs).

With recent technology advances in medical imaging, artifi-
cial intelligence has demonstrated promises in cancer diagnosis,
assessment of treatment response, and prediction of disease pro-
gression (12). In particular, radiomics has been used to extract
quantitative imaging features such as tumor size, shape, texture,
to study tumor characteristics in breast cancer (13). According to
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the Image Biomarker Standardisation Initiative, sphericity (SPH)
is one of the morphologic features to measure the shape of the tu-
mor (14). Among all morphologic features, SPH may be used to
differentiate tumor phenotypes, i.e. diffuse versus solid, inde-
pendent from tumor size. Tumor SPH has been studied as a prog-
nostic factor in oral (15) and lung cancers (16). To the best of our
knowledge, no study of SPH has been reported in breast cancer
based on MRIs. In this study, we propose to use an automatically
derived SPH to quantify MRI MPs (17) by investigating and assess-
ing the relationship between SPH and reader-assessed MP. We also
investigated SPH as an imaging predictor for pCR, the endpoint of
I-SPY 2 (Investigation of Serial Studies to Predict your Therapeutic
Response with Imaging and Molecular Analysis 2) Trial.

METHODOLOGY
Patient Population
A cohort of 990 women from completed or graduated treat-
ment arms of I-SPY 2 were considered in this study. Subjects
gave written informed consent before enrollment and again
after being randomized to treatment. All participating sites
received approval from an institutional review board.

Treatment and Pathologic Outcome
Patients were treated for 12weeks with 1 of 9 experimental drugs
completed in I-SPY 2 by November 2016 or standard care, fol-
lowed by administration anthracycline–cyclophosphamide (18,
19). pCR was used as the endpoint of the trial, defined as the ab-
sence of residual cancer in the breast and lymph nodes at the
time of surgery. pCR was treated as a binary outcome in our anal-
ysis (1: pCR; 0: non-pCR).

Tumor Subtype
The primary tumor was categorized by hormone receptor (HR)
and human epidermal growth factor receptor 2 (HER2) status
(positive or absent/negative) at pretreatment, assessed from the
core biopsy specimen by immunohistochemistry and Allred
scores. The status of HR and HER2 define 4 breast tumor sub-
types: HRþ/HER2�, HRþ/HER2þ, HR�/HER2þ, and HR�/
HER2� (triple-negative).

Imaging Acquisition
MRI examinations were performed on 1.5 T or 3 T scanners
across a variety of vendor platforms and institutions using a
prospectively defined protocol. DCE-MRI was performed at mul-
tiple time points relative to treatment: before NAC (T0), after
3weeks of NAC (T1), inter-regimen (T2), and presurgery (T3).
Image acquisition parameters were as follows: repetition time =
4–10milliseconds, minimum echo time (�4.8 milliseconds), flip
angle = 10–20°, and field of view = 260–360mm to achieve full
bilateral coverage, acquisition matrix = 384–512 with in-plane
resolution= �1.4mm, and slice thickness= �2.5mm. Three-
dimensional fat-suppressed T1 images were acquired before and af-
ter injection of a gadolinium contrast agent. Postcontrast imaging
was started simultaneously with injection. Phase duration was 80—
100 seconds with a minimum of 8minutes of imaging following
injection. Gadolinium contrast agent was administrated intrave-
nously at a dose of 0.1mmol/kg body weight, and at a rate of
2mL/s, followed by a 20-mL saline flush.

Morphological Pattern Assessment
Pretreatment DCE-MRI MP was visually assessed and graded
by a radiologist without knowledge of clinical or histopatho-
logical findings using a ranking of 1–5 scale corresponding
to the decreasing degree of tumor containment (see online
supplemental Figure 1) definitions of MP were as follows:
1 = well-defined single mass, 2 = well-defined multilobulated
mass, 3 = area enhancement with nodularity, 4=area enhance-
ment without nodularity, and 5= septal spreading (11).

Sphericity
SPH was derived from the existing tumor mask created by
the functional tumor volume calculation from DCE-MRI as
previously described (20). In brief, the segmentation method
involved calculating early percent enhancement (PE) and
signal enhancement ratio (SER) maps using the following
equations:

PE ¼ 100� S1 � S0
S0

SER ¼ S1 � S0
S2 � S0

where S0; S1, and S2 are intensity values from precontrast,
2.5 minutes, and 7.5 minutes after contrast, respectively. A
tumor mask was created within a manually specified 3D
region of interest (ROI) encompassing the enhancing lesion,
using a PE� 70% threshold. Voxels were further filtered with
a precontrast intensity threshold of 60% of the maximum
signal to remove suppressed fat and background noise voxels
(3, 20). For the SPH calculation the tumor mask was further
filtered using an SER > 0.9 constraint to focus on plateau
and washout characteristic enhancement. Surface area (SA)
and volume were found for the resulting segmentation using
a surface meshing analysis. SPH, defined as SA0/SAtumor

where SAtumor is the area of the tumor mask and SA0 that of a
sphere of the same volume, was calculated to quantify the
similarity of the tumor morphology to a sphere (14). By the
definition, with the similar volume, the scattered or multifoci
tumor should have smaller SPH value than the single solid
mass tumor. Processing was done using locally written soft-
ware in IDL (Harris Geospatial, Broomfield, CO). SPH at T0
and T1 was calculated and tested for the prediction of pCR.

Statistical Analysis
Mean and standard deviation (SD) were calculated for SPH
values within each MP and by cancer subtype. The compari-
son of means between all MPs was performed using the
Tukey HSD (honestly significant difference) test. Wilcoxon
rank sum test was used to estimate the difference in SPH vari-
ables between pCRs and non-pCRs. The predictive perform-
ance of SPH was assessed by the area under the receiver
operating characteristic (ROC) curve (AUC). Statistical analy-
ses were performed using R version 3.4.1 (R Foundation for
Statistical Computing, Vienna, Austria). The pROC package
was used to analyze ROC curves and calculate AUCs (21).
Statistical significance was defined as P< .05.
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RESULTS
From the entire cohort of 990 patients, 2 subcohorts are refer-
enced in the results of this study. Figure 1 shows patient selection
in these cohorts. The first cohort consists of 220 patients with MP
assessment at pretreatment, and SPH at T0 only was analyzed in
this cohort. The mean and standard deviation of age in this
cohort were 49 and 10years, respectively. The second cohort
consists of 935 patients with known pCR outcomes, SPH

measured at T0 and T1, and HR (positive or negative)/HER2 recep-
tor (positive or negative) status available. The mean and standard
deviation of age in this cohort were 49 and 11years, respectively.
This cohort was used to analyze the association between SPH and
pCR, in the full cohort and by HR/HER2 subtype. There was an
overlap between the 2 cohorts (N=210). Demographics of the first
and the second cohorts are listed in Table 1. There was no statisti-
cally significant difference in age (P = .890), the frequency distri-
bution of HR/HER2 status (P = .650), pCR outcome (P = .630), or
SPH values at T0 (P = .890) between the analysis cohort and the
cohort with MP assessment. Difference was found in menopausal
status (P = .044). However, menopausal status was not considered
in the analysis of this study.

Examples of MRI morphologic reading and SPH values of 2
different patients are shown in Figure 2. The 2 cases chosen illus-
trate differences in SPH (0.32 vs 0.13) resulting from tumor mor-
phological differences for patients with very similar tumor
volume (14.5 cc vs 14.0 cc). Figure 3 shows boxplots of SPH val-
ues vs MP for the full N=220 cohort, and boxplots for individual
HR/HER2 subcohorts are shown in the online supplemental
Figure 2 (HRþ/HER2�: N =77; HRþ/HER2þ: N=40; HR�/
HER2þ: N=18; HR�/HER2�: N =85). Mean and standard devi-
ations are listed in online supplemental Table 1. Overall, the
mean and median SPH values decreased with the increasing
order of MP; that is, when going from single solid mass to more
diffuse tumors. The 95% confidence intervals (CIs) for the differ-
ences in means between each pair of MPs are plotted in Figure 4.
The numerical values are listed in online supplemental Table 2.
Statistically significant differences were found between patterns
1, 2, and 3. Pattern 1 was also different from patterns 4 and 5
with P-values of 0.0017 and 0.001, respectively.

Figure 1. Flow diagram of patient cohorts
included in this study. The numbers in blue
frames indicate cohorts included in the
analysis.

Table 1. Patient Characteristics of Included Cohort and Cohort with MRI Morphological Reading E

Cohort with Sphericity (n=935) Cohort with Morphologic Pattern (n=220) P-Value

Agea 49 6 10 49 6 11 .890

HR/HER2 Subtype

HRþ/HER2� 365 (39%) 77 (35.0%)

.650b
HRþ/HER2þ 148 (16%) 40 (18.2%)

HR�/HER2þ 80 (9%) 18 (8.2%)

HR�/HER2� 342 (37%) 85 (38.6%)

Menopausal Status

Premenopausal 442 (47%) 105 (47.7%)

.044
b

Perimenopausal 32 (3%) 1 (0.5%)

Postmenopausal 271 (29%) 74 (33.6%)

Not applicable 125 (13%) 22 (10%)

Unknown 65 (7%) 18 (8.2%)

SPH at T0a 0.22 6 0.099 0.22 6 0.095 .890

pCR Outcome

0: non-pCR 625 (67%) 143 (65%)
.630b

1: pCR 310 (33%) 77 (35%)

Abbreviations: HR, hormone receptor; HER2, human epidermal growth factor receptor 2; SP, sphericity.
a Values of age and SPH at T0 are mean 6 standard deviation.
b Estimated by Fisher exact test.
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In the cohort of 935 patients, 310 (33%) achieved pCR after
NAC and 625 (67%) did not (non-pCRs). pCR rate varied among
HR/HER2 subtypes. They were 18% (66 out of 365) in HRþ/
HER2�, 40% (59 out of 148) in HRþ/HER2þ, 61% (49 out of 80)

in HR�/HER2þ, and 41% (140 out of 342) in HR�/HER2� (tri-
ple-negative). Table 2 shows differences between pCR and non-
pCR for median SPH at T0 and T1. The overall observation is that
SPH is higher in patients who achieved pCR than in those with non-
pCRs. The median difference in SPH was found to be statistically
significant in the full cohort (P= .001) and in HR� (HER2þ/�) can-
cer subtypes (P= .011 and P= .047 at T0 and T1 for HR�/HER2þ;
P= .001 at both time points for the triple-negative subtype. The
difference in HRþ/HER2� was statistically significant at T0
(P= .008) but not at T1 (P= .054). No statistical difference was
found in HRþ/HER2þ at either time point (P= .120 at T0, P= .550
at T1).

AUCs of using SPH to predict pCR in the full cohort and in
individual subtypes are listed in Table 3, and corresponding ROC
curves are shown in Figure 5. Overall, AUC was lower after the
treatment started (at T1) than before treatment (at T0). In the full
cohort, SPH at T0 and T1 was predictive of pCR with estimated
AUCs of 0.61 and 0.58, respectively. Among the subtypes, the
highest AUCs were observed in HR�/HER2þ with estimated val-
ues of 0.67 at T0 and 0.63 at T1. The lowest AUCs were observed
in HRþ/HER2þ with estimated values of 0.58 at T0 and 0.53 at
T1. CIs showed that AUCs estimated for this subtype at both time
points and for HRþ/HER2� at T1 were not above 0.5 (nondiscri-
minatory test) with statistical significance.

DISCUSSION
In this study, we investigated using tumor SPH to quantify MRI
MPs and to predict pCR. Previously it was noted that different tu-
mor phenotypes in MRI responded differently to NAC treatments
(10), and further evidence of this dependence was shown in a
study using I-SPY 1/ACRIN 6657 data (11). In this current study,
we tested the usage of the quantitatively measured SPH, a mor-
phological measure derivable from the tumor mask generated

Figure 2. Example magnetic res-
onance (MR) images of patients
with different morphologic read-
ings. Representative slices of axial
magnetic resonance imaging (MRI)
were shown from 2 patients. The
morphologic readings were 1 and
3 for the top and bottom row,
respectively. The sphericity (SPH)
values are 0.32 for the top and
0.13 for the bottom. However, the
tumor volumes are close (14.5 cc
for the top and 14cc for the
bottom).

Figure 3. Boxplots of SPH values versus mor-
phological patterns (MPs). The x-axis is patterns
1 to 5, while the y-axis is the SPH value at base-
line. The line in each boxplot represents the me-
dian, and the red dot represents the mean.
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from DCE-MRI tumor volume calculation, in distinguishing tu-
mor phenotypes by comparing it to the MRI MP assessed by a
radiologist. Mathematically, SPH is a measure of how closely the
shape of an object is to a perfect sphere. Theoretical SPH values
range from just >0 for a very diffuse object to 1 for a perfect
sphere, but this range will be reduced for finite digitized 3D

images such as MRI. Solid tumors with roughly spherical shapes
have high SPH values, while scattered or multifoci tumors have
low SPH values. Our results showed that SPH values for tumors
classified with MPs 1, 2, and 3 in MRI decreased significantly
with respect to the order, but the differences between MPs 3, 4,
and 5 were not as obvious. A similar trend was observed in the

Table 2. SPH Values for Patients with pCR versus Non-pCR E

N pCR Rate (N)a pCR Non-pCRa Differenceb P-Value

T0

Full 935 33% (309) 0.23 (0.16, 0.30) 0.18 (0.13, 0.26) 0.04 (0.02, 0.05) .001

HRþ/HER2� 365 18% (66) 0.22 (0.16, 0.31) 0.20 (0.14, 0.26) 0.04 (0.01, 0.06) .008

HRþ/HER2þ 148 40% (59) 0.24 (0.16, 0.33) 0.19 (0.14, 0.29) 0.03 (�0.007, 0.06) .120

HR�/HER2þ 80 61% (49) 0.24 (0.17, 0.28) 0.16 (0.10, 0.26) 0.06 (0.01, 0.10) .011

HR�/HER2�
(triple-negative)

342 41% (140) 0.23 (0.17, 0.29) 0.18 (0.13, 0.24) 0.04 (0.02, 0.06) .001

T1

Full 935 33% (309) 0.22 (0.16, 0.32) 0.20 (0.14, 0.27) 0.03 (0.02, 0.04) .001

HRþ/HER2� 365 18% (66) 0.25 (0.15, 0.33) 0.21 (0.14, 0.27) 0.03 (�0.0005, 0.06) .054

HRþ/HER2þ 148 40% (59) 0.21 (0.16, 0.32) 0.20 (0.15, 0.31) 0.01 (�0.03, 0.04) .550

HR�/HER2þ 80 61% (49) 0.23 (0.16, 0.30) 0.18 (0.12, 0.25) 0.05 (0.0007, 0.09) .047

HR�/HER2�
(triple-negative) 342 41% (140) 0.23 (0.16, 0.32) 0.19 (0.13, 0.25) 0.04 (0.02, 0.06) .001

Abbreviations: AUC, area under the curve; pCR, pathologic complete response; HR, hormone receptor; HER2, human epidermal growth factor receptor 2.
a Values in pCR and Non-pCR columns are given as median (interquartile range).
b Values in the Difference column are given as the median difference and 95% CIs in parenthesis. P-values < .05 are in bold.

Figure 4. Pairwise 95% confidence intervals
(CIs) of differences in mean SPHs between MPs.
The x-axis is the differences in mean SPHs, and
the y-axis is the pattern pair. At the 95% CI level,
horizontal lines staying at one side of the verti-
cal line at zero were statistically significant.
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HR/HER2 subtype subgroup. However, compared with the
manual MP reading, SPH is an automatically calculated mea-
sure (aside from the manual selection of a bounding volume
of interest box). It is highly reproducible. The lack of differen-
tiation between the higher-order patterns may be partially due
to the limit number of cases. However, the description of 5
MRI MPs can be ambiguous and difficult to reproduce, partic-
ularly among patterns 3, 4, and 5 (11). So the ability of any
quantitative morphological metric to differentiate between
these higher-order, more diffuse tumors may be severely
limited.

We also tested SPH as a quantitative predictor for treatment
response in patients who received NAC, and results showed that
SPH at pretreatment appears to be higher in patients who had
pCR than in patients who did not have pCR. The same trend was

observed at T1, 3weeks after NAC initiated. This result confirms
previous finding that there is a higher chance of pCR for more
circumscribed lesions (10, 11). AUCs also showed that SPH can
differentiate pCR versus non-pCR at pre- or early-treatment time
points. This finding is helpful in making clinical decisions, espe-
cially for HRþ/HER2� cancer subtype, which has the lowest pCR
rate among all subtypes for patients who underwent NAC.
Alternative therapy could be used on patients who are not going
to benefit from NAC. The fact that AUCs decrease from pre-
treatment to early-treatment time point showed SPH is the
most predictive at pretreatment of NAC. Compared with other
imaging technologies (mainly mammography and ultraso-
nography), MRI showed the highest accuracy in predicting
pCR (22). However, very few studies report MRI features
measured at pretreatment being predictive (23). Radiomics is
a rising research tool in cancer imaging, which extracts a
large number of imaging features and leverages machine
learning algorithms to reveal underlying biology heterogene-
ity and predict treatment response. A recent published multi-
center study showed that radiomics can be a potential tool to
predict pCR for patients with breast cancer who underwent
NAC (24). The current study focused on one feature that can
be automatically calculated from DCE-MRI as a byproduct of
functional tumor volume, an established biomarker having
been used in NAC clinical trials for decades (3, 25).

Our study has several limitations. First, the radiologist
read a subset of the full cohort, which may not represent the
entire population. However, composition of the two cohorts
was similar in terms of receptor subtype and pCR rates.
Second, only one radiologist performed the reading, which
has subjective components and will result in inter-reader

Table 3. AUCs of SPH in the Prediction of
pCR at Different Treatment Time Points

Cohort N
pCR
Rate T0 T1

Full 935 33% 0.61 (0.57, 0.65) 0.58 (0.55, 0.62)

HRþ/HER2� 365 18% 0.61 (0.53, 0.68) 0.58 (0.49, 0.66)

HRþ/HER2þ 148 40% 0.58 (0.48, 0.67) 0.53 (0.43, 0.62)

HR�/HER2þ 80 61% 0.67 (0.54, 0.80) 0.63 (0.51, 0.76)

HR�/HER2� 342 41% 0.64 (0.58, 0.70) 0.62 (0.56, 0.68)

Abbreviations: AUC, area under the curve; pCR, pathologic complete
response; HR, hormone receptor; HER2, human epidermal growth
factor receptor 2.

Figure 5. Receiver operating characteristic curves of SPH in predicting pathologic complete response. SPH measured
at pretreatment (A) and SPH measured at early-treatment time point (B). The diagonal line in gray represents a non-dis-
criminatory test (area under the curve = 0.5).

Tumor Sphericity Predicts Treatment Response

TOMOGRAPHY.ORG I VOLUME 6 NUMBER 2 I JUNE 2020 221



variability that could affect the relation between SPH and pheno-
type. Third, SPH measurement requires a minimum number of
voxels in the tumor mask. When tumor dissolves or shrinks to
minimum residual, the remaining tumor may not contain enough
number of voxels and thus SPH is not calculable in these cases.
With our current processing, this could severely bias any analysis
due to the resulting exclusion of patients showing rapid treatment
effects, and thus SPH may be best applied to the index disease,
and not as tumor responds.

In conclusion, this study showed the ability of an automated
SPH measure to capture breast tumor phenotype in DCE-MRI.
SPH at pretreatment alone predicted pCR. In future studies, other
radiomics features that can be used as quantitative measures for

tumor phenotypes will be explored. Furthermore, the possible
combination of different selected features may also improve the
prediction of treatment response.
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