## **Lawrence Berkeley National Laboratory**

### **LBL Publications**

#### **Title**

Room Temperature Photo-induced Magnetization of Spinel (Mn,Zn,Fe)3O4 Thin Films

#### **Permalink**

https://escholarship.org/uc/item/30f0t7w9

#### **Authors**

Bettinger, J.S. Chopdekar, R.V. Arenholz, E. et al.

#### **Publication Date**

2008-08-01

# Room Temperature Photo-induced Magnetization of Spinel (Mn,Zn,Fe)<sub>3</sub>O<sub>4</sub> Thin Films *J. S. Bettinger;* <sup>1</sup>; *R. V. Chopdekar;* <sup>2, 1</sup>; *E. Arenholz;* <sup>3</sup>; *Y. Suzuki;* <sup>1</sup>;

- 1. Materials Science and Engineering, UC Berkeley, Berkeley, CA, USA.
- 2. Applied Physics, Cornell University, Ithaca, NY, USA.
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Abstract Body: The conversion of photonic signal into a magnetic response is of interest both fundamentally and technologically. The spinel ferrites with multiple Fe valences have been identified as a promising class of photomagnetic materials. We report on the observation of photo-induced magnetism in textured thin films of the spinel  $\operatorname{Mn}_{x}\operatorname{Zn}_{y}\operatorname{Fe}_{3-x-y}\operatorname{O}_{4}$  (0.225  $\leq$  x  $\leq$  0.525, 0.5  $\leq$  y  $\leq$  0.6). Samples with nanocrystalline grain sizes of approximately 15-70 nm were grown by PLD at room temperature on Si substrates. Coupling a 633 nm HeNe laser into a SQUID magnetometer, we have performed magnetization vs. temperature and applied magnetic field measurements with and without illumination to determine the extent of the photo-induced magnetization relative to the sample's fielddependent magnetization. The samples show a room temperature photomagnetic effect that appears to be strongly correlated to the zero crossing of the magnetocrystalline anisotropy at approximately room temperature.[1] Epitaxial films of the same stoichiometry deposited on  ${
m MgAl_2O}_{
m A}$  substrates do not exhibit this photomagnetic effect since their magnetic anisotropy is dominated by magnetostrictive effects.

We attribute the photomagnetic effect to an optically induced inter-valent charge transfer (IVCT) between a magnetically hard Fe<sup>2+</sup> and a magnetically easy Fe<sup>3+</sup> on octahedral sites,[2,3] which serves to increase the magnetic moment at low fields. This effect is enhanced when the magnetic anisotropy is easily perturbed, such as a zero crossing of the magnetic anisotropy. Additionally, we have also measured soft X-ray magnetic circular dichroism spectra with and without incident HeNe laser light to determine the relative distribution of Fe<sup>2+</sup> and Fe<sup>3+</sup> on the octahedral and tetrahedral sites. We observe an enhanced dichroism at the Fe<sup>2+</sup> and Fe<sup>3+</sup> in octahedral sites indicating the importance of the IVCT mechanism to the photomagnetism of these samples.

\*The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.\*

References: [1] K. Ohta, J. Phys. Soc. Japn. 18 685 (1963)

[2] M. Seki, A.K.M. Akther Hossain, T. Kawai, and H. Tabata, J. Appl. Phys. 97 083541 (2005)

[3] W.F.J. Fontijn, P.J. van der Zaag, L.F. Feiner, R. Metselaar, M.A.C. Devillers, J. Appl. Phys. 85 5100 (1999)