
UCLA
UCLA Electronic Theses and Dissertations

Title
Optimal Multi-Way Number Partitioning

Permalink
https://escholarship.org/uc/item/30g6n09q

Author
Schreiber, Ethan L.

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/30g6n09q
https://escholarship.org
http://www.cdlib.org/

University of California
Los Angeles

Optimal Multi-Way Number Partitioning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Ethan L. Schreiber

2014

c© Copyright by

Ethan L. Schreiber

2014

Abstract of the Dissertation

Optimal Multi-Way Number Partitioning

by

Ethan L. Schreiber
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Richard E. Korf, Chair

The NP-hard number-partitioning problem is to separate a multiset S of n positive integers

into k subsets, such that the largest sum of the integers assigned to any subset is minimized.

The classic application is scheduling a set of n jobs with different run times onto k identical

machines such that the makespan, the time to complete the schedule, is minimized. The two-

way number-partitioning decision problem is one of the original 21 problems Richard Karp

proved NP-complete. It is also one of Garey and Johnson’s six fundamental NP-complete

problems, and the only one involving numbers.

This thesis explores algorithms for solving multi-way number-partitioning problems op-

timally. We explore previously existing algorithms as well as our own algorithms: sequential

number partitioning (SNP), a branch-and-bound algorithm; binary-search improved bin com-

pletion (BSIBC), a bin-packing algorithm; cached iterative weakening (CIW), an iterative

weakening algorithm; and a variant of CIW, low cardinality search (LCS). We show experi-

mentally that for high precision random problem instances, SNP, CIW and LCS are all state

of the art algorithms depending on the values of n and k. All three outperform previous

algorithms by multiple orders of magnitude in terms of run time.

ii

The dissertation of Ethan L. Schreiber is approved.

D. Stott Parker, Jr.

John W. Mamer

Adnan Darwiche

Richard E. Korf, Committee Chair

University of California, Los Angeles

2014

iii

To my mother Linda,

who sparked my curiosity,

helped me explore it, and

taught me to never give up.

iv

Table of Contents

1 Introduction . 1

1.0.1 Multi-Way Number Partitioning . 1

1.1 Related Problems . 3

1.1.1 Two-Way Number Partitioning and Subset Sum 3

1.1.2 Bin Packing . 3

1.2 Background . 4

1.3 Applications of Multi-Way Number Partitioning 6

1.3.1 Multiprocessor Scheduling . 6

1.3.2 Voting Manipulation . 6

1.3.3 Public Key Encryption . 7

1.3.4 Choosing Fair Teams . 7

1.4 Thesis Overview . 7

I Two-Way Number Partitioning 10

2 Two-Way Number Partitioning . 11

2.1 Overview . 11

2.2 Subset-Sum Problem . 12

2.3 Polynomial Time Approximation Algorithms (Upper Bounds) 13

2.3.1 Greedy Algorithm . 14

2.3.2 Set Differencing: The Karmarkar-Karp Algorithm (KK) 15

2.4 Optimal Algorithms . 17

v

2.4.1 Complete Greedy Algorithm (CGA) 17

2.4.2 Complete Karmarkar-Karp Set Differencing (CKK) 19

2.4.3 Dynamic Programming (DP) . 21

2.4.4 Horowitz and Sahni (HS) . 24

2.4.5 Schroeppel and Shamir (SS) . 27

2.5 Experimental Results . 30

2.5.1 Easy-Hard-Easy Transition for 32-Bit Instances 30

2.5.2 48-bit Experiments . 31

2.5.3 Dynamic Programming Results on 16-Bit Instances 33

2.5.4 Dynamic Programming Results Varying Precision 35

2.6 Summary . 36

II Multi-Way Number Partitioning 40

3 Branch-and-Bound Algorithms . 41

3.1 Polynomial-Time Approximation Algorithms (Upper Bounds) 41

3.1.1 Multi-Way Greedy Algorithm or Longest Processing Time 41

3.1.2 Multi-Way Karmarkar-Karp (KK) . 43

3.2 Lower Bounds . 45

3.2.1 On Solution Cost . 45

3.2.2 On Subset Sum . 46

3.3 Generating Subsets with Sums within a Range 46

3.3.1 Inclusion-Exclusion (IE) Binary Tree Search 46

3.3.2 Extended Horowitz and Sahni (EHS) 49

3.3.3 Extended Schroeppel and Shamir (ESS) 49

vi

3.4 Improved Recursive Number Partitioning (IRNP) 50

3.4.1 Recursive Principle of Optimality . 51

3.4.2 Initial Upper Bound . 51

3.4.3 Two-Way Balanced Recursive Partitioning 52

3.4.4 Two-Way Partition Bounds . 52

3.4.5 Partitioning Small Sets, a Hybrid Algorithm 53

3.4.6 Improvements of IRNP over RNP . 54

3.5 Moffitt Algorithm (MOF) . 55

3.5.1 Weakest-Link Optimality . 55

3.5.2 Sequential Recursive Partitioning . 56

3.5.3 Sequential Recursive Partitioning Bounds 57

3.5.4 Dominance Pruning for Inclusion-Exclusion 58

3.6 Experimental Results: RNP vs MOF . 59

3.7 Sequential Number Partitioning . 60

3.8 Experimental Results: SNP vs MOF . 62

3.9 Experimental Results: SNP vs MOF vs IRNP 63

3.10 Summary . 63

4 Bin Packing Algorithm . 67

4.1 Relationship Between Bin Packing and Number Partitioning 67

4.2 Lower Bounds . 68

4.2.1 L1 Lower Bound . 69

4.2.2 L2 Lower Bound . 69

4.3 Polynomial Time Approximation Algorithms (Upper Bounds) 71

4.3.1 First-Fit Decreasing Upper Bound . 72

vii

4.3.2 Best-Fit Decreasing Upper Bound . 72

4.4 MULTIFIT . 73

4.5 Bin Completion (BC) . 75

4.5.1 The Original Bin-Completion Algorithm 75

4.5.2 Dominance . 76

4.5.3 Generating Completions . 77

4.5.4 Improved Bin Completion (IBC and BSIBC) 78

4.5.5 Incrementally Generated Completions 78

4.5.6 Variable Ordering . 79

4.6 Branch-and-Cut-and-Price (BCP and BSBCP) 80

4.6.1 Linear Programming (LP) . 80

4.6.2 Branch-and-Bound . 83

4.6.3 Cutting Planes . 84

4.6.4 Column Generation . 85

4.6.5 The Cutting Stock Problem . 85

4.6.6 Branch and Cut and Price for Bin Packing 86

4.6.7 An Integer Linear Program for Multi-Way Number Partitioning . . . 89

4.7 Experimental Results: BSIBC vs BSBCP . 89

4.8 Summary . 90

5 Cached Iterative Weakening . 92

5.1 Iterative Weakening . 93

5.2 Precomputing: Generating Subsets in Sum Order 95

5.3 Recursive Partitioning . 97

5.3.1 A Simple but Inefficient Algorithm 97

viii

5.3.2 Simplified Cached Inclusion-Exclusion (CIE) Trees 98

5.3.3 Cached Inclusion-Exclusion (CIE) Trees 99

5.3.4 Recursive Partitioning with CIE Trees 100

5.3.5 Avoiding Duplicates . 102

5.4 Example: Iteration 4 of Iterative Weakening 103

5.5 Example: Iteration 5 of Iterative Weakening 104

5.6 Experimental Results: CIW . 104

5.7 Low Cardinality Search . 108

5.7.1 Weakness of CIW . 108

5.7.2 Weakness of Branch-and-Bound Algorithms 109

5.7.3 Low Cardinality Extended Horowitz and Sahni 109

5.7.4 The New Algorithm . 110

5.7.5 Experimental Results: LCS . 112

5.7.6 Experimental Results: Memory Usage 114

5.8 Summary . 114

III Experimental Summary, Future Work and Conclusions 117

6 High Level Experimental Summary . 118

7 Contributions, Future Work and Conclusions 125

7.1 Summary of Contributions . 125

7.1.1 Two-Way Number Partitioning . 125

7.1.2 Multi-Way Number Partitioning . 127

7.1.3 Bin Packing Algorithms . 128

ix

7.1.4 Cached Iterative Weakening . 129

7.2 Future Work . 130

7.3 Conclusion . 132

Acronyms . 133

References . 135

x

List of Figures

2.1 The CGA tree for the input set S = {18, 17, 12, 11, 8, 2} 18

2.2 The CKK tree for the input set S = {18, 17, 12, 11, 8, 2} 20

2.3 The rules for filling the dynamic programming (DP) matrix. 22

2.4 The rules for iterating using the Horowitz and Sahni (HS) algorithm. 25

2.5 The average run times of CGA and CKK as well as the percent of perfect

partitions for 32-bit partition instances. 31

2.6 The average run times of CGA, CKK, HS and SS for solving 48-bit partition

instances. 32

2.7 The memory usage of HS compared to SS for solving 48-bit partition instances. 33

2.8 The average run times of complete greedy algorithm (CGA), complete Karmarkar-

Karp (CKK) and DP for solving 16-bit partition instances. 34

2.9 The average run times of CGA, CKK and DP for solving 16-bit partition

instances. 35

2.10 The memory usage of dynamic programming for solving instances with n = 50

as the precision of the input integers is varied. 36

3.1 The full inclusion-exclusion binary tree for the input set S = {8, 6, 5, 3}. . . . 48

3.2 The pruned inclusion-exclusion binary tree for the input set S = {8, 6, 5, 3}

with lb = 13 and ub = 17. Leaves with sums in the range [lb, ub − 1] are

highlighted in bold. 48

3.3 A comparison of the decomposition strategies of IRNP vs MOF for partition-

ing into k = 8 subsets. Each arrow represents a decomposition. The number

of decompositions is exponential in the number of integers left to partition. . 59

xi

3.4 The average time in seconds to optimally partition 48-bit integers 3 through

10 ways using SNP, IRNP and MOF. 65

4.1 The steps to calculate the L2 wasted space heuristic 71

4.2 The shaded area is the feasible region for our linear programming example

with three constraints. The points a,b and c are the corners of the feasible

polytope. 81

4.3 The same feasible region as Figure 4.2 with three revenue lines drawn for

revenues 1000, 1173 and 1256 which intersect with the non-trivial corners of

the feasible region. 83

5.1 A comparison of the search spaces of iterative weakening and branch-and-

bound. Iterative weakening starts by theorizing a perfect partition and in-

creases this upper bound while decreasing the implied lower bound until an

optimal partition is found. Branch-and-bound calculates an upper bound with

an approximation algorithm such as KK. It then refines this bound while in-

creasing the implied lower bound until an optimal partition is found and

proved optimal. The labels on the number line from top to bottom are an

upper bound approximation such as the KK heuristic, the cost of an optimal

partition, the cost of a perfect partition, the lower bound implied by the opti-

mal partition, and the lower bound implied by the upper bound approximation. 94

5.2 A complete cached inclusion-exclusion tree for the input set S and the bounds

lb5 = 192, ub5 = 211 containing all of the subsets listed in the table on the

bottom left. 98

5.3 CIW example with the list of preprocessed subsets sorted by sum and cached

inclusion-exclusion trees for cardinalities 2, 3 and 4 during iterations 1,2,3,4

& 5. The bold numbers were added during that iteration. 101

5.4 The recursive partitioning search tree for iteration 4. 102

xii

5.5 The recursive partitioning search tree for iteration 5. 104

6.1 The average run time of eight algorithms for three and four-way partitioning. 120

6.2 The average run time of eight algorithms for five and six-way partitioning. . 121

6.3 The average run time of eight algorithms for seven and eight-way partitioning. 122

6.4 The average run time of eight algorithms for nine and ten-way partitioning. . 123

xiii

List of Tables

1.1 An overview of notation used repeatedly throughout this thesis. Some nota-

tion which is localized to only one section is not listed here. 9

2.2 The DP matrix for the input set S = {18, 17, 12, 11, 8, 2}, (see example 2.4.3) 22

2.3 The algorithm with the fastest average run time for two-way partitioning with

20 ≤ n ≤ 60 and 8 ≤ b ≤ 48. 37

2.4 The algorithm with the fastest average run time for two-way partitioning with

61 ≤ n ≤ 100 and 8 ≤ b ≤ 48. 38

3.1 Lower and upper bounds for the decomposition of input integers for IRNP. . 53

3.2 The values of n for each k in which CGA or IRNP are used. From [Kor11]. . 54

3.3 The average time in seconds to optimally partition 48-bit integers 3 through

10 ways using IRNP and MOF. 61

3.4 The average time in seconds to optimally partition 48-bit integers 3 through

10 ways using SNP and MOF. 64

4.1 Difference between bin packing and number partitioning. 68

4.2 Notation and terms used to describe the bin-completion algorithm. 75

4.3 The average time in seconds to optimally partition 48-bit integers 3 through

12 ways using BSIBC and BSBCP. 88

5.1 The average time in seconds to optimally partition 48-bit integers 3 through

12 ways using CIW, SNP, MOF and BSBCP. 107

5.2 The average time in seconds to optimally partition 48-bit integers 3 through

10 ways using LCS and CIW . 113

xiv

5.3 The average memory use in GB to optimally partition 48-bit integers 3 through

10 ways using CIW and LCS . 115

6.1 The algorithm with the fastest average run time for 30 ≤ n ≤ 60 and 3 ≤ k ≤ 12.124

xv

Acknowledgments

Thank you to Richard Korf, my advisor, mentor and role model. He has supported me

during my darkest hours when I thought I did not belong as a PhD student. He has guided

me towards the topics discussed in this dissertation and helped me to develop the algorithms

I present. More than anything, his door is always open and he has always had my best

interests at heart. He is an amazing educator, focused on making everything as clear as

possible, whether it is one-on-one, running a class or writing and editing a paper. He is a

principled researcher, always pushing the boundaries of what is possible while adhering to

the strictest ethics. I have become a better teacher, scholar and man while at UCLA, a great

deal of this credit goes to Rich.

Thank you to Adnan Darwiche, my original advisor and member of my doctoral commit-

tee. When I applied for graduate school, I believed I wanted to work on Bayesian networks,

and so my statement of purpose made it clear I wanted to work with Adnan. I was accepted

to exactly one PhD program, and I suspect that Adnan had a lot to do with this acceptance,

for which I will be forever indebted. Before I chose UCLA, the University of Toronto had

put me on their wait list. The response deadline for UCLA was approaching so I emailed

a professor at Toronto to ask if they had made a decision yet. He told me that they could

not give me an answer yet but UCLA would be a good choice because, “Adnan is a great

researcher and a very very nice guy, so it would be a great choice to work with him.” While

Bayesian network research did not work out for me, I agree with that professor’s assesment.

Thank you to Stott Parker and John Mamer, the remaining members of my doctoral

committee. While my interaction with these two professors was more scarce than Rich or

Adnan, they have both provided support for me. Stott took the time to spend some time

to get to know me in order to write a letter of recommendation for a scholarship. He also

provided excellent feedback for my doctoral prospectus. When I was focusing on operations

research, John took the time to sit with me and help point me in the right direction. The

help was invaluable. I would also like to thank Dick Muntz, Judea Pearl, Carlo Zaniolo,

xvi

Adam Meyerson, Glenn Reinman, Tyson Condie, Glenn Reinman and David Smallberg. I

have had the privilege of learning from, and teaching with these excellent UCLA professors.

Thank you to Gleb Belov who gave sent me the code for his branch-and-cut-and-price

bin-packing solver. Beyond just giving me the code, he spent time helping me to get it

working and also fixing bugs when I found them. His work was invaluable for my 2013

IJCAI paper. Thank you also to Ariel Felner, Rob Holte, Nathan Sturtevant and Jonathan

Schaefer. Their work in heuristic search as well as feedback for my conference papers has

been an important part of my graduate education.

My journey on the path to the PhD has crossed the paths of many other great professors.

My computer science education started at Vassar College where I was put into a nurturing

environment that cultivated my love of computer science. My undergraduate advisor Brad

Richards was instrumental in me choosing computer science. His door was always open

and he was willing to answer all of my questions. Chris Welty taught my first artificial

intelligence class and was my first research mentor. Plus, he suffered through yearly Mets

games with me after graduation for many years. Tom Ellman was very supportive when I

first started considering graduate school. He helped me to understand what I would need

to do to become a successful scholar. Paul Johnson was my favorite professor who did not

teach computer science. You have had a profound effect on how I think about the world.

My masters advisor at Brown University, Thomas L. Dean was another wonderful mentor.

His passion for his work on biologically plausible models of the brain was inspiring. He gave

me the first insight into what a scholar is supposed to be. He demonstrated daily that science

is about the love of understanding and not the pursuit of awards and acknowledgement. I

also worked with Thomas Griffiths, an amazing researcher with whom I published my first

academic paper. I do not understand how one man can be so prolific. I am in awe of the

quality and quantity of the work he produces, I was lucky to play a small part.

As well as the support of professors, I have had tremendous support from friends and

academic colleagues. Thank you to Joseph Barker, my office mate for many years at UCLA.

In many ways, our paths through UCLA have been parallel and we have experienced the highs

xvii

and lows together. Joseph has been a tremendous help with research ideas and programming

problems. Furthermore, he has been a wonderful friend, synonymous with my time at

UCLA. Thank you also to my other UCLA office mates, colleagues and friends Alex Dow,

Eric Huang, Teresa Breyer, Cesar Romero, Alex Fukunaga, Arthur Choi, Keith Cascio,

Knot Pipatsrisawat, Michael Shindler, David Jurgens, Cataldo Schietroma, Tiansheng Yao,

Suming Chen, Karthika Mohan, Neil Conos, Brandon Rothrock, Alex Shkapsky and Barzan

Mozafari. You have all helped me along the path towards my degree. Thank you also to my

friends and peers from Brown University, John Optimal Donaldson, Theresa Vu, Brendan

Dickinson, Jay McCarthy, Jean Tsong, Matt Lease and Shrivaths R Iyenger. The beginning

of my graduate education was among the happiest times of my life because of you.

Beyond my computer science education, I have been blessed with many wonderful friends

who have supported, loved and inspired me. Thank you to my two best friends and broth-

ers, Nicholas Garwolinski and Matthew D. Parker. To my oldest and closest friends Aron

Trocchia, Jesse Ball, Sung Kim, Dana Fleur, Michelle Suh, Ben Sherman, Jesse Sokolovsky,

Noriko Nagamoto, Jamie Sue Clark, Vanesa Sanchez and Amy Huang. You are all the family

that I was not born with but have gained throughout life. You all have made me a better

person.

To my closest family, Linda Schreiber, Kenneth Schreiber, Erica Schreiber, Elliott Lipitz,

Elaine Lipitz, Alice Lindholm and Ron Lindholm. You have all been there with unquestion-

able love and support. You have inspired me to push myself and been there to make sure I

actually did. You have given me everything, taught me everything, and most importantly

given me the safe space that has allowed me to strive to push myself. I most certainly could

not have completed this degree without you. Thank you to Kathie MacKenzie, who has also

joined my family since I have moved to Los Angeles.

And finally, to Talia, my partner in everything, thank you. You have endured living with

me throughout most of the days of my PhD. I fell in love with you on our third date during

a moment we will forever remember. With time, our love has steadily grown. You are the

strongest and most important support in my life, I am lucky to have found you.

xviii

Vita

1995-1999 B.A. (Computer Science), Vassar College

1999-2002 Software Developer, eMeta Corporation

2002-2003 Senior Software Developer, Condé Nast

2003-2005 Senior Consultant, Boyle Software

2005-2006 ScM (Computer Science), Brown University

2006-2007 Independent Consultant, Jane St. Capital

2008-2011,

2012-2013

Teaching Assistant, Department of Computer Science,

University of California, Los Angeles

2011-2012,

2013-2014

Head Teaching Assistant, Department of Computer Science,

University of California, Los Angeles

Publications

Ethan Schreiber and Thomas L. Griffiths. Subjective randomness and natural scene statis-

tics. In Proceedings of the 29th Annual Conference of the Cognitive Science Society (COGSCI-

07), pages 1449-1454, Nashville, Tennessee, USA, 2007.

Anne S. Hsu, Thomas L. Griffiths, and Ethan Schreiber. Subjective randomness and natural

scene statistics. Psychonomic Bulletin & Review 17, no. 5, pages 624-629, 2010.

xix

Ethan L. Schreiber and Richard E. Korf. Using Partitions and Superstrings for Lossless

Compression of Pattern Databases. (Student Abstract) In Proceedings of the Twenty-Fifth

Annual Conference on Artificial Intelligence (AAAI-11), San Francisco, CA, USA, 2011.

Ethan L. Schreiber and Richard E. Korf. Locality-preserving pattern databases. Technical

Report 120010, Department of Computer Science, University of California, Los Angeles,

2012.

Richard E. Korf and Ethan L. Schreiber. Optimally scheduling small numbers of identi-

cal parallel machines. In Proceedings of the 23nd International Conference on Automated

Planning and Scheduling (ICAPS-13), Rome, Italy, 2013.

Ethan L. Schreiber and Richard E. Korf. Improved bin completion for optimal bin packing

and number partitioning. In Proceedings of the Twenty-Third international joint conference

on Artificial Intelligence (IJCAI-13), pages. 651-658, Beijing, China, 2013.

Richard E. Korf, Ethan L. Schreiber, and Michael D. Moffitt. Optimal Sequential Multi-

Way Number Partitioning. In Proceedings of the 13th International Symposium on Artificial

Intelligence and Mathematics (ISAIM-14), Fort Lauderdale, Florida, USA, 2014.

Ethan L. Schreiber and Richard E. Korf. Cached Iterative Weakening for Optimal Multi-Way

Number Partitioning. In Proceedings of the Twenty-Eighth Annual Conference on Artificial

Intelligence (AAAI-14), pages. Quebec City, Canada, 2014.

xx

CHAPTER 1

Introduction

1.0.1 Multi-Way Number Partitioning

Given an input multiset S = {s1, s2, ..., sn} of n positive integers, a number of subsets k,

and a positive integer C, the multi-way number-partitioning decision problem is: Can the

integers of S be separated into k subsets such that all subset sums are less than or equal to

C? More formally, the requirements for all k subsets is that they:

Have sums less than or equal to C: ∀i , sum(Si) ≤ C

Are mutually exclusive: ∀i,j , Si ∩ Sj = ∅

Are collectively exhaustive: S1 ∪ S2 ∪ ... ∪ Sk = S

There is also an optimization version which either minimizes or maximizes one of three

natural objective functions:

1. Minimize the largest subset sum.

2. Maximize the smallest subset sum.

3. Minimize the difference between the largest and smallest subset sums.

This thesis explores algorithms to solve the optimization version with objective function 1:

Separate S into k mutually exclusive and collectively exhaustive subsets such that the largest

subset sum is minimized. We choose objective function 1 as it corresponds to minimizing

the total time required for a simple scheduling problem. (See 1.3.1.)

1

1.0.1.1 Perfect Partitions

Consider the input set S = {1, 2, 3, 4, 5, 6} with sum(S) = 21 to be partitioned into k = 3

subsets. A perfect partition evenly distributes the total sum 21 among the three subsets

with sum(S)
k

= 21
3 = 7 in each of the three subsets. In this case, a perfect partition P exists:

P = 〈{1, 6}, {2, 5}, {3, 4}〉. No partition with lower cost is possible since decreasing the sum

in any of the subsets would increase the sum in another. If sum(S) is not divisible by k, the

ceiling is used since fractional subset sums are not possible. Formally, the cost of a perfect

partition C∗P is defined as:

C∗P =
⌈

sum(S)
k

⌉

All perfect partitions are optimal with no better partition being possible, though not all

optimal partitions are perfect.

Example 1.0.1 - Multi-Way Partition

Consider the input set S={8, 6, 5, 3, 2, 2, 1} to be partitioned into k = 3 subsets. Here

are two complete partitions A and B:

Partition A S1 S2 S3

Subsets: {2, 8} {1, 2, 5} {3, 6}

Sums: 10 8 9

Cost: 10

Partition B S1 S2 S3

Subsets: {1, 8} {2, 2, 5} {3, 6}

Sums: 9 9 9

Cost: 9

Partition A is complete since the integers of the subsets S1, S2 and S3 are mutually

exclusive and collectively exhaustive. (The integer 2 appears in both S1 and S2, but this

is OK since it appears twice in the input multiset S.) Its cost is the value of the largest

subset sum, sum(S1)=10.

Partition B is also complete with cost sum(S1) = sum(S2) = sum(S3) = 9. It is also

a perfect partition and hence optimal since C∗P =
⌈

sum(S)
k

⌉
=
⌈

27
3

⌉
= 9.

2

1.1 Related Problems

While multi-way number partitioning is the central topic of this thesis, two-way number

partitioning, subset sum, and bin packing are closely related problems defined here. Algo-

rithms for solving these problems will be employed in the algorithms used to solve multi-way

number partitioning.

1.1.1 Two-Way Number Partitioning and Subset Sum

Given an input multiset S = {s1, s2, ..., sn} of n positive integers and a positive integer C, the

two-way number-partitioning decision problem is to answer the question: Can the integers

of S be separated into two mutually exclusive and collective exhaustive subsets such that

the larger subset sum is less than or equal to C?

There is also an optimization version: Separate S into two mutually exclusive and col-

lectively exhaustive subsets such that the larger subset sum is minimized. For the two-way

problem, the three objective functions listed in section 1.0.1 are equivalent.

Given S and a target value T , the subset-sum problem is: Does there exist a subset

of the integers of S with sum equal to T? Finding a perfect partition for the two-way

number-partitioning problem is equivalent to the subset-sum problem with T =
⌈

sum(S)
2

⌉
.

Algorithms for solving two-way number partitioning and subset sum are used for multi-

way number partitioning. These algorithms will be discussed in detail in chapter 2.

1.1.2 Bin Packing

Given an input multiset S = {s1, s2, ..., sn} of n positive integers representing item weights,

a number of bins k, and a positive integer capacity C, the bin-packing problem is: Can the

integers of S be separated into k bins of capacity C such that sum of the integers in each

bin does not exceed C? There is also an optimization version: Assign the integers of S into

the minimal number of bins such that the sum of the elements in each bin is less than or

3

equal to C. Bin packing uses the terminology “bins” and “capacity” which are analogs to the

number-partitioning terms “subsets” and “subset sums”. To be consistent, the rest of this

thesis uses the terminology “subsets” and “subset sums” for both bin packing and number

partitioning.

Bin packing is closely related to number partitioning. Both problems are given an input

multiset of positive integers to be separated into mutually exclusive and collectively exhaus-

tive subsets. Number partitioning fixes the number of subsets and minimizes their sums,

while bin packing fixes the maximum subset sum and minimizes the number of subsets.

In fact, the decision versions of number partitioning and bin packing are identical, it is

the optimization problems which differ. Because of the similarity between the two problems,

bin-packing algorithms can be used to solved number-partitioning problems and number-

partitioning algorithms can be used to solve bin-packing problems. Chapter 4 will discuss

using bin-packing algorithms to solve number-partitioning problems.

1.2 Background

In 1971, Stephen Cook introduced the concept of NP-complete problems in his seminal paper,

“The complexity of theorem-proving procedures” [Coo71]. An NP-complete problem has two

main properties:

1. It must be in the class nondeterministic polynomial time (NP). A problem in NP must

be a decision problem, meaning that the solution is either yes or no. Furthermore,

if the answer is yes, the proof must be verifiable on a deterministic Turing machine

[Tur36] within time polynomial in the size of the description of the problem.

2. Each of the other problems in NP can be reduced to it in polynomial time. Problem X ′

can be reduced to problem X if it is possible to construct a polynomial time algorithm

that converts a problem instance of X ′ into a problem instance of X allowing an

algorithm for X to solve the X ′ problem instance.

4

If a problem is not a decision problem, it does not satisfy property one and thus is not

in the class NP-complete. The optimization version of multi-way number partitioning is not

NP-complete for this reason. Any problem which satisfies property two that all NP problems

can be reduced to it in polynomial time but does not satisfy property one is called NP-hard.

The optimization version of multi-way number partitioning is NP-hard. Informally, all NP-

hard problems are at least as hard as the hardest NP-complete problems.

While all yes solutions to NP-complete problems must be verifiable in polynomial time,

it is unknown whether these solutions can be found in polynomial time. Most computer

scientists believe that they cannot. However, if one NP-complete problem could be solved

in polynomial time, then they all could be. The question of whether NP-complete problems

can be solved in polynomial time, the P=NP problem, is the most important open problem

in computer science [GJ79].

At the same time that Cook introduced NP-complete problems, both Cook and Leonid

Levin independently proved that boolean satisfiability is NP-complete [Lev73]. In 1972,

Richard Karp proved that 21 different problems are in the set of NP-complete problems in

his paper, “Reducibility among combinatorial problems” [Kar72]. Since then, thousands of

problems have been proved to be in the set of NP-complete problems [GJ79].

This thesis explores algorithms for optimal solutions to the multi-way number partitioning

problem, sometimes also referred to as the multiprocessor scheduling problem. The two-way

number-partitioning decision problem is one of the original 21 problems Richard Karp proved

NP-complete [Kar72]. It is also one of Garey and Johnson’s six fundamental NP-complete

problems [GJ79], and the only one involving numbers.

Number partitioning is perhaps the easiest NP-complete problem to describe, there is

a pseudopolynomial time algorithm for solving it, and there are classes of instances for

which there are exponential numbers of perfect solutions. However, it is NP-complete, the

pseudopolynomial algorithms are intractable for high precision input (and slow even for low

precision), and there are many instances with an exponential search space and only one

optimal solution.

5

As compared to other NP-complete problems, number partitioning has very little struc-

ture. Nonetheless, there have been continuous algorithmic improvements leading to multiple

orders of magnitude speedup for solving this problem for over four decades [Gra66, JGJ78,

DM95, Kor98, Kor11, Mof13, SK13, SK14]. This leads us to believe that similar gains should

be possible for more highly structured NP-complete problems.

This thesis explores the history of algorithms for finding optimal solutions to hard number

partitioning problems with high precision numbers and one (or very few) optimal solutions.

It also presents the author’s current state-of-the-art algorithm for finding optimal solutions

to multi-way number partitioning problems. We show experimentally that this algorithm

is asymptotically faster than the previous state of the art, achieving over two orders of

magnitude faster performance for the experiments we ran.

1.3 Applications of Multi-Way Number Partitioning

1.3.1 Multiprocessor Scheduling

The multi-way number number-partitioning problem is synonymous with the multiprocessor

scheduling problem [GJ79, Sar89, Pin12, DIM08, GLL79]. The input set S of n positive

integers correspond to the run times of a set of n jobs. The number of subsets k corresponds

to a number of identical machines such as processor cores that execute in parallel. The

goal of multiprocessor scheduling is to assign each of the n jobs to one of the k machines

while minimizing the makespan, or time to complete all jobs in the schedule. Minimizing

the makespan is equivalent to minimizing the time to complete all jobs on the machine with

the maximum load.

1.3.2 Voting Manipulation

Consider an election with more than two candidates where instead of voting for a candidate,

voters veto one candidate, with each voter’s veto carrying a different weight [Wal09]. The

6

candidate with the smallest total veto weight wins the election. How can a coalition of voters

manipulate the election to maximize the chance that their preferred candidate wins?

The coalition’s best strategy is to partition their vetoes among the candidates they wish

to lose such that the sum of the veto weights of each of these candidates is larger than

the veto weight of the candidate they wish to win. Multi-way number partitioning with the

objective function of maximizing the minimum subset sum can be used to solve this problem.

1.3.3 Public Key Encryption

An early encryption method, the Merkle-Hellman knapsack cryptosystem [MH78] is based

on solving subset-sum problems, which is similar to two-way number partitioning. While

polynomial time algorithms for their most basic encryption methods have since been found

[Sha83], this work was an early pioneer towards more powerful encryption systems such as

RSA [ARS83].

1.3.4 Choosing Fair Teams

The classic schoolyard method of choosing fair sports teams is to assign one captain for each

team and then have each captain pick players in round-robin fashion. Assume that each

player is given a positive integer representing their skill level. Also, assume that the strength

of a team is equal to the sum of the skill levels of its players. The greedy method of picking

the best remaining player does not necessarily lead to fair teams depending on the relative

skill of the players. An optimal multi-way partition could lead to more equitable teams than

the greedy method. [Hay02]

1.4 Thesis Overview

This thesis follows the history of algorithms for solving multi-way number-partitioning prob-

lems. Chapter 2 discusses both approximate and exact algorithms for solving two-way num-

7

ber partitioning, a special case of multi-way number partitioning. The algorithms in this

chapter form the fundamental basis for multi-way number-partitioning algorithms. All of

these algorithms are previous work.

Chapter 3 covers branch-and-bound algorithms for solving the multi-way number par-

titioning. The chapter begins with lower bounds and upper bounds (approximation algo-

rithms) for multi-way number partitioning. It then covers generating subsets with sums in a

range. Finally, three exact algorithms are described: recursive number partitioning (RNP),

Moffitt algorithm (MOF) and sequential number partitioning (SNP). RNP and MOF are

previous works. SNP is one of our contributions, and is the state-of-the-art algorithm for

multi-way number partitioning for small numbers of subsets.

Chapter 4 covers solving number-partitioning problems using bin-packing solvers. This

chapter begins by discussing the relationship between number partitioning and bin packing

and presents the algorithm MULTIFIT, for solving number partitioning problems with a

bin-packing solver. It describes lower and upper bounds for bin packing. Finally, it covers

three bin-packing algorithms. Bin completion (BC) and branch-and-cut-and-price (BCP)

are previous works in artificial intelligence and operations research respectively. Improved

bin completion (IBC) is our improvement to the bin completion (BC) algorithm making it

more efficient for solving number-partitioning problems.

Chapter 5 describes cached iterative weakening (CIW), our state-of-the-art multi-way

number-partitioning algorithm. It employs iterative weakening instead of branch-and-bound

to solve number-partitioning problems. Branch-and-bound algorithms start with an approx-

imate solution and then search to improve the solution until a final solution is found and

proved optimal. In contrast, iterative weakening algorithms start by looking for a solution

whose cost equals the lower bound. If this is not possible, it looks for the next best solu-

tion. This process continues iteratively until finding the first complete solution, which is an

optimal solution.

8

Notation Definition
S The input multiset of positive integers, S = {s1, s2, ..., sn}.
n The cardinality of S.
k The number of subsets in a partition.
P A partition of S into k subsets, P = 〈S1, S2, ..., Sk〉.
Pd A partial partition of S into d subsets, Pd = 〈S1, S2, ..., Sd〉, where d < k.
Si Subset i of the k subsets in a partition.
C∗ The cost of an optimal partition of the integers of S.
C∗P The cost of a perfect partition of the integers of S.
sum(S) The sum of the integers of S: sum(S) =

∑
si∈S

s.

min(S) The minimal integer in S.
SR The remaining integers in S after some have been removed in a recursive algorithm.
ub The upper bound on subset sums in a partition, which is also the upper bound

on partition cost.
lb The lower bound on subset sums in a partition.

Table 1.1: An overview of notation used repeatedly throughout this thesis. Some notation
which is localized to only one section is not listed here.

9

Part I

Two-Way Number Partitioning

10

CHAPTER 2

Two-Way Number Partitioning

2.1 Overview

Given an input multiset S = {s1, s2, ..., sn} of n positive integers and a positive integer C,

the two-way number-partitioning decision problem is: Can the integers of S be separated

into two mutually exclusive and collective exhaustive subsets such that the larger subset

sum is less than or equal to C? More formally, can S be separated into S1 and S2 such

that max(sum(S1), sum(S2)) ≤ C. This thesis deals with the optimization version: separate

S into two subsets such that the larger subset sum is minimized. A partition in which the

difference is within one is a perfect partition, which is the best possible partition, its cost

C∗P is:

C∗P =
⌈

sum(S)
2

⌉

The two-way partition problem is one of Karp’s original 21 NP-complete problems [Kar72]

and the optimization version is NP-hard. The problem has been called the “easiest hard

problem” because despite being NP-complete, there is an easy-hard-easy transition (section

2.5.1) which makes many problem instances trivial to solve, even for large n [Mer06, Hay02].

Despite being NP-complete, there is a pseudo-polynomial time dynamic programming algo-

rithm [GJ79] for solving the two-way partition problem. This means that there are solutions

whose run time is polynomial in the numeric value of the input. This is in contrast to

polynomial time which means that the run time is polynomial in the length of the input.

The run time of the dynamic programming algorithm is polynomial in the size of S and the

11

magnitude of the input integers.

2.2 Subset-Sum Problem

A closely related problem to the two-way partition problem is the subset-sum problem: Is

there a subset of S whose sum equals a target value T? Finding a perfect partition for

the two-way number partitioning problem is equivalent to the subset sum problem with

T =
⌈

sum(S)
2

⌉
. The subset sum problem is NP-complete [GJ79].

The subset-sum problem can be solved with a number-partitioning solver. Consider the

subset-sum problem with input set S and target value T . Call sum(S) the sum of the integers

of S. We create input set S ′ by adding an integer x to S so that when S ′ is partitioned

perfectly, the two subset sums equal T . We calculate the value of x as follows:

sum(S) + x

2 = T

sum(S) + x = 2T

x = 2T − sum(S)

Given this value of x, the subset sum of the new input set S ′ is:

sum(S ′) = sum(S) + x

= sum(S) + 2T − sum(S)

= 2T

Therefore, the sum of each subset in a perfect two-way partition of S ′ is 2T/2 = T . If

a perfect partition of S ′ exists, one subset will contain x and one will not. The subset that

does not contain x is a subset whose sum is T . If no perfect partition of S ′ exists, then there

is no subset of S whose sum equals T .

This chapter introduces algorithms for solving the optimization version of the two-way

12

partition problem both approximately and optimally. All of the algorithms can also be used

to solve the subset sum problem. Furthermore, given a lower bound lb and an upper bound

ub, the algorithms can be extended to find all subsets with sums in the range [lb, ub − 1].

This will be important for solving the multi-way partition problem in chapters 3, 4 and 5.

2.3 Polynomial Time Approximation Algorithms (Upper Bounds)

The polynomial time approximation algorithms covered in this section provide an upper

bound for the two-way partition problem. These bounds are used by exact algorithms to

help prune the search space. This section introduces two approximation algorithms.

Example 2.3.1 - Solving a Subset-Sum Problem with a Two-Way Number-

Partitioning Solver

Consider the subset-sum problem with input set S = {2, 8, 11, 12, 17, 18} and target

value T = 41. This problem can solved using a two-way number-partitioning solver as

described in section 2.2:

• Create x = 2T − sum(S) = 82− 68 = 14

• Create S ′ = S ∪ {x} = S ∪ {14} = {2, 8, 11, 12, 14, 17, 18}

• Optimally partition S ′ two-ways: P = 〈{11, 12, 18}, {2, 8, 14, 17}〉 with each par-

tition having sum equal to T = 41.

• The subset {11,12,18} which does not contain x has sum equal to T .

13

2.3.1 Greedy Algorithm

Perhaps the most obvious algorithm for two-way number partitioning is the greedy algorithm

[Gra66]. The greedy algorithm first sorts the input set S into decreasing order. 1 It then

considers the integers one at a time and places them into the subset with the smaller sum

so far, either S1 or S2. If sum(S1) equals sum(S2), one of the subsets is chosen arbitrarily.

The algorithm runs in time O(n log n + n) and space O(n). The partition values are within

4/3 of optimal [KPP04]. The greedy algorithm is optimal for n ≤ 4 [Kor11].

Example 2.3.2 - Greedy Algorithm

Consider the input set S = {2, 8, 11, 12, 17, 18}. The following table shows the steps the

greedy algorithm takes to compute an upper bound on the cost of a two-way partition.

Action S S1 S2

Sort S into decreasing order. {18, 17, 12, 11, 8, 2} {} {}

Put 18 into S1 {17, 12, 11, 8, 2} {18} {}

Put 17 into S2 {12, 11, 8, 2} {18} {17}

Put 12 into S2 {11, 8, 2} {18} {17, 12}

Put 11 into S1 {8, 2} {18, 11} {17, 12}

Put 8 into S1 {2} {18, 11, 8} {17, 12}

Put 2 into S2 − {18, 11, 8} {17, 12, 2}

The upper bound is calculated as max {sum(S1), sum(S2)} = max{37, 31} = 37.

1When we say that a multiset is sorted into decreasing order, it is technically being sorted in non-increasing
order since it is possible that two values are the same.

14

2.3.2 Set Differencing: The Karmarkar-Karp Algorithm (KK)

The Karmarkar-Karp (KK) set differencing algorithm [KK82] provides an alternative to

greedy. Like greedy, KK begins by sorting S into decreasing order. Then, it iteratively

replaces the largest two integers of S with their difference. This is equivalent to placing the

two integers into separate subsets without specifying which integer goes into which subset.

KK continues in this manner, replacing the two largest integers with their difference until

there is one integer left, which is the difference between the sums of the sets,

|sum(S1)− sum(S2)|. Given this difference, the upper bound is sum(S)+|sum(S1)−sum(S2)|
2 .

In order to reconstruct the two subsets, KK keeps track of the actions taken while cal-

culating the upper bound. The actions are of the form (Integer 1 - Integer2) → Difference.

The right arrow is read as “is replaced by.” Starting with the upper bound, these actions are

performed in reverse to generate the partition. This is illustrated in example 2.3.3 on the

next page.

15

Example 2.3.3 - Karmarkar Karp Set Differencing Algorithm

Consider the input set S = {2, 8, 11, 12, 17, 18}. Table (a) shows the steps KK takes

to generate the upper bound. Starting with the input set, the two largest numbers are

iteratively removed and replaced by their difference until one number is left. The action

column states the two numbers removed at each step and the difference which replaces

them. The new differences at each step are shown in bold.

Table (b) shows the steps KK takes to construct the partition corresponding to the

upper bound value. The KK set difference value of 4 starts in subset S1. The list

of actions from table (a) are performed in reverse. For each action, the difference is

removed from the subset with the larger number replacing the difference in the same set

and the smaller number being placed in the other set. Note that the difference between

S1 and S2 is equal to the KK set difference value of 4 at every step.

(a) Calculate Difference

Action S

- {18, 17, 12, 11, 8, 2}

(18− 17)→ 1 {12, 11, 8, 2, 1}

(12− 11)→ 1 {8, 2, 1, 1}

(8− 2)→ 6 {6, 1, 1}

(6− 1)→ 5 {5, 1}

(5− 1)→ 4 {4}

(b) Generate Partition

Reverse Action S1 S2

- {4} {}

4→ (5− 1) {5} {1}

5→ (6− 1) {6} {1, 1}

6→ (8− 2) {8} {2, 1, 1}

1→ (12− 11) {11, 8} {12, 2, 1}

1→ (18− 17) {17, 11, 8} {18, 12, 2}

The upper bound is calculated as max {sum(S1), sum(S2)} = max{36, 32} = 36.

16

2.4 Optimal Algorithms

2.4.1 Complete Greedy Algorithm (CGA)

The complete greedy algorithm (CGA) algorithm [Kor98] transforms the greedy algorithm

into an optimal algorithm. Like the greedy algorithm, the CGA first sorts S into decreasing

order. It then proceeds to partition S into two subsets S1 and S2.

CGA searches a binary tree with each level corresponding to an integer in S. At each

node, the left branch puts the integer into the subset with smaller sum (the greedy choice),

and the right branch puts it into the other subset. CGA keeps track of the sums of both

subsets at each node and returns the smallest maximum subset sum encountered at any leaf

node in the tree. The binary tree is searched depth first visiting left children before right.

CGA employs two pruning rules to reduce the size of the search tree:

1. If the two subset sums are equal at any node, the the next integer of S is only put into

one of the subsets since the trees underneath that node would be identical. This applies

to the root node as well where the sum of each subset is zero and so the difference is

zero. Therefore, the root of the tree forces the largest integer of S into the first subset.

2. If the sum of unassigned integers remaining in S is less than the difference between

the two subsets, it places all the remaining integers in the smaller subset.

Since CGA searches a binary tree, its worst-case time complexity is O(2n) where n is the

number of integers in the input set S. Since it is a depth first search, the space complexity

is O(n), which is linear in the depth of the tree.

17

Example 2.4.1 - Complete Greedy Algorithm

Figure 2.1 shows the binary tree that CGA searches to find an optimal partition for the

input set S = {18, 17, 12, 11, 8, 2}. At each node, the ordered pair in parentheses is the

sum of each of the two subsets and the numbers in the curly braces are the remaining

numbers from S yet to be assigned. If the sum of the remaining integers is less than

the difference between the two subsets, the remaining integers are added to the smaller

subset. The bold ordered pairs are complete partitions. The optimal partition has subset

sums (35,33), corresponding to the subsets 〈{18, 17}, {12, 11, 8, 2}〉.

(18,17) {12,11,8,2}

(18,29) {11,8,2} (30,17) {11,8,2}

(35,0) {12,11,8,2}

(35,33)

(18,0) {17,12,11,8,2}

(29,29) {8,2} (18,40) {8,2} (30,28) {8,2} (41,17) {8,2}

(37,29) {2} (28,40)

(37,31)

(30,36) {2} (38,28) {2} (41,27)

(32,36) (38,30)

Figure 2.1: The CGA tree for the input set S = {18, 17, 12, 11, 8, 2}

18

2.4.2 Complete Karmarkar-Karp Set Differencing (CKK)

The complete complete Karmarkar-Karp (CKK) algorithm [Kor98] transforms the KK al-

gorithm into an optimal algorithm. Like CGA, CKK first sorts S into decreasing order. It

then proceeds to partition S into two subsets S1 and S2.

The KK algorithm places the two largest remaining integers into different subsets by

replacing these numbers with their difference. The alternative is to place the numbers in the

same subset by replacing them with their sum.

CKK searches a binary tree. At each node, the left branch puts the two largest remaining

integers into different subsets by replacing them with their difference (the KK choice). The

right branch puts the two largest remaining integers into the same subset by replacing them

with their sum. The difference (or sum respectively) is inserted back into S in sorted order.

This continues until there is one integer left, which is the difference between the two subset

sums given the path to the leaf.

CKK keeps track of the leaf values and returns the smallest leaf value encountered.

The binary tree is searched depth first visiting left children before right. When the largest

remaining integer is larger than the sum of the rest, the largest integer is placed in one subset

and the sum of the rest in the other. This is equivalent to pruning rule #2 from section

2.4.1.

Like CGA, since CKK performs a depth-first search on a binary tree, its worst-case time

complexity is O(2n) while its space complexity is O(n).

19

Example 2.4.2 - Complete Karmarkar Karp

Figure 2.2 shows the binary tree that CKK searches to find an optimal partition for

the input set S = {18, 17, 12, 11, 8, 2}. At each node, all of the remaining integers are

shown. The largest two integers are removed, the left branch inserts their difference,

while the right branch inserts their sum. The newly inserted integer is shown in bold.

The bold numbers at the leaves are the differences in sums between the two subsets.

Like the CGA example 2.4.1, the optimal difference is 2, corresponding to the subsets

〈{35}, {12, 11, 8, 2}〉 with optimal cost 35.

{18, 17, 12, 11, 8, 2}

{12, 11, 8, 2, 1} {35, 12, 11, 8, 2}

{8, 2, 1, 1} {23,8, 2, 1} 2

4 12

Figure 2.2: The CKK tree for the input set S = {18, 17, 12, 11, 8, 2}

20

2.4.3 Dynamic Programming (DP)

A dynamic programming (DP) algorithm [GJ79, MT90a, KS13] solves the partition problem

in pseudo-polynomial time and space. Call sum(S) the sum of all integers of the input set

S and min(S) the minimal integer of S. DP allocates a matrix M of bits with n rows and

sum(S) columns. The first row corresponds to the largest integer in S, the second row the

second largest, and so on. The columns correspond to sums in the range [0, sum(S)]. A bit

at row r and column c is set to one if there is a subset of the largest r integers of S that sum

to c.

DP begins by sorting S into decreasing order, setting all bits in M to zero except for the

zero column which is set to one. It then sets the column corresponding to the largest integer

of S in the first row to one. For each subsequent row r, it first copies all of the one-bits of

the previous row, r− 1 to the current row. Then, for each column c in the previous row that

has a bit set to one, it sets column c + sr in the current row to one, where sr is the integer in

S corresponding to the current row. The one-bits in the final row correspond to all subset

sums that can be formed from the input set S. The smallest subset sum greater than C∗P

(the perfect partition value) is the optimal value.

There are three optimizations to the basic DP algorithm. Since it is not possible to

attain a better partition by adding to a value greater than the perfect sum, only columns

corresponding to values less than or equal to C∗P need to be stored. Furthermore, with the

exception of the empty set with sum 0, it is impossible to get a value smaller than min(S).

Therefore, DP needs only C∗P −min(S) columns corresponding to the range [min(S), C∗P].

Column c corresponds to both a subset sum and its complement, sum(S) − c. Since the

complement subsets are not stored in the matrix, DP keeps track of C∗, the value of the

lowest cost partition found so far. The figure on the top of the following page lists the rules

for scanning the row and updating the matrix and C∗.

21

For each new subset sum c + sr found, there are four possibilities:

• c + sr < C∗P : The bit corresponding to c + sr is set to 1 and C∗ is
set to min{C∗, sum(S)− (c + sr)}, the sum of this partition’s complement set.

• c + sr == C∗P : DP returns immediately with the value c + sr.

• c + sr ≥ C∗: c + sr is ignored.

• C∗P < c + sr < C∗: C∗ is set to c + sr.

Figure 2.3: The rules for filling the DP matrix.

Since one row is observed at a time, DP needs to store just one row. After populating an

entire row, the second optimization foregoes copying row r− 1 to row r, instead it continues

working on the same row. In order to avoid adding the current input integer sr to the set

twice, the scan is done in reverse from the one-bit with the largest index to the one-bit with

the smallest. When the scan is complete, the bit corresponding to column sr is set to one.

The third optimization recognizes that only partitions with sum less than C∗ can improve

on the best partition so far. Therefore, when scanning row r, only columns c with c+sr < C∗

are considered. Instead of beginning the reverse scan from the index with the largest index,

the scan begins with the largest index with c + sr < C∗.

The time and space complexity of DP is O(n · sum(S)), the optimized version has space

complexity O(C∗P - min(S) - 1) and time complexity O(n · [C∗P - min(S) - 1]). DP is pseudo-

polynomial since it is polynomial in the numeric values of the inputs, specifically sum(S).

S 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 C∗

18 - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - 50
17 - - - - - - - - - - - - - - - 1 1 - - - - - - - - - - - - - - - - 35
12 - - - - - - - - - - 1 - - - - 1 1 - - - - - - - - - - 1 1 - - - - 35
11 - - - - - - - - - 1 1 - - - - 1 1 - - - - 1 - - - - 1 1 1 - - - - 35
8 - - - - - - 1 - - 1 1 - - - - 1 1 1 1 - - 1 - 1 1 - 1 1 1 1 - - - 35
2 1 - - - - - - - 1 1 1 1 1 - - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 - 35

Table 2.2: The DP matrix for the input set S = {18, 17, 12, 11, 8, 2}, (see example 2.4.3)

22

Example 2.4.3 - Dynamic Programming

Table 2.2 shows the matrix that DP generates to find an optimal partition for the input

set S = {18, 17, 12, 11, 8, 2}. The sum of the integers of S is sum(S) = 68. There is

one column for each integer between min(S) = 2 and C∗P =
⌈

sum(S)
2

⌉
= 34. There is one

row for each integer of S. These rows are shown for illustration; in practice only one

row would be needed. The column labeled S shows the integer in S associated with

each row. The column C∗ shows the value of the lowest cost partition found so far after

creating that row.

The algorithm starts by setting the bit in column 18 to 1 in the first (S = 18) row

and C∗ to sum(S)− 18 = 50. Then, this row is copied to the second (S = 17) row. The

matrix is scanned and updated according to the rules in figure 2.3. The following table

lists all of the bits that are set in each row given the value of S corresponding to the

row summed with the appropriate columns cr−1 set in the previous row. The optimal

partition 〈{18, 17}, {12, 11, 8, 2}〉 with partition cost C∗ = max{35, 33} = 35 is found in

the second (S = 17) row, though the matrix needs to be completed to prove that no

partition with cost C∗P = 34 exists.

S + cr−1 = value

17+18=35 17+0=17

12+18=30 12+17=29 12+ 0=12

11+18=29 11+17=28 11+12=23 11+ 0=11

8+23=31 8+18=26 8+17=25 8+12=20 8+11=19

2+31=33 2+30=32 2+29=31 2+28=30 2+26=25

2+25=27 2+23=25 2+20=22 2+19=21 2+18=20

2+17=19 2+16=18 2+12=14 2+11=13 2+ 8=10 2+0=2

23

2.4.4 Horowitz and Sahni (HS)

The Horowitz and Sahni (HS) algorithm [HS74] uses memory to improve upon the 2n time

complexity of CKK and CGA. Call sum(S) the sum of all integers of the input set S. The

larger sum of a perfect partition is dsum(S)/2e. HS begins by calculating an upper bound

ub, in our case using the KK algorithm. The lower bound is calculated as lb = sum(S)− ub,

the complement of ub. It then calculates the perfect partition value C∗P =
⌈

sum(S)
k

⌉
.

HS sorts the input set S into decreasing order. It then divides S into two “half” sets SA

and SB of size n/2 each, and generates the lists A and B of the sums of all 2n
2 subsets of each

half set, including the empty set and the complete set. The sums are sorted, A increasing

and B decreasing. It then iterates through each a ∈ A and b ∈ B starting with the first

sums of A and B respectively.

If a + b is less than the lower bound, HS gets the next a from A. If a + b is between

the lower bound and one minus the perfect value, the lower bound is set to a + b and ub to

its complement, sum(S) − (a + b). Also, HS gets the next a from A. If a + b is perfect or

one less than perfect, the perfect value C∗P is returned immediately since a perfect partition

has been found. If a + b is between perfect and the upper bound, the upper bound is set to

a + b and the lower bound to its complement sum(S) − (a + b). Also, HS gets the next b

from B. If a + b is greater than the upper bound, HS gets the next b from B . This process

continues until either the A or B lists are exhausted. Figure 2.4 also lists these rules for

iterating through the A and B lists.

For two-way partitioning, there is an optimizing step [KS13]. The largest integer is

removed and always assumed to be part of the current sum. largest is not included in the

sums of A or B. For each a ∈ A and b ∈ B, sum is calculated as largest + a + b. This cuts

the size of either A or B in half.

Generating the A and B lists takes O(2n/2) time since they are the power set of SA and

SB which each contain n
2 integers. Sorting A and B takes O(2n/2 · log 2n/2) = O(2n/2 · n

2)

time. The A and B lists are scanned in time linear in their size, 2n
2 . Therefore, HS runs in

24

Condition Action

a + b ≤ lb : Get next a from A.
lb < a + b < C∗P − 1 : Set lb = a + b; ub = sum(S)− (a + b).

Get next b from B.
C∗P − 1 ≤ a + b ≤ C∗P : Return C∗P .

C∗P < a + b < ub : Set ub = a + b; lb = sum(S)− (a + b).
Get next b from B.

a + b ≥ upper : Get next b from B.

Figure 2.4: The rules for iterating using the HS algorithm.

time O(n
2 · 2

n
2 + 2 · 2n

2) = O(n · 2n
2). Since A and B are of size 2n

2 , HS also requires O(2n
2)

space, making it practical for up to about n = 60 integers.

In our implementation of HS, we have chosen to sort the input set S into decreasing

order and choose the larger numbers to populate SA and the smaller numbers to populate

SB. The original HS algorithm does not specify an order for the numbers. The run time of

HS is approximately the same if the larger numbers populate SA and the smaller numbers

populate SB.

25

Example 2.4.4 - Horowitz and Sahni

Consider the input set S = {225, 216, 202, 148, 144, 121, 110︸ ︷︷ ︸
SA

, 102, 91, 82, 15, 13, 3︸ ︷︷ ︸
SB

}. The

following are the steps the Horowitz and Sahni (HS) algorithm takes to compute an

optimal two-way partition.

1. Calculate C∗P =
⌈

sum(S)
2

⌉
=
⌈1472

2

⌉
= 736.

2. Store largest = max(S) = 225.

3. Calculate best = 737 using the KK approximation algorithm.

4. Calculate lb = sum− (best− 1) = 736.

5. Generate A as the sums of all subsets of SA and B as the sums of all subsets of

SB. Sort A increasing and B decreasing:

A B

0 , 110, 121, 144, 148, 202, 216, 231 306, 303, 293, 291, 290, 288, 278, 275,

254, 258, 265, 269, 292, 312, 323, 326, 224, 221, 215, 212, 211, 209, 208, 206,

337, 346, 350, 360, 364, 375, 379, 402, 204, 202, 201, 200, 199, 197, 196, 193,

413, 418, 433, 447, 456, 460, 467, 470, 191, 189, 188, 187, 186, 184, 176, 173,

471, 474, 481, 485, 494, 508, 523, 528, 133, 130, 122, 120, 119, 118, 117, 115,

539, 562, 566, 577, 581, 591, 595, 604, 113, 110, 109, 107, 106, 105, 104, 102,

615, 618, 629, 649, 672, 676, 683, 687, 100, 98, 97, 95, 94, 91, 85, 82,

710, 725, 739, 793, 797, 820, 831, 941 31 , 28, 18, 16, 15, 13, 3, 0

6. Starting with a = A[0] = 0, b = B[0] = 306 and sum = a + b + largest =

0 + 306 + 225 = 531, follow the steps of figure 2.4 to update a, b and sum while

searching for the optimal partition cost:

26

Iter a b sum

1 0 306 531

2 110 306 641

3 121 306 652

4 144 306 675

5 148 306 679

6 202 306 733

7 216 306 747

8 216 303 744

9 231 293 749

10 231 291 747

Iter a b sum

11 231 290 746

12 231 288 744

13 254 278 757

14 254 275 754

15 258 224 707

16 265 224 714

17 269 224 718

18 292 224 741

19 292 221 738

20 312 215 752

Iter a b sum

21 312 212 749

22 312 211 748

23 312 209 746

24 312 208 745

25 312 206 743

26 312 204 741

27 312 202 739

28 312 201 738

29 312 200 737

30 312 199 736

7. The algorithm stops at iteration 30 since 312 + 199 = 736 = C∗P

2.4.5 Schroeppel and Shamir (SS)

The Schroeppel and Shamir (SS) algorithm [SS81] is based on HS, but uses less memory.

HS generates the entire A and B lists and sorts them in memory before scanning them. In

contrast, SS generates the subsets of A and B on demand in the same order as HS.

SS divides S into four “quarter” sets SA1 , SA2 , SB1 , SB2 of size n/4 each. It generates

the lists A1, A2, B1 and B2 of all 2n
4 subsets of each quarter set sorted by their subset sums

in increasing order. The subsets from the A1 and A2 lists are combined in a min heap to

generate subsets in the same order as the list A in HS. Each subset of the heap consists of

one subset from each of the A1 and A2 lists. Initially, it contains all pairs combining the

empty set from the A1 list with each subset from the A2 list. The top of the heap contains

the pair with smallest subset sum. Whenever a pair (A1[i], A2[j]) is popped off the top of

the heap, it is replaced in the heap by a new pair (A1[i + 1], A2[j]). Similarly, the subsets

from the B1 and B2 lists are combined in a max heap, which generates subsets in the same

27

order as the B list from HS. SS uses these heaps to generate the subset sums in sorted order,

then scans them in the same manner as the HS algorithm.

Generating the A1, A2, B1 and B2 lists takes O(2n/4) time since they are the power sets

of SA1 , SA2 , SB1 and SB2 which each contain n
4 integers. Sorting A1, A2, B1 and B2 takes

O(2n/4 · log 2n/4) = O(2n/4 · n
4) time each. Scanning the lists will generate the same subsets as

HS. In the worst case, there are 2 ·2n
2 of these subsets. However, in order to generate each of

these subsets, a pop from and push into a heap of size 2n
4 is required. This takes log s

n
4 = n

4

time. Therefore, the scanning operation has time complexity O(2n
2 · n

4). The overall time

complexity is O(2n
4 · n

4 + 2 · 2n
2 · n

4) = O(n · 2n
2), the same time complexity as HS. However,

SS only requires O(2n
4) space for the four quarter sets and heaps, making it practical for up

to about n = 120 integers.

Both HS and SS have time complexity O(n · 2n
2). However, both Horowitz and Sahni

in [HS74] and Schroeppel and Shamir in [SS81] claim incorrectly that their algorithms have

time O(2n
2), neglecting the factor of n.

In our implementation of SS, we have chosen to sort the input set S into decreasing order

and choose the larger numbers to populate A1 and A2 while the smaller numbers populate

B1 and B2. This is about twice as fast as using the smaller numbers for A1 and A2 and

the larger numbers for B1 and B2. Further research is needed to better understand this

phenomena.

Example 2.4.5 - Schroeppel and Shamir

Consider the input set S = {225, 216, 202, 148︸ ︷︷ ︸
SA0

, 144, 121, 110︸ ︷︷ ︸
SA1

, 102, 91, 82︸ ︷︷ ︸
SB0

, 15, 13, 3︸ ︷︷ ︸
SB1

}. The

Schroeppel and Shamir (SS) algorithm is very similar to HS. All of the steps are exactly

the same as the steps in example 2.4.4 except for step 5:

5. Generate A0, A1, B0 and B1 as the sums of all subsets of SA0 , SA1 , SB0 and SB1

respectively. Sort A0 and A1 in increasing order; and B0 and B1 in decreasing

28

order as follows:

A0 A1 B0 B1

0, 148, 202, 216, 0, 110, 121, 144, 275, 193, 184, 173 31, 28, 18, 16,

350, 364, 418, 566 231, 254, 265, 375 102, 91, 82, 0 15, 13, 3, 0

A min heap is used to generate A from example 2.4.4 and a max heap for B. The

min heap is initialized with pairs including all integers from A0 paired with the

smallest integer from A1. Similarly, the max heap is initialized with pairs including

all integers from B0 paired with the largest integer from B1. The pairs are sorted

by their sums as follows:

Min Heap: (0, 0), (148, 0), (202, 0), (216, 0),

(350, 0), (364, 0), (418, 0), (566, 0)

Max Heap: (275, 31), (193, 31), (184, 31), (173, 31),

(102, 31), (91, 31), (82, 31), (0, 31)

To generate the next sum a of A, pop the min pair (0, 0) from the min heap. The

sum of the pair 0 is the new value for a. Then, replace the pair with the same

value from A0 and the next value from A1, in this case (0, 110).

Similarly, to generate the next sum b of B, pop the max pair (275, 31) from the

max heap. The sum of the pair 306 is the new value for b. Then, replace the pair

with the same value from B0 and the next value from B1, in this case (275, 28).

This process continues and generates the same sums in the same exact order as A

and B from example 2.4.4.

29

2.5 Experimental Results

This section presents a series of experiments we ran to compare the two-way partitioning

algorithms described in this chapter. Depending on the precision of the input integers and

the number of input integers n, different algorithms are preferable. The precision of the

input integers is measured in the number of bits b needed to represent them.

For each combination of b and n, we generated 100 problem instances. Each instance con-

sists of n integers sampled uniformly at random within the range [1, 2b− 1]. All experiments

were run on an Intel Xeon X5680 CPU running at 3.33GHz.

2.5.1 Easy-Hard-Easy Transition for 32-Bit Instances

Every two-way number-partitioning problem has 2n complete partitions. If the integers are

sampled from the range [1, 2b − 1] where b is the number of bits used to represent an input

integer, there are n × (2b − 1) possible subset sums. For fixed b, the number of complete

partitions grows exponentially with n while the number of possible unique subset sums

grows linearly. If b is small, there will be many more complete partitions than unique sums

possible for each of the subsets of the partitions, thereby making the chances of finding a

perfect partition very high.

If a perfect partition is found, any partitioning algorithm can immediately return it as

optimal. When perfect partitions exist, it is the ratio of perfect partitions to complete

partitions which determine the difficulty of a problem instance. Two-way partitioning has

an easy-hard-easy transition for a fixed precision. When no perfect partitions exist, as n

increases, the problems tend to get more difficult. However, at some n, perfect partitions start

to appear and the problems eventually get easier again as the number of perfect partitions

grow exponentially. Both Korf [Kor98] and Mertens [Mer06] recognized this phenomena.

We ran experiments with integers sampled uniformly at random from the range [1, 232−1].

We generated 100 problem instances for each n from n = 20 to n = 200 and report the average

run times for each value of n. We chose to generate 32-bit numbers in order to show the

30

20 40 60 80 100 120 140 160 180 200
n

10-4

10-3

10-2

10-1

100

Ti
m

e
(s

)
Average Run Time and Percent Perfect Solutions for 32-Bit Instances

ckk
cga

0

20

40

60

80

100

%

perfect %

Figure 2.5: The average run times of CGA and CKK as well as the percent of perfect parti-
tions for 32-bit partition instances.

easy-hard-easy transition of two-way number partitioning.

Figure 2.5 shows both the average run time of CGA and CKK against this data set (left

axis) and the percentage of the 100 problem instances for each n whose optimal partition is

perfect (right axis). For n from 20 to 29, none of the partitions are perfect. For n = 38 and

above, all of the optimal partitions are perfect. Between n = 30 and n = 37, some of the

optimal partitions are perfect and some are not.

The problems become harder for CGA and CKK as n increases from n = 20 to approx-

imately n = 40. Then, both algorithms solve problems faster on average as n increases.

CKK’s performance improves more rapidly since it tends to find optimal solutions more

quickly when many exist.

2.5.2 48-bit Experiments

We first ran experiments with integers sampled uniformly at random from the range [1, 248−

1]. We generated 100 problem instances for each n from n = 20 to n = 70 and report the

average run times for each value of n. We chose to generate 48-bit numbers in order to

31

20 30 40 50 60 70
n

10-4
10-3
10-2
10-1
100
101
102
103
104
105
106

Ti
m

e
(s

)
Average Run Time and Percent Perfect Solutions for 48-Bit Instances

ckk
cga
hs
ss

0

20

40

60

80

100

%

perfect %

Figure 2.6: The average run times of CGA, CKK, HS and SS for solving 48-bit partition
instances.

generate hard instances without perfect partitions [Kor11].

We ran complete Karmarkar-Karp (CKK), the complete greedy algorithm (CGA), Horowitz

and Sahni (HS) and Schroeppel and Shamir (SS) against the benchmark set described above.

For 48-bit numbers and n from 20 to 70, all four algorithms have the property that problem

instances take longer to solve on average as n increases. Eventually, as n gets large enough,

CKK and CGA would get easier again since there would be so many perfect partitions.

However, HS and SS would run out of memory before getting to this point.

Figure 2.6 shows the timing results for the four algorithms. All four algorithms have an

exponential explosion in run-time. Both CKK and CGA, with time complexity in O(2n),

follow a very similar curve, though CGA is very slightly faster. Both HS and SS, with time

complexity in O(2n
2) , are significantly faster than CKK and CGA.

Interestingly, even though HS and SS are O(2n
2) algorithms, SS is an order of magnitude

faster than HS for n > 55. For large n, all of the optimal partitions are perfect as can be seen

by the dashed line in figure 2.6. Before beginning the search, HS must generate complete sets

of size 2n
2 while SS generates complete sets of size only 2n

4 . As n increases, it becomes easier

32

20 30 40 50 60 70 80
n

10-2

10-1

100

101
M

em
or

y
(G

B)
Average Memory Usage for 48-Bit Instances
hs
ss

Figure 2.7: The memory usage of HS compared to SS for solving 48-bit partition instances.

and easier to find perfect partitions and the time to generate the complete sets dominates

the total run time of HS and SS. This initial overhead explains the difference between the

average run times of the two algorithms.

Both CKK and CGA use memory linear in n. As such, memory usage is not an issue for

these algorithms for any n we are attempting to solve. HS and SS use memory exponential

in n, specifically HS uses O(2n
2) memory and SS uses O(2n

4) memory. Figure 2.7 compares

the memory usage between SS and HS for the 48-bit problem instances with n from 20 to

70. While HS maxes out our memory by n = 60, SS can solve problems of size n = 70 with

less than 250 MB of memory.

2.5.3 Dynamic Programming Results on 16-Bit Instances

Section 2.4.3 covers the pseudo-polynomial time dynamic programming (DP) algorithm for

solving two-way number-partitioning problems. The time and space complexity is in O(n ·

sum(S)). Given this complexity class, 48-bit numbers are way too large to fit in memory

as 248 bytes is over 281 terabytes. In order to test DP, we ran experiments with integers

33

20 30 40 50 60 70 80 90 100
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Ti

m
e

(s
)

Average Run Time for 16-Bit Instances
ckk
cga
dp

Figure 2.8: The average run times of CGA, CKK and DP for solving 16-bit partition in-
stances.

sampled uniformly at random from the range [1, 216−1]. We generated 100 problem instances

for each n from n = 20 to n = 100. The 16-bit input is tractable for DP.

Given the low precision of the input integers, almost all of the problems instances have

perfect partitions. For all but n = 20, all of the 100 problem instances generated have perfect

partitions. For n = 20, 80% of the problem instances have perfect partitions.

We ran CKK, CGA, and DP against the benchmark set described above. Figure 2.8

shows the timing results for the three algorithms. For 16-bit numbers and n from 20 to 100,

both CKK and CGA solve all of the problem instances almost instantaneously regardless of

the value of n. In contrast, dynamic programming gets slower as n gets larger.

The perceived wisdom is that given enough memory, DP, a pseudo-polynomial time

algorithm, should be the fastest. CGA and CKK both run in time O(2n) while DP runs in

time O(n × sum(S)). Nonetheless, for this problem set in which n is in the range [20,100]

and sum(S) ≤ 100× 216, CGA and CKK dominate DP. This is because CKK and CKK find

perfect partitions much faster than DP [KS13].

34

16 18 20 22 24 26 28 30 32
Max # Bits in Input Integers

10-4

10-3

10-2

10-1

100

101

102

103
Ti

m
e

(s
)

Average Run Time for Instances with n = 50
Complete Karmarkar-Karp
Complete Greedy Algorithm
Dynamic Programming

Figure 2.9: The average run times of CGA, CKK and DP for solving 16-bit partition in-
stances.

2.5.4 Dynamic Programming Results Varying Precision

To further show that dynamic programming is dominated by CKK, we ran a set of experi-

ments fixing n = 50 and varying the maximum number of bits needed to represent the input

integers. The input integers were sampled from the range [1, 2b − 1] where b takes on the

value of all integers from 16 to 32. For each value of b, 100 experiments were run.

Figure 2.9 shows the average run times of CKK, CGA and DP as b ranges from 16 to 32.

For all of these relatively low precision input sets, CKK and CGA solve all instances almost

instantaneously. DP is approximately three orders of magnitude slower than CGA and four

orders of magnitude slower than CKK.

Figure 2.10 shows the memory usage of DP as b ranges from 16 to 32. As b increases,

the memory usage of DP grows exponentially. DP is polynomial in sum(S). Since sum(S)

grows exponentially with b, the memory usage of DP also grows exponentially. In contrast,

35

16 18 20 22 24 26 28 30 32
Max # Bits in Input Integers

0

1

2

3

4

5

6

7
M

em
or

y
(G

B)
Average Memory Usage for Instances with n = 50
Dynamic Programming

Figure 2.10: The memory usage of dynamic programming for solving instances with n = 50
as the precision of the input integers is varied.

both CGA and CKK use memory linear in n, the number of integers in the input set S. The

memory usage of these two algorithms is negligible for n = 50, regardless of the precision of

the input set.

Given that DP is slower than CKK and CGA for 16-bit integers, is intractable for 48-bit

integers, and is dominanted for all precision datasets from 216 to 232, it seems that it is not

a useful algorithm for solving two-way number partitioning.

2.6 Summary

This chapter has introduced algorithms for solving the two-way number partitioning prob-

lem. The greedy algorithm and the Karmarkar-Karp (KK) heuristic generate approximate

solutions. The rest of the algorithms we covered generate optimal solutions. CGA and CKK

36

Precision b

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

20 k k k k k k k k k s
21 k k k k k k k k s
22 k k k k k k k k k s
23 k k k k k k k k k s
24 k k k k k k k k k s
25 k k k k k k k k k k s
26 k k k k k k k k k k k k s
27 k k k k k k k k k k k s
28 k k k k k k k k k k k s
29 k k k k k k k k k k k k s
30 k k k k k k k k k k k k k s
31 k k k k k k k k k k k k k s
32 k k k k k k k k k k k k s
33 k k k k k k k k k k k k k k s
34 k k k k k k k k k k k k k k k s

In
pu

t
Se

t
C

ar
di

na
lit

y
n

35 k k k k k k k k k k k k k k k s
36 k k k k k k k k k k k k k k s
37 k k k k k k k k k k k k k k k k s
38 k k k k k k k k k k k k k k k k k s
39 k k k k k k k k k k k k k k k k k s
40 k k k k k k k k k k k k k k k k k s
41 k k k k k k k k k k k k k k k k k k s
42 k s
43 k s
44 k k k k k k k k k k k k k k k k k k k s
45 k s
46 k s
47 k s s s s s s s s s s s s s s s s s s s
48 k s
49 k s s s s s s s s s s s s s s s s s s
50 k s s s s s s s s s s s s s s s s s s
51 k s s s s s s s s s s s s s s s s s
52 k s s s s s s s s s s s s s s s s s
53 k s s s s s s s s s s s s s s s s
54 k s s s s s s s s s s s s s s s
55 k s s s s s s s s s s s s s s s
56 k s s s s s s s s s s s s s s s
57 k s s s s s s s s s s s s s s
58 k s s s s s s s s s s s s s
59 k s s s s s s s s s s s s s
60 k s s s s s s s s s s s s s

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

k = Complete Karmarkar-Karp s = Schroeppel and Shamir

Table 2.3: The algorithm with the fastest average run time for two-way partitioning with
20 ≤ n ≤ 60 and 8 ≤ b ≤ 48.

37

Precision b

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
61 k s s s s s s s s s s s
62 k s s s s s s s s s s s
63 k s s s s s s s s s s
64 k s s s s s s s s s s s
65 k s s s s s s s s s
66 k s s s s s s s s
67 k s s s s s s s s
68 k s s s s s s s s s
69 k s s s s s s s
70 k s s s s s s
71 k s s s s s s
72 k s s s s s s
73 k s s s s
74 k s s s s

In
pu

t
Se

t
C

ar
di

na
lit

y
n

75 k s s s
76 k s s s s
77 k s s
78 k s
79 k
80 k s
81 k s
82 k
83 k
84 k s s
85 k s
86 k
87 k
88 k s
89 k
90 k
91 k
92 k s
93 k
94 k
95 k
96 k
97 k
98 k
99 k

100 k

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

k = Complete Karmarkar-Karp s = Schroeppel and Shamir

Table 2.4: The algorithm with the fastest average run time for two-way partitioning with
61 ≤ n ≤ 100 and 8 ≤ b ≤ 48.

38

are O(2n) time algorithms which use linear space to find optimal solutions. Both HS and SS

use additional memory to find optimal solutions in O(2n
2) time but use exponential space

to do so. HS uses O(2n
2) space while SS uses O(2n

4). Extended versions of HS and SS will

be used for some of the multi-way algorithms in subsequent chapters to generate subsets of

integers whose sums fall within a specified range.

Finally, this chapter discussed dynamic programming for number partitioning, a pseudo-

polynomial time algorithm whose time and space complexity depends on the number of input

integers n and the precision of these integers represented by the sum of the input integers S.

Its time and space complexity is O(n·sum(S)). Despite the fact that it is pseudo-polynomial,

it is dominated by the other algorithms.

The state-of-the-art algorithm for two-way number partitioning algorithm depends on

the size of the input set n and the precision of the input numbers. For each value of n

in the range [20,100] and b in the range [8,48], we generated 100 instances uniformly at

random from within the range [1, 2b]. Tables 2.3 and 2.4 show the algorithm that had the

best average run time for each combination of n and b. k represents CKK and s represents

SS. The trend is that for each n, CKK is the best algorithm for low precision and SS is best

for high precision.

39

Part II

Multi-Way Number Partitioning

40

CHAPTER 3

Branch-and-Bound Algorithms

The multi-way number-partitioning problem is to separate a multiset S = {s1, s2, ..., sn} into

k mutually exclusive and collectively exhaustive subsets such that the largest subset sum

in minimized (section 1.0.1). This chapter introduces algorithms for solving this problem

approximately as well as optimally using branch-and-bound algorithms. The approximate

algorithms are used as upper bounds on each subset sum for the optimal algorithms. Lower

bounds both on solution cost as well as the sum of each individual subset are also introduced.

3.1 Polynomial-Time Approximation Algorithms (Upper Bounds)

This section introduces two polynomial-time approximation algorithms used as upper bounds

within the multi-way number-partitioning algorithms presented in this thesis. There is a large

literature on approximation algorithms for the multi-way number-partitioning problem. See

for example, [MJG01, IM08, Che04, DIM08]. While this large literature exists, we found the

simple approximation algorithms we present to be sufficient for our purposes.

3.1.1 Multi-Way Greedy Algorithm or Longest Processing Time

The greedy algorithm for multi-way number partitioning extends the greedy algorithm for

the two-way partition problem described in section 2.3.1. This algorithm is also known as

longest processing time (LPT). Graham proved that LPT achieves an upper bound no worse

than
(

4
3 −

1
3k

)
× optimal [Gra66]. The greedy algorithm is optimal for n ≤ k + 2 [Kor11].

The greedy algorithm first sorts the integers of S into decreasing order. It then considers

41

the integers one at a time and places them into the subset Si, 1 ≤ i ≤ k, with the smallest

sum. If two or more subsets both have the same smallest sum, only one of the subsets is

chosen arbitrarily.

Example 3.1.1 - Multi-Way Greedy Algorithm

Consider the input set S = {24, 21, 18, 17, 12, 11, 8, 2}. The following table shows the

steps the greedy algorithm takes to compute an upper bound for the cost of a three-way

partition. The first column shows the integers remaining in S at each step. The next

three columns show the sums of the integers in subsets S1, S2 and S3. The final column

reports the action taken resulting in the values of S1, S2 and S3 on the current row.

S Subset Sum Action
S1 S2 S3

{24, 21, 18, 17, 12, 11, 8, 2} 0 0 0 Sort S into decreasing order.

{21, 18, 17, 12, 11, 8, 2} 24 0 0 Put 24 into S1

{18, 17, 12, 11, 8, 2} 24 21 0 Put 21 into S2

{17, 12, 11, 8, 2} 24 21 18 Put 18 into S3

{12, 11, 8, 2} 24 21 35 Put 17 into S3

{11, 8, 2} 24 33 35 Put 12 into S2

{8, 2} 35 33 35 Put 11 into S1

{2} 35 41 35 Put 8 into S2

{} 37 41 35 Put 2 into S1

The final heuristic value is 41, the largest subset sum, in this case S2.

42

3.1.2 Multi-Way Karmarkar-Karp (KK)

The multi-way Karmarkar-Karp (KK) algorithm [KK82] extends the two-way KK algorithm

described in section 2.3.2. A state of the multi-way KK algorithm, where k is the number

of subset sums, is represented by a list of k-tuples. Each tuple corresponds to the difference

in sums between each of the k sets the tuple represents. For example, the tuple (35,33,32)

corresponds to three subsets with the sum of the integers in the first subset being three more

than the sum of the integers in the third subset and two more than the sum of the integers

in the second subset. The sum of the integers in the second subset is one more than the sum

of the integers in the third set.

Since only relative values matter, the tuple is normalized by subtracting its minimum

value. The tuple above is normalized to (35-32, 33-32, 32-32) = (3, 1, 0). Each tuple is kept

sorted in decreasing order and the list of tuples is kept sorted by the largest integer in each

tuple, also in decreasing order. When a new tuple is inserted into the list, and has the same

largest value as another tuple already in the list, the new tuple is arbitrarily placed first.

Initially, one tuple is created for each of the integers in S. The first integer of the tuple is

the value from S, and the remaining integers are all set to 0. Each of these tuples corresponds

to putting the integer from S into one subset, and nothing in each of the other subsets.

At each step of the KK algorithm, the first two tuples in the list (the two tuples whose

largest integers are greatest) are combined. Given the tuples A = (a1, ..., ak) and B =

(b1, ..., bk), both sorted in decreasing order, A is combined with B to form the new tuple C:

C = (a1 + bk, a2 + bk−1, ..., ak + b1)

A and B are combined in this manner to try to minimize the largest values in C. After

combining A and B, C is normalized by subtracting the minimum value in C from each

element in C. This normalization is possible since KK only keeps track of the relative

difference between subset sums. This combination process continues until one tuple remains.

43

Example 3.1.2 - Multi-Way Karmarkar-Karp Algorithm

Consider the input set S = {24, 21, 18, 17, 12, 11, 8, 2}. The following table shows the

steps the Karmarkar-Karp algorithm takes to compute an upper bound for the cost of

a three-way partition.

The initial step i = 1 puts each of the integers of S into their own tuple and sorts the

tuples in decreasing order by their largest sum. At each subsequent step, the two tuples

with the largest maximum sum (always tuples T1 and T2 in the table) are combined

according to the rule (a1, a2, a3) + (ba, b2, b3) = (a1 + b3, a2 + b2, a3 + b1). The resulting

tuple is then normalized by subtracting the minimum integer in the tuple from each

integer in the tuple.

The newly inserted tuple is shown in bold at each step. For example, at i = 4,

(17, 12, 0)+(11, 0, 0) = (17+0, 12+0, 11+0) = (17, 12, 11). This tuple is normalized by

subtracting 11 from each integer resulting in (6,1,0), which is already sorted in decreasing

order. The new tuple is inserted in bold at i = 5. It is placed before the tuple (6,3,0)

with the same largest value 6 since newer tuples always come first in case of a tie.

i T1 T2 T3 T4 T5 T6 T7 T8

1 (24,0,0) (21,0,0) (18,0,0) (17,0,0) (12,0,0) (11,0,0) (8,0,0) (2,0,0)

2 (24, 21, 0) (18,0,0) (17,0,0) (12,0,0) (11,0,0) (8,0,0) (2,0,0)

3 (17,0,0) (12,0,0) (11,0,0) (8,0,0) (6, 3, 0) (2,0,0)

4 (17, 12, 0) (11,0,0) (8,0,0) (6,3,0) (2,0,0)

5 (8,0,0) (6, 1, 0) (6,3,0) (2,0,0)

6 (7, 5, 0) (6,3,0) (2,0,0)

7 (2, 1, 0) (2,0,0)

8 (1, 1, 0)

The final tuple, (1,1,0) corresponds to the partition, 〈{24, 12, 2}, {21, 17}, {18, 11, 8}〉,

whose sums are 38, 38 and 37. KK has found a perfect partition with cost 38.

44

3.2 Lower Bounds

This section defines two classes of lower bounds for multi-way number partitioning. The first

class is the lower bound on the overall solution cost. That is, what is the smallest possible

value for the maximum sum of the k subsets in an optimal partition? The second class is

the lower bound on the sum of any particular subset.

3.2.1 On Solution Cost

Dell’Amico and Martello [DM95] define three lower bounds on solution cost.

• L0: Relax the constraint that an input integer cannot be split between multiple subsets.

• L1: C∗ must be at least as large as the largest integer of S.

• L2: Since there are only k subsets, at least two of the k + 1 largest integers must go

into the same subset. The smallest sum for this subset is achieved by choosing the

smallest two integers of the largest k + 1, which are sk and sk+1.

Assuming S = {s1, s2, ..., sn} is sorted in decreasing order, the following are the mathe-

matical formulas for these three bounds:

L0 =
⌈

sum(S)
k

⌉
L1 = max{L0, s1} L2 = max{L1, sk + sk+1}

The L0 lower bound defines a perfect partition, the best solution cost possible for any

problem instance. The L1 and L2 lower bounds are only useful if the largest input integer

or the sum of the kth and k + 1st largest input integers are greater than the cost of a perfect

partition. This is rarely the case for the experiments run in this thesis.

45

3.2.2 On Subset Sum

The lower bound on any subset sum is the smallest sum for one subset such that if the sum

of the remaining integers were partitioned perfectly into k − 1 subsets, it would have cost

less than ub [Kor09]. This lower bound is defined as:

lb = sum(S)− (k − 1)× (ub− 1)

This lower bound forces k− 1 of the subsets (all but one) to have sum ub− 1, the maximum

sum that could lead to a solution better than the best found so far. It subtracts the total

sum of these k − 1 subsets from the total sum of the input set S. This remaining capacity

is the lower bound for any one subset. If a subset had sum smaller than this lb, than one

of the remaining k − 1 subsets would be forced to have sum greater than ub and thus could

not lead to a better solution.

3.3 Generating Subsets with Sums within a Range

Given a lower bound lb and upper bound ub on subset sums, an important subroutine in

multi-way number partitioning algorithms is to generate subsets with sums within the range

[lb, ub− 1]. This section introduces algorithms for generating all subsets with sums within a

range.

3.3.1 Inclusion-Exclusion (IE) Binary Tree Search

Perhaps the most straightforward way to generate subsets of S with sums within a range is

using the inclusion-exclusion (IE) algorithm [Kor09]. IE traverses a binary tree with each

node representing a collection of subsets. The root node corresponds to the power set and

the leaves correspond to individual subsets. Each level corresponds to an integer of S with

subsets including the integer on the left branch and excluding it on the right. IE sorts S

then considers the integers in decreasing order, searching the tree from left to right always

46

including integers before excluding them.

IE prunes the tree under the following conditions:

1. If the sum of the integers included at a node exceeds ub− 1.

2. If the sum of the integers included at a node plus all non-assigned integers is less than

lb.

In the worst case, IE runs in time O(2n), the size of the complete binary tree; and space

O(n), the depth of the complete binary tree.

Example 3.3.1 - Inclusion-Exclusion Binary Tree Search

Consider the input set S={8, 6, 5, 3}. Figure 3.1 shows the complete IE binary search

tree. The left child of the root includes the integer 8 while the right child excludes it.

In general, the left children of the nodes of level i include the ith integer of S while the

right children exclude it. Each node displays the sum of the integers of S included on

the current path. The left-most path corresponds to the input set S and the right-most

path to the empty set.

Figure 3.2 shows the binary tree IE searches to find all subsets with sums within the

range [lb, ub − 1] where lb = 13 and ub = 17. This tree is pruned according to the two

rules of section 3.3.1. The pruned nodes are labeled with the pruning rule used.

For example, the left-most node with sum 19 corresponding to the subset {8, 6, 4}

is pruned since its sum 19 is greater than ub− 1 = 16. The right-most node with sum 0

corresponding to the empty set is also pruned since 0 plus the remaining integers 5 and

3 sum to 8, which is less than lb = 13.

The leaves 14, 16, 13 and 14 in bold correspond to the subsets {8, 6}, {8, 5, 3}, {8,

5} and {6, 5, 3} respectively; all the subsets with sums within the range [lb, ub− 1].

47

8

6

5

3 14

17 14

19

22 19

8

11 8

13

16 13

6

9 6

11

14 11

0

3 0

5

8 5

14 8 6 0

8 0

0
Inclu

de Exclude

Figure 3.1: The full inclusion-exclusion binary tree for the input set S = {8, 6, 5, 3}.

Pruning Rule 1
Pruning Rule 2 Pruning Rule 2

Pruning Rule 2

Include Exclude

Figure 3.2: The pruned inclusion-exclusion binary tree for the input set S = {8, 6, 5, 3} with
lb = 13 and ub = 17. Leaves with sums in the range [lb, ub − 1] are highlighted
in bold.

48

3.3.2 Extended Horowitz and Sahni (EHS)

Given an input multiset S = {s1, s2, ..., sn} and a target value, the Horowitz and Sahni (HS)

algorithm, described in section 2.4.4, searches for a subset of S whose sum is as close as

possible to target. The extended Horowitz and Sahni (EHS) algorithm [Kor11] extends HS

to find all subsets with sums within the range [lb, ub− 1].

Recall that HS breaks S into two “half sets” SA and SB; generates all 2n
2 subsets of SA

and SB; and stores these subsets in A and B respectively. A is sorted in increasing order of

subset sum and B is sorted in decreasing order. HS maintains two pointers a and b into A

and B; and moves the pointers according to the rules in figure 2.4

EHS replaces the b pointer with two pointers b1 and b2 which are maintained throughout

the running of EHS as follows:

• b1 points to the first (largest) integer of SB such that a + b1 < ub.

• b2 points to the last (smallest) integer of SB such that a + b2 ≥ lb.

Each time a is incremented, b1 and b2 are incremented to maintain these invariants. For

each value of a, all subsets consisting of a unioned with each subset between b1 and b2 have

sums within the bounds [lb, ub− 1].

3.3.3 Extended Schroeppel and Shamir (ESS)

The SS algorithm, described in section 2.4.5, is based upon the HS algorithm, but uses less

memory. The extended Schroeppel and Shamir (ESS) algorithm [Kor11] extends SS to find

all subsets with sums within the range [lb, ub− 1].

Recall that SS breaks S into four “quarter sets” SA1 , SA2 , SB1 , SB2 and generates all 2n
4

subsets of each “quarter set”, storing them in A1, A2, B1 and B2 respectively. A1 and A2 are

combined in a min heap to generate the subsets in the same order as A from HS while B1

and B2 are combined in a max heap to generate the subsets in the same order as B from

HS.

49

The strategy for extending SS is similar to that of extending HS as described in the

previous section. Instead of maintaining a pointer a to the current subset of the A set, the

same value is generated from the min heap.

Since the subsets of the B set are generated from a max heap which combines subsets

from the B1 and B2 lists, there is only access to one subset of B at a time. However, for

each a, the EHS algorithm requires access to all subsets b from B such that when unioned

with the a subset, have subset sums within the range [lb, ub− 1].

To solve this problem, ESS maintains a list of the subsets from B having this property.

The first subset in this list corresponds to the subset b1 points to in the EHS algorithm while

the last subset corresponds to the subset b2 points to.

Each time the next a is popped from the min heap, all subsets b with the property that

sum(a∪ b) ≥ lb are popped from the max heap and added to the end of the list. All subsets

b from the front of this list with the property sum(a∪ b) ≥ ub are popped from the list. This

list contains the exact subsets of the EHS algorithm with sums between those of b1 and b2.

The algorithm proceeds just as SS does, but for each a from the min heap and b from

this stored list, it outputs a ∪ b.

3.4 Improved Recursive Number Partitioning (IRNP)

Korf first introduced recursive number partitioning (RNP) in [Kor09]. He improved upon this

algorithm with a hybrid algorithm called improved recursive number partitioning (IRNP) in

[Kor11]. Both RNP and IRNP are anytime branch-and-bound algorithms. They both use

the KK algorithm to generate an initial upper bound on the sums of the k subsets. This

section describes IRNP, as this is the best version of RNP that Korf produced.

50

3.4.1 Recursive Principle of Optimality

At the core of IRNP is a recursive principle of optimality. Given a partition of S into k subsets

〈S1, S2, ..., Sk〉, a decomposition of the partition is a two-way partition of 〈S1, S2, ..., Sk〉 into

collections of subsets of cardinality k1 and k2 where k1 + k2 = k. For example, if k = 3,

there are three different decompositions with k1 = 1 and k2 = 2:

〈〈S1〉, 〈S2, S3〉〉 〈〈S2〉, 〈S1, S3〉〉 〈〈S3〉, 〈S1, S3〉〉

For k = 4, there are four different decompositions with k1 = 1 and k2 = 3 and three different

decompositions with k1 = 2 and k2 = 2:

〈〈S1〉, 〈S2, S3, S4〉〉 〈〈S2〉, 〈S1, S3, S4〉〉 〈〈S3〉, 〈S1, S2, S4〉〉 〈〈S4〉, 〈S1, S2, S3〉〉

〈〈S1, S2〉, 〈S3, S4〉〉 〈〈S1, S3〉, 〈S2, S4〉〉 〈〈S1, S4〉, 〈S2, S3〉〉

Consider an optimal partition of S into k subsets and any decomposition of these k

subsets into two collections of subsets of cardinality k1 and k2. The recursive principle of

optimality states that any optimal partition of the integers in the first collection of subsets

into k1 subsets and any optimal partition of the integers in the second collection of subsets

into k2 subsets defines an optimal k-way partition. If either collection of subsets were not

optimally partitioned k1 or k2 ways respectively, than optimally partitioning them could

never raise their maximum subset sums. Thus, the principle is valid.

3.4.2 Initial Upper Bound

The initial upper bound for the branch-and-bound algorithm is computed using the KK

polynomial-time approximation algorithm and its value stored in the variable ub. IRNP

then proceeds to improve this bound until it finds an optimal partition.

51

3.4.3 Two-Way Balanced Recursive Partitioning

The recursive principle of optimality takes as a premise that S is partitioned optimally into

k subsets, decomposes these k subsets into two collections of sets with k1 and k2 subsets in

them and then asserts that any optimal k1-way partition of the integers in the k1 collection

of subsets combined with any optimal k2-way partition of the integers in the k2 collection of

subsets is an optimal partition.

In practice, IRNP does not start with an optimal k-way partition, so instead of decom-

posing the subsets, it considers all two-way partitions of S such that if the first set of integers

is optimally subpartitioned k1 ways and the second set of integers is optimally subpartitioned

k2 ways, it is possible that the combined partition could have cost better than ub.

At each recursive call, IRNP uses ESS (section 3.3.3) to generate all two-way partitions

to be subpartitioned k1-ways and k2-ways respectively where k1 = bk/2c and k2 = dk/2e.

Call Sk1 the subset to be partitioned k1 ways and Sk2 the subset to be partitioned k2 ways.

For example, for three-way partitioning, at the top level k1 = 1 and k2 = 2. For four-way

partitioning, k1 = k2 = 2. For five-way partitioning, k1 = 2 and k2 = 3, etc. Since Sk2 is the

complement of Sk1 , ESS only generates Sk1 , which determines Sk2 .

3.4.4 Two-Way Partition Bounds

In order to generate only the two-way partitions that could lead to a combined partition

with cost less than ub, lower and upper bounds for the top-level partition must be chosen.

Since Sk1 is to be partitioned bk/2c ways, and each of these subsets must have sums less

than ub − 1, the upper bound for the sum of Sk1 is bk/2c × (ub − 1). Similarly, the upper

bound for the sum of Sk2 is dk/2e × (ub− 1).

The upper bound for Sk2 implies a lower bound of sum(S) − dk/2e × (ub − 1) for Sk1 ,

the sum remaining for Sk1 if Sk2 has sum equal to its upper bound. However, a better lower

bound is available. Consider the cost of a perfect partition, C∗P =
⌈

sum(S)
k

⌉
. Ignoring the

ceiling, this is also the average sum of each of the k subsets in any partition. If we arbitrarily

52

k1 = bk/2c k2 = dk/2e
lb ub

bk/2c
k
× sum(S) bk/2c × (ub− 1)

lb ub

dk/2e
k
× sum(S) dk/2e × (ub− 1)

Table 3.1: Lower and upper bounds for the decomposition of input integers for IRNP.

enforce that the average sum of the subsets of Sk1 is greater than or equal to the average sum

of the subsets of Sk2 , the lower bound for Sk1 becomes k1

k
× sum(S). That is, the ratio of

the sum of the integers in the k1 partition to the sum of the integers in S is at least as great

as the ratio of k1 to k. Since we enforce that the subset sum of Sk1 is greater than or equal

to the subset sum of Sk1 , we avoid generating duplicates by permuting the two subsets.

For each Sk1 generated by ESS, IRNP has to decide whether to subpartition Sk1 or its

complement Sk2 first. The subset with fewer integers is subpartitioned first because it can

be done faster and is more likely to fail to achieve ub− 1. If the cost of subpartitioning the

first subset (either Sk1 k1 ways or Sk2 k2 ways) is less than ub, then the other complement

subset is recursively subpartitioned. If the cost of this second partition is also less than ub,

the ub is set to the max of the two partition costs. This process continues until lb = ub or

the whole search space is exhaustively searched.

3.4.5 Partitioning Small Sets, a Hybrid Algorithm

For small sets of numbers, Korf reports that IRNP is slower than some other previous

algorithms [Kor11]. He calls IRNP “A Hybrid Recursive Multi-Way Number Partitioning

Algorithm” since depending on n and k, IRNP uses different algorithms to solve different

instances. In general, for n ≤ k + 2, greedy is an optimal algorithm, so it is used.

For two-way partitioning, CKK is used for 5 ≤ n ≤ 16 and SS for n ≥ 17. Even though

CKK runs in O(2n) time and SS in O(2n
2), there is constant overhead to SS which makes

CKK faster for small n.

For three to ten-way partitioning, CGA is used for small n and IRNP for large n. Table

53

3.2 shows the algorithm used as a function of n for 3 ≤ k ≤ 10.

k → 3 4 5 6 7 8 9 10
CGA when n ≤ 12 14 16 19 21 25 27 31
IRNP when n ≥ 13 15 17 20 22 26 28 32

Table 3.2: The values of n for each k in which CGA or IRNP are used. From [Kor11].

3.4.6 Improvements of IRNP over RNP

At their core, both IRNP and RNP rely on the principle of recursive optimality and use

recursive decomposition. However, there are three differences, described in this section.

Decomposition
For even values of k, IRNP and RNP decompose the numbers in the same manner. However,

for odd values of k, they differ. IRNP partitions into two subsets such that the first subset

is subpartitioned bk/2c ways and the second set is subpartitioned dk/2e ways. In contrast,

RNP generates first subsets, then recursively partitions the remaining numbers k − 1 ways.

Generating Subsets with Sums in Range
IRNP uses extended Schroeppel and Shamir (ESS) to generate subsets with sums in range.

RNP uses inclusion-exclusion (IE) binary tree search. IE takes time O(2n) and space O(n)

while ESS takes time O(2n
2) and space O(2n

4). ESS in general is a much faster algorithm.

Given the size of n and k that are tractably solved, the memory requirements of ESS are

small.

Hybrid Algorithm
IRNP is a hybrid algorithm which also uses the CGA, CKK and SS algorithms depending

on the values of n and k. RNP on the other hand uses CKK for all two-way partitions and

is purely recursive for k > 2.

54

3.5 Moffitt Algorithm (MOF)

After Korf introduced RNP in 2009 and IRNP in 2011, Michael Moffitt introduced his al-

gorithm in 2013 [Mof13], referred to as the Moffitt algorithm (MOF) in this thesis. Like

IRNP, MOF is an anytime branch-and-bound-algorithm. However, there are also a number

of major differences. The biggest difference is the method for decomposing subsets. While

IRNP recursively decomposes its remaining integers into two balanced subsets, MOF sequen-

tially generates all possible first subsets, then recursively partitions the remaining integers

k − 1 ways. MOF also uses a different algorithm for generating subsets with sums in a

range. Finally, MOF introduces weakest-link optimality to replace the recursive principle of

optimality. This section describes the MOF algorithm.

3.5.1 Weakest-Link Optimality

While the recursive principle of optimality is at the core of IRNP, weakest-link optimality

is at the core of MOF. In order to optimally partition S into k subsets, IRNP partitions S

into two subsets to be subpartitioned k1 = bk/2c and k2 = dk/2e ways. It then recursively

subpartitions the k1 set followed by the k2 set, both optimally.

Call C∗ the optimal cost of partitioning S into k subsets; and C∗k1 and C∗k2 the costs

of optimally subpartitioning the numbers in the k1 and k2 subsets. If C∗k1 > C∗k2 , it is not

necessary to optimally subpartition the k2 subset in order to find an optimal solution. It

is only necessary to find a subpartition with cost less than or equal to C∗k1 since C∗ =

max{C∗k1 , C∗k2} = C∗k1 .

While recursively partitioning S, IRNP optimally partitions the remaining integers at

every step. In contrast, MOF searches for subsets with cost less than or equal to the max of

the costs of the subsets already constructed as ancestors in the recursive tree.

55

Example 3.5.1 - Weakest-Link Optimality

From [Mof13]: Consider the input set S={1, 2, 3, 4, 5, 6, 7} to be partitioned into k = 3

subsets. Here are two optimal partitions:

S1 S2 S3

Partition 1: {3,7} {4,6} {1,2,5}

Partition 2: {3,7} {4,5} {1,2,6}

Both partitions have the same cost of 10. However, look at S2 and S3. For partition

1, sum(S2)=10 while sum(S3)=8, but this is not an optimal partition of S2∪S3 into two

subsets. For partition 2, both sum(S2)=9 and sum(S3)=9, which is an optimal partition

of S2 ∪ S3 into two subsets.

Since IRNP uses the recursive principle of optimality, it only searches for optimal

partitions where all subpartitions are optimal as well, as in partition 2. MOF looks for

any optimal solution, so it could terminate after finding either partition 1 or 2.

3.5.2 Sequential Recursive Partitioning

Improved recursive number partitioning (IRNP) decomposes S into two subsets to be subpar-

titioned k1 = bk/2c and k2 = dk/2e ways. It then recursively partitions the k1 set followed

by the k2 set. In contrast, MOF generates all first subsets S1 whose sums are within the

range [lb, ub− 1]. Then, it recursively subpartitions the remaining integers k − 1 ways into

the partition 〈S2, ..., Sk〉. In this way, it generates the k subsets sequentially from S1 to Sk

by searching a recursive partitioning tree of depth k.

At each recursive call, MOF uses inclusion-exclusion (IE) binary tree search (section

3.3.1) to generate all first subsets with sums within the bounds [lb, ub− 1].

For every optimal k-way partition 〈S1, ..., Sk〉, there are k! equivalent solutions possible

by permuting the subsets Si. For example, the partition 〈{8, 1}, {5, 2, 2}, {6, 3}〉 is equivalent

56

to 〈{5, 2, 2}, {8, 1}, {6, 3}〉. In order to eliminate all of these duplicates, the largest remaining

integer is always included in the next subset of the partition.

3.5.3 Sequential Recursive Partitioning Bounds

The upper bound (ub) is the cost of the lowest-cost complete partition found so far. Initially,

MOF sets ub to sum(S). As complete partitions with lower cost are found, ub is set to the

new cost. For each partial partition Pd = 〈S1, ..., Sd〉 at depth d of the branch-and-bound

tree, MOF uses ub, the remaining integers SR and the depth d to compute the lower bound

lb = sum(SR)−(k−d)(ub−1) as described in section 3.2.2. If lb ≥ ub, the search immediately

returns ub.

Otherwise, if lb < ub, MOF generates all subsets Sd+1 with sums within the range

[lb, ub − 1] one at a time from SR to create the partial partitions Pd+1 = 〈S1, ..., Sd, Sd+1〉

at depth d + 1. For each partial partition Pd+1, the algorithm recursively partitions SR, the

remaining integers, k−(d+1) ways. If the cost of any of these recursive partitions is less than

or equal to the maximum sum of the subsets of Pd+1, the recursive call returns immediately.

Since the cost of a partial partition is the maximum of its subset sums, the maximum sum

of the subsets of Pd+1 is the lowest possible cost for a complete partition that includes Pd+1.

Otherwise, the algorithm returns the lesser of ub and the lowest-cost recursive partitioning.

57

3.5.4 Dominance Pruning for Inclusion-Exclusion

Along with the pruning rules described in section 3.3.1, Moffitt also adds a form of dominance

pruning to IE [Mof13]. When running IE to generate subset Si of the current partition

〈S1, S2, ..., Sk〉, the sum of the integers of Si must be within the range [lb, ub − 1]. The

remaining integers SR are considered in decreasing order. Each integer is either included or

excluded.

Consider input set S = {15, 12, 11, 6, 4, 3, 2} and ub = 23. We run IE to generate candi-

date subsets for S1 with sum(S1) < 23. IE starts by including the largest (remaining) integer

15. It is forced to exclude 12 and 11 since either would exceed the upper bound if added to

15. IE first includes 6 resulting in the subset {15, 6} with sum 21. No other integers can be

added to {15, 6} without equaling or exceeding the upper bound, so IE now excludes 6.

After 6 is excluded, the sum of all integers included below the corresponding exclusion

branch must exceed 6. As IE continues, it will generate the subsets {15, 4, 3} and {15, 4, 2}

with sums 22 and 21 respectively. The subset {15, 4, 2} does not need to be considered,

since in any partition that contains S1 = {15, 4, 2}, the 4 and the 2 could be swapped for

the 6 without changing the partition cost. Any place where 6 could fit in subsequent subsets

〈S2, S3, ..., Sk〉, 4 and 2 could also fit. Therefore, S1 = {15, 4, 2} is dominated and does not

need to be considered.

More formally, call x an integer being considered by the IE algorithm while constructing

subset Si. Assume that sum(Si∪x) < ub. When x is excluded from Si, the integers included

below this exclusion branch must have sum greater than x. Any subset of integers whose

sum is less than or equal to x can be pruned. This is a special case of the dominance pruning

rules first introduced for bin packing by Martello and Toth [MT90a, MT90b]. These more

general dominance rules are discussed in section 4.5.2 in our discussion of bin packing.

58

k = 8

4 4

2 2 2 2

1 1 1 1 1 1 1 1

1

1

1

1

1

1

1 1

k = 8

7

6

5

4

3

2

Decomposition into k = 8 Partitions
IRNP MOFFITT

Figure 3.3: A comparison of the decomposition strategies of IRNP vs MOF for partitioning
into k = 8 subsets. Each arrow represents a decomposition. The number of
decompositions is exponential in the number of integers left to partition.

3.6 Experimental Results: RNP vs MOF

While there are many differences between improved recursive number partitioning (IRNP)

and the Moffitt algorithm (MOF), there are two main differences. First, IRNP uses extended

Schroeppel and Shamir (ESS) to generate subsets with sums within a range, while MOF

uses inclusion-exclusion (IE). Second, IRNP recursively decomposes the input set into two

balanced partitions to be subpartitioned, while MOF generates all subsets with sums within

a range and sequentially subpartitions the remaining integers k − 1 ways.

To show the empirical differences between these two algorithms, we ran a series of exper-

iments with integers sampled uniformly at random from the range [1, 248− 1]. We generated

59

100 problem instances for each n from n = 30 to 45. We chose to generate 48-bit numbers

in order to generate hard instances without perfect partitions [Kor11]. All experiments were

run on an Intel Xeon X5680 CPU running at 3.33GHz.

Table 3.3 reports the average run times for IRNP and MOF to partition the input sets

of size n = 30 to 45 into k = 3 to 10 subsets. For each k, the column titled “R” reports the

ratio of the average run times of MOF to IRNP. That is, it shows how many times longer

on average it takes MOF to solve a problem instance as compared to IRNP.

For k = 3 to 5, IRNP dominates MOF and the ratio of their run times increases with

n. For k = 6 to 10, MOF dominates IRNP with the ratio of the run times remaining

relatively constant with respect to n. While IRNP dominates for small k, as k increases,

MOF dominates.

Given a set of integers S, we could plot the sum of each of the subsets in the power set

of S. These sums would form a bell shaped curve with a mode around sum(S)/2. For any

multi-way partition problem with k subsets, the average sum of the integers in each subset

is sum(S)/k. The goal is to minimize the largest subset sum which tends to push the subset

sums towards the average sum. As k increases, there tends to be many fewer subsets with

sums around sum(S)/k than there are with sums around sum(S)/2. Since MOF generates

subsets with sum around sum(S)/k and IRNP generates subsets with sum around sum(S)/2,

MOF tends to be much faster with increasing k as can be seen in table 3.3. This is despite

the fact that RNP uses ESS with time complexity O(2n
2) to generate subsets while MOF

uses IE with time complexity O(2n).

3.7 Sequential Number Partitioning

In 2013, Korf and Schreiber combined the best ideas of IRNP and MOF to create sequential

number partitioning (SNP) 1 [KSM13]. SNP is very similar to MOF, relying on weakest-link

optimality. For k-way partitioning, like MOF, it uses sequential recursive partitioning to
1The name “sequential number partitioning” was also used for a different algorithm in [Kor09].

60

k → 3-Way 4-Way 5-Way 6-Way
n ↓ IRNP MOF R IRNP MOF R IRNP MOF R IRNP MOF R
30 .00 .04 10 .03 .02 1 .11 .01 1/8 .72 .01 1/55
31 .00 .07 14 .04 .03 1 .20 .02 1/8 1.01 .02 1/48
32 .01 .12 15 .06 .05 1 .39 .04 1/10 1.70 .03 1/50
33 .01 .19 21 .10 .09 1 .54 .06 1/9 2.78 .06 1/50
34 .01 .36 25 .14 .16 1 .96 .11 1/9 4.28 .09 1/47
35 .02 .66 36 .17 .27 2 1.55 .18 1/9 6.84 .15 1/45
36 .03 1.21 40 .23 .45 2 2.58 .29 1/9 11.4 .23 1/50
37 .04 2.09 54 .32 .80 3 3.78 .49 1/8 17.3 .36 1/49
38 .06 3.80 64 .46 1.32 3 8.59 .82 1/10 28.8 .60 1/48
39 .08 6.77 86 .67 2.23 3 11.3 1.36 1/8 46.8 1.03 1/45
40 .13 11.7 87 1.03 3.72 4 19.9 2.15 1/9 80.8 1.50 1/54
41 .16 23.9 148 1.56 7.09 5 33.4 3.96 1/8 126 2.68 1/47
42 .27 39.5 148 2.23 11.2 5 60.4 6.08 1/10 224 4.63 1/48
43 .33 71.8 220 3.20 20.0 6 88.8 9.97 1/9 331 7.26 1/46
44 .54 135 252 5.11 34.0 7 163 17.3 1/9 565 11.8 1/48
45 .71 238 336 7.37 59.0 8 359 27.9 1/13 - 19.2 -

k → 7-Way 8-Way 9-Way 10-Way
n ↓ IRNP MOF R IRNP MOF R IRNP MOF R IRNP MOF R

30 2.50 .01 1/197 24.9 .01 1/2k 41.3 .01 1/4k 144 .02 1/8k
31 3.35 .02 1/159 56.7 .07 1/811 85.0 .02 1/3k 265 .01 1/18k
32 5.21 .03 1/168 51.9 .03 1/1k 118 .02 1/4k 607 .02 1/33k
33 8.04 .05 1/167 72.0 .04 1/1k 281 .04 1/7k 1501 .03 1/44k
34 13.0 .08 1/165 99.4 7.04 1/14 442 15.8 1/28 2169 .09 1/23k
35 20.8 .14 1/154 169 .13 1/1k 543 .13 1/4k 6027 .11 1/56k
36 36.0 .20 1/184 253 .18 1/1k 973 .18 1/5k - .15 -
37 58.0 .34 1/173 428 .30 1/1k 1626 .30 1/5k - .40 -
38 106 .55 1/193 723 .55 1/1k - .59 - - .77 -
39 165 .88 1/188 1228 .89 1/1k - .79 - - .81 -
40 314 1.36 1/232 - 1.24 - - 1.24 - - 1.39 -
41 448 2.28 1/196 - 2.29 - - 2.11 - - 2.04 -
42 908 3.67 1/247 - 3.77 - - 3.26 - - 3.27 -
43 1351 5.99 1/226 - 5.89 - - 5.44 - - 5.26 -
44 2492 9.86 1/253 - 8.60 - - 8.63 - - 9.22 -
45 - 17.0 - - 14.5 - - 13.8 - - 14.0 -

Table 3.3: The average time in seconds to optimally partition 48-bit integers 3 through 10
ways using IRNP and MOF.

61

generate all first subsets with sums within the range [lb, ub− 1]. For each of these subsets, it

recursively partitions the remaining integers k−1 ways. Given a partial partition 〈S1, ..., Sd〉,

if the remaining integers are subpartitioned k − d ways such that the maximum subset sum

is less than the maximum of the sums of S1 through Sd, then the recursive partition can

return immediately.

However, for generating subsets within a range, SNP uses the ESS algorithm like IRNP

as opposed to the IE algorithm that MOF uses. IE always considers the input integers

in decreasing order and includes integers before excluding them. It is this behaviour that

allows it to use the dominance pruning rule described in section 3.5.4. ESS generates sets in

a different and more complicated order so this dominance rule is not implemented.

3.8 Experimental Results: SNP vs MOF

We ran the SNP algorithm on the same set of instances described in section 3.6. The integers

are sampled uniformly at random from the range [1, 248−1]. There are 100 problem instances

for each n from n = 30 to 45. All experiments were run on an Intel Xeon X5680 CPU running

at 3.33GHz.

Table 3.4 reports the average run times for SNP and MOF to partition input sets of size

n = 30 to 45 into k = 3 to 10 subsets. For each k, the column titled “R” reports the ratio of

the average run times of SNP to MOF. That is, it shows how many times longer on average

it takes MOF to solve a problem instance as compared to SNP.

For k = 3 to 5, SNP dominates MOF and the ratio of their run times increases with n.

For k = 6, MOF is fastest for small n but then SNP dominates for n ≥ 34. For k = 7 and

k = 8, MOF dominates for the numbers reported, but as n increases, the ratio decreases,

suggesting that if n were to get large enough, SNP would dominate. There is no clear trend

for k = 9. For k = 10, MOF dominates, and the margin increases with increasing n.

Notice that for n = 34 and k = 9, the average times for both SNP and MOF do not

follow a trend with the rest of the series for k = 9. This is due to the results for one problem

62

which took 96455.9 seconds for SNP and 1572.27 seconds for MOF. This shows how sensitive

these algorithms can be to individual problem instances.

3.9 Experimental Results: SNP vs MOF vs IRNP

Figure 3.4 shows the same experimental results for SNP, MOF and IRNP in graph form.

There is a separate graph for each value of k from 3 to 10 and each graph shows average

times for each n from 30 to 45. These graphs show that SNP is faster than IRNP for all k

from 4 to 10 and about the same speed for k = 3. SNP outperforms MOF for k ≤ 6 while

MOF outperforms SNP for k ≥ 7. As we mentioned in the last section, it seems that for

larger n, SNP will eventually outperform MOF for k = 8 and k = 9.

3.10 Summary

This chapter has introduced three branch-and-bound algorithms for solving the multi-way

number partitioning problem: improved recursive number partitioning (IRNP), the Moffitt

algorithm (MOF) and sequential number partitioning (SNP). The multi-way version of the

greedy algorithm, also known as longest processing time, and the multi-way version of the

Karmarkar-Karp heuristic are approximation algorithms. These are used to compute upper

bounds for the branch-and-bound algorithms.

Both IRNP and MOF recursively partition the input set S into k subsets. IRNP uses the

recursive principle of optimality to recursively partition S into two subsets to be partitioned

bk/2c and dk/2e ways. MOF uses the principle of weakest link optimality to consider all

first subsets with sums within the lower and upper bounds, then recursively partitions the

remaining integers k − 1 ways.

Both IRNP and MOF need to generate subsets with sums within a lower and upper

bound. IRNP uses extended Schroeppel and Shamir (ESS), which is a more memory efficient

version of extended Horowitz and Sahni. MOF uses inclusion-exclusion binary tree search

63

k → 3-Way 4-Way 5-Way 6-Way
n ↓ SNP MOF R SNP MOF R SNP MOF R SNP MOF R
30 .00 .04 20 .00 .02 5 .01 .01 2 .02 .01 1/2
31 .00 .07 22 .01 .03 6 .01 .02 2 .03 .02 1
32 .00 .12 31 .01 .05 7 .02 .04 2 .04 .03 1
33 .01 .19 31 .01 .09 7 .03 .06 2 .06 .06 1
34 .01 .36 48 .02 .16 10 .03 .11 3 .08 .09 1
35 .01 .66 53 .02 .27 11 .05 .18 3 .13 .15 1
36 .02 1.21 78 .03 .45 14 .08 .29 4 .17 .23 1
37 .03 2.09 78 .05 .80 15 .12 .49 4 .25 .36 1
38 .03 3.80 119 .07 1.32 19 .17 .82 5 .39 .60 2
39 .05 6.77 129 .11 2.23 20 .26 1.36 5 .62 1.03 2
40 .07 11.7 178 .15 3.72 25 .36 2.15 6 .83 1.50 2
41 .11 23.9 210 .25 7.09 29 .59 3.96 7 1.29 2.68 2
42 .14 39.5 291 .33 11.2 34 .86 6.08 7 2.16 4.63 2
43 .22 71.8 325 .51 20.0 39 1.27 9.97 8 3.17 7.26 2
44 .28 135 485 .68 34.0 50 1.77 17.3 10 4.35 11.8 3
45 .49 238 489 1.13 59.0 52 2.64 27.9 11 7.07 19.2 3

k → 7-Way 8-Way 9-Way 10-Way
n ↓ SNP MOF R SNP MOF R SNP MOF R SNP MOF R

30 .04 .01 1/3 .06 .01 1/5 .08 .01 1/8 .06 .02 1/3
31 .06 .02 1/3 .19 .07 1/3 .13 .02 1/6 .13 .01 1/9
32 .09 .03 1/3 .14 .03 1/5 .19 .02 1/8 .20 .02 1/11
33 .13 .05 1/3 .23 .04 1/5 .31 .04 1/8 .34 .03 1/10
34 .18 .08 1/2 .35 7.04 20 965 15.8 1/61 .48 .09 1/5
35 .29 .14 1/2 .59 .13 1/5 .92 .13 1/7 .90 .11 1/8
36 .41 .20 1/2 .80 .18 1/4 1.29 .18 1/7 1.47 .15 1/10
37 .64 .34 1/2 1.33 .30 1/4 2.29 .30 1/8 3.60 .40 1/9
38 .98 .55 1/2 2.24 .55 1/4 4.53 .59 1/8 6.91 .77 1/9
39 1.46 .88 1/2 3.44 .89 1/4 5.91 .79 1/7 9.63 .81 1/12
40 1.96 1.36 1 4.79 1.24 1/4 8.55 1.24 1/7 15.2 1.39 1/11
41 3.02 2.28 1 7.70 2.29 1/3 14.6 2.11 1/7 25.9 2.04 1/13
42 5.03 3.67 1 12.9 3.77 1/3 24.9 3.26 1/8 42.9 3.27 1/13
43 7.47 5.99 1 19.4 5.89 1/3 40.4 5.44 1/7 78.6 5.26 1/15
44 11.1 9.86 1 24.7 8.60 1/3 59.6 8.63 1/7 123 9.22 1/13
45 19.5 17.0 1 39.7 14.5 1/3 87.9 13.8 1/6 - 14.0 -

Table 3.4: The average time in seconds to optimally partition 48-bit integers 3 through 10
ways using SNP and MOF.

64

10-3
10-2
10-1
100
101
102
103

Ti
m

e
(s

)
k = 3

rnp
snp
moffitt

10-3
10-2
10-1
100
101
102 k = 4

10-3
10-2
10-1
100
101
102
103

Ti
m

e
(s

)

k = 5

10-2
10-1
100
101
102
103 k = 6

10-2
10-1
100
101
102
103
104

Ti
m

e
(s

)

k = 7

10-2
10-1
100
101
102
103
104 k = 8

30 32 34 36 38 40 42 44 46
n

10-3
10-2
10-1
100
101
102
103
104

Ti
m

e
(s

)

k = 9

30 32 34 36 38 40 42 44 46
n

10-2
10-1
100
101
102
103
104 k = 10

Figure 3.4: The average time in seconds to optimally partition 48-bit integers 3 through 10
ways using SNP, IRNP and MOF.

65

(IE). SS uses O(2n
2) time and O(2n

4) space. IE uses O(2
n
) time and linear space.

SNP is an attempt to combine the best features of IRNP and MOF into one algorithm. It

uses the recursive partitioning style of Moffitt but generates subsets with sums in a range like

IRNP. SNP dominates both RNP and MOF for small k but MOF is the dominant algorithm

for k ≥ 7.

66

CHAPTER 4

Bin Packing Algorithm

This chapter describes the relationship between bin packing and number partitioning. Specif-

ically, we focus on solving the multi-way partition problem (section 1.0.1) using solvers for

the bin-packing problem (section 1.1.2).

We start by describing the dual relationship between bin-packing and number partition-

ing. We then introduce lower and upper bounds for bin packing. Then we cover MULTIFIT,

an algorithm for solving number-partitioning problems using bin-packing algorithms.

Finally, we cover two different types of bin-packing solvers: bin completion (BC), which

came from the artificial intelligence community; and branch-and-cut-and-price (BCP), which

arose from operations research. While any bin-packing algorithm can be used to solve

number-partitioning problems, BC and BCP are the only bin-packing algorithms we are

aware of in the literature that have been used to solve number-partitioning problems opti-

mally. For information on other optimal bin-packing algorithms in general, see for example

[FK05, Sch02, MT90a].

4.1 Relationship Between Bin Packing and Number Partitioning

To describe how to solve number partitioning using bin-packing algorithms, let’s revisit the

definitions of the optimization versions of the bin-packing and multi-way number partitioning

problems, underlining the differences:

Multi-Way Number Partitioning

Given an input multiset S = {s1, s2, ..., sn} of positive integers and a number of

67

subsets k,

separate the integers of S into k mutually exclusive and collectively exhaustive sub-

sets, minimizing the largest subset sum.

Bin Packing

Given an input multiset S = {s1, s2, ..., sn} of positive integers and a capacity C,

separate the integers of S into mutually exclusive and collectively exhaustive subsets,

with sums less than or equal to C, minimizing the number of subsets.

Bin Packing Number Partitioning

Given: S S
Fixed: Subset sum (capacity) Number of subsets
Minimize: Number of subsets (bins) Subset sum

Table 4.1: Difference between bin packing and number partitioning.

In some sense, bin packing and number partitioning are dual problems. Bin packing

fixes the subset sum and minimizes the number of subsets, while number partitioning fixes

the number of subsets and minimizes the subset sum. In section 4.4, we will introduce

MULTIFIT, an algorithm that exploits this duality to solve number-partitioning problems

using bin-packing algorithms. First, we introduce lower and upper bounds for bin-packing

problems. These bounds are required in order to run MULTIFIT.

4.2 Lower Bounds

A lower bound (lb) function for bin packing calculates the minimum number of subsets of

sum less than or equal to C needed to pack the integers of the input set S. If a solution of

lb subsets is found, search can terminate immediately and return this value as an optimal

solution. Martello and Toth introduced two classic bin packing lower bounds which they

refer to as L1 and L2 [MT90b]. Both algorithms first sort the input set S in decreasing

68

order.

4.2.1 L1 Lower Bound

The lower bound L1 relaxes of the constraint that integers cannot be split between multiple

bins. It is calculated as:

L1 =
⌈

Sum of all input integers
Bin Capacity

⌉
=
⌈

sum(S)
C

⌉

Example 4.2.1 - L1 lower bound

Consider the input set S = {99, 97, 94, 93, 8, 5, 4} and the bin capacity C = 100 (This

example is taken from [Kor02].)

The L1 bound is:

L1 =
⌈

sum(S)
C

⌉
=
⌈400

100

⌉
= 4.

4.2.2 L2 Lower Bound

Their second lower bound L2 improves upon the L1 bound. It estimates a minimum amount

of wasted space w in any solution and adds this to the total sum of S before dividing by the

bin capacity. The formula for the L2 lower bound is:

L1 =
⌈

w + sum(S)
C

⌉

We demonstrate how to calculate w through the following example 4.2.2:

69

Example 4.2.2 - L2 lower bound

Consider again the input set S = {99, 97, 94, 93, 8, 5, 4} and the bin capacity C = 100.

Bin 1: Place 99, the largest integer of S into bin 1. Since no other integer of S fits with

the 99, there is C − 99 = 1 unit of wasted space in this bin.

Bin 2: S = {97, 94, 93, 8, 5, 4} - Place 97 into bin 2. Since no other integer of S fits with

the 97, there are C − 97 = 3 units of wasted space in this bin.

Bin 3: S = {94, 93, 8, 5, 4} Place 94 into bin 3. Both the 5 and the 4 fit with the 94.

However, to avoid an exponential time algorithm, we don’t branch and consider

each integer. Instead, we consider 9, the sum of the two integers. We place 6 units

of the 9 into bin 3 which leaves no waste and carry over the remaining 3 units to

subsequent bins.

Bin 4: S = {93, 8} - Place 93 into bin 4. We then add the carry from the previous bin.

Since the entire carry of 3 units fit, we add it to the bin, leaving C − (93 + 3) = 4

more units of wasted space in this bin. If the entire carry had not fit, we would

have used enough of the carry to fill this bin, and carried over the remainder to

subsequent bins.

Bin 5: S = {8} - Place 8, the only remaining integer of S into bin 5. This leaves

C − 8 = 92 more units of wasted space in this bin.

The total waste is the sum of the waste from the five bins we just described, w =

1 + 1 + 0 + 4 + 92 = 100. The L2 bound is:

L1 =
⌈

w + sum(S)
C

⌉
=
⌈100 + 400

100

⌉
=
⌈500

100

⌉
= 5.

70

The following are the steps of the algorithm for calculating L2:

L2 lower bound, calculating w :

• Let w be the wasted space, initialize this to 0.

• Let carry be an amount carried over from previous bins, initialize this to 0.

While S is not empty, repeat:

1: Calculate the residual bin capacity left as r = C − s0, where s0 is the largest
remaining number.

• Remove s0 from S.

2: Remove from S all integers with value less than or equal to r and store the sum
of these integers plus carry in the variable sum.

3a: If r ≥ sum: Add r − sum to w, set carry = 0.

3b: If r < sum, set carry = sum− r.

After calculating w, the L2 lower bound is defined as:

L2 =
⌈

w + sum(S)
C

⌉

Figure 4.1: The steps to calculate the L2 wasted space heuristic

4.3 Polynomial Time Approximation Algorithms (Upper Bounds)

This section introduces two classic polynomial time approximation algorithms from the bin

packing literature, first-fit decreasing and best-fit decreasing [Joh73, GGU72]. These are used

by the bin completion algorithms as initial upper bounds to help prune the search space.

For a more complete survey on approximation algorithms for bin packing, see [CGJ96].

71

4.3.1 First-Fit Decreasing Upper Bound

The first-fit decreasing (FFD) algorithm first sorts the input integers S in decreasing order.

It keeps a list of bins, initially empty. FFD iterates through the integers of S and places

each into the first bin in the list in which it fits. If it does not fit into any of the bins in the

list, it is added to a new empty bin appended to the list.

Example 4.3.1 - First-Fit Decreasing

Consider the input set S = {15, 10, 6, 4, 3, 2} and the bin capacity C = 20. The following

table shows the steps that first-fit decreasing takes to compute an upper bound for the

number of bins in an optimal packing.

S Action Bin 1 Bin 2 Bin 3

{15, 10, 6, 4, 3, 2} Put 15 into Bin 1 {15} - -

{10, 6, 4, 3, 2} Put 10 into Bin 2 {15} {10} -

{6, 4, 3, 2} Put 6 into Bin 2 {15} {10,6} -

{4, 3, 2} Put 4 into Bin 1 {15,4} {10,6} -

{3, 2} Put 3 into Bin 2 {15,4} {10,6,3} -

{2} Put 2 into Bin 3 {15,4} {10,6,3} {2}

FFD packs S into three bins of capacity 20.

4.3.2 Best-Fit Decreasing Upper Bound

The best-fit decreasing (BFD) algorithm also first sorts the input integers S into decreasing

order and keeps a list of bins, initially empty. BFD iterates through the integers of S and

places each into the bin in the list with the least capacity remaining in which it fits. If it does

not fit into any of the bins in the list, a new empty bin is appended to the list.

72

Example 4.3.2 - Best-Fit Decreasing

Consider the input set S = {15, 10, 6, 4, 3, 2} and the bin capacity C = 20. The following

table shows the steps that best-fit decreasing takes to compute an upper bound for the

number of bins in an optimal packing.

S Action Bin 1 Bin 2 Bin 3

{15, 10, 6, 4, 3, 2} Put 15 into Bin 1 {15} - -

{10, 6, 4, 3, 2} Put 10 into Bin 2 {15} {10} -

{6, 4, 3, 2} Put 6 into Bin 2 {15} {10,6} -

{4, 3, 2} Put 4 into Bin 2 {15} {10,6,4} -

{3, 2} Put 3 into Bin 1 {15,3} {10,6,4} -

{2} Put 2 into Bin 1 {15,3,2} {10,6,4} -

BFD requires two bins, which for this instance, is also an optimal solution.

4.4 MULTIFIT

In 1978, Coffman, Garey and Johnson introduced MULTIFIT, an approximation algorithm

for number-partitioning problems using an approximation algorithm for bin packing and bi-

nary search [JGJ78]. MULTIFIT partitions S into k subsets while minimizing the maximum

sum of the subsets by solving a sequence of bin-packing problems on S, varying the bin

capacity C. It searches for the smallest C such that the number of subsets required is less

than or equal to k, and calls this smallest capacity C∗.

Starting with lower (lb) and upper (ub) bounds on C∗, it performs a binary search over

the bin capacities between lb and ub. Each probe of the binary search sets C to a value

within the range [lb, ub − 1] and uses FFD (section 4.3.1) to approximate the number of

subsets needed to pack S into subsets with sum less than or equal to C. If the solution

requires fewer than k subsets, the lower half of the remaining capacity space is searched,

73

otherwise the upper half is searched.

While the original algorithm uses FFD, MULTIFIT can be run with any bin-packing

solver. Dell’Amico, Iori, Martello and Monaci [DIM08] proposed an optimal algorithm using

branch-and-cut-and-price (see section 4.6) as the bin-packing solver. Schreiber and Korf

[SK13] use an improved version of the bin-completion algorithm (see section 4.5) as well as

Gleb Belov’s branch-and-cut-and-price algorithm [BS06] as the bin-packing solver.

Listing 4.1 shows the source code for MULTIFIT. The function packBins is a call to

either FFD, BCP or improved bin completion (IBC) depending on which version of the

algorithm is being run. When packBins is a call to IBC, the algorithm is called binary-

search improved bin completion (BSIBC). When packBins is a call to BCP, the algorithm is

called binary-search branch-and-cut-and-price (BSBCP).

Listing 4.1: The MULTIFIT algorithm
1 MULTIFIT(S,k,CMin ,CMax) {
2 while (CMax > CMin) {
3 C = (CMax + CMin) / 2
4 numBins = packBins(S,C)
5 if (numBins > k)
6 CMin = C + 1
7 else
8 CMax = C
9 }

10 return CMin
11 }

It is also possible to solve bin-packing problems using number partitioning algorithms.

Given input set S and bin capacity C, we can first use an approximation such as FFD or

BFD to generate an upper bound ub for the number of bins in an optimal packing. We

can then use a number-partitioning algoritm with k set to ub − 1. If this algorithm finds

a partition with value less than or equal to C, we then try ub − 2. This continues until

the number-partitioning algorithm finds an optimal partition with cost greater than C. The

smallest value of k for which the number-partitioning algorithm can find a partition with cost

less than or equal to C is the number of bins in an optimal bin packing. Solving bin-packing

74

problems with a number-partitioning algorithm is beyond the scope of this thesis.

Notation Definition
C The capacity of a bin.
Feasible Set A set of input integers with sum less than or equal to C.
waste Given feasible set F , the amount of space left in the bin, C − sum(F).
lb The L2 lower bound.
ub The number of bins used in the best solution found so far.
w The sum of the waste in all bin completions on the path to the current node.
W The total allowed waste in a solution better than ub.

Table 4.2: Notation and terms used to describe the bin-completion algorithm.

4.5 Bin Completion (BC)

Classic bin-packing algorithms such as those of Eilon and Christofides [EC71] or Martello

and Toth [MT90a] consider input integers one at a time and assign them to bins. These are

item-oriented branch-and-bound algorithms and beyond the scope of this thesis. In contrast,

bin completion (BC) [Kor02, Kor03] considers the bins one at a time and assigns a complete

set of integers to them. This is a bin-oriented branch-and-bound algorithm.

We continue by first describing Korf’s original BC algorithm 1. We then introduce im-

proved bin completion (IBC), our algorithm which extends BC to make it more effective for

solving number-partitioning problems.

4.5.1 The Original Bin-Completion Algorithm

BC is a branch-and-bound algorithm with initial lower bounds computed using the L2 wasted

space heuristic (section 4.2.2) and upper bounds using BFD (section 4.3.2). If these bounds

are equal, the BFD solution is returned as optimal. Otherwise, a tree search is performed

with the variable ub initialized to the number of bins in the BFD solution.
1Korf wrote two papers on bin completion. When we say original, we are referring to his 2003 paper

which had some implementation improvements over his 2002 paper.

75

A feasible set is a set of input integers with sum less than or equal to C. The assignment

of a feasible set to a bin is called a bin completion. Each node of the branch-and-bound

tree except the root corresponds to a bin completion. The children of the root correspond

to the completions of the bin containing the largest integer. The grandchildren of the root

correspond to the completions of the bin containing the largest remaining integer, and so

forth. The largest integer is included for two reasons. First, to avoid duplicates that differ

only by a permutation of the bins. Second, to shrink the remaining capacity of the bin which

results in fewer feasible bin completions to consider.

The waste of a bin completion is the capacity remaining after it has been packed with

feasible set F . For example, if C=10 and F={4,5}, the waste is 1. BC keeps track of the

sum of the waste in all bins on the path to the current node in the variable w. At any point

during the branch-and-bound search, there is always a solution requiring ub bins. Therefore,

only solutions of ub-1 or fewer bins must be considered. To achieve such a solution, w must

be less than or equal to [(ub− 1)× C]− sum(S), which is called the total allowed waste, or

W .

At each node of the search tree, BC generates all feasible sets which include the largest

remaining integer and whose waste when added to the previous bins’ waste does not exceed

W . These sets are sorted by their sums in decreasing order. BC then branches on each feasi-

ble set F , removing the integers of F from S for the subtree beneath the node corresponding

to F . If all integers are packed in fewer than ub bins, ub is updated to the new value. If this

new value equals the lower bound, BC terminates, returning this packing. Otherwise, the

search terminates when all completions have been exhaustively searched.

4.5.2 Dominance

Some bin completions are dominated by others and need not be considered. Given feasible

sets F1 and F2, F1 dominates F2 if an optimal solution after packing a bin with F1 is at least

as good as an optimal solution after packing the bin with F2.

76

Martello and Toth [MT90a, MT90b] present the following dominance relation for bin

packing. If all the integers of feasible set F2 can be packed into bins whose capacities are

the integers of feasible set F1, then F1 dominates F2. For example, if F1 = {6, 4} and

F2 = {6, 3, 1}, then F1 dominates F2 since the integers of F2 can be packed into bins whose

capacities are the integers of F1 as follows: 〈{6}, {3, 1}〉. Intuitively, this dominance rule

makes sense. Assume we have a solution that includes F2 = {6, 3, 1} and the 4 in some other

bin. If we swap the 4 for 3 and 1, we have F2 = {6, 4}. The 3 and the 1 can fit anywhere

that the 4 could fit. However, there are also places where 3 or 1 can fit in which 4 cannot

fit. We gain strictly more flexibility in packing the remaining bins if F2 = {6, 4}. BC uses

this dominance rule to prune parts of the search space, dramatically cutting down the size

of the search tree.

4.5.3 Generating Completions

At each node of the search tree, BC must generate all undominated feasible subsets that

include the largest remaining integer. These subsets must all have sums less than or equal to

the bin capacity C. If the sums are smaller than C, the bin will contain wasted space. The

variable W is the total amount of wasted space allowed in a solution better than the current

best and w is the total amount of wasted space in bins already completed. Therefore, W −w

is the maximum amount of space we have left to waste in the current bin, and the generated

subsets must have sum greater than or equal to C − (W − w). Given these bounds, BC

generates all bin completions with sums in the range [C − (W − w), C]. It does so using

inclusion-exclusion (IE) binary-tree search (section 3.3.1).

To eliminate some dominated subsets, the IE tree search is modified. Consider a node

in the search tree with a sum corresponding to the sum of its included integers. The left

branch includes the integer x corresponding to the depth of the node and the right branch

excludes x. There are three cases, if:

• sum + x > C: x must be excluded since including it would exceed the bin capacity.

77

• sum + x = C: x must be included and the excluded branch is terminated below the

corresponding node since any child in the exclusion branch is dominated, and including

any more numbers besides x would exceed C.

• sum + x < C: x can be either included or excluded. However, if x is excluded, the

sum of the integers included below the exclusion node must exceed x or the corre-

sponding subset would be dominated by the subsets generated in the inclusion branch.

While these rules prevent the IE algorithm from generating some dominated feasible

subsets, it does not prevent all of them. To eliminate the remaining dominated subsets, an

additional dominance test is necessary. Call F a feasible bin completion. If any subset of the

included integers can be replaced with a single remaining excluded integer without exceeding

the bin capacity C, than F is dominated. See [Kor03] for pseudocode for this dominance

test.

4.5.4 Improved Bin Completion (IBC and BSIBC)

We have implemented three improvements to bin completion and call the resulting bin com-

pletion algorithm IBC. While the changes are simple conceptually, the experimental results

are dramatic, speeding up the BC algorithm by up to five orders of magnitude. This im-

proved version of bin completion is used with MULTIFIT to solve the number-partitioning

problem (BSIBC).

4.5.5 Incrementally Generated Completions

The original BC algorithm generates all completions at each node before sorting them. At any

node, if there are n integers remaining, then there are 2n possible subsets. If a large fraction

of these subsets have sums within the valid range [C − (W − w), C] and are undominated,

then there are an exponential number of completions to generate. This situation tends to

arise when the number of integers per bin in an optimal solution is large. In this case, BC

spends almost all of its time generating completions.

78

To avoid generating an exponential number of completions, we generate and buffer up to

m undominated feasible completions at a time, sort them, and branch. If we don’t find an

optimal solution recursively searching the subtrees of each of these m completions, we then

generate the next m completions.

The implementation of the IE tree for the original BC algorithm used a recursive depth-

first search (DFS). To perform the search over the inclusion-exclusion tree incrementally, we

use an iterative DFS that maintains its own explicit stack data structure. This way, we can

generate as many completions at a time as necessary and keep our explicit stack in memory

so we can come back later to resume the search.

4.5.6 Variable Ordering

As mentioned in the last section, after all feasible completion sets are generated, they are

sorted in decreasing order of subset sum. However, this is not a total order. If two subsets

have the same subset sum, it is arbitrary which completion will be tried first. This can cause

a large disparity in search time depending on the implementation of the sort algorithm.

With our new sort comparator, the subsets are still sorted by sum in decreasing order,

but ties are broken in favor of smaller cardinality subsets. The rationale is that with fewer

integers filling the current bin, there is more flexibility for filling the remaining bins. If both

the sum and cardinality are equal, the subset with the smallest unique integer comes second.

For example, for A = {9, 7, 4, 1} and B = {9, 7, 3, 2}, B comes before A.

Fukunaga suggested min-cardinality max-weight cardinality which first sorts on cardinal-

ity, and then subset sum [FK05]. Given the heuristic nature of variable ordering, different

orders can work better or worse for different problem instances.

79

4.6 Branch-and-Cut-and-Price (BCP and BSBCP)

Branch-and-cut-and-price (BCP) is an operations research algorithm for solving an integer

linear program. At the core of BCP is linear programming, which is a technique for solving

a maximization or minimization problem given a set of constraints in the form of linear

inequalities. The time complexity of solving a linear program is polynomial.

The values of the solution to a linear program are real numbers. However, the linear

programming model for solving the bin-packing problem requires that the solution values

be integer. In order to enforce integer values, branch-and-bound is used over a series of

linear programming problems. Furthermore, the model for solving the bin-packing problem

requires a number of variables exponential in n, the number of input integers. To deal with

this large number of variables, a technique called column generation is used. Finally, there

is an optimization for integer linear programming which adds constraints to cut down the

feasible region for optimal solutions called cutting planes. In this section, we will discuss

linear programming, branch-and-bound, cutting planes and column generation. Together,

these four techniques form BCP. BCP is used with the MULTIFIT algorithm to solve the

number-partitioning problem (BSBCP).

4.6.1 Linear Programming (LP)

At the core of BCP is linear Programming (LP). [Chv83, DT97, DT03] all provide an excellent

introduction to the field. LP is a method for maximizing or minimizing a linear objective

function given a set of linear constraints.

Let’s consider the following simple example. Talia likes to knit and sell hats and scarves.

It takes her three hours to make a hat and two hours to make a scarf. A hat requires 10

yards of yarn while a scarf requires 15 yards. She budgets 176 hours each month for her

knitting and acquires 1000 yards of yarn for free on the first of each month. Hats sell for

$20.00 each while scarves sell for $15.00. How many hats and how many scarves should Talia

make each month in order to maximize her revenue? Let:

80

s
(#

 s
ca

rv
es

)

h (# hats)

Optimal Hats and Scarves to Produce

3h + 2s <= 176

10h + 15s <= 1000

h
>=

 0

s >= 0
(0,0)

(0,66 2/3)

(25 3/5, 49 3/5)

(58 2/3, 0)

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

-10 0 10 20 30 40 50 60 70 80

Figure 4.2: The shaded area is the feasible region for our linear programming example with
three constraints. The points a,b and c are the corners of the feasible polytope.

• h be the number of hats Talia knits.

• s be the number of scarves Talia knits.

x =

 h

s

 b =

 176

1000

 c =

 20

15

 A =

 3 2

10 15

We have the following LP:

maximize 20h + 15s (Revenue)

subject to 3h + 2s ≤ 176 (Time constraint)

10h + 15s ≤ 1000 (Yarn constraint)

and h, s ≥ 0 (Cannot produce negative hats or scarves)

The fundamental theorem of linear programming states that both the maximum and

minimum of a linear function constrained to a convex polytope occur at a corner of the

81

polytope. Figure 4.2 shows the plot of the constraints of our example. The corners of the

polytope occur at (0, 0), (0, 662
3), (233

5 , 493
5) and (582

3 , 0). To find the maximum, we plug the

coordinates of the four corners into our maximization function 20h + 15s to obtain, 0, 1000,

1256 and 1073. Since (253
5 , 493

5) has the greatest value, producing 253
5 hats and 443

5 scarves

gives the most revenue. Unfortunately, she cannot sell 3
5 of a hat. We will deal with this

problem in the next section.

Figure 4.3 Shows the same feasible region but also plots the maximization functions which

intersect the corners. The maximization function is 20h+15s = Revenue. The goal of linear

programming is to find the greatest revenue line that intersects the feasible region. For this

problem, the line 20h + 15s = 1256 intersects the feasible region at the point (253
5 , 443

5).

For such a small problem, it is easy to graph the problem and solve it using simple

algebra. However, with more variables, the problem becomes impossible to visualize and

there can be a huge number of corners of a high-dimensional polytope. Nontheless, there are

a number of methods for solving the LP in polynomial time.

The most common method is the simplex method which is not guaranteed to run in

polynomial time in the worst case but is usually polynomial in practice. While the details

of the algorithm are beyond the scope of this thesis, the general idea is that the algorithm

starts by examining a corner on the convex polytope. For a maximization problem, it then

traverses the adjacent edge in the convex polytope to the neighboring corner with the largest

objective value. This operation is called a pivot and is performed by removing one variable

from the basis and adding a different variable back. Since a maximization function over a

convex polytope has no local maxima, only global, it can keep traversing edges this way

until all neighbors have a smaller objective value. This point is guaranteed to be the global

maximum. We refer the reader to [Chv83] for more information on the simplex algorithm as

well as other linear programming algorithms.

Given a vector of variables x = {x1, x2, ..., xn}; two vectors of coefficients b = {c1, c2, ..., bn}

82

and c = {c1, c2, ..., cn}; and a matrix of coefficients A, the standard form of an LP is:

maximize: cT x

subject to: Ax ≤ b

and: x ≥ 0

The values of A, b and c are all given in the problem statement. The goal is to determine

the values of the elements of x that satisfy all equations in Ax ≤ b while maximizing the

formula cT x.

s
(#

 s
ca

rv
es

)

h (# hats)

Profit Lines

Profit = 20h + 15s

1000

1256

1173

Profit=1000
Profit=1256
Profit=1173

-10

0

10

20

30

40

50

60

70

80

-10 0 10 20 30 40 50 60 70 80

Figure 4.3: The same feasible region as Figure 4.2 with three revenue lines drawn for revenues
1000, 1173 and 1256 which intersect with the non-trivial corners of the feasible
region.

4.6.2 Branch-and-Bound

Integer linear programming (ILP) is similar to linear programming, the difference being that

the variables are constrained to having integer values. While linear programming is solvable

83

in polynomial time, ILP is NP-Complete, and no polynomial time algorithm is known [GJ79].

Branch-and-bound can be combined with linear programming to solve an ILP.

If we plug the ILP into an LP solver while relaxing the integrality constraint and the value

of the variables returned happen to be integer, that solution is guaranteed to be optimal even

for the ILP. However, if the solution returned has even one non-integer variable, it is not a

feasible solution to the ILP.

However, since we know that no variable can be non-integral, we can add a constraint to

rule out the non-integral solution and solve the new program. For example, in the example

from the last section, the solution was h = 253
5 , s = 493

5 . Let’s say we are now searching

for an integer solution to the problem. We create two new linear programs by adding the

constraint h ≤ 25 to one program and h ≥ 26 to the other. Since the value of h cannot be

between 25 and 26 and also be integral, this does not rule out any feasible solutions to the

integer linear program. The solution to the first problem is h = 25, s = 50 with objective

value 1250. The solution to the second problem is h = 26, s = 49 with objective value 1255.

Since this is a maximization problem, the solution is h = 26, s = 49.

4.6.3 Cutting Planes

[Gom58] introduced the idea of cutting planes in his short 1958 paper. A cutting plane is

a constraint added to a linear program that shrinks the size of the feasible region but does

not exclude any feasible integer solutions.

The problem of finding valid cutting planes is called the separation problem. Although

Gomory described cutting planes in the 1950s, he did not believe they would be a useful

technique. It was not until the 1990s that [BCC93] figured out how to efficiently use cutting

planes to improve upon branch-and-bound techniques for ILP. Gomory cuts are ubiquitous

since they work well in concert with the simplex algorithm. However, there are many different

separation algorithms. The description of these algorithms is beyond the scope of this thesis.

84

4.6.4 Column Generation

Column generation is a very complex subject beyond the scope of this thesis. We will give

just a very high level view. In section 4.6.1, we discussed the simplex algorithm. At the

most abstract level of explanation, the simplex algorithm traverses the corners of the convex

polytope enclosing the feasible region of the problem. Due to the nature of simplex, at any

corner, only a subset of the variables have non-zero values and are part of the solution. These

variables are called basic variables while the zero variables are called nonbasic. The set of all

basic variables is called the basis. At each pivot step, one of the nonbasic variables replaces

one of the basic variables in the basis to traverse an edge to a neighboring corner.

What happens if we have a problem with an exponential number of nonbasic variables?

If we used the simplex method, finding the nonbasic variable to enter the basis in order

to find a neighbor with a better objective value would be too costly as we would have to

examine the cost of each of these exponentially many variables entering the basis. In these

situations, we use column generation [DW60, AC05].

Instead of considering all variables for the simplex algorithm, only a subset of variables

are used. This subset is called the master problem. We first solve the master problem

optimally. Then, an optimization problem called the pricing problem involving the dual of

the LP solution is solved to find if there is a variable that can enter the master problem

possibly resulting in a better solution. If there is, this new LP is solved optimally. This

process continues until no new variable can improve the objective function. At this point,

the problem is solved and the solution to this final master problem is the optimal solution.

4.6.5 The Cutting Stock Problem

The cutting stock problem is closely related to the bin packing problem, the difference being

in spirit. The bin packing problem assumes that there are relatively few duplicate numbers

in the input set S while the cutting stock problem expects many duplicates.

The story behind the problems is different though this has no effect on solution tech-

85

niques. The bin-packing problem packs numbers into the fewest number of bins of capacity

C possible. An example cutting stock problem starts with a set of rolls of paper of fixed

length L. There are orders of a certain number of sheets of paper of varying lengths, all

less than L. These orders are fulfilled by cutting the large rolls of length L into the sizes

requested. The goal is to cut the large rolls such that all the orders are fulfilled and the

waste is minimized.

For example, in a typical problem, we might have a large number of rolls of length 20”.

We need to cut sheets of sizes 6”,7”,8” and 9” out of the 20” rolls. We need 325 6” sheets,

428 7” sheets, 512 8” sheets and 231 9” sheets. Cut the 20” rolls into sheets of size 6”, 7”,

8” and 9” such that all orders are fulfilled and the total number of rolls used is minimized.

The solution to the cutting stock problem consists of defining cutting patterns and then

specifying how many cuts of each pattern need to be made so that all of the required sheets

are obtained. A cutting pattern is a set of sheets that can be cut from one roll. The goal is

to minimize the total number of rolls used, or equivalently, the waste. In the example above,

some possible patterns are {6”,6”,6”}, {9”,6”} and {7”,7”,6”}. Note that all of the patterns

can be cut from one sheet, and the waste per use of our example cutting patterns are 2”, 5”,

and 0” respectively.

Historically, BCP algorithms have been used to solve the cutting stock problem [GG61]

while heuristic search methods have been used to solve bin-packing problems [MT90a, Kor03].

However, it is clear that the bin-packing problem is the cutting stock problem where the

number of items of each size happens to be very small, typically one.

More recently, BCP algorithms have also been used to solve the bin packing problem

[BS06, Van99]. We will discuss these models in the next section.

4.6.6 Branch and Cut and Price for Bin Packing

Gilmore and Gomory proposed the first linear programming model for the cutting stock

problem [GG61]. Given that there are m possible cutting patterns and n different lengths

86

of paper li that are being ordered:

Minimize:
m∑

j=1
xj

Subject to:
m∑

j=1
aijxj ≥ Ni ∀i ∈ [1, n]

aij is integer ∀i ∈ [1, n], j ∈ [1, m]

xj is integer j ∈ [1, m]

Where:

• xj is the number of times the jth cutting pattern is used.

• Ni is the number of rolls of length li demanded.

• aij is the number of rolls of length li produced each time the jth pattern is used.

This formulation works as is for the bin-packing problem as well if we reinterpret the meaning

of the variables:

• xj is a 0/1 variable which is 1 if a particular feasible packing of a single bin is used,

and 0 otherwise.

• Ni is usually 1 since there tends to be a single copy of each item with bin packing,

though some duplicates may occur.

• aij is the number of times item i appears in bin j. This is again usually 0 or 1.

To the best of our knowledge, [BS06] represents the state of the art solver for bin packing

using branch-and-cut-and-price. They use the Gilmore and Gomory model [GG61] as the

basis for their linear program. The details of this algorithm are beyond the scope of this

paper so we direct the reader to the original paper for details.

87

k → 6-Way 7-Way 8-Way 9-Way
n ↓ IBC BCP R IBC BCP R IBC BCP R IBC BCP R

30 .20 2.62 13 .19 1.09 6 .18 .58 3 .12 .32 3
31 .28 3.87 14 .27 1.51 6 .41 .72 2 .20 .40 2
32 .44 6.55 15 .38 2.25 6 .39 1.19 3 .32 .61 2
33 .73 12.4 17 .59 3.41 6 .60 1.53 3 .50 .86 2
34 1.05 19.2 18 .87 4.40 5 1.95 2.13 1 .84 1.15 1
35 1.97 44.5 23 1.62 8.31 5 1.74 3.19 2 1.43 1.41 1
36 2.73 76.8 28 2.22 13.7 6 2.05 5.21 3 1.77 2.05 1
37 4.44 152 34 3.96 23.2 6 3.20 6.92 2 3.38 3.20 1
38 7.45 342 46 6.43 41.5 6 5.60 11.4 2 6.52 5.07 1
39 13.8 891 64 10.6 73.1 7 10.0 19.7 2 8.04 6.68 1
40 18.0 2623 146 15.1 126 8 12.6 26.9 2 12.5 11.4 1
41 34.7 8922 257 24.5 252 10 25.8 57.9 2 22.6 16.8 1
42 63.6 13632 214 44.3 552 12 40.9 68.2 2 33.2 22.2 1
43 95.4 14701 154 70.2 1269 18 65.9 136 2 56.3 35.0 1/2
44 156 14717 95 125 4123 33 94.8 234 2 89.3 52.3 1/2
45 253 16689 66 225 10134 45 165 420 3 135 99.7 1

k → 10-Way 11-Way 12-Way
n ↓ IBC BCP R IBC BCP R IBC BCP R

30 .07 .20 3 .02 .15 8 .00 .11 50
31 .10 .24 2 .06 .17 3 .01 .13 15
32 .21 .34 2 .11 .21 2 .02 .16 8
33 .37 .48 1 .19 .28 1 .05 .18 3
34 .68 .56 1 .39 .30 1 .13 .21 2
35 1.07 .77 1 .74 .50 1 .26 .25 1
36 1.31 1.02 1 1.27 .64 1/2 .70 .31 1/2
37 3.09 1.67 1/2 1.96 .81 1/2 1.05 .45 1/2
38 5.46 1.93 1/3 3.54 1.24 1/3 2.45 .55 1/4
39 7.77 3.38 1/2 6.56 1.62 1/4 3.99 .90 1/4
40 13.3 4.37 1/3 11.6 2.70 1/4 10.1 1.10 1/9
41 20.3 7.14 1/3 18.5 3.32 1/6 12.2 1.52 1/8
42 30.8 9.87 1/3 34.0 4.62 1/7 24.6 2.33 1/11
43 50.1 12.1 1/4 66.8 6.29 1/11 47.8 3.35 1/14
44 91.4 21.8 1/4 97.3 8.74 1/11 89.9 4.27 1/21
45 154 38.2 1/4 114 16.9 1/7 123 6.27 1/20

Table 4.3: The average time in seconds to optimally partition 48-bit integers 3 through 12
ways using BSIBC and BSBCP.

88

4.6.7 An Integer Linear Program for Multi-Way Number Partitioning

Moffitt presented an integer linear program (ILP) for solving multi-way number partitioning

directly without using MULTIFIT [Mof13]. We are given input set S = {s1, s2, ..., sn} to be

partitioned k ways. The integer linear program creates an indicator variable vij which is 1

if integer si is assigned to subset j and 0 otherwise.

Minimize: ub (4.1)

Subject to:
n∑

i=1
si × vij ≤ ub ∀j ∈ [1, k] (4.2)

k∑
j=1

vij = 1 ∀i ∈ [1, n] (4.3)

vij ∈ {0, 1} and integer ∀i ∈ [1, n],∀j ∈ [1, k] (4.4)

Objective function 4.1 tells the ILP to minimize the upper bound. Constraint 4.2 enforces

that the sum of all integers si assigned to subset j is less than or equal to ub. Constraint

4.3 enforces that each input integer must be assigned to exactly one subset. Constraint 4.4

enforces that the indicator variables are integer and constrained to either 0 or 1.

Moffitt reported that he ran experiments using this ILP with the IBM cplex linear pro-

gram solver [CPL09]. The results were not competitive with IRNP or MOF.

4.7 Experimental Results: BSIBC vs BSBCP

In order to show the relative performance of BSIBC vs BSBCP (using the BCP solver from

[BS06]) empirically, we ran these algorithms on the same dataset used to test IRNP, MOF

and SNP in chapter 3. Again, this dataset is composed of problem instances with integers

sampled uniformly at random from the range [1, 248−1]. There are 100 problem instances for

each n from n = 30 to 45. All experiments were run on an Intel Xeon X5680 CPU running

at 3.33GHz.

89

Table 4.3 reports the average run times for BSIBC and BSBCP to partition the input

sets of size n = 30 to 45 into k = 6 to 12 subsets. For each k, the column titled “R” reports

the ratio of the average run times of BSBCP to BSIBC. That is, how many times longer on

average it takes BSBCP to solve a problem instance as compared to BSIBC.

For 6 ≤ k ≤ 8, BSIBC outperforms BSBCP. For k = 6, the ratio of run times of BSIBC

to BSBCP increases with increasing n up to n = 41, but then it reverses and the ratio starts

decreasing again. For k = 7, the ratio keeps increasing though we suspect that with large

enough n, BSBCP would eventually catch BSIBC. There is no obvious trend for k = 8.

For k > 8, BSIBC is faster for small n but then BSBCP eventually becomes the dominant

algorithm as n increases.

In 2013, when BSIBC and BSBCP were introduced, the state-of-the-art algorithm for

multi-way number partitioning was IRNP. For k ≥ 8, both BSIBC and BSBCP outperform

IRNP. However, at the same conference in which these algorithms were presented, IJCAI-13,

MOF was also introduced. MOF outperforms both of these algorithms for all reported values

between k = 6 and k = 10. See table 3.3 for the results of MOF on the same dataset.

4.8 Summary

This chapter has discussed the dual relationship between bin packing and multi-way number

partitioning. Using the MULTIFIT algorithm, any bin-packing algorithm can be used to

solve number-partitioning problems. Two lower bounds are introduced. The L1 lower bound

which simply sums the input integers and divides by the bin capacity. The L2 lower bound,

also called the wasted space heuristic, calculates an amount of space that must be wasted

in any packing and uses this space to calculate a potentially larger lower bound. Two

upper bounds are also discussed. First-fit decreasing and best-fit decreasing are both greedy

algorithms which give approximate solutions to the bin-packing problem.

MULTIFIT performs a binary search between the calculated lower and upper bounds on

bin capacity. For each probe, it sets the bin capacity and solves a bin-packing problem given

90

the capacity of the probe. If it is possible to pack the input integers into no more than k

subsets, a smaller capacity is tried, otherwise a larger capacity is tried. MULTIFIT continues

until the smallest capacity that allows the input integers to be packed into k subsets is found.

MULTIFIT can use any bin-packing algorithm to solve the bin-packing instances. We

have covered two such algorithms. Improved bin completion is an artificial intelligence

algorithm that uses branch-and-bound to solve bin-packing problems. Branch-and-cut-and-

price is an operations research algorithm which at its core is a linear programming algorithm.

It also uses branch-and-bound to guarantee integer solutions, cutting planes to reduce the

feasible region, and column generation to deal with an exponential number of variables.

MULTIFIT using these two bin-packing algorithms is called binary-search improved bin

completion (BSIBC) and binary-search branch-and-cut-and-price (BSBCP).

At the time these algorithms were published, IRNP was the state-of-the-art algorithm.

Both BSIBC and BSBCP outperform IRNP for k ≥ 8. However, for most values of n and k,

these algorithms are not competitive with algorithms which have been created since BSIBC

and BSBCP were published, namely SNP and MOF. They are also dominated by cached

iterative weakening, which is the subject of the next chapter.

91

CHAPTER 5

Cached Iterative Weakening

Previous work on multi-way number partitioning fits into one of two classes. Recursive

number partitioning (section 3.4), Moffitt partitioning (section 3.5), and sequential num-

ber partitioning (section 3.7) are all branch-and-bound algorithms. Binary-search improved

bin completion (sections 4.4 and 4.5) and binary-search branch-and-cut-and-price (sections

4.4 and 4.6) both use the MULTIFIT algorithm along with bin-packing algorithms to solve

number partitioning. These are all anytime algorithms that start with an approximate par-

tition and then improve it until the best partition is found and proved optimal. In contrast,

cached iterative weakening (CIW), our current state-of-the-art algorithm for optimal multi-

way number partitioning, starts with a lower bound and iteratively increases it until an

optimal partition is found. The first complete partition found is optimal.

Call C∗ the largest subset sum of an optimal partition for a particular number-partitioning

instance. While searching for C∗, the branch-and-bound algorithms start with an approxi-

mation ub such as that returned by the KK heuristic (section 3.1.2), which is typically larger

than C∗. They then search for better partitions until they find one with cost C∗. At this

point, they need to verify it is optimal by proving there is no partition with all subset sums

less than C∗. In contrast, CIW only considers partitions with cost less than or equal to C∗.

For each partial partition, the previous algorithms generate the next subsets using ex-

ponential algorithms. RNP uses ESS to generate the next subsets, MOF uses IE, and SNP

uses both depending on the situation. In contrast, CIW generates complete subsets only

once using ESS and caches them before performing its recursive partitioning.

92

5.1 Iterative Weakening

CIW begins by calculating the cost of a perfect partition C∗P = dsum(S)/ke, a lower bound

on the optimal partition cost. In any partition, there must be at least one subset whose sum

is at least as large as C∗P .

The branch-and-bound algorithms start with an ub and lb. They recursively partition

S into k subsets, decreasing ub and increasing ub until the optimal cost C∗ is found and

subsequently verified. In contrast, CIW has iterative upper and lower bounds which we refer

to as ubit and lbit. On the first iteration it = 1, CIW sets ub1 to the smallest existing subset

sum greater than or equal to C∗P and calculates lb1 based on ub1. It then tries to recursively

partition S into k subsets with sums no greater than ub1. In subsequent iterations, CIW

increases ubit and decreases lbit until it finds ubit = C∗, the first value for which a complete

partition is possible. This process is called iterative weakening [Pro93]. In order to verify

optimality, any optimal algorithm must consider all partial partitions with costs between C∗P

and C∗. Even after a branch-and-bound algorithm finds an optimal partition of cost C∗, it

still needs to verify its optimality by proving that there is no partition with cost within the

range [C∗P , C∗ − 1]. Iterative weakening only explores partial partitions with costs between

C∗P and C∗.

Suppose we could efficiently generate subsets one by one in sum order starting with C∗P .

CIW iteratively chooses each of these subsets as the first subset S1 of a partial partition. It

sets ubit to sum(S1) and lbit to sum(S) − (k − 1)(ubit). Then, given that it can efficiently

generate all subsets within the range [lbit, ubit], it determines whether there are k − 1 of

these subsets that are mutually exclusive and contain all the integers in the remaining set

of integers SR = S −S1. If this is possible, ubit is returned as the optimal partition cost C∗.

Otherwise, CIW moves onto the subset with the next larger sum. In this scheme, the cost

of a partial partition is always the sum of its first subset S1.

93

Perfect

Optimal

LB(Optimal)

0

KK

Perfect

Optimal

LB(Optimal)

0

KK

LB(KK)LB(KK)

Iterative
Weakening

Branch & Bound

Figure 5.1: A comparison of the search spaces of iterative weakening and branch-and-bound.
Iterative weakening starts by theorizing a perfect partition and increases this
upper bound while decreasing the implied lower bound until an optimal partition
is found. Branch-and-bound calculates an upper bound with an approximation
algorithm such as KK. It then refines this bound while increasing the implied
lower bound until an optimal partition is found and proved optimal.

The labels on the number line from top to bottom are an upper bound
approximation such as the KK heuristic, the cost of an optimal partition, the
cost of a perfect partition, the lower bound implied by the optimal partition,
and the lower bound implied by the upper bound approximation.

94

5.2 Precomputing: Generating Subsets in Sum Order

We are not aware of an efficient algorithm for generating subsets in order of their sums.

Instead, we describe an algorithm for efficiently generating and storing the m subsets with

the smallest sums greater than or equal to C∗P , the perfect subset sum.

Call max the mth smallest subset sum greater than or equal to C∗P . The minimum sum

of any subset in a partition of cost max is min = sum(S)− (k−1)(max). CIW generates all

subsets with sums within the range [min, max], which includes m subsets with sums within

the range [C∗P , max] and all subsets with sums within the range [min, C∗P − 1].

Section 3.3 described three algorithms for generating subsets with sums within a given

range: IE, EHS and ESS. We wish to generate all subsets with sums within the range

[min, max]. Unfortunately, we do not know the values of min and max before generating

the m subsets with sums greater than or equal to C∗P .

In order to generate all subsets with sums within the range [min, max], we use a min-

heap and a max-heap. We initially set max to the KK ub and min to the corresponding lb.

We then generate subsets with sums in this range. We could use any algorithm from section

3.3 for this purpose. We put each subset found with sum within the range [min, C∗P −1] into

the min-heap and those in the range [C∗P , max] into the max-heap. This continues until the

max-heap contains m subsets. At this point, we reset max to the sum of the largest subset

in the max-heap and recalculate min as sum(S) − (k − 1)(max). We then pop all subsets

with sums less than min from the min-heap.

We now continue searching for all subsets with sums in the new range [min, max]. Each

time a subset with sum greater than or equal to C∗P but less than max is found, we pop the

top subset from the max-heap and push the new subset onto the heap. max is set to the

new max sum and min is updated accordingly, popping all subsets with sum less than min

from the min-heap. When this search is complete, the subsets from the min-heap and the

max-heap are moved to a single array sorted by subset sum.

After this is done, iterative weakening iterates through this array one by one in sum order

95

starting with the subset with smallest sum no less than C∗P . If m iterations are performed

without finding an optimal partition, the algorithm is run again from scratch to generate

the next 2m subsets greater than or equal to C∗P . If the 2m subsets are exhausted without

finding an optimal partition, then the next 4m subsets are generated, then the next 8m, etc.

Thus, m is a parameter of CIW. We discuss setting m experimentally in section 5.6.

ESS has a run time which is the square root of the run time of IE and memory usage

which is the square root of the memory usage of EHS. Therefore, CIW uses ESS to generate

the subsets with sums within the range [min, max].

Example 5.2.1 - Generating Subsets in Sum Order

Consider the example number-partitioning problem with S = {127, 125, 122, 105, 87,

75, 68, 64, 30, 22} and k = 4. Both figures 5.2 and 5.3 show the array of 19 sets

generated by modified ESS with m = 6 in the table at the bottom left. The final range

[min, max] is [192, 211] and C∗P = 207. There are 13 sets with sums within the range

[min, C∗P − 1] shown below the horizontal line and 6 sets with sums within the range

[C∗P , max] shown above the horizontal line. The 6 subset sums above the horizontal line

are the candidate first subsets that CIW iterates over.

The last column of the table is called Iter. This column corresponds to the iteration

in which the sum of the subset in that row first appears within the range [lbit, ubit]. For

example, in the first iteration, ub1 = 207 and lb1 = 825−3×207 = 204 with two subsets

with sums within the range. In the second iteration, ub2 = 208 and lb2 = 825−3×208 =

201 with seven sets in range, namely the rows with Iter equal to 1 or 2. In the sixth

iteration, all 19 sets in the table are in range.

96

5.3 Recursive Partitioning

At iteration it, CIW chooses the first subset S1 as the next subset with sum at least as large

as C∗P from the stored array of subsets, sets ubit = sum(S1) and lbit = sum(S)− (k−1)(ubit).

This guarantees that S1 always has the largest sum in any partition. At this point, CIW

attempts to recursively partition SR = S − S1 into 〈S2, ..., Sk〉.

This task is very similar to the search of the recursive partitioning tree used by MOF,

described in section 3.5.2. The difference is that CIW is searching for any complete partition

since it is guaranteed to be optimal, while MOF must search for the lowest cost complete

partition. In fact, the MOF algorithm could be used to partition SR into k − 1 subsets.

Simply set lbit = sum(S1) and ubit = lb + 1. If MOF returns lbit, then a complete partition

was found, otherwise there is no complete partition.

However, using MOF to partition SR into k − 1 subsets does not take advantage of the

fact that all of the subsets with sums in the range [lbit, ubit] have already been generated.

Instead, MOF repeatedly calls IE, an exponential time algorithm, to generate complete

subsets at each node of the recursive partitioning tree. We next discuss how to leverage the

precomputed subsets having sums in the range [lbit, ubit] to determine if a complete partition

of cost ubit exists.

5.3.1 A Simple but Inefficient Algorithm

We start with a simple algorithm to motivate the discussion. Given an array A of subsets, we

present a recursive algorithm for determining whether there are k mutually exclusive subsets

which contain all the integers of S. For each first subset S1 in A, copy all subsets of A that

do not contain an integer in S1 into a new array B. Then, recursively try to select k − 1

disjoint subsets from B which contain the remaining integers of S − S1. If k = 0, return

true, else if the input array A is empty, return false. While this algorithm is correct, it is

inefficient, as the entire remaining input array must be scanned for each recursive call. We

next present a more efficient algorithm which performs the same function.

97

root

127 127

75 75 125 125

68 75 75 122 122

68 68

64

22

87 87 105 105

75 75

64

22

87 87 87 87

75 75

30 30 68 68

30 30 64

22 30

75 75 75

30 68 68

30 64

22 30

22

68

64 64

30

22

Sum
211
210
209
208
207
207
203
203
202
202
200
199
197
195
195
195
193
192
192

Iter
6

4

2

3

3

4

5

5

6

6

5

3

1

3

3

4

5

5

6

Sets
Preprocessed Subsets

{125, 64, 22}
{105, 75, 30}
{122, 87}
{122, 64, 22}
{75, 68, 64}
{87, 68, 30, 22}

{105, 68, 30}
{127, 75}
{105, 75, 22}
{125, 75}
{105, 64, 30}
{122, 75}
{105, 68, 22}
{127, 68}
{75, 68, 30, 22}
{125, 68}
{87, 75, 30}
{105, 87}

{87, 64, 30, 22}

S={127, 125, 122, 105, 87,
75, 68, 64, 30, 22}

k=4 m=6
sum(S) = 825 C = 207 *

P

22

Figure 5.2: A complete cached inclusion-exclusion tree for the input set S and the bounds
lb5 = 192, ub5 = 211 containing all of the subsets listed in the table on the
bottom left.

5.3.2 Simplified Cached Inclusion-Exclusion (CIE) Trees

In this section, we describe a simplified version of cached inclusion-exclusion (CIE) trees to

describe conceptually how they work. In the subsequent section, we will describe the CIE

trees used by CIW, which are a little more complicated.

Each iterative weakening iteration it corresponds to the collection of all subsets having

sums in the range [lbit, ubit]. After selecting S1, the remaining integers SR = S−S1 need to be

partitioned k−1 ways. We need to determine if there exists k−1 subsets from the collection

of all subsets which are mutually exclusive and collectively exhaustive of all integers in SR.

As discussed in section 5.3, we could use the MOF algorithm for this purpose. However, the

IE algorithm that MOF uses to generate subsets is inefficient.

CIE trees are similar to IE trees (Section 3.3.1). IE searches an implicit tree that repre-

98

sents all 2|SR| subsets of the remaining integers SR. In contrast, a CIE tree is explicitly

stored in memory, and represents only the collection of subsets with sums within

the range [lbit, ubit]. The nodes of the CIE tree correspond to one of the integers in S.

The integer is included on the left branch and excluded on the right.

Figure 5.3 depicts the CIE tree for iteration five of an example four-way partitioning

problem of the set S = {127, 125, 122, 105, 87, 75, 68, 64, 30, 22}. For iteration five, S1 =

{125, 64, 22}, ub5 = sum(S1) = 211 and lb5 = 192. The list of all 20 subsets of S with sums

in the range [lbit, ubit] is shown on the bottom left. The 20 subsets are also stored in the CIE

tree shown in the same figure. The solid arrows correspond to inclusion of the integer pointed

to while dashed arrows correspond to exclusion. For example, from the root, following the

left solid arrow to 127, then the left solid arrow to 75 (root → 127 → 75) corresponds to

the subset {127, 75}. Similarly, root 99K 127 99K 125 → 122 99K 87 99K 75 → 64 → 22

corresponds to the subset {122, 64, 22}.

Given this CIE tree, we can use the MOF algorithm as described in section 5.3 to deter-

mine if a complete partition of S-S1={127, 122, 105, 87, 75, 68, 30} into k-1=3 subsets exists.

However, instead of IE binary-tree search to find subsets, we search the CIE tree instead.

5.3.3 Cached Inclusion-Exclusion (CIE) Trees

We now discuss the full version of cached inclusion-exclusion (CIE) trees used by CIW. For

iteration it, after CIW chooses the first subset S1 from the precomputed array, it uses CIE

to test if there are k−1 mutually exclusive subsets which contain all integers in SR = S−S1.

CIE trees store all subsets whose sums are in the range [lbit, ubit] for the current iteration

and are built incrementally by inserting all new subsets with sums in the range [lbit, ubit]

that are not in the range [lbit−1, ubit−1].

In IE trees, all complete subsets, regardless of cardinality, can be found in one tree.

In contrast, there is one CIE tree for each unique cardinality of complete subset. The

distribution of the cardinality of the subsets with sums in the range [lbit, ubit] is not even.

99

The average cardinality of a subset in an optimal partition is n/k. Typically, most subsets in

an optimal partition have cardinality close to this average. Yet, there are often many more

subsets with higher cardinality than n/k. In section 5.3.4, we will show how to leverage

these cardinality trees so CIW never has to examine the higher cardinality subsets. In the

example of figure 5.3, there are separate trees for subsets of cardinality 2, 3 and 4 storing all

subsets with sums within the range [192, 211] (every subset in iteration 1 through 5).

IE searches an implicit tree, meaning only the recursive stack of IE is stored in memory.

In contrast, the entire CIE trees are explicitly stored in memory before they are searched.

In each iterative weakening iteration, all subsets with sums within the range [lbit, ubit] are

represented in the CIE tree of appropriate cardinality. These subsets were already generated

in the precomputing step, so this is a matter of iterating over the array of subsets and adding

all subsets with sums in range that were not added in previous iterations.

5.3.4 Recursive Partitioning with CIE Trees

For iteration it, after selecting S1 and calculating lbit and ubit, CIW adds all subsets with

sums newly within the range [lbit, ubit] from the stored array of subsets into the CIE tree

of proper cardinality. If CIW finds k − 1 of these subsets which are mutually exclusive and

contain all the integers of SR = S − S1, then the optimal cost is ubit = sum(S1).

Like the standard IE algorithm, CIE searches its trees left to right, including integers

before excluding them. However, each node of a CIE tree corresponds to an integer in S and

not all of these integers still remain in SR. At each node of the CIE tree, an integer can only

be included if it is a member of SR, the integers remaining.

Iterative weakening selects the first subset S1. To generate each possible S2, CIE searches

the tree of smallest cardinality first. Call card the cardinality of the tree CIE is searching to

generate Sd in partial partition 〈S1, ..., Sd〉. If CIE finds a subset Sd of cardinality card, the

recursive search begins searching for subset Sd+1 in the card CIE tree. If no more subsets

are found in the card CIE tree, the card + 1 CIE tree is searched until no higher cardinality

100

68 68

30

22

64

30

22

87

rootroot

122 122

64

22

105

75 75

30

22

68 68

30 64

30

127

75 125

125

75

122

87

127

root

87

68 68

30

22

64

30

22

75

68

30

22

87

rootroot

122 122

64

22

105

75 75

30 30

22

68 68

30 30

22

64

30

127

75 75

68

125

125

75

122

87 87

75

127

root

68 68

30

22

64

30

22

87

root

75

127

root

Cardinality
Iter

2 3 4

2

4

3

root

122 122

64

22

105

75 75

30

22

68

30

S={127, 125, 122, 105, 87,
75, 68, 64, 30, 22}

k=4 m=6
sum(S) = 825 C = 207

Sum
211
210
209
208
207
207
203
203
202
202
200
199
197
195
195
195
193
192
192

Iter
5

3

1

2

2

3

4

4

5

5

4

2

1

2

2

3

4

4

5

Sets
Preprocessed Subsets

87

68 68

30

22

64

30

22

75

68

30

22

87

rootroot

5

127

75 75

68

125

125

122

127

root

75 75 87 87

7568

122

105

87

75

68

64

105

75

68

64

105

75

68

64

105

122 122

64

22

105

75 75

30 30

22

68

30 30

22

68

64

30

75

68

64

105

75

87

75

30

125 125

64

22

root

75

68

64

root

68

30

22

87

root

Cardinality

2 3 4
Iter

1

{125, 64, 22}
{105, 75, 30}
{122, 87}
{122, 64, 22}
{75, 68, 64}
{87, 68, 30, 22}

{105, 68, 30}
{127, 75}
{105, 75, 22}
{125, 75}
{105, 64, 30}
{122, 75}
{105, 68, 22}
{127, 68}
{75, 68, 30, 22}
{125, 68}
{87, 75, 30}
{105, 87}

{87, 64, 30, 22}

*
P

Figure 5.3: CIW example with the list of preprocessed subsets sorted by sum and cached
inclusion-exclusion trees for cardinalities 2, 3 and 4 during iterations 1,2,3,4 &
5. The bold numbers were added during that iteration.

101

S3:

S4:

S1:

S2:

{122, 87} 2 * 3 > 5
Cardinality
Prune

2 * 3 > 5
Cardinality
Prune

{125, 64, 22}

{105, 75, 30}

{122, 87}{127, 68} 127 125
68 64 22
S R 125 122

87 64 22
S R

 127 125 122
87 68 64 22
S R

S={127, 125, 122, 105, 87, 75, 68, 64, 30, 22} ,k=4

Figure 5.4: The recursive partitioning search tree for iteration 4.

CIE tree exists. CIW can prune if k − d × card > |SR| since there would not be enough

integers left in SR to create k − d subsets, each with cardinality ≥ card.

5.3.5 Avoiding Duplicates

Choosing subsets in cardinality order avoids many duplicates. However, if Sd and Sd+1 in

partial partition Pd+1 have the same cardinality, in order to remove duplicates, the largest

integer in Sd+1 must be smaller than the largest integer in Sd. For example, CIE generates

the partition 〈{8, 1}, {6, 3}, {5, 2, 2}〉 and not 〈{6, 3}, {8, 1}, {5, 2, 2}〉 since the ’8’ in {8, 1}

is larger than the ’6’ in {6, 3}.

102

5.4 Example: Iteration 4 of Iterative Weakening

Figure 5.4 shows the recursive partitioning search tree for iteration 4 of our running example

using the CIE trees from figure 5.3. The root of the tree is the subset S1 = {105, 75, 30}

whose sum 210 is the upper bound ub4 for iteration 4 of iterative weakening. The search

of candidate subsets for S2 begins in the cardinality 2 CIE tree of figure 5.3 (there are no

singletons subsets with sums within the bounds), including nodes before excluding them.

Starting from the root of the CIE tree, CIW includes 127 but cannot include 75 since it is

included in S1. It excludes 75 and includes 68 giving us S2 = {127, 68}. We continue to

search the cardinality 2 CIE tree for S3 but the largest integer must be less than 127 to

avoid duplicates, so we exclude 127 and then include 125. We cannot include 75 since it is

in S1, so we backtrack to exclude 125 and include 122 and then 87 giving us the 3rd subset

S3 = {122, 87}. Since there is only S4 left, we can put all remaining integers into S4, but the

sum of the remaining integers 125+64+22 = 211 is greater than the ub4, so we prune. (Note

that the set {125, 64, 22} is not in the cardinality 3 CIE tree.) We backtrack to generate

the next S3 subset. Continuing where we left off in the cardinality 2 tree when we generated

S3 = {122, 87}, we backtrack to exclude 87 but since 75 is not in SR, we have exhaustively

searched the cardinality 2 CIE tree. We move to the cardinality 3 tree. However, there are

five integers left to partition into two subsets and the cardinality of the subsets left must be

three or greater. Since 2× 3 > 5, we prune.

We now backtrack to generate the next S2 subset continuing where we left off in the

cardinality 2 cached-IE tree when we generated {127, 68}. Since the first child was {127, 68},

and there are no more subsets containing 127 we backtrack to exclude 127. We then include

125 but 75 is not in SR, so we backtrack and exclude 125. We then include 122 and 87,

giving us S2 = {122, 87}. We continue to search the cardinality 2 tree for S3 but the largest

integer must now be less than 122 to avoid duplicates. We exclude 127 and 125, but there

are no more exclusion branches so we move to the cardinality 3 tree. Again, we can prune

since 2× 3 > 5 and thus there is no optimal partition of cost 210.

103

S3:

S4:

S1:

S2:

{125, 64, 22}

{127, 75} 122 105
87 68 30
S R

 127 122 105
 87 75 68 30
S R

S={127, 125, 122, 105, 87, 75, 68, 64, 30, 22} ,k=4

{122, 87}

{105, 68, 30}

 105 68
 30
S R

Figure 5.5: The recursive partitioning search tree for iteration 5.

5.5 Example: Iteration 5 of Iterative Weakening

In iteration 5, iterative weakening sets S1 = {125, 64, 22} with ub5 = sum(S1) = 211 and

adds the four rows with Iter = 5 from the table in figure 5.3 to the CIE trees. Figure 5.5

shows the recursive partitioning search tree for iteration 5. CIW partitions S into k = 4

subsets all with sums less than 211 without having to backtrack, resulting in the optimal

partition 〈{125, 64, 22}, {127, 75}, {122, 87}, {105, 68, 30}〉.

5.6 Experimental Results: CIW

In order to show the relative performance of CIW to the previous state-of-the-art algorithms

empirically, we ran CIW against the same dataset used to test all of the previous algorithms.

Again, this dataset is composed of problem instances with integers sampled uniformly at

104

random from the range [1, 248− 1]. There are 100 problem instances, but this time, because

of the improved performance of CIW, n ranges from n = 40 to 60 as opposed to n = 30 to

45. All experiments were run on an Intel Xeon X5680 CPU running at 3.33GHz.

Generally, for n = 40 to 60, SNP (section 3.7) was the previous state of the art for k = 3

to 7, the MOF algorithm (section 3.5) for k = 8 to 10 and BSBCP (sections 4.4 and 4.6) for

k = 11 and 12. There are exceptions for (n ≤ 45; k=7), where MOF is faster than SNP and

(n ≤ 46; k=11), where MOF is faster than BSBCP. We compare CIW to SNP for k ≤ 7, to

MOF for k from 8 to 10 and to BSBCP for k = 11 and 12. All experiments were run on an

Intel Xeon X5680 CPU running at 3.33GHz.

For a particular k, since the previous state of the art depends on n, one might infer

that a hybrid recursive algorithm that uses one of SNP, MOF or BSBCP for recursive calls

depending on n and k would outperform the individual algorithms. However, [KSM13] shows

that the hybrid algorithm in fact does not significantly outperform the best of the individual

algorithms.

For CIW, we need to choose a value for m, the number of subsets to initially generate

during the precomputing phase (section 5.2). Ideally, we want m to be exactly the number of

subsets with sums within the range [C∗P , C∗], but we do not know this number in advance. If

m is set too small, CIW will have to run ESS multiple times. If m is set too large, CIW will

waste time generating subsets in the precomputing step that are never used in the iterative

weakening step.

For each combination of n and k, we initially set m to 10,000. Call mi the number of

subsets with sums within the range [C∗P , C∗] for problem instance i. After instance 1 is

complete, m is set to m1. After instance i is complete, m is set to the max of m1 through

mi. The values of m used ranged from 24 for the second instance of (n = 56; k = 3) to

180,085 for the last eight instances of (n = 59; k = 12).

Table 5.1 compares CIW to SNP for k from 3 to 12. Each row corresponds to a value of

n. There are three columns for each value of k. In the top table for k = 3 to 7, the first two

105

columns report the average time in seconds to partition n integers into k subsets over 100

instances using CIW and SNP respectively. The third column is the ratio of the run time of

SNP to CIW.

CIW is faster than SNP for k ≥ 4 with the exception of (n ≤ 40; k = 4). SNP is faster

than CIW for k = 3. For fixed n, SNP tends to get slower as k gets larger while CIW tends

to get faster as k gets larger. For 5 ≤ k ≤ 7, the ratios of the run times of SNP to CIW

tend to grow as n gets larger, suggesting that CIW is asymptotically faster than SNP. For

k = 3 and 4, there is no clear trend. The biggest difference in the average run times is for

(n = 58; k = 7) where SNP takes 91 times longer than CIW.

The bottom table shows data in the same format as the top table but for k from 8 to 12

and this time comparing CIW to MOF for k from 8 to 10, and CIW to BSBCP for 11 and

12. CIW outperforms both MOF and BSBCP for all n and k. The ratios of the run times

of MOF to CIW and BSBCP to CIW grow as n gets larger for all k, again suggesting that

CIW is asymptotically faster than MOF and BSBCP. The biggest difference in the average

run times of MOF and CIW is for (n = 60; k = 10) where MOF takes 401 times longer than

CIW. The biggest difference for BSBCP is for (n = 60; k = 11) where BSBCP takes 250

times longer than CIW.

There is memory overhead for CIW due to both ESS and the CIE trees, proportional to

the number of subsets with sums in the range [C∗P ,C∗]. All of the experiments require less

than 4.5GB of memory and 95% require less than 325MB. However, it is possible that with

increased n, memory could become a limiting factor as well as time. Better understanding

of and reducing the memory usage is the subject of future work.

For each value of k, we are showing a comparison of CIW to the best of SNP, MOF and

BSBCP. If we compared CIW to any of the other two algorithms, the ratio of the run time

of the other algorithms to CIW would be even higher, up to multiple orders of magnitude

more.

106

k → 3-Way 4-Way 5-Way 6-Way 7-Way
n ↓ CIW SNP R CIW SNP R CIW SNP R CIW SNP R CIW SNP R

40 .21 .07 1/3 .16 .15 1 .17 .36 2 .27 .83 3 .26 1.96 8
41 .28 .11 1/2 .23 .25 1 .23 .59 3 .22 1.29 6 .24 3.02 13
42 .33 .14 1/2 .29 .33 1 .33 .86 3 .32 2.16 7 .34 5.03 15
43 .57 .22 1/3 .47 .51 1 .47 1.27 3 .46 3.17 7 .45 7.47 17
44 .74 .28 1/3 .60 .68 1 .54 1.77 3 .58 4.35 7 .58 11.1 19
45 1.15 .49 1/2 .92 1.13 1 .82 2.64 3 .81 7.07 9 .83 19.5 23
46 1.47 .59 1/2 1.20 1.47 1 1.07 4.27 4 .99 10.9 11 .96 26.7 28
47 2.63 .97 1/3 2.20 2.26 1 1.85 6.30 3 1.69 16.6 10 1.52 41.4 27
48 3.51 1.18 1/3 2.58 3.18 1 2.16 9.30 4 1.92 24.6 13 1.69 62.9 37
49 4.46 2.06 1/2 3.87 5.09 1 3.54 14.0 4 3.09 37.9 12 2.79 92.9 33
50 6.44 2.44 1/3 5.08 6.89 1 4.28 18.6 4 3.45 50.7 15 2.99 135 45
51 11.2 4.10 1/3 9.17 10.7 1 7.54 32.2 4 6.75 89.2 13 5.57 233 42
52 13.9 4.93 1/3 10.7 14.4 1 9.02 44.4 5 7.70 125 16 6.63 364 55
53 25.2 8.81 1/3 17.4 22.6 1 15.2 67.1 4 13.7 199 14 10.9 529 49
54 44.8 10.5 1/4 22.0 31.7 1 18.7 104 6 15.2 309 20 12.7 864 68
55 43.3 17.2 1/3 38.7 48.4 1 34.1 157 5 30.7 472 15 24.9 1328 53
56 70.5 20.7 1/3 51.1 67.8 1 40.7 225 6 35.0 698 20 27.5 1945 71
57 139 36.7 1/4 83.8 103 1 75.7 349 5 61.4 1119 18 47.1 3158 67
58 131 45.4 1/3 105 143 1 82.5 536 6 68.1 1677 25 55.4 5015 91
59 228 73.6 1/3 186 237 1 165 771 5 139 2448 18 109 7520 69
60 304 89.6 1/3 254 307 1 201 1140 6 156 3728 24 123 10715 87

k → 8-Way 9-Way 10-Way 11-Way 12-Way
n ↓ CIW MOF R CIW MOF R CIW MOF R CIW BCP R CIW BCP R

40 .23 1.24 5 .35 1.24 4 .51 1.39 3 .49 2.68 5 3.27 1.12 1/3
41 .27 2.29 8 .31 2.11 7 .52 2.04 4 .43 3.29 8 1.98 1.52 1
42 .39 3.77 10 .44 3.26 7 .74 3.27 4 .57 4.54 8 1.60 2.25 1
43 .51 5.89 12 .56 5.44 10 .77 5.26 7 .88 6.22 7 1.23 3.33 3
44 .60 8.60 14 .62 8.63 14 1.00 9.22 9 1.18 8.60 7 1.12 4.28 4
45 .79 14.5 18 .86 13.8 16 1.18 14.0 12 2.00 15.1 8 1.63 6.55 4
46 .92 23.6 26 1.10 24.8 23 1.08 21.9 20 2.43 21.2 9 1.91 8.85 5
47 1.39 38.2 28 1.63 41.4 25 1.63 42.6 26 2.79 30.5 11 3.38 14.7 4
48 1.62 60.0 37 1.78 59.4 33 1.65 56.5 34 3.10 48.9 16 4.72 24.4 5
49 2.40 100 42 2.32 98.0 42 2.25 92.8 41 3.32 65.6 20 7.56 32.4 4
50 2.47 166 67 2.53 154 61 2.62 141 54 3.14 92.8 30 13.9 55.3 4
51 4.54 281 62 3.78 274 72 4.26 263 62 3.91 146 37 13.5 64.3 5
52 5.47 418 77 4.43 382 86 6.02 362 60 4.23 187 44 13.8 85.6 6
53 8.98 707 79 7.39 724 98 8.31 735 88 5.44 273 50 16.2 109 7
54 10.0 1189 119 8.90 1116 125 8.86 1120 126 8.30 445 54 13.6 138 10
55 19.0 2082 110 15.6 1701 109 16.3 1920 118 14.9 721 48 17.4 250 14
56 21.4 3078 144 17.9 2878 160 16.1 2700 167 18.9 1325 70 14.6 315 22
57 36.6 5589 153 26.3 4983 189 19.7 4950 251 25.7 2354 92 16.2 464 29
58 42.0 9182 219 31.2 7636 245 26.0 8508 327 32.8 3962 121 23.8 807 34
59 73.6 13441 183 52.4 11874 227 39.1 12249 313 41.3 7292 177 36.1 1245 35
60 84.9 23085 272 60.3 21414 355 45.0 18036 401 47.8 11971 250 68.2 2225 33

Table 5.1: The average time in seconds to optimally partition 48-bit integers 3 through 12
ways using CIW, SNP, MOF and BSBCP.

107

5.7 Low Cardinality Search

This section describes low cardinality search (LCS), which combines the best ideas of CIW

with branch-and-bound algorithms such as SNP or MOF. We start by describing the weak-

nesses of the previous algorithms, and then describe how LCS improves upon them.

Please note that work on LCS is preliminary. Papers on all of the other algorithms in

this thesis have been peer reviewed and published. This is a new line of research that has

not been previously published and thus is still a work in progress.

5.7.1 Weakness of CIW

While performing cached iterative weakening, each subset with a sum in the range [C∗P , C∗]

is considered in ascending sum order as the first subset S1 of partitions 〈S1, ..., Sk〉. These

subsets have varying cardinalities. As discussed in section 5.3.3, the distribution of the

cardinality of the subsets with sums in the range [lbit, ubit] is not uniform. Consider a

partition problem with n = 50 integers and k = 10 subsets. The average number of integers

per subset is 50
10 = 5. Now consider all of the subsets of the input integers S. For example,

there are
(

50
5

)
≈ 2.1×106 subsets of cardinality five and

(
50
10

)
≈ 1.0×1010 subsets of cardinality

ten. There are approximately 5,000 times more cardinality ten subsets than cardinality five.

However, it is unlikely that an optimal partition will contain any cardinality ten subsets

since this would require at least half of the subsets to have cardinality less than five, which

is the average cardinality. In general, it is harder to find low cardinality subsets with sums

in a particular range since there are many fewer such subsets. For our example, there are 9.2

times as many cardinality five subsets as cardinality four subsets for n = 50 and k = 10 and

108.1 times as many cardinality five subsets as cardinality three. As we choose very high

cardinality subsets, the problem gets more constrained and it becomes less likely that there

is an optimal partition.

While performing iterative weakening, many of the S1 subsets whose sum is within the

range [C∗P , ubit] have cardinality much larger than the average subset cardinality, and are thus

108

unlikely to lead to an optimal partition. Since they are considered at the root of the recursive

partitioning tree, it can be expensive to prove there is no optimal partition involving these

high cardinality subsets. Avoiding iterative weakening allows us to avoid considering these

high cardinality subsets at the root of the recursive partitioning tree and push them down

towards the leaves where they often never have to be considered because of the cardinality

pruning rule discussed in section 5.3.4.

5.7.2 Weakness of Branch-and-Bound Algorithms

A weakness of branch-and-bound algorithms such as RNP, MOF and SNP is that at every

node of the recursive partitioning tree, they have to solve an exponential problem (using

either IE or ESS) to find all subsets with sum within the lower and upper bounds. The

caching of CIW allows us to run this search for subsets with sums in a range once and

then cache them. Searching CIE trees is much faster than using ESS or IE trees to find

subsets. This is because CIE trees only contain subsets with sums in the range [lbit, ubit]

while the other algorithms must search through the entire search space attempting to prune

out subsets with sums out of the range.

5.7.3 Low Cardinality Extended Horowitz and Sahni

The average cardinality of any complete partition of n integers into k subsets is n/k. We

define low cardinality as less than or equal to dn/ke + 1, one more than the ceiling of this

average cardinality. We call this threshold the max cardinality, or MC.

In order to perform low cardinality search, we must be able to generate low cardinality

subsets with sums within the range [lbit, ubit]. Section 3.3.2 describes the EHS algorithm

for generating all subsets with sums within this range. Low Cardinality Extended Horowitz

and Sahni (LCEHS) modifies EHS to generate subsets within the range [lbit, ubit], having

cardinality less than or equal to MC.

EHS starts by generating two “half sets” SA and SB. SA consists of all 2n
2 subsets of the

109

largest n/2 numbers in S while SB consists of all subsets of the smallest n/2 numbers in

S. LCEHS generates half sets containing only subsets with cardinality less than or equal to

MC, having sums less than or equal to ubit. For subsets whose cardinality is equal to MC,

their sum must also be greater than or equal to lbit since when the half sets are combined,

any subset whose cardinality is MC can only be combined with the empty set.

After generating the low cardinality half sets, the rest of the LCEHS algorithm is almost

identical to EHS. The only difference is that when combining a subset from SA with a subset

from SB, if the cardinality of the union of the two subsets exceeds MC, it is discarded.

5.7.4 The New Algorithm

Low cardinality search (LCS) is a hybrid of CIW and sequential recursive partitioning, the

partitioning technique used by SNP and MOF. LCS works in two phases. The first phase

is very similar to CIW, but the iterative weakening only considers low cardinality subsets

generated using LCEHS. The second phase is a branch-and-bound search that either proves

that the partition found in the first phase is optimal, or finds the optimal partition.

Phase One

Phase one of LCS is almost identical to CIW, with two differences. First, as described in

section 5.2, CIW uses ESS to generate the m subsets (m is a parameter) with smallest sums

that are also greater than or equal to C∗P . In contrast, LCS generates m subsets as well,

but it only generates subsets with cardinality less than or equal to MC = dn/ke + 1 using

LCEHS. Because LCS only considers low cardinality subsets, for the same dataset, m can

be much lower than for CIW since there will be many fewer low cardinality subsets with

sums in the range [C∗P , C∗]. The iterative weakening is performed using these low cardinality

subsets as the S1 subset.

The second difference is that instead of storing all generated subsets in CIE trees, only

low cardinality subsets are stored. While performing the recursive partitioning as described

110

in section 5.3.4, CIE trees are used to search for low cardinality subsets (cardinality ≤MC)

and IE binary tree search is used to search for high cardinality subsets (cardinality > MC).

For our example with n = 50 and k = 10, LCS would first search for cardinality two

through six subsets in CIE trees. The subsets are always considered in cardinality order.

Consider the partial partition of d subsets with d < k, P = 〈S1, S2, ..., Sd〉. If there are no

subsets remaining in the CIE trees that are mutually exclusive of S1∪S2∪ ...∪Sd, then LCS

will attempt to complete the partition using IE to search for k− d subsets with cardinalities

greater than or equal to 7. Recall, we can prune if |SR| ≥ (k − d)× 7, that is if the number

of integers remaining is greater than or equal to the number of subsets remaining times the

minimum cardinality of the remaining subsets. If the IE binary tree search is necessary, the

number of integers left in S will be small and so the search will be relatively inexpensive.

Phase one continues iterative weakening until the first complete partition is found. Since

phase one considers only low cardinality subsets as the S1 subset, the first complete partition

found is not guaranteed to be optimal as it is with CIW. With LCS, the S1 subset is always

the subset with the greatest sum. If it turns out that the subset with greatest sum in the

optimal partition has a high cardinality, then phase one will not find an optimal partition.

Phase Two

After phase one is complete, phase two either proves that the partition found in phase one is

optimal, or it finds an optimal partition. Phase two performs a branch-and-bound recursive

partitioning using the CIE trees created in phase one. However, unlike phase one, it does not

force the S1 subset using iterative weakening. Instead, the CIE trees are used to generate S1.

Furthermore, the first complete partition is not returned. Instead, the recursive partitioning

continues until a partition is found with cost equal to the lower bound, or until the search

space is exhausted. Again, like in phase one, when searching for high cardinality subsets, IE

binary tree search is used. Since no assumption is made about the cardinality of the subset

with largest sum, phase two guarantees an optimal partition.

111

Discussion

Phase two is typically more computationally expensive than phase one. Since the iterative

weakening happens only over low cardinality subsets and the CIE trees contain only low

cardinality subsets, phase one is significantly faster than the iterative weakening of CIW.

Phase one accomplishes two tasks. First, it creates a better upper bound for phase two.

Since a complete partition is found in phase one, the optimal partition is guaranteed to have

cost no greater than the found partition cost. Second, it populates the CIE trees with all

low cardinality subsets with sum less than or equal to the upper bound. These CIE trees

are therefore ready to use for phase two.

5.7.5 Experimental Results: LCS

In order to show the relative performance of LCS and CIW, we ran LCS against the same

dataset used to test all of the previous algorithms. Again, this dataset is composed of

problem instances with integers sampled uniformly at random from the range [1, 248 − 1].

There are 100 problem instances for each combination of n and k. For k = 3 to 6, we ran

experiments from n = 45 to 60. For k = 7 to 10, we ran experiments from k = 45 to 70.

Experiments that were not complete at the time of publication either due to time or memory

constraints are shown with a “-”.

Table 5.2 reports the average run times for LCS and CIW to partition the input sets into

k = 3 to 10 subsets. For each k, the column titled “R” reports the ratio of the average run

times of CIW to LCS. That is, it shows how many times longer on average it takes CIW to

solve a problem instance compared to LCS.

For k ≤ 4, CIW outperforms LCS and there is no clear trend for the ratio of the run

times of the two algorithms as a function of n. For k = 5, CIW outperforms LCS for the

values of n we tested. However, as n increases, the ratio of the run time of CIW to LCS also

increases. The trend suggests that with high enough n, LCS might eventually outperform

CIW. The trend is similar for k = 6, but LCS is faster than CIW for n ≥ 53. For k ≥ 7, LCS

112

k → 3-Way 4-Way 5-Way 6-Way
n ↓ LCS CIW R LCS CIW R LCS CIW R LCS CIW R
45 13.2 1.15 1/12 6.99 .92 1/8 2.80 .82 1/3 1.72 .81 1/2
46 12.7 1.47 1/9 9.09 1.20 1/8 4.86 1.07 1/5 1.95 .99 1/2
47 23.1 2.63 1/9 13.4 2.20 1/6 6.39 1.85 1/3 2.36 1.69 1
48 55.2 3.51 1/16 18.6 2.58 1/7 7.90 2.16 1/4 2.78 1.92 1
49 41.2 4.46 1/9 27.9 3.87 1/7 9.89 3.54 1/3 5.58 3.09 1/2
50 59.4 6.44 1/9 37.2 5.08 1/7 12.1 4.28 1/3 6.41 3.45 1/2
51 188 11.2 1/17 59.2 9.17 1/6 25.1 7.54 1/3 7.99 6.75 1
52 142 13.9 1/10 81.5 10.7 1/8 31.2 9.02 1/3 9.73 7.70 1
53 220 25.2 1/9 119 17.4 1/7 39.3 15.2 1/3 11.6 13.7 1
54 917 44.8 1/20 153 22.0 1/7 51.7 18.7 1/3 14.2 15.2 1
55 574 43.3 1/13 161 38.7 1/4 45.4 34.1 1 21.2 30.7 1
56 290 70.5 1/4 454 51.1 1/9 72.2 40.7 1/2 21.1 35.0 2
57 - 139 - - 83.8 - 107 75.7 1 33.3 61.4 2
58 - 131 - - 105 - 111 82.5 1 33.6 68.1 2
59 - 228 - - 186 - 187 165 1 50.3 139 3
60 - 304 - - 254 - 263 201 1 57.9 156 3

k → 7-Way 8-Way 9-Way 10-Way
n ↓ LCS CIW R LCS CIW R LCS CIW R LCS CIW R
50 3.57 2.99 1 2.17 2.47 1 1.43 2.53 2 2.29 2.62 1
51 4.24 5.57 1 2.28 4.54 2 1.59 3.78 2 3.42 4.26 1
52 4.98 6.63 1 2.54 5.47 2 1.87 4.43 2 3.17 6.02 2
53 5.61 10.9 2 2.90 8.98 3 2.44 7.39 3 2.91 8.31 3
54 6.47 12.7 2 3.38 10.0 3 2.94 8.90 3 2.50 8.86 4
55 8.06 24.9 3 3.92 19.0 5 4.95 15.6 3 2.55 16.3 6
56 9.40 27.5 3 4.46 21.4 5 5.22 17.9 3 2.93 16.1 6
57 24.1 47.1 2 11.0 36.6 3 5.27 26.3 5 3.72 19.7 5
58 27.1 55.4 2 12.1 42.0 3 5.61 31.2 6 5.61 26.0 5
59 33.8 109 3 14.1 73.6 5 6.24 52.4 8 8.84 39.1 4
60 39.4 123 3 16.4 84.9 5 7.62 60.3 8 11.9 45.0 4
61 28.2 219 8 18.6 154 8 9.19 98.8 11 19.6 70.4 4
62 31.1 246 8 21.8 167 8 11.8 115 10 18.0 87.3 5
63 52.5 487 9 26.9 332 12 15.4 214 14 15.5 151 10
64 97.8 579 6 34.2 443 13 35.8 294 8 15.1 206 14
65 144 1068 7 90.9 750 8 38.8 509 13 15.5 352 23
66 149 1111 7 102 794 8 41.0 550 13 19.8 391 20
67 202 2377 12 122 1685 14 44.7 996 22 29.2 610 21
68 225 2590 12 144 1873 13 50.4 1244 25 43.0 792 18
69 444 - - 168 3424 20 63.1 - - 78.7 - -
70 - - - 202 - - 80.7 - - 94.8 - -

Table 5.2: The average time in seconds to optimally partition 48-bit integers 3 through 10
ways using LCS and CIW .

113

dominates CIW (except for k=7, n=50) and the ratio increases with increasing n, suggesting

that LCS is asymptotically faster than CIW. The biggest difference is for k = 9 and n = 68

where CIW takes 24.7 times as long as LCS on average.

5.7.6 Experimental Results: Memory Usage

Both CIW and LCS use memory to generate subsets and also to cache them. Table 5.3 shows

the average memory in GB to partition n integers into k = 3 to 6 subsets. There are three

columns for each value of k. The first two columns report the average memory required by

LCS and CIW respectively. The third column is the ratio of the memory usage CIW to LCS.

Table 5.3 shows the same results for k = 7 to 10 subsets.

Since LCS only stores low cardinality subsets, the caches tend to be smaller than for CIW.

However, LCS uses a variant of EHS to generate subsets while CIW uses ESS. In general,

Schroeppel and Shamir requires the square root of the amount of memory that Horowitz

and Sahni does. However, since LCS is only generating low cardinality subsets, it uses less

memory than standard EHS would.

For k ≤ 7, CIW uses significantly less memory than EHS. For k = 8, the memory usage

of the two algorithms is comparable. For k = 9 and k = 10, LCS uses significantly less

memory than CIW. As k increases, for fixed n, the average cardinality of the subsets of a

partition goes down. As the average cardinality goes down, low cardinality EHS takes much

less memory.

5.8 Summary

This chapter has introduced Cached Iterative Weakening (CIW), a state-of-the-art algorithm

for multi-way number partitioning. Previous algorithms for number partitioning had all been

either based on branch-and-bound (Chapter 3) or binary-search over bin-packing problems

(Chapter 4). The previous algorithms begin by calculating an approximate partition to

generate lower and upper bounds. They then shrink these bounds until an optimal partition

114

k → 3-Way 4-Way 5-Way 6-Way
n ↓ LCS CIW R LCS CIW R LCS CIW R LCS CIW R
45 .92 .01 1/139 .74 .00 1/152 .23 .01 1/24 .15 .01 1/13
46 1.24 .01 1/203 .92 .01 1/176 .47 .01 1/41 .17 .01 1/15
47 1.85 .01 1/306 1.36 .01 1/219 .67 .01 1/53 .19 .01 1/14
48 2.44 .01 1/404 1.67 .01 1/242 .80 .01 1/74 .22 .01 1/16
49 3.71 .01 1/557 2.90 .01 1/449 .91 .01 1/86 .51 .02 1/28
50 4.92 .01 1/706 3.63 .01 1/517 1.10 .01 1/90 .60 .02 1/36
51 7.34 .00 1/1475 5.38 .01 1/729 2.70 .01 1/216 .80 .03 1/30
52 9.89 .01 1/1796 6.63 .01 1/855 3.23 .01 1/233 .93 .03 1/34
53 14.8 .01 1/2292 11.5 .01 1/1406 3.73 .01 1/255 1.06 .04 1/25
54 19.0 .01 1/2664 14.4 .01 1/1507 4.54 .02 1/282 1.25 .04 1/33
55 29.3 .01 1/3933 15.4 .01 1/1443 4.17 .02 1/176 2.14 .07 1/30
56 26.1 .01 1/3038 15.8 .01 1/1310 7.59 .02 1/341 2.15 .06 1/35
57 - .01 - - .01 - 9.70 .03 1/314 3.67 .10 1/37
58 - .01 - - .02 - 9.81 .03 1/349 3.69 .10 1/38
59 - .02 - - .02 - 17.0 .04 1/431 4.45 .21 1/21
60 - .02 - - .02 - 17.2 .04 1/411 4.49 .16 1/28

k → 7-Way 8-Way 9-Way 10-Way
n ↓ LCS CIW R LCS CIW R LCS CIW R LCS CIW R
45 .09 .02 1/5 .06 .03 1/2 .05 .04 1 .05 .04 1
46 .09 .02 1/5 .06 .03 1/2 .07 .04 1/2 .05 .04 1
47 .12 .03 1/5 .06 .04 1/2 .07 .05 1 .05 .06 1
48 .13 .02 1/6 .07 .04 1/2 .08 .06 1 .05 .07 1
49 .14 .04 1/4 .14 .07 1/2 .08 .09 1 .06 .09 2
50 .30 .03 1/9 .15 .06 1/2 .08 .09 1 .06 .09 2
51 .38 .06 1/6 .16 .10 1/2 .09 .14 2 .09 .15 2
52 .43 .07 1/7 .18 .11 1/2 .09 .12 1 .10 .16 2
53 .48 .10 1/5 .21 .20 1 .10 .25 3 .10 .28 3
54 .56 .10 1/6 .23 .20 1 .11 .30 3 .11 .32 3
55 .73 .18 1/4 .26 .39 1 .27 .40 1 .12 .51 4
56 .87 .17 1/5 .29 .32 1 .30 .42 1 .13 .48 4
57 2.14 .29 1/7 .90 .55 1/2 .36 .81 2 .14 .83 6
58 2.50 .28 1/9 1.03 .56 1/2 .39 .74 2 .15 .90 6
59 3.26 .50 1/6 1.38 .83 1/2 .43 1.22 3 .16 1.16 7
60 3.80 .54 1/7 1.54 .88 1/2 .47 1.31 3 .17 1.29 8
61 2.45 1.01 1/2 1.66 1.66 1 .52 2.16 4 .53 2.21 4
62 2.47 .91 1/3 1.87 1.64 1 .58 2.43 4 .59 2.72 5
63 3.98 1.55 1/3 2.03 2.72 1 .72 3.91 5 .73 4.17 6
64 8.89 1.35 1/7 2.30 2.80 1 2.30 3.99 2 .80 4.87 6
65 14.8 2.92 1/5 7.81 5.60 1 3.00 8.43 3 .85 9.50 11
66 14.9 2.87 1/5 8.93 5.67 1/2 3.34 7.41 2 .93 8.86 10
67 17.5 6.53 1/3 11.8 8.85 1 3.59 14.0 4 1.01 12.5 12
68 17.5 4.38 1/4 13.3 9.16 1 4.01 13.6 3 1.11 14.6 13
69 26.0 - - 14.4 16.6 1 4.33 - - 1.42 - -
70 - - - 16.3 - - 4.86 - - 1.55 - -

Table 5.3: The average memory use in GB to optimally partition 48-bit integers 3 through
10 ways using CIW and LCS .

115

is found. In contrast, CIW uses iterative weakening to search for the optimal partition. It

starts by theorizing a perfect partition is possible and sets the upper bound to C∗P , then

calculates a lower bound based on this upper bound. It then iteratively widens this bound

until it finds a complete partition. The first complete partition found is optimal.

Along with weakening the bounds, as opposed to performing a branch-and-bound search,

CIW also generates subsets only once using ESS and caches them in CIE trees. In contrast,

the previous algorithms recursively partition the input set of integers and perform exponen-

tial searches at each node of the recursive search tree in order to to generate subsets with

sums in range. The iterative weakening along with the caching in concert make CIW orders

of magnitude faster than previous algorithms for multi-way partitioning.

We also presented new research on low cardinality search (LCS) which combines the ideas

of CIW and the Moffitt partitioning algorithm (MOF) to create an even faster algorithm for

some values of n and k. The intuition behind LCS is that given the average cardinality of the

subsets in a complete partition n

k
, it is unlikely that partitions will have many subsets with

cardinality much higher than this average. LCS search caches only low cardinality subsets

and performs a two-phase algorithm to search for optimal partitions. In the first phase, it

searches for an upper bound while populating the low cardinality CIE trees. In the second

phase, it uses branch-and-bound along with the CIE trees to either prove the upper bound

optimal or find a better optimal partition.

116

Part III

Experimental Summary, Future Work

and Conclusions

117

CHAPTER 6

High Level Experimental Summary

Throughout this thesis, we have described the following eight algorithms for optimal multi-

way number partitioning. The year is when the solver was published. The section is where

we discussed the algorithm in this thesis. The citation is for the paper in which the solver

was introduced.

Algorithm Year Section Citation
Recursive number partitioning (RNP) 2009 3.4 [Kor09]
Improved Recursive number partitioning (IRNP) 2011 3.4.6 [Kor11]
The Moffitt algorithm 2013 3.5 [Mof13]
Binary-search improved bin completion (BSIBC) 2013 4.5.4 [SK13]
Binary-search branch-and-cut-and-price (BSBCP) 2013 1 4.6 [DIM08, SK13]
Sequential Number Partitioning (SNP) 2013 3.7 [KSM13]
Cached iterative weakening (CIW) 2014 5 [SK14]
Low cardinality search (LCS) 2014 5.7 N/A

We have shown experimental data comparing the run times of these algorithms in tables

3.3, 3.4, 3.4, 4.3, 5.1 and 5.2. However, for specific values of n and k, these tables only

compare two algorithms. In this chapter, we provide graphs for comparing the run times of

all eight algorithms together visually.

The problem instances are the same that we have presented throughout this thesis. The

integers are sampled uniformly at random from the range [1, 248 − 1]. We generated 100
1Though the algorithm we used for BSBCP was created in 2013, Dell’Amico [DIM08] presented a BSBCP

algorithm in 2008. However, they only had experimental results for very low precision integers in the range
[1, 103].

118

problem instances for each n from n = 20 to 60. Figure 6.1 shows results for k = 3 and

k = 4, figure 6.2 for k = 5 and k = 6, figure 6.3 for k = 7 and k = 8, and figure 6.4 for

k = 9 and k = 10. All algorithms except for the original RNP algorithm were run against

the same problem instances on an Intel Xeon X5680 CPU at 3.33GHz.

We have not run experiments for the RNP algorithm since it is dominated for each n

and k by at least one and usually all of the other algorithms. Instead, the RNP data was

taken from [Kor09]. The RNP data set was sampled uniformly at random from the range

[1, 231 − 1]. The algorithm was run on an IBM Intellistation with a two gigahertz AMD

Opteron processor. This is a slower machine than the X5680, but since RNP is always

multiple orders of magnitude slower than the state of the art, this should not matter.

It is interesting to see how drastically the run times have improved since 2009 when

experimental results for RNP were published, the first modern paper on high precision

optimal partitioning. In general, the state-of-the-art algorithm is always at least four orders

of magnitude faster than RNP for the experiments we ran as n increases.

SNP is the dominant algorithm for k = 3 as well as for small values of n for k = 4 and

k = 5. CIW dominates for large values of n for k = 4 and k = 5 as well as middle values of

n for k = 7 through K = 12. LCS is the dominant algorithm for k = 6 through k = 10 and

large n. MOF is the best for k = 8 through K = 10 for very small values of n. BSIBC and

BSBCP are best for k = 11 and k = 12 along with small values of n.

The state-of-the-art algorithm for multi-way number partitioning algorithm depends on

the size of the input set n, the number of subsets in a partition k and the precision of the

input numbers. Table 6.1 shows the algorithm that had the best average run time for each

value of n and k for multi-way partitioning of 48-bit integers.

119

20 25 30 35 40 45 50 55 6010-4

10-3

10-2

10-1

100

101

102

103

104

Ti
m

e
(s

)

k = 3

RNP
IRNP
SNP
Moffitt

BSIBC
BSBCP
CIW
LCS

20 25 30 35 40 45 50 55 60
n

10-4

10-3

10-2

10-1

100

101

102

103

104

Ti
m

e
(s

)

k = 4

Figure 6.1: The average run time of eight algorithms for three and four-way partitioning.

120

20 25 30 35 40 45 50 55 6010-4

10-3

10-2

10-1

100

101

102

103

104

Ti
m

e
(s

)

k = 5

RNP
IRNP
SNP
Moffitt

BSIBC
BSBCP
CIW
LCS

20 25 30 35 40 45 50 55 60
n

10-4

10-3

10-2

10-1

100

101

102

103

104

105

Ti
m

e
(s

)

k = 6

Figure 6.2: The average run time of eight algorithms for five and six-way partitioning.

121

20 25 30 35 40 45 50 55 6010-4

10-3

10-2

10-1

100

101

102

103

104

105

Ti
m

e
(s

)

k = 7

RNP
IRNP
SNP
Moffitt

BSIBC
BSBCP
CIW
LCS

20 25 30 35 40 45 50 55 60
n

10-4

10-3

10-2

10-1

100

101

102

103

104

105

Ti
m

e
(s

)

k = 8

Figure 6.3: The average run time of eight algorithms for seven and eight-way partitioning.

122

20 25 30 35 40 45 50 55 6010-4

10-3

10-2

10-1

100

101

102

103

104

105

Ti
m

e
(s

)

k = 9

RNP
IRNP
SNP
Moffitt

BSIBC
BSBCP
CIW
LCS

20 25 30 35 40 45 50 55 60
n

10-4

10-3

10-2

10-1

100

101

102

103

104

105

Ti
m

e
(s

)

k = 10

Figure 6.4: The average run time of eight algorithms for nine and ten-way partitioning.

123

k →
n ↓ 3-Way 4-Way 5-Way 6-Way 7-Way 8-Way 9-Way 10-Way 11-Way 12-Way

30 SNP SNP SNP LCS LCS MOF MOF MOF IBC IBC
31 SNP SNP SNP LCS LCS MOF MOF MOF IBC IBC
32 SNP SNP SNP LCS LCS LCS LCS MOF IBC IBC
33 SNP SNP SNP LCS LCS LCS LCS MOF IBC IBC
34 SNP SNP LCS LCS LCS CIW LCS MOF BCP IBC
35 SNP SNP CIW LCS LCS LCS LCS LCS BCP BCP
36 SNP SNP CIW LCS LCS LCS LCS LCS BCP BCP
37 SNP SNP CIW LCS LCS LCS LCS LCS BCP BCP
38 SNP SNP CIW LCS LCS LCS LCS LCS BCP BCP
39 SNP SNP CIW LCS LCS LCS LCS CIW BCP BCP
40 SNP SNP CIW LCS LCS CIW CIW LCS LCS LCS
41 SNP CIW CIW CIW LCS CIW CIW CIW LCS LCS
42 SNP CIW CIW LCS LCS CIW CIW CIW LCS LCS
43 SNP CIW CIW CIW LCS CIW LCS LCS CIW LCS
44 SNP CIW CIW CIW LCS CIW CIW LCS CIW LCS
45 SNP CIW CIW CIW CIW CIW LCS LCS CIW LCS
46 SNP CIW CIW CIW CIW CIW CIW LCS CIW CIW
47 SNP CIW CIW CIW LCS LCS LCS LCS CIW CIW
48 SNP CIW CIW CIW LCS LCS LCS LCS CIW CIW
49 SNP CIW CIW CIW LCS LCS LCS LCS CIW CIW
50 SNP CIW CIW CIW CIW LCS LCS LCS LCS LCS
51 SNP CIW CIW CIW LCS LCS LCS LCS LCS LCS
52 SNP CIW CIW CIW LCS LCS LCS LCS LCS LCS
53 SNP CIW CIW LCS LCS LCS LCS LCS LCS LCS
54 SNP CIW CIW LCS LCS LCS LCS LCS LCS LCS
55 SNP CIW CIW LCS LCS LCS LCS LCS LCS LCS
56 SNP CIW CIW LCS LCS LCS LCS LCS LCS LCS
57 SNP CIW CIW LCS LCS LCS LCS LCS LCS LCS
58 SNP CIW CIW LCS LCS LCS LCS LCS LCS LCS
59 SNP CIW CIW LCS LCS LCS LCS LCS LCS LCS
60 SNP CIW CIW LCS LCS LCS LCS LCS LCS CIW

Our Algorithms Previous Algorithms

LCS - Low Cardinality Search MOF - Moffitt Partitioning
CIW - Cached Iterative Weakening BCP - Binary-Search Branch-and-Cut-and-Price
SNP - Sequential Number Partitioning
IBC - Binary-Search Improved Bin Completion

Table 6.1: The algorithm with the fastest average run time for 30 ≤ n ≤ 60 and 3 ≤ k ≤ 12.

124

CHAPTER 7

Contributions, Future Work and Conclusions

7.1 Summary of Contributions

This thesis has covered algorithms for computing optimal solutions to both the two-way

and multi-way number-partitioning problem. The two-way number-partitioning problem is

one of Richard Karp’s 21 original NP-complete problems [Kar72] and one of Garey and

Johnson’s six fundamental NP-complete problems [GJ79]. Multi-way number partitioning is

theoretically interesting both because it is NP-complete, but also because it is perhaps the

simplest NP-complete problem to describe. Given a set S of n integers, separate S into k

subsets such that the largest subset sum is minimized.

Despite the fact that number partitioning is so simple, there have been many algorithms

developed since the 1960’s which have continuously improved the run times to optimally par-

tition numbers. We have covered both existing algorithms and presented our new algorithms

for optimal number partitioning. In this section, we will briefly review these algorithms and

highlight our contributions.

7.1.1 Two-Way Number Partitioning

Chapter 2 covers two-way number partitioning. We presented two classic polynomial time

approximation algorithms: the greedy algorithm [Gra66] and the Karmarkar-Karp set dif-

ferencing (KK) Algorithm [KK82]. KK is an important approximation algorithm which is

used as an upper bound for many of the optimal algorithms we presented. In practice, it is

much more effective than greedy.

125

We also presented five optimal algorithms. The complete greedy algorithm (CGA)

and complete Karmarkar-Karp set differencing algorithm (CKK) are linear-space (O(n))

exponential-time (O(2n)) algorithms [Kor98]. When no perfect partition exists, their run

times are comparable. However, when many perfect partitions exist, CKK tends to outper-

form CGA by finding one of these perfect partitions much more quickly.

The Horowitz and Sahni (HS) [HS74] and Schroeppel and Shamir (SH) algorithms [SS81]

use exponential memory to improve upon the run time of CGA and CKK. HS uses O(2n
2)

memory while SS improves upon HS and uses O(2n
4) memory. Due to the memory limitations,

HS is practical for about n = 60 integers and SS for about n = 120 integers on a modern

desktop computer. They both have time complexity in O(n · 2n
2) and hence are much faster

than CGA and CKK if no perfect partitions are present and there is sufficient memory to

run them. If enough perfect partitions exist, CKK is the dominant algorithm as HS and SS

have more overhead to start their search and CGA does not converge on optimal solutions

as quickly as CKK does.

There is also a pseudo-polynomial time dynamic programming (DP) algorithm [GJ79] for

solving the two-way partition problem. DP is polynomial in the size of S and the magnitude

of the input integers. We show a surprising result experimentally both in [KS13] as well as

sections 2.5.3 and 2.5.4. Despite being pseudo-polynomial, DP’s run time is dominated by

CKK and CGA for low precision input and is intractable due to memory limitations for high

precision input.

In addition to being one of the most fundamental NP-complete problems, the algorithms

used for solving the two-way number-partitioning problem are also indispensable as com-

ponents of algorithms for solving the multi-way number-partitioning problem. All of the

multi-way number-partitioning problems covered in this thesis need to generate subsets with

sums in a range. Modified versions of the two-way number-partitioning algorithms are used

to generate these subsets.

126

7.1.2 Multi-Way Number Partitioning

Chapters 3, 4 and 5 cover different classes of algorithms for multi-way number partitioning.

7.1.2.1 Branch-and-Bound Algorithms

Chapter 3 covers branch-and-bound algorithms. We presented two polynomial time ap-

proximation algorithms to be used as upper bounds. The multi-way greedy algorithm, also

known as longest processing time [Gra66] is the classic upper bound. We also presented the

multi-way Karmarkar-Karp algorithm which is used as the upper bound bound for optimal

branch-and-bound algorithms [KK82]. Any upper bound is a bound both on overall solution

cost and also individual subset sums. However, there are separate lower bounds for each of

these values. The lower bound on solution cost is a function of the input set of integers while

the lower bound on individual subset sums is a function of the computed upper bound.

Each optimal algorithm for multi-way number partitioning generates a collection of sub-

sets whose sums are all within the lower and upper bounds on individual subsets. We

presented three algorithms for this task. Inclusion-exclusion (IE) [Kor09] searches a binary

tree of depth n to generate the collection of subsets with time complexity O(2n) and space

complexity O(n). Extended Horowitz and Sahni (EHS) as well as extended Schroeppel and

Shamir (ESS) [Kor11] use exponential memory to improve upon the run time of IE. Like their

two-way partitioning counterparts, EHS and ESS both have time complexity in O(n · 2n
2).

HS uses O(2n
2) memory while SS improves upon HS and uses O(2n

4) memory. In practice,

SS tends to be faster. This is likely because it has to sort sets of size (O n
4) instead of sets of

size O(2n
2). This savings exceeds the cost of using heaps to generate the O(2n

2) subsets by

about a factor of two.

We then presented four optimal branch-and-bound algorithms which recursively partition

the input set. RNP uses IE, and IRNP uses ESS to partition the input two-ways, then they

both recursively partition the two subsets. MOF uses IE, and SNP uses ESS to generate

first subsets, then they recursively partition the remaining integers k − 1 ways.

127

Recursive Number Partitioning (RNP) [Kor09] and Improved Recursive Number Parti-

tioning (IRNP) [Kor11] use the recursive principle of optimality to recursively partition the

input set into two sets to be partitioned bk/2c and dk/2e ways. RNP uses IE to do the

two-way partitioning while IRNP uses ESS.

The Moffitt algorithm (MOF) [Mof13] introduced the principle of weakest-link optimality

to replace the recursive principle of optimality. Instead of repeatedly searching for balanced

two-way partitions, MOF uses IE to search for all first subsets with sums within bounds and

then recursively partitions the remaining integers k − 1 ways.

We present our sequential number partitioning algorithm (SNP) in both [KSM13] and

section 3.7. SNP combines the best ideas of IRNP and MOF into a single algorithm. It uses

the recursive decomposition of MOF along with ESS from IRNP in one algorithm.

7.1.3 Bin Packing Algorithms

Chapter 4 describes the dual relationship between bin packing and number partitioning.

Both algorithms start with an input set S of positive integers. Number partitioning fixes the

number of subsets and partitions the integers while minimizing the largest subset sum. In

contrast, bin packing fixes the maximum subset sum and minimizes the number of subsets

necessary to pack the input integers.

This dual relationship is exploited by the MULTIFIT algorithm [JGJ78] to solve number-

partitioning problems using bin-packing algorithms. MULTIFIT first computes lower and

upper bounds on the cost of an optimal partition of S into k subsets. It then performs a

binary search over the bounds with each probe corresponding to a value in the range [lb, ub]

This defines a bin-packing problem with capacity equal to the value of the probe. The binary

search continues until the smallest capacity allowing the input integers to be packed into k

bins is found. The original MULTIFIT algorithm used first-fit decreasing, an approximation

to solve the bin-packing problems. We presented two algorithms for solving the individual

bin-packing problems optimally.

128

It is also possible to solve bin-packing problems using number-partitioning algorithms.

One first runs an approximation algorithm to calculate an upper bound on the number of

bins in an optimal packing. Then, one tries to solve a number-partitioning problem with k

set to one less than this upper bound. If the cost of the solution is less than C, the capacity

of the bin, one then tries two less than the upper bound, and so forth. The smallest value

of k for which it is possible to partition the input integers into subsets of size C or less is

the number of bins in an optimal packing. Solving bin-packing problems with a number-

partitioning algorithm is beyond the scope of this thesis and possibly a direction for future

research.

Branch-and-cut-and-price (BCP) [BS06] is an operations research algorithm which solves

bin-packing problems using linear programming [Chv83, DT97, DT03], branch-and-bound,

cutting planes [Gom58] and column generation [DW60, AC05]. Branch-and-cut-and-price

was combined with MULTIFIT to solve number-partitioning problems [DIM08]. We also

combined the branch-and-cut-and-price solver described in [BS06] with MULTIFIT to create

binary-search branch-and-cut-and-price (BSBCP) [SK14].

Bin completion (BC) [Kor02] is an artificial intelligence algorithm for solving the bin-

packing problem. We modified BC to create our algorithm, improved bin completion (IBC)

[SK13] which was tailored to run with MULTIFIT. IBC added two features to BC: incre-

mentally generated completions and improved variable ordering. We combined MULTIFIT

with IBC to create binary-search improved bin completion (BSIBC).

7.1.4 Cached Iterative Weakening

Chapter 5 introduces cached iterative weakening (CIW) [SK14], our current state-of-the-art

multi-way number-partitioning algorithm. Before CIW, all previous number partitioning

algorithms started by computing upper and lower bounds, and then shrinking those bounds

until the optimal solution is found. In contrast, CIW theorizes that a perfect partition is

possible and sets the bounds accordingly. It iteratively weakens these bounds until it finds

129

a feasible solution. This first solution found is guaranteed to be optimal.

Previous algorithms such as RNP, IRNP, MOF, and SNP recursively partition the input

set of integers and perform exponential searches at each node of the recursive search tree

in order to generate subsets with sums within lower and upper bounds. In contrast, CIW

generates subsets once and caches them, thereby avoiding repeated work.

As well as CIW, we also presented new research on low cardinality search (LCS). Low

cardinality search generates and caches only low cardinality subsets as opposed to all subsets.

For some values of n and k, this is much faster than standard CIW.

7.2 Future Work

The algorithms in this thesis have focused on number partitioning instances with high-

precision input integers. The high precision integers decrease the density of subsets with

sums close to the cost of the perfect partition. As a result, the algorithms cannot return

early before proving that the best solution found so far is optimal. In contrast, with low

precision input integers, there tend to be a high density of subsets with sums close to perfect.

This leads to many more perfect partitions which if found, can be returned immediately. If

perfect partitions exist, the goal becomes finding these partitions as quickly as possible.

When the precision of the input integers is low, the values of n and k that become tractable

change. Future work involves working with low precision inputs and tailoring algorithms to

solve these problems.

Both iterative weakening and caching using cached inclusion-exclusion trees are effective

techniques for solving number-partitioning problems. It is worth exploring whether these

techniques could be useful in other numeric domains such as knapsack [KPP04], job shop

scheduling [CB76], or packing problems in general including rectangle packing and higher

dimensional packing [FK07, HK09].

For many of the algorithms in this thesis such as RNP, IRNP, MOF, CIW and LCS,

generating subsets with sums in a range is central to the performance of the algorithm. We

130

have presented three algorithms for this purpose: IE, EHS and ESS. We have also explored

an algorithm for generating the m subsets with smallest sums that are greater than C∗P

and a modification to EHS to generate only low cardinality subsets. Any improvement to

algorithms solving this problem would improve the performance of many number-partitioning

algorithms in this thesis.

The algorithm for generating subsets in sum order (section 5.2) requires a parameter m

corresponding to a number of subsets to precompute. This is problematic as it is not obvious

what is a good value for m. Finding an algorithm which does not require a parameter, and

can efficiently generate subsets in sum order starting with a lower bound could greatly

improve CIW and LCS.

The algorithm for generating low cardinality subsets (section 5.7.3) is based on Horowitz

and Sahni. It therefore requires a lot more memory than a similar algorithm based on

Schroeppel and Shamir or inclusion-exclusion. It is worth exploring if either Schroeppel and

Shamir or inclusion-exclusion could be used to efficiently generate low cardinality subsets.

Modifying IE to generate low cardinality subsets should be straightforward, the question

is whether it would be more efficient. Modifying ESS to generate low cardinality subsets

efficiently is not as straightforward. The technique we used for EHS of only generating the

low cardinality half sets is not as effective for ESS since it uses two quarter sets to generate

the half sets. It is unclear how to efficiently generate only the low cardinality half sets

dynamically using the quarter sets of ESS.

In chapter 5, we presented low cardinality search which explores constraining number-

partitioning problems using the cardinality of the subsets. The preliminary experiments with

LCS look promising. Previous algorithms dealing with number partitioning have focused on

bounds on the sums of subsets. However, there are also bounds on the cardinality of subsets

as discussed in section 5.3.4. More work needs to be done considering pruning number

partitioning problems using bounds on the cardinality of subsets.

131

7.3 Conclusion

Given an input set of positive integers, separate the integers into k subsets while minimizing

the largest subset-sum. This is a simple problem statement that can be described to just

about anyone in less than one minute. Yet, given the apparent simplicity, algorithms for

solving number-partitioning problems are surprisingly complicated. Depending on the car-

dinality of the input integers, their precision, the number of subsets to partition into, and

the distribution of the input integers, different algorithms dominate.

There are thousands of problems that have been proven to be NP-complete. In some

sense, these problems are all equivalent to each other. Number partitioning is one of the

simplest of these problems. Other problems such as bin packing, knapsack and rectangle

packing are closely related. The greatest hope in studying this problem is that the insights

gained can help us to understand not just number partitioning, but other NP-complete

problems as well.

132

Acronyms

BC bin completion. 8, 68, 76–79, 130

BCP branch-and-cut-and-price. 8, 68, 75, 80, 81, 90

BFD best-fit decreasing. 73–76

BSBCP binary-search branch-and-cut-and-price. 75, 90, 91, 106, 120

BSIBC binary-search improved bin completion. 75, 90, 91, 120

CGA complete greedy algorithm. 17–20, 24, 31–34, 36, 55, 127

CIE cached inclusion-exclusion. 99–101, 103–105, 107, 110–113, 117

CIW cached iterative weakening. 8, 93, 94, 97–100, 105–107, 109–113, 115, 117, 120, 130–

132

CKK complete Karmarkar-Karp. 19, 20, 24, 31–34, 36, 39, 54, 55, 127

DFS depth-first search. 80

DP dynamic programming. 21–23, 32–34, 36, 127

EHS extended Horowitz and Sahni. 50, 51, 96, 97, 110, 111, 115, 128, 132

ESS extended Schroeppel and Shamir. 50, 51, 53–55, 60, 61, 63, 93, 96, 97, 107, 110, 111,

115, 117, 128, 129, 132

FFD first-fit decreasing. 73–75

HS Horowitz and Sahni. 24, 25, 27, 28, 32, 39, 50, 51, 127, 128

IBC improved bin completion. 75, 76, 79, 130

133

IE inclusion-exclusion. 47, 48, 55, 57, 59–61, 63, 67, 78–80, 93, 96–100, 110, 112, 128, 129,

132

IRNP improved recursive number partitioning. 51–57, 60, 61, 63, 64, 67, 90–92, 128, 129,

131

KK Karmarkar-Karp. 15, 16, 19, 24, 25, 43–45, 51, 52, 93, 96, 126

LCEHS Low Cardinality Extended Horowitz and Sahni. 110, 111

LCS low cardinality search. 109, 111–113, 115, 117, 120, 131, 132

LP linear Programming. 81

LPT longest processing time. 41

MOF Moffitt algorithm. 8, 56–58, 60, 61, 63, 64, 67, 90–93, 98–100, 106, 107, 109–111, 120,

128, 129, 131

RNP recursive number partitioning. 8, 51, 55, 56, 61, 67, 93, 110, 120, 128, 129, 131

SNP sequential number partitioning. 8, 61, 63, 64, 67, 90, 92, 93, 106, 107, 109–111, 120,

128, 129, 131

SS Schroeppel and Shamir. 27, 28, 32, 39, 50, 51, 54, 55, 67, 127, 128

134

References

[AC05] Hatem Ben Amor and Jose Valerio de Carvalho. Cutting stock problems. Springer,
2005.

[ARS83] Leonard M Adleman, Ronald L Rivest, and Adi Shamir. “Cryptographic commu-
nications system and method.”, September 20 1983. US Patent 4,405,829.

[BCC93] E. Balas, S. Ceria, and G. Cornuéjols. “A lift-and-project cutting plane algorithm
for mixed 0–1 programs.” Mathematical programming, 58(1):295–324, 1993.

[Bel57] R. Bellman. “Dynamic Programming, Princeton.” NJ: Princeton UP, 1957.

[BS06] G. Belov and G. Scheithauer. “A branch-and-cut-and-price algorithm for one-
dimensional stock cutting and two-dimensional two-stage cutting.” European Jour-
nal of Operational Research, 171(1):85–106, May 2006.

[CB76] Edward Grady Coffman and John L Bruno. Computer and job-shop scheduling
theory. John Wiley & Sons, 1976.

[CGJ96] E.G. Coffman Jr, M.R. Garey, and D.S. Johnson. “Approximation algorithms for
bin packing: A survey.” Approximation Algorithms for NP-Hard Problems, pp.
46–93, 1996.

[Che04] Bo Chen. “Parallel scheduling for early completion.” In Joseph YT Leung, edi-
tor, Handbook of scheduling: algorithms, models, and performance analysis. CRC
Press, 2004.

[Chv83] V. Chvatal. Linear programming. WH Freeman, 1983.

[Coo71] Stephen A Cook. “The complexity of theorem-proving procedures.” In Proceedings
of the third annual ACM symposium on Theory of computing, pp. 151–158. ACM,
1971.

[CPL09] IBM ILOG CPLEX. “V12. 1: UserâĂŹs Manual for CPLEX.” International
Business Machines Corporation, 46(53):157, 2009.

[DIM08] M. Dell’Amico, M. Iori, S. Martello, and M. Monaci. “Heuristic and exact algo-
rithms for the identical parallel machine scheduling problem.” INFORMS Journal
on Computing, 20(3):333–344, 2008.

[DM95] M. Dell’Amico and S. Martello. “Optimal scheduling of tasks on identical parallel
processors.” ORSA Journal on Computing, 7(2):191–200, 1995.

[DT97] George B Dantzig and Mukund N Thapa. Linear Programming 1: Introduction,
volume 1. Springer, 1997.

135

[DT03] George B Dantzig and Mukund N Thapa. Linear Programming 2: Theory and
Extensions, volume 1. Springer, 2003.

[DW60] George B Dantzig and Philip Wolfe. “Decomposition principle for linear pro-
grams.” Operations research, 8(1):101–111, 1960.

[EC71] S. Eilon and N. Christofides. “The loading problem.” Management Science,
17(5):259–268, 1971.

[FGL94] P.M. França, M. Gendreau, G. Laporte, and F.M. Müller. “A composite heuristic
for the identical parallel machine scheduling problem with minimum makespan
objective.” Computers & operations research, 21(2):205–210, 1994.

[FK05] Alex S. Fukunaga and Richard E. Korf. Bin completion algorithms for packing
and knapsack problems. University of California at Los Angeles, 2005.

[FK07] Alex S. Fukunaga and Richard E. Korf. “Bin Completion Algorithms for Mul-
ticontainer Packing, Knapsack, and Covering Problems.” Journal of Artificial
Intelligence Research (JAIR), 28:393–429, 2007.

[FNS04] A. Frangioni, E. Necciari, and M.G. Scutellà. “A multi-exchange neighborhood
for minimum makespan parallel machine scheduling problems.” Journal of Com-
binatorial Optimization, 8(2):195–220, 2004.

[GG61] P.C. Gilmore and R.E. Gomory. “A linear programming approach to the cutting-
stock problem.” Operations research, 9(6):849–859, 1961.

[GGU72] Michael R. Garey, Ronald L. Graham, and Jeffrey D. Ullman. “Worst-case anal-
ysis of memory allocation algorithms.” In Proceedings of the fourth annual ACM
symposium on Theory of computing, pp. 143–150. ACM, 1972.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco: W. H. Freeman, 1979.

[GLL79] Ronald L. Graham, Eugene L. Lawler, Jan Karel Lenstra, and A.H.G. Kan. “Opti-
mization and approximation in deterministic sequencing and scheduling: a survey.”
Annals of discrete Mathematics, 5:287–326, 1979.

[Gom58] R.E. Gomory. “Outline of an algorithm for integer solutions to linear programs.”
Bulletin of the American Mathematical Society, 64(5):275–278, 1958.

[Gra66] R.L. Graham. “Bounds for certain multiprocessing anomalies.” Bell System Tech-
nical Journal, 45(9):1563–1581, 1966.

[Hay02] Brian Hayes. “The easiest hard problem.” American Scientist, 90(2):113–117,
2002.

136

[HG95] W.D. Harvey and M.L. Ginsberg. “Limited discrepancy search.” In International
Joint Conference on Artificial Intelligence, volume 14, pp. 607–615. LAWRENCE
ERLBAUM ASSOCIATES LTD, 1995.

[HK09] Eric Huang and Richard E Korf. “New Improvements in Optimal Rectangle Pack-
ing.” In IJCAI, pp. 511–516, 2009.

[HS74] E. Horowitz and S. Sahni. “Computing partitions with applications to the knap-
sack problem.” Journal of the ACM (JACM), 21(2):277–292, 1974.

[HS87] Dorit S. Hochbaum and David B. Shmoys. “Using dual approximation algorithms
for scheduling problems theoretical and practical results.” Journal of the ACM,
34(1):144–162, January 1987.

[IM08] Manuel Iori and Silvano Martello. “Scatter search algorithms for identical parallel
machine scheduling problems.” In Metaheuristics for Scheduling in Industrial and
Manufacturing Applications, pp. 41–59. Springer, 2008.

[JGJ78] Edward G. Coffman Jr, Michael R. Garey, and David S. Johnson. “An applica-
tion of bin-packing to multiprocessor scheduling.” SIAM Journal on Computing,
7(1):1–17, 1978.

[Joh73] David S Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts
Institute of Technology, 1973.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[KK82] N. Karmarkar and R.M. Karp. The differencing method of set partitioning. Com-
puter Science Division (EECS), University of California, 1982.

[Kor96] Richard E. Korf. “Improved limited discrepancy search.” In Proceedings of the
National Conference on Artificial Intelligence, pp. 286–291, 1996.

[Kor98] Richard E. Korf. “A complete anytime algorithm for number partitioning.” Arti-
ficial Intelligence, 106(2):181–203, 1998.

[Kor02] Richard E. Korf. “A new algorithm for optimal bin packing.” In Proceedings of
the National conference on Artificial Intelligence, pp. 731–736, 2002.

[Kor03] Richard E. Korf. “An Improved Algorithm for Optimal Bin Packing.” In Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI-03) Acapulco, Mexico, pp. 1252–1258, 2003.

[Kor09] Richard E. Korf. “Multi-way number partitioning.” Proceedings of the 20nd In-
ternational Joint Conference on Artificial Intelligence (IJCAI-09), pp. 538–543,
2009.

137

[Kor11] Richard E. Korf. “A Hybrid Recursive Multi-Way Number Partitioning Algo-
rithm.” In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI-11) Barcelona, Catalonia, Spain, pp. 591–596, 2011.

[KPP04] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer,
2004.

[KS13] Richard E Korf and Ethan L Schreiber. “Optimally Scheduling Small Numbers
of Identical Parallel Machines.” In Twenty-Third International Conference on
Automated Planning and Scheduling, 2013.

[KSM13] Richard E Korf, Ethan L Schreiber, and Michael D Moffitt. “Optimal Sequen-
tial Multi-Way Number Partitioning.” In International Symposium on Artificial
Intelligence and Mathematics (ISAIM-2014), 2013.

[Lev73] Leonid A Levin. “Universal search problems.” Problemy Peredachi Informatsii,
9(3):115–116, 1973.

[Mer01] Stephan Mertens. “A physicist’s approach to number partitioning.” Theoretical
Computer Science, 265(1):79–108, 2001.

[Mer06] Stephan Mertens. “The easiest hard problem: Number partitioning.” Computa-
tional Complexity and Statistical Physics, 125(2):125–140, 2006.

[MH78] Ralph Merkle and Martin E Hellman. “Hiding information and signatures in
trapdoor knapsacks.” Information Theory, IEEE Transactions on, 24(5):525–530,
1978.

[MJG01] Ethel Mokotoff, José Luis Jimeno, and Ana Isabel Gutiérrez. “List scheduling al-
gorithms to minimize the makespan on identical parallel machines.” Top, 9(2):243–
269, 2001.

[Mof13] Michael D Moffitt. “Search strategies for optimal multi-way number partitioning.”
In Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, pp. 623–629. AAAI Press, 2013.

[MT90a] S. Martello and P. Toth. Knapsack problems: algorithms and computer implemen-
tations. Chichester: John Wiley & Sons, 1990.

[MT90b] Silvano Martello and Paolo Toth. “Lower bounds and reduction procedures for
the bin packing problem.” Discrete Applied Mathematics, 28(1):59–70, 1990.

[Pin12] Michael L Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.

[Pro93] Foster J Provost. “Iterative weakening: Optimal and near-optimal policies for the
selection of search bias.” In AAAI, pp. 749–755, 1993.

138

[RNM96] Wheeler Ruml, J Thomas Ngo, Joe Marks, and Stuart M Shieber. “Easily searched
encodings for number partitioning.” Journal of Optimization Theory and Applica-
tions, 89(2):251–291, 1996.

[Sar89] Vivek Sarkar. Partitioning and scheduling parallel programs for multiprocessors.
MIT press, 1989.

[Sch02] J.E. Schoenfield. “Fast, exact solution of open bin packing problems without linear
programming.” Draft, US Army Space & Missile Defense Command, p. 45, 2002.

[Sha83] Adi Shamir. “A polynomial time algorithm for breaking the basic Merkle-Hellman
cryptosystem.” In Advances in Cryptology, pp. 279–288. Springer, 1983.

[SK13] Ethan L Schreiber and Richard E Korf. “Improved bin completion for optimal
bin packing and number partitioning.” In Proceedings of the Twenty-Third inter-
national joint conference on Artificial Intelligence (IJCAI-13) Beijing, China, pp.
651–658. AAAI Press, 2013.

[SK14] Ethan L Schreiber and Richard E Korf. “Cached Iterative Weakening for Opti-
mal Multi-Way Number Partitioning.” In Proceedings of the Twenty-Eighth An-
nual Conference on Artificial Intelligence (AAAI-14) Quebec City, Canada. AAAI
Press, 2014.

[SS81] Richard Schroeppel and Adi Shamir. “A T=O(2n/2), S=O(2n/4) Algorithm
for Certain NP-Complete Problems.” SIAM Journal of Computing (SICOMP),
10(3):456–464, 1981.

[Tur36] Alan Mathison Turing. “On computable numbers, with an application to the
Entscheidungsproblem.” J. of Math, 58:345–363, 1936.

[Van99] F. Vanderbeck. “Computational study of a column generation algorithm for bin
packing and cutting stock problems.” Mathematical Programming, 86(3):565–594,
1999.

[Wal97] Toby Walsh. “Depth-bounded discrepancy search.” In International joint confer-
ence on artificial intelligence, volume 15, pp. 1388–1395. LAWRENCE ERLBAUM
ASSOCIATES LTD, 1997.

[Wal09] Toby Walsh. “Where Are the Really Hard Manipulation Problems? The Phase
Transition in Manipulating the Veto Rule.” In IJCAI, pp. 324–329, 2009.

139

