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Abstract 
 

Mathematical Modeling of Bacterial Motility 
 

by 
  

Jing Chen 
 

Doctor of Philosophy in Biophysics 
 

University of California, Berkeley 
 

Professor George F. Oster, Chair 
 
 
 

Bacterial motility is an interesting field of biophysics with many open mysteries. 
Mathematical models integrate experimental observations into a conceptual framework that 
elucidates the underlying mechanisms. They also provide physical insight into the general 
principles that govern the motion, energy conversion, and signal transduction. This thesis 
summarizes models for two gliding bacteria: mycoplasma and myxobacteria.  

The model for mycoplasma motility sheds light on how temperature affects the gliding 
speed of the cell by influencing the rupture dynamics of motor-substrate adhesion. Mycoplasmas 
exhibit a novel, substrate-dependent gliding motility that is driven by about 400 “leg” proteins. 
The legs interact with the substrate and transmit the forces generated by an assembly of ATPase 
motors. The velocity of the cell increases linearly by nearly 10 fold over a narrow temperature 
range of 10 – 40ºC. This corresponds to an Arrhenius factor that decreases from ~ 45 kBT at 10ºC 
to ~ 10 kBT at 40ºC. On the other hand, load-velocity curves at different temperatures extrapolate 
to nearly the same stall force, suggesting a temperature-insensitive force generation mechanism 
near stall. The model proposes a leg-substrate interaction mechanism that explains the intriguing 
temperature sensitivity of this motility. The large Arrhenius factor at low temperatures comes 
about from the additive effect of many smaller energy barriers arising from many substrate 
binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high 
temperature due to two factors: (1) the reduced effective multiplicity of energy barriers intrinsic 
to the multiple-site binding mechanism, and (2) the temperature-sensitive weakly facilitated leg 
release that curtails the power stroke. The model suggests an explanation for the similar steep, 
sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin 
and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, 
but by the motor-substrate interaction.  

The model for myxobacteria explains the mechanism of the so-called Adventurous, or A-
motility system. A-motility in myxobacteria recruits the bacterial cytoskeleton protein MreB 
along with proton-driven motors homologous to the stators of the bacterial flagellar motor. This 
is the first known prokaryotic example where the bacterial cytoskeleton mediates cell motility. 
The mechanism may be widespread in bacteria, since both MreB homologs and MotA-MotB 
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homologs are common across a variety of bacterial species. The model introduces cargo-
mediated force generation as a key assumption. There are two types of cargo, one causing high 
drag and the other low drag. They are unequally distributed along the two strands of the double 
helical track, thereby creating an unbalanced force that drives cell motion. The unequal 
distribution results from the unequal cargo exchange rates at the cell poles. And these rates are 
controlled by biochemical oscillators. Besides reproducing the cell velocity and the rotational 
speed of the track, the model also explains many other experimental observations on 
myxobacteria motility, including periodic reversals of the cell motion, short pauses before cell 
reversals, and a whole series of experiments showing the dynamics of motility-related protein 
clusters at the cell poles and periodically along the substrate interface.  

 

 

 

 
 
 



i 

 

Table of Contents 

 

Abstract ........................................................................................................................................... 1 

Acknowledgements ........................................................................................................................ iii 

Curriculum Vitae ........................................................................................................................... iv 

Chapter 1 Introduction ............................................................................................................... 1 
1.1 Bacteria motility at a glance ............................................................................................. 1 

1.2 Collaboration between modeling and experiments .......................................................... 3 

1.3 Physical rules in the microscopic world ........................................................................... 4 

1.4 Mechanochemical modeling for bacterial gliding motility .............................................. 5 

Chapter 2 Mycoplasma Motility ................................................................................................ 7 
2.1 Introduction ...................................................................................................................... 7 

2.2 Model and results ............................................................................................................. 9 

Leg cycle .................................................................................................................................. 9 

Foot-substrate interaction ...................................................................................................... 12 

Weakly-facilitated foot release during the power stroke rectifies the high-temperature curve
 ............................................................................................................................................... 13 

The load-velocity curve explains the dynamical trajectory ................................................... 16 

2.3 Discussion ...................................................................................................................... 18 

Appendix A:   Hidden Coordinates for the Motor .................................................................... 22 

Appendix B:   Derivation of peel-off rate of the foot................................................................ 22 

Appendix C:   Derivation of weakly-facilitated and Spontaneous release rate of the foot ....... 25 

Appendix D:  Derivation of the load-velocity curve ................................................................. 26 

Chapter 3 Myxobacteria A-Motility ........................................................................................ 33 
3.1 Introduction .................................................................................................................... 33 

3.2 Model and results ........................................................................................................... 35 

Mechanics of A-motility ........................................................................................................ 35 

Force balance ......................................................................................................................... 37 

Biochemical oscillators at the cell poles govern the periodic reversal .................................. 40 

Results of the model explain most experimental observations.............................................. 44 



ii 

 

3.3 Discussions ..................................................................................................................... 48 

Appendix A:  Results for cells suspended in methylcellulose .................................................. 51 

Appendix B:  Model is robust against parameter change.......................................................... 53 

Appendix C:  Motor-substrate binding causes motor clustering under pure diffusion ............. 55 

Appendix D:  Energy conservation considerations ................................................................... 56 

Chapter 4 Concluding Remarks ............................................................................................... 58 

References ..................................................................................................................................... 60 

 

   



iii 

 

Acknowledgements 

 

I shall deeply thank Professor George Oster for being a great advisor for me in the past five years. 
I could not have made through the numerous adversities in my research, as well as those in my 
life, if he had not shown unchanging support and encouragement at all times. 

I shall thank Professor John Neu for all the mathematics he taught me in these projects. And 
more importantly, his dedication to teaching students is one of the reasons that inspire me to 
continue academic pursuit after some serious swinging. 

I shall thank my parents for their unconditional love and care, and the harbor they provided at my 
hardest times. The much improved communication with them is the best gift I received in these 
years.  

Last but not least, I shall thank so many of my friends who have shared my joy, excitement, 
sadness, frustration and growth through the years. They created a warm family for me thousands 
of miles away from home. 

  



iv 

 

Jing Chen 
 

2010, Ph.D., Biophysics, University of California, Berkeley, USA 

Education 

• Dissertation: Mathematical Modeling of Bacterial Motility 
2004, M.S., Mathematics in Bioscience, Technical University of Munich, Germany  
• Thesis: Stability of the Movements of the Elbow Joint 
2002, B.S., Biology, Fudan University, China 
• Thesis: The Complexity Indices of EEG Signals 

 

Dissertation research with Prof. George Oster UCB, 2005−10 

Research Experience 

• Project: Modeling myxobacteria motility 
• Project: Modeling mycoplasma motility 
• Constructed, analyzed and simulated mechanochemical models for 

bacterial motility.  

Summer intern at Merck Research Lab                      Merck, Co., 2009 
• Project: Parameter estimation in large-scale cardiovascular models 

using interpolative approximations 
• Programmed for parallel computation with compiled MatLab codes. 

Lab rotations (3 labs) UCB, 2004−05 
• Coded Pearl programs for bioinformatics studies. 
• Used microscopy to study biological membranes. 
• Conducted mathematical analysis of biochemical networks. 

Master thesis with Prof. Jürgen Scheurle, Math Dept. TUM, 2003−04 
• Project: Stability of the movements of the elbow Joint 
• Developed numerical algorithm that maps out the basin of attraction for 

stable solutions to nonlinear ODE models. 
• Applied the algorithm to the analysis of elbow mechanics in human. 

Summer research with Prof. Leo van Hemmen, Phys Dept. TUM, 2003 
• Project: Neuronal model for distance-localizing behavior in sand scorpions 
• Constructed neuronal network model for prey localization in sand scorpions. 
• Implemented neuron population model and statistical analysis. 

Undergraduate thesis with Prof. Fanji Gu, Biol Dept. Fudan U, 2002 
• Project: The complexity indices of EEG signals 
• Developed algorithms to evaluate the complexity of EEG signals, and 

differentiate resting versus thinking states in human subjects. 



v 

 

• Conducted EEG signal recording. 

Research assistant with Prof. Ping Xu, Biol Dept. Fudan U, 2000−02 
• Conducted molecular biology experiments to study cancer. 

 

Chen, Neu, Nan, Zusman and Oster, A mechanochemical model for A-motility in Myxococcus 
xanthus: proton-driven motors running on helical cytoskeleton. (in preparation) 

Publications 

Chen, Neu, Miyata and Oster, Motor-substrate interactions in mycoplasma motility explain non-
Arrhenius temperature dependence. Biophys. J. 97(11):2930–2938 

Xing and Chen, The Goldbeter-Koshland switch in the first-order region and its response to 
dynamic disorder. PLoS ONE. 14(2008): e2140. 

Sliusarenko, Chen and Oster. From biochemistry to morphogenesis in myxobacteria. Bull. Math. 
Biol. 68(2005): 1039-1051. 

 

Graduate Student Instructor, Computer simulation in biology (upper division)                 2006−08 

Teaching Experience 

• Held discussion sessions, designed and graded homework assignments, 
revised course materials 

  



vi 

 

 



1 

 

Chapter 1 Introduction 
Bacterial motility is a fascinating area of biophysics with many unsolved mysteries. Studies in 
this field lead to potential applications in medicine and engineering. Mathematical modeling is a 
powerful tool in these studies. It unifies the experimental observations into a conceptual 
framework to understand the motility process. They also provide physical insight into the general 
principles that govern the mechanical motion, energy conversion, and signal transduction in the 
world of microscopic organisms. 

1.1 Bacteria motility at a glance 

Despite the relative simplicity of their genomes, bacterial cells surpass eukaryotic cells in the 
diversity of their motility mechanisms. Eukaryotic cells move in two major ways. Most of them 
crawl by repetitive extension, attaching, retracting, and detaching of pseudopodia or lamellipodia, 
which are driven by biased polymerization and depolymerization of the cytoplasmic actin 
network. Some cells swim with cilia or flagella that are constructed from bundles of doublet 
microtubules (Lodish, Berk et al. 2000). 

Bacterial cells, in contrast, have developed various other mechanisms to move. For example, 
Escherichia coli swims by rotating spiral-shaped flagella (Figure 1-1); Spiroplasma citri screws 
through the water by propagating a handedness change down its spiral-shaped body (Figure 1-2) 
(Shaevitz, Lee et al. 2005); Pseudomonas aeruginosa tows itself forward by sending out and 
retracting type IV pili (Figure 1-3) (Skerker and Berg 2001); Listeria monocytogenes, as a 
parasite, expropriates the host’s actin polymerization to propel itself (Figure 1-4) (Cameron, 
Giardini et al. 2000). This is but a few that have been at least partially understood. Many more 
types of bacterial motility remain mysterious. 

 
Figure 1-1:  E. coli rotates spiral-shaped flagella to swim. Downloaded from 
http://kentsimmons.uwinnipeg.ca/16cm05/1116/16monera.htm. 
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Figure 1-2: Spiroplasma swims by propagating a handedness change down the spiral-
shaped body. (Shaevitz, Lee et al. 2005) 

 

 

 
 

Figure 1-3: P. aeruginosa uses type IV pili as towlines (Skerker and Berg 2001). 
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Figure 1-4: Listeria monocytogenes triggers actin polymerization in the host cell to 
propel itself. Green, actin filaments; red, Listeria. Downloaded from 
http://cmgm.stanford.edu/theriot/. 

 

Study of bacterial motility has important biomedical and engineering applications. Knowledge of 
pathogen motility facilitates the development of new antibiotics that specifically inhibit the 
spreading of pathogens. Due to the vast diversity of bacterial motility, especially their 
differences from eukaryotic motility, such medicines may have minimal side effects on human 
cells, as well as the beneficial bacteria in the human body. Alternatively, bacteria can be used as 
highly specific drug delivery agents that target directly the site of disease, incurring minimal 
damage to healthy tissues. Cheap and easy to mass-produce, bacteria are competitive candidates 
for this purpose. Furthermore, understanding the mechanisms of bacterial motility helps the 
mimetic design of microscopic machinery. To achieve these ambitions we must first understand 
how bacteria move.  

1.2 Collaboration between modeling and experiments 

In the study of bacterial motility, the combined efforts in experiments and modeling often give 
the best solution to the problem. Experiments define the facts about motility, e.g. the structure 
and molecular components of the motility apparatus, the force-velocity relationship, etc. Models, 
on the other hand, weave these facts into a logically integrated picture that explains their 
dynamical interactions. Unknown aspects of the picture are often momentarily filled in with 
assumptions that await proof or disproof by further experiments. Many assumptions are not 
directly testable in experiments, at least with current methods. But predictions stemming from 
them can serve a constructive purpose indirectly by suggesting future experiments. In this way 
models play an important feedback role on experiments. 

There are many successful models of bacterial motility. The flagella-driven motility in E. coli 
gave rise to the best known models in the field. These models focus on different aspects of the 

http://cmgm.stanford.edu/theriot/�
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motility. The biased random walk models explain the emergence of chemotactic behavior (Keller 
and Segel 1971; Alt 1980); the fluid mechanics models explain the generation of thrust on the 
cell by rotating the helical flagella (Macnab 1977; Purcell 1997); mechanochemical models 
explain the generation of rotational torque by the flagellar motor (Xing, Bai et al. 2006; Bai, Lo 
et al. 2009). Other motility models have been constructed for Listeria (Mogilner and Oster 2003), 
Spiroplasma (Jing, Wolgemuth et al. 2009; Wada and Netz 2009), etc.  

The focus of the model is usually restricted by the existing experimental observations. Take E. 
coli motility again as an example. The fluid mechanics models came first because it can be 
sufficiently formulated and analyzed as soon as the rotation of the helical shaped flagella is 
observed and correlated to the cell motility (Berg and Anderson 1973). Similarly, the run-and-
tumble model for chemotaxis was based on the cell-tracking experiments that measure the varied 
tumble frequencies as the cell goes up or down the nutrient gradient (Berg and Brown 1972). But 
the flagellar motor itself could not be modeled until the structure and function of its constituent 
macromolecules can be examined with modern experimental techniques, such as high-resolution 
electron microscopy and NMR spectroscopy.  

Because of the complexity of cell motility and regulation, the effective interplay between 
modeling and experiments lives in a subtle regime. Ideally, a model gives a creative stretch 
beyond summarizing the experiments. It would provide no new information if abstraction and 
assumptions are excluded. But too much of these reduce it to blind guesswork. Thus it is up to 
the researcher to judge how far the model should go, based on the current state of the 
experimental knowledge. 

1.3 Physical rules in the microscopic world 

Due to the microscopic size of the bacterium and its motility apparatus, there are two general 
physical properties associated with bacterial motility: inertia is negligible and thermal 
fluctuations are significant. This is true for any moving object of similar size (nm ~ µm) and 
velocity (< 102 body sizes per second) in an aqueous medium. Motion on such scales has a 
negligible Reynolds number (~10-6), which characterizes the ratio between inertial and viscous 
forces. In this regime, a micron-sized bacterium can only coast for ~0.01 nm or 0.1 µs in water 
(Purcell 1977). Therefore, inertia can be safely neglected in modeling bacterial motility. That is, 
a force results in a proportional instantaneous velocity, F = ζV, instead of an acceleration in 
Newton’s 2nd Law. Here ζ is the hydrodynamics drag coefficient, which depends on the medium, 
the shape, and the size of the object: ζ ∼ (medium viscosity) × (shape) × (size).  

On the other hand, microscopic objects are subject to tremendous thermal fluctuations. This is 
characterized by a large diffusion coefficient, roughly inversely proportional to the size of the 
object. For example, a micron-sized bacterium in water has a diffusion coefficient ~0.5 µm2/s. 
Thus the bacterium diffuses by about 1 µm in 1 s (distance2 ~ 2 × diffusion coefficient × time), 
which is comparable to the distance it travels directionally (taking the speed of E. coli ~2 µm/s). 
Because the physical unit of the diffusion coefficient, µm2/s, is different from that of velocity, 
µm/s, diffusion wins on short time scales, and directional motion wins on long time scales. For a 
bacterium, the diffusion and the directional motion are commensurable at a time scale on the 
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order of seconds. Yet most biochemical reactions happen on the order of milliseconds or faster. 
To study motility driven or regulated by such reactions, thermal fluctuations must be considered.  

Sometimes thermal fluctuations can be ignored to simplify the mathematical analysis and 
computation. But the validity of such approximations needs careful evaluation. One typical 
scenario for the approximation is that a steep energy well constrains the thermal fluctuations 
within a small range. The object equilibrates to a Boltzmann distribution given by exp(−V/kBT), 
where V is the energy well, kB is the Boltzmann constant, and T is the absolute temperature. For 
instance, the secondary structure of a protein is usually molded with strong chemical bonds, 
essentially deep energy wells. Thus for some purposes we can ignore the internal thermal 
fluctuations and treat the structure as one unit. Models of bacterial motility often apply such 
approximations to higher levels, including protein subunits, whole proteins, protein complexes, 
even the whole cell. Another typical scenario for ignoring thermal fluctuations is when thermal 
fluctuations cause only a normally distributed deviation around the mean path, and only the 
mean behavior is of interest. But one should be aware that energy inputs may “color” the thermal 
noise. In this case the resultant mean behavior differs with or without thermal fluctuations. In 
extreme cases like polymerization-driven motility (e.g. Listeria), the motion is directly driven by 
thermal fluctuations and rectified, or biased, by chemical reactions (Wang and Oster 2002; 
Mogilner and Oster 2003). Such motors stall without thermal fluctuations. 

1.4 Mechanochemical modeling for bacterial gliding motility 

Gliding motility is defined as substrate-dependent propulsion in the absence of obvious external 
motility organelles, like flagella and pili, or conformational changes in the cell shape, as in 
Spiroplasma (Lawrence and Richard 1971; Burchard 1981). In this work I have modeled the 
motility of the Mollicute, Mycoplasma mobile, and the myxobacterium, Myxococcus xanthus. 
Although both glide on solid surface, their motility mechanisms have almost nothing in common. 
The mycoplasma is driven by hundreds of tiny rowing “leg” proteins distributed around the neck 
of the cell, whereas the myxobacterium is driven by motors running along an internal helical 
cytoskeleton. Other gliding mechanisms were also proposed for different bacteria, e.g. surface 
waves on the cell envelope (Lawrence and Richard 1971), inchworming (Burchard, Burchard et 
al. 1977), hydration of secreted slime (Wolgemuth, Hoiczyk et al. 2002). 

Mechanochemical models, as the name suggests, encompasses the mechanics, the biochemistry 
and their interactions. The mechanical motion of the cell is powered by biochemical reactions, 
typically ATP hydrolysis or transmembrane ion motive force. It is usually signaled and regulated 
by biochemical reactions, too. On the other hand, recent years have witnessed increasing 
attention to the regulatory feedback from mechanics to biochemistry. For instance, kinesin walks 
along the microtubule hand over hand because the ATP binding at the leading head is inhibited 
by backward tension (Rosenfeld, Fordyce et al. 2003; Hyeon and Onuchic 2007; Gennerich and 
Vale 2009); the torque generated by the bacterial flagellar motor remains nearly constant up to a 
“knee” velocity because the ion channel is gated by the mechanical motion (Xing, Bai et al. 
2006). The crosstalk between mechanics and biochemistry demonstrates a much more interesting 
world inside the cells than a well stirred reaction tank, as they used to be treated. 
Mechanochemical coupling has become more recognized as a general principle involved in every 
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aspect of cell biology, from enzymatic reaction to cell mitosis. Cell motility provides an 
excellent platform for studying the principles of mechanochemical coupling. 

My models depict coarse-grained systems with small numbers of interacting components. The 
components are defined according to structural and dynamical information provided by 
experiments. These models contrast to molecular dynamics (MD) models, a type of model 
commonly used to study the mechanochemistry of biomolecules. MD models compute the 
trajectories of all the atoms or small chemical groups in the system, generating results with very 
high temporal and spatial resolution. Yet the computational cost is formidable. MD models can 
handle systems up to protein level in size and nanosecond in time – and even this takes CPU-
years to compute. Coarse-grained models, by contrast, usually identify no more than a few 
components. The much reduced modeling scale enables cheap, usually PC-executable 
computation, even analytical solutions when lucky. Because bacterial motility usually recruits 
thousands of proteins and the dynamics may occur in seconds or longer, the coarse-grained 
models have great advantage over the MD models in computational efficiency. Furthermore, the 
MD models require detailed information about the molecular structure, which is often not 
available for some or all the relevant components of the system. But coarse-grained models only 
resolve how the components interact with each other, and do not care about their detailed 
structure unless necessary for the function. Thus the coarse-grained models can be constructed 
on much less experimental data.  

Albeit leaving out a lot of information compared to MD models, the coarse-grained models try to 
capture the most relevant and essential features in the motility process. This is possible mainly 
thanks to the separation of temporal and spatial scales, especially the time scale separation. 
Given a major time scale of interest, processes on much longer time scales can be treated as 
quasi-steady, and those on much shorter time scales can be assigned equilibrium distributions. 
For example, in the study of bacterial motility with time scales of milliseconds to seconds, 
protein synthesis takes much longer and thus protein concentrations are often assumed constant; 
the fluctuations of protein conformation is much faster and are usually treated as an ensemble 
average with Gaussian noise. Similar approximations apply to the spatial dimension. For instance, 
the surface geometry of a protein on the atomic scale is negligible in estimating the protein’s 
hydrodynamic drag coefficient. Such approximations keep the model focused on the essential 
features. Last but not least, it is much easier for the human mind to grasp physical insights from 
only a handful of interacting parts. So the coarse-grained model provides a great platform for 
studies of principles. 
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Chapter 2 Mycoplasma Motility 
Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by about 400 
“leg” proteins. The legs interact with the substrate and transmit the forces generated by an 
assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10 fold over a 
narrow temperature range of 10–40ºC. This corresponds to an Arrhenius factor that decreases 
from ~45 kBT at 10ºC to ~10 kBT at 40ºC. On the other hand, load-velocity curves at different 
temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive 
force generation mechanism near stall. We propose a leg-substrate interaction mechanism that 
explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low 
temperature comes about from the addition of many smaller energy barriers arising from many 
substrate binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates 
at high temperature due to two factors: (1) the reduced effective multiplicity of energy barriers 
intrinsic to the multiple-site binding mechanism, and (2) the temperature-sensitive weakly 
facilitated leg release that curtails the power stroke. The model suggests an explanation for the 
similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, 
such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic 
biochemistry, but by the motor-substrate interaction. This work was published in Biophysical 
Journal 97(11):2930–2938 (Chen, Neu et al. 2009). 

2.1 Introduction 

Mycoplasmas are a genus of wall-less bacteria with compact genomes that may have arisen as a 
result of retrograde evolution (Razin, Yogev et al. 1998). They are the smallest known free-
living, self-replicating organisms. Despite the loss of many biological functions, mycoplasmas 
demonstrate a novel gliding motility on solid substrates, such as glass, plastic and surface of 
epithelial cells (Rosengarten, Fischer et al. 1988; Kirchhoff 1992; Miyata 2005). Their 
locomotion is always in the direction of a characteristic membrane protrusion at one pole of the 
cell (the “nose”) (Seto, Layh-Schmitt et al. 2001; Miyata and Uenoyama 2002; Kenri, Seto et al. 
2004; Henderson and Jensen 2006). The motility mechanism is novel. The mycoplasma genome 
contains no homologs to genes associated with known mechanisms of bacterial motility (Fraser, 
Gocayne et al. 1995; Himmelreich, Hilbert et al. 1996; Chambaud, Heilig et al. 2001; Jaffe, 
Stange-Thomann et al. 2004).  

The motility studies are carried out mainly on the fastest gliding species, Mycoplasma mobile. 
Under lab conditions, M. mobile glides smoothly and continuously on glass surface with 
velocities of 2.0−4.5 μm/s, or 3−7 body-lengths/s (Rosengarten and Kirchhoff 1987). The energy 
source is ATP hydrolysis (Jaffe, Miyata et al. 2004; Uenoyama and Miyata 2005; Ohtani and 
Miyata 2007). Recent experiments reveal a complicated motility organelle in its nose (Nakane 
and Miyata 2007). The core of the organelle consists of a dock structure fixed at the distal end of 
the nose, and dozens of filaments extending radially from the dock. These filaments anchor about 
400 single protein “legs” that protrude through the cell membrane and interact with the substrate 
(Figure 2-1)(Miyata and Petersen 2004; Uenoyama, Kusumoto et al. 2004; Metsugi, Uenoyama 
et al. 2005; Adan-Kubo, Uenoyama et al. 2006; Uenoyama, Seto et al. 2009). Since the leg is the 
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best studied protein in the complicated organelle, our model focuses on how these legs harness 
the forces generated by the ATPase motors to drive the motion of the cell. 

M. mobile shows intriguing velocity changes with temperature and load force. The temperature-
velocity curve is steep and sub-Arrhenius. The velocity increases almost linearly by about 10-
fold over a narrow temperature range from 10ºC to 40ºC (Figure 2-3A) (Miyata, Ryu et al. 2002). 
Translated onto a 1/T ~ logV plot (circles in Figure 2-3B), these data correspond to an Arrhenius 
factor that decreases from ~45 kBT at 10ºC to ~10 kBT at 40ºC. On the other hand, the velocity 
decreases nearly linearly with increasing load force, but the stall force extrapolates to ~25 pN at 
different temperatures (c.f. fig.4 in (Miyata, Ryu et al. 2002)). Cells attached to micro-beads 
trapped by optical tweezers also stall when pulled by a force of ~25 pN (Miyata, Ryu et al. 2002). 
These data suggest that the force generation step is insensitive to temperature near stall loads.  

Here we propose a leg-substrate interaction mechanism to explain the non-Arrhenius temperature 
dependence of mycoplasma motility. In this mechanism the release of the leg from the substrate 
is the major temperature-sensitive factor. Soo and Theriot (Soo and Theriot 2005) suggested in 
their model for Listeria motility that the large Arrhenius factor for the cell velocity is caused by 
the cooperative breaking-off of multiple binding sites so that the Arrhenius factors of single sites 
add. Our model goes further and explains the decrease in the Arrhenius factor as temperature 
rises, i.e. the sub-Arrhenius relationship between temperature and velocity.  The model can be 
generalized to explain similar temperature sensitivity observed in many “walking” molecular 
motors such as kinesin and myosin (Anson 1992; Bohm, Stracke et al. 2000). This theory reveals 
the motor-substrate interaction, especially the unbinding process, as the dominant factor affected 
by temperature, albeit not in a simple Arrhenius fashion. 

 

 
 

Figure 2-1: Motility apparatus of M. mobile. 400 leg proteins are located at the neck of 
the M. mobile cell. Each leg assumes a music-note-like shape (zoom-in view), with two 
arms at the proximal end, a long flexible segment (blue) and a foot (green) that interacts 
with the substrate.  
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2.2 Model and results 

In the following sections, we first lay down the framework for the motility process and the basic 
assumptions used in our model. After that we go into the details of the leg-substrate interaction. 
In particular, we show that the multiple substrate-binding sites on the leg contribute to the steep, 
sub-Arrhenius temperature-velocity curve. In addition, we rectify the remaining deviation of the 
results at high temperatures by the weakly-facilitated foot release during the power stroke. 
Finally, we show that the resultant load-velocity curve fits with the experimental data and 
explains the dynamical trajectories observed in optically trapped mycoplasma cells, as well as 
the temperature-insensitive stall force. 

 Leg cycle 

The geometric shape of the leg protein in mycoplasma has been deduced from electron 
microscopy studies. The protein looks like a music note (Figure 2-1; see also fig.9 in (Adan-
Kubo, Uenoyama et al. 2006)). The two short arms at the proximal end assume an open or a 
closed conformation, suggesting that the opening and closing motion is driven by the ATPase 
motor (Ohtani and Miyata 2007). The distal end bulges into a “foot” that interacts with the 
negatively charged substrate through multiple basic amino acids. The proximal arms and the foot 
are connected by a long segment. Atomic force microscopy experiments suggest that this long 
segment is quite flexible (Miyata 2007), so that its mechanical property resembles that of a rope, 
i.e. exerting much less resistance to being compressed than being stretched.  

Based on the structure of the leg protein and the proposed motility mechanism in (Miyata 2008), 
we modeled the mechanochemical cycle of a single leg as shown in Figure 2-2A.  
The mechanochemical cycle begins with the leg in the front position and the foot bound to the 
substrate. When ATP loads into the motor, the motor carries out a power stroke and pulls on the 
foot. This process exerts a forward force on the cell body. After the power stroke, the cell 
continues moving forward, driven by the collective work of the other legs. The foot lags behind. 
The long segment becomes slack and exerts no force until the foot reaches the backward position 
and re-stretches the long segment. The long segment pulls the foot off the substrate. Then the leg 
resets to the front position, the foot rebinds to the substrate and the cycle repeats. We impose the 
kinematic constraint that the cell moves relative to the substrate with a constant velocity V. This 
simplifies the mathematical analysis, and is justified by the large number of legs and consequent 
small fluctuations in the velocity of the cell. 

In such a system with many degrees of freedom, it is natural to have other pathways on the 
complicated energy landscape. What we proposed above is the main pathway that most legs 
follow. In order for this cycle to dominate over the other pathways, the following assumptions 
must hold: 

1. The hinge connecting the proximal arm and the long segment is weakly elastic, with 
its rest state in the front position. This provides the resetting force for the leg. 

2. The motor can bind ATP only after the leg fully resets to the front position. It can be 
explained by hidden coordinates for the motor (see Appendix A). This assumption, 
together with the next one, ensures that the power stroke always starts from the front 
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position. This is for analytical convenience, and does not change the essential features 
of the model. 

3. The foot only rebinds to the substrate after it fully resets to the front. We picture the 
long segment behaving like a Venetian blind: the long segment kinks easily under a 
backward force and the kink propagates down towards the foot while the segment 
resets to the front position (leftmost panel of Figure 2-2A). During resetting, the kink 
keeps the foot in an unfavorable angle to the substrate, preventing its binding until the 
resetting completes. During the power stroke, however, the segment is unbent 
because it is under tension.  

4. The foot releases more easily when it is pulled forward after the power stroke (steps 3 
in Figure 2-2A). This is because the long segment is attached to the posterior end of 
the foot so that it imposes a peeling force when it pulls the foot forward, as shown in 
Figure 2-2B. This mechanical asymmetry is necessary for net forward motion. 

 

 
Figure 2-2: Mechanochemical model of a single leg protein. (A) Mechanochemical 
cycle of the leg. The leg starts in the front conformation with the foot bound to the 
substrate. As ATP zippers into the catalytic site, the motor carries out a power stroke, 
pulling the cell forward. After the power stroke, the cell continues moving forward at 
constant velocity V, driven by the collective action of the other legs. The foot lags behind 
until the long segment is once again in tension. Acting on one end of the foot, the tension 
helps peel the foot off the substrate. The system must wait for the foot to release from the 
substrate so that the leg can reset to the front conformation, allowing the motor to bind 
ATP once again. The cycle repeats as the foot rebinds to the substrate. ATP binding and 
foot rebinding are assumed to happen very fast, thus not resolved in the analysis. During 
the cycle, the power stroke applies a positive force on the cell body and the foot tethered 
beyond its backward re-stressed position, applies a negative force (blue arrows). (B) 
Mechanism of foot peeling. The foot interacts with the sialic acids in the substrate 
through multiple binding sites. The bonds are shown by green projections in the zoom-in 
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view on the right. When the stretched intermediate segment pulls on the foot from one 
end, most of the tension is exerted on the front-most bond and thus significantly 
facilitates its unbinding, analogous to peeling off a Velcro strip. In the idealized case, the 
bonds break off sequentially, forming a Markov process as shown in the sequence of 
events on the right. The Markov process gives an average peel-off rate of the foot as in 
Eq.(2.2). 

 

The velocity of the cell is computed from the force balance on the legs. Since inertial forces are 
negligible at such low Reynolds number, the load force and hydrodynamic drag force on the cell 
body is equal to the total force generated by the motility organelle. The estimated hydrodynamic 
drag on the micron-sized cell body moving with a velocity of ~1 μm/s is ~10-2 pN, much smaller 
than the scale of the external load force applied in the experiments; thus it can be neglected. The 
motility organelle generates forces mainly by two steps in the leg cycle: the power stroke 
generates a positive force and the foot tethered beyond the backward re-stressed position 
imposes a negative force. During the re-stretching and resetting steps, the only force is the weak 
elastic resetting force, which we treat as negligibly small. Intuitively, the force balance at all 
times ensures the balance of the ensemble average force; and the latter is equivalent to the 
balance of force impulses. Thus the force balance can be conveniently expressed as an impulse 
balance: 

 load force × cycle period  =  
  # legs × (impulse from power stroke – impulse from tethered foot) 
In Appendix D we derive the full version of the force balance equation from the transport 
equations for the density of feet. These equations can be reduced to the above equation when we 
neglect the hydrodynamic drag forces and consider the high velocity case.  

At zero load, the two impulses on the right hand side cancel, leading to Eq.(2.1). Here V is the 
velocity of the cell, fm the motor force, λ the power stroke length, κ the elastic constant of the 
intermediate segment, and the Rp the peel-off rate of the foot. The computation of Rp leads to the 
most important conclusion of this work and will be discussed in detail in the following section. 
On the left hand side of Eq.(2.1), λ/V is the mean residence time of the foot in the power stroke. 
So the mean impulse delivered by a single foot in one power stroke is fmλ/V. On the right hand 
side, V/Rp is the average stretching of foot from the backward re-stressed position, and thus, 
κV/Rp is the average force acting on the backward foot. Since the lifetime of backward bound 
state is 1/Rp, the impulse delivered per foot in this part of the cycle is (κV/Rp) × (1/Rp) = κV/Rp

2. 

 2
m

m p
p

fVf V R
V R

λλ κ
κ

= ⇒ =  (2.1) 

Eq.(2.1) shows that the unloaded velocity is proportional to the peel-off rate of the foot. The 
temperature dependence of the velocity follows that of the peel-off rate, as we show in the 
following that terms under the square root are approximately temperature invariant. The power 
stroke length, λ, is determined by the geometry of the motor and the leg, and should not change 
significantly with temperature. The motor force depends on temperature approximately linearly, 
i.e. ( )mf G H T Sλ λ∆ = ∆ − ∆ ; it changes by about 10% over the temperature range of 10ºC − 
40ºC, far from enough to account for the 10-fold increase in velocity. The elastic constant of the 
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stretched leg, κ, depends on the configuration of the intermediate segment. Using the same 
argument for the motor force, the elastic constant resulting from the entropic part of the spring is 
a linear function of temperature (Howard 2001), and does not change much in the relevant 
temperature range. The enthalpic part of the spring is usually attributed to chemical bonds. Since 
the enthalpy of a chemical bond is generally insensitive to temperature, so is the resultant spring 
constant. 

In the next section we will derive the temperature dependence of the foot peel-off rate with an 
embedded submodel of the foot-substrate interaction. The submodel explains the steep, sub-
Arrhenius temperature-velocity curve, except for some deviation in the high temperature regime.  

 Foot-substrate interaction 

We now consider the foot-substrate interaction in more detail. This is the core part of the model, 
which explains the steep, sub-Arrhenius temperature-velocity curve.  

The foot anchors to the negatively charged sialic acids in the substrate (Nagai and Miyata 2006). 
The C-terminal domain of the leg protein, which constitutes the bottom part of the foot, contains 
multiple positively charged amino acids (18 Arg, 21 Lys). It is likely that specific binding sites 
for sialic acid form around these basic amino acids.  Previous studies on the sialoadhesin 
receptor shows that the sialic acid binding site consists of two key amino acids with positive 
charges (May, Robinson et al. 1998). This gives an estimate of < 20 binding sites on the foot of 
mycoplasma, based on which we used 10 in our model. That is, the foot is modeled as an 
anchoring strip with 10 sites that holds on to the substrate. 

The asymmetric geometry of the leg protein suggests that the foot releases from the substrate 
more easily when pulled forward instead of backward. A backward pulling force, as that during 
the power stroke, is distributed almost equally amongst all the binding sites. A forward force, 
however, is concentrated mostly on the rearmost site, largely facilitating its unbinding. After the 
rearmost site unbinds, the next one undertakes most of the external force and unbinds quickly; 
and it goes on until all sites unbind. This process is analogous to peeling off a Velcro strip from 
one end to the other — by contrast it is much harder to rip off the Velcro by exerting an evenly 
distributed force on it.  

The peeling off of the foot can be modeled by a Markov process as shown in Figure 2-2B. Since 
the rearmost binding site is much more likely to unbind, the unbinding of different sites takes 
place approximately sequentially. Let Q be the number of binding sites. The corresponding 
Markov process consists of Q+1 states, each indicating the order of the current rearmost bound 
site, plus the “all-off” state.  

 1 1 0 (all-off)off off off off

on on on on

k k k k

k k k k
Q Q −   



   

 

If the on and off rates of all binding sites are identical, the derivation presented in Appendix B 
gives the peel-off rate of the whole foot as: 

 
2

1

(1 )
( 1)op ff Q
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Q Q K K
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−
×

− + +
=  (2.2) 
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where K = kon/koff  is the binding constant of a single site. As temperature increases, the enhanced 
thermal fluctuations facilitate the unbinding, thus decreasing the binding constant, K. Eq.(2.2) 
satisfies the following properties: 

• Low temperature limit: K → ∞  ⇒ 1Q
p offR k K −→ ; 

• High temperature limit: 0K →  ⇒ p offR k Q→ . 

If the binding constant, K, depends on temperature in an Arrhenius way, then in the low 
temperature limit, the Arrhenius factor of the foot peel-off rate, Rp, is approximately the 
Arrhenius factor of K multiplied by the number of sites. This multiplicity effect, however, 
attenuates as temperature increases; eventually, the effective Arrhenius factor tends to 
approximately the Arrhenius factor of K at the high temperature limit.  

The feature of the model discussed so far leads to the steep, yet sub-Arrhenius temperature 
dependence of the velocity (dashed line in Figure 2-3A). Data fitting gives the values of the 
single site rates, kon and koff, as listed in Table 2-1. Figure 2-3B compares the Arrhenius plot of 
the single-site unbinding rate, the whole-foot release rate, and the temperature-velocity data. 
Each site bears a factor of 10 kBT (Table 2-1). But the Arrhenius factor of the whole-foot rate 
amounts to ~45 kBT at 10ºC, and attenuates to ~10 kBT at 40ºC. 

 Weakly-facilitated foot release during the power stroke rectifies the high-
temperature curve 

During the power stroke, the foot may also release from substrate. This foot release rate is much 
smaller than the peel-off rate at low temperature, but becomes significant as temperature 
increases. In this case all the binding sites share the burden of the motor force. With much 
weaker facilitation than in the peel-off case, the energy barrier to break the binding of a site 
remains high and thus the unbinding rate bears a much larger Arrhenius factor. As a consequence, 
the overall foot release rate increases acutely with temperature (Figure 2-3C). 

The foot release curtails the power stroke, and consequently reduces the velocity. This is shown 
by the velocity dependence in Eq.(2.3). Here Rwf denotes the weakly-facilitated foot release rate. 

 
( ) ( ) 2

2

1 exp 1 expwf wf m
m p

wf p wf

R V R V fVf V R
R R R

λ λκ
κ

− − − −
= ⇒ =  (2.3) 

The fractional term on the left-hand side of Eq.(2.3) stands for the average duration of the 
effective power stroke. It is computed from  

 
0

( ; ) ( ; )
V

wf wfV
tf t R dt f t R Vdt

λ

λ
λ

∞
+∫ ∫  

where ( ; )wff t R is the probability density function of the exponential distribution. Eq.(2.3) tends 
to Eq.(2.1) in the limit 0wfR → , i.e. when the weakly-facilitated foot release rate is negligibly 
small. Because the weakly-facilitated rate increases sharply with increasing temperature, its 
effect on velocity dominates at high temperature. This is the other feature of the model that 
rectifies the temperature-velocity curve at high temperatures (solid line in Figure 2-3A).  
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Figure 2-3: Temperature-velocity results. (A) Temperature vs. velocity curve. Circles 
and error bars show the experiment data (taken from (Miyata, Ryu et al. 2002)); the 
dashed line is the fitting of the model without weakly facilitated foot release during the 
power stroke using Eq.(2.1); the solid line shows the result with weakly facilitated foot 
release during power stroke using Eq.(2.3). The effect of weakly facilitated foot release 
becomes significant at high temperatures, and corrects the deviation from the data. (B) 
The Arrhenius plots of the foot rates and of the data. For comparison, the rates have been 
multiplied by corresponding constants to level the logarithm plots at the left end. The 
whole foot peel-off rate, Rp, has a much larger Arrhenius factor than the off rate of a 
single site does because of the multiplying effect shown in Eq.(2.2). Also, the Arrhenius 
factor of Rp decreases as temperature increases. (C) The peel-off rate Rp and weakly 
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facilitated release rate Rwf. The weakly facilitated rate becomes significant around 25ºC, 
resulting in the attenuation of velocity at high temperatures.  

 

Table 2-1: List of parameters. 

Parameters Values Physical meaning Sources / reasons 

N 100 number of legs out of a total of 400 legs, 1/4 
face the substrate 

Q 10 number binding sites 
on each foot 

structural information: number 
of charges on the foot 

fm 0.39 pN motor force fitting Eq.(2.1) and Eq.(2.2) 
with T-V data 

λ 28 nm power stroke length 
structure of leg protein: 90º 
conformational change between 
two arms of 20 nm 

κ 80 pN/μm elastic constant of 
intermediate segment physiological range 

kon ,k'on
 2.9×103 s-1 binding rate of single 

site 

fitting Eq.(2.1) and Eq.(2.2) 
with T-V data, assuming that 
the on rates are not affected by 
external force 

koff
 4.2×103 s-1 * 

(10.6 kBT) 
peel-off rate of single 
site (and its Arrhenius 
factor) 

fitting Eq.(2.1) and Eq.(2.2) 
with T-V data 

k'off
 1.9×103 s-1 * 

(16.8 kBT) 

weakly-facilitated 
release rate of single 
site (and its Arrhenius 
factor) 

fitting Eq.(2.1) and Eq.(2.2) 
with T-V data 

* The rates are listed as their values at the reference temperature 22.5ºC.  

 

The weakly facilitated foot release also corresponds to a Markov process. The Markov states 
stand for the number of binding sites currently bound. Since the pulling force is almost evenly 
distributed on the binding sites in this case, the sites do not have to unbind sequentially. Thus the 
forward rate from state i to i-1 equals '

offik  to account for the fact that every bound site has an 
equal chance to unbind. Similarly the backward rate from state i to i+1 equals '( ) onQ i k− .  

 
' ' ' '

' ' ' '

( 1) 2

2 ( 1)
1 1 0 (all-off)off off off off
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With the derivation given in Appendix C, we obtain the weakly-facilitated foot release rate as 
Eq.(2.4). It is computed with '

onk and '
offk given in Table 2-1. 

 
( )

'

' '1 1
on

wf Q

on off

QkR
k k

=
+ −

 (2.4) 

As in Eq.(2.2), we see that the exponential term in Eq.(2.4) also brings about the multiplicity of 
the Arrhenius factor for the single-site binding constant.  

This newly introduced detail of the model reduces the calculated velocity significantly for 
temperatures above 25ºC (solid line in Figure 2-3A). With much smaller facilitating force, the 
energy barrier associated with the unbinding of each site is larger, at 17 kBT (Table 2-1). 
Consequently, the weakly-facilitated rate rises sharply starting around 25ºC (Figure 2-3C). 
Nevertheless, it is smaller than the peel-off rate because of less facilitation. 

 The load-velocity curve explains the dynamical trajectory 

In this section we show an interesting hysteresis behavior in the load-velocity curve at low 
velocities. This leads to an explanation for the dynamical trajectory observed in optical trap 
experiments.  

The calculated load-velocity curve of the model fits with the experiment data (Figure 2-4A). Our 
calculation extends beyond the range of the data to the low velocity and negative velocity 
regimes. In the calculation we introduce a spontaneous foot release from the substrate during the 
re-stretching step at a small, yet finite rate. The spontaneous foot release is a natural consequence 
of thermal fluctuations. Without any external help, the rate of spontaneous release is even 
smaller than that of the weakly-facilitated release. The rate is calculated with the same formula 
as the weakly facilitated release, except for a smaller single-site release rate (Table 2-2 in 
Appendix D). At large cell velocities, the foot translates backwards fast enough to re-stretch the 
leg, before which the spontaneous release almost never has a chance to occur. Therefore, the 
spontaneous release does not play a role when cell velocity is high. Near stall (i.e. zero velocity), 
however, spontaneous foot release is frequent. This circumvents the peel-off of the foot and 
reduces its negative impulse. The enhanced model is formulated via transport equations in 
Appendix D.  

The load-velocity curve displays hysteresis: it ‘turns around’ at a low positive velocity that 
depends on temperature, and returns in the negative velocity regime. The hysteresis occurs 
because the power stroke is more often curtailed by weakly-facilitated foot release at low 
velocities, leading to a loss of traction. Since the rate of weakly-facilitated foot release increases 
as temperature rises, the hysteresis velocity also increases accordingly. 

The stall force changes with temperature much less than the unloaded velocity. At very low 
velocity the peel-off is interrupted by the spontaneous foot release. Therefore, the average force 
contributed by a foot in an average cycle is approximately the motor force multiplied by the 
fraction of cycle period spent in the power stroke. The motor force is insensitive to temperature, 
as discussed previously. The fraction of power stroke time apparently does not change too much 
with temperature, either (solid line in Figure 2-5B). So the stall force appears insensitive to 
temperature.  
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However, the stall force predicted by the model is somewhat smaller than the stall force 
measured by the optical trap experiment. This may be due to the approximation that, during the 
peel-off, the unbinding rates of all the binding sites are assumed to be identical. In reality, the 
unbinding rates probably increase with the order of sites because the tension of the leg increases 
with time. However, without further information about the elasticity and geometry of the leg, it is 
fruitless to pursue the model beyond its current stage. 

 

 
Figure 2-4: The load-velocity curve explains the dynamical behavior in the laser 
trap experiments. (A) Load force vs. velocity curve. The model results are computed 
beyond the velocity regime measured in the experiments. Hysteresis is predicted by the 
model. (B) Mapping of the dynamical trajectory onto the load-velocity curve. The middle 
branch of the load-velocity curve is unstable. The straight line added at the bottom of the 
plot shows the hydrodynamic load-velocity curve, i.e. when the cell is off the substrate. 
The dynamical trajectory measured from an optically trapped mycoplasma is shown in 
the inset (taken from (Miyata, Ryu et al. 2002)). The labeled green arrows along the load-
velocity curve and the dynamic trajectory show in correspondence the 3 motility phases 
of the cell: (1) forward; (2) backward; (3) free after detachment. The red arrows on the 
load-velocity curve and the red dots on the trajectory indicate corresponding transitions 
between the 3 phases. This branching load-velocity curve explains the forward-to-
backward transition in the dynamical trajectory. But the backward-to-break-off transition 
cannot be explained without further experimental information.  

 

The hysteresis in the load-velocity curve explains the dynamical trajectory observed in the 
experiment, in which the mycoplasma is attached to an optically trapped bead. This experiment 
captures the slowing down of the motion to near-stall (fig.5 in (Miyata, Ryu et al. 2002); also 
shown in the inset of Figure 2-4B). At first, the cell drags the trapped bead away from the center 
of the laser beam, thus increasing the load force experienced (the laser trap is well approximated 
by a quadratic potential, i.e. a linear spring). The cell slows until it reaches the position in the 
trap that generates a load force ~20 pN. At this force, the cell begins to slide backwards, and 
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eventually breaks off from the substrate. Then the cell is quickly drawn back to the center of the 
trap where it reattaches, and the cycle repeats.  

The corresponding trajectory is mapped out on the load-velocity curve, shown in Figure 2-4B. 
The cell first trace down the upper branch of the load-velocity curve until it reaches the nose. It 
cannot follow the unstable middle branch—otherwise it would have a positive velocity yet move 
in the backward direction with decreasing load force. Thus it must jump to the lower branch of 
the curve. On this branch the cell begins to slide back (negative velocity). However, this does not 
persist long before the cell detaches from the substrate. Now the cell is quickly drawn back to the 
center of the trap with a much larger velocity determined by its hydrodynamic drag.  

2.3 Discussion 

We have constructed a minimal mechanochemical model of the mycoplasma motility apparatus 
based on current knowledge. The model is able to explain the interesting biophysical properties 
of the motility, especially the steep, sub-Arrhenius dependence of velocity on temperature. The 
model assumes the simplest coupling between the motor, intermediate segment, and foot, and no 
coupling between legs. Each leg simply rows forward and backwards which, if completely 
symmetric, would not produce any net forward motion. Net forward motion is guaranteed by the 
asymmetric geometry of the leg, which causes the foot to release from the substrate more easily 
when peeled from the back. The high temperature sensitivity of the peel-off rate results from the 
multiplicity of the single-site Arrhenius factor. The factor decreases as temperature rises, 
contributing to the sub-Arrhenius behavior of the temperature-velocity curve. Furthermore, the 
weakly-facilitated foot release during the power stroke curtails the positive impulses and reduces 
the velocity at high temperatures. Finally, the dynamical process measured in laser trap 
experiments is explained qualitatively by the resultant load-velocity curve. 

Certain biological parameters are estimated through the model. The binding and release rates of 
single binding site directly result from the fitting to the experimental data. They are all on the 
order of 103 hertz (Table 2-1). The peel-off rate is 2−3 times as large as the weakly-facilitated 
release rate. The average cycle period of the leg in the unloaded cell is on the order of 10−102 ms, 
which shortens with increasing temperature (Figure 2-5A). The power stroke and the subsequent 
leg re-stretching each takes about 40% of the period in average (Figure 2-5B). Peeling off the 
foot takes about 15% of the period. For the rest of the cycle period the foot is unbound. Notice 
that the fraction of unbound time increases significantly with temperature, which helps explain 
that the cell easily detaches from the substrate at high temperatures. The cycle period also 
increases with increasing load force or decreasing velocity. When the cell approaches stall, the 
cycle is limited by the spontaneous release of the foot, and the cycle period tends to the 
reciprocal of that rate. The Stokes efficiency, estimated by ATPLF V Gτ ∆ , is about 10% for the 
optimal load; here FL is the load force and τ the cycle period. The above estimations fall in the 
proper biological range. Nevertheless they are very rough, limited by the coarse-graining of the 
model.  

The model also provides several predictions for experimental comparison. For example, the cell 
velocity peaks at a certain sialic acid density on the substrate (Figure 2-6A). This was shown by 
experiments changing the concentration of sialic acid used for coating the substrate (c.f. fig.6 in 
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(Nagai and Miyata 2006)). Only qualitative comparison can be drawn at this moment because we 
lack detailed information about the mechanism of foot binding as well as the relationship 
between sialic acid concentration in the coating medium and the sialic acid density finally 
presented on the surface of the substrate. We can also predict the effect of medium viscosity on 
the load-velocity curve (Figure 2-6B). Increasing the viscosity reduces the velocities for any 
given load force. Also, the load-velocity appears more concave at higher medium viscosity. This 
change occurs because the resetting process is slowed at high viscosity and the hydrodynamic 
drag forces become more significant, compared with the other forces involved in the motility. 
Consequently, the cycle period is lengthened and the net force impulse provided per cycle 
affected as well (cf. Eqs.(2.32), (2.34), (2.37) and (2.38) in Appendix D). 

 

 
Figure 2-5: Cycle period and residence times of each stage change with temperature. 
(A) The cycle period decreases with temperature, ranging between 10−102 ms in the 
relevant temperature range. (B) Temperature affects the durations of the power stroke 
(solid), re-stretching (dashed), peel-off (dotted) and the unbound states (dash-and-dotted). 
These results are computed from Eq.(2.32) in Appendix D.  
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Figure 2-6: Predictions of the model. (A) The effect of sialic acid concentration on the 
cell velocity. The horizontal axis shows the logarithm of the single-site binding rate, 
which is directly related to the density of sialic acid on the substrate surface. The model 
predicts the existence of an optimal sialic acid density for mycoplasma motility, to be 
compared with the experiment result presented in fig.6 of (Nagai and Miyata 2006). (B) 
The effect of viscosity on the load-velocity curve. The curves are computed for the 
mediums bearing the normal water viscosity (solid line), 10 times larger (dashed line) and 
100 times larger (dotted line). The cell velocity decreases when viscosity increases. And 
the load-velocity curve becomes more concaved with larger viscosity. 

 

Single molecule experiments on single legs are probably the best way to test the foot-substrate 
interaction mechanism proposed here. According to our model, the leg should break off from the 
substrate much easier under forward pulling force than it does under backward pulling force. 
Further structural information on the binding sites would also be useful in narrowing down the 
range of model parameters and estimating the energy barrier involved in the unbinding process. 

The model for mycoplasma motility can be generalized to other motility systems. Many 
“walking” molecular motors such as kinesin and myosin, show steep, sub-Arrhenius 
temperature-velocity curves (Anson 1992; Decuevas, Tao et al. 1992; Bohm, Stracke et al. 2000; 
Fenimore, Frauenfelder et al. 2002; Watanabe, Iino et al. 2008). Even in rotary motors, like the E. 
coli flagellar motor (Berg 2003; Kojima and Blair 2004), the way that the stators push on the 
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rotor is analogous to the mycoplasma legs walking on the substrate. Unlike the intuitive 
considerations of the catalytic biochemistry, we proposed the motor-substrate interaction as the 
major factor to explain the temperature sensitivity. This theory can be more easily tested with 
experiments on molecular motors because there are more techniques to manipulate them.  

Limited by the information on mycoplasma motility, our model is quite coarse-grained with 
many approximations. The peel-off mechanism itself was derived with the approximation of 
identical off rates for all binding sites. A refined model with more realistic description of the 
rates can probably fit the stall force better. Moreover, the model is built on the horizontal spatial 
coordinate only. The vertical components of the forces, however, probably play a critical role in 
the peel-off of the foot, and even the break-off of the whole cell. Adding such details entail a 
more refined model. However, without knowing the detailed molecular mechanism of the foot-
substrate interaction, such elaboration is merely guesswork.  
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Appendix A:   Hidden coordinates for the motor 

The molecular motor is a large protein, and so a complete atomic description of its motion 
requires a very high dimensional configuration space: at least 3N-dimensional, where N is the 
number of atoms. Generally, the large scale motions of proteins are dominated by a small 
number of “modes”. For example, we have simplified the motion of the motor to the opening and 
closing of the proximal part of the leg protein. By doing so, we are essentially projecting the 
high-dimensional periodic motion onto one single coordinate and treating it as a 1-dimensional 
periodic oscillation. Although the resolved motor cycle appears to be moving forward and then 
backward along exactly the same trajectory, the “hidden” atomic degrees of freedom do not 
exactly retrace the same route. In particular, the second law of thermodynamics requires a loop 
in the force-displacement phase trajectory to account for the free energy consumption in the 
biochemical process. Such a loop is impossible when we simplify the motion to one dimension. 
We must include at least two configurational coordinate, say (z, θ), so as to form a cyclic loop in 
the (z, θ) plane. Therefore, the open conformation of the motor before the power stroke and the 
open conformation after the ADP release, although not distinguished in the model, are in general 
not equivalent. ATP can bind to the former conformation, but not the latter one. Rather than 
increasing the dimensionality of the model, we simply declare that ATP loading only happens 
after the leg fully resets to the front position. These issues are discussed more deeply in (Xing, 
Liao et al. 2005) 

Appendix B:   Derivation of peel-off rate of the foot 

As proposed in the main text, the peel-off process of the foot can be represented by the following 
Markov chain: 

 1 1 0 (all-off)off off off off

on on on on

k k k k

k k k k
Q Q −   



   

 

The average peel-off rate equals the reciprocal of the mean first passage time (MFPT) to reach 
state 0 (all-off), starting from state Q (all-on). In the following derivation we use the probability 
transition matrix to calculate the vector of MFPT starting from each state. The first component of 
the vector gives the peel-off rate. Suppose the system stays at state i at the present time. In time 
dT, the system jumps to state j with probability rij ·dT (figure below), where rij is the transition 
rate from state i to state j.  

 
In the peel-off model discussed here, the transition rates are  

 
if 1
if 1

0 otherwise
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ij off

k j i
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= = −

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Now the MFPT from state j is Tj, so the MFPT from state i is dT plus the sum of all Tj, weighted 
by the transition probability from i to j in dT. 

The above reasoning is expressed as 

 (1 ) , 1,...,i j ij ij i
j i j i

T T r dT r dT T dT i Q
≠ ≠

= + − + =∑ ∑  (2.5)  

Rearranging the above equation and canceling the common factor dT yields 

 1j ij i ij
j i j i

T r T r
≠ ≠

− = −∑ ∑  (2.6) 

Eq.(2.6) can be written in vector form as  

 TP T = -1  (2.7) 
where T = {Ti}i=0,…,Q is the vector of MFPTs. Note that T0 ≡ 0, since it takes no time to reach 
state 0 if the system starts from state 0. The operating matrix in Eq.(2.7) happens to be the 
transpose of the probability transition matrix of the Markov chain, P.  
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                         (2.8) 

P is singular because all columns sum to zero. But T0 ≡ 0 eliminates one unknown. Eq.(2.7) is 
solvable when the first column and the first row of P are removed and vector T is shortened by 
the first element. The solution to Eq.(2.7) gives the MFPT from state Q to state 0. Its reciprocal, 
the peel-off rate, is given in Eq.(2.2) in the main text. 

Solving Eq.(2.6) (i.e. Eq.(2.7) with the T0 dimension removed) is shown in the following. There 
are altogether Q equations and Q unknowns: 
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 1 1 ( ) 1, 1,..., 1off i on i on off ik T k T k k T i Q− ++ − + = − = −   (2.9) 

 1 1off Q off Qk T k T− − = −  (2.10) 

Now let 1:i i iT T T+∆ = − , then Eq.(2.9) and Eq.(2.10) can be transformed into 

 1 1, 1,..., 1on i off ik T k T i Q−∆ − ∆ = − = −   (2.11) 

 1 11 1off Q Q offk T T k− −− ∆ = − ⇒ ∆ =  (2.12) 

Let 
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T T
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−

, then Eq.(2.11) and Eq.(2.12) are equivalent to 

 1 ' 'i iT K T−∆ = ∆   (2.13) 
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Eq.(2.13) and Eq.(2.14) give 
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The reciprocal of the above gives the peel-off rate Rp: 
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1
1off Q
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 (2.16) 



25 

 

Appendix C:   Derivation of weakly-facilitated and spontaneous release 
rates of the foot 

 
' ' ' '

' ' ' '
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A Markov chain model similar to the one described above gives the weakly-facilitated release 
rate and the spontaneous release rate of the foot. In this model, we also have Q+1 states 
connected in a queue. But the transition rates between each pair of neighboring states change 
slightly, because the on/off event does not have to happen in a strictly sequential fashion. At state 
Q, any of the Q-i unbound sites can bind, and any of the i bound sites can unbind. The transition 
rates become 

 1

1

( 1)i i on

i i off

r Q i k
r i k
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→ −
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and the transition matrix is 
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(2.18) 

 Because the foot can start from any state with corresponding residence probability, the 
reciprocal of the whole-foot rate is the weighted average MFPT. Solving Eq.(2.18) with similar 
procedures given in Section I gives Eq.(2.4) in the main text. 

The following is a simpler derivation of the same result. For each binding site the mean 
residence times of the unbound and the bound state are, τu = 1/kon , τb = 1/koff , respectively. The 
probability of finding a site in the unbound state is 

 u
u

b u

p τ
τ τ

=
+

 (2.19) 
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Suppose the Q states of the foot are categorized into two: the all-detached state {0}, and the 
compound state with at least one bound site {1,2,…,Q}. The two newly defined states of the foot 
obey the same law as Eq.(2.19). The probability of the all-detached state is Q

up , as computed in 
Eq.(2.19). Let Toff  be the mean residence time of the all-detached state, and Ton that of the 
compound state. Then we have 

 
Q

off Q u
u

on off b u

T
p

T T
τ

τ τ
 

= =  + + 
 (2.20) 

Toff  is the reciprocal of the rate of having any one of the Q sites bind to the substrate, which is Q 
times kon. Substituting 1off on uT Qk Qτ= =  into Eq.(2.20) yields 

 1 1
Q

u b
on

u

T
S
τ τ

τ

  
= + −  

   
 (2.21) 

Then the reciprocal of Ton is the foot unbinding rate, same as Eq.(2.4) in the main text. 

 
( ) ( )1 1 1 1

u on
Q Q

b u on off

Q QkR
k k

τ
τ τ

= =
+ − + −

 (2.22) 

Appendix D:  Derivation of the load-velocity curve 

The following derivation takes into account of the weakly-facilitated foot release during the 
power stroke and the spontaneous foot release during the re-stretching. The resultant load-
velocity curve was shown in Figure 2-4A in the main text. Additional parameters and their 
values are listed in Table 2-2.  

Consider the ensemble of feet which bind and unbind with the substrate (top left panel of Figure 
2-7). Each foot is characterized by one continuous state variable, its displacement, x, relative to 
the beginning of a power stroke, as seen in the cell’s frame of reference. The important 
“checkpoints” are x = 0 (beginning of power stroke), x = λ (end of power stroke) and x = λ+L 
(unstressed backward position). When a foot completes a power stroke crossing from x < λ to x > 
λ, we assume that the motor hydrolyzes ATP, and is set to the “open” configuration. 

In addition, we have three discrete states of the foot, one bound state and two unbound (thick 
horizontal bars, top left panel of Figure 2-7). The bound feet are stuck to the substrate, and in the 
cell’s frame of reference, translate at the gliding velocity V. The ensemble density of bound feet 
is denoted ρ0(x), in x ≥ 0. It is convenient to distinguish two states of unbound feet. Feet of the 
first state has unbounded during the power stroke (0 < x < λ). They are rapidly pulled to x = λ at 
velocity fm/ζf, where fm is the motor force, and ζf the hydrodynamic drag coefficient of the foot. 
The ensemble density of these feet is denoted ρ1(x), in 0 ≤ x ≤ λ. The second unbound state 
accounts for the returning feet heading back to x = 0 at velocity -fr/ζf. Here, -fr is the weak 
restoring force that drives the kinking of the leg and returning of the feet. The density of the 
returning feet is denoted ρ2(x), in x ≥ 0. 
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Figure 2-7: Illustration of the transport equations and the resultant density 
distribution of the feet. The cartoons on the top illustrate Eqs.(2.23)-(2.30) and 
Eqs.(2.35). Left: V > 0. The horizontal bars show the three different states of the foot, 
bound (ρ0), released during the power stroke with weak facilitation (ρ1), and 
spontaneously released or peeled off after the power stroke (ρ2). Corresponding foot 
conformations are labeled on the very top. The directions of foot transport in these states 
are shown with white arrows in the bar and velocities labeled on the right end, both in the 
frame of reference of the cell body. The thick solid arrows pointing upward illustrate the 
rebinding of the free foot. The dashed arrows pointing downward show different ways 
that the foot can release from the substrate, their thickness indicating the relative 



28 

 

magnitude of the rates. The shadings illustrate the forces acting on the foot: motor force 
during the power stroke (light even shade) and peel force after stretched (monotonically 
darker shade). Right: V < 0. All labels bear similar meanings. There are also three 
different states of the foot, bound (ρ0), spontaneously released during the post-power-
stroke relaxation (ρ1), and snatched off during the power stroke (ρ2). The diagrams below 
the cartoons show examples of typical density distribution of the feet at different states at 
22.5ºC. 

 

Now we write the steady state (time independent) transport equations for ρ0(x), ρ1(x) and ρ2(x). 
ρ0(x) satisfies the ODE: 

 0
0( )dV R x

dx
ρ ρ= −   (2.23) 

The LHS of Eq.(2.23) is the convective derivative (time derivative of ρ0(x(t)), at x(t) with x V= ). 
R(x) is the rate coefficient for foot unbinding. We expect a piecewise character in R(x) as 
illustrated in Figure 2-8: 
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 (2.24) 

Here, Rwf denotes the weakly facilitated release during the power stroke, Rs the spontaneous 
release rate and Rp the peel-off rate. According to the amount of force acting on the foot in each 
case, the relative magnitude of the three rates should be Rp > Rwf > Rs. 

 

 
 

Figure 2-8: Piecewise function of R(x). 

 

The transport ODE for ρ1(x) in 0 ≤ x ≤ λ is based on translational velocity m fx f ζ= , and the 
source due to foot release in 0 < x < λ. 

 1
0( ) , 0m

f

f d R x x
dx
ρ ρ λ

ζ
= ≤ ≤  (2.25) 



29 

 

Since all feet at the beginning of the power stroke are assumed to be bound, we have the 
boundary condition: 

 1(0) 0ρ =  (2.26) 

The transport equation for ρ2(x), the returning foot, is based on the translational velocity
r fx f ζ= − and the sources indicating the spontaneous foot release and the peel-off: 

 2

0

0, 0
( ) ,

r

f

xf d
R x xdx

λρ
ρ λζ

≤ <
− =  ≥

 (2.27) 

Finally, we have two flux balance boundary conditions: 

 0 2(0) (0)r

f

fV ρ ρ
ζ

=  (2.28) 

 ( )0 0 1( ) ( ) ( )m

f

fV ρ λ ρ λ ρ λ
ζ

+ −− =  (2.29) 

The LHS of Eq.(2.28) is the flux of the unbound feet returning to x = 0, and the RHS the flux of 
feet starting the power stroke. The balance holds upon the assumption that the power stroke starts 
as soon as a foot returns to x = 0. Eq.(2.29) represents the jump of foot density at x = λ 
contributed by the rebinding of the foot that have unbound during the power stroke. This 
equation holds when we assume that the rebinding happens very fast compared to the time scales 
resolved in these equations. 

Eqs.(2.23)-(2.29) determines ρ0(x), ρ1(x) and ρ2(x) up to a multiplicative constant. This constant 
can be determined by normalization: 

 0 1 20 0 0
( ) ( ) ( ) 1x dx x dx x dx

λ
ρ ρ ρ

∞ ∞
+ + =∫ ∫ ∫  (2.30) 

Assume all foot release rates are invariant with position. Then Eqs.(2.23)-(2.30) can be solved 
analytically with solutions: 



30 

 

 

0

1

2

exp , 0

( )( ) exp ,

( )
exp ,

( ) 1 exp ,                   0    

, 0

( )( ) exp

wf

s

s p

f wf

m

f

r

f s

r

R x
x

V
R xTV x x L

V
R L R x L

x L
V

V R x
TV x x

f V

V
x

f
V R xTV x

f V

λ

λρ λ λ

λ
λ

ζ
ρ λ

ζ
λ

ζ λρ

  
− ≤ <  

 
 −  ⋅ = − ≤ < +  

 
 + − − 

− ≥ +  
  

  
⋅ = − − ≤ ≤  

  

≤ <

−⋅ = −


,

( )
exp ,f s p

r

x L

V R L R x L
x L

f V

λ λ

ζ λ
λ




  ≤ < +  


 + − − 
 − ≥ + 
    (2.31) 

where T is the average duration of the whole cycle. 
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The first three terms in Eq.(2.32) correspond to the average time the bound foot spends during 
the power stroke, re-stretching and peel-off respectively. The 4th term represents the time it takes 
for the free foot to reach the post-power-stroke position after its weakly facilitated release from 
the substrate. The last term represents the time that the free foot resets to the front position after 
either the spontaneous release or the peel-off. The load-velocity relation is calculated with the 
force balance equation. The load force is balanced by the net force contributed by all feet. The 
bound feet provide positive force during the power stroke, negative force during the peel-off 
process, and the weak resetting force during the re-stretching. The free foot in state 1 is dragged 
in the medium with the motor force; and the free foot in state 2 is dragged with the resetting 
force. Therefore, the force balance equation reads 
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Plugging in Eq.(2.31) gives 
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   (2.34) 

The impulse balance equations given in the main text (Eq.(2.1) and Eq.(2.3)) are simplified 
version of Eq.(2.34). Eq.(2.3) corresponds to the case where ζf, ζb, Rs, fr → 0. These assumptions 
have been elaborated in the main text before the introduction of the impulse balance equations. 
Eq. (2.1) is the further simplification when Rwf << V/λ.  

The derivation of the V < 0 case is similar, as illustrated by the top right panels of Figure 2-7. 
There are again three states of the foot, albeit with different meanings for the states of the free 
foot. This is because the leg cycle in the negative regime is asymmetric to that in the positive 
regime. The major break-off of the foot from the substrate occurs during the power stroke when 
the leg is overstretched. Since the force is exerted in the opposite direction of the tip of the foot, 
it does not create a peel effect. The break-off process is similar to the weakly-facilitated and 
spontaneous release, only with much stronger force facilitation. Therefore, we labeled the new 
rate as Rsf to stand for “strongly-facilitated”. The leg will be over-relaxed after the motor releases 
ADP and opens up. It re-stretches while the foot moves on towards the starting position for the 
next power stroke. During the re-stretching the foot can also spontaneously release from the 
substrate with essentially the same rate used in the case V > 0. Now ρ1 represents the density of 
the foot that has been spontaneously released during re-stretching. ρ2 corresponds to the foot that 
has been snatched off the substrate during the power stroke. The governing transport ODEs are 
given in Eqs.(2.35). 
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 (2.35) 

with the piecewise foot release rate 
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The meanings of each equation above are similar to those for positive velocities. The resulting 
load force as a function of velocity is 
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 (2.37) 

where the average cycle duration is 
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 (2.38) 

Similar to Eq.(2.32), the first two terms in Eq.(2.38) correspond to the average time the foot 
spends during the power stroke and the re-stretching. The other two represent the average 
resetting time after the foot releases from the over-stretched position and the unstretched position. 
The duty ratio equals the sum of the first two terms divided by the cycle period. 

Typical foot density distributions of each state in the V > 0 and V < 0 cases are shown in Figure 
2-7. ρ0 dominates over ρ1 and ρ2 in magnitude in both V > 0 and V < 0 cases because the unbound 
foot translocates very fast with a small hydrodynamic drag coefficient, leading to a small 
residence time. Furthermore, the magnitude of the density of each unbound state is determined 
by the corresponding driving force during the state and the foot release rate. For example, ρ1 at V > 
0 is extremely small because the foot is released with the weakly facilitated rate Rwf, and then 
driven fast by the relatively large force fm. By contrast, ρ2 at V > 0 is much larger because the 
majority of the foot is released by the much larger peel-off rate Rp, and then driven by the much 
smaller restoring force fr. 

 

Table 2-2: List of additional parameters used for the load-velocity curve. 

Parameters Values Physical meaning 

L 25 nm distance between the end of power stroke and 
backward re-stressed position 

fr 0.005 pN weak resetting force 

ζf 200 pN·s/m hydrodynamic drag coefficient of the foot 

ζb 2×104 pN·s/m hydrodynamic drag coefficient of the cell body 

k”off
 1.7×103 s-1 

(16.8 kBT) 
spontaneous release rate of single site (and its 
Arrhenius factor) 

  



33 

 

Chapter 3 Myxobacteria A-Motility 
The bacterial cytoskeleton determines cell shape and mediates cell division. Recent discoveries 
on myxobacteria motility reveal the first known prokaryotic example of a cytoskeleton driven 
cell motility. During cell locomotion, a double helical MreB structure rotates in the cell’s 
cytoplasm. The driving motors are homologous to the MotA-MotB stator that drives the rotation 
of the bacterial flagellar motor. These observations suggest an entirely new model for bacterial 
motility in which motors driven by ion motive force move along the helical cytoskeleton to 
generate propulsive forces. This mechanism may be widespread in bacteria, since both MreB 
homologs and MotA-MotB homologs are common across a variety of bacterial species, 
including many that move in the absence of flagella.  

We have constructed a biophysical model for this motility mechanism. Within the general 
framework of motors running on a double helical track, the model introduces cargo-mediated 
force generation as a key assumption. The two types of cargo, causing high drag and low drag 
respectively, are unequally distributed along the two helical strands, thereby generating a net 
propulsive force. The unequal distribution results from unequal cargo exchange rates at the poles. 
Besides reproducing the cell velocity and the rotational velocity of the track, our model also 
explains many intriguing observations in myxobacteria motility, including periodic reversals of 
cells, short pauses before cell reversal and a series of experiments showing the dynamics of 
motility-related protein clusters at the cell poles and along the substrate interface.  

3.1 Introduction 

The myxobacterium Myxococcus xanthus is a soil-dwelling bacterium with a complex life cycle 
staged as vegetative swarming, predation, fruiting body and myxospores formation. These 
complicated social behaviors require large scale coordinated movements of the cells (Kaiser 
2003; Mignot 2007; Zusman, Scott et al. 2007; Mignot and R. Kirby 2008; Mauriello, Mignot et 
al. 2010). M. xanthus is rod-shaped and 5−10 μm in length. Under lab condition, the cells move 
on agar at about 2−4 μm/min and reverse direction every 7 minutes or so (Zusman, Scott et al. 
2007; Mauriello, Mignot et al. 2010). The cells can only move on solid substrates and become 
non-motile on liquid surfaces (Zusman, Scott et al. 2007). The motility is driven by two sets of 
apparatus: the Social (S) motility engine and the Adventurous (A) motility engine. The S-engine 
sends out type IV pili from the cell’s leading pole. The pili stick to the substrate or to 
neighboring cells, and then retract to pull the cell. The mechanism for the A-engine, however, 
remains unclear. Wolgemuth et. al. used a computational model to show the theoretical validity 
of an old proposal by Jahn (Jahn 1924; Wolgemuth, Hoiczyk et al. 2002) that A-motility is 
powered by extrusion and hydration of slime excreted from the cell’s trailing pole. This 
mechanism, unfortunately, is disproven by recent observations that the A-engine is distributed 
along the cell rather than concentrated at the poles (Sliusarenko, Zusman et al. 2007). 

A recent series of experiments by Mignot, Zusman et. al. revealed a surprising internal 
mechanism that accounts for the A-motility of M. xanthus (Mauriello and Zusman 2007; Mignot 
2007; Mignot, Shaevitz et al. 2007; Mauriello, Nan et al. 2009; Mauriello, Mignot et al. 2010; 
Mauriello, Mouhamar et al. 2010). It involves proton-driven motors homologous to the bacterial 
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flagellar motor, as well as helical cytoskeleton filaments, which appear to be polymerized MreB 
(Mauriello, Mouhamar et al. 2010). Bacteria were previously thought to lack cytoskeleton until 
the discovery of actin-like MreB filaments, and microtubule-like FtsZ filaments. Then they were 
mainly believed to control cell shape and cell division (Adams and Errington 2009; Bramkamp 
and van Baarle 2009; Graumann 2009; Margolin 2009). Yet linear motors like myosin and 
kinesin that run along these cytoskeletons have never been found in bacteria. The A-engine of M. 
xanthus gives the first known prokaryotic example of such motility system. 

Flagellar motor like proteins are involved in the A-engine of M. xanthus. The cell stops moving 
when treated with drugs like CCCP and nigericin, which disrupt the proton motive force (Sun, 
Wartel et al. 2010). The M. xanthus genome contains several pairs of homolog genes to the E. 
coli motA and motB genes (Nan, Mauriello et al. 2010). The transmembrane MotA4MotB2 
complex acts as stator and proton channel in the E. coli flagellar motor. The complex changes 
conformation when the proton hops onto the transmembrane helix of MotB. The conformational 
change exerts a driving force on the rotor (Blair 2003). We shall assume that the motors in M. 
xanthus use a similar mechanism to push on the track. 

In the A-engine of M. xanthus, the circular rotor track is replaced by a double helical filamentous 
structure. The helical geometry was first suggested by the equi-distant clustering of AglZ, an A-
motility related protein (AMRP), along the cell-substrate interface (Mignot, Shaevitz et al. 2007). 
These clusters are almost stationary relative to the substrate. Recently, fluorescent imagining 
experiments (Nan and Zusman, in preparation) on AgmU, another AMRP, revealed a rotating 
double helical structure as the cell moves. The helix has a pitch similar to the double helical 
MreB filaments found in the cell (Mauriello, Mouhamar et al. 2010). Similar double helical 
MreB filaments have also been found in E. coli (Kruse, Moller-Jensen et al. 2003; Shih, Le et al. 
2003) and B. subtilis (Jones, Carballido-López et al. 2001). Furthermore, A-motility stops when 
the cell is treated with A22, an MreB disintegrator (Mauriello, Mouhamar et al. 2010). Therefore, 
MreB is the most likely candidate for the track of the proton-driven motors. 

Many AMRPs tend to concentrate at one cell pole, and periodically switch their pole 
concentrations as the cell reverses. For example, AglZ, AgmU and FrzS preferentially 
concentrate at the leading pole (Mignot, Merlie et al. 2005; Mignot, Merlie et al. 2007; Mignot, 
Shaevitz et al. 2007; Nan, Mauriello et al. 2010). After each cell reversal, the high concentration 
of these proteins shifts to the new leading pole. There are also other AMRPs that preferentially 
concentrate at the trailing pole, e.g. RomR (Leonardy, Freymark et al. 2007). The concentration 
shift occurs in ~40 seconds (Mignot, Merlie et al. 2005; Mignot, Shaevitz et al. 2007; Sun, 
Wartel et al. 2010), during which the proteins disperse along the cell. The time scale for 
diffusion along a cell 10 μm long matches the measured 40 seconds (estimated using the 
measured diffusion coefficient, 2.5 μm2/s, of the maltose binding protein in the E. coli cytoplasm 
(Elowitz, Surette et al. 1999)). Therefore the change of AMRP concentrations is possibly 
mediated by diffusion.  

Here we propose a mechanochemical model that explains the myxobacteria A-motility, the 
rotation of the track, the periodic reversal of the cell motion, and the dynamics of AMRP clusters.  
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3.2 Model and results 

Our model features a mechanical system consisting of motors running along a double helical 
track, and anti-phased biochemical oscillators at the cell poles. The mechanical system drives the 
translocation of the cell and the rotation of the track. The biochemical oscillators control the 
reversal of the mechanical system. 

 Mechanics of A-motility  

The A-engine of myxobacteria is simplified as transmembrane motor particles moving along a 
double helical track, exerting forces on it (Figure 3-1A). Equal and opposite forces are exerted 
on the cell membrane, cell wall and substrate. We assume that all the motors run in the same 
direction along the track. Due to the looped topology of the track the motors run in opposite 
directions relative to the substrate when they are on the opposite strands of the double helix. We 
distinguish between the two half-loops by referring to them as “left” and “right”, corresponding 
to the direction of cell motion in Figure 3-1A. 

For low Reynolds number motility asymmetry is necessary for net motion (Purcell 1977). The 
model cell cannot move if the left-bound motors and the right-bound ones contribute equal forces. 
The symmetry breaks when the numbers of left-bound and right-bound motors are different 
and/or when they exert different forces. The unequal number of motors alone cannot explain 
certain observations on the AMRP distributions. The reasons will be given in the discussion 
section after we elaborate on the mechanism of AMRP dynamics. In the following we introduce 
the mechanism for unequal motor forces. 

A motor can exert different forces by carrying high-drag or low-drag cargo (Figure 3-1B, red for 
high-drag, blue for low-drag). The cargo consists of AMRPs. As the name suggests, the high-
drag cargo causes larger drag force between the motor and the substrate, and the low drag cargo 
causes smaller force. In Figure 3-1B, we suggest a geometric factor underlying such difference in 
the drag. The bulky shape of the high-drag (red) cargo creates a bump at the surface of the cell 
envelope. As the motor carries the high-drag cargo through the substrate interface, the bump 
encounters a large drag force from the viscous slime between the cell and the substrate, so that 
the motors that engage the slime constitute the major force generating units in the system. As 
these high-drag motors are slowed down by the high drag at the substrate interface, they form 
clusters. Alternatively, the large drag could result from the formation of focal adhesion 
complexes, as suggested by Mignot (Mignot 2007; Mignot, Shaevitz et al. 2007; Mignot and R. 
Kirby 2008). This mechanism, however, requires penetration of the peptidoglycan layer by the 
cargo molecule. Consequently, the peptidoglycan has to be constantly lysed to allow relative 
motion between the cell and the substrate; this could render the cell wall unstable. Besides, the 
A-motility selectively prefers firm, dry substrate surface, e.g. 1.5% agar, than a soft, wet surface, 
e.g. 0.3% agar (Mauriello, Mignot et al. 2010). The AMRP clusters along the cell-substrate 
interface also appear brighter on firm surfaces—in the extreme case, directly on a glass surface 
(Nan, Mauriello et al. 2010). It is hard to explain the correlation between substrate firmness and 
A-motility by chemical (e.g. hydrogen) bonds required for focal adhesions. But bumps evidently 
encounter larger drag on dryer, firmer surfaces, resulting in stronger AMRP clustering. Therefore, 
the bump-on-the-surface mechanism is more plausible based on current knowledge about the A-
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motility. Nevertheless, the model can be easily adapted to the focal adhesion scenario by greatly 
increasing the drag coefficient of the bump. 

 
 

Figure 3-1: Setup of the mechanical model. (A) The motors run along the double 
helical track in the same direction. Relative to the substrate, the motors on the opposite 
strand run in opposite directions (black arrows above the cell). Blue dots: motors 
carrying low-drag cargo; red dots: motors carrying high-drag cargo; grey line: double 
helical track. ẑ and θ̂  are unit vectors in the axial and rotational directions respectively. 
(B) Zoom-in view of the two types of motor-cargo complex. Here we assume the high 
drag on the red cargo results from its bulky geometry, which deforms the cell envelope 
locally. The bump formed at the surface causes high drag force as the motor tries to carry 
the cargo through the substrate interface. The relative velocities between various parts are 
indicated by grey arrows. The cell membrane and cell wall are assumed to have no 
relative motion. Subscript abbreviations: M = motor, H = helix, B = membrane/ wall, S = 
substrate, C = cell. (C) Force balance on the motor, projected onto the substrate surface. 
F: forces, V: velocities. The velocities in (B) are projected onto the substrate surface. The 
force between the motor (circle) and the helix (area between two parallel lines) along the 
helical direction, F//, results in the motor velocity MHV



. There is also a transverse force, 
F┴, perpendicular to the helical arc length that keeps the motor on the track. The cell 
membrane is assumed to stick with the cell wall. They combine into one mechanical 
component. The force between the motor and the membrane/wall, FMB, and the one 
between the motor and the substrate, FMS, are assumed to be purely drag forces. They act 
opposite to the relative velocities between the involved parts, and proportional up to a 
drag coefficient. The thicker arrows show the vectorial sums of the composite forces. 
Here we assume that the helical track is the only rotational component, whereas the cell 
membrane and cell wall does not rotate (constrained by much larger rotational drag 
coefficient). Then it holds that ˆ

HB HV rω θ=


 and ˆBS CV V z=


, where VC is the cell velocity 
and ωH is the angular velocity of the helix rotation. ẑ  and θ̂  are same as in (A), ŝ  is the 
unit vector tangent to the direction of the helix.  
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A net driving force is generated when the two strands of the track bear different numbers of 
motors carrying the high-drag vs. low-drag cargo. This can be realized by exchanging the cargo 
at different rates as the motors arrive at the poles. At the leading pole the motors tend to shed the 
low-drag cargo and take on a high-drag one, and vice versa at the trailing pole. Then more high-
drag motors will travel from the leading pole to the trailing pole than in the opposite direction. 
Thus the net force on the cell drives it towards the leading pole. In other words, the relative cargo 
exchange rates at the poles determine the direction of cell motion. When the rates switches, the 
cell reverses.  

The simplest way to control the cell reversal is to deplete one or both types of cargo at the poles. 
Due to the unbalanced cargo exchange rates, the leading pole tends to accumulate low-drag 
motors and lose high-drag ones, and vice versa for the trailing pole. Although this mechanism 
makes a working model (result not shown), it has been disproven by recent experiments. A 
mutant motor with its proton channel deleted will lose traction on the helical rotor and cease 
transporting cargo pole to pole. Cells with such a mutation, nevertheless, maintain the periodic 
switching of the AMRP concentrations at the poles, and the alternation frequency is unaffected 
(Sun, Wartel et al. 2010). Therefore, the cell reversal must be controlled by biochemical 
oscillators at the poles that are coupled via diffusion. Indeed, the diffusion time scale fits with the 
recovery time scale for AMRP concentrations. The details of the oscillator will be discussed 
below.  

The basic assumptions of the mechanical model are: 

1. Motors run in a uniform direction along the track, i.e. opposite directions relative to the 
substrate when on opposite strand of the double helix. 

2. Motors carry either high-drag or low-drag cargo. The high-drag cargo encounters very 
high drag at the substrate interface, and contributes to the major force generating units. 

3. Motors exchange cargo at the poles, with different exchange rates so as to achieve 
unequal distribution of the high-drag and low-drag motors on the two strands. 

4. Cells reverse when the relative cargo exchange rates switch at the poles. 

 Force balance 

In the idealized scenario, the axial forces contribute only to the translocation of the cell, and the 
azimuthal forces contribute only to the rotation of the helical track. Underlying is the assumption 
that the helical track is rigid and undeformable, and the only significant rotation is between the 
helix and the cell membrane. The latter holds when in the rotational direction the drag coefficient 
between the helix and the cytoplasm is much smaller than those between all the other 
components, e.g. between cell and substrate, between cell membrane and cell wall, etc. In reality, 
the cell may rotate slightly relative to the substrate, but such rotation has not been well 
characterized in the experiments.  

Figure 3-1C shows the force balance on each motor. The forces indicated in all the three panels 
must sum to zero. The subscript M stands for motor, B for membrane/wall, S for substrate, and H 
for helix. For simplicity we assume that the cell membrane and cell wall are held together with 
no relative motion. They are regarded as one mechanical part in the model. The motor exerts a 
constant force, FM, on the track along its arc length. The track imposes an equal and opposite 
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force on the motor, resulting in a velocity i
MHV


to be determined by the force balances. The 
superscript i is the index for the motors. There is also a transverse force , F┴, perpendicular to the 
arc length that keeps the motor on the track. The force exerted by the membrane/wall on the 
motor is assumed to be purely a drag force, i i i

MB MB MBF Vζ= −
 

, where i i
MB MH HBV V V= +
  

 is the 

relative velocity between the motor and the membrane/wall. Here i
MBζ  is the drag coefficient that 

accounts for the drag on the motor both from the cell membrane and from the cell wall. The 
high-drag and low-drag cargo makes the drag coefficient different. These drag forces are internal 
within the cell, so they only cause relative motions between cell components, i.e. rotation of the 
track, but not translocation of the whole cell. Similarly, the force between the motor and the 
substrate is written as i i i

MS MS MSF Vζ= −
 

 with i i
MS MH HB BSV V V V= + +
   

. Here we assume that the drag 

coefficient i
MSζ  applies only to the high-drag motor at the substrate interface and is 0 otherwise. 

Because we assume that only the track rotates, it holds that ˆ
HB HV rω θ=


 and ˆBS CV V z=


, where r 
is the radius of the cross section of the cell, VC is the cell velocity, ωH is the angular velocity of 
the helix rotation. ẑ  and θ̂  are unit vectors in the axial and rotational direction respectively. The 
force balance is: 

 / / 0i i i i
MB MSF F F F⊥+ + + =

   

 (3.1) 

We assume that the motor-helix force parallel to the helix is constant (Eq.(3.2)). In the bacterial 
flagellar motor nearly constant torque is observed up to a “knee” velocity (Berg and Turner 1993; 
Berg 2003). Here we are essentially assuming that the motors are always functioning in the low 
velocity regime where the motor torque is nearly constant. 

 / / ˆi MF s Fσ ≡


  (3.2) 

where σi(t) = ±1 indicates the direction of the motion relative to the substrate, i.e. which strand of 
the double helix the motor is currently on.  

Since the motors are confined to the track, i
MHV


 is proportional to dsi/dt, where si is the position 
of the motor in arc length along the track. That is, 

 
2 2 2 2

ˆˆ 2( )
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i
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MH i
ds pz rV t
dt p r p r

π θσ
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 
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

 (3.3) 

Finally, we must specify the force balance on the rotating track and the translocating cell. The 
track rotation results from the sum of rotational forces on the helix as shown in Eq.(3.4): 
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The cell translocation is driven by the sum of axial forces on the external medium, as shown in 
Eq.(3.5). Internal forces, i

MBF


, do not count.  
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π

=

 
 = − +
 + 

∑

∑





 (3.5) 

 

The parameters used in the mechanical model are listed in Table 3-1. Most of them are estimated 
as given in the rightmost column of Table 3-1. The rest are adjusted to reproduce the 
experimental data. We will demonstrate the computed results after we introduce the biochemical 
oscillators in the next section. 

 

Table 3-1: Parameters used in the mechanical model. 

Parameters Meaning Values Source 

N number of motors 100  

FM motor force along the helical 
direction 1 pN 

150 pN·nm torque of BFM 
stator1 ÷ 20 nm radius of BFM 
rotor2 ≈ 7 pN  

L
MBζ  

drag coeff. between motor and 
membrane/wall for low-drag 
motor 

0.1 
pN·s/μm 

kBT ÷ 0.04 μm2/s diffusion 
coeff. of proteins on plasma 
membrane3 

H
MBζ  

drag coeff. between motor and 
membrane/wall for high-drag 
motor 

0.5 
pN·s/μm > L

MBζ  

ζMS 
drag coeff. between the high-drag 
cargo and the substrate for high-
drag motor 

200 
pN·s/μm 

 
 

φ range of angle considered as 
substrate interface [-φ/2, φ/2] π/15 width of AglZ clusters in the 

fluorescence images4 

                                                 
1 See Reid, Leake et al. 2006; Sowa and Berry 2008. 
2 See Sowa and Berry 2008. 
3 See Adams, Chen et al. 1998; Lippincott-Schwartz, Snapp et al. 2001. 
4 See Mignot, Shaevitz et al. 2007. 
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ζC translocation drag coeff. of the 
cell 

2000 
pN·s/μm 

100 pN pilus force5 ÷ 3 
μm/min cell velocity 

ζHrot rotational drag coeff. of the track 50 pN·s  

p pitch of helix 1 μm MreB pitch6  

r radius of helix  0.2 μm AglZ 3D localization7 

 

 Biochemical oscillators at the cell poles govern the periodic reversal  

In this section we describe a biochemical scheme in which the master oscillators at the poles 
cause periodic changes in the cargo concentrations. The two cargo types tend to concentrate at 
opposite poles. Motors arriving at the pole take up a high-drag or low-drag cargo with 
probabilities depending on their relative concentrations at the pole. While the leading pole tends 
to supply high-drag cargo, the trailing pole tends to supply low-drag cargo.  

Because there is not enough information about the biochemical pathway at the cell poles, we 
borrowed the master oscillator from existing models. The Min oscillator is one of the best 
studied biochemical oscillators emerging from diffusion-reaction mechanisms (Howard, 
Rutenberg et al. 2001; Howard and Kruse 2005; Fischer-Friedrich, Meacci et al. 2010). Since the 
details of the oscillator are not important, we chose the simplest form of the existing Min models 
(Howard, Rutenberg et al. 2001), and rescaled the parameters to achieve an oscillation period 
around 7 min ×2 (7 min is time between reversals, i.e. the half period) in a 5 μm long cell. We 
emphasize that any pair of limit cycle oscillators coupled by diffusion will work (e.g. the 
Fitzhugh-Nagumo system). The Min oscillator gives a more realistic biochemical flavor as the 
cell reversal is apparently controlled by diffusion coupled oscillations. 

The original equations for the Min model (Eq.(1-4) in (Howard, Rutenberg et al. 2001)) are: 
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5 See Maier, Potter et al. 2002. 
6 See Mauriello, Mouhamar et al. 2010. In the paper the pitch was stated as 0.5 μm. But it 
actually refers to the spacing between the two strands of helices. Thus the pitch of a single helix 
is 1 μm. 
7 Sun and Shaevitz, unpublished data. 
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Eqs. (3.6)-(3.9) can be non-dimensionalized by the cell length L, and the diffusion coefficients 
DD and DE (Table 3-2). The Min model in (Howard, Rutenberg et al. 2001) gives an oscillation 
period around 110s. A new oscillation period ~880s is obtained by scaling all the parameters 
with L = 5 μm and the diffusion coefficients reduced by 20%. The characteristic particle 
densities, nD and nE, do not affect the oscillation period. They are normalized to 1 for convenient 
comparison of the rate constants. The scaling and values of the parameters are given in Table 3-2. 
The result is shown in Figure 3-2A. 

The MinE concentrations are abstracted from the rescaled Min model at the boundaries, x = 0 
and x = L, and used as the master oscillators (Figure 3-2B). The master oscillators are anti-
phased at opposite poles, and the alternating pattern controls the periodic reversal of the cell.  

 

Table 3-2: Rescaled parameters of the Min model. 

Parameters Scaling Values 

L × 2.5 5 μm 

DD × 0.8 0.224 μm2/s 

DE × 0.8 0.48 μm2/s 

nD ÷ 1500 μm-1 1 

nE ÷ 85 μm-1 1 

k1 DD / L2 2.56 s-1 

k2 DD / nE L2 0.0685 s-1 

k3 DE / nD L2 7.68 s-1 

k4 DE / L2 0.1024 s-1 

Km1 1 / nE 2.38 

Km2 1 / nD 40.5 
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Figure 3-2: Biochemical signals at the cell poles. (A) Kymograph (i.e. space-time plot) 
showing the bound MinE concentration computed from the rescaled Min model. See 
Table 3-2 for the rescaled parameters. (B) The time series of boundary concentrations are 
extracted from the Min model to be used as the master biochemical oscillators at the 
poles. The oscillations at the two poles are anti-phased. The master oscillators set the 
periodicity of the cell reversal. (C) The sigmoidal filter that translates the signal of the 
master oscillators into the dissociation rates of the cargo at the poles. The high-drag and 
low-drag cargo have opposite trends in their responses to the master oscillators. (D) The 
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dissociation rates of the cargo at the poles vs. time. After the sigmoidal filter in (C), the 
sharp signal of the master oscillator turns into nearly square waves. The high-drag and 
low-drag cargo alternate their binding affinity at each pole with the periodicity set by the 
master oscillators. This will result in the periodic switch of their relative concentrations at 
the poles, and eventually the cell reversal. In (B), (C) and (D), red: high-drag cargo, blue: 
low-drag cargo. In (B) and (D), solid line: left pole, dashed line: right pole. 

 

The master oscillators peak sharply, whereas the AMRPs concentrations are nearly constant 
between reversals. Therefore, we used sigmoidal signal filters (Eqs.(3.10) and (3.11), Figure 
3-2C) that convert the master signal into nearly square waves (Figure 3-2D). Sigmoidal signal-
response curves are common in cooperative biochemical reactions. The signal filters for the 
high-drag and low-drag cargo assume opposite trends, so that they tend to accumulate at opposite 
poles. The filtered waves are applied as the dissociation rates of the high-drag and low-drag 
cargo at the poles. Figure 3-2D shows that the dissociation rates of the cargo oscillate in anti-
phase at the two poles; and the rates for high-drag and low-drag cargo dominate at opposite poles.  

 min max min( )
n

H n n
H

Sr r r r
S Q

= + −
+

 (3.10) 

 min max min( )
n
L

L n n
L

Qr r r r
S Q

= + −
+

 (3.11) 

In Eqs.(3.10) and (3.11), rH and rL are the dissociation rates of the high-drag and low-drag cargo 
respectively. rmin = 0.2 s-1 and rmax = 5 s-1 sets the lower and upper bound of the dissociation rates. 
S is the signal of the master oscillator. The Hill coefficient n = 5 and the half-rate signal level QH 
= QL = 0.3. 

Subsequently, the cargo concentrations at the poles are determined by the periodically changing 
dissociation rates, together with a constant binding rate and diffusion through the cytoplasm 
(Figure 3-3B). The ratio between the concentrations of the two cargo types determines the 
probability that an incoming motor takes up a high-drag or low-drag cargo. Here we postulate 
one possible mechanism for the above process. Some cargo exchange enzymes docked at the 
poles sequester the free cargo for exchange with the incoming motors. Their binding affinity for 
high-drag or low-drag cargo is controlled by the master oscillator in the sigmoidal fashion 
described above.  

Eqs.(3.12) below capture the diffusion coupled dynamics of the high-drag cargo at the poles: (a) 
the diffusion of the cargo in the cytoplasm; (b) and (c) the balance of diffusive fluxes with 
reaction fluxes at the poles; (d) and (e) the dynamics of the bound cargo at the poles. The 
equations for low-drag cargo read similarly. In Eqs.(3.12), Hc(t, x) is the cargo density in the 
cytoplasm, Hp

0(t) is the cargo concentration at the left pole x = 0, Hp
L(t) is the cargo 

concentration at the right pole x = L. D = 2 μm2/s is the diffusion coefficient of cargo. rb = 5 
μm/s is the binding rate of cargo, rH

0 (t) and rH
L (t) are the dissociation rates computed above. 

MH
0 (t) and MH

L (t) are the fluxes of cargo from the cargo exchange with the motors.  
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 Results of the model explain most experimental observations 

The model explains most existing experimental data. The most important results of the model are 
summarized in Figure 3-3. Figure 3-4 shows the time lapse snapshots of the motor and cargo 
distributions during cell translocation, viewed from the top. Supplemental Video I give side-view 
movies of the reversal cycle, and Supplemental Video II gives a slowed-down zoomed-in movie 
for a short time period about the cell reversal.  

The computed cell velocity is ~3.4 μm/min (blue solid line in Figure 3-3A), falling in the range 
of 2−4 μm/min from experiments. The cell rotates at a speed ~3.7 rpm (green dashed line in 
Figure 3-3A). For cells suspended in soft medium, the computed rotational speed of the track is 
~7.2 rpm (see Appendix A), compatible with the measured 7−8 rpm in cells immersed in 
methylcellulose. Controlled by the master oscillators, the cell translocation and the track rotation 
reverses periodically for every 7 min.  

Upon reversal the cell slows down to near stall (inset of Figure 3-3A), corresponding to the 10-
sec pause observed in the experiments. This occurs because the motors have to redistribute along 
the helix. Before the reversal, the major force-generating units, i.e. motors carrying high-drag 
cargo, dominate in the direction bound for the trailing pole (Figure 3-3C). Upon reversal, the 
poles switch and high-drag motors start to dominate in the direction towards the new trailing 
pole. This causes a transition period during which the numbers of high-drag motors become 
more balanced in the two directions (Figure 3-4), and the driving forces largely cancel out. If we 
take into account the viscoelastic property of the slime surrounding the cell, the cell should 
virtually stop when the driving force per unit area drops below the yield stress of the slime, as in 
the short pauses shown in the experiments (Mignot, Shaevitz et al. 2007).  

The dynamics of the AMRP clusters along the cell-substrate interface are well explained by the 
model. The motors carrying high-drag cargo cluster at the substrate interface (Figure 3-3C and 
Figure 3-4) because they are slowed down there (Figure 3-3D). The clusters are localized along 
the helical strand that currently supports the leading-to-trailing motion; they are equally spaced 
by the pitch of the helical track. Occasionally a motor picks up a high-drag cargo from the 
trailing pole, and is slowed down at the substrate interface as it runs towards the leading pole. 
Nevertheless, with the probability being small, such a motor can hardly find companions to form 
cluster before it reaches the other pole. The high-drag clusters drift towards the trailing pole with 
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a much smaller velocity than the cell velocity, ~0.3 μm/min. Such a small drift is hardly 
distinguishable in experiments because of the fluctuations in fluorescence. The drift velocity is 
affected by many parameters, but mainly by ζMS, the drag coefficient between the high-drag 
motor and the substrate (see Appendix B). Increasing this drag coefficient reduces the drift 
velocity. An extremely large drag coefficient would correspond to the case when the high-drag 
cargo binds to the substrate.  

 

 
 

Figure 3-3: The results of the calculations. Parameters used in the calculation are listed 
in Table 3-1. (A) The time trajectories of the cell translocation (blue solid line, left axis) 
and the track rotation (green dashed line, right axis). The translocation and rotation show 
periodic reversal with synchronized phases. The cell moves at ~3.4 μm/min and the track 
rotates at ~3.7 rpm. The inset with zoomed-in view around the reversal shows a short 
interval of nearly zero velocity. (B) The dynamics of the cargo concentrations at the right 
pole. The left pole behaves exactly the opposite. Red: high-drag cargo; blue: low-drag 
cargo. The grey blocks highlight the time intervals in which the right pole is the leading 
pole (positive cell velocity). The high-drag cargo concentrates at the leading pole (LP) 
and the low-drag cargo concentrates at the trailing pole (TP). The cargo concentrations 
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result from the oscillating cargo binding affinity, which is controlled by the master 
oscillators. For most time between cell reversals, the cargo concentrations stay around the 
equilibrium level. Small noise around the equilibrium densities are caused by the cargo 
exchange for motors arriving at the pole. (C) The distribution of motors along the track at 
a sample moment. Red columns: number of high-drag motors; blue columns: number of 
low-drag motors. The high-drag motors form equidistant clusters (tall red columns). Most 
high-drag motors run from the leading pole to the trailing pole, because the leading pole 
tends to equip the motors with high-drag cargo. So the clusters only appear on the helical 
strand that supports the leading-to-trailing motion at the moment. Due to the significantly 
reduced velocity in the clustered regions, most motors are trapped there, with only a 
small number of motors distributed elsewhere. (D) A sample time trajectory of a single 
motor along the track. The motor travels many times pole to pole before the cell reverses. 
The slowed-down parts (black arrows) are caused by high-drag cargo through the 
substrate interface. This tends to happen in the leading-to-trailing direction. Before the 
cell reversal (red bracket), the slowing-down mostly happens on the upward slope 
towards the old trailing pole; and after the cell reversal, the slowing-down shifts to the 
downward slope towards the new trailing pole. In the rare event that the motor carries the 
high-drag cargo towards the leading pole, it lags slightly on the track (magenta arrows) 
because the helix rotation takes over the motor while it is held behind by the substrate 
interface. Around the cell reversal, motor trajectories become more erratic because the 
switch in cargo exchange rates is underway.  

 

The polar concentrations of the cargo reproduce the oscillatory pattern of AMRP polar clusters. 
The high-drag cargo always concentrates at the leading pole and the low-drag cargo always 
concentrates at the trailing pole (Figure 3-3B). For most of the time between reversals, the polar 
concentrations of the cargo maintain nearly an equilibrium level determined by the binding and 
dissociation rates. The cargo exchange kinetics is an additional source of fluctuations about the 
equilibrium level. At each reversal, it takes ~1 minute for the cargo concentrations to reset, 
which spans before and after the mechanical reversal. This duration depends on the kinetics of 
the chemical process, e.g. the binding and dissociation rates, the diffusion coefficient of the 
cargo, the sharpness of the sigmoidal filter. During the delay, most cargo particles disperse in the 
cytoplasm (data not shown), and the concentrations sequestered at both poles are low. But the 
mechanical reversal does not have to wait until the polar concentrations of cargo fully reset. It 
happens soon after the ratio between the two cargo types reaches 1, up to the pause time needed 
for motor redistribution. Thereby the polar clustering seems to form about 20 seconds after the 
cell has reversed, which was observed in experiments (Mignot, Shaevitz et al. 2007). It is 
tempting to associate the temporal order with causality. But this case is exactly opposite: the 
mechanics is controlled by the cargo concentrations. 

The various AMRPs observed in the experiments are probably constituents of the high-drag or 
low-drag cargo. For example, AglZ, which accumulates at the leading pole and forms equidistant 
clusters along the body, should be part of the high-drag cargo. RomR, which accumulates at the 
trailing pole, is part of the low-drag cargo (Leonardy, Freymark et al. 2007). FrzCD, which 
seems to interdigitate with AglZ along the cell body, is also likely to be part of the low-drag 
cargo.  
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Figure 3-4: Time lapse snapshots of a computed cell viewed from the top. See 
Supplemental Video I and II for movies with side view. Black oblongs: cell envelope; 
grey lines: helical track; blue balls along the track: motors carrying low-drag cargo; red 
balls along the track: motors carrying high-drag cargo; blue ball at the pole: polar low-
drag cargo, radius proportional to concentration; red ball at the pole: polar high-drag 
cargo, radius proportional to concentration. The balls indicating the motors are semi-
transparent. When clustered, they appear like one ball with brighter color. The motors 
carrying high-drag cargo slow down and form clusters at the substrate interface. The 
clusters are equally spaced by the pitch of the helical track. They move relatively to the 
substrate much slower than the cell does — in this computation, at ~0.3 μm/min. Before 
cell reversal the density of high-drag cargo disperses at the old leading pole and after cell 
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reversal re-accumulates at the new leading pole with a ~20 s delay. The changes in low-
drag cargo are similar, but not exactly symmetric to the dynamics of the high-drag cargo 
because the master oscillator from the Min model does not behave symmetrically in the 
high and low regime (Figure 3-2B). During the reversal, the motors carrying different 
cargo redistribute along the track. The cartoon compares well with the AglZ-GFP 
imaging experiments reported in (Mignot, Shaevitz et al. 2007). 

3.3 Discussions 

We have constructed a model that explains the mechanics of A-motility in myxobacteria. The 
basic elements consist of proton driven motors running along a double helical track. The forces 
in the axial direction drive the translocation of the cell; and the forces in the rotational direction 
drive the rotation of the track. The motors are loaded with high-drag or low-drag cargo. The 
motors carrying high-drag cargo encounter large drag forces at the substrate interface. They are 
significantly slowed down there and form clusters. These high-drag motor-cargo complexes 
constitute the major force generating units in the system. Most of them run from the leading pole 
towards the trailing pole. They exert a net forward thrust on the cell. The motor exchanges its 
cargo when it reaches the cell pole. The type of cargo it picks up depends on the concentrations 
of the two types at the pole, so that the motors sent out from the leading pole tend to carry the 
high-drag cargo and vice versa. The cargo concentrations are controlled by the master oscillators 
at the pole. The master oscillators set the periodicity for reversal of the cargo concentrations and 
consequently the cell motion. The model reproduces the translocation velocity of the cell and the 
rotational velocity of the track observed in the experiments. It explains the equidistant, nearly 
stationary clustering of cargo AMRPs along the cell-substrate interface and the AMRP 
concentration at the poles as well. It also explains why the cell pauses shortly before the reversal 
and why the AMRP concentrations rebuild at the poles after the reversal even though they 
control the mechanics. The model mainly deals with the mechanical aspects of A-motility. The 
biochemistry is a simple diffusion coupled binding-unbinding process grafted onto the Min 
oscillator model. Before more details are known about the signaling pathways, the current model 
is the best one can do to mimic the observed AMRP dynamics.  

The model predicts a linear load-velocity curve. Figure 3-5 shows the cell velocities resulting 
from a range of external load forces against the cell motion. The cell stalls when the load reaches 
~150 pN. The zero-load velocity and the stall force vary with the model parameters. There are 
many ways to measure load-velocity curves experimentally. The external load force can be 
applied on the cell directly or indirectly through covalently attached micro-beads, using atomic 
force microscopy (AFM), optical tweezer, flow chamber, etc. 

In this model it is necessary to assume two types of cargo. In the model setup, we mentioned that 
symmetry breaking in the mechanical system can come from unequal number of motors in the 
two directions and/or unequal forces. The cargo assumption in this model corresponds to unequal 
forces. Suppose otherwise, i.e. there is only one type of motor-cargo and more motors run 
leading-to-trailing than the opposite direction. Then one should observe strong and weak AMRP 
clusters interdigitating along the cell body, formed by the motors in the two directions 
respectively — unless there are no motors running from the trailing to the leading pole. But if 
there are no trailing-to-leading motors, the FrzCD bands that interdigitate with the AglZ band 
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would be difficult to explain. In contrast, assuming two cargo types easily reconciles this 
contradiction. In the current model the numbers of motors in the two directions are not balanced 
either, because the high-drag motors are slowed down at the substrate interface, creating a much 
longer average travel time in the leading-to-trailing direction (Figure 3-3D).  

It is likely that the AMRPs behave in a more complicated way than simply as two cargo types. 
For example, RomR and FrzCD both seem to be low-drag cargo, yet differ in their polar affinity: 
RomR concentrates at the trailing pole, but FrzCD does not concentrate at either pole. This 
suggests further differentiation in the interactions between the motor and the AMRPs. High-drag 
and low-drag cargo is the simplest working scheme that explains the major dynamical pattern 
observed in experiments. 

 

 
 

Figure 3-5: Load-velocity curve predicted by the model. The cell velocity decreases 
linearly with increasing external load force. The stall force is ~150 pN. The curve can be 
approximated by V = 3.4 – 0.23 × FL.  

 

Recent experiments suggest that the motor-substrate interaction is more complicated than high 
resistance to cargo-induced surface bumps. In our model the substrate-induced clustering 
emerges solely from the slowing-down of the motors carrying high-drag cargo. This is a 
convection dependent mechanism. If the motors cease their directional motion, pure diffusion 
along the track cannot lead to cluster formation even though their diffusion coefficients are 
reduced at the substrate interface (see Appendix C). However, recent experiments show that the 
AMRP clusters remain in mutant cells with the proton channel deleted from the motors (Sun, 
Wartel et al. 2010). One possible remedy to the model is to introduce kinetic binding between the 
cargo and the substrate. In this case clusters of motor-cargo form in regions of reduced diffusive 
mobility (see Appendix C). The binding mechanism is not exactly the same as the usual focal 
adhesion mechanism, and so it may not require the enzymatic degradation of the cell wall. The 
cluster formation only depends on the equilibrium ratio between the cargo bound and unbound to 
the substrate.  If the binding and unbinding happens fast enough, each time the bonds can reform 
across the porous peptidoglycan without cutting through it. Nevertheless, the additional 
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mechanism does not affect the essential result of the current model. In the presence of directional 
motor motility, the cell velocity is mainly determined by the force generated by clustered high-
drag motors and their residence time through the clusters. The binding mechanism effectively 
contributes to a longer residence time. Its impact on the cell velocity can be modeled by 
adjusting the drag coefficient between the high-drag cargo and the substrate. 

In the current model, the mechanics only affects the biochemistry by introducing small 
concentration fluctuations. But more substantial mechanochemical coupling probably exists. In 
the “ripple phase”, the cells reverse with higher frequency when they interdigitate with other 
cells moving in the opposite direction. The neighboring cells essentially form a new “moving 
substrate” for each other. Thus the motors may take a longer or shorter time to travel pole-to-
pole, and so does the cargo. If some components of the cargo participate in the biochemical 
oscillators, the impact on their transportation may affect the oscillation period. Even in the Min 
model, there is recent evidence for mechanical feedback on the biochemistry (Ivanov and 
Mizuuchi 2010). Again, all these speculations await further experiments for more details of the 
biochemical pathway. 

Finally, similar motility mechanism may be widespread in bacteria since MreB homologs and 
MotA-MotB homologs are common across a variety of bacterial species. For example, the 
swimming cyanobacterium Synechococcus rotates about its long axis after it hits a wall, 
establishing a rotational component in the motility. This could be realized by motors running 
along helical track, as in myxobacteria A-motility. If the cell surface assumes a helical pattern, 
the resultant cell rotation will provide axial thrust. Alternatively, the rotation of the internal helix 
could generate helical waves on the bacterial surface. This would provide the mechanism for 
wave-driven motility postulated by Stone and Samuel (Stone and Samuel 1996) and Ehers, et al. 
(Ehlers, Samuel et al. 1996). 
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Appendix A:  Results for cells suspended in methylcellulose 

 

 
 

Figure 3-6: Results for cells suspended in methylcellulose. Parameters used in the 
calculation are listed in Table 3-1, except for φ = 2π, and ζMS  = 0. All the legends follow 
those in Figure 3-3. (A) The translocation of the cell (blue solid line, left axis) and the 
rotation of the helical track (green dashed line, right axis). The track rotates at ~7.2 rpm. 
The rotation maintains the periodic reversal for every 7 min or so. The cell does not 
translocate because there is no external forces against the methylcellulose gel with ζMS  = 
0. (B) The cargo concentrations at the right-end pole. The result is similar to Figure 3-3B. 
(C) The distribution of motors along the track at a sample moment. The high-drag (red) 
motors are mostly located on one strand and the low-drag (blue) motors mostly located 
on the other, running in the opposite direction. The high-drag motors do not form clusters 
along the cell body. There are more high-drag motors because they move slower along 
the track. (D) A sample time trajectory of a single motor. Red bracket: cell reversal. The 
motors travel faster when carrying a high-drag cargo. So the trajectory is slightly 
asymmetric on the upward and downward slopes.  
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Figure 3-7: Time lapse snapshots for cells suspended in methylcellulose viewed from 
the top. See Supplemental Video III for movie with side view. Black oblongs: cell 
envelope; grey lines: helical track; blue balls along the track: motors carrying low-drag 
cargo; red balls along the track: motors carrying high-drag cargo; blue ball at the pole: 
polar low-drag cargo, radius proportional to concentration; red ball at the pole: polar 
high-drag cargo, radius proportional to concentration. The cargo concentration switches 
periodically as in the cell on substrate surface. The two helical strands are colored with 
different shades of grey. The high-drag and low drag motors are distributed along 
opposite strands. Before pole switching (around time 60 and 70 s) the high-drag motors 
are mainly located along the darker strand and afterwards mainly along the lighter strand; 
vice versa for the low-drag motors. Upon pole switching, the cargo type carried by the 
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motors redistribute on the two strands), causing the reversal of track rotation. The motors 
do not form clusters as those shown in Figure 3-4.  

 

Suspension in methylcellulose inhibits the cell translocation in the axial direction, but the double 
helical track rotates at 7−8 rpm. Also, the AMRPs do not form clusters anywhere along the cell 
body. Only the poles maintain their periodic fluctuation in AMRP concentrations.  

These observations are well reproduced by the model (Figure 3-6, Figure 3-7 and Supplemental 
Video III). The methylcellulose is a viscoelastic medium that essentially forms “super-soft” 
substrate all around the cell. Accordingly, in the model we change ζMS to 0. The computed 
rotational speed, ~7.2 rpm, is compatible with the measured 7−8 rpm. The track also reverses its 
direction of rotation every 7 min. The rotation occurs because the high-drag motor has a larger 
drag coefficient against the membrane/wall than the low-drag motor does. The difference in 
these internal drag forces drives the rotation of the track, but do not contribute to cell 
translocation. In reality there may be a small drag between the high-drag cargo and the 
methylcellulose, causing a small driving force for cell translocation. But the cell may remain 
immobile if the driving force is smaller than the yield stress of the methylcellulose. 

Because the external drag coefficient is radially symmetric, in particular, zero everywhere, the 
high-drag motors do not form clusters (Figure 3-6C and Figure 3-7). The high-drag motors and 
low-drag motors mainly distribute on opposite strands. Such a distribution is caused by the 
unequal cargo exchange rate at the poles, as in the substrate-supported case discussed in the main 
text. The pole with higher concentrations of high-drag cargo tends to send out high-drag motors, 
and the other pole tends to send out low-drag motors. Between the reversals, there are usually 
more high-drag motors than low-drag ones. This is because the high-drag motors travel slower, 
thus by flux balance of motors they achieve higher density. 

Appendix B:  Model is robust against parameter change 

The model behaves robustly across a wide range of parameters (Figure 3-8). The computed 
velocities increase linearly with motor force, FM,. The drag coefficients between the motor and 
the membrane/wall, H

MBζ  and L
MBζ , affect the results very little. They mainly determine the motor 

velocities outside the substrate interface, the region with only a small number of motors for most 
time between reversals (Figure 3-3C). The cell velocity and the track rotation speed vary 
similarly, except for varying ζMS, the drag coefficient between the high-drag cargo and the 
substrate. The drift velocity of the clusters equals C HV pω− ; with the pitch p = 1 μm in the 
model, the vertical distance between the green and the blue lines in Figure 3-8 represents the 
drift velocity. It is strongly affected by ζMS, because ζMS characterizes the slipping between the 
cluster and the substrate. The limit of infinite ζMS, corresponding to fixed adhesion complexes, 
gives zero drift velocity.  
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Figure 3-8: Parameter sensitivity of the cell velocity and track rotation speed. 
Vertical axes in all panels: cell velocity and track rotation speed. Horizontal axes, from 
left to right and then up to down: motor force FM, range of angle for substrate interface φ , 
drag coefficient between the high-drag motor and the membrane/wall H

MBζ , drag 

coefficient between the low-drag motor and the membrane/wall L
MBζ , rotational drag 

coefficient of the track ζHrot, drag coefficient of the cell ζC, drag coefficient between the 
high-drag cargo and the substrate ζMS. The result of the model behaves robustly over the 
range of parameters.  
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Appendix C:  Motor-substrate binding causes motor clustering under 
pure diffusion 

In cells with mutant motors with knock-outs of its proton channel, the AMRPs remain clustered 
at the substrate interface. In this case the motors can only diffuse along the track. The diffusion 
coefficient is significantly reduced at the substrate interface for motors carrying high-drag cargo. 
However, clustering cannot be explained by the spatial variation in diffusion coefficient. The 
governing Fokker-Planck equation for the 1D diffusion process is 

 ( )D x
t x x
ρ ρ∂ ∂ ∂ =  ∂ ∂ ∂ 

 (3.13) 

where x is the arc length along the track, ρ(t, x) the density of motors along the track and D(x) the 
diffusion coefficient, which is reduced at the substrate interface. 

Without an energy supply, the steady state is just the equilibrium solution, i.e. zero flux 
everywhere. Therefore, 0xρ∂ ∂ = , the motor density is constant, without any clustering. 

A kinetic binding process between the substrate and the motor/cargo complex is one possible 
way to create the spatial variation in density. Let kb(x) and ku(x) be the binding and unbinding 
rates between the motor-cargo complex and the substrate. The modified diffusion PDE reads 

 ( ) ( ) ( )u u
b u u bD x k x k x

t x x
ρ ρ ρ ρ∂ ∂∂  = − + ∂ ∂ ∂ 

 (3.14) 

 ( ) ( )b
b u u bk x k x

t
ρ ρ ρ∂

= −
∂

 (3.15) 

Here the additional Eq.(3.15) captures the density of the bound motors, ρb. And reaction fluxes 
are added to the diffusion equation for the binding and unbinding kinetics. The equilibrium 
conditions of Eqs.(3.14) and (3.15) are: 

 0u

x
ρ∂

=
∂

 (3.16) 

 ( ) ( ) 0b u u bk x k xρ ρ− =  (3.17) 

Although the density of unbound motors remains constant over space, the total density of motors, 
ρt, varies in space.  

 ( ) ( )t u b ux p xρ ρ ρ ρ= + =  (3.18) 

where p(x) = ku(x) / (ku(x) + kb(x)) is the proportion of unbound motors at a given position. p(x) is 
smaller than 1 at the substrate interface, and equals 1 elsewhere. Therefore, ρt(x) is larger at the 
substrate interface than elsewhere, corresponding to clusters. 
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Appendix D:  Energy conservation considerations 

Energy conservation imposes a fundamental constraint on biophysical models. In biomechanical 
models, the energy reaped from biochemical reactions, e.g. ATP and ion motive force, must 
exceed the energy dissipated and converted by the mechanical motions. Without inertia, motions 
at low Reynolds number need not include kinetic energy, but the energy is typically stored as 
elastic potential, chemical potential or electrical potential. Our model does not include any of 
these elements. It only resolves the energy dissipated by the viscous drag between the motor, 
track, cell membrane, cell wall and substrate. The dissipated energy should be smaller than the 
energy provided by the proton motive force. The following arguments give a rough check on this 
energy constraint. 

Because the model is computed with force balances, it is not obvious how much energy is 
consumed from the proton transfer across the membrane. Here we use the data from bacterial 
flagellar motor for an estimate. The stator of the flagellar motor works with stepsize ~6 nm 
(13.8º × 20 nm radius) (Sowa, Rowe et al. 2005; Sowa and Berry 2008) and translocates 2 
protons per step (Berg 2003). Each proton provides energy around 10 kBT. If tight coupling 
between stepping and proton translocation is assumed, the motor velocity is proportional to the 
energy consumption rate of the particular motor by a constant 2 × 10 kBT / 6nm ≈ 13 pN. The 
total energy consumption rate is then 

 13 pN i
C MHi

E V= ⋅∑  (3.19) 

This is a conservative estimate for the energy consumption rate. If the motor sometimes slips, i.e. 
consuming protons without mechanical motion, the energy consumption rate should be even 
higher. 

The rate of energy dissipation from all viscous drags is 

 ( )2 2 2 2i i
D C C Hrot H MB MB MS MS

i
E V r V Vζ ζ ω ζ ζ= + + +∑  (3.20) 

Figure 3-9 shows the energy rates computed from Eqs.(3.19) and (3.20). The energy 
consumption rate is much larger than the resolved energy dissipation rate. Therefore, the energy 
conservation law has not been violated. The residue should be dissipated in the unresolved parts 
of the system. 
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. 
Figure 3-9: Check on energy constraint. Green line: energy consumption rate 
computed from Eq.(3.19); blue line: energy dissipation rate computed from Eq.(3.20). 
The energy dissipation rate resolved in the model is much smaller than the energy 
consumption rate. So the model does not violate energy conservation. 
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Chapter 4 Concluding Remarks 
Theoretical biophysicists borrow their modeling philosophy and computational techniques from 
conventional theoretical physics. However, the complexity of the bacterial motility systems 
poses special challenges to the modeling efforts. It is often hard to define a good question in the 
first place, and tricky to interpret the result in the end. In this concluding chapter, I will 
summarize some lessons I learned from my research projects. These points are also generally 
true for the modeling of any complex biological systems. 

As mentioned in Chapter 1, the models of bacterial motility work in close collaboration with 
experiments. The experimental observations thus define the appropriate level and focus of the 
model. As more details are revealed about the motility, more refined models become possible. 
For most bacteria, to start any kind of modeling it is necessary to at least have some basic 
structural and biophysical information. It is also helpful to learn the dynamical changes of the 
motility-related components while the cell is moving. For example, the earlier model for 
mycoplasma motility (Wolgemuth, Igoshin et al. 2003) was entirely built upon the temperature-
velocity and force-velocity measurements. Since the model was born before the leg proteins were 
discovered, it could only explain the biophysical data with a very general biased inchworming 
mechanism. The issues with the Arrhenius factor were left unexplained. Our latest model, 
equipped with the structural information about the leg protein, was able to attribute the intriguing 
steep, sub-Arrhenius temperature-velocity curve to the sequential release of the substrate-binding 
sites on the protein. However, the work cycle of the leg protein was largely speculation based on 
its geometric shape and some highly generalized knowledge about ATPase motors. The lack of 
detailed dynamics again leaves the theory on the more general side. Instead of finding out how 
the particular class of bacteria move, the question has been transformed to how multi-bond 
adhesions rupture under different modes of pulling forces and how temperature affects the 
rupturing process. At the end of the day, it is quite possible, because of its generality, to find the 
theory suits other biological systems better than it does for mycoplasma. 

By contrast, the myxobacteria system invited a much more detailed mechanical model because 
the double helical structure of the track leaves very narrow choices for the mode of motion. We 
only had to assume how symmetry breaks in the system to generate net driving force. And 
luckily this is clued by the dynamics of protein clusters observed in the experiments. 
Nevertheless, the biochemistry part is coarsened and the mechanochemical coupling left 
unaddressed because there is not enough information. 

The right question to ask is often not obvious at the beginning of a project, especially for systems 
with too little information. The mycoplasma project, for example, has meandered its way through 
various versions with totally different angles, e.g. asymmetric elasticity in the leg, 
mechanochemistry of ATP hydrolysis, general system of colored noise. These models either 
focus on an aspect with almost no data available, like the first two, or are too general to be 
associated with mycoplasma at all. In the former case, the model requires too many assumptions 
and usually requires many unknown parameters. The large number of unknowns makes data 
fitting meaningless. When we finally settled on the multi-bond adhesion model, it made a good 
balance between generality and specificity: it incorporates the structure of the leg protein and 
involves only 4 unknowns. The rule of thumb is to build a model that integrates as much 
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experimental information as possible, and requires a small enough number of assumptions and 
unknown parameters. 

Finally, we should be careful about what we infer from our models. The conclusions and 
predictions of the models stem from the assumptions. If these assumptions are ignored, one can 
easily misapply the conclusions, or invalidate the whole model for partial inconsistency. For 
example, in the biochemical part of the myxobacteria model, the Min oscillator is probably quite 
different from the real pathway, but regulation of the mechanics is not related to the details of the 
oscillation. Therefore, the theory probably remains valid in its explanation for why the polar 
concentration of the high-drag cargo revives at the new leading pole a short while after the cell 
reverses. On the other hand, even if a model is disproven with regard to its original goal, it 
remains a theoretical exploration about a certain form of energy conversion and transduction, 
signal transduction, or mechanochemical coupling. These general physical insights should not be 
discarded. 
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