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Abstract

We present a flexible method by which large unstructured scalar fields can be

represented in a simplified form. Using a parallelizable classification algorithm to build

a cluster hierarchy, we generate a multiresolution representation of the original data. The

method uses principal component analysis (PCA) for cluster classification and a fitting

technique based on a set of radial basis functions. Once the cluster hierarchy has been

generated, we utilize a variety of techniques for extracting different levels of resolution.
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Chapter 1

Introduction

Data simplification and multiresolution methods are necessary when exploring and visu-

alizing large data sets. Researchers require high quality representations of their data without the

excessive cost of representing the entire data set. Redundancies in data can be exploited to obtain a

simplified representation which preserve important features.

We propose a framework for the construction of a hierarchical representation of scattered

scalar field data. In a preprocessing step, we iteratively refine an initially coarse representation using

clustering techniques to generate the hierarchy. At runtime, we extract data from this hierarchy to

support interactive data exploration. Our technique is extremely flexible. Several methods for data

interpolation may be used to obtain values for data points in the hierarchy, and multiple ways to

extract data from the hierarchy may be defined. The resulting hierarchy depends on minimum

cluster size, type of error measure used, and the partitioning method. The termination condition

chosen determines the highest resolution represented by the data hierarchy.

The invariants in this method are the splitting criterion and structure of the data hierarchy.

The cluster with the greatest error, is split in each refinement step. Binary partitioning is performed

to create child clusters from the split cluster.

The preprocessing phase begins by computing an initial cluster. This cluster is used as

the root node for a binary tree and added to the set of split candidates. Iteration then begins by

obtaining the cluster with the greatest error from the candidate pool. A splitting plane is computed

and used to partition the cluster into two sub-clusters. Approximate values and errors are computed
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for each sub-cluster. Value approximations are obtained using radial basis functions (RBFs). RBFs

have been shown to be effective in computing interpolants for scattered data [1]. Child clusters

are inserted into the set of split candidates and set to be the children of the cluster just split in

the hierarchy. Cluster refinement continues until one of two termination conditions are satisfied.

Refinement either terminates when a maximum number of iterations has been completed or when

the errors of the clusters are below some user-defined threshold.

We will refer to the generated tree as a Cluster Binary Tree (CBT), cluster hierarchy, or

data hierarchy.

The data extraction phase consists of a binary tree traversal over the CBT. We discuss two

traversal methods: level-based and error-based. The level approach collects data in the hierarchy in

a depth first fashion traversing the tree down to a maximum depth. The error approach gathers data

in the cluster hierarchy based upon an error threshold. In this way, a multitude of resolutions are

represented by one compact binary tree.

In Section 2, we review some previous work done in data simplification and cluster anal-

ysis. In Section 3, we discuss cluster partitioning methods, with emphasis on the use of PCA to

orient the splitting plane. In Section 4, we describe methods for function value approximation at the

cluster centers. In Section 5, we discuss extacting data from the hierarchy. In Section 6, we discuss

some of our results and analyze the method.
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Chapter 2

Related Work

An abundance of work has been done to create multiresolution representations for data

with well defined structure. Many existing techniques apply only to structured rectilinear or curvi-

linear data [14, 6, 17, 12]. These techniques exploit special properties of the implicit or explicit

connectivity in the data by superimposing hierarchical data structures, such as oct trees [14, 6], or a

nesting of rectilinear grids in an adaptive mesh refinement (AMR) [17].

One drawback to these techniques is their limited application domain.Scattered data

refers to data without implicit or explicit connectivity which typically cannot be handled by any of

the mentioned techniques without imposing a grid structure, such as a Voronoi tessellation [13] or

tetrahedrization [3, 4, 16, 2]. Once a grid structure has been imposed, simplification schemes over

the simplex mesh can be performed to obtain multiple resolutions in a data hierarchy [3, 4, 16, 2].

Imposing such a structure may be disadvantageous, as additional storage is needed to represent it.

Furthermore, creating an initial tessellation can be computationally expensive.

A wealth of scattered data methods exist in geometric modeling. For example, given a

set of 3-D scan data, an implicit surface representation is constructed by fitting a functionF (x, y)

to the given data [5, 7, 1, 11]. This reconstruction is useful since a mesh of any desired resolution

can be generated by evaluatingF (x, y). The drawback of such a reconstruction technique is the

computational cost to fit the surface. For example, complex optimization routines to determine ideal

knot locations can take hours or even days, though these optimizations prove useful in modeling

complex surfaces [5]. Such computational cost can be justified in the context of generating high
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quality surface models for industrial use. However, such highly accurate functions are seldom

needed to visualize massive volume data.

Surface modelers strive to obtain 2-D parameterized surfaces. What we seek are 3-D

parameterized volumes. Thus, 3-D data points in a 3-D scalar field become volumetric knots, whose

equivalent in geometric modeling are 2-D surface knots. The increased dimensionality increases the

computation load, further incentive to move to a less global optimization scheme.

In summary, keeping too explicit a representation can be impractical and memory inten-

sive. At the same time, deriving too implicit a representation can be too computationally intensive.

Results from each extreme were shown to provide excellent performance but at a high cost. It is our

goal to find a good balance between explicit and implicit representation. Constructing a hierarchy

of knots and applying localized data fitting steps can produce high quality results while at the same

time not requiring extreme computational costs.

Obtaining the hierarchy can be accomplished using clustering techniques. Heckel et. al.

showed that hierarchical cluster representation proved useful in classifying vector field data [9].

He generated vector field hierarchies by splitting vector data, separating regions in the domain of

a vector field exhibiting different behaviour. Similar clustering techniques were applied to surface

reconstruction by Heckel et. al [8]. Heckel et. al. used PCA to determine the degree of co-planarity

of points lying on some unknown surface. This method creates near-planar tiles for approximating

surfaces. These tiles, when stitched together, formed a closed surface. Using methods similar to

these, we build a multiresolution representation for scattered scalar fields.
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Chapter 3

Partitioning Clusters

Given a scalar fieldS defined over a set of pointspi = (xi, yi, zi), i = 1, 2, . . . , n, we

let si be the scalar value associated withpi, i.e.

S( xi, yi, zi ) = S( pi ) = si

We define a clusterC to be a subset of points inS.

We define the center of the clusterC, denoted byCc as

Cc =
1
|C|

∑
j∈C

pj

and the errorCe as

Ce = max |Fj − Fc |, j ∈ C

where eachFj = S( pj ) andFc is the value assigned toCc. (Value approximation at the cluster

center is discussed in Section 4.) In other words, the errorCe is the maximum deviation in scalar

value between the approximated value and the values of the points inC. This error measure is

simple to compute and suffices to identify clusters with high variation in scalar value.

Once a cluster has been chosen for splitting,1 we partition the data points into two smaller

clusters by defining a splitting plane that divides the cluster into two distinct groups. Center points,

value approximations, and errors are computed for these two resulting sub-clusters. The sub-clusters

are then reinserted into the candidate pool for further splitting.

1The cluster with the greatest error can be found efficiently by placing clusters into a priority queue, sorted based on
cluster error.
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Figure 3.1: Comparison of splitting schemes. Black dots represent points of scalar value one, and
white dots represent points of scalar value zero. (a) Non-optimal splitting using an axis-aligned
scheme versus (b) near-optimal splitting

One method for defining the splitting plane is to use an axis-aligned scheme. In this

method, the cluster center and one coordinate axis determine the splitting plane. This scheme,

similar in nature to k-D tree style splitting [15], is efficient and allows us to determine the splitting

plane simply, but it may not produce a near-optimal split. Figure 3.1 demonstrates this point. For

this reason, we use PCA to determine a normal to orient the splitting plane. We will first discuss

how 3-D PCA would be used on two dimensional scalar fields because it is easier to visualize. We

then lift this scheme intoR4 for application to 3-D scalar fields.

A detailed explanation of PCA is beyond the scope of this paper, and we refer the reader

to [10] for details. Briefly, PCA computes a covariance or correlation matrix and performs an eigen-

decomposition of this matrix. Eigenvalues

λ1 ≥ λ2 ≥ λ3

are obtained with corresponding eigenvectors

ê1, ê2, andê3.

In three dimensions,〈ê1, ê2, ê3〉 define a local orthogonal coordinate system of an ellipsoid induced

by the data points.

For bivariate scalar field data, we can perform PCA in 3-D to obtain a better orienting

normal for a splitting line. We use the normal corresponding to the dominant axis of this ellipsoid,

i.e., ê1. However, to partition the 2-D data points, we require a 2-D normal vector. We project the

R3 eigenvector toR2, see Figure 3.2. In most cases, we obtain a suitable orienting normal by simply

dropping the last component of the vector.
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Figure 3.2: Example of 3-D PCA normal projected toR2 The white dots are data points inR2. The
height of the black dots is indicative of the scalar value at the data point. The ellipsoid represents the
local coordinate system computed by 3-D PCA. The dominantR3 eigenvector,̂e1, is shown here,
with its projection ontoR2.

We must consider the case whenê1 returned by PCA is a multiple of the vector〈0, 0, 1〉.

Such a normal projected toR2 corresponds to the null vector. In this case, we choose the second

dominant eigenvector,̂e2, which is guaranteed to be non-null when projected toR2, since it is

orthogonal tôe1. In practice, this occurs infrequently. Figure 3.3 illustrates the progression of the

cluster splitting procedure.

The technique just described generalizes toR4. PCA returns eigenvaluesλ1 ≥ λ2 ≥

λ3 ≥ λ4 with corresponding eigenvectorŝe1, ê2, ê3, andê4. Again, we use the projection of̂e1

into R3 to define a splitting normal. When projection ofê1 maps to the null vector inR3, we choose

ê2 as our orienting normal.

Cluster topology can have a great impact on the partitioning. When clusters become very

thin in the split direction, it is possible that splitting the cluster into two sub-clusters produces a

cluster with zero data points due to numerical error. When this occurs, the problem cluster is not

re-inserted into the error queue. To avoid situations like this one, we attempt to make clusters

as “round” as possible. Splitting along the dominant axis as defined by PCA accomplishes this

objective.

Cluster size can also have a large effect on splitting. Eventually, clusters will contain
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(a) (b)

(c) (d)

Figure 3.3: Example of clustering of 2-D scattered data. Black dots indicate a scalar value of one,
and white dots indicate a scalar value of zero. Squares represent the cluster centers, which become
new data points in the generated hierarchy. (a) CBT generation begins with one initial cluster ; (b)
cluster is split into two sub-clusters ; only the right cluster is chosen for splitting ; (c) right cluster
is split into two sub-clusters ; (d) final split ; all clusters have zero error.

only a few data points. A minimum cluster size can be defined to set a “pseudo-compression ratio”

for the finest resolution in the data hierarchy. Setting a minimum cluster size can also reduce the

occurrences of the zero-size cluster problem.
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Chapter 4

Value Approximation

In the data hierarchy, each cluster is interpreted as a data point of a given resolution in the

hierarchy, whose location is the cluster center,Cc = (xc, yc, zc), computed by the geometric mean

of the points in the cluster.

To approximate a value at this location, we utilize a multiquadric method [5]. This type

of approximation is commonly used in geometric modeling. This method effectively fits a func-

tion composed of a set of radial basis functions (RBFs) to the scattered data using least squares

approximation to derive function constants and a good reparameterization of the data points.

Consider the clusterC with points{ p1, p2, . . . , pn }, pi = (xi, yi, zi), and corresponding

scalar values{s1, . . . , sn}.

We define a fitting function

F (x, y, z) = c +
N∑

j=1

aj Bj(x, y, z),

where

Bj(x, y, z) = [ (xj − x)2 + (yj − y)2

+(zj − z)2 + R2 ]± 1/2 (4.1)

subject to conditions

F (pi) = Fi = F (xi, yi, zi) = si, i = 1, 2, . . . , n . (4.2)

We call c the correction constant, R the multiquadric parameter, andaj the blending

coefficients. The pointspi are often referred to asknots. Many times, equation (4.2) is too strict, and
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a least squares fitting is performed instead. Basis functions evaluated with+1/2 in the exponent

are calledmultiquadric basis functions. When evaluated with−1/2, they are calledreciprocal

multiquadricbasis functions.

It is important to make the distinction betweenn and N . The integern denotes the

number of scalar values in the cluster, whileN denotes the number of data points used for the

value approximation. Classically,N is set to be the same asn, which can be computationally

expensive for large clusters. We use a local scheme by considering only theN nearest neighbors to

Cc, i.e.,N = min( n, k ), wherek is some previously chosen integer, usually less than 30. These

nearest neighbors can be computed in a number of ways. We make use of a k-D tree [15], where

construction requires onlyO(n log n) and searches requireO(log n).

The fitting scheme performs the minimization step

min
{knots,R,aj ,c}

N∑
i=1

[ (
c +

N∑
j=1

aj Bj(xi, yi, zi)
)
− Fi

]2
,

which is separated into two minimization steps

min
{knots,R}

min
{aj ,c}

N∑
i=1

[ (
c +

N∑
j=1

aj Bj(xi, yi, zi)
)
− Fi

]2
,

where the inner minimization is performed by a least squares operation. The outer minimization is

non-linear [5, 7].

After this optimization step, we obtain values forc, R, aj , and basis function parameteri-

zation(xj , yj , zj). We estimate the value atCc as:

F (xc, yc, zc) = c +
N∑

j=1

aj Bj(xc, yc, zc).

Our experiments have shown that this method works well, but at a high cost. The least

squares fitting requires us to build ann×(n+1) linear system, i.e., an underdetermined system with

an infinite number of solutions. A non-negativity constraint can be added, however, one must be

careful to avoid near singular matrices. The major bottleneck is the non-linear optimization, which

must optimize3n + 1 variables–the x-, y-, and z-components for each ofn knot locations andR.

In geometric modeling, the correction constant is used smooth “bumpy” surfaces. Many

scalar fields do not suffer as much from discontinuities. By removing the correction constant as
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a parameter we obtain an × n linear system and no longer need to consider an underdetermined

matrix problem.

We have found that increasing the local neighborhood for function value estimation pre-

cludes the necessity to optimize knot locations. For instance, we can obtain equivalent results using

25 nearest neighbors without knot optimization as we can using five neighbors and optimizing the

knots. Removing the knot optimization step leaves only the multiquadric parameterR to optimize.

Our experience shows that theR in this setting is frequently optimized to values so small that it is

of neglible influence. Thus, fixing the multiquadric parameter to a sufficiently low value removes

the need for any non-linear optimization. The blending coefficients in many cases compensates for

any effect (or lack thereof) that the multiquadric parameter has on our local interpolating function.

Thus, our final local interpolant is given by

F (x, y, z) =
N∑

j=1

aj Bj(x, y, z),

where we determineaj by solving

min
{aj}

N∑
i=1

[ ( N∑
j=1

aj Bj(xi, yi, zi)
)
− Fi

]2

and evaluateF at the cluster centerCc
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Chapter 5

Data Extraction and Traversal

Extraction of data from the CBT is performed by traversing the tree in a depth first fashion,

using either alevel-basedtraversal that obtains the data points in the hierachy at a given level of the

tree, or anerror-basedtraversal which returns data points in the hierarchy that have an error below

a given threshold. If a leaf node is encountered in the CBT during data extraction, we use the value

of the leaf and continue traversal. The hierarchy can only guarantee data points with an error less

than or equal to the maximum error at termination of the preprocessing.

Figure 5.1 illustrates the two traversal schemes over a small CBT. The error is shown

inside each node. Note that the error-based approach offers a more compact representation, whereas

the level-based approach provides better spatial distribution by covering the space spanned by the

hierarchy with more data points. This phenomenon can be seen in the examples provided in Section

6.

The data extracted from the CBT defines a scattered scalar field in its own right. From

this, a multitude of visualization techniques may be applied.



13

8

20

18

2 4 17 16.5

13 11 10 12

(a)

8

20

18

2 4 17 16.5

13 11 10 12

(b)

Figure 5.1: CBT hierarchy traversed in (a) a level-based manner with level request of 3 and (b) an
error-based manner with error threshold of 10.00.
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Chapter 6

Results

We have generated CBT hierarchies for three rectilinear data sets and used the same sam-

pling resolutions to produce visualizations for comparison.

Table (6.1) summarizes the preprocessing results to generate the CBTs. For value approx-

imation at the cluster centers and for sampling the data, we used 25 nearest neighbors and fixed

the multiquadric parameter to 0.025. The minimum splittable cluster size was set to be two. All

function values are between zero and 255.

One disadvantage of this technique is that maintaining the hierarchy for large data sets

can be memory intensive. However, this method lends itself to data parallelism. Once a cluster is

split, its sub-clusters can be further split on separate machines over a network. Since the hierarchy

is based on a binary tree, merging the final results low cost. In the case of the argon bubble data set,

we chose to divide the preprocessing work among three machines.

The argon bubble data set was too large to process on a single standard desktop worksta-

tion. We therefore processed it in parallel using three workstations. One parent machine performed

Data set Number of splits Skipped splits CBT height Error at termination

Teddy bear 200,000 10 22 8.15
Head 300,000 21 23 4.52

Argon bubble 600,001 7 25 0.92
Space shuttle 200,000 251 26 2.00

Table 6.1: CBT hierarchy statistics
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an initial split and distributed the sub-clusters to two additional machines. The two additional ma-

chines each computed 300,000 splits on their respective halves and wrote their sub-trees to disk. The

parent machine merged the two subtrees into the root tree, producing a unified cluster hierarchy.

As mentioned in Section 3, eventually clusters either converge to the granularity of the

data set or suitable partitioning is not possible due to lack of precision. “Ignored splits” can result

in the iterative refinement, and their numbers are listed in Table 6.1.

Lower resolutions introduce a certain amount of noise. Figure 6.1(a) shows a low res-

olution representation of the argon bubble using 11,246 data points, which is roughly 0.21% the

size of the original data set. Fewer points exist outside the bubble itself, which causes “under-

representation” in that region. Noise can be seen in the volume rendered result in Figure 6.1(d). We

consider this effect a reasonable trade-off, since this region varies little in scalar value and therefore

can be viewed as “less important.” This effect is not observed in higher resolutions, see Figure

6.1(b), which uses 215,633 data points (4.11% original data size). The volume rendered result

shown in Figure 6.1(e) does not exhibit the noise seen in Figure 6.1(d). Figure 6.1(f) shows the

volume rendered result of the finest resolution of the argon bubble cluster hierarchy. This resolution

guarantees error values no greater than 0.92, using only 599,995 data points, which is about 11.44%

the size of the original data. A summary for the images in Figure 6.1 is in Table 6.2.

Similar comments can be made for the results of the head data set. Figure 6.2(a) shows

a low resolution representation of the head that produces a noisy volume rendered result as seen

in Figure 6.2(d), where the entire back plate from the scan is not represented in detail. Salient

features of the head are still discernable. Only about 5,000 points were used to construct the image,

as opposed to roughly 2,000,000 points used to generate the volume rendered result of the original

data shown in Figure 6.2(c). Deficiencies in low resolutions are eliminated in a higher resolution,

as seen in Figures 6.2(b) and 6.2(e). It is difficult to see differences between the volume renderings

shown in Figures 6.2(e) and 6.2(f). One can see that Figure 6.2(f) accurately captures the aliasing in

the original scan data, as visible in the original data shown in 6.2(c). Table 6.3 provides a summary.

The images provided in Figure 6.3 of the teddy bear demonstrate some of the differences

between error-based and level-based hierarchies. The argon bubble and head results were generated

using an error-based approach, whereas the teddy bear results were generated using level-based ex-

traction. We can see that the low resolution data set shown in Figure 6.3(a) exhibits good spatial
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Data set Figure Error threshold Size (points) % Size

Argon bubble (a), (d) 50.00 11,246 0.21 %
(b), (e) 1.00 215,633 4.11 %

(original) (c) n/a 5,242,880
(f) 0.92 599,995 11.44 %

Table 6.2: Statistics for the argon bubble visualizations shown in Figure 6.1. The original data set
consists of320× 128× 128 = 5,242,880 data points.

representation, resulting in an overall good volume rendered result shown in Figure 6.3(d). Details

in the image appear “blobby,” which is a common artifact of using multiquadric interpolating func-

tions when using a low number of samples. Higher resolution representations, visualized in Figure

6.3(b), produce significantly better results, seen in Figure 6.3(e). The volume rendered result of

the highest resolution in the cluster hierarchy, shown in Figure 6.3(f), is good in comparison to the

volume visualization of the original data in Figure 6.3(c). Noise in the blue cloud surrounding the

teddy bear are visible in Figure 6.3(f) and not in the original data, attributable to the fact that the

maximum error at termination of the hierarchy generation was 8.15. The wood grain in the back-

ground is slightly “under-represented” in the highest resolution of the hierarchy. These problems

can be resolved by allowing the hierarchy generation to continue for several more iterations until

the error reaches a lower threshold. Table 6.4 provides a statistical comparison.

Figure 6.4 more noticeably illustrates the difference between traversing the hierarchy

based on error and based on level. Level-based traversal produces a better spatial distribution be-

tween resolutions, whereas error-based extraction better resolves high error regions. This fact is

exhibited by Figures 6.4(a) and 6.4(d). Table 6.5 summarizes some information about the levels in

the hierarchy in Figure 6.4. Low resolutions in error traversal correspond to high error thresholds,

whereas low resolutions in level traversal correspond to low level requests. Unlike the argon bubble,

head, and teddy bear data sets, the space shuttle data set is the result of a fluid dynamics simulation,

using multiple overlapping irregular grids.

It is difficult to analyze the running time of this algorithm. Running time depends strongly

on the type of data being processed. Compared with data sets with relatively small variation in

scalar value, data sets with large variation in scalar value do not converge as quickly to meet the

error threshold. In the CBT generation phase, the primary bottleneck is value approximation at the
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: CBT and volume visualizations of a single time step of an argon bubble simulation.
Figure (a) was extracted via an error-based traversal of the CBT with error threshold 50.00, while
(b) used a threshold of 1.00. Figures (d) and (e) are their respective volume visualizations. Image
(c) is a volume rendering of the original data. Image (f) is a volume rendering of the maximum
resolution represented by the CBT. (This time-varying data set was provided byThe Center for
Computational Sciences and Engineering at the Lawrence Berkeley National Laboratory.)

Data set Figure Error threshold Size (points) % Size

Head (a), (d) 60.00 17,533 0.84 %
(b), (e) 8.00 222,088 10.59 %

(original) (c) n/a 2,097,162
(f) 4.52 299,980 14.30 %

Table 6.3: Statistics for the head visualizations shown in Figure 6.2 The original data set consists of
128× 128× 128 = 2,097,980 data points.

Data set Figure Level Size (points) % Size

Teddy bear (a),(d) 16 29,905 2.94 %
(b),(e) 18 92,845 9.17 %

(original) (c) n/a 1,015,808
(f) 22 199,991 19.69 %

Table 6.4: Statistics for teddy bear visualizations shown in Figure 6.3. The original data set consists
of 62× 128× 128 = 1,015,808 data points.
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: CBT and volume visualizations for a head data set. Figure (a) was extracted via error-
based traversal of the CBT with error threshold 60.00, while (b) used a threshold of 8.00. Figures
(d) and (e) are the respective volume visualizations. Image (c) is a volume rendering of the original
data. Image (f) is a volume rendering of the maximum resolution represented by the CBT.

Data set Figure Type Resolution Size (points) % Size

Space shuttle (a) error 30 4,939 0.59 %
(b) error 15 15,246 1.81 %
(c) error 8 41,369 4.90 %
(d) level 10 948 0.11 %
(e) level 12 3,529 0.41 %
(f) level 15 22,864 2.71 %

Table 6.5: Space shuttle CBT resolution sizes as shown in Figure 6.4. The original data set consists
of 843,542 data points.
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: CBT and volume visualizations of an MRI scan of a teddy bear. Figure (a) was extracted
via level-based traversal of the CBT with maximum depth 16, while (b) used a depth of 18. Figures
(d) and (e) are their respective volume visualizations. Image (c) is a volume rendering of the original
data. Image (f) is a volume rendering of the maximum resolution represented by the CBT.
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: CBT visualizations for a space shuttle data set. Figures (a), (b), and (c) were extracted
via error-based traversal of the hierarchy with error thresholds 30.00, 15.00, and 8.00, respectively.
Figures (d), (e), and (f) were extracted via level-based traversal of the hierarchy with level requests
10, 12, and 15, respectively. Figures (a) and (d) correspond to low resolutions. Figures (b) and (e)
correspond to medium resolutions. Figures (c) and (f) correspond to high resolutions. Information
about each resolution is listed in Table 6.5.



21

cluster centers. When full linear and non-linear optimizations are implemented, then running time

is expected to grow exponentially with respect to field size and number of iterations performed. The

time required to maintain the error queue and to compute thek nearest neighbors to a given cluster

center is also considerable. Letp be the number of iterations executed in the refinement process for

n data points. We can expect to obtain the next split candidate from the error queue in constant time

at a cost of approximatelyO( log p ) for inserting new clusters into the queue. Nearest neighbor

computations can be efficiently computed in logarithmic time with respect to the size of the cluster.

The CBT’s space requirement is linear with respect to the number of iterations, since each

iteration of the refinement process can add at most two new members to the cluster hierarchy.

The time required to obtain a given resolution of the data from the cluster hierarchy is the

time required to traverse the CBT, which isO( 2p + 1 ), the time to perform a depth first traversal

in the worst case. Extracting lower resolutions from the data hierarchy require less time due to the

traversal termination conditions described in Section 5.
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Chapter 7

Conclusions

We have presented a method for the creation of a multiresolution hierarchy through itera-

tive refinement of a scalar field. The method uses clustering techniques to construct a data hierarchy

This method is quite flexible. The choice of minimum cluster size can play a large role in the spatial

distribution of cluster points as well as the size of the data hierarchy. The refinement termination

condition can be based on a user-defined upper bound or on error threshold. Additional modes of

data extraction could be defined by storing other parameters in the cluster hierarchy, such as gra-

dient, function value range spanned by a cluster or spatial range covered by a cluster’s bounding

region. This flexibility allows one to customize the hierarchy to conform to application specific

needs. To what degree these parameters can be used to enhance visualization is a topic for future

work.

Many scalar field simplification methods for scattered data require an initial tessallation of

the data points, which can be costly to compute and require significant amounts of memory to store

connectivity information. The methods described in this paper do not require explicit connectivity

information, though it could conceivably be useful for value approximation.

The multiresolution hierarchy can be constructed for large data sets as well, since cluster

hierarchy generation can be distributed across several computers.

This method can be used to explore features in arbitrary data. Because the cluster with

the most error is split at each iteration, dense clustering occurs in regions of high scalar value vari-

ation. Fewer clusters appear in lower variation regions. By virtue of this characteristic, this method
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has potential as a feature detection algorithm. Different features could be tracked by applying a

transfer function filter to the scalar values prior to hierarchy generation. Different error metrics and

extraction routines could further enhance detection of features.
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