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Exceptional points of degeneracy and  -symmetry in photonic coupled chains of scatterers 

 Mohamed A. K. Othman1, Vincenzo Galdi2, and Filippo Capolino1 

    1Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA 92697, USA  

2 Waves Group, Department of Engineering, University of Sannio, I-82100 Benevento, Italy 

We demonstrate the existence of exceptional points of degeneracy (EPD) of periodic eigenstates in non-Hermitian 

coupled chains of dipolar scatterers. Guided modes supported by these structures can exhibit an EPD in their 

dispersion diagram at which two or more Bloch eigenstates coalesce, in both their eigenvectors and eigenvalues. 

We show a second-order modal EPD associated with the parity-time () symmetry condition, at which each 

particle pair in the double chain exhibits balanced gain and loss. Furthermore, we also demonstrate a fourth-order 

EPD occurring at the band edge. Such degeneracy condition was previously referred to as a degenerate band edge 

in lossless anisotropic photonic crystals. Here, we rigorously show it under the occurrence of gain and loss balance 

for a discrete guiding system. We identify a more general regime of gain and loss balance showing that -

symmetry is not necessary to realize EPDs. Furthermore, we investigate the degree of detuning of the EPD when 

the geometrical symmetry or balanced condition is broken. These findings open unprecedented avenues toward 

superior light localization and transport with application to high-Q resonators utilized in sensors, filters, low-

threshold switching and lasing. 

I. INTRODUCTION 

Degeneracy in the state space of a dynamical system refers to 

points at which two, or more, physical eigenstates coalesce into 

one. This pervasive concept may give rise to interesting 

phenomena in many branches of physics  [1–7]. In connection 

with electromagnetic (EM) waves, of particular interest for this 

study, it is well known that the propagation in closed guiding 

structures such as metallic waveguides or periodic structures, in 

the absence of energy dissipation or gain, is mathematically 

described in terms of a Hermitian operator  [8]. This implies that 

the associated eigenspace is characterized by real-valued 

eigenvalues and it always constitutes a basis. As a consequence, 

with a few notable exceptions, strict modal degeneracy cannot 

take place, in the sense that eigenmodes associated with identical 

eigenvalues are generally linearly independent. However, certain 

degenerate conditions can be found where the system space is 

constructed from a generalized basis of eigenstates  [1–3]. Simple 

examples of these degeneracies can be found in metallic 

waveguides at the cutoff or zero frequency. Another interesting 

example can be found at the transmission band edge of any 

periodic guiding structure, where there exists a regular band edge 

(RBE) at which forward and backward Bloch modes 

coalesce  [9]. More pronounced degeneracy conditions, entailing 

the coalescence of three, four or more Bloch modes, can be found 

in a special class of anisotropic or birefringent photonic crystals. 

An example of a third-order degeneracy is found at the stationary 

inflection point (SIP) of a magnetic photonic crystal 

(MPhC)  [10,11], whereas a fourth-order degeneracy is realized 

at a degenerate band edge (DBE)  [12–17]. At such points of 

degeneracy, the group velocity vanishes and the local density of 

states exhibits a dramatic enhancement. These effects are 

demonstrated in lossless structures under RBE, SIP or DBE 

conditions  [9,10,12,16]. In particular, the “frozen-wave” regime 

associated with the DBE condition  [5,12,16,18–22] has been 

demonstrated to provide a better localization of light through 

large enhancement of the local density of states, as well as 

enhancement of gain in active configurations  [16,22]. Moreover, 

several DBE implementations were carried out in coupled silicon 

waveguides  [15,21] or 2D photonic crystals  [23], with potential 

applications to lasers  [14,16], and more recently at 

microwaves  [24], for low-threshold oscillations  [25–27] and 

efficient high power generation  [22,25,28].   

Recently, there has been a surge of interest in connection with 

degeneracies in system described by non-Hermitian operators. In 

these cases, the term “exceptional point” is used to indicate a non-

Hermitian degeneracy where two or more eigenstates coalesce 

into one with the same complex-valued eigenvalue. Since the 

term “exceptional” may have different meanings in different 

disciplines, in what follows, we prefer to use the term 

“exceptional point of degeneracy” (EPD) so as to avoid possible 

ambiguities. The interest in this class of degeneracies is mainly 

motivated by their relevance in the study of parity-time- (-) 

symmetric systems  [2,3,29,30]. Originally introduced in 

quantum mechanics, as an alternative condition to ensure real-

valued eigenspectra in the presence of pseudo-Hermitian [31–33] 

and non-Hermitian Hamiltonians, the -symmetry concept has 

stimulated discussions in several branches of applied physics, 

including quantum field theories and quantum 

interactions  [2,3,34,35]. Moreover, given the formal analogy 

with quantum mechanics, the -symmetry concept has naturally 

been translated to paraxial optics  [29,30,36,37]. In this case, 

practical implementations involve coupled waveguides and 

resonators exhibiting symmetric gain and loss distributions with 
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suitable spatial modulation  [30,37,38], although related effects 

were also demonstrated in passive lossy structures  [39]. Aside 

from the interplay between gain and loss in coupled-mode 

structures supporting -symmetry (see  [30,40–42]), it is 

important to note that the -symmetry is not a sufficient 

condition for a real-valued eigenspectrum. In fact, for a non-

Hermiticity (i.e., gain/loss) level beyond a critical threshold, the 

system may encounter an EPD thereby undergoing a phase 

transition to a complex-valued eigenspectrum. This phenomenon 

is usually referred to “spontaneous symmetry 

breaking”  [29,30,38]. In view of the comparatively simpler (with 

respect to quantum physics) implementations, optical -

symmetric structures have elicited a great deal of attention, 

leading to many interesting observations, including the 

demonstration of low-threshold lasing and laser 

absorbers  [41,43–45], enhanced nonlinear effects [34,40-43], as 

well as metamaterial-based field manipulations  [38,48,49]. In 

previous works, -symmetry has been shown in discrete 

arrangements of resonators and also using the so-called “tight-

binding” (TB) approach  [48,50]. Moreover, EPDs have been 

also observed in 2D and 3D geometries  [7,37,51]. 

In this paper, we study the emergence of EPDs in coupled 

chains of photonic scatterers exhibiting gain and loss. This 

configuration may constitute an interesting, and largely 

unexplored, photonic testbed for studying the properties of non-

Hermitian systems. Moreover, it may find intriguing applications 

to light localization and transport. 

Accordingly, the rest of the paper is laid out as follows. In 

Section II, we outline the problem statement. In Section III, we 

introduce the model utilized for the eigenmode analysis. In 

Section IV, we study the modal dispersion characteristics near 

second- and fourth-order EPDs, and elucidate the connections 

with the -symmetry concept. Finally, in Section V, we provide 

some brief conclusions and discuss the implications and possible 

applications of our results. 

 

II. PROBLEM STATEMENT 

As previously mentioned, we investigate the emergence of 

EPDs in coupled periodic chains of polarizable particles (see Fig. 

1) exhibiting loss and gain. In particular, we derive a general 

(necessary and sufficient) condition for an EPD to occur, and we 

elucidate possible connections with the -symmetry 

concept  [29,30,39]. 

Our study yields two main results. First, we demonstrate the 

existence of EPDs by using a TB-based method. Such approach, 

based on the transfer-matrix method, is conventionally utilized in 

the study of photonic crystal waveguides  [52,53], and has been 

previously employed  to investigate the properties of non-linear 

magnetic resonators  [48], discrete -symmetric 

scatterers  [50], and solitons in paired chains of dimers [50,51]. 

Second, we show the manifestation of both second- and fourth-

order EPDs in such structures. Importantly, we demonstrate for 

the first time that DBEs (special kinds of EPDs) may exist in 

chains of discrete scatterers exhibiting loss and gain. We also 

elucidate the connection between these EPDs and the previously 

observed DBE effects in lossless structures. Our study exhibits 

several elements of novelty with respect to previous studies in the 

topical literature:  By comparison with previous studies on chains 

of split rings  [48],  we emphasize that our proposed chain here 

is periodic along the z-direction, and we find degeneracies of 

different orders. Furthermore, although there are some previous 

studies of fourth-order EPDs in chains of  multiple-

resonators  [6,54], here, we attain these effects in a photonic 

chain, composed of pairs of coupled scatterers (i.e., two coupled 

linear chains). Moreover, we also discuss some aspects that have 

 

FIG. 1. Two coupled chains of polarizable particles with electrical dipolar 

polarizabilities  1  and 2 . Supported Bloch modes polarized along the x-

direction are investigated. The dispersion diagram of the modes guided along 

the z-direction may develop an exceptional point of degeneracy (EPD) under 

certain conditions. 

 

 

 

 

 

FIG. 2. Schematic representation (in three dimensional space) of the four-

dimensional system state eigenvectors lΨ  near an exceptional point of 

degeneracy. (a) Two eigenvectors coalesce at a second order EPD. (a) Four 

eigenvectors coalesce at a fourth order EPD, at the degenerate band edge.  
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been insofar overlooked, including the order of degeneracies, 

their relationship with DBE conditions explored in a very 

different contest  [12,23], and the associated perturbation 

analyses. The evolution of the eigenstate vectors in the system, 

to be investigated thoroughly in Section IV, is illustrated 

schematically in Figs. 2(a) and (b) in the vicinity of second- and 

fourth-order EPDs, respectively. In our study, we will quantify 

the evolution of the complex Bloch wavenumbers in terms of 

frequency detuning and the gain/loss level, which will be 

rigorously defined in Section II and III. 

We highlight that -symmetry, also explored in our study, is 

a particular topology (and not the only one) available to realize a 

gain and loss balance scheme and construct real eigenspectra. 

Nevertheless, as shown hereafter, it is not a necessary condition 

for the existence of an EPD. In principle, polarizabilities with 

gain can be implemented in dielectric or plasmonic nanoparticles, 

with gain provided by fluorescent quantum dots cores  [55] or 

dyes in the core or in the outer shell  [56], for instance. We 

assume time-harmonic fields of the form 
i te 

, so that gain and 

loss correspond to complex-valued polarizabilities i     , 

with 0   and 0  , respectively. 

III. EIGENMODES IN TWO COUPLED CHAINS: 

TRANSFER MATRIX ANALYSIS 

Referring to the schematic in Fig. 1, we consider a periodic 

chain of dipolar scatterer pairs in a homogenous medium. Each 

pair is characterized by two dipoles moments, with electric 

dipolar polarizabilities denoted by 1 and 2, separated by a 

distance a, and the chain’s period is denoted by d. Accordingly, 

the chain’s constitutive scatterers are located at 

 1, ˆ ˆ/ 2n a nd r y z  and  2, ˆ ˆ/ 2n a nd  r y z , respectively, 

with n denoting an integer   ,n   . Here and henceforth, 

boldface symbols denote vector quantities and the caret denotes 

unit vectors. The polarizabilities relate the local electric field at 

the equivalent electric dipoles’ locations to their moment, viz. 

loc
, ,j n j j np E , with j = 1, 2. The local electric field 

loc
,j nE  at ,j nr  

is produced by the infinite chain's dipole moments, in addition to 

any external excitation 
ext
jnE , through the dyadic Green's function 

as  

 
2

loc ext
, , , , ,

1 ,

( , )j n j n j n p q p q

p q
p j q n



 
 

   E E G r r p , (1) 

where , ,( , )j n p qG r r  is the electric-dipole dyadic Green’s 

function (GF)  [57,58]. By solving (1) in the absence of excitation 

(
ext

, 0m n E ), we can compute the guided/leaky wave eigenmodes 

supported by the chain. In this study, we are only interested in the 

guided (bound) modes. An alternative representation of the fields 

can be accomplished via a combination of both spectral and 

spatial GFs, such as in the Ewald method for linear arrays  [59–

62]. 

Here, we make the following assumptions: (i) we consider a 

transverse polarization for which the excited dipole moments can 

be only oriented along the x-direction, so that , , ˆj n j npp x ; (ii) 

we only consider interactions within nearest neighbors scatterers, 

justified by the fact that inter-particle distance is subwavelength. 

This approach, which resembles the TB formalism in solid state 

physics  [52,53,63], was also utilized in  [48,50,64,65] to analyze 

the general properties of discrete interactions in -symmetric 

systems. Following these assumptions, we can recast (1) in a 

much simpler form: 

 

1, 1 1, 1 1, 1

2 2, 1 2, 2, 1

2, 2 2, 1 2, 1

1 1, 1 1, 1, 1

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

n n n

n n n

n n n

n n n

p G d p G d p

G b p G a p G b p

p G d p G d p

G b p G a p G b p









 

 

 

 

    

    

    

    

, (2) 

where we have used the electric-dipole scalar GF 

    3 3 2 1, exp( ) ( ) ( ) ( ) /G r G k ikr kr i kr kr C      
 

r r   [58

,66], with 04 hC     (and h  being the dielectric constant of 

the host medium), r  r r  and 
2 2b a d   (see Fig. 1), and 

k is the wavenumber in the host material.  The equations in (2) 

can be cast in a form involving finite differences and a system 

evolution equation. However, our approach in this study relies on 

the construction of a transfer matrix that relates the dipole 

moments at two locations ,m nr
 
and , 1j nr , from which we can 

calculate the band structure of the periodic chain. To this aim, it 

is expedient to define a four-dimensional state vector as 

1, 2, 1, 1 2, 1( )
T

n n n nn p p p p    Ψ  (with the superscript “T” 

denoting the transpose) which describes the spatial evolution of 

the dipole moments in the coupled chains. It is important to stress 

that, even though the choice of the state vector is not unique  [67], 

the eigenvalues of the system are invariant under any non-

singular unitary (similarity) transformation of the state vector.  

A. State Vector Evolution and Transfer Matrix 

Using (2), we construct a discrete matrix equation for the state 

vector evolution as 

 ( 1) ( ),n n Ψ TΨ  (3) 
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where T  denotes the transfer matrix of the chain under the 

nearest neighborhood (i.e., TB) approximation. Such matrix can 

be written as 

 , , ,
   

     
       

0 11 A
T M V M V

0 1 1 0
 (4) 

where 1  is a 2×2 identity matrix, and A  is a 2×2 matrix given 

by 

   

   

2
2 1 2 2 2

2 2 2 2
1 2 1 2

2
1 1 1 1 2

2 2 2 2
1 2 1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
. (5)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

G d G a G b G b G a G d

G d G b G d G b

G b G a G d G d G a G b

G d G b G d G b

    

   

    

   

   
 

  
 
   
 
  
 

A  

The transfer matrix T , as in the context of layered media 

analysis  [8,68], obeys some fundamental properties, such as 

 det 1T   [9,69,70]; other spectral properties will be further 

discussed hereafter. We seek Bloch-type wave (periodic) 

solutions of (3) in the form 

 ( 1) ( ), zik d
n n e   Ψ Ψ , (6) 

where zk  is a generally complex-valued Bloch wavenumber of 

the guided mode supported by the chain, with the sign of the real 

and imaginary part determining the forward/backward, and 

propagating/evanescent character, respectively in a lossless 

structure. In the presence of gain and/or loss, these sign 

specifications may be violated in general. Note that a purely real-

valued kz means that power is conserved for that mode  [64], and 

this may occur in chains with balanced gain and loss, as we show 

hereafter (see Section IV below). We emphasize that zik d
e  is the 

eigenvalue of (6), not the Bloch wavenumber kz; however it is 

natural to investigate the characteristics of kz since it allows for a 

straightforward assessment of the gain and loss balance  [71]. 

Bloch eigenmodes that satisfy (3) and (6) are derived from the 

eigenvalue problem, 

 ( ) ( )l l ln nT Ψ Ψ , (7) 

where ( )l nΨ  is the lth state eigenvector, with l=1,2,3,4. This 

yields four eigenvalues and corresponding eigenvectors. Note 

that the homogenous solutions of (3) are constructed from the 

four eigenvectors in (7) in the case where the matrix T  can be 

diagonalized. When T  is not diagonalizable, i.e., at an EPD, 

generalized eigenvectors are used instead of the regular 

eigenvectors in (7)  [22]. The four eigenvalues of (7) are 

determined from 

  det 2cos 0zk d   1 A , (8) 

which is further simplified to the transcendental form 

        24cos 2cos Tr det 0z zk d k d  A A . (9) 

Note that from (9) we infer the symmetry property that both zk  

and zk  are solutions, as expected in view of the time-inversion 

symmetry that is still valid under the small-signal and linear- gain 

assumptions. Depending on whether an EDP occurs or not, the 

number of independent eigenvectors that satisfy (7) may vary 

from one to four. Indeed, though not always possible in general, 

the transfer matrix T  may be diagonalized so that, 

 
1

T UΛU , (10) 

where Λ  is a diagonal matrix, whose entries are the eigenvalues 

of (6), and U  implements a similarity transformation. In this 

case, there would be four independent system state eigenvectors.  

B. Exceptional Points of Degeneracy (EPDs) 

We now investigate a particular aspect of the dispersion 

diagram, namely, the emergence of EPDs. At an EPD, the matrix 

U  is singular, i.e., det[ ] 0U . Owing to the reciprocity (T-

inversion symmetry) restriction of the system, we can only attain 

two different kinds of degeneracies: (i) a second-order 

degeneracy at which two eigenstates coalesce, with a multiplicity 

m = 2 of the eigenstates; and (ii) a fourth order degeneracy at 

which all eigenstates coalesce, with m = 4.  

Accordingly, we investigate these two conditions in which the 

transfer matrix becomes similar to a matrix having Jordan 

blocks  [72]. Under these conditions, a reduced number of regular 

eigenvectors will be found. In particular, when a fourth-order 

EPD occurs, (7) will possess one eigenvalue with multiplicity of 

four and only one regular eigenvector. 

i) Second order EPD. At a second-order EPD, the transfer 

matrix is written as   

 

1
0

,
0

1 1/ 1
, ,

0 0 1/

e e

e e

 

 







 

 
 
 
 

   
    
   

Λ
T W W

Λ

Λ Λ

 (11) 

where eik d
e e   is the EPD real eigenvalue of (7). The second -

order EPD condition is found at an angular frequency e  ,  

and such degeneracy in the fundamental Brillouin zone 

 0,2 /zk d  occurs between two Bloch modes having 
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 0, /zk d  (denoted by the superscript “+”); the other two 

modes with  / ,2 /zk d d   (denoted by the superscript “") 

must also coalesce in view of the symmetry conditions of the 

eigenvalues solutions in (7). Here, 


Λ  is a 2×2 Jordan block and 

W  is constructed from two regular and two generalized basis-

eigenvectors. At e  , homogenous solutions for the state 

vector in (3) are given in terms of two periodic (Bloch) modes 

having regular eigenvectors propagating as eik nd
e


, and two 

diverging solutions constructed from generalized eigenvectors 

that linearly grow as eik nd
nde


.  It is important to point out that, 

near the second-order EPD, the wavenumber kz can be written as 

a small perturbation of the ideal degeneracy condition with kz = 

ke, in terms of a fractional power expansion as 

 
1/ 2

, ( ) ( 1) ,l
z l e l lk k h g         (12) 

where lh  and lg  are the fractional series expansion coefficients 

for the four modes with l={1,2,3,4}, and   is a small 

perturbation parameter about the EPD. Such perturbation 

parameter identifies the detuning from the ideal EPD condition 

in the spectral evolution of the states, which could be observed 

via frequency detuning, gain and loss imbalance, or asymmetry 

in the chain (or in any other structural parameter). We recall that 

the perturbation analysis of degenerate or “defective” operators 

requires to deal with fractional power expansion, contrary to 

systems having only eigenvalue degeneracies (i.e., only 

coincident eigenvalues, but still a complete basis of 

eigenvectors  [2,4,70,73]). As such, the fractional power series 

(12), also known as Puiseux series, is a direct consequence of the 

Jordan Block similarity  [1,12,73]. Note that the principal root of 

  is taken in (12). In Section III, we show the effect of two 

perturbation parameters (frequency detuning and gain/loss 

imbalance or asymmetry in the chain) separately, and their 

consequences on -symmetry and the second-order EPD. 

ii) Fourth order EPD. At a fourth-order EPD, the transfer 

matrix becomes similar to a four-dimensional Jordan matrix,  

 1

1 0 0

0 1 0
,

0 0 1

0 0 0

e

e

e

e











 
 
  
 
  
 

T SΛS Λ , (13)   

thereby implying a fourth-order degeneracy between all Bloch 

modes in the 4×4 system. Here, Λ  is a 4×4 Jordan matrix, and 

S  is constructed from one regular and three generalized basis-

eigenvectors. In this particular case, we find that 1e   . At 

e  , homogenous solutions for the state vector in (3) at the 

fourth-order EPD are given in terms of one Bloch periodic mode 

having a regular eigenvector in (7) that propagates as eik nd
e , and 

three non-Bloch (non-periodic) diverging solutions constructed 

from a generalized set of eigenvectors growing  as 

   
2 3

, , ande e eik nd ik nd ik nd
nde nd e nd e   [22,70].  Similar to the 

second-order EPD, the wavenumber near a fourth-order EPD 

asymptotically follows the fractional power expansion  

 1/4 2/4
, ( ) ,z l e l lk k h g        (14)  

where lh  and lg  are the fractional series expansion coefficients 

for the nth eigenmodes, and   is the perturbation factor. 

In what follows, we quantitatively investigate the modal 

dispersion characteristics near a second- and fourth-order EPD of 

a chain composed of a pair of dipolar scatterers with gain and 

loss.  

 

IV. EPD AND  -SYMMETRY IN GAIN- AND LOSS- 

BALANCED COUPLED CHAIN 

As mentioned in the previous section, degenerate states, if 

they exist, are characterized not only by the multiplicity of the 

eigenvalues in (7) but also by their geometric multiplicity, i.e., 

the linear dependence of the eigenvectors  [1,3,6,72,74]. We 

assume that the wavenumber of the degenerate state is denoted 

by ek . Therefore, by invoking the eigenvalue multiplicity and 

symmetry conditions, the dispersion relation in (9) at the EPD 

takes the form 

 

FIG. 3. Dispersion diagram of the two modes with positive  Re zk  exhibiting 

an exceptional point of degeneracy at ωe. The -symmetry allows for real 

modes when gain/loss balance and topological symmetry condition (19) is 

satisfied below the EPD ω < ωe. Here d=a = 100 nm, ed/c=0.02 and ke = 

/(5d), and the polarizabilities of the chain are found in Table I.   
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    cos cos 0z ek d k d


    . (15) 

Moreover, when an EPD occurs, the transfer matrix T  in (4) can 

only be written in terms of Jordan blocks, and not in terms of 

diagonalized matrices. To derive the conditions on the 

polarizabilies of the coupled chain’s scatterers in order for an 

EPD to occur, we compare (9) with (15), and obtain two 

conditions on the characteristic matrix A , viz., 

 2Tr( ) 4cos( ), and det( ) 4cos ( )e ek d k d A A . (16) 

Equations (16), along with (13), impose the following conditions: 

 

 
 

 

1 2 2 2 2 2

2 2

1 2
2 2 2 2

1
,

4cos ( ) ( ) ( ) ( )

2 ( ) ( ) 4 ( ) ( ) cos( )

4cos ( ) ( ) ( ) ( ) ( )

e e

e

ee e

e

k d G d G b G a

G a G b G d G b k d

k d G d G b G a G d

  

  

 
 

  
  

  
 

  

 (17) 

where 1 1 ( )e
e    and 2 2 ( )e

e    are the required values 

for the polarizability to achieve a second or fourth-order EPD at 

a wavenumber ek  and angular frequency e . Another necessary 

condition, besides (15), is that  det 0U , which is implicitly 

satisfied from (14) through the constraint    2Tr 4detA A . 

Accordingly, the conditions in (17) on the polarizabilities are 

necessary and sufficient to attain the required EPD.  The 

polarizabilities are obtained as solutions of (17) in terms of 

1 2
e e    and 1 2

e e     as 

 
2

1,2 2
2

e 
     , (18) 

for an EPD occurring at an angular frequency e . We highlight 

that some trivial conditions exist for the chain to develop an EPD, 

such as at zero frequency. In what follows, we focus on non-

trivial EPDs, namely second- and fourth-order, in the presence of 

both gain and loss. We refer to “gain and loss balance” as the 

universal condition that guarantees the existence of an EPD in the 

spectrum of a coupled system described by non-Hermitian 

evolution equations as discussed in  [72]. Indeed, -symmetry 

is not a necessary condition for developing an EPD as shown 

in  [72,75]. The more general balance condition is revealed in the 

chains when (18) is satisfied, resulting in an EPD in the chains 

spectra. Within this framework, -symmetry is a special case, 

which would also lead to observing an EPD as discussed in the 

following. 

 

A. Second Order EPD and -Symmetry 

A second-order degeneracy indicates that the solutions ,e l

of the system (7) can take the values ,1
eik d

e e e    and

,2 1/ eik d
e e e  

  , with ek d  , i.e., away from the center of 

the Brillouin zone (defined here as the interval [0,2 / ]zk d ). 

Indeed, /zk d  is the center of Brillouin zone where modes 

naturally coalesce, and it is well known to be a point where the 

group velocity vanishes if a bandgap exists  [8,70]. To gain some 

physical insight into the conditions above, it is important to 

explore how the polarizabilities of the chain are constrained for 

an EP to occur. In what follows, we investigate different regimes 

of operations based on quasi-static approximations, and the effect 

of phase retardation on the EPD conditions. 

 

i) Quasi-static limit: This applies when 0,kr   with and 

r being an arbitrary observation distance. Consequently, the GF 

follows its electrostatic limit 
3( ) 1/( )G r C r . It is 

straightforward to see that, under such condition, an EPD can 

occur provided that  
2

1 2 1 24e e e e     , since ( ) ( )G d G b  

(the GF is real under this limiting case). Therefore, by imposing 

the conditions for an EPD to occur [(16) and (17)], we obtain the 

conjugate symmetry condition  

  
*

1 2
e e  . (19) 

This condition implies that, when such low-frequency EPD 

occurs, one chain exhibits losses and the other exhibits gain that 

precisely compensates for the losses. This condition is inherently 

tied with the aforementioned -symmetry concept. As typical 

in -symmetric systems, the EPD is related to the spontaneous 

symmetry breaking phenomenon, and it constitutes the boundary 

that separates the “exact” and “broken” phases characterized by 

 

FIG. 4. (a) Same as Fig. 3. (b) Magnitude of the determinant of matrix U  

that brings the transfer matrix into a diagonal form in (10). 
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real- and complex-valued eigenspectra, respectively. Such 

condition was rigorously satisfied in uniform coupled-

waveguides  [29,30,72,76], and here we showed that it holds in 

connection with periodic coupled chains of scatterers as well. 

Effects of field-retardation corrections in the GF are discussed 

next.  

ii) Effect of GF phase retardation  

The -symmetry with perfectly symmetric gain and loss 

balance governed by (19) is relevant when 0,kr   

corresponding to the quasi-static case described in the previous 

sub-section. However, when phase propagation is included in the 

GF, i.e., kr  assumes finite values, radiation losses exist due a 

non-vanishing imaginary part of the GF  [57]. Therefore, at an 

EPD one expects that the conjugate-symmetry condition (19) is 

no longer rigorously satisfied due to the extra radiation 

(scattering) losses in the chain. Nevertheless, as we show below, 

an EPD can still occur since a gain loss balance can be achieved 

from the condition in (18). On the other hand, if one chooses the 

perfect conjugate symmetry condition (19) on the chain, an ideal 

EPD (where the eigenvectors are rigorously degenerate) can no 

longer be identified.  

TABLE I. REQUIRED CHAIN POLARIZABILITIES TO REALIZE A 

SECOND ORDER EPD AT DIFFERENT NORMALIZED FREQUENCIES (UP 

TO 6 SIGNIFICANT DIGITS). 

/ed c  32 2 2
1 10 [Cm V ]e    32 2 2

2 10 [Cm V ]e    

0.02 3.59259 4.97264i   3.59260 4.97256i   

0.1 3.61775 4.99120i   3.6193 4.98184i   

0.5 3.93791 6.06210i   4.18713 4.740i   

 

We consider an example of a chain in vacuum (i.e., 1h  ) 

with 100 nma d  , and we select the EPD wavenumber to be 

/ 5ek d  , with 0.02ed c  . This frequency implies that the 

period 0.003 ed   (where 
  
l

e
= 2pc / w

e
 is the wavelength in 

vacuum) is deeply subwavelength, thereby justifying the low-

frequency assumption. By assuming the polarizabilities as 

frequency-independent in the vicinity of e , we obtain the values 

 * 32 2 2
1 2 3.593 4.973 10 [Cm V ]         (see table I), in 

order to attain a second-order EPD at 0.02ed c  . These 

values approximately satisfy (19) because of the low-frequency 

choice for this EPD to occur. In Fig. 3, we show the dispersion 

relationship of the two modes exhibiting the EPD. We only show 

the positive real part of the complex wavenumber within the 

region  Re( ) 0, /zk d , but we stress that the wavenumber 

branches satisfying  Re( ) / ,2 /zk d d   also exhibit the EPD 

thanks to reciprocity. In Fig. 4, we also show the determinant 

(magnitude) of the similarity matrix U, which represents a 

quantitative metric of the closeness to an EPD condition. Indeed, 

at e  , we observe that  det 0U  indicating that the 

system eigenvector coalesce and cease to form a complete basis 

set  [1,2,30]. As previously explained, exactly at the EPD there is 

no similarity transformation that diagonalizes the transfer matrix 

T , which in turn becomes similar to a matrix with Jordan blocks 

as in (11). In Fig. 5, we show the modes evolution in the complex 

kz-plane [Re(kz)−Im(kz) plane] as the frequency increases. As it 

can be observed, the modal wavenumbers are almost real (

3Im( ) / Re( ) 10z zk k  ) for e  , and become almost 

complex 

 

FIG. 5. Complex modal kz trajectory in the [Re(kz)-Im(kz)]  plane varying as a 

function of frequency showing the modes coalescing at the second order EPD 

at z ek k . Arrows show increasing frequency. Here, we used the same chain’s 

parameters as in Fig. 3. 

 

 

 

 

 

FIG. 6. Positive branch of Re[kz] varying as a function of the gain/loss parameter

/    , demonstrating the detuning near a 2nd order EPD for two cases of 

the normalized frequency /ed c . Chain parameters are as in Fig. 9. Note that 

the perfect gain/loss symmetry condition does not provide a clear EPD for the 

case with higher frequency. 
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conjugate pairs for e  . Modes with purely real kz for e   

are a fundamental consequence of the perfect gain-loss balance 

and symmetry of the system obeying an “exact” phase of -

symmetry, for large wavelength. Conversely, for e   such 

properties are violated, even though the gain and loss conjugate 

symmetry in (19) is satisfied, and the system enters the “broken” 

phase. By setting ( )e     in (12), and limiting the 

fractional power series to the first-order term, the asymptotic 

dispersion relationship near such second-order EPD is given by 

 
2

2
, ( 1)l

z l e lk k h    , where 
2 2 2

,2 /l z lh k     at e  .   

We also investigate the detuning of the second-order EPD by 

varying the gain and loss values implemented in the 

polarizabilities from their optimal condition (18). For that 

purpose, we assume an exact gain and loss symmetry in the chain, 

i.e.,   1,2 1 i    , with the gain and loss normalized factor   

defined as /    . We are interested in exploring how the 

mode characteristics change by varying the gain and loss factor 

 .  In Fig. 6, we show the positive branches of kz for two different 

normalized EPD frequencies /ed c , varying as a function of  

for a chain with parameters d=a=100 nm, and we choose 

1Re( )e    from Table I for each value of /ed c . We clearly 

observe the occurrence of the EPD for the smaller electrical 

period ( / 0.02ed c  ). Moreover, the exact -symmetric 

phase is observed at that frequency for a gain/loss parameter   

less than a critical value ( ≃ 1.358). At  ≃ 1.358, the system 

undergoes spontaneous -symmetry breaking, designating the 

EPD, and beyond this threshold the modes cease to be real. 

However, for the higher-frequency case of / 0.1ed c  , the EPD 

can no longer be attained with the exact gain and loss symmetry. 

Instead, as discussed previously, an asymmetry must be 

introduced due to radiation losses. In this connection, the reader 

is also referred to  [72] in which different figure of merits were 

proposed in order to assess the quality or evidence of such EPD 

subject to perturbation due to disorders and imperfect gain and 

loss balance. To further elucidate this aspect, we also show the 

dispersion relationships of the modes belonging to a chain in 

which the polarizabilities are obtained from the symmetry design 

equations (19) to exhibit a second order EPD. We consider two 

frequencies for which 0.1ed c   and 0.5ed c   (i.e., 

increasing the frequency or period with respect to the case shown 

in Fig. 4) in Figs. 7 and 8, respectively. The corresponding 

polarizabilities of the chain that are evaluated from (18) to realize 

the EPD conditions at the above mentioned frequencies are 

  32
1 3.61 4.99 10i    

 
2 2[Cm V ]

, 

  32
2 3.61 4.98 10      

2 2[Cm V ]  for 0.1ed c  , and 

  32
1 3.94 6.06 10i    

 
2 2[Cm V ]

,

  32
2 4.19 4.74 10i      2 2[Cm V ]  for 0.5ed c   (see 

table I). We highlight that when the frequency increases the 

required polarizabilities 1  and 2  to realize an EPD do not 

satisfy the perfect conjugate condition in (19). In addition, it can 

be observed from the complex kz trajectories in Fig. 7(b) and 8(b) 

that the modes no longer have purely real kz values for e  , 

especially for larger ed c . Nonetheless, the EPD occurrence at 

e  is evident, even when gain and loss are not symmetric. We 

point out that near the EPD point in Figs. 7 and 8, in view of the 

frequency detuning, modes tend to lose symmetry around  

z ek k , meaning that the gain and loss asymmetry causes 

another form of perturbation near the EPD, especially at high 

frequencies. In order to capture this asymmetry, one should 

consider additional terms in the fractional power series expansion 

(12). 

B. Fourth-Order EPD and Degenerate Band Edge 

A fourth-order degeneracy indicates that all four eigenstates of 

the system (7) coalesce, and this can only be in the form 

eik d
e e   with 1e   , i.e., ek d  . This condition occurs 

 

FIG. 7. (a) Dispersion diagram [Re(kz) –ω] and (b) complex kz trajectory 

varying as a function of frequency of a chain, developing a second order EPD 

at 0.1ed c  . Here, we used the same chain’s parameters as in Fig. 3, 

except that the EPD is designed to occur at higher frequency. 

 

FIG. 8. (a) Dispersion diagram [Re(kz) –ω] and (b) complex kz trajectory 

varying as a function of frequency of a chain, developing a second order EPD 

at 0.5ed c  . Here, we used the same chain’s parameters as in Fig. 3, but 

the EPD frequency is even higher than that in Fig. 7. 
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in the middle of the band-edge of the periodic structure’s 

Brillouin zone  0,2 /zk d . For lossless structures, this 

condition has been conventionally referred to as DBE. Typical 

examples of DBE effects have been shown in lossless photonic 

crystals as in  [12,13,16,17] and other waveguiding 

structures  [24,25]. Here, however, we show for the first time that 

the chain develops this fourth-order EPD thanks to the gain-loss 

interplay, and taking advantage of the natural mode coalescence 

at the band edge.  For the same parameters of the chain discussed 

in Section II.A, we select 0.02ed c   and ek d  . Under this 

condition, an EPD is attained for  

   
*

31
1 2 5.2 6.78 10e e i       

2 2[Cm V ]
 (see table II for 

1
e  and 2

e  up to 6 significant digits). The corresponding 

dispersion relation is shown in Fig. 9(a). Once again, also shown 

[in Fig. 9(b)] is  det U , which vanishes at e . Similar to the 

second-order EPD example in Fig. 4, the period is deeply 

subwavelength ( 0.003 ed  ) and the EPD condition 

corresponds to the perfect gain and loss balance and conjugate 

symmetry condition (19). 

By letting  ( )e     in (14), and retaining the first term, the 

asymptotic dispersion relation near such fourth-order degeneracy 

is given by 
4 4( )z ek k h   , with 

4 4 424 /zh k     at e   

and z ek k . Figure 10 shows the complex kz trajectory, as a 

function of frequency. We observe branches of purely real kz 

modes and two branches of complex conjugates ones, for e 

, coalescing at the EPD for e  , and then evolving into four 

complex modes for e  .  

We also illustrate in Fig. 11 the detuning from the fourth-

order EPD by varying the gain and loss parameter  defined 

in Section III.A, i.e., having conjugate-symmetry in the 

polarizabilities,  1,2 1 i    . More specifically, we show 

the positive branches of Re( )zk  for two different normalized 

frequencies /ed c , with the corresponding 1Re( )e    taken 

from Table II for each case.  

Analogous to the second-order EPD, the occurrence of the 

fourth-order EPD with perfectly balanced gain/loss and complex-

conjugate polarizabilities (i.e., -symmetric) is evident for the 

smaller electrical period ( / 0.02ed c  ), but it does not hold for 

the case with / 0.1ed c  . Once again, large values of ed c   

imply that the dispersion relation is deformed in the vicinity of 

the gain/loss balance condition at which an EPD is expected ( 

 

FIG. 9. (a) Dispersion diagram [Re(kz) –ω] of the four modes of the chain 

exhibiting a fourth-order degeneracy at the band edge and (b) the corresponding 

magnitude of the determinant of similarity U. The chain has d=a = 100 nm with  

0.02ed c   and /ek d . 

 

 

 

 

FIG. 10. Complex kz trajectory plane varying as a function of frequency with 

the four modes coalescing at ek . The chain has the same parameters used in 

Fig. 9. 

 

 

 

 

 

FIG. 11. Positive branch of Re[kz] varying as a function of the gain/loss 

parameter /g    , demonstrating the detuning near a 4th order EPD for 

two cases of the normalized frequency /ed c . Chain parameters are as in Fig. 

9 and 1Re( )e    is taken from table II for each case. Note that the perfect 

gain/loss symmetry condition does not provide a clear EPD for the case with 

higher frequency. 
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≈ 0.132), and the EPD is no longer observable (as seen in Fig. 11 

for the case with / 0.1ed c  ).  

For better illustration, we show in Figs. 12 and 13 the 

dispersion relationships and the complex kz trajectories near the 

fourth-order EPD for 0.1ed c   and 0.5ed c  ,  

respectively. Once again, the occurrence of a fourth-order EPD 

is possible, without requiring conjugate symmetry of the 

polarizabilities. The corresponding polarizabilities of the chain 

are   32
1 5.225  0.686 10e i   

2 2[Cm V ]
, 

  32
2 0.522  0.691 10e i     

2 2[Cm V ]  for 0.1ed c  , 

and   32
1 6.0517 4.4607 10e i   

2 2[Cm V ]
, 

  32
2 5.37  0.12 10e i     

2 2[Cm V ]  for 0.5ed c   (see 

table II). Results in Fig. 12 and 13 show that the wavenumber 

trajectory around the fourth-order EPD frequency behaves 

differently compared to the case in Fig. 9, suggesting that one 

should consider a larger number of terms in (14) to approximate 

the eigenstate characteristics (eigenvalue and eigenvectors) near 

the EPD frequency. The same conclusion applies when other 

structural parameters are detuned. Nevertheless, by proper tuning 

of the polarizabilities, one can still attain the remarkable features 

of fourth-order EPDs, in terms of a high Q factor due to a 

dramatic reduction group velocity. 

 TABLE II. REQUIRED CHAIN POLARIZABILITIES TO REALIZE A 

FOURTH ORDER EPD AT DIFFERENT NORMALIZED FREQUENCIES 

(UP TO 6 SIGNIFICANT DIGITS). 

/ed c  32 2 2
1 10 [Cm V ]e    32 2 2

2 10 [Cm V ]e    

0.02 5.20205 0.677854i  5.20201 0.677894i  

0.1 5.22558 0.686084i  5.22077 0.691123i  

0.5 6.05176 0.446073i  5.37141 1.18834i  

As a final remark, it is worth highlighting that the 

perturbation of the fourth-order EPD eigenstate with frequency 

or imbalance of gain and loss is much stronger than the second-

order counterpart, since the perturbation factor   in the 

fractional expansion in (12) and (14) dictates that 

1/ 4 1/ 2
     for 1  . Accordingly, a small 

structural perturbation can lead to a significant measurable 

modification of the spectral evolution of the system near these 

EPDs, leading to strongly enhanced sensitivity. This can find 

important applications to sensing  [74]. 

V.  CONCLUSION AND DISCUSSION 

We have demonstrated the occurrence of EPDs of second and 

fourth order in coupled linear chains of scatterers with properly 

tuned gain and loss in the dipolar polarizabilities. We also have 

elucidated possible connections with the  -symmetry concept. 

In addition, we have demonstrated the impact of gain and loss 

imbalance as well as conjugate asymmetry of the scatterers’ 

polarizabilities on both second- and fourth-order EPDs. Our 

results rely on a TB-based approach formulated in terms of 

transfer matrix. We highlight that the TB approach is an 

approximation of the more accurate fully-periodic GF 

method  [61,62]. Nonetheless, we have observed good agreement 

between the TB approach and the fully-periodic GF in analyzing 

the scattering properties of finite-chains with balanced gain and 

loss near a long-wavelength EPD, as typical in photonic bandgap 

structure analyses  [52]. These aspects will be investigated more 

in depth in future studies.  

 Our analysis provides some new insights into how EPDs can 

manifest in general discrete coupled mode structures. These 

properties can also be harnessed for sensing applications, 

enhancing non-linear effects (including second harmonic 

generation and unprecedented soliton propagation), as well as 

lowering the threshold for lasing (as demonstrated in  [16] for 

lossless DBE structures with extrinsic gain). Moreover, the 

structures of interest can be implemented by using plasmonic 

particles for applications ranging from near-field enhancement to 

super-resolution at optical wavelengths.  

 

 

FIG. 12. (a) Dispersion diagram [Re(kz) –ω] and (b) complex kz trajectory 

varying as a function of frequency of a chain, developing a fourth order EPD 

at 0.1ed c  . The chain has the same parameters used in Fig. 9. 

 

 

 

 

FIG. 13. (a) Dispersion diagram [Re(kz) –ω] and (b) complex kz trajectory 

varying as a function of frequency, for a chain with the same the same 

geometrical parameters used in Fig. 9. It develops a fourth order EPD at 

0.5ed c   when the perfect gain/balance condition does not hold 

anymore.  
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