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ABSTRACT OF THE DISSERTATION

Numerical Subdivision Surfaces for Simulation and

Data Driven Modeling of Woven Cloth

by

David Corwin Clyde

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Joseph M. Teran, Chair

We present the derivation details necessary for simulation of thin shells with finite strains

based on the Kirchhoff-Love assumptions. With an eye towards cloth simulation, we combine

this with a nonlinear orthotropic constitutive model framework. We leverage a conforming

spatial discretization using Catmull-Clark subdivision surfaces to ensure convergence under

refinement, which we confirm by numerical experiments. The dynamics are handled in a

fully implicit fashion to allow for large timesteps and solution of quasistatic problems.

Accurate constitutive modeling and parameter estimation for woven fabrics is essential

in many fields. To achieve this we first design an experimental protocol for characterizing

real fabrics based on commercially available tests. Next, we present a new orthotropic hy-

perelastic constitutive model for woven fabrics. Finally, we create a method for accurately

fitting the material parameters to the experimental data. The last step is accomplished by

solving inverse problems using our Catmull-Clark subdivision finite element discretization

of the Kirchhoff-Love equations. Through this approach we are able to reproduce the fully

nonlinear behavior corresponding to the captured data with a small number of parameters

while maintaining all fundamental invariants from continuum mechanics. The resulting con-

stitutive model can be used with any discretization and not just subdivision finite elements,

which we demonstrate by providing an alternate implementation based on simple triangle

meshes. We illustrate the entire process with results for five types of fabric and compare
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photo reference of the real fabrics to the simulated equivalents.
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CHAPTER 1

Introduction

Simulation of cloth is an area with broad-ranging applications, from the textile industry to en-

tertainment to engineering applications such as fiber reinforcement in composites. However,

numerical cloth simulation software faces several challenges which can make it cumbersome

to achieve accurate or even visually attractive simulations. Most existing simulators rely

on a triangle mesh cloth discretization, which greatly limits convergence properties and also

requires a conversion process since cloth models are usually created as smooth subdivision

or NURBS surfaces. We derive and implement a cloth simulation scheme which discretizes

the Kirchhoff-Love shell kinematics using subdivision surfaces, thus enabling isogeometric

simulation for applications such as animated movies while maintaining strong convergence

properties. Arguably a more important difficulty lies in choosing an appropriate constitutive

model together with the attendant material parameters. For graphics applications, this is

typically accomplished by trial-and-error, which is time consuming and inconsistent. We

address the problem by presenting a versatile nonlinear constitutive law together with a

data-driven technique which obtains all necessary parameters based on experimental data

from commercially available test procedures. The parameter fitting process benefits from the

accuracy of the subdivision surface cloth model, but the model with its final fitted parameters

is also adapted for the triangle mesh discretization to enable easier adoption.

1.1 Subdivision surface based cloth simulation

Chapter Two of the thesis provides a detailed derivation and implementation guide for thin

shell simulation based on the Kirchhoff-Love kinematic assumptions together with an arbi-
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trary orthotropic hyperelastic energy.

Most physics-based cloth simulation techniques can be derived from the Kirchhoff-Love

thin shell equations with varying levels of approximation accuracy [GGR06, Zor05, ZPA17].

We state the Kirchhoff-Love kinematics in §2.1; then in §2.2 and §2.3 we apply the Kirchhoff-

Love theory to a general hyperelastic material to derive the implied PDE in weak and strong

forms. However, direct discretization of the resulting weak form PDE requires a finite element

basis which is at least H2-smooth.

Historically, the H2 regularity requirement is a key obstacle for finite element approaches,

and is not easily resolved by for example storing additional positions and derivatives per el-

ement [COS00]. Instead, typical simulation techniques perform a series of approximation

steps to enable simulation using triangle mesh finite elements, but in the process, conver-

gence rate is greatly reduced or sacrificed entirely. Instead, we introduce in §2.4 a conforming

finite element method using Catmull-Clark subdivision surfaces to satisfy the H2 regularity

requirement and preserve convergence behavior. The use of Catmull-Clark surfaces consti-

tutes a particular advantage for application in the animated movie industry, where subdi-

vision surfaces are the de facto standard for building and rendering surfaces. Use of the

same geometry for simulation is termed isogeometric analysis ([HCB05]) and saves several

geometry conversion steps.

Several subtle theoretical details must be addressed to obtain an effective simulator. It is

necessary to choose an appropriate integral quadrature rule (§2.5), and the non-interpolating

nature of the subdivision surface finite elements necessitates special care in enforcement of

Dirichlet boundary conditions (§2.6). To enable simulation of large time steps, in §2.7 we ap-

ply backward Euler to achieve implicit time integration, together with a minimization solver

formulation which improves efficiency and robustness despite the ill-conditioning commonly

present in cloth problems. The poor conditioning means that both accuracy and efficiency

are key concerns when selecting a linear solver; that choice is analyzed in §2.8.

Many existing H2 discretizations of the Kirchhoff-Love theory incorporate a simplified

constitutive model directly into their implementations [COS00, CO01, Gre03, WHP11].

2



However, we provide a simulation framework which allows relatively easy plug-and-play

modification of the constitutive model. This is achieved by constructing the hyperelastic

energy using a multi-layer chain rule, in which only the top layer must be reimplemented for

each new energy. The necessary differentiation formulas are obtained in §2.9 and §2.10, and

§2.11 provides a detailed implementation guide for the energy computation.

Finally, Chapter Two of the thesis concludes in §2.12 with a convergence study. The

convergence under refinement property of our implementation is confirmed in a variety of

norms and for several tests.

1.2 Data driven modeling for woven materials

In Chapter Three of the thesis we address the data-driven cloth modeling problem.

For cloth simulation in engineering and also for e-commerce applications such as virtual

try-on, predictive power is of paramount significance. By contrast, absolute accuracy is

typically a lower priority in entertainment. For graphics applications, it is usually up to an

artist to come up with a reasonable set of simulation parameters. Unfortunately, different

artists often end up with different parameters for the same materials and since the approach

is based on trial-and-error it can be difficult to reach satisfactory results. The desire for

easier workflows when setting up simulations and also higher accuracy has motivated many

researchers to look for experimental ways to determine simulation parameters. The appeal

of such data-driven approaches is clear as it potentially allows for the creation of libraries of

material parameters which can be used repeatedly and augmented as necessary.

In order for a data-driven approach to work, multiple components must be in place. First,

a set of experiments must be designed which exercise all important deformation modes of the

material response. From a practical point of view these experiments should be reproducible

and since most end-users of cloth simulation are not experts in material testing, it is desirable

that the tests are commercially available through a service bureau. Second, a sufficiently

versatile, accurate and preferably parsimonious cloth model must be established. Finally, a

3



robust fitting method needs to be devised to fit the model parameters to the experimentally

obtained data. In this dissertation we endeavor to provide all these components.

Much existing work related to characterization of fabrics is based on the Kawabata sys-

tem, [Kaw80]. However, these systems can be hard to find and are quite expensive. A more

recent system, called FAST for “Fabric Assurance by Simple Testing”, is much cheaper but

limited to small strain deformations, [Min95]. In the graphics literature alternate methods

have been proposed, but most of these require nonstandard equipment [WOR11, MBT12].

The experimental protocol we propose, (§3.1), is based on existing ASTM standards1 along

with extensions which can be implemented using the same instruments as for the standard

tests.

There is a plethora of different types of fabrics including knitted fabrics, woven fabrics,

and a variety of specialty fabrics such as lace, 3D fabrics, and non-wovens. A single model

is unlikely to work well for all these different types of fabric; thus this work will focus

on woven fabrics. In order to fit a wide range of woven materials while minimizing mesh

dependent behavior, a continuum assumption is used in the mechanical model. Since real

clothing typically undergoes large deformations including large strains (especially in the

shear component), it is essential to use a fully nonlinear model. To this end we propose a

generalized orthotropic model characterized by a small number of parameters (§3.2). The

orthotropy reflects the basic symmetry present in most woven fabrics, and by introducing

nonlinearity in a way akin to Ogden’s constitutive model we are able to represent highly

nonlinear behavior using a single model for the entire strain regime.

Data fitting is conceptually simple, but in practice fraught with peril. By using a fully

implicit method for quasistatic simulation and by leveraging an infinitely smooth constitu-

tive model, we are able to provide exact derivatives with respect to the model parameters in

our optimization method based on the Broyden-Fletcher-Goldfarb-Shanno method (BFGS).

Combined with good initial guesses based on bootstrap estimates this allows us to circum-

vent some of the data fitting challenges experienced in previous methods. We present our
1Corresponding ISO standards also exist.
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data fitting methodology in §3.3, §3.4, and §3.5. All of this is based on the Catmull-Clark

subdivision finite element (FEM) discretization of the Kirchhoff-Love thin shell equations.

Although the Kirchhoff-Love thin shell model is rather complex, its continuum basis is es-

sential for providing parameters that depend minimally on mesh resolution and associated

discrete anisotropy. However, §3.2.4 has established that the Kirchhoff-Love assumption, as

well as the subdivision basis for FEM, while useful for the fitting process, are not necessary

in practical simulation; in particular the constitutive model can be used with simple linear

strain triangles and commonly used graphics approaches for bending, e.g. [BMF03, GHD03].

1.3 Related Work

1.3.1 Subdivision surface based cloth simulation

Cloth simulation is a vast topic in both graphics and engineering. Here we discuss just some

of the work most related to ours. Recent work has proposed yarn-level simulations as a

way to achieve accurate and very detailed results [KJM08, CLM14]. These methods can

create beautiful details, but require millions if not billions of degrees of freedom to represent

typical garments. By adopting a continuum mechanics approach we aim to capture the cloth

behavior at a tiny fraction of this cost. A middle-ground between the two approaches is the

mesostructurally-based continuum model presented in [KJS05]. This can capture yarn-level

effects, but consequently also requires experimental data that characterizes the fabric at that

level.

The method presented here is an example of “isogeometric analysis” (IGA), where subdi-

vision surfaces are used to represent both the geometry (of cloth) and the basis functions for

finite element analysis. This concept has been credited to [HCB05], but subdivision finite

elements were originally introduced by [COS00], where they were applied to linear elastic

Kirchhoff-Love thin shells. The method was later extended to finite strain analysis in [CO01],

where they considered a Neo-Hookean material but used explicit integration for the temporal

evolution. Both [COS00] and [CO01] are based on the Loop subdivision scheme. In graphics,

5



[TWS06] combined the subdivision finite elements with a co-rotational linear elasticity model

and introduced implicit time integration using the backward Euler scheme. More recently,

[LBC12] considered shear deformable shells, but limited their discussion to quasistatic prob-

lems. The work by [VSJ13] investigates growth problems using the St. Venant-Kirchhoff

material model along with an explicit Newmark predictor-corrector integration scheme. All

of this prior work is based on Loop subdivision on triangle meshes.

[WHP11] considers the Catmull-Clark subdivision scheme with linear elasticity as an

alternative to Loop subdivision, with a variety of applications that do not involve dynamics.

We extend that work through the use of a fully implicit time integration scheme and a

nonlinear constitutive model. A similar extension based on B-splines has been presented by

[KHW15].

In this work we limit ourselves to elastic deformations, but it is well-known that cloth

exhibits significant amounts of hysteresis due to internal friction [Wil10, MTB13]. Addition-

ally we do not consider rate-dependent behavior as they do in [RCY07], but we believe that

leveraging these ideas is an important area of future work.

1.3.2 Data driven modeling for woven materials

The estimation of clothing simulation parameters from real fabric deformation data has

been investigated in recent years. Lubile and Magnenat-Thalmann [LM08] compared the

Kawabata system (KES) to the FAST system but found that they both have limitations.

More recently [Pow13] compared results from the FAST system to a newer Fabric Testing

Kit (FTK) from Browzwear, but still found limitations. Despite these limitations the work

by [MLV07] uses the stress-strain curves from KES to drive an “accurate particle system”.

This approach was further elaborated upon in [VMF09]. Bhat et al [BTH03] developed an

optimization procedure for estimating clothing simulation parameters directly from video

data of moving fabrics. Beyond the already mentioned methods, existing methods from the

textile industry for testing the mechanical properties of fabric are surveyed in [WLD08].

6



A number of papers in graphics have proposed alternative and simple methods for mea-

suring fabric properties. Wang et al. [WOR11] propose a sequence of tensile measurements

using small loads (less than 15 N/m) for which they then fit a piecewise linear model. Miguel

et al. [MBT12] use a more complicated setup for capturing data which include more com-

plicated examples with shear buckling. However, they also primarily focus on the low strain

domain (typically less than 200 N/m). By comparison KES tests up to 500 N/m. While the

smallest strain regime is most important for typical cloth simulations, higher strains do occur

even in everyday use of garments and are therefore also important to consider. Examples of

higher strains occur especially near garment seams where parts of the fabric are physically

constrained.

The experimental data of Wang et al. [WOR11] is based on a sparse set of measurements,

and thus may not be suitable for fitting a more complex range of strain regimes. The

experiments of Miguel et al. [MBT12] rely on complex, hand-constructed machinery, which

requires careful manual labor by researchers. Our approach uses a wide range of experimental

data from the readily available ASTM standard tests, and we examine our experimental error

by repeating experiments with additional samples.

Similar to our approach, Miguel et al. [MMO16] construct a single hyperelastic energy

function for fabric. Unlike our approach they do not assume that cloth possesses orthotropic

symmetry but instead allow for a more general anisotropic form, which they then fit against

a subset of the data from [MBT12]. Other papers in graphics have considered orthotropic

hyperelastic energies with a focus on how to make it intuitive for an artist to design and

control orthotropic behavior, [LB14, XSZ15]. We believe this is complementary to our work

as the goal in animation is often plausibility rather than true reality.

1.4 Contributions

The specific contributions of this thesis may be summarized as follows:

● Detailed derivation a conforming finite element discretization of the Kirchhoff-Love

7



shell theory using Catmull-Clark subdivision surface finite elements.

● An implementation guide for a robust, convergent cloth simulation framework which

allows a variety of constitutive models to be simulated with minimal additional invest-

ment.

● Experimental procedures for measuring deformation response of woven materials using

readily available ASTM tests.

● A hyperelastic constitutive model that separates the large strain from small strain

behaviors in an intuitive way and thus allows for natural fitting to data.

● Efficient and accurate fitting procedures tailored to our experiment selection and model.

8
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CHAPTER 2

Subdivision Surface Based Cloth Simulation

Figure 2.1: Side view of a Kirchhoff-Love plate in flat rest configuration (left) and in a
deformed configuration (right). The midsurface is shown as a dashed line and three surface-
normal cross sections are marked in red, blue, and green before and after deformation. The
deformed cross sections are lines perpendicular to the midsurface with the same length as the
original segments.

2.1 Kirchhoff-Love kinematics

We model cloth as a deformable solid subject to kinematic constraints imposed by the

Kirchhoff-Love theory of thin shells. The Kirchhoff-Love assumptions fully determine a

3D cloth object’s position from a 2D midsurface by assuming that straight lines initially

perpendicular to the midsurface remain straight lines perpendicular to the midsurface and

retain their length during deformation. A visual representation of the kinematic constraints

is provided in Figure 2.1. As shown in [CL96], the Kirchhoff-Love model is asymptotically

in agreement with the unconstrained 3D solid mechanics as the shell thickness approaches

0.

In this work, we assume a constant thickness τ per cloth object. We represent the

deformed midsurface by a map x from a 2D parameter space ω to worldspace Ω. The

corresponding map describing the volumetric cloth object is denoted by r ∶ ωτ → Ωτ , where
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ω

Ω

Ω

x̄

x

ωτ

Ω
τ

Ωτ

r̄

r

φ

Figure 2.2: Visual summary of the 2D midsurface kinematics (left) and the solid kinematics
(right). The midsurface is shown in the 3D shells as a dashed line.

ωτ is the 3D parameter space, and Ωτ is the region of R3 occupied by the shell. The curvilinear

coordinates for a point in the shell are denoted by ξ = (ξ1, ξ2, ξ3), where superscripts indicate

contravariant indices (not to be confused with exponentiation). Given these conventions, the

Kirchhoff-Love assumptions directly imply

r(ξ1, ξ2, ξ3) = x(ξ1, ξ2) + ξ3a3(ξ1, ξ2) , − τ2 ≤ ξ3 ≤ τ
2 , (2.1)

where a3(ξ1, ξ2) is the unit normal to the deformed midsurface. In the following, we use

Greek letters for indices in {1,2}, lowercase Latin letters for indices in {1,2,3}, and uppercase

Latin letters for indices that range from 1 to n, where n > 2. Furthermore we use the

comma notation to denote partial derivatives with respect to ξα such that x,α = ∂x/∂ξα. For

convenience, let aα = x,α denote the covariant basis vectors of the midsurface or, equivalently,

the columns of the midsurface mapping Jacobian. We can then write the surface normal as

a3 =
a1 × a2

∥a1 × a2∥
.

Also, let gi denote the covariant curvilinear basis vectors ∂r
∂ξi

, and use gi to denote the
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corresponding contravariant basis vectors; thus, gi ⋅ gj = δji and

(g1 g2 g3) = ∂r

∂ξ
= (a1 a2 0) + (ξ3a3,1 ξ3a3,2 a3) (2.2)

Finally, define G = ∂r
∂ξ

T ∂r
∂ξ as the covariant metric tensor with entries gij = gi ⋅gj. Throughout

this document, we use overbar notation for quantities related to the undeformed configu-

ration. Thus, for example, x̄ ∶ ω → Ω denotes the undeformed midsurface map; analogous

definitions are made for r̄, ā3, and so on. Figure 2.2 provides a reference for the definitions

of the various maps and spaces.

2.1.1 Deformation gradient and strain tensor

The deformation function from the undeformed shell to the deformed shell is given by

φ(x̄) = r(r̄−1(x̄))

and the deformation gradient F ∶ Ω→ R3×3 is the Jacobian of φ(x̄) :

F = ∂φ
∂x̄

= ∂r
∂ξ

(∂r̄
∂ξ

)
−1

= gi ⊗ ḡi. (2.3)

Note that here, as well as in the following, there is an implied summation over repeated

indices. Given the deformation gradient, the Green-Lagrange strain is

E = 1
2
(FTF − I)

= 1
2
((ḡi ⊗ gi)(gj ⊗ ḡj) − I)

= 1
2
(gijḡi ⊗ ḡj − I) (2.4)
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The entries gij satisfy

gαβ = (aα + ξ3a3,α)T (aβ + ξ3a3,β)

gα3 = 0 (2.5)

g33 = 1,

in which gα3 has been simplified using aα ⋅ a3 = a3,α ⋅ a3 = 0. By using

a3,α =
1

∥a1 × a2∥
(I − a3a3

T ) (a1,α × a2 + a1 × a2,α) , (2.6)

we obtain gαβ from the inputs a1, a2, a1,1, a1,2, a2,2, ξ3. The analogous formula for ā3,α

yields ḡj and ultimately ḡj from ā1, ā2, ā1,1, ā1,2, ā2,2, ξ3. We define the column vector

z = z (ξ) = z (ξ;x) in R15 as the concatenation of z1 = a1, z2 = a2, z3 = a1,1, z4 = a1,2, and

z5 = a2,2; that is,

z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1

a2

a1,1

a1,2

a2,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.7)

In the following, it will be convenient to use the notation E = E (z, ξ3), leaving implicit the

dependence on the rest configuration.

2.2 Hyperelasticity

In this work we model cloth objects as hyperelastic solids. That is, we assume the existence

of a strain energy density ψ = ψE(E) such that stress within the material is given by S = ∂ψE

∂E .

This implies the internal forces are conservative, since ψ can be computed from E and thus
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depends on the undeformed and deformed configurations but not on the specific deformation

path. The notation ψE(E) is meant to emphasize that this is ψ viewed as a function of E;

the same energy density ψ could of course also be viewed as a function ψF(F), or in terms of

various other quantities which will be defined in the following analysis. The stress tensor S is

the second Piola-Kirchhoff stress, which maps material configuration area weighted normal

vectors to material configuration forces. S is related to the Cauchy stress tensor σ via the

transformation

S = det(F)F−1σF−T

and to the first Piola-Kirchhoff stress via

S = F−1P.

2.2.1 Orthotropy

A hyperelastic material is orthotropic provided that there exists a curvilinear orthonormal

basis in the undeformed space such that the elastic potential is invariant under replacement

of E with QTEQ for any element Q of the orthotropic symmetry group. Specifically, this

means that it is invariant under reflection across any of the given basis vectors. The thread

directions in woven cloth create a close approximation to orthotropic symmetry, albeit with

slight discrepancies introduced by, for example, asymmetric weave patterns such as satins and

twills. Thus we describe woven cloth by orthotropic models with orthotropy basis specified

by the direction matrix D = [d1,d2,d3], where d1, d2, and d3 correspond to the (normalized)

material warp, weft, and normal directions, respectively.

Let Lj be the reflection matrix I − 2djd
T
j ; then, to demonstrate orthotropic symmetry,

we must establish that F and FLj produce the same energy density ψ for any F and for each

j. That is, we must have ψE(E) = ψE(LjELj).

To construct such an energy density, define the reduced strain Ẽ as Ẽ = DTED. By
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definition of the deformation gradient, Fdα lies in the deformed configuration tangent plane,

while the Kirchhoff-Love assumptions imply Fd3 is a unit vector in the deformed configura-

tion’s normal direction. Thus, dTαFTFd3 = 0 and dT3 FTFd3 = 1, so Ẽ has the following block

structure:

Ẽ =

⎛
⎜⎜⎜⎜⎜
⎝

Ẽ11 Ẽ12 0

Ẽ12 Ẽ22 0

0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

.

As a result, choosing an orthotropic energy density ψE(E) just amounts to choosing an

orthotropic energy density ψẼ(Ẽ11, Ẽ12, Ẽ22).

In fact, we claim that the quantities Ẽαα = dTαEdα and Ẽ2
12 = (dT1 Ed2)2 are invariant

under the replacement E→ LjELj for any j. Indeed,

dTαLjELjdα =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−dα)TE(−dα) if α = j

dTαEdα if α /= j

= dTαEdα

and

(dT1 LjELjd2)
2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−dT1 Ed2)
2

if 1 ≤ j ≤ 2

(dT1 Ed2)
2

if j = 3

= (dT1 Ed2)
2
.

From this it follows that any energy density ψ which can be written in the form

ψ = ψẼ(Ẽ11, Ẽ12, Ẽ22),

ψẼ independent of sign of Ẽ12

(2.8)
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is invariant under all orthotropic symmetries. Further, any function of Ẽ which does depend

on the sign of Ẽ12 cannot possibly be orthotropy-invariant, since applying L1 on both sides

will always reverse the sign of Ẽ12 while leaving Ẽαα unaffected. Thus we conclude that

Equation (2.8) provides a fully general framework for defining orthotropic energy densities on

the Kirchhoff-Love surface. In the language of the invariant classification literature [WP64],

one says that {Ẽ11, ∣Ẽ12∣, Ẽ22} forms a function basis for the space of all orthotropic functions

of Ẽ.

In the following PDE derivation and implementation details we will work with a general

function ψẼ; as a result, the addition of new models to be simulated will require only routines

for evaluating ψẼ and its first two derivatives with respect to entries of Ẽ. A specific choice of

ψẼ will be recommended in §3.2 as part of a data driven modeling approach. However, for the

sake of example we also provide the energy density functions necessary for implementation

of two simpler material models. For the orthotropic St. Venant-Kirchhoff model [BIE00],

the energy density is stated in terms of scalar model parameters a11, a12, a22, and G12:

ψẼ
STV K(Ẽ11, Ẽ12, Ẽ22) =

a11

2
Ẽ2

11 + a12Ẽ11Ẽ22 +
a22

2
Ẽ2

22 +G12Ẽ
2
12. (2.9)

The compressible Mooney-Rivlin model ([Cia88]) is isotropic, and is often used to simulate

rubbery materials. In terms of a reduced Cauchy-Green deformation tensor

C̃ =
⎛
⎜
⎝

1 + 2Ẽ11 2Ẽ12

2Ẽ12 1 + 2Ẽ22

⎞
⎟
⎠

= top-left 2 × 2 block of DTFTFD

together with scalar material parameters c1, c2, and D, the Mooney-Rivlin energy density is

ψẼ
MR(Ẽ11, Ẽ12, Ẽ22) = c1 [tr(C̃) − 2] + c2

⎡⎢⎢⎢⎢⎣

tr(C̃)2 − tr(C̃2)
2

− 2

⎤⎥⎥⎥⎥⎦
+D1 [det(C̃) − 1]2 −D2 log(det(C̃)).

A slight variation of the Mooney-Rivlin model was used with subdivision surface shells in
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[CO01].

2.2.2 Interpretation of orthotropic invariants

To make Equation (2.8) more intuitive, we analyze the intuitive meaning of each entry of

Ẽ by explicitly computing Ẽ for some basic deformation modes. First, suppose the cloth

object undergoes a pure stretch along warp direction by a multiple of c. Then we have

F = cd1 ⊗ d1 + d2 ⊗ d2 + d3 ⊗ d3

E = (c2 − 1)d1 ⊗ d1

Ẽ =
⎛
⎜
⎝

c2 − 1 0

0 0

⎞
⎟
⎠
,

so we view Ẽ11 as describing the degree of warp stretch in a given deformation state. An

analogous computation shows that Ẽ22 describes the weft stretch. Finally, consider a pure

shear by angle θ with respect to warp and weft directions; that is, d1 ↦ cos(θ)d1 + sin(θ)d2

Figure 2.3: Side view of a Kirchhoff-Love plate with flat rest configuration (left), show-
ing the midsurface as a dashed line. When the midsurface experiences a length-preserving
deformation (right), nearby off-midsurface points undergo stretching (green) or compression
(red).
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and d2 ↦ sin(θ)d1 + cos(θ)d2. This implies

F = cos(θ)d1 ⊗ d1 + sin(θ)d1 ⊗ d2 + sin(θ)d2 ⊗ d1 + cos(θ)d2 ⊗ d2 + d3 ⊗ d3

E = sin(2θ)
2

(d1 ⊗ d2 + d2 ⊗ d1)

Ẽ =
⎛
⎜
⎝

0 sin(2θ)
2

sin(2θ)
2 0

⎞
⎟
⎠
,

so our third orthotropic invariant, Ẽ2
12, can be viewed as describing the degree of shearing

present in the current deformation.

All of the deformations considered in this section thus far are purely in-plane. In fact,

due to the sparsity pattern in E forced by the kinematic constraints of Kirchhoff-Love, even

bending deformations are penalized in the strain tensor via these same three deformation

modes. See Figure 2.3 for a visual explanation. Essentially, when the midsurface undergoes

a pure bending deformation, the Kirchhoff-Love kinematic constraints dictate that nearby

off-midsurface points are stretched or compressed. Thus a constitutive model written in

terms of the 2D reduced strain Ẽ can still respond to out-of-plane deformations.

2.3 Governing PDE

2.3.1 Mass density and kinetic energy

To derive a PDE we need a concept of mass density. Let ρ̄ ∶ Ωτ → R be initial mass density

defined on the 3D reference configuration, and let ρ ∶ Ωτ → R be the current mass density

in the deformed cloth object. Thus for example the mass of an arbitrary rest configuration

subset B ⊆ Ω
τ
is

mass(B) = ∫
B
ρ̄(p̄)dp̄.
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Conservation of mass requires

∫
B
ρ̄(p̄)dp̄ = ∫

φ(B)
ρ(p)dp,

and after change of variables and a limiting argument, we obtain the pointwise condition

ρ̄(p̄) = ρ(φ(p̄))det(F(p̄)).

Let J̄ denote the Jacobian determinant ∣∂r̄∂ξ ∣ and define ρ̂ ∶ ωτ → R to be the pullback of

the initial rest configuration density; that is, ρ̂ = ρ̄ ○ r̄. Then the total kinetic energy of the

surface is

1

2 ∫Ωτ
ρ(p)∥φ̇(φ−1(p))∥2dp = 1

2 ∫Ω
τ
ρ(φ(p̄))∥φ̇(p̄)∥2 det(F(p̄))dp̄

= 1

2 ∫Ω
τ
ρ̄(p̄)∥φ̇(p̄)∥2dp̄ (2.10)

= 1

2 ∫ωτ ρ̂(ξ)∥ṙ(ξ)∥
2J̄(ξ)dξ. (2.11)

2.3.2 Weak form derivation

Because we model cloth as a 3D manifold, the governing equations could be derived from

standard continuum mechanics laws. Given a constant gravity field g ∈ R3, Newton’s second

law can be expressed from a Lagrangian viewpoint as

ρ̄(p̄)φ̈(p̄) = ∇p̄P(p̄) + ρ̄(p̄)g

which could then be integrated against test functions to produce a weak form. However,

the PDE derivation and discretization for this problem are simpler when starting from La-

grangian mechanics. The two approaches are of course mathematically equivalent, so we are

free to choose the easier route.

The Kirchhoff-Love assumptions fully dictate the cloth motion based on the midsurface
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map x, so we must derive a PDE for evolution of x. Assume x ∈ Hk(ω → R3), where the

differentation degree k of the Sobolev space is not yet specified; the appropriate k will be

determined later based on the weak form PDE. Define the functional T = T (x, ẋ) to be

the total kinetic energy for the 3D surface, and the functional V = V (x) to be the total

potential energy. For a functional F mapping from Hk(ω → R3) to R, we let ∂F
∂x denote

the variational derivative; that is, for any x ∈ Hk(ω → R3), the function ∂F
∂x (x) ∶ ω → R3 is

almost everywhere defined and satisfies

∫
ω

∂F

∂x
(x)vdξ1dξ2 = ∂F (x + εv)

∂ε

RRRRRRRRRRRε=0

for an arbitrary test function v ∈Hk(ω → R3).

The Lagrangian functional L = L(x, ẋ) is defined as the difference L = T − V between

total kinetic energy T and total potential energy V . The governing equations are then the

Euler-Lagrange equations

∂

∂t
(∂L
∂ẋ

) = ∂L
∂x

and the equivalent weak form is

∫
ω

∂

∂t
(∂L
∂ẋ

)vdξ1dξ2 = ∫
ω
(∂L
∂x

)vdξ1dξ2, (2.12)

where v again denotes an arbitrary test function in Hk(ω → R3).

By substituting Equation (2.1) into Equation (2.11), we obtain the kinetic energy func-

tional T in integral form

T (x, ẋ) = 1

2 ∫ωτ ρ̂(ξ)∥ẋ(ξ
1, ξ2) + ξ3ȧ3(ξ1, ξ2)∥2J̄(ξ)dξ. (2.13)

The term ξ3ȧ3(ξ1, ξ2) introduces complex dependencies on both x and ẋ, but the multiplier

ξ3 makes this term small in most contexts. In our analysis we simply discard this term,
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following the example of [CO01, KHW15]. After this simplification, the resulting variational

derivatives satisfy

∫
ω
(∂T
∂x

)vdξ1dξ2 = 0

∫
ω

∂

∂t
(∂T
∂ẋ

)vdξ1dξ2 = ∫
ωτ
ρ̂ẍTvJ̄dξ.

(2.14)

Given a general hyperelastic energy density function ψE(E) and a constant gravity field

g ∈ R3, define ψz(z) = ψz(z1,z2,z3,z4,z5) to equal ψ(E(z)), where z and zj are defined as

in Equation (2.7). Then the potential energy is

V (x) = ∫
Ω
τ
ψz(z(r̄−1(p̄))) + ρ̄(p̄)gTφ(p̄)dp̄

= ∫
ωτ

(ψz(z(ξ)) + ρ̂(ξ)gTr(ξ)) J̄(ξ)dξ

= ∫
ωτ

(ψz(z(ξ;x)) + ρ̂(ξ)gTr(ξ;x)) J̄(ξ)dξ.

The functional derivative with respect to x satisfies

∫
ω

∂V

∂x
(x)vdξ1dξ2 = ∂

∂ε
V (x + εv)

RRRRRRRRRRRε=0

= ∂

∂ε ∫ωτ (ψ
z(z(ξ;x + εv)) + ρ̂(ξ)gTr(ξ;x + εv)) J̄(ξ)dξ

RRRRRRRRRRRε=0

= ∂

∂ε ∫ωτ (ψ
z (x,1 + εv,1,x,2 + εv,2,x,11 + εv,11,x,12 + εv,12,x,22 + εv,22)

+ ρ̂gT (x + εv + ξ3a3(x + εv)) )J̄dξ
RRRRRRRRRRRε=0

= ∫
ωτ

( ∂ψ
z

∂x,1
v,1 +

∂ψz

∂x,2
v,2 +

∂ψz

∂x,11

v,11 +
∂ψz

∂x,12

v,12 +
∂ψz

∂x,22

v,22

+ρ̂gT (v + ξ3∂a3

∂x
v)) J̄dξ.

In analogy to our simplifying assumption in the kinetic energy, we discard the term ξ3 ∂a3

∂x v
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from the final integrand, yielding

∫
ω

∂V

∂x
vdξ1dξ2 = ∫

ωτ
( ∂ψ

z

∂x,1
v,1 +

∂ψz

∂x,2
v,2 +

∂ψz

∂x,11

v,11

+ ∂ψz

∂x,12

v,12 +
∂ψz

∂x,22

v,22 + ρ̂gTv) J̄dξ.
(2.15)

Since V has no dependence on ẋ,

∫
ω

∂

∂t
(∂V
∂ẋ

)vdξ1dξ2 = 0. (2.16)

Plugging the variational derivatives from Equation (2.14), Equation (2.15), and Equa-

tion (2.16) into the weak formulation of the Euler-Lagrange equations in Equation (2.12)

then gives the weak form PDE for our system:

∫
ωτ
ρ̂ẍTvJ̄dξ = −∫

ωτ
( ∂ψ

z

∂x,1
v,1 +

∂ψz

∂x,2
v,2 +

∂ψz

∂x,11

v,11

+ ∂ψz

∂x,12

v,12 +
∂ψz

∂x,22

v,22 + ρ̂gTv) J̄dξ
(2.17)

Recall we originally assumed x,v ∈ Hk(ω → R3) for an unspecified k. The explicit weak

form PDE above requires weak derivatives of x and v up to second order, so the minimum

regularity requirement to make the weak form well-defined is k = 2.

2.3.3 Strong form and boundary terms

To derive the strong form PDE, the weak form terms are integrated by parts to pull spatial

derivatives off of the test function v. We demonstrate the computation for one of the weak

form terms, using n = (n1, n2, n3) to denote the outward normal on the boundary ∂ωτ and
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dξS to denote the area element for boundary integrals over ∂ωτ :

∫
ωτ

∂ψz

∂x,11

v,11J̄dξ = ∫
ωτ
∇( ∂ψz

∂x,11

J̄v,1e1) − ( ∂ψz

∂x,11

J̄)
,1

v,1dξ

= ∫
∂ωτ

n1
∂ψz

∂x,11

J̄v,1dξS − ∫
ωτ

⎡⎢⎢⎢⎢⎣
∇

⎛
⎝
( ∂ψz

∂x,11

J̄)
,1

ve1

⎞
⎠
+ ( ∂ψz

∂x,11

J̄)
,11

v

⎤⎥⎥⎥⎥⎦
dξ

= ∫
∂ωτ

n1

⎡⎢⎢⎢⎢⎣

∂ψz

∂x,11

J̄v,1 − ( ∂ψz

∂x,11

J̄)
,1

v

⎤⎥⎥⎥⎥⎦
dξS − ∫

ωτ
( ∂ψz

∂x,11

J̄)
,11

vdξ

This process is repeated for the other terms in Equation (2.17), with a given weak form term

requiring one application of the divergence theorem per spatial derivative initially present

on v. The strong form PDE is then obtained by ignoring the boundary terms (integrals over

∂ωτ ) to get an equation of the form ∫ωτ ζ
Tvdξ = 0, followed by replacing that weak criterion

with the pointwise version ζ = 0. The resulting strong form PDE is

ρ̂ẍJ̄ = − ρ̂gJ̄ + ( ∂ψ
z

∂x,1
J̄)

,1

+ ( ∂ψ
z

∂x,2
J̄)

,2

− ( ∂ψz

∂x,11

J̄)
,11

− ( ∂ψz

∂x,12

J̄)
,12

− ( ∂ψz

∂x,22

J̄)
,22

(2.18)

As seen in our sample computation, the integration by parts produces several boundary

terms on the right-hand side of the integral version of Equation (2.18). Let θ be an arbitrary

scalar. Then the boundary terms are:

∫
∂ωτ

⎧⎪⎪⎨⎪⎪⎩
n1

⎡⎢⎢⎢⎢⎣

∂ψz

∂x,1
J̄ − ( ∂ψz

∂x,11

J̄)
,1

− θ ( ∂ψz

∂x,12

J̄)
,2

⎤⎥⎥⎥⎥⎦
v

+n2

⎡⎢⎢⎢⎢⎣

∂ψz

∂x,2
J̄ − ( ∂ψz

∂x,22

J̄)
,2

− (1 − θ)( ∂ψz

∂x,12

J̄)
,1

⎤⎥⎥⎥⎥⎦
v

+[n1
∂ψz

∂x,11

J̄ + n2θ
∂ψz

∂x,12

J̄]v,1

+[n2
∂ψz

∂x,22

J̄ + n1(1 − θ)
∂ψz

∂x,12

J̄]v,2
⎫⎪⎪⎬⎪⎪⎭
dξ

(2.19)
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na

nb

nc

ωτ

Figure 2.4: Decomposition of the parameter space boundary ∂ωτ into components ω×{−τ, τ}
(blue) and ∂ω × [−τ, τ] (yellow). Normal vectors such as na which originate on the blue
section are vertical; normal vectors such as nb and nc which originate on the yellow section
have no vertical component.

The arbitrary scalar θ comes from the weak form term ∫ωτ
∂ψz

∂x,12
v,12J̄dξ, which can be inte-

grated by parts in two distinct ways depending on the order in which the derivatives with

respect to ξ1 and ξ2 are removed from v,12. The two approaches give nominally different

formulas, but of course either option will give the same result, as will any linear combination

of the two methods with coefficients summing to 1.

The boundary ∂ωτ may be broken into intuitively distinct parts via

∂ωτ = (∂ω × [−τ, τ]) ∪ (ω × {−τ, τ}) ;

as shown in Figure 2.4. At any point on the “top and bottom” boundary components ω ×

{−τ, τ}, the outward normal vector will be n = (0,0,±1), which means the integrand of

Equation (2.19) will be 0. Thus the only real contribution to the boundary terms comes

from the domain ∂ω × [−τ, τ].

In practice, we set the Neumann boundary conditions equal to 0 and impose any desired

constraints by Dirichlet means instead. We implement three distinct types of boundary

conditions. A clamped boundary has specified positions and normals for x; a supported

boundary has specified positions only; and a free boundary is not subject to any Dirichlet
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Figure 2.5: A coarse mesh (far left) is visibly smoothed with each iteration of the Catmull-
Clark subdivision scheme and quickly converges to the H2-regular limit surface (far right).

constraint.

2.4 Spatial discretization

We spatially discretize the weak form PDE in Equation (2.17) using the finite element method

(FEM). However, the need for H2 regularity precludes the use of a typical piecewise-linear

finite element basis, and even tracking additional node positions and derivatives on each

element does not easily resolve the problem [COS00]. Instead we choose a more specialized

surface representation.

2.4.1 Catmull-Clark subdivision surfaces

This project represents cloth objects’ Kirchhoff-Love midsurfaces as Catmull-Clark subdi-

vision surfaces. [CC78] and [Sta98] provide useful references on Catmull-Clark subdivision

surfaces; for completeness, we restate the relevant properties here. The Catmull-Clark sub-

division scheme amounts to a set of rules which take as input an arbitrary polygonal mesh

and return a denser, subdivided mesh. Limiting application of the subdivision process yields
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a smooth surface; this process is demonstrated in Figure 2.5. The original polygonal mesh

is referred to as the ‘control cage’ or ‘control mesh’ corresponding to the final smooth sub-

division surface. The output mesh from any Catmull-Clark subdivision step consists of only

quadrilateral faces, independent of the polygon types present in the original mesh. By re-

placing the control cage with its first subdivision if necessary, we assume without loss of

generality that all control cage faces are quadrilateral. Control cage vertices which have

degree 4 are called regular; vertices of any other degree are termed extraordinary. A control

cage face is termed regular if its one ring is topologically a 4 × 4 grid of vertices (and thus a

3 × 3 grid of quadrilateral faces). By the one ring of a face F , we mean the set of all faces

which border F together with the vertices and edges of all such faces.

For a given control mesh, denote the worldspace locations of mesh vertices by row vectors

qI = (qI1,qI2,qI3) ∈ R3, where I = 1, . . . , nv and nv is the number of control vertices. Then

there exists a parameter space ω and functions NI ∈ H2(ω → [0,∞)) corresponding to each

control vertex such that the final subdivision surface can be represented as

x(q; ξ1, ξ2) = qTI NI(ξ1, ξ2), xj(q; ξ1, ξ2) = qIjNI(ξ1, ξ2). (2.20)

Here summation is implied on the repeated index I. The functions NI additionally satisfy

∑
I

NI(ξ1, ξ2) = 1

for every (ξ1, ξ2) ∈ ω. Equation (2.20) means that {NIej}j=1,2,3;I=1,...,nv forms an appropriate

finite element basis for spatial discretization of Equation (2.17), with the control vertices

qI as the corresponding generalized coordinates. However, the finite element basis is not

interpolating, i.e. the surface need not pass through any of the worldspace points qI . This

represents a departure from piecewise linear finite elements on triangle mesh surfaces, where

the qI would simply be the worldspace surface vertices. The set {qIj} can be thought of as a

nv × 3 matrix of control point locations. With a slight abuse of notation, we use q to denote

the corresponding column vector of all the control vertices. With x discretized according to
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Figure 2.6: The Catmull-Clark subdivision scheme is demonstrated for a highly irregular
initial mesh (far left). Green and red colored dots mark the control cage vertices whose
positions affect evolution of the same-colored patch. Note the difference in behavior between
a patch beginning in a regular region (green) compared to an irregular region (red).

Equation (2.20), we can compute the energy density ψ as a function ψq(q;ξ) = ψz(z(q;ξ)).

The dependence on ξ will sometimes be left implicit, leading to the notation ψq(q).

Some additional properties of Catmull-Clark surfaces will prove useful for intuition and

for designing an efficient implementation. The final subdivision surface Ω admits a natural

separation into patches homeomorphic to rectangles which correspond one-to-one with the

non-boundary faces of the control cage. The surface patch corresponding to a given control

cage face depends only on that face’s one ring in the control cage. As a result, for any fixed

(ξ1, ξ2) ∈ ω, only a sparse subset of the finite element basis values NI(ξ1, ξ2) will be nonzero.

For example, if all nearby vertices are regular, there will be exactly 16 nonzero values NI .

Figure 2.6 provides examples of the stencil of control vertices which affect a given limit

surface patch. If a control cage face’s one ring is topologically a 4 × 4 rectangular grid, then

the corresponding section of x simply reduces to a uniform bicubic B-spline. Thus Catmull-

Clark subdivision surfaces can be viewed as a direct generalization of bicubic B-splines to

allow more complex topologies.

For the purposes of this project, any choice of subdivision scheme could be applied as

long as it guarantees sufficient smoothness. For example, the triangle-based Loop subdivi-

sion scheme could be used instead of Catmull-Clark [CO01]. NURBS surfaces [PT12] are
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another generalization of B-splines which provide a viable alternative surface representation

for finite element methods [SFH08], and have the advantage of easy generalization to basis

functions using even higher order polynomials if desired. However, NURBS patches can only

describe surfaces which are topologically either spheres, cylinders, or tori. It is possible to

achieve arbitrary surface topologies by stitching together several NURBS patches using ap-

propriate constraints, but the stitching process introduces significant added complexity. By

comparison, a single subdivision surface is sufficient to achieve any desired surface topology.

When considering application in the animated film industry, simulation with Catmull-

Clark surfaces provides the useful isogeometric property ([HCB05]). Cloth objects are typ-

ically designed and rendered as subdivision surfaces, so a simulator based on a different

discretization necessitates geometry conversion steps. On the other hand, in computer-

aided design (CAD), smooth surfaces are generally represented as NURBS objects, so for

CAD applications a NURBS-based simulator would be the isogeometric option. The present

research has been performed in association with Walt Disney Animation Studios, which par-

tially informed the decision to use Catmull-Clark surfaces over NURBS as the underlying

discretization.

2.4.2 Finite element discretization of the weak form PDE

We now substitute the discretized x from Equation (2.20) into the weak form of Equa-

tion (2.17) with v = NKej for arbitrary K and standard basis vectors ej ∈ R3. The substitu-

tion gives

∫
ωτ
ρ̂q̈TIjNINK J̄dξ = −∫

ωτ
( ∂ψ

z

∂x,1
ejNK,1 +

∂ψz

∂x,2
ejNK,2 +

∂ψz

∂x,11

ejNK,11

+ ∂ψz

∂x,12

ejNK,12 +
∂ψz

∂x,22

ejNK,22 + ρ̂gjNK) J̄dξ.
(2.21)

This equation can be further simplified. We chose x = qTI NI , so x,1 = qTI NI,1 and ∂x,1
∂qKj

=

NK,1ej. Using these together with analogous expressions for the other ξ derivatives, the
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right-hand side of Equation (2.21) can be rewritten as

∫
ωτ
ρ̂q̈TIjNINK J̄dξ = −∫

ωτ
( ∂ψ

z

∂x,1

∂x,1
∂qKj

+ ∂ψz

∂x,2

∂x,2
∂qKj

+ ∂ψz

∂x,11

∂x,11

∂qKj

+ ∂ψz

∂x,12

∂x,12

∂qKj
+ ∂ψz

∂x,22

∂x,22

∂qKj
+ ρ̂gjNK) J̄dξ,

which by the chain rule is simply

∫
ωτ
ρ̂q̈TIjNINK J̄dξ = −∫

ωτ
( ∂ψ

q

∂qKj
+ ρ̂gjNK) J̄dξ.

This weak form must hold for all choices of K and j. Gathering the resulting system of

equations and pulling out the exact mass matrix entries as a separate expression gives

M̃KI q̈I = −∫
ωτ

( ∂ψ
q

∂qK
+ ρ̂gTNK) J̄dξ

M̃KI = ∫
ωτ
ρ̂NINK J̄dξ.

(2.22)

This is the same mass matrix formula that arises in typical non-Kirchhoff-Love finite ele-

ment methods. However, we note that this simple form is due to the term we ignored in

Equation (2.13). Without that simplification, the “mass matrix” would be time-dependent

and the kinetic energy term would become overall much more costly in implementation.

2.5 Quadrature

Evaluating Equation (2.22) numerically using a quadrature rule with evaluation sites ξ(r) ∈ ωτ

and corresponding weights dξ(r) gives

MKI q̈I = fK(q), (2.23)
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where
MKI = ∑

r

ρ̂(r)N
(r)
I N

(r)
K J̄(r)dξ(r)

fK(q) = −∑
r

( ∂ψ
q

∂qK
(q;ξ(r)) + ρ̂(r)gTN (r)K ) J̄(r)dξ(r).

(2.24)

Let f(q) denote the column vector obtained by concatenating all vectors fK(q)T . We have

MKI q̈TI =MKI(
1 0 0
0 1 0
0 0 1

)q̈TI , so defining the global mass matrix M as the Kronecker product

M = {MKI}K,I=1,...,nv ⊗ ( 1 0 0
0 1 0
0 0 1

)

allows Equation (2.23) to be condensed as

Mq̈ = f(q). (2.25)

In practice, we use a lumped mass matrix, which combines each row’s entries onto the

diagonal with the result

MII = ∑
r

ρ̂(r)N
(r)
I J̄(r)dξ(r)

and MIK = 0 for I /=K.

Regardless of which mass matrix is being used, ρ̂(r) must be computed. For a uniform

mass distribution, this is trivial. For a non-uniform mass distribution, the density will

typically be specified at each control vertex, so we denote the corresponding set of values

by ρ̂L, where L = 1, . . . , nv. To compute ρ̂(r), we then interpolate the density function at

quadrature points:

ρ̂(r) = ρ̂LN (r)L .

For the lumped mass matrix this leads to

MII = ∑
r

ρ̂LN
(r)
L N

(r)
I J̄(r)dξ(r). (2.26)
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Figure 2.7: Direction vectors used in formulating clamped boundary conditions to constrain
cloth positions and normals. bn (yellow) is the constrained normal direction. t (red) is the
in-plane direction perpendicular to the tangent vector to bs (tangent vector shown in green).

Similar to [CO01], we use a three-point Simpson’s rule for integration through the thick-

ness and Gauss quadrature for integration across the surface. It is important to choose a

sufficient number of Gaussian quadrature points. For Loop subdivision, a single point per

triangle is sufficient [COS00]. Catmull-Clark basis functions on the other hand are of poly-

nomial degree 3 in regular regions, so integrands involving just the basis functions have total

degree 6, and thus require 4 × 4 quadrature points [Coo97]. For nonlinear integrands, more

quadrature points may in general be necessary, but we have found 4×4 quadrature points to

be sufficient for our examples. The integration gets more complicated around extraordinary

vertices. Most recently, this has been studied by [JMP16] for Loop subdivision and [WP16]

for Catmull-Clark schemes.

2.6 Enforcement of boundary conditions

To enforce a supported boundary condition (positions constrained), we add the requirement

x(ξ1, ξ2) = bs(ξ1, ξ2) for some specified list of parameter space points (ξ1, ξ2) along the

boundary segment in question. Each mesh element corresponds to a quadrilateral region

in parameter space and, in practice, we apply boundary conditions (if any) to the points
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at the corners of each of these regions. The condition at each such point discretizes as

bs(ξ1, ξ2) = qTI NI(ξ1, ξ2), which is a linear constraint on q. For a clamped boundary segment

(positions and normals constrained), we start with the supported boundary condition bs,

and then additionally enforce normality of a specified direction bn(ξ1, ξ2) to the surface. Let

t(ξ1, ξ2) denote the surface tangent vector perpendicular to the boundary edge. The roles

of bs, bn, and t are summarized in Figure 2.7.

t is an in-plane direction and so must equal some linear combination of a1 = qTI NI,1

and a2 = qTI NI,2, with coefficients depending on the boundary edge orientation in parameter

space. Thus the necessary condition

t(ξ1, ξ2) ⋅ bn(ξ1, ξ2) = 0

amounts to another linear constraint on q. For compatibility, the curve bs must be perpen-

dicular to the desired normal bn, which (approximately) ensures the surface tangent vector

along the boundary edge will be normal to bn without requiring any additional constraints.

We write the combination of all linear constraints for a given simulation via the require-

ment Bq = b(t). For implementation purposes, the matrix B of linear constraint coefficients

may be precomputed since it depends only on the topology of the parameter space mesh. We

incorporate this extra requirement into Equation (2.25) using a Lagrange multiplier vector

λ as
Mq̈ = f +BTλ

Bq = b
(2.27)

This constraint approach is based on the ideas presented by [GT04].
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2.7 Implicit integration

For simulation purposes, the ODE in Equation (2.27) is discretized temporally using back-

ward Euler. The result is a nonlinear system to be solved at each timestep for (qn+1,λn+1):

M

h2
(qn+1 − qn − hq̇n) = f(qn+1) +BTλn+1

Bqn+1 = bn+1.

Here h denotes the time step size.

Our implementation augments the nonlinear system with the Rayleigh damping model

of [GS14]. Let K = − ∂f
∂q denote the energy Hessian. Then the damping force f̃

d
at time step

n + 1 with nodal positions qn+1 is written in terms of a nonnegative scalar parameter β as

f̃
d(qn+1) = −βK(qn+1)q̇n+1.

We replace f̃
d
for implementation purposes with a lagged and clamped version

f̂
d(qn+1) = −βK̃(qn)q̇n+1 (2.28)

where K̃ is a specialized modification of K which is guaranteed to be positive definite. Lagged

evaluation at qn instead of qn+1 keeps the damping force gradient from depending on third

derivatives of ψq, which depending on the choice of energy density could be computationally

prohibitive or even undefined. Use of K̃ instead of K ensures that the damping force is

dissipative. The modified damping term is discretized by backward Euler to obtain

f d(qn+1) = −βK̃(qn) (qn+1 − qn

h
) , (2.29)
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which is added to the nonlinear equations for the implicit time step:

M

h2
(qn+1 − qn − hq̇n) = f(qn+1) + f d(qn+1) +BTλn+1

Bqn+1 = bn+1

(2.30)

To compute the new configuration qn+1, we use the optimization formulation proposed

in [RO99, KYT06, GS14]. Discretizing the cloth potential energy V with the same finite

element approximation of x and quadrature rule as used for the weak form PDE gives a

discrete potential energy Ψ(q) computable by

Ψ(q) = ∑
r

(ψq(q;ξ(r)) + ρ̂(r)gTqKN
(r)
K ) J̄(r)dξ(r). (2.31)

Comparison to Equation (2.24) reveals ∂Ψ(q)
∂q = −f(q). We also define a “potential” Ψd

corresponding to the Rayleigh damping force f d by

Ψd(q) = (q − qn)T ( β
2h

K̃(qn)) (q − qn). (2.32)

Of course, Ψd is clearly not a potential energy in the physical sense, given its dependence

on qn and h. However, the key property ∂Ψd(q)
∂q = −f d(q) does hold. We now define an

incremental potential E(q) by

E(q) = (q − qn − hq̇n)T ( M

2h2
) (q − qn − hq̇n) +Ψ(q) +Ψd(q). (2.33)

By construction of E, the system in Equation (2.30) is exactly the first-order necessary

condition for qn+1 to be a minimizer in the constrained problem

minimize
q

E(q)

subject to Bq = bn+1.

(2.34)

To solve for the new configuration (qn+1,λn+1) we use Newton’s method. Recasting the
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nonlinear system as an optimization problem provides the ability to augment the Newton

step directions with a line search procedure, ensuring each step satisfies the strong Wolfe

conditions based on the incremental potential; see [NW06] for details. In practical examples

we find the inclusion of line search significantly improves convergence rates and thus runtime,

as well as making the solver more robust in ill-conditioned steps. Notice that the hypere-

lastic nature of the constitutive models we consider is essential to enable the optimization

formulation. In a model which relies on forces defined directly from the strain, the necessary

incremental potential may be undefined or otherwise not readily computable.

To derive the Newton step we begin with a current iterate (q∗,λ∗) and set (qn+1,λn+1) =

(q∗ +∆q,λ∗ +∆λ). Linearizing Equation (2.30) around (q∗,λ∗) yields

M

h2
(q∗ +∆q − qn − hq̇n) = f(q∗) + ∂f

∂q
(q∗)∆q − β

h
K̃(qn)(q∗ − qn) − β

h
K̃(qn)∆q

+BTλ∗ +BT∆λ

Bq∗ +B∆q = bn+1,

so the Newton step (∆q,∆λ) is determined via the linear system

⎛
⎜
⎝

K(q∗) + βh−1K̃(qn) + h−2M BT

B 0

⎞
⎟
⎠

⎛
⎜
⎝

∆q

−∆λ

⎞
⎟
⎠

=
⎛
⎜
⎝

f(q∗) +BTλ∗ + h−2M (hq̇n + qn − q∗) + βh−1K̃(qn)(qn − q∗)

bn+1 −Bq∗

⎞
⎟
⎠
.

(2.35)

We begin each timestep with the initial guess q∗ = qn.
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2.8 Linear solver

According to Equation (2.35), a saddle point or KKT system must be solved at each Newton

step. Let Y denote the system’s upper-left block, i.e.

Y = K(q∗) + βh−1K̃(qn) + h−2M.

It will also prove useful to consider the alternate upper-left block Y = K(q∗), which will

arise in §3.5.1 when dealing with quasistatics problems. Assume the constraints are linearly

independent, i.e. B has full row rank. If Y is positive semidefinite then the overall system

matrix will be indefinite, with exactly one negative eigenvalue per row of B. In our practical

usage, Y is usually but not always symmetric positive definite (SPD): large simulation time

steps or quasistatics problems can create tiny or negative eigenvalues in Y and overall KKT

systems with condition numbers in excess of 1010. Therefore our choice of linear solver is

heavily influenced by the need to preserve accuracy as much as possible. Some methods

assuming Y is SPD are more affected than others by the occasional indefinite Y. For

example, linear solves with system Y generally produce acceptable results when using a

conjugate gradient algorithm with early return on indefiniteness as in [GS14], but Cholesky

factorization of Y is not a reliable approach.

Our implementation handles indefinite systems using the PARDISO direct solver in the

Intel MKL; see [SG06]. PARDISO solves symmetric indefinite systems using a sparse LU

decomposition, and in our tests provides solutions with relative residual near the order of

floating point roundoff when paired with iterative refinement using quad precision to store the

linear residual. The runtime of linear solves using PARDISO is less than 20 % of total solver

runtime, largely due to the runtime expense of computing entries of the energy Hessian. Thus

we believe this project would not reap significant benefit from heavy investment of analysis

and implementation time into speeding up the linear solves. Nevertheless, we acknowledge

that saddle point systems may often be solved efficiently by reducing to an equivalent SPD

system. [Ben05] provides an extensive discussion of such solution methods; we reproduce the
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most relevant aspects here. There exist several distinct families of methods for reduction of

a saddle point problem to equivalent SPD matrix solves; here we discuss Schur complement

reduction and nullspace methods.

2.8.1 Alternative: Schur complement reduction

Schur complement reduction reduces the saddle point problem to two separate linear solves

with system matrices BY−1BT and Y respectively. Explicitly building BY−1BT would

require a linear solve with system Y per column of BT , i.e. per linear constraint in the

simulation. Our examples typically use several hundred constraints which makes explicit

construction impractical. Another approach is simply to apply the matrix BY−1BT at each

step of an iterative solution method such as conjugate gradient. A linear solve with system Y

is then required at every conjugate gradient iteration. These solves can introduce additional

error and be computationally expensive, especially since Y is not always SPD and thus we

cannot simply build and reuse a Cholesky decomposition for Y. Another problem is that the

system BY−1BT can be ill-conditioned compared to Y, exacerbating the precision problems

already inherent in cloth simulation using large timesteps or quasistatics problems. In light

of these concerns, we discard Schur complement reduction as a linear solver approach for

our purposes.

2.8.2 Alternative: Nullspace methods

Nullspace methods require access to a matrix Z whose columns form a basis for the nullspace

of B. The KKT solve is then replaced by a linear solve with system ZTYZ followed by a linear

least squares solve with system BT . The reduction from Y to ZTYZ does not change the

condition number if Z has orthonormal columns but can otherwise worsen the conditioning.

Common methods for producing Z include QR or singular value decomposition of B, use of

a so-called fundamental basis as in [HWS12], or (ideally) exploiting some known problem-

specific structure in the constraint matrix B.
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The QR and singular value decompositions of B are in general dense. The dimension

of the reduced system ZTYZ is the number of vertex degrees of freedom less the number

of linear constraints. Our simulation examples typically use tens of thousands of vertices

but only hundreds of constraints, so a dense reduced system is not useful. However, careful

reordering and approximation steps can yield a fairly sparse QR factorization [Mat94]. Such

an approach could potentially be usable for the current project; the main drawback is simply

the implementation time that would be required in order to discover whether a slight speedup

could be obtained.

The fundamental basis approach for constructing Z relies on rearranging columns of B

by a permutation matrix P to produce a block matrix structure BP = (B1 B2) where B1

is square and invertible. Then Z is chosen as

Z = P
⎛
⎜
⎝

−B−1
1 B2

I

⎞
⎟
⎠
.

The permutation P must be chosen carefully: aside from making B1 invertible, a ideal

permutation will balance controlling the reduced system condition number with making Z

as sparse as possible. This is a difficult problem in general, although useful heuristic methods

exist; the situation is exacerbated further by the extremely poor conditioning of some of our

KKT systems.

The matrix B generally remains constant over the course of a simulation, which means

Z can be precomputed and stored for reuse. Unfortunately, we are not aware of any reliable

problem-specific tricks for generating an appropriate Z. Each row of B has approximately

9 nonzero entries and the sparsity patterns do not admit a simple factorization. This is a

significant difference from the more traditional triangle mesh based cloth simulation setting.

On a triangle mesh, the standard piecewise-linear finite element basis is interpolating and the

qI are just the worldspace locations of mesh vertices. As a result each Dirichlet constraint

on one worldspace vertex position creates three rows in B with a single nonzero entry each.

This structure in B makes it trivial to produce an orthonormal nullspace basis Z, which
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typical triangle mesh cloth solvers exploit to inexpensively reduce each KKT matrix to an

SPD system without affecting the conditioning.

2.9 Derivatives of energy density

Construction of the discretized system Equation (2.35) requires evaluation of ψ = ψq(q)

together with its derivatives ∂ψq

∂q and ∂2ψq

∂q∂q . However, in practice the hyperelastic model is

defined and computed in terms of ψE, while we recall ψq is defined by ψq(q) = ψE(E(z(q))).

The necessary derivatives of ψq may thus be evaluated via the chain rule given routines

for computing the functions ψE(E), E(z), and z(q) together with their first and second

derivatives. In particular,

ψq(q) = ψE(E(z(q)))
∂ψq

∂q
= ∂ψ

E

∂E

∂E

∂z

∂z

∂q

∂2ψq

∂q∂q
= ∂z

∂q

T ∂E

∂z

T ∂2ψE

∂E∂E

∂E

∂z

∂z

∂q
+ ∂ψ

E

∂E
(∂z

∂q

T ∂2E

∂z∂z

∂z

∂q
)

(2.36)

where we have used the fact ∂2z
∂q∂q = 0. To check this, we recall that the vector z(q;ξ) is

the concatenation of vectors x,α and x,αβ. The necessary fact then follows by applying the

discretization in Equation (2.20) to x,α and x,αβ :

x,α = qTI NI,α x,αβ = qTI NI,αβ

∂x,α
∂qIi

= NI,α

∂x,αβ
∂qIi

= NI,αβ

∂2x,α
∂qIi∂qJj

= 0
∂2x,αβ
∂qIi∂qJj

= 0.

(2.37)

Note Equation (2.37) also provides the values for ∂z
∂q .

The strain E(z) and its z derivatives are computed from the formulas in §2.1.1. First,

the vectors ḡj may be prestored for each quadrature point at the start of the solve and

reused thereafter. Recall that G = ∂r
∂ξ

T ∂r
∂ξ . Then Equation (2.4) means that during the solve,
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evaluation of E (and its z derivatives) just requires evaluation of G (and its z derivatives).

According to Equation (2.5), we can write

G(ξ1, ξ2, ξ3) = A(ξ1, ξ2) + ξ3B(ξ1, ξ2) + (ξ3)2C(ξ1, ξ2), (2.38)

where

Aαβ = aα ⋅ aβ Aα3 = 0 A33= 1

Bαβ = aα ⋅ a3,β + aβ ⋅ a3,α Bα3 = 0 B33= 0 (2.39)

Cαβ = a3,α ⋅ a3,β Cα3 = 0 C33= 0

For a given evaluation point ξ1, ξ2 on the midsurface, we must evaluate G and its z deriva-

tives at several values of ξ3 (depending on the quadrature rule). We minimize repeated

computation by first building A, B, C and their z derivatives. All required evaluations of

G are then obtained using Equation (2.38). To compute z derivatives of A, B, and C, we

first use the chain rule based on Equation (2.6) to store the often-reused expressions ∂a3,α

∂z

and ∂2a3,α

∂z∂z . Then A, B, and C are differentiated by the product rule on Equation (2.39).

Throughout the above process, all Hessians with respect to z are stored as sparse symmetric

matrices, which significantly improves runtime because several differentiated quantities have

extremely simple dependencies on z. The differentiation of more complex terms using the

product and chain rules then amounts to a series of sparse matrix-matrix products. Note

that E exhibits a complex (nonquadratic) dependence on z through the a3,α terms, and thus

on the generalized coordinates q. This is in contrast to more standard volumetric FEM and

is the source of greater implementation complexity for Kirchhoff-Love FEM approaches.

The derivatives ∂ψE

∂E and ∂2ψE

∂E∂E are constructed by using the definition Ẽ = DTED to

obtain
∂ψE

∂Eab
=Dqa

∂ψẼ

∂Ẽqr
Drb

∂2ψE

∂Eab∂Ecd
=DqaDsc

∂2ψẼ

∂Ẽqr∂Ẽst
DrbDtd.

(2.40)
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The derivatives ∂ψẼ

∂Ẽ
and ∂2ψẼ

∂Ẽ∂Ẽ
depend on the specific choice of ψẼ. Their computation for

the specific constitutive model we recommend will therefore be postponed until that model

is introduced in §3.2.

2.10 Evaluation of subdivision surfaces

To complete the evaluation of the derivatives in the previous section, we need to evaluate the

basis functions, NI , and their derivatives at the quadrature points. As previously mentioned,

we use the Catmull-Clark subdivision scheme to define the basis functions, but our method is

not inherently tied to this scheme. Any other subdivision scheme with sufficient smoothness

could in theory be substituted. In particular, this will work fine with a triangle-based method

like the Loop subdivision. However, different subdivision schemes may require different

numbers of quadrature points.

In practice, we use the OpenSubdiv library from Pixar, which is what presents a re-

striction. The current release (version 3.3.0 at the time of this writing) only has sufficient

support for Catmull-Clark subdivision surfaces. In particular, OpenSubdiv has not imple-

mented computation of limit surface locations and tangents for any other scheme, which we

need for evaluation of the basis functions NI and their derivatives.

Given a mesh description and an input point (ξ1, ξ2) in parameter space, OpenSubdiv is

able to efficiently evaluate the basis functionsNI(ξ1, ξ2) and their first derivativesNI,α(ξ1, ξ2)

for all control control points I. For this project we additionally implemented the ability to

evaluate second derivatives NI,αβ(ξ1, ξ2); this feature has since been included in version 3.2.0

of the publicly available library.

To evaluate the basis functions and their derivatives OpenSubdiv first isolates irregular

vertices by adaptively subdividing the control mesh, up to some user-specified maximum

level. If the parameter-space input point now lies in a regular patch, OpenSubdiv evaluates

using standard bicubic B-spline basis functions for that patch. If the parameter space input

point is still in an irregular patch, OpenSubdiv performs an approximate evaluation using
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the Gregory patch computation technique of [LSN09].

Since our energy computation at each timestep always requires evaluation at the same

quadrature points we can avoid Gregory patches altogether. For 4-point Gauss quadrature

on [0,1], the smallest evaluation point is

1

2

⎛
⎜
⎝

1 −

¿
ÁÁÀ3

7
+ 2

7

√
6

5

⎞
⎟
⎠
≈ 0.0694 > 0.0625 = 2−4.

By symmetry, it follows that for our 4×4 point quadrature rule on [0,1]×[0,1], all evaluation

points are at least distance ≈ 0.0694 away from the boundary. Additionally, note that if we

set OpenSubdiv to use sa adaptive subdivisions, then any remaining irregular patches must

lie in the 2−sa × 2−sa corner regions of the original square. Thus, if we choose an adaptive

subdivion level sa ≥ 4, we find that our quadrature points never fall in an irregular patch,

which lets us eliminate the Gregory patch approximations as a possible source of error. By

the same reasoning, any choice sa > 4 has no effect on the accuracy of the weights. Thus,

the current code uses sa = 4 as the number of adaptive subdivision levels. If we wanted to

use a different quadrature rule besides the current 4 × 4 Gauss points per patch, we would

still be able to avoid Gregory patch evaluation. However, the simple analysis above would

have to be repeated to find the best number of adaptive subdivisions for the new scheme.

2.11 Implementation

Our implementation separates the computations into a precomputation phase, and steps

that have to be repeated within the main simulation loop.

2.11.1 Precomputation

The mass matrix is assumed constant in our simulations and can be computed directly in

the precomputation phase using Equation (2.26).
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Our method supports the constraint coefficient matrix B changing over the course of a

simulation, but B is constant in our examples and thus is simply constructed and stored at

the start of the simulation.

For each Newton iteration and/or time step during the simulation we need to evaluate

Equation (2.39) along with the associated z derivatives. This requires evaluation of z at all

quadrature points, which can be done using Equation (2.37). We note, however, that the

derivatives of the basis functions in these expressions will always be evaluated at the same

parameter space locations, namely the quadrature points. We precompute these weights

using OpenSubdiv.

Finally, obtaining E from G requires the basis vectors ḡj and our numerical integration

requires J̄ . These depend only on the rest configuration, so we precompute and store them

for all quadrature points at the start of the simulation.

2.11.2 Simulation loop

Inside the main simulation loop we compute the hyperelastic energy Hessian contribution

from each quadrature point ξ(r) and then sum these to build the full energy Hessian. To

reduce synchronization in our parallel implementation, one thread sums the contributions

from all quadrature points within a specified element. The per-element stiffness matrix

contributions are built concurrently, and are then added into the final Hessian one at a time.

Combining the contributions per element works well because with subdivision surfaces, all

ξ(r) within a given element necessarily have the same stencil (that is, will share the same set

of nonzero NI). The energy computation algorithm is summarized in Algorithm 2.1, where

the bulk of the work happens in line 5. As described in §2.9, we can compute the strain E(z)

and its z derivatives if we know the values, z-gradients, and z-Hessians for aα ⋅ aβ, aα ⋅ a3,β,

and a3,α ⋅ a3,β.

The terms aα ⋅ aβ are trivial to compute in terms of z. To clarify the dependence of the
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Algorithm 2.1 Parallelization structure for energy computation
1: Initialize overall system energy/gradient/Hessian as 0.
2: for all non-boundary quad faces of the control cage do {in parallel}
3: Initialize face energy/gradient/Hessian contributions as 0.
4: for all quadrature points in the chosen face do {in serial}
5: Compute energy/gradient/Hessian at this quadrature point and add these to the

face’s contributions.
6: end for
7: Add the face’s total accumulated energy/gradient/Hessian contributions into the final

system. {Use mutex to avoid race conditions!}
8: end for

remaining terms on z, we introduce the notation ã3 = a1 × a2 and m = ∥ã3∥. Then we have:

a3 =
ã3

m

a3,α =
ã3,α

m
− ã3

m2
m,α

m,α =
ã3 ⋅ ã3,α

m
.

After some simplification, we can rewrite

aα ⋅ a3,β = −
aα,β ⋅ ã3

m

a3,α ⋅ a3,β =
1

m2
ã3,α ⋅ ã3,β −

1

m4
(ã3 ⋅ ã3,α)(ã3 ⋅ ã3,β).

Thus, we can compute E and its z derivatives by the chain and product rules if we know the

values, gradients, and Hessians of the simple ‘building block’ scalar quantities

m aα ⋅ aβ aα,β ⋅ ã3 ã3 ⋅ ã3,α ã3,α ⋅ ã3,β.

The strain E(z) and its z derivatives are functions of our kinematic assumptions alone.

As such, all of the above is equally applicable for any hyperelastic constitutive model.
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2.11.3 Code structure for energy density computation

Computation of the energy density and its q-derivatives incurs the majority of the runtime

cost in Algorithm 2.1, and thus benefits from an efficient implementation. The computation

proceeds in two stages. First, the energy density and its z-derivatives are computed; then the

q-derivatives are obtained from Equation (2.36) using the precomputed data ∂z
∂q . Regardless

of the constitutive model chosen, the computation of energy density and z-derivatives proves

to be the key runtime-critical step; thus to facilitate future implementations we now provide

a slightly simplified but fairly explicit description of our C++ code for that step.

For storage, we create a struct Entry that holds a double, a 15-dimensional vector, and

a symmetric 15× 15 matrix. These should be interpreted as some scalar value together with

its gradient and Hessian with respect to z. Next, we define a second struct Gdata that holds

G and its gradient and Hessian. In other words, Gdata stores 3 Entry structs, one for each

nonconstant unique entry in G.

Our low-level implementation consists of ‘building-block’ functions named add_a1a1,

add_a1a2, and so on going through the list above. These functions accept as input an

arbitrary double scalar, plus a reference to Entry and the input vector z. They add (scalar) ⋅

(specified building block) to the input Entry.

The next complexity level consists of functions with names like addG12Linear,

addG11Quadratic, and so on for the other terms. These functions take as input a ref-

erence to Gdata giving the current status of G, the input vector z, and the value of ξ3;

they call some combination of building-block functions to add the term described in their

name into G. So for example, addG11Quadratic adds the value, gradient, and Hessian of

(ξ3)2a3,1 ⋅ a3,1 to the (1,1) Entry in our Gdata object.

We create a function potentialEnergyHelper which accepts a reference to Entry (called

LocalEnergy), a const reference to Gdata (called G), and a const reference to a templatized

ConstitutiveModel object. It also takes in the precomputed basis vectors ḡj and the or-

thotropy direction matrix D. This function computes Ẽαβ and its z derivatives, and then
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Algorithm 2.2 Computation of potential energy density and z-derivatives in function
potentialEnergy
Input: Entry psi, ConstitutiveModel model, PrecomputedData pre, Vector z
1: // Initialize data structure.
2: Gdata G = 0;
3:
4: // Build and add contribution at ξ3 = 0.
5: for all αβ in {11, 12, 22} do
6: addGαβConstant(G, z);
7: end for
8: potentialEnergyHelper(psi, G, model, pre);
9:
10: // Build and add contribution at ξ3 = τ

2.
11: for all αβ in {11, 12, 22} do
12: addGαβLinear(G, z, τ/2);
13: addGαβQuadratic(G, z, τ/2);
14: end for
15: potentialEnergyHelper(psi, G, model, pre);
16:
17: // Build and add contribution at ξ3 = − τ2.
18: for all αβ in {11, 12, 22} do
19: addGαβLinear(G, z, −τ);
20: end for
21: potentialEnergyHelper(psi, G, model, pre);

calls a member function in the ConstitutiveModel class to build ψ(Ẽ), ∂ψ
∂Ẽ

, and ∂2ψ

∂Ẽ∂Ẽ
. The

chain rule is then used to produce the derivatives ∂ψz

∂z and ∂2ψz

∂z∂z , and the local energy contri-

bution ψ and its z derivatives are added to LocalEnergy. The Hessian ∂2Ẽαβ
∂z∂z is mostly dense,

so we have not made significant optimizations here. Instead, that computation essentially

follows the steps a rudimentary automatic differentation would use.

Finally, we create the top-level function potentialEnergy, which makes use of previously

defined functionality to add the current quadrature point’s contributions for ψ, ∂ψ∂z , and
∂2ψ
∂z∂z ;

see Algorithm 2.2 for details.
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2.11.4 Optimizing low-level functions

It is possible to store a building-block’s gradient and Hessian in sparse form instead of

recomputing the entries each time it is used. This ‘precomputation’ would still need to be

repeated for every Gauss point and for each new energy evaluation, but it can potentially

help if the same building block is added many times. The extra step is worth our runtime

for some building blocks more than others.

Several of the building-block functions described above require very little computation

to add the required terms. For example, the Hessian of a1 ⋅ a1 has 3 nonzero entries, all of

which are constant. Other building-block functions are more complex, but are not called

very often. The a3,1 ⋅ a3,2 building block is relatively expensive to add, but is only added

once since it appears in just one quadratic term.

In our current implementation, the only building block derivatives we prestore are the

gradient and Hessian of m, and the gradients of all building blocks involving ã3. We have

found this to provide a runtime-efficient balance between the cost of memory allocation and

the cost of recomputing the same entries multiple times.

2.11.5 Avoiding Hessian computations

The preceding sections have detailed the energy computation procedure as if every energy

evaluation requires Ψ, ∂Ψ
∂q = −f , and ∂2Ψ

∂q∂q = K. Of these three, the energy Hessian ∂2Ψ
∂q∂q is

by far the most computationally costly. Fortunately, the Hessian computation is not always

necessary. Using the optimization-based backward Euler integrator detailed in §2.7, energy

evalutions can be divided into two categories: evaluations at the start of a Newton step, and

evaluations during line search. Computation of Newton steps requires the energy Hessian

to build the linear system of Equation (2.35), but the more common scenario is line search

evaluation, for which only the energy and energy gradient are necessary.

To take advantage of this structure, we include an extra flag in the energy computation

procedure which dictates whether the energy Hessian must be computed. If the flag is not
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set, all levels of the chain rule based computation will skip every Hessian related computation

and memory allocation, resulting in a far faster computation. This is the key optimization

that makes the optimization formulation of the time integration worthwhile, since choosing a

good step size via line search is very cheap compared to taking additional Newton iterations.

2.12 Convergence under mesh refinement

A useful feature of high-order finite element methods is that they typically enjoy strong

convergence properties as the mesh is refined. Let ∆x denote the length of the longest edge

in the finite element mesh. Then a method is said to offer convergence rate O(∆xk) for some

k > 0 provided that, for fixed input data, the difference between the exact PDE solution and

the finite element approximation is bounded by a constant times (∆x)k in some specified

function norm. A method’s convergence rate depends on the norm chosen to measure the

error. Theoretical analysis is most commonly ([Koi, COS00]) based in the Sobolev spaces

Hs with corresponding norms

∥x∥s = ∑
∣α∣≤s

∥Dαx∥L2

where we note the special case H0 = L2. However, many numerical experiments are car-

ried out instead in the L∞ or displacement norm ([BSL85, GT04]) due to its more direct

applicability in real-world scenarios.

Figure 2.8: Clamped boundary test (left) and simply supported boundary test (right) used in
verifying convergence under refinement for our implementation. With the ghost face bound-
ary treatment, the outer ring of faces in the black mesh is not part of the cloth object. Pictured
meshes show the 1m ×1m test, but have been scaled by 3 in the vertical direction to make the
deformation more visible.
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Several convergence results have previously been established for finite element solutions

of plate and shell problems. The Koiter thin shell theory of [Koi] may be derived starting

from the Kirchhoff-Love assumptions but provides a more tractable problem for theoretical

convergence analysis by using an isotropic, linear stress-strain relationship and often also a

linearized strain tensor. [Cia02] studies shell problems using the fully linear Koiter theory

in terms of a general finite element scheme which can represent all polynomials of degree

up to some integer k. The resulting error bound is O(∆xk−2) in H2. A plate formulation

with additional small-strain hypotheses is also addressed, obtaining an H2 error bound of

O(∆xk−1). Due to the close relationship between Catmull-Clark subdivision surfaces and

bicubic B-splines, this theoretical result is most analogous to our method when fixing k = 3,

which suggests an H2 bound of O(∆x) for shell problems and O(∆x2) for plates. However,

several factors preclude these theorems from directly applying to our implementation. First,

our method considers a nonlinear strain tensor and allows highly nonlinear stress-strain

relationships due to use of a general hyperelastic energy. Second, the theorem imposes several

additional conditions on the problem data which may not be met for real-life problems; for

example, the exact solution must lie in H4. Finally, the correspondence between Catmull-

Clark surfaces and cubic B-splines breaks down in the presence of extraordinary vertices.

To address the greater complexities of convergence for nonlinear Kirchhoff-Love finite ele-

ments, Cirak [COS00] turns to numerical experiments. An H2 convergence order of O(∆x2)

is demonstrated for a plate problem, and L∞ convergence of unspecified order are observed

in several shell tests with the surface representation given by the triangle-based Loop subdi-

vision scheme. The convergence rate for Kirchhoff-Love plates is improved by Green [GT04],

in which O(∆x4) convergence rates are obtained in both H2 and L∞, using both Loop and

Catmull-Clark surfaces. The key to allowing this upgraded convergence lies in the treatment

of the subdivision surface boundary. The subdivision rules in Cirak’s paper allow all faces

of the control mesh to correspond to smooth surface patches, and the boundary control cage

nodes are interpolated by the final surface, which simplifies imposition of Dirichlet bound-

ary conditions. By contrast, the treatment of Green is the approach adopted in §2.4.1 and
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Figure 2.9: Convergence of the clamped and simply supported plate experiments in L2, H1,
H2 (energy), and L∞ norms as the meshes are refined. L∞ norms are measured in meters;
the remaining norms are scaled to fit the graph.

§2.6: boundary faces of the control cages do not correspond to a surface patch, and Dirichlet

constraints must be imposed as linear constraints with nontrivial stencils. These boundary

mesh faces with no limit surface counterpart are commonly referred to as ghost faces.

These analyses both use a strain linearized with respect to the cloth-normal position ξ3

and also a linear stress-strain relationship. To test the degree of impact of our nonlinear

implementation, convergence analyses were implemented based on two commonly used thin

plate experiments as shown in Figure 2.8. In the clamped boundary test, an initially flat

cloth square is allowed to reach equilibrium subject to position and normal constraints at all

boundary points. The simply supported boundary test is similar, but the cloth normals are

not constrained. Both tests use an evenly spaced grid as the undeformed cloth mesh, with

orthotropy directions d1 and d2 parallel to the edges of the cloth. The model used is the

nonlinear representation of denim as will be determined in Chapter Three. For refinement

analysis, each problem is solved using a variety of mesh sizes. An approximate error for each

mesh except the densest is then computed by treating the densest mesh as the exact solution.

Log-log plots of the resulting error estimates as shown in Figure 2.9 yield approximate

convergence orders as the slope of a best-fit line. The errors are computed in four norms:

L2, H1, H2, and L∞.

The experimental results for several variations of the two experiments are summarized
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Test Cloth size L2 order H1 order H2 order L∞ order

Clamped 25cm ×25cm 1.87 1.78 1.11 1.81
Clamped 1m ×1m 1.56 0.77 0.40 1.21
Clamped 4m ×4m 1.06 0.47 0.20 0.96

Simply supported 25cm ×25cm 3.65 2.48 1.50 2.79
Simply supported 1m ×1m 3.11 1.72 0.70 2.19
Simply supported 4m ×4m 3.12 1.64 0.62 2.08

Simply supported, linear 1m ×1m 4.03 ∗ ∗ ∗

Simply supported, rotated 1m ×1m 2.91 1.97 1.09 2.09
Simply supported, non-ghost 1m ×1m 1.73 ∗ ∗ ∗

Table 2.1: Summary of convergence under refinement results. Fields marked (∗) were not
tested as a result of different functionality in an older version of our simulator.

in Table 2.1. The results show stronger convergence for the simply supported example than

for the clamped example, but the observed convergence rates in H2 do not replicate the high

order convergence of [GT04], instead proving slightly worse than the O(∆x2) rate suggested

by [Cia02] and [COS00]. Both experiments were repeated for three sizes of cloth squares,

based on the intuition that a smaller square will experience less deformation and thus stay

closer to the better-behaved linear regime. Indeed, the smaller cloth squares give better

convergence rates in all cases. As further confirmation of this effect, a second model was

implemented using a linearized strain tensor and stress-strain relationship, resulting in an

L2 convergence order of 4.03 for the simply supported experiment. As is typical for finite

element convergence rates, each additional derivative in the Sobolev norm tends to subtract

approximately one order from the convergence accuracy. Overall the data suggest that our

implementation provides an H2 convergence rate of O(∆x2) for the linear problem, with

gradually worsened convergence as the problems move farther from the linear regime.

Two additional versions of the simply supported experiment were executed to confirm

specific hypotheses. A rotated test using warp and weft directions offset from the cloth

edge directions by 45○ was used to confirm that the convergence rate does not depend on

the orthotropy directions. Also, the effect of the ghost face boundary treatment of Green as

opposed to the method of Cirak was measured by implementing and running the same conver-

gence experiment with the non-ghost boundary definition. Use of the ghost face boundary

improved the convergence rate by approximately two orders, agreeing with the finding of
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Green. All of our experiments used a regular grid to mesh the cloth object. However, a full

convergence study should include a variety of irregular meshes as demonstrated in [GGR06]

for triangle meshes. The method is expected to converge in such a test, but the convergence

rate may be slightly lower.

Regardless of order, convergence under mesh refinement is an important advantage of

subdivision surface cloth simulation over triangle mesh based solvers. The bending models of

[GHD03, GGW07] are neither consistent nor convergent due to reliance on a discrete shape

operator which is heavily dependent on the mesh edge orientations. [GGR06] provides a

modified model which provides convergence in certain weak senses as well as L∞ convergence

of unspecified order, but does not show convergence in functional norms.
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CHAPTER 3

Data Driven Modeling for Woven Materials

Figure 3.1: Photographs of five fabrics (canvas, cotton poplin, silk charmeuse, denim and
wool coating) along with the corresponding simulation after parameter estimation (bottom
row). Each piece of fabric is 1m ×1m, and the top corners are held 60cm apart. The real
fabrics had multiple stable equilibria for the specified constraints, so exact matches cannot be
expected.

3.1 Experimental design

Our experimental approach is chosen to exercise all important deformation modes without

sacrificing ease of obtainability. Standard, commercially-available procedures are strongly

preferred over any test that requires physical construction of a complex apparatus. For

this reason we focus on the ASTM testing standards. In section §3.6 we present results for
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Figure 3.2: Top row: side view of the bending test ASTM D1388 before deformation begins
(left) and at conclusion (right). Bottom: setup for tensile test ASTM D5035.

canvas, cotton, silk, denim, and wool. The protocol for denim and wool is different than the

remaining materials as noted below. 1 To measure in-plane stretch and shear response, we

use slight modifications of the tensile test ASTM D5035. The modified test uses cloth strips

cut along the warp (90○), weft (0○) and bias (45○) direction. The strips used are 75 mm

long (in the main direction) and 50 mm wide. For the denim and wool the strips are 150

mm long. The strips are clamped at both ends and gradually stretched until the cloth tears

apart, with the clamps moving apart at a rate of 300 mm/min (200 mm/min for denim and

wool). The stretch distance and the clamp forces along the stretch axis are recorded at least

once per 0.1 second throughout the test for canvas, cotton and silk and every 2 milliseconds

for denim and wool. For future experiments we recommend the highest possible sampling

rate. For comparison purposes, each direction is tested five times for canvas, cotton and

silk using a new cloth strip each time. We additionally run this test with cloth strips cut

at 22.5○ and 67.5○ relative to the warp direction for model validation. For denim and wool

we only run two repeats of each test and omit the tests for 22.5○ and 67.5○. Specifically for
1These differences are partially based on lessons learned from the first set of materials, and partially based

on financial constraints.
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this project, all of the above experiments were performed using an Instron 5569 tensile test

machine.

Many different methods have been devised for measuring bend resistance of fabrics. One

of the earliest methods based on a simple cantilever principle dates back to [Pei30]. Yet, this

is still the method being used in the ASTM D1388 method as well as the FAST system. The

basic idea behind the Kawabata system was first published by [LO64], and both approaches

are reviewed by [GZ03]. We refer to the latter for diagrams illustrating these tests. To

measure bending resistance, we use ASTM D1388. A 25 mm × 200 mm cloth strip is slowly

extended off the edge of a fixed plane and allowed to drape toward a second plane which is

inclined at 41.5○. The recorded data is the overhang length of the cloth when it first makes

contact with the inclined plane. This test is repeated for both warp- and weft-oriented

cloth strips. We obtain the mass density of each material based on ASTM D3776, and we

acquire a measured thickness for each material from ASTM D1777. However, the thickness

of a woven fabric is not easy to rigorously define or measure; thus we treat the measured

thickness as an initial guess as opposed to a guarantee of the correct value to be used in our

model. As a result of treating thickness as an unknown in our fitting process, the measured

mass density must be viewed as a mass per area instead of per volume. To compensate, the

quadrature rule for the mass matrix in Equation (2.26) is adjusted to integrate only over the

2D midsurface, not through the full hyperelastic solid.

Our dataset contains little or no information about response to negative stretch strains,

i.e. in-plane compression. We do not know of a test procedure for that strain regime because

of cloth’s typical tendency to buckle instead of undergoing any significant compression. It

should also be noted that there is no standard for measuring the shear properties of fabrics.

The in-plane stretch test along the bias direction is known as the bias extension test and

is well-known [Coo63], but is typically used with simplifying assumptions that are not valid

for large strains, [DDB11]. However, due to our data fitting process we do not have to rely

on those assumptions.

Lastly, we note that our dataset does not provide data to fit an area preservation or
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Poisson type response in the cloth. The Poisson effect in fabrics is primarily due to crimp

interchange which is most notable with unbalanced weaves, [SPP05]. The proposed methods

in the literature for capturing data for this term are based on digital image correlation

(DIC), [HRR09]. This is commercially available in so called video extensometers, and would

conceptually be easy to add to our fitting method. However, we have found this term to

have very little effect on the forces in our other experiments since the fabrics considered here

have very little crimp to begin with. The more noticeable transversal contractions due to

shearing, as seen in the bias extension test, are captured accurately with our data.

3.2 Constitutive model

We model woven cloth as an orthotropic hyperelastic solid subject to the Kirchhoff-Love

kinematic assumptions. Based on the theory developed in §2.2.1, choice of a constitutive

model simply amounts to choosing a strain energy density ψ = ψẼ(Ẽ11, Ẽ12, Ẽ22) where Ẽ is

a reduced Green-Lagrange strain matrix with entries Ẽ11, Ẽ12, and Ẽ22 measuring strain due

to warp stretch, in-plane shearing, and weft stretch respectively. Choosing a form for ψẼ

requires some care: the model must be sufficiently complex to capture the nonlinear stress-

strain relationship exhibited in our experimental datasets, yet simple enough to facilite a

computational parameter fitting process.

Our model is defined in terms of scalar material parameters a11, a12, a22, G12 as well as

four scalar functions η1, η2, η3, η4 to separate energy penalties for the distinct deformation

modes:

ψẼ(Ẽ11, Ẽ12, Ẽ22) =
a11

2
η1(Ẽ2

11) + a12η2(Ẽ11Ẽ22) +
a22

2
η3(Ẽ2

22) +G12η4(Ẽ2
12) (3.1)

The functions ηj are arbitrary except for the constraints ηj(0) = 0 and η′j(0) = 1. The first

constraint enforces a zero-energy, zero-stress rest configuration, while the second constraint

allows a natural correspondence between the parameters aαβ and G12 and linear elasticity at

infinitesimal strain. With this convention, aαβ and G12 should be interpreted as describing
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the cloth’s small-strain behavior while the curves ηj describe the nonlinear response to larger

strains. Indeed, comparison to Equation (2.9) shows we can replicate the orthotropic St.

Venant-Kirchhoff model [BIE00] by choosing ηj(x) = x for all j. Even with general choices

of ηj, the linearization of our model around the rest configuration will always simply be the

St. Venant-Kirchhoff model. We do not directly enforce positivity of the functions ηj; this

maintains the model’s expressiveness but requires some additional measures to make the

method robust, as will be discussed in §3.2.3.

3.2.1 Parameterization and derivatives

The scalar functions ηj in Equation (3.1) must be expressive enough to fit the nonlinear

stress-strain behavior of various material types. Simple spline representations are sufficiently

general and easily adjustable by hand. However, we choose a form which is more suited to

manipulation by an iterative inverse solver to facilitate subsequent data fitting. Inspired by

[Its01] we use the notion of integer ‘degree’ dj ≥ 1 together with scalar parameters αj1,⋯, αjdj
and µj1,⋯, µjdj to define ηj as

ηj(x) =
dj

∑
i=1

µji
αji

((x + 1)αji − 1) .

This is akin to the constitutive model by Ogden, [Ogd72], but expressed in terms of the

orthotropic functional basis {Ẽ11, Ẽ22, Ẽ2
12} instead of the principal stretches. Satisfaction

of the constraint ηj(0) = 0 is automatic, while the constraint η′j(0) = 1 is equivalent to

requiring ∑dji=1 µji = 1. We eliminate this constraint by removing µj1 as a free parameter,

setting µj1 = 1 −∑dji=2 µji.

The energy computations of §2.9 require the derivatives ∂ψẼ

∂Ẽ
and ∂2ψẼ

∂Ẽ∂Ẽ
. These are com-
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puted by the chain rule from Equation (3.1) in terms of the derivatives of ηj:

η′j(x) =
dj

∑
i=1

µji(x + 1)αji−1

η′′j (x) =
dj

∑
i=1

µji(αji − 1)(x + 1)αji−2

(3.2)

3.2.2 Comparison to an existing model

To provide intuition for the choice of constitutive model in Equation (3.1), we compare

against a nonlinear orthotropic model previously published by Itskov in [Its01]. For brevity

we present a simplified version of Itskov’s model which remains true to the original paper in

the respects we wish to compare. Itskov’s model can be defined in terms of tensor functions

Θ1, Θ2 ∶ R2×2 → R2×2 of the form

Θj(Ẽ) =
dj

∑
i=1

µji
αji

Eαji (3.3)

as the sum of four distinct, non-negative energy terms:

ψ̃Ẽ(Ẽ11, Ẽ12, Ẽ22) =
a11

2
[Θ1(Ẽ) ∶ ( 1 0

0 0 )]
2 + a12 [Θ1(Ẽ) ∶ ( 1 0

0 0 )] [Θ2(Ẽ) ∶ ( 0 0
0 1 )]

+a22

2
[Θ2(Ẽ) ∶ ( 0 0

0 1 )]
2 + G12

4
[Θ1(Ẽ) ∶ ( 0 1

1 0 )] [Θ2(Ẽ) ∶ ( 0 1
1 0 )] .

(3.4)

The model parameters are positive scalar multipliers a11, a12, a22, and G12, together with

integer degrees dj ≥ 1 and arbitrary scalar parameters αj1,⋯, αjdj and µj1,⋯, µjdj . Non-

integer powers of Ẽ arising in Equation (3.3) are computed via the matrix exponential.

The analysis in §2.2.2 provides valuable intuition for the interaction of Itskov’s model with

our experimental dataset. The warp stretch experiment provides approximately sparse strain

tensors Ẽ ≈ ( ? 0
0 0 ) and thus Θj(Ẽ) shares the same form Θj(Ẽ) ≈ ( ? 0

0 0 ). Only the a11 energy

term is activated, creating a simplified fitting problem, and the warp stretch data is sufficient

to fully determine a11 and the curve Θ1. Likewise, the weft stretch experiment determines

a22 and Θ2. The bias stretch creates mostly shear strain, with Ẽ ≈ ( 0 ?
? 0 ), but the matrix
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Figure 3.3: When using the model of [Its01] to fit data from cloth experiments, the warp
(green) and weft (blue) datasets can be fit accurately. However, even when we set remaining
energy contributions to zero, the resulting modelled bias response is far too strong at medium
and large strains. Experimental data is indicated with dashed lines; solid lines show the
model’s result.

exponentials in Equation (3.3) mean there is no (approximate) sparsity in the resulting

matrices Θj(Ẽ). Therefore all four energy terms are activated. However, the a11 and a22

terms have already been determined based on warp and weft stretches, which generally offer

heavy resistance in woven fabric. Shearing deformations should incur a far smaller energy

penalty, but the a11 and a22 terms threaten to provide overpowering contributions even

without an additional penalty from the a12 or G12 terms.

The above is only a heuristic analysis based on approximations of the deformation strains,

but the conclusion is nevertheless borne out by numerical fitting attempts using real data2

as displayed in Figure 3.3. Thus Itskov’s model cannot be directly applied to the cloth

fitting problem. Our model in Equation (3.1) draws inspiration from Itskov’s, but our four

energy summands are almost entirely decoupled. Pure warp stretch, weft stretch, and in-

plane shear are each penalized by exactly one energy term, thus avoiding the interference

described above.
2Figure 3.3 uses data from a partial dataset which predates the main experimental procedures described

in §3.1 and which makes no appearance elsewhere in this project. The tensile experiment is similar to ours
but does not gather small-strain data. The fabric tested is cotton denim.
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3.2.3 Extrapolation

Our convention for ηj is effective at describing the experimental strain regime, but can give

unpredictable results for strains outside the fitting dataset. The data covers strains up to the

breaking point of the cloth, but we still need a plausible extrapolation to regimes where the

real-life cloth would have torn apart. Although such configurations should not be observed in

practice, they can temporarily occur in the iterative solvers used for fitting and simulation.

To address this, for each entry Ẽij of Ẽ we define corresponding scalar “strain cutoffs”

Ẽmin
ij ≤ 0 and Ẽmax

ij ≥ 0 based on the boundaries of our collected data. If all three of the strain

entries satisfy Ẽmin
ij ≤ Ẽij ≤ Ẽmax

ij , then the usual energy evaluation proceeds as described

above. If some strain entries lie outside the valid regime, we instead evaluate our energy

via a two term Taylor series approximation expanded around the closest ‘valid’ strain. For

example, if Ẽ12 < Ẽmin
12 and Ẽmin

αα ≤ Ẽαα ≤ Ẽmax
αα , then the choice ψẼ in Equation (3.1) is

replaced by

ψ̂Ẽ(Ẽ11, Ẽ12, Ẽ22) = ψẼ(Ẽ11, Ẽ
min
12 , Ẽ22) +

∂ψẼ(Ẽ11, Ẽmin
12 , Ẽ22)

∂Ẽ12

∣
Ẽ12=Ẽmin

12

(Ẽ12 − Ẽmin
12 )

+ ∂
2ψẼ(Ẽ11, Ẽ12, Ẽ22)

∂Ẽ12∂Ẽ12

∣
Ẽ12=Ẽmin

12

(Ẽ12 − Ẽmin
12 )2

= a11

2
η1(Ẽ2

11) + a12η2(Ẽ11Ẽ22) +
a22

2
η3(Ẽ2

22)

+G12η4 ((Ẽmin
12 )2) + 2G12Ẽ

min
12 η′4 ((Ẽmin

12 )2) (Ẽ12 − Ẽmin
12 )

+ [2G12η
′

4 ((Ẽmin
12 )2) + 4G12(Ẽmin

12 )2η′′4 ((Ẽmin
12 )2) ](Ẽ12 − Ẽmin

12 )2

with analogous substitutions made for other combinations of valid vs. invalid strain entries.

The choice of exactly two terms in the power series expansion is the simplest possible

while still preserving the C2 nature of the extrapolated energy density necessary for fitting

and for implicit simulation. To maintain orthotropic symmetry we must use Ẽmin
12 = −Ẽmax

12 ;

thus we do not consider Ẽmin
12 as an independent model parameter.

Table 3.1 provides the full list of parameters in our model.
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Parameters Units Meaning

ρ g/m2 Mass density
τ mm Thickness
a11, a12, a22, G12 MPa Infinitesimal strain parameters
µ1i, α1j, 2 ≤ i ≤ d1, 1 ≤ j ≤ d1 − Nonlinear warp stretch response
µ2i, α2j, 2 ≤ i ≤ d2, 1 ≤ j ≤ d2 − (Roughly) nonlinear area preservation
µ3i, α3j, 2 ≤ i ≤ d3, 1 ≤ j ≤ d3 − Nonlinear weft stretch response
µ4i, α4j, 2 ≤ i ≤ d4, 1 ≤ j ≤ d4 − Nonlinear shear response
Ẽmax
ij , Ẽmin

ii , 1 ≤ i, j ≤ 2 − Transition point to extrapolation

Table 3.1: Complete list of parameters for determining cloth behavior in our model.

3.2.4 Alternative discretization using triangle mesh

Use of subdivision surface finite elements comes with two main downsides. The first of

these is difficulty with collision handling. For triangle mesh surfaces, collision schemes based

on [BFA02] are known to provide reliable simulation of collisions. Methods applying to

subdivision or NURBS surfaces are comparatively less studied although some previous work

does exist: [LZ14] attempts to adapt the standard triangle mesh collisions approach, while

[DWH14] reviews several more possible methods.

The second potential downside of subdivision surface cloth is ease of adoption. Most

existing cloth simulators rely on a triangle mesh cloth discretization. Adding the ability

to simulate using subdivision surfaces represents a nontrivial investment of implementation

time. For both of these reasons, it is valuable to note that our constitutive model (and the

corresponding fitted parameter sets) can be applied to other spatial discretizations. As a

demonstration, we have created an alternative implementation of our model using piecewise

linear finite elements on triangle mesh surfaces. New approximation and discretization steps

are required because the triangle mesh finite elements are only H1-smooth.

The Green-Lagrange strain E for Kirchhoff-Love kinematics was written in §2.1.1 as a

function E(z, ξ3). The subdivision surface discretization presented in Chapter Two uses the

full Kirchhoff-Love strain. To obtain a version computable on triangle meshes, we follow

the more traditional approach [GSH04, ZPA17, GHD03, GGW07] of expanding E(z, ξ3) in
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a Taylor series around ξ3 = 0, obtaining

E(z, ξ3) = Em(z) + ξ3Eb(z) +O((ξ3)2)

in which Em and Eb are respectively termed the membrane and bending strains. These two

strain components will be penalized by separate energy contributions in our triangle mesh

implementation; the lower-order term O((ξ3)2) will simply be ignored.

The ξ3-constant term Em(z) is just E(z,0), the midsurface strain. To penalize this strain

using our constitutive model, we simply plug Em into our model as if it were the full strain

E, and then integrate the resulting energy density over the surface in the usual way. Equiv-

alently, one can think of using the same energy computation from the subdivision surface

approach, except integrating on the midsurface only - essentially using one point quadrature

in the thickness direction instead of our usual three point Simpson’s rule. Inspection of

Equation (2.2) and Equation (2.4) reveals that the midsurface E depends only on a1 and

a2 (first derivatives of x), as opposed to the general Kirchhoff-Love E which also depends

on a1,1, a1,2, and a2,2 (second derivatives of x). Thus the midsurface energy density is well

defined even using the less regular H1 triangle mesh finite elements.

To produce a discretized bending energy based on the bend strain Eb, the orthotropic

discrete shells approach [GHD03, GGW07] uses a hinge-based discrete shape operator to

discretize the bending strain’s contribution based on an orthotropic St. Venant-Kirchhoff

model. By parameterizing the underlying orthotropic St. Venant-Kirchhoff model to match

with the linearization of our fitted model around the rest configuration, we can build a

discrete shells model that approximates our model’s bending response. In the notation of

[GGW07], we set the pre-discretization St. Venant-Kirchhoff parameters Y 0, Y 1, Y 01, and

G01 (respectively representing Young’s moduli in warp and weft directions, an optional area
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preservation term, and the shear modulus) according to

Y 0 = (a11a22 − a2
12

a11a22

)a11

Y 1 = (a11a22 − a2
12

a11a22

)a22

Y 01 = (a11a22 − a2
12

a11a22

)a12

G01 = G12.

Combining these membrane and bending energies yields an approximation of our energy

suitable for use on triangle mesh cloth. Thus even though the fitting process used subdivision

surfaces, the final parameter sets can be used with minimal effort in existing triangle mesh

based cloth simulators. Unfortunately the triangle mesh version of our model does not con-

verge under mesh refinement due to inherent limitations of the discrete shell bending model.

Despite this, the triangle mesh implementation produces visually acceptable simulations,

and can even be combined with a standard triangle mesh collision handling implementation

to run simulations involving contact. A simple plane-on-ball collision simulation is demon-

strated in Figure 3.12.

3.3 Fitting strategy

We now present the methodology for fitting our model to the experimental data, with the

following organization. First we construct a nonlinear objective function to minimize in

§3.3.1. To facilitate the optimization we fit the parameters in multiple stages which we

describe in §3.3.2. The choice of degree parameters dj is explained in §3.3.3. Due to the

complexity of the objective function it is beneficial to start when possible with good initial

guesses, which we obtain through a bootstrapping method derived in §3.4. Finally we discuss

the main fitting solver and several attendant implementation details in §3.5.
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3.3.1 Optimization objective

The experimental observations consist of force-displacement data points for each of warp,

weft, and bias stretch as well as bend test data for each of the warp and weft directions. Let

k denote the vector of all parameters of the constitutive model. For a given displacement

with corresponding measured force f̆ , we can recreate the same stretch distance using hard

constraints to simulate clamps in our finite element solver and compute the resulting equilib-

rium. This gives a simulated force f̂ = f̂(k). Similarly, the bend test data states that some

specified cloth overhang length drapes to an inclination angle of exactly θ̆ = 41.5○. Again,

we can recreate the test within our finite element solver by allowing a cloth strip of the same

length to drape under gravity and measuring the equilibrium drape angle θ̂ = θ̂(k).

We denote list of measurements to be fit as {p̆i ∶ i ∈ I} where I is an appropriate set

of indices; thus each p̆i is either a tensile force or a bend angle. We define the quality of a

proposed fit via the following optimization objective function ε:

ε(k) = ∑
i∈I

(p̂i(k) − p̆i)2

p̆2
i

(3.5)

It is important to prioritize relative error in order to accurately match the shape of the

stress-strain curve through all experimental regimes. Our datasets cover a wide variety of

strain levels, so a method based on absolute error would over prioritize accuracy in the

highest-strain experiments without accurately fitting the small strain data.

3.3.1.1 Interpretation of data from repeated tests

Each tensile experiment in our datasets is repeated multiple times, using a freshly cut cloth

strip for each iteration. Comparing the resulting force-displacement data frequently shows

relative differences of up to 20 % for a fixed elongation. The cloth strip lengths and force

measurements in our tensile tests are very precise due to the nature of the machinery used.

We believe the major source of experimental error is imprecision in lining up the target warp-
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vs-stretch-direction angles. Targeting a certain stretch angle can be a very difficult task,

especially for extremely light or stretchy materials. This task is in general easiest for warp

and weft directions; we generally expect the angle error to be larger for the off-angle stretches

in the 45○ (bias), 22.5○, and 67.5○ directions. For warp or weft experiments, a strip stretched

along the target direction will produce larger forces than a strip stretched along a direction

offset by a few degrees. Thus, given data from multiple test executions we choose the curve

with largest forces for fitting purposes, assuming that the corresponding experiment came

closest to using the target stretch direction. There is no such simple heuristic to determine

which bias cloth sample was most accurately aligned; thus we randomly select one sample

for fitting. The data points from the other four experimental repetitions are omitted from

the summation in ε.

3.3.2 Fitting in stages

We design our fitting approach around the effects of the various parameters k. In particular,

many of the test data points are almost unaffected by certain parameters leading to decou-

pling (or weak coupling) of some parameters. In particular, the warp stretch results depend

almost exclusively on the parameters τ , a11, µ1j, and α1j (for all 1 ≤ j ≤ d). Similarly, the

weft stretch results depend almost exclusively on τ , a22, µ3j, and α3j. The bias stretch forces

depend on all parameters relevant for warp or weft stretch, plus the parameters G12, µ4j and

α4j. Finally, the bend tests depend on the thickness τ together with the parameters relevant

for a stretch along that same material direction.

In light of these dependencies, we design the following fitting strategy which relies on

a series of minimizations of the objective function in Equation (3.5) over subsets of the

experimental data. The procedure is designed such that each optimization step will provide

fits for some additional parameter(s), while having no significant effect on the simulated test

results fitted in the preceding steps.

1. Select an initial guess parameter set k0. The extrapolation cutoffs Ẽmax
ij , Ẽmin

ii are ini-
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tially turned off completely. The remaining parameters’ guesses are chosen as described

in §3.4 below.

2. Minimize the objective summed over warp stretch data points only, by solving for a11,

µ1j, and α1j with all other parameters held fixed at their values from k0.

3. Minimize the objective summed over weft stretch data points only, by solving for a22,

µ3j, and α3j with all other parameters held fixed at their values from k0.

4. Choose the strain cutoffs Ẽmax
11 and Ẽmax

22 to be 95 % of the largest strain present in

the corresponding tensile tests. (Note that Ẽmin
11 and Ẽmin

22 should always be 0 for

our datasets, since we have no experimental data measuring response to warp or weft

compression.)

5. Minimize the objective summed over bias stretch data points only, by solving for G12,

µ4j, and α4j with all the preceding steps’ parameters fixed at their solved-for values

and all remaining parameters fixed at their values from k0.

6. Choose the strain cutoff Ẽmax
12 to equal 95 % of the largest strain Ẽ12 present in the

bias tensile test.

7. Finally, minimize the objective summed over the warp and weft bend data points for

the thickness τ . As τ is updated in the iterative process we modify the other small

strain parameters using anew
αβ = τ0

τ aαβ and Gnew
12 = τ0

τ G12. All tested tensile forces scale

very nearly linearly with both τ and the small-strain parameter set {a11, a12, a22,G12};

thus the parameter modifications in this step do not impact the fits of tensile data.

The parameters µij and αij are not necessarily restricted to be positive, and in several

cases the solver’s final fit does include negative parameters. aαα and G12 are also not directly

constrained, but since these are just the St. Venant-Kirchhoff parameters for infinitesimal

strain they will always be positive when fitting the experimental data. The lack of explicit

constraints on the parameters means the constitutive model is capable of representing non-

viable energy functions; for example, the energy may not be bounded below. A successful

65



parameter fitting process will necessarily choose well-behaved energies in the experimental

deformation regime due to the requirement of matching the measured data, but by default

there is no reason to expect stable results for nonphysical stretches. Our introduction of

the strain cutoffs Ẽmin
ij and Ẽmax

ij is specifically intended to ensure that the model remains

stable even outside the physical regime. This is necessary for robust simulation because

our implicit time integration occasionally requires evaluation at partially-converged position

iterates which are greatly deformed.

Our data does not exercise the energy term a12η2(Ẽ11Ẽ22) sufficiently to allow fitting. In

the linearization at zero strain, a12 determines the orthotropic Poisson’s ratios via ν12 = a12
a11

and ν21 = a12
a22

. In light of this, we use the St. Venant-Kirchhoff form η2(x) = x (i.e. d2 = 1,

µ21 = 1, α21 = 1) and set a12 = 1
2 min{a11, a22} for simplicity, which amounts to setting the

larger Poisson’s ratio to 1
2 .

3.3.3 Choice of degree parameters

In the list of fitting stages provided in §3.3.2, steps 2, 3, and 5 require fitting the curves η1, η3,

and η4 respectively. An iterative method is suitable for determining the parameters αjk and

µjk, but the integer degree parameters dj must be determined by other means. The choice

of dj strongly affects the difficulty of the fitting process. If dj is too small, ηj may not be

sufficiently expressive to model the materials’ nonlinear behavior under large deformations.

If dj is too large, we introduce near-nullspaces in the fitting process, which will complicate

the optimization problem. In practice, the ideal dj depends on the specific material being

fitted, and thus we choose dj on a per-solve basis.

To find the simplest possible model that fits the data, each solve stage is attempted first

with a degree 1 curve. The degree is then incremented until a satisfactory fit is obtained.

In warp or weft fitting, we compute initial guesses for each new curve degree based on a

procedure which will be described in §3.4. For bias fits with degree 1 curves, the optimization

is simple enough to be reliably solved regardless of the initial guess chosen. When running
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Figure 3.4: The warp stretch equilibrium is approximated by assuming constant strain across
the entire cloth object as the strip is stretched from initial dimensions `0 × w0 to deformed
dimensions ` ×w0. The weft stretch approximation takes the same form with the roles of d1

and d2 reversed.

higher degree bias fits, the previous lower-degree curve is used as an initial guess. This

approach takes advantage of the fact that a degree dj curve ηj can also be written as a

degree dj + 1 curve, simply by choosing µj(dj+1) = 0. The corresponding exponent αj(dj+1)

can be set to any value without affecting the initial energy; we choose the generic initial

exponent αj(dj+1) = 1.

3.4 Initial guesses for fitting solves

The minimization of Equation (3.5) is computationally expensive and benefits from good

initial values in k0. To obtain such initial guesses, we can first solve an approximated

optimization problem created by assuming very simple equilibrium configurations. Such

an approximated problem can be solved far more quickly because computing equilibrium

configurations is normally the main runtime expense when evaluating the objective. If the

approximated objective is sufficiently close to the original function, then the minimizing

parameter set from the approximate problem can be chosen as k0.

For the warp and weft stretches, we approximate the equilibrium by assuming that the

entire cloth undergoes constant strain as shown in Figure 3.4. For the bias stretch we

use a piecewise-constant strain assumption as discussed in [LPC08, DDB11]. The strip is

broken into several components as shown in Figure 3.5, and the components marked Aj are

assumed to remain undeformed while the components Bj and C each undergo a constant

67



e1

e2

d1

d2

A1 A2

B1

B2

B3

B4

C

φ

A1 A2

B1

B2

B3

B4

C

`0

`

w0

w0

Figure 3.5: The approximate equilibrium for the bias stretch test assumes piecewise constant
strain defined per region in the diagram. When the strip as a whole is stretched from length `0

to length `, regions A1 and A2 remain undeformed, while each other marked region undergoes
a pure shear with respect to the warp and weft directions.

pure shear with respect to the warp and weft directions. In both cases we assume the stretch

direction is e1 and the stretch-perpendicular in-plane direction is e2. The in-plane material

directions are d1 = e1 and d2 = e2 for warp stretch, d1 = e2 and d2 = e1 for weft stretch, and

d1 = 1
√

2
(e1 + e2) and d2 = 1

√

2
(e1 + e2) for bias stretch. For all tests we use the cloth normal

direction d3 = e3. The initial and deformed strip lengths along the e1 direction are denoted

by `0 and ` respectively; the initial strip width along the e2 direction is denoted by w0.

Denote the stretch factor by σ = `
`0
. Then the deformed configurations can be viewed

simply as a function of σ. To emphasize this property, the notation of §2.1 and §2.3 is
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extended: The deformation map becomes φ(p̄) = φ(p̄;σ), the full and reduced Green-

Lagrange strains become E(p̄) = E(p̄;σ) and Ẽ(p̄) = Ẽ(p̄;σ) respectively. We further define

the total hyperelastic potential of the cloth object by Ψ = Ψ(σ).

At the deformation level σ = 1+w0

`0
(
√

2−1), the bias stretch kinematic assumption predicts

a singular deformation gradient in the central region C. Thus we restrict our analysis to

stretches bounded away from that critical level, i.e. σ < 1 + w0

`0
(
√

2 − 1) − ε.

3.4.1 Power balance

Recall that the tensile experimental data only measures the clamp force component along

the main stretch axis. Denote this measured force magnitude by f̂ c; the other components

of clamp force are not relevant for this project. To build an approximate optimization

objective, we must use the approximate kinematics to compute a model-predicted clamp

force magnitude f̄ c. This predicted force is computed by equating internal and external

power as the clamp moves with a given speed σ̇. The experimental data is obtained using

very slow extension rates; thus for the following analysis we assume σ̇ is a constant with

σ̇ ≪ 1.

The external power applied to the clamp by the testing apparatus is

P ext = (force) ⋅ (velocity)

= ( f̄
c

?
?
) ⋅ ( ˙̀

0
0
)

= f̄ c`0σ̇. (3.6)

The internal power applied by the cloth strip is expressed in terms of the cloth potential

energy V and kinetic energy T as

P int = V̇ + Ṫ . (3.7)

We assume V equals the hyperelastic potential Ψ, ignoring the comparatively insignificant
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gravity contribution. Then the potential energy term in Equation (3.7) is

V̇ = ∂Ψσ(σ)
∂σ

σ̇. (3.8)

To analyze the kinetic energy term Ṫ we begin from Equation (2.10) and compute:

T = 1

2 ∫Ω
τ
ρ̄(p̄)∥φ̇(p̄;σ)∥2dp̄

= σ̇
2

2 ∫Ω
τ
ρ̄(p̄) ∥∂φ

∂σ
(p̄;σ)∥

2

dp̄. (3.9)

Let I(σ) denote the integral quantity in Equation (3.9), so that T = σ̇2

2 I(σ). It may be verified

for either set of kinematic assumptions (in Figures 3.4 or 3.5) that I(σ) is a differentiable

function of σ with bounded derivative; the straightforward proof amounts to writing out

explicit expressions for I(σ) and is omitted here. As a result, the time derivative Ṫ satisfies

Ṫ = σ̇ σ̈I(σ) + σ̇
3

2

∂I(σ)
∂σ

.

The first term is zero due to the assumption σ̈ = 0. The second term lies in O(σ̇3) and is

thus insignificant compared to the σ̇-linear term in Equation (3.8) because of the assumption

σ̇ ≪ 1. Therefore the kinetic energy term Ṫ can be safely ignored, so the power balance

condition is obtained from Equation (3.6) and Equation (3.8):

`0f̄
cσ̇ = ∂Ψσ(σ)

∂σ
σ̇

f̄ c = 1

`0

∂Ψσ(σ)
∂σ

. (3.10)

To make use of this expression, explicit expressions for Ψ(σ) are necessary; these will depend

on the specific kinematic assumptions chosen.
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3.4.2 Potential energy as a function of stretch

In the approximate equilibrium for warp stretch, the deformation gradient at any undeformed

position is F = ( σ 0 0
0 1 0
0 0 1

), which produces the reduced strain Ẽ = ( σ2−1
2

0

0 0
). Thus in terms of

our model in Equation (3.1), the hyperelastic potential is

Ψ(σ) = ∫
Ω
τ
ψE(E(p̄;σ))dp̄

= vol(Ωτ)ψẼ (σ
2 − 1

2
,0,0)

= `0w0τ
a11

2
η1 ((

σ2 − 1

2
)

2

) . (3.11)

The computation for weft stretch is analogous and yields

Ψ(σ) = τ`0w0
a22

2
η3 ((

σ2 − 1

2
)

2

) . (3.12)

For the approximate bias stretch equilibrium, the piecewise-constant strain necessitates

a separate term in the energy computation per strain region. In all regions, the deformation

gradients map e3 ↦ e3. In regions A1 and A2, the deformation gradient is just an identity

matrix and so there is no energy contribution. For the region C, inspection of a central hor-

izontal line before and after deformation shows that the deformation gradient FC = FC(σ)

maps e1 ↦ `−w0

`0−w0
e1 = `0σ−w0

`0−w0
e1. The kinematic assumptions require that every region under-

goes a pure shear with respect to warp and weft, so ∥FCd1∥ = 1. By vertical symmetry we

also know FCe2 must be a multiple of e2. These facts are sufficient to uniquely determine

FC :

FC(σ) =

⎛
⎜⎜⎜⎜⎜
⎝

`0σ−w0

`0−w0
0 0

0
√

2 − ( `0σ−w0

`0−w0
)2

0

0 0 1

⎞
⎟⎟⎟⎟⎟
⎠
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The resulting reduced strain ẼC can be simplified as

ẼC(σ) =
⎛
⎜
⎝

0 ẼC
12(σ)

ẼC
12(σ) 0

⎞
⎟
⎠

ẼC
12(σ) =

1

2
((`0σ −w0

`0 −w0

)
2

− 1) .

(3.13)

The deformation gradient FB1 for region B1 is determined using continuity across the

shared boundaries with regions A1 and C, which requires FB1(e1−e2) = e1−e2 and FB1(e1+

e2) = FC(e1 +e2). These requirements fully determine FB1 , and the resulting reduced strain

is

ẼB1(σ) =
⎛
⎜
⎝

0 ẼB1
12 (σ)

ẼB1
12 (σ) 0

⎞
⎟
⎠

ẼB1
12 (σ) = 1

4

⎛
⎜
⎝
`0σ −w0

`0 −w0

−

¿
ÁÁÀ2 − (`0σ −w0

`0 −w0

)
2⎞
⎟
⎠
.

(3.14)

Due to vertical symmetry, the regions B2, B3, and B4 share the same reduced strain, hereto-

fore written simply as ẼB with nonzero entry ẼB
12; the combined region is notated B = ∪jBj.

The hyperelastic potential can now be constructed in terms of Equation (3.13) and Equa-

tion (3.14):

Ψ(σ) = ∫
Ω
τ
ψE(E(p̄;σ))dp̄

= vol(B)ψẼ (0, ẼB
12(σ),0) + vol(C)ψẼ (0, ẼC

12(σ),0)

= τw2
0G12η4 (ẼB

12(σ)2) + τ(`0w0 −
3

2
w2

0)G12η4 (ẼC
12(σ)2) (3.15)

3.4.3 Implementation and predictive accuracy

The final model force f̄ c is constructed by substituting into the power balance Equation (3.10)

using Ψ(σ) from Equation (3.11) (for warp experiments), Equation (3.12) (for weft), or

Equation (3.15) (for bias). An approximated version of Equation (3.5) is then created by
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substituting the approximate model forces f̄ c in place of the model forces from finite ele-

ment analysis f̆ c. The resulting minimization problem is solved numerically by a Wolfram

Mathematica [Inc16] routine using Newton’s method with a line search. The simplicity of

the approximated objective makes the solver runtime negligible even with a generic initial

guess, while the symbolic algebra capabilities of Mathematica mean that the formulas we

have provided for Ψ(σ) are sufficient to implement the solver without requiring analytic

formulas for ∂Ψ(σ)
∂σ .

The usefulness of the approximated problem’s solution as an initial guess k0 for the full

optimization problem depends on the accuracy of the assumed equilibria. Figure 3.6 provides

sample quasistatic equilibria computed in the finite element solver for intuition purposes. Of

course, the truly important factor is not visual similarity but rather the difference between

forces in the two equilibria.

Comparison of Figures 3.4 and 3.6 reveals that the warp stretch equilibrium almost

perfectly matches the assumed kinematics. In fact, for warp and weft stretches the forces

computed using approximate equilibria typically come within 1 % of the forces obtained using

a full finite element quasistatic solve; the worst observed errors rise up near 3 %. This means

our approximate optimization problem is a very good model for the full solve, and therefore

the initial guesses k0 we obtain are very close to the final fitted parameters k. These initial

guesses greatly reduce solver runtime for the phases which fit warp and weft stretch data.

Figure 3.6: Finite element equilibria for warp (left) and bias (right) tensile tests at a
deformation level of 15 %. The approximate kinematics (Figs. 3.4, 3.5) predict the warp
equilibrium almost exactly but are inaccurate for the bias equilibrium.
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The bias stretch equilibria in Figures 3.5 and 3.6 are visually similar but clearly different.

In our experiments, the forces from the approximate kinematics are frequently stronger

than the finite element version by a factor of 1.25 or more. Due to this discrepancy, the

approximate problem’s solution is not beneficial as an initial guess for the main solver, and

in fact often provides worse performance than starting from generic starting parameters.

[DDB11] observe the same inaccuracy and suggest multiplying the approximate equilibrium’s

forces f̄ c by an ad-hoc scalar to better approximate the true equilibrium forces f̆ c. However,

outside of the small strain regime our tests show the nonlinear behaviors of f̄ c and f̆ c cannot

be related by a simple linear multiplier. As a result of these difficulties, we are forced to

discard the approximate equilibrium approach for the bias stretch test, accepting a lengthier

runtime cost for the corresponding solver phase.

The approximate bias stretch equilibrium described in this section only makes sense if

the initial strip aspect ratio satisfies `0
w0

>= 2. This criterion is violated for our canvas, cotton,

and silk datasets. [WPP98] provides a different version of the equilibrium for aspect ratios
`0
w0

< 2. We have not tested initial guesses created using that modified assumption but we

expect that approach would encounter similar difficulties.

We are not aware of any plausible approximate equilibrium for the bending experiment.

Instead, we choose the thickness guess to be the experimentally measured thickness. With

this guess, the solver still incurs a significant runtime cost but performance is improved over

choosing the same generic thickness guess for all materials.

3.5 Main fitting solver

For the final optimization steps in §3.3.2 we explored using both BFGS and Gauss-Newton

methods, together with a line search protocol which guarantees satisfaction of the strong

Wolfe conditions. Here we discuss the steps needed in computing the functional ε(k) and

its derivatives as needed in these approaches, as well as various subtle points which arise in

building an efficient and robust solver for this optimization problem. The resulting iterative
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minimization routine is summarized in Algorithm 3.1.

3.5.1 Equilibrium configuration

Given a mesh configuration q, the corresponding clamp forces (for tensile tests) or drape

angle (for bend test) can be computed as a simple function of q. However, our optimiza-

tion objective function ε = ε(k) depends on various simulated equilibrium measurements

p̂i(k). In other words, to evaluate the terms p̂i(k) appearing in the definition of ε (at each

new solver step or line search iteration) we must compute the associated mesh equilibrium

configurations.

We use qe = qe(k) and λe = λe(k) to denote the equilibrium configuration and Lagrange

multipliers determined by the parameters k. These are obtained by solving the force balance

in the absence of inertia and damping (see Chapter Two for derivation of the force balance

system) while satisfying the linear boundary condition constraints. The resulting discretized

nonlinear system is

f (qe;k) +BTλe = 0

Bqe = b.
(3.16)

As defined in §2.5, f = f (q) denotes the combination of elastic and gravity forces; here, we

write f (q;k) to emphasize that f also depends on the model parameters. We adapt the

notation ψq(q) to ψq(q;k) for the same reason. B and b express the boundary conditions.

For a tensile experiment, these boundary conditions describe the clamped edges held fixed

at the appropriate stretch distance. For a bend experiment, a clamped constraint is chosen

along one edge of the cloth to simulate draping over the edge of a fixed plane without relying

on cloth collisions.

3.5.1.1 Quasistatic solver implementation

The fitting process requires solving many quasistatics problems of the form in Equation (3.16)

for each BFGS iteration. For example, if a fitting solve attempts to match 16 data points
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Algorithm 3.1 Structure of the BFGS fitting solver
Require: function quasistatic_equilibria(k,q) returning equilibria qe for all solver

meshes (§3.5.1)
Require: function evaluate_objective_and_gradient(k,q) returning ε and ∂ε

∂k (§3.5.2)
Input: initial guess k0 (from §3.4, or from a previous BFGS solve as per §3.5.3)
1: qb ← basic configurations for all meshes (§3.5.6)
2: n← 0
3: bfgsNeedsReset ← true
4: stepsSinceBfgsReset ← 0
5: loop // main BFGS loop
6: // Set starting configuration for this BFGS iteration’s quasistatic solves. (§3.5.6)
7: if bfgsNeedsReset then
8: qn ← quasistatic_equilibria(kn,qb)
9: else
10: qn ← quasistatic_equilibria(kn,qn−1)
11: end if
12:
13: // Set approximate inverse Hessian Q. (§3.5.5)
14: (ε, ∂ε∂k) ← evaluate_objective_and_gradient(kn,qn)
15: if bfgsNeedsReset then
16: Q← inverse of Gauss-Newton’s approximate Hessian
17: bfgsNeedsReset ← false
18: else
19: Update Q based on the most recent step using BFGS rules.
20: end if
21:
22: // Compute and take the next step.
23: ∆k ← −Q ∂ε

∂k

24: α ← step scalar from line search (§3.5.7)
25: kn+1 ← kn + α∆k
26: stepsSinceBfgsReset ← stepsSinceBfgsReset +1
27:
28: // Check for sufficient progress and halting criterion. (§3.5.5)
29: if stepsSinceBfgsReset ≥ 5 and last 5 steps give total reduction < 0.1% then
30: if stepsSinceBfgsReset = 5 then
31: halt execution and return kn.
32: else
33: bfgsNeedsReset ← true
34: stepsSinceBfgsReset ← 0
35: end if
36: end if
37: n← n + 1
38: end loop
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from a bias stretch experiment, then 16 distinct cloth meshes must be maintained because

each data point corresponds to a distinct stretch level and thus requires computation of a

different equilibrium configuration. Then at each objective value or gradient evaluation, the

cloth meshes for every data point must all be evolved to equilibrium states based on the

current iterate for k. As a result, the position vectors qn, qb, qe, qcurr, and q in Algorithms

3.1 and 3.2 should all be understood as referring to the combined list of positions for all

relevant meshes.

Each nonlinear quasistatic problem is solved using Newton’s method to minimize the

total of hyperelastic and gravitational potential cloth energy subject to the given linear

constraints. As described for dynamic simulation problems in §2.7, the Newton solver is

augmented by a line search procedure which ensures each step satisfies the strong Wolfe

conditions. The linearization of Equation (3.16) is a KKT system; as in §2.8, these symmetric

indefinite systems are solved using the PARDISO routine in Intel’s MKL. Unfortunately, the

linear systems resulting from the quasistatic problem often exhibit condition numbers on the

order of 1010, which easily can lead to inaccurate solutions. As a result the Newton step

can sometimes be an ascent direction for the energy or otherwise fail to produce significant

progress, even when the current iterate is visibly not a local energy minimizer. The solver

escapes from such situations by taking several backward Euler time steps before returning

to the Newton iteration process. Comparison of Equation (2.35) with Equation (3.18) shows

that the linear systems in backward Euler steps benefit from a reduced condition number

since they include the additional positive definite, diagonally dominant term h−2M. This

use of backward Euler simulation as a failsafe is triggered anytime three consecutive Newton

steps give a combined energy reduction of 0.1 % or less, or immediately if Newton chooses

an ascent direction for the cloth energy. A potential alternative is to leverage the method in

[VM07].

As mentioned above, cloth quasistatics problems tend to be extremely ill-conditioned.

Thus it is critical to retain as much precision as possible. We address this in three steps. First,

we upgrade OpenSubdiv from single to double precision arithmetic. Second, we use iterative
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refinement in our linear solves, using quad precision to store the residual. Finally, we are

careful to choose a sufficient number of Gaussian quadrature points. We find 4×4 quadrature

points to be sufficient, based on the heuristic discussion in §2.5 and also on numerical testing

based on a quasistatic solver implementation with arbitrary Gauss quadrature order. Despite

these considerations, there still exist fairly simple quasistatics problems on which our solver

fails to make progress. However, our solver is robust enough to handle all problems which

arise during the course of the model fitting procedure.

3.5.2 Differentiating the equilibrium configuration

To minimize ε(k), both BFGS and Gauss-Newton require differentiation of each term in the

sum in Equation (3.5). That is, for a given experimental measurement p̆, we must compute

∂

∂k
((p̂(k) − p̆)

2

p̆2
) . (3.17)

Each simulated force f̂(k) is a linear function of the corresponding equilibrium Lagrange

multipliers λe. Simulated angles θ̂(k) can be written as a linear function of qe (which specifies

the horizontal and vertical distance between two ends of the cloth) composed with an inverse

trigonometric function. In either case, the main difficulty of evaluating Equation (3.17) lies

in computation of ∂qe

∂k .

The function qe(k) is defined implicitly via the system in Equation (3.16). To compute its

derivative we must differentiate the entire equilibrium system. Note that the term f (qe;k)

depends on k both through qe = qe(k) and through the usual dependence of elastic forces

on the model parameters. The differentiated system is

∂f

∂q

∂qe

∂k
+ ∂f
∂k

+BT ∂λ
e

∂k
= 0

B
∂qe

∂k
= 0.

Here ∂f
∂q = −K is the negative Hessian of the elastic potential V , and ∂f

∂k can be computed
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directly. Then the unknowns ∂qe

∂k and ∂λe

∂k can be obtained by solving the linear system

⎛
⎜
⎝

K BT

B 0

⎞
⎟
⎠

⎛
⎜
⎝

∂qe

∂k

−∂λe∂k

⎞
⎟
⎠
=
⎛
⎜
⎝

∂f
∂k

0

⎞
⎟
⎠
. (3.18)

The matrices ∂qe

∂k and ∂f
∂k each have ∣k∣ columns. Thus Equation (3.18) really represents ∣k∣

linear systems, each with the same system matrix but a different right-hand side. Once again,

the KKT systems are addressed using Intel’s PARDISO routine (see §2.8), which operates by

explicit matrix factorization followed by back-substitution. As a result consecutive solves of

the same system are much faster, since only the back-substitution phase must be repeated.

Each step in §3.3.2 requires at most 2dj free parameters in k, where dj depends on the degree

of curve ηj being fitted. In this project all final fitted degrees satisfy dj ≤ 5, so there are at

most 10 distinct columns of ∂qe

∂k . As a result of these factors, the total solve time for the ∣k∣

linear systems in Equation (3.18) is only slightly more costly than a single linear solve, and

overall is dwarfed by the much more expensive computations of qe.

For meshes associated with a force measurement f̂(k), the linear solution process could

be optimized slightly using the adjoint method [GP00]. Since f̂(k) is a linear function of

λe, one need not fully evaluate ∂qe

∂k and ∂λe

∂k if the product ∂f̂
∂λe

∂λe

∂k can be computed directly.

Indeed, the desired product can be reformulated starting from

∂f̂

∂λe
∂λe

∂k
= −(0 ∂f̂

∂λe
)
⎛
⎜
⎝

K BT

B 0

⎞
⎟
⎠

−1

⎛
⎜
⎝

∂f
∂k

0

⎞
⎟
⎠

by transposing both sides to obtain

( ∂f̂
∂λe

∂λe

∂k
)
T

= −( ∂f
∂k

T
0 )

⎛
⎜
⎝

K BT

B 0

⎞
⎟
⎠

−1

⎛
⎜
⎝

0

∂f̂
∂λe

T

⎞
⎟
⎠
.

The transformed right-hand side can be evaluated with just one KKT matrix solve since
∂f̂
∂λe

T

is a single column vector. The adjoint method can also be applied to the bending tests
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by a similar analysis. The simulated drape angle can be computed from the horizontal and

vertical distance between two ends of the cloth, which are both scalar linear functions of

qe; thus the adjoint method requires 2 linear solves instead of ∣k∣. However, as discussed

in §3.3.2, the bend test fitting phase solves for only one parameter, so the adjoint method

is actually slower in this case. In fact, we do not implement the adjoint approach even

for tensile tests, simply because the runtime of ∣k∣ linear solves with the same system is

insignificant to the overall fitting solver runtime.

3.5.2.1 Parameter derivatives of force

Computation of the parameter derivatives ∂f
∂k requires a method for constructing ∂2ψq

(q;k)
∂q∂k ,

which will then be used in a quadrature integral approximation based on Equation (2.24).

To obtain the necessary energy density derivatives, we differentiate Equation (2.36) with

respect to k, obtaining
∂2ψq

∂q∂k
= ∂2ψE

∂E∂k

∂E

∂z

∂z

∂q

having noted that ∂E
∂z and ∂z

∂q are kinematics-based quantities with no dependence on the

chosen constitutive model or its parameters k. The k-derivative of Equation (2.40) reveals

∂2ψE

∂Eab∂k
=Dqa

∂2ψẼ

∂Ẽqr∂k
Drb.

Finally, the derivatives ∂2ψẼ

∂Ẽqr∂k
are computed by the chain rule from Equation (3.1) together

with formulas for the k-derivative of Equation (3.2):

∂η′j(x)
∂µji

= (x + 1)αji−1

∂η′j(x)
∂αji

= µji(x + 1)αji−1 log(x + 1)

The implementation details for combining the various chain rule steps are analogous

to the computation for ∂2Ψ
∂q∂q , and are thus incorporated into the same implemented proce-
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dures. Adding the computation of ∂2ψ
∂q∂k incurs a significant runtime cost as compared to

just computing ∂2ψ
∂q∂q , and most energy Hessian evaluations do not require a corresponding

evaluation of ∂f
∂k . After all, ∂f

∂k is only computed once per quasistatic equilibrium obtained

during a fitting solve, and is never needed for everyday simulation purposes, while the en-

ergy Hessian K must be updated at every Newton step during both quasistatic solves and

simulations. Thus similarly to the Hessian-free energy computation described in §2.11.5,

the energy computation accepts a boolean flag which controls whether the force derivatives

must be computed, and skips the corresponding computations and memory allocations if

possible. In this way, the same energy computation routines are able to efficiently handle

any combination of energy derivatives which might need to be computed.

3.5.3 Multiresolution meshing and curve sampling

Cloth simulation based on subdivision surface finite elements has the advantage of higher-

order convergence under mesh refinement as compared to simpler finite elements or approx-

imations thereof. We use this feature to speed up our fitting process. In particular, we run

each fitting solve using a comparatively coarse mesh resolution to describe each simulated

experiment. The resulting parameters are then used as an initial guess for a higher resolution

fitting solve. This process may be repeated as many times as desired to obtain satisfactory

convergence of high-resolution fitting solves more quickly than would be possible without

such a means of generating initial guesses. In practice, we use this technique only for the

solves involving tensile data. For canvas, cotton and silk, we use an 8 × 12 grid of finite

elements for our coarsest meshes. Then we progress upward through resolutions 16× 24 and

finally 32× 48 to refine the fit. For denim and wool we use 8× 24, 16× 48, and 32× 96 grids.

Due to variance in the sampling rate during tensile experiments as well as different

final stretches sustained before material failure, the experimental curves comprise numbers

of data points ranging from 80 to 250. According to the optimization objective ε, each

of these points should be weighted equally in the fitting process. However, as previously

mentioned the BFGS solver runtime per objective evaluation is dominated by the cost of
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computing quasistatic equilibria, and thus the cost is nearly linear in the number of data

points being fit. To take advantage of this phenomenon, we first run initial fitting solves at

each mesh resolution using only 16 uniformly sampled points from the experimental curve.

The resulting parameters are then used as an inital guess for a refinement fit at the highest

mesh resolution which includes all experimental data points. The number 16 is chosen purely

by experimenting to make the initial fits proceed at a reasonable speed while also ensuring

that the resulting parameters are sufficiently accurate to make the refinement fit with all

data points converge within a few BFGS steps. A potential future improvement could be to

automate the process of fitting at several sampling densities. More testing would be required

to decide whether fitting many sample densities in sequence provides runtime benefits, or

whether the current method of jumping from 16 points directly to the full dataset already

reaps most of the available efficiency benefits.

3.5.4 BFGS vs. Gauss-Newton

The complexity of the fitting solves depends heavily on the choice of the degree dj for each

function ηj in the energy definition. For degree 1, either optimization method is reliable.

However, Gauss-Newton frequently stalls in fitting curves of degree 2 or larger, repeatedly

choosing search directions that allow virtually no progress. BFGS is robust in solving degree

2 and 3 problems, and successfully handles problems of degrees 4 and 5 when using the initial

guesses specified in §3.4. We generally find degree 2 or 3 to be the minimum requirement

for accurate fitting of our datasets. Thus the improved performance of BFGS as compared

to Gauss-Newton is crucial to building a successful solver.

3.5.5 BFGS implementation

The BFGS algorithm requires an initial approximation of the objective function’s inverse

Hessian as an input. Since we implement both BFGS and Gauss-Newton methods, we

simply compute and explicitly invert the Gauss-Newton approximate Hessian. Each BFGS
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execution solves for 10 or fewer unknown parameters, so the runtime cost of inverting the

Hessian is immaterial. Alternatively, we obtain successful convergence by choosing the initial

Hessian to be the ∣k∣ × ∣k∣ identity matrix. However, the identity guess generally leads to

very slow progress for the first few iterations, and so the Gauss-Newton approximation is

recommended for efficiency reasons.

The accumulation of the approximate inverse Hessian is allowed to proceed as long as the

solver continues to make progress. Once the optimization function fails to decrease by 0.1 %

over five consecutive steps, the inverse Hessian is reset to the Gauss-Newton initial guess.

When no significant progress is made within the first five steps after a BFGS reset, the

solve halts and if applicable restarts with the next higher mesh resolution. Experimentation

has shown that when BFGS no longer makes progress, adding random perturbations to the

parameters as suggested in [WOR11] in hopes of escaping from a local minimum is rarely

beneficial. The fitted models often include very large - and thus sensitive - parameters αij

and µij, so blindly tweaking the parameters can yield huge energies from which the solver

has a difficult time recovering. Tiny perturbations can avoid this effect, but also are usually

insufficient for escaping from the offending local minimum. As a result, we do not use this

perturbation idea except on the final dense mesh in the multiresolution approach.

3.5.6 Multi-valued objective

The objective function ε is written in Equation (3.5) as a function ε(k), but in reality this is

a slight abuse of notation. Due to the dependence on computation of equilibria, the objective

value is also affected by the initial positions chosen for those quasistatic solves, since many of

the data points have multiple local energy minima which could serve as equilibrium positions.

To see this, consider the bias stretch test, which commonly induces out-of-plane buckling.

Quasistatic problems featuring buckling almost universally possess at least two possible

equilibria, since the vertical reflection of a local energy minimizer is generally very close

to another minimum. Fortunately, our tests indicate that for experiments in our datasets,

the various possible equilibria nearly always exhibit force measurements within 0.5 %. This
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provides some justification for designing the fitting method as if ε is a single-valued function,

but caution must still be taken.

For example, assuming ε is single-valued suggests a runtime optimization for the qua-

sistatic solves. Suppose the objective function was recently evaluated at k, so that for each

data point an equilibrium mesh qe(k) has been computed. Then for the next objective

function evaluation at k̃, the solver can use qe(k) as an initial guess when computing qe(k̃).

The resulting guesses prove quite successful in improving runtime because the parameters

usually do not change drastically between consecutive evaluations.

However, this initial guess method means that evaluating ε at the same k twice will yield

different results, especially if a drastically different parameter set k̃ has been evaluated in

between. This creates problems during the line search algorithm, which is carefully designed

to narrow down certain ranges which are guaranteed to contain a step size satisfying the

strong Wolfe conditions. The BFGS solver occasionally experiences iterations with small

progress, and during such steps the multi-valued nature of the computed equilibria can

cause the line search to restrict its domain to a region with no valid step sizes.

At the other extreme, the problem with multi-valued ε can be avoided entirely by simply

choosing one basic configuration for each mesh at the start of the solve – for example, the

constant strain configuration from Figure 3.4 – and using that configuration as the initial

guess every time that mesh must be brought to equilibrium. In this way, ε is made truly

single-valued, since the computed equilibria no longer depend on previously computed values

k. The resulting method does not suffer from the aforementioned problems during line search,

but a heavy cost is paid in runtime: evaluating at several nearby values k requires solution

of extremely similar quasistatic problems, using the same poor initial guess each time.

Fortunately, a middle ground is available which provides fast solves and also robust

line search. The multi-valued nature of ε only causes problems through inconsistent values

computed during the line search procedure. Our solution is to choose a consistent initial

guess qn at the start of each BFGS iteration; thus if the current BFGS iterate is kn and

we wish to compute the next step kn+1, all line search evaluations of ε will use the initial
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guess configuration qn. In this way we ensure that each line search deals with a single-valued

function while still allowing the choice of a useful initial guess.

In general, qn is chosen as the quasistatic solution obtained by starting from positions

qn−1 and using parameters kn. However, a different procedure is used on the very first

BFGS step as well as immediately after the BFGS approximate inverse Hessian is reset. For

those cases we first define a basic configuration qb for each mesh, namely a constant strain

configuration for tensile tests and a flat (undeformed) configuration for bending tests. Then

qn is selected as the quasistatic equilibrium computed by starting from qb with parameters

kn. The effect of this periodic reversion to the basic configuration is to prevent an undesirable

local energy minimizer from propagating through the entire BFGS solve.

3.5.7 Step size management

The objective function can be very sensitive to slight changes in the parameters, and espe-

cially in the parameters µij and αij which control the shape of the nonlinear functions ηi. As

a result, evaluations of ε may simply fail if the line search step attempted is too large. For

example, the nature of our parameterization for ηi allows unbounded negative energies to

be represented, and ε can certainly not be evaluated if the associated quasistatic problems

reach such poorly behaved configurations.

This problem is addressed in two parts. First, the line search is modified to detect failing

quasistatic solves and fail gracefully when necessary. If failure is encountered, the solver

considers the successful evaluations already performed during the current line search, and

returns whichever step size gave the largest objective function reduction. If no evaluation

performed thus far gave a reduction in ε (for example, if failure was encountered on the very

first evaluation of this line search) then the search direction is multiplied by 0.1 and the line

search is restarted. Sufficiently small steps will always allow evaluation of ε, and even if this

process sometimes leads to a small step in k, BFGS tends to recover within a few iterations

and make significant progress once again.
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Algorithm 3.2 Specialized line search for BFGS fitting solver
Input: starting configuration qn, current parameters kn

Input: search direction ∆k
1: Scale down ∆k if necessary so no parameter changes by more than 25%.
2: Run Wolfe conditions line search as described in [NW06].
3: for each evaluation site kcurr required by line search do
4: qcurr ← quasistatic_equilibria(kcurr,qn)
5: (ε, ∂ε∂k) ← evaluate_objective_and_gradient(kcurr,qcurr)
6: Compute derivative along search direction from ∂ε

∂k .
7: end for
8: if some line search evaluation cannot be completed then
9: if at least one objective-reducing kcurr has been found during this line search then
10: return the step size which produced the largest reduction found thus far.
11: else
12: Multiply ∆k by 0.1 and restart this line search algorithm.
13: end if
14: else // Line search completed successfully.
15: return the computed step size.
16: end if

The second part of our fix is search direction clamping. The search direction initially

passed into line search is not allowed to change any parameter by more than 25 %; if necessary,

the entire search direction is rescaled to obey this clamping criterion. This protects the solver

from running lots of failed evaluations in case of a wildly oversized BFGS step, which can

sometimes occur in the first few iterations of a fitting solve. Our line search implementation

uses the passed-in search direction as its first guess, but is capable of returning longer step

sizes if necessary; in fact, the search interval is extended by doubling as necessary to ensure

efficiency even when the optimal step is many times the size of the search direction. Thus

in cases where the clamping is more restrictive than necessary, the line search still quickly

produces an acceptable step, which is often 30 or more times the clamped size. Of course,

if the doubling step sizes eventually jump too far and an evaluation of ε fails, the graceful

failure approach described above will still allow selection of a fairly large successful step.

The choice of 25 % as the relative step size for clamping is based on hand-tuning over the

course of several fitting solves, weighing the cost of failed ε evaluations due to underclamping

against the cost of additional line search evaluations due to clamping too severely.
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Fabric Density Thickness Thread count Weave
[g/m2] [mm] [ends/” × picks/”]

Canvas 294.0 0.53 108 × 56 Basket
Cotton 103.6 0.18 140 × 86 Plain
Silk 83.0 0.18 653 × 123 Satin
Wool 480.6 1.28 32 × 28 Twill
Denim 400.0 0.66 70 × 47 Twill

Table 3.2: Measured properties of the test materials.

These augmentations of the Wolfe conditions line search are summarized in Algorithm

3.2.

3.6 Results

The material model and fitting procedure are demonstrated by fitting parameters for five

materials: canvas, cotton poplin, silk charmeuse, wool coating, and denim. Table 3.2 summa-

rizes measurable properties of the materials, and Table 3.3 provides the final fitted parameter

sets. Our target criterion for a successful fit is for the magnitude of fitting error to be smaller

than the unavoidable error sources inherent in our framework. The most significant of these

is experimental error: the relative difference between 5 executions of the same tensile ex-

periment is often 15-20 % for a fixed elongation. Smaller errors are introduced through the

numerical discretization, nonlinear solver residual, Kirchhoff-Love hypotheses, and interpre-

tation of data from slowly-moving tensile experiments as representing quasistatic equilibria.

We provide plots comparing experimental vs modeled forces in Figure 3.7. Quantitatively,

the accuracy of fitted curves is judged by computing the average relative error over the

domain. This is just a rescaling of `1 error to view the result as a percentage. The fitting

process produces average relative error under 5 % in most cases; see Table 3.4. Thus our fits

are well within the level of experimental error in the data.
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Parameter Canvas Cotton Silk Wool Denim
τ 0.370 0.253 0.239 0.815 0.565

a11 5.366 15.557 4.300 2.290 4.793
d1 2 3 2 5 5
µ12 −1880.386 4.952 −60.769 14.589 −1482.055
µ13 348.919 −169.472 276.426
µ14 8.812 2407.671
µ15 274.830 3416.789
α11 22.619 −63.206 −2.230 −85.275 −7.809
α12 22.082 −550.784 −115.578 −0.777 10.804
α13 −54.525 −79.055 18.952
α14 −294.608 −12.887
α15 −79.058 1.690

a12 2.683 7.779 4.971 1.145 4.515
d2 1 1 1 1 1
α21 1 1 1 1 1

a22 19.804 25.004 9.942 2.219 9.029
d3 3 3 2 5 5
µ32 70.532 −285.733 −12.460 9.062 0.658
µ33 −41.905 2873.813 0.422 −185.695
µ34 9295.356 −45.815
µ35 16171.138 146.977
α31 212.682 109.194 −2.612 −63.857 12.714
α32 149.080 102.720 −195.533 −0.0174 −12802.045
α33 69.532 108.583 −18575.181 17.907
α34 −63.857 30.067
α35 −63.884 24.683

G12 2.009 1.076 0.570 0.371 2.448
d4 3 2 3 4 3
µ42 −1.805 −7.362 −3503.817 −1386.919 0.798
µ43 −16.679 291.591 1083.167 11.082
µ44 −2.252
α41 2.100 5.973 −2.926 −9.327 2.949
α42 0.869 3.496 −3.205 −6.781 −2823.863
α43 1.132 −6.401 −6.018 4.298
α44 2.040

Ẽmin
11 0 0 0 0 0

Ẽmax
11 0.11 0.14 0.41 0.50 0.28

Ẽmin
22 0 0 0 0 0

Ẽmax
22 0.067 0.14 0.34 0.62 0.28

Ẽmax
12 0.059 0.063 0.11 0.12 0.050

Table 3.3: Final fitted parameter sets for the five test materials. Thickness (τ) is measured
in mm; parameters a11, a12, a22, and G12 use MPa; all other parameters are dimensionless.
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Figure 3.7: Force-elongation curves for 5 cm wide strips of canvas, cotton, silk, denim,
and wool. Measured data is shown with dashed lines while fitted curves are shown in solid.
The top set of plots shows the full strain domain while the bottom set shows a closeup for the
small-strain regime. Each plot shows curves for warp (green), weft (blue) and bias (brown).
Dots show individual data points, which are only shown in the small strain plots for legibility.

Fabric Warp Weft Bias

Canvas 1.9 % 2.0 % 5.1 %
Cotton poplin 2.9 % 3.2 % 2.6 %
Silk charmeuse 1.9 % 1.7 % 4.5 %
Wool coating 1.1 % 0.8 % 3.4 %
Denim 1.6 % 2.3 % 4.7 %

Table 3.4: Average relative error of the fitted models vs. the experimental data.
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Figure 3.8: Demonstration of the improvement of fit quality as the model complexity in-
creases for silk. For warp and weft, degree 2 is sufficient to fit the experimental data well
(average relative error under 2 %). For bias, the transition from degree 2 to 3 still makes
significant progress (average relative error reduces from 6 % to 4.5 %). In all cases, an or-
thotropic St. Venant-Kirchhoff model provides a poor fit. Due to our minimization of relative
error, the small strain regime is prioritized even when using models too simple to match the
full curve.
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Figure 3.9: Relative error plots for tensile tests at 22.5○, 45○, and 67.5○ after adjusting for
accidental cloth sample misalignments. The black curve shows the relative difference between
the largest and the smallest unadjusted force measurements. Each of the remaining curves
shows the relative error of the model fit compared to the experimental data for one cloth
specimen. With very few exceptions the fitting error is well below the experimental error.

Figure 3.8 demonstrates the progression of fit quality as the degrees dj are increased and

the resulting choice of degrees to fit the data accurately while minimizing model complexity.

Table 3.3 gives the final list of curve degrees chosen for each material. The bending tests

match less accurately. Recall that by design of the bending experiment, all cloth samples

should drape downward at an angle of 41.5○. However, our fitted models produce a wide

range of drape angles for some materials; see Table 3.5.
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Fabric Warp drape Weft drape

Canvas 54.6○ 23.7○

Cotton poplin 43.5○ 39.2○

Silk charmeuse 52.8○ 26.2○

Wool coating 42.2○ 40.7○

Denim 50.6○ 30.0○

Table 3.5: Bend test drape angles for the fitted models. To match experimental data, all
drape angles should equal 41.5○.

For validation, the modeled forces are compared against tensile experiments at stretch

directions 22.5○ and 67.5○ from weft. Each validation experiment is executed 5 times. To

allow for the difficulty of accurately cutting strips at specific angles, we solve for an unknown

angle deviation ∆θ in each experimental run; thus the model forces used for comparison

assume the strip is aligned at 22.5+∆θ or 67.5+∆θ degrees. With this adjustment, the relative

errors between model and experimental forces are generally much smaller than experimental

error. The validation test is run only for canvas, cotton, and silk. The relative errors for

all three fabrics are summarized in Table 3.6. While these errors are larger than the fitting

errors, they are consistently below the variation in the experimental data. The relative errors

from the canvas validation are shown in Figure 3.9 as a function of the elongation.

Fabric Model Experiment

22.5○ 67.5○ 22.5○ 67.5○

Canvas 5.8 % 12.8 % 11.0 % 42.0 %
Cotton poplin 7.3 % 11.1 % 22.4 % 30.6 %
Silk charmeuse 9.8 % 5.6 % 36.2 % 22.3 %

Table 3.6: Average relative error of the fitted models vs. the experimental data for the
validation tests. Each number is the average over 5 experiments.

The qualitative look of the fitted materials is demonstrated in a series of simulations.

The drape test (Figure 3.1) uses 1m × 1m squares of each material suspended from two

corners held 60cm apart. This is similar to the setup used by [WOR11] but with a different

distance between the corners. The simulated results may be compared against photographs
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Figure 3.10: The picture frame test constrains a 10cm × 10cm cloth square along all four
edges to introduce shearing and out-of-plane buckling. The materials from left to right are
canvas, cotton, and silk (top row) and denim and wool (bottom row).

of the same test run with real fabric samples. The picture frame test (Figure 3.10) shows

deformation of a 10cm × 10cm cloth square. The cloth is held along all edges and the

constraints are moved to induce large shearing deformations and out-of-plane buckling. The

corner pull test (Figure 3.11) also deforms a 10cm × 10cm cloth square, this time using

point constraints at the corners to create large diagonal stretches. In the plane-on-ball test

(Figure 3.12), a 1m × 1m fabric square is dropped onto an immovable ball of radius 25cm

from an initial height of 50cm to produce collisions and complex wrinkling patterns. Collision

handling is obtained from a triangle mesh rediscretization of our fitted models as discussed

in §3.2.4.

All data fitting and simulations were run on an Intel Xeon E5-2698 v4 CPU with 64 GB

RAM. Fitting each new material requires approximately 4 hours of compute time, together

with some operator intervention to decide which degrees dj produce the desired level of fitting

accuracy.
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Figure 3.11: A simulated corner pull test with the fitted materials. The 10cm × 10cm cloth
square is constrained at the corners and pulled diagonally, creating large stretch deformation
and buckling. The materials from left to right are canvas, cotton, and silk (top row) and
denim and wool (bottom row).

3.7 Limitations and future work

Under the Kirchhoff-Love hypotheses, bending resistance is determined by the response to

small strains (< 3 % in our examples). The current tensile datasets exhibit large relative

error between repeated tests in this regime. We believe this causes the discrepancies in

our fitting of bend data; thus the bend fits could be improved using data from a tensile

experiment which provides increased accuracy in small strain. Alternatively, the Kirchhoff-

Love assumptions might need modification to capture the bending response for some types

of cloth. That said, the popular discrete shells bending model, as used in [MMO16] and

slightly modified for [WOR11] for similar cloth fitting problems, can also be derived as a

discretization of the Kirchhoff-Love kinematic assumptions as discussed in §3.2.4.

Our results do not provide a fit for the Poisson effect term a12η1(Ẽ11Ẽ22) in the energy

because this term has virtually no effect on the current experimental dataset. As discussed

in §3.1, there exist experimental methods in the literature which could augment our dataset

to exercise this term. Given such data we believe our approach could be extended to also fit

this term - likely by fitting the new data after all tensile test data, between steps 6 and 7 of
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Figure 3.12: A 1m × 1m cloth square falls onto a ball of radius 25cm to demonstrate contact
handling and complex wrinkle patterns. The collision algorithm relies on the triangle mesh
cloth discretization of our model. The materials from left to right are canvas, cotton, and
silk (top row) and denim and wool (bottom row).

the model fitting process in §3.3.2.

Our current optimization objective in Equation (3.5) penalizes relative error in all cap-

tured data points with equal weight. However, the tensile test machinery provides slightly

varying sample density across various regimes of the strain domain. Further, it is unclear

what distribution of sampled strains is desirable. This can be addressed by some choice of

constant weights for each term in Equation (3.5), or by interpolating an experimental curve

and then sampling points according to some chosen target measurement density (e.g., uni-

form). Such a step could improve the replicability of the results, since repeated tests tend

to record samples at different points.

In fact, the structure of the fitting solver ignores another weighting choice which is po-

tentially more important. Due to breaking the fit into a separate phase for each experiment,

the question of relative weighting on e.g. warp stretch data versus bias stretch data is never

addressed. Instead, the data is implicitly prioritized by phase order: warp and weft stretches
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are highest priority, followed by bias stretch, and finally by bending. The main justification

for breaking the solve down is that none of the phases affect the model’s fit of the data from

previous steps and each step uses enough data to fully determine the parameters and curve

shapes being computed. These properties ensure that if the model is capable of expressing

the complete dataset then the phase-based solver will attain such a fit. The drawback lies

in the choice of tradeoffs when the model cannot fit all input data at once. For example, it

would be easy to fit the bending data perfectly by sacrificing the warp or weft fit. Further

investigation could help produce minor compromises on a few experiments’ fits instead of

the current larger errors in bending. Of course, a different model could avoid the problem

simply by being capable of matching all of the experimental data simultaneously.

We do not attempt to model hysteresis from internal friction in the cloth. However, this

is an important factor for the behavior of real cloth. Previously, this has been investigated

by [MTB13] and we hope that our fitting method can be extended to also estimate the

internal friction parameters. Similar to hysteresis, we have ignored any dependence in the

deformation behavior on strain rate. Additional experimentation is needed to determine

whether this is reasonable.

When the ultimate goal is to create pleasing and/or accurate cloth simulations, the

interaction between the fabric and its environment can be just as important as the behavior

of the cloth itself. Especially for light weight fabrics such as chiffon, the coupling between

the cloth and the fluid flow of the surrounding air is essential.

Our fitting software implementation is tied to the Catmull-Clark subdivision finite el-

ement method detailed in Chapter Two. However, as discussed in §3.2.4 our constitutive

model can be rediscretized to produce an approximate version computable on a triangle

mesh, which we currently implement only for simulation purposes. Future work should in-

vestigate the viability and convergence properties of fitting using this triangle mesh model.

Of course, the multiresolution optimization of fitting first with coarse meshes and gradually

refining the discretization will become less useful because the triangle mesh model does not

converge under refinement.
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Another discretization-based avenue for study is the Reissner-Mindlin theory of thick

shells, which provides an alternative to the Kirchhoff-Love theory by allowing midsurface-

normal segments to undergo out of plane shearing. Finite elements for Reissner-Mindlin

shells have been explored, for example in [AF89, Xia94]. The finite element basis functions

require only H1 regularity; however, the out of plane shear must be tracked as an addi-

tional unknown function. Also, specialized measures must be taken to avoid locking when

Reissner-Mindlin finite elements are used for thinner objects such as cloth. Adaptation of

our constitutive model and fitting procedure to a Reissner-Mindlin discretization is math-

ematically straightforward, but determining the numerical performance of such a method

remains a useful future experiment.
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