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ABSTRACT OF THE DISSERTATION

Mixed Topics in Computational Thermal Transport

by

Laura Rita de Sousa Oliveira

Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, June 2017

Professor P. Alex Greaney, Chairperson

Heat transfer is ubiquitous in both naturally occurring and engineered materials. As tech-

nology progresses, the length- and time-scales of thermal transport decreases, becoming

comparable with the mean free paths and relaxation times of the vibrations that drive

it. Increasingly, an atomistic-level understanding of thermal transport is pivotal in pre-

dicting and controlling heat transport in materials and devices. Modeling approaches that

permit an atomistic understanding of heat transport, and the implementation of complex

approximations of the phonon Boltzmann transport formalism include classical molecu-

lar dynamics and density functional theory (DFT). Results are presented for equilibrium

molecular dynamics (EMD) simulations of the thermal conductivity of a series of cluster-

ing and non-clustering point defects in graphite using the Green–Kubo method, aimed to

advance our knowledge of the evolution of the microstructure of graphite while in service

in a graphite-moderated nuclear reactor. The Green–Kubo method — commonly used

for predicting transport properties by scientists and engineers across fields — relates the

property of interest to the lifetime of fluctuations in its thermodynamic driving potential.
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The integral of the autocorrelation fluctuations requires a long averaging time to reduce

remnant noise and is a principal source of error. A new approach is proposed to quantify

— on-the-fly — the uncertainty on transport properties computed using the Green-Kubo

formulation, based on recognizing that the integrated noise is a random walk. EMD is also

used to explore thermal transport in breathing metal–organic frameworks (MOFs), coveted

for numerous applications due to their large surface area and modularity. A simple geo-

metric model of thermal conductivity is proposed as a heuristic for the quick evaluation

of transport in flexible MOFs, and a quantum-based approach is undertaken to explore

deviations from the heuristic, such as rattler modes and phonon-focusing. Phonon proper-

ties calculated with DFT for (1) uranium dioxide and (2) silicon, for fuel and spintronics

applications respectively, are also briefly discussed.

viii



Contents

List of Figures xi

List of Tables xvii

1 Introduction and motivation 1
1.1 Thermal resistance from irradiation defects in graphite . . . . . . . . . . . . 4
1.2 Method to manage integration error in the Green-Kubo method . . . . . . . 5
1.3 Phonon-focusing and rattler-mode interference in thermal conductivity tran-

sitions of the breathing metal-organic–framework MIL-53 . . . . . . . . . . 7
1.4 Thermal transport in fuels, and spintronic materials . . . . . . . . . . . . . 8

1.4.1 Predicting variability of thermal conductivity in nuclear fuels . . . . 8
1.4.2 Spin Hall effect and spin phonon interactions in p-Si . . . . . . . . . 9

2 Background and theory 10
2.1 Phonon thermal transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Green–Kubo method . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Metal–organic frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Flexible metal–organic frameworks . . . . . . . . . . . . . . . . . . . 30

3 Computational methods 34
3.1 Classical molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Interatomic potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Time-independent density functional theory . . . . . . . . . . . . . . . . . . 40
3.3 Density functional perturbation theory and the frozen-phonon method . . . 46
3.4 Density functional tight-binding method . . . . . . . . . . . . . . . . . . . . 49

4 Thermal resistance from irradiation defects in graphite 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Computational method and validation . . . . . . . . . . . . . . . . . . . . . 55

ix



4.2.1 HCACF convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Size convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Identifying defect structures . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Thermal resistance from defects . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Method to manage integration error in the Green-Kubo method 74
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 The oscillatory behavior of the autocorrelation function . . . . . . . 77
5.1.2 Common autocorrelation function integration approaches . . . . . . 79
5.1.3 Random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Phonon-focusing and rattler-mode interference in thermal conductivity
transitions of the breathing metal-organic–framework MIL-53 102
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.2 Phonon properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Thermal conductivity model . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Computational Results and Discussion . . . . . . . . . . . . . . . . . . . . . 111

6.4.1 Thermal conductivity simulations and model results . . . . . . . . . 111
6.4.2 Features of the open- and closed-pore MIL-53(Al) dispersion relations 113

7 Thermal transport in fuels and spintronic materials 119
7.1 Predicting variability of thermal conductivity in nuclear fuels . . . . . . . . 119

7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Spin Hall effect and spin phonon interactions in p-Si . . . . . . . . . . . . . 125
7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Future work 129

Bibliography 132

x



List of Figures

2.1 Overview of state-of-the-art tools to study heat conduction and enable a
microscopic understanding of thermal conductivity across different scales [106]. 17

2.2 The solid line corresponds to results predicted from a model that considers
phonon dispersions and contributions from different phonon branches, and
is compared with experimental results (symbols) [25, 154]. The different
scattering regimes are also indicated. . . . . . . . . . . . . . . . . . . . . . . 23

2.3 a) corresponds to velocity fluctuations that give rise to a random walk; b) a
set of 10 random walks is shown in black and the expected root mean square
translation distance at time t is plotted in red; c) is the distribution of the
random walks shown in b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 MIL-53(Cr), where MIL stands for Matriaux de l’Institut Lavoisier, is a type
of MOF. The metal ion and ditopic linker are its constituting elements. While
a chromium metal ion is depicted in this figure as the MIL-53 SBU, other
studied systems include Al, Ga, In, Fe, and Sc as the metal-ion instead. . . 27

2.5 Figure a) corresponds to MOF-505. The second and third figures in a) illus-
trate how the structure can be abstracted as shapes. Two possible abstrac-
tions are shown. This image was reproduced from [88]. Fig. b), partially
reproduced from [88] and [29], corresponds to MOF-5 and its abstraction,
showing the Zn4(−CO2)6 SBU as an octahedron, and the terephthalate linker
as a rod. Fig c) provides a glimpse into the diversity of MOFs. Fig. i) is
an HKUST-1 MOF [88]; Fig. ii) is an nnt-a type net MOF [88]; Fig. iii)
is a MOF with a ttu type net, which is a derivative from a net-type des-
ignated corundum [88]; and Fig. iv) is a mIm-MOF-14, an example of an
interpenetrated MOF [74]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Fig. a) is a paddle-wheel and serves as an inorganic brick for many known
flexible MOFs [138], as is the case with the flexible Mil-53 shown in Fig. c).
Fig b) is MIL-88A, and exhibits an entirely different form of flexibility [22].
Fig. d) is a classification of different flexibility modes in MOFs [138]. Types
A, B and C are non-volume conserving. . . . . . . . . . . . . . . . . . . . . 31

xi



4.1 In Fig. 4.1(a), the HCACF is computed as the simulation progresses along
x for the perfectly crystalline 11x11x11 super cell. At first only a few values
contribute to the ensemble average and the initial HCACFs are noisy. As the
averaging time progresses the HCACF becomes smoother with the exception
of well defined crests and troughs, most of which do not fade away during
the total simulation time. Figures 4.1(b), 4.1(c) and 4.1(d) correspond to the
HCACF noise (computed as F(t)), the final HCACF, and the integral of the
HCACF, respectively, for all simulations of the perfect 11x11x11 super cell
system along y and z (or c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 These figures correspond to κ measured for different super cells along x
(4.2(a)) and y (4.2(b)) in the basal plane and along the c-axis (4.2(c)). In
addition to establishing size convergence, the figures illustrate a set of differ-
ent approaches (labeled in the legend) considered to converge the HCACF
and the corresponding standard error. Method (iii) was selected. . . . . . . 62

4.3 Illustration of the defects examined in this study: Stone-Wales defect (4.3(a));
single interstitial (4.3(b)); 2-8 interstitials (4.3(c) -4.3(i)); single vacancy
(4.3(j)), di-vacancy (4.3(k)), and 3 vacancies (4.3(l)). The interstitial de-
fects are shown in their annealed configurations. . . . . . . . . . . . . . . . 66

4.4 Possible defect types for single (Fig. 4.4(a)) and two-interstitial defects (Fig.
4.4(b)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Slice of a graphite system with an hexagonal platelet, indicating the location
of the defect. There are 22 total layers in the system. . . . . . . . . . . . . . 67

4.6 Schematic of the optimization procedure applied to classically simulated de-
fects before computing formation energies. . . . . . . . . . . . . . . . . . . . 67

4.7 These energies correspond to the defects depicted in Fig. 4.3. In the case
of the interstitial defect-types, values were computed both for annealed and
non-annealed systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Anisotropy ratio (κa/κc) computed for both x and y for different defect types,
including defects found to be most energetically favorable (Fig. 4.8(a)); κ
obtained for different defect types along x and y (Fig. 4.8(b)) and in the
basal plane (Fig. 4.8(c)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Discrete cosine transform applied to the c-axis HCACF for different defect
types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 Hexagonal platelet κ and corresponding standard error computed along x
and y in the basal plane (Fig. 4.10(a)) and along the c-axis (Fig. 4.10(b))
for 4 different super cell sizes including the 10648 base atom system, and for
two hexagonal platelets in the same base system. . . . . . . . . . . . . . . . 71

xii



5.1 Panel a) shows the HCACFs (the decaying functions) plotted along side
their integrals (the curves that rise to a plateau) computed from 9 separate
simulations of a 10648 atom perfectly crystalline and periodically contiguous
block of graphite. The data was taken from a study to determine the influence
of Wigner defects on thermal transport in graphite [34]. The dashed lines
correspond to the heat flux along the [21̄1̄0] direction and the solid lines to
the heat flux along [011̄0]. The system was found to be converged for size,
and κ is expected to be the same in both directions along the basal plane.
This plot illustrates the increasingly diverging noise of the HCACF integrals,
present even after 50 ps. To the eye, the ACFs look nicely converged after 10–
15 ps. Plot b) shows the gradual convergence of the HCACF with increasing
averaging time during a single simulation. The amplitude of the fluctuations
in the tail of the HCACF decays over time, but it is notable that continued
averaging does not remove the pattern of the fluctuations. . . . . . . . . . . 95

5.2 a) corresponds to the step or velocity fluctuations that give rise to a ran-
dom walk; b) a set of 10 random walks is shown in black and the expected
root mean square translation distance at time t is plotted in red; c) is the
distribution of the random walks shown in b). d) corresponds to the tail
of a HCACF, depicting the noise fluctuations that integrate to a large error
akin to a random walk, shown in e) for all HCACF tails. The black lines
correspond to heat-flux measurements along the x-direction ([21̄1̄0]), and the
blue ones along the y-direction ([011̄0]). Both values were measured along
the basal plane, and this distinction should not matter. The data set is
explained in the Methods section. For the selected 20–50 ps interval, the
distribution of all data points across the multiple simulation tails is shown
in f). A 1 ps moving average was used along with a peak find algorithm to
plot major peaks in the HCACF tails, as shown in d), in magenta. The peak
distribution for all data is offered in g). The dashed red lines in f) and g)
correspond to a normal distribution with the standard deviation of each of
the distributions and mean zero. A normal distribution with the mean for
each of the data sets is shown in the solid lines for each case. . . . . . . . . 96

5.3 The noise of a HCACF tail in the 30–50 ps interval is shown in a) decom-
posed into high frequency (in blue) and low frequency (in red) noise. The
autocorrelations of the noise (in black), the high frequency (in blue) and low
frequency (in red) components of the noise are shown in b), along with fits
through the high frequency (in cyan) and the low frequency (in magenta)
autocorrelations. In c) the integrated tail appears in black, the uncertainty
envelope for δt equal to the interval of the HCACFs is shown in dashed red;
the uncertainty envelopes corresponding to the high frequency and low fre-
quency noise are in cyan and magenta, respectively. The dashed black line
that follows along the magenta is the combined uncertainty envelope of the
high and low frequency noises, i.e. the square root of the sum of their squares. 97

xiii



5.4 This graph shows the application of multiple pass filters to isolate existing
frequencies in the HCACF noise. The first filter applied selects out data
below a 0.04 ps interval (the blue high frequency line at the bottom of the
graph) and leaves the remaining frequencies. The next filter has a 0.08 ps
window and is used to filter the low frequency data remnant from the first
pass. This procedure is performed for 0.04 ps intervals up to a filter with a
0.56 ps window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 In a) the tail of the HCACFs, their integral, the uncertainty envelope (cyan)
calculated as described in the text and its error (in blue) are all plotted. On
the inset in b), instead of only considering the noisy tails of the HCACFs, the
whole HCACFs are represented. In both a) and the inset in b) the solid black
lines correspond to results along the y-direction, and the dashed black lines
to results along the x-direction. The bold red line in the inset in b) is the
integral of the average of the HCACFs; the solid green line is the standard
error computed for the 18 HCACF integrals; and the dashed green line is the
standard error of the 216 50 ps HCACF integrals that can be obtained from
the 18 sets of data with 600 ps each. These lines are shown in the inset in
b) for perspective, but also in the larger plot in b) for a clearer distinction
between them and the cyan line, which shows the uncertainty calculated as
described in the text, using the random walk approach. . . . . . . . . . . . 98

5.6 Figure a) is the normal distribution over all J. Figure b) is the distribution of
the noise from the tails in the 30–50 ps interval. Figure c) is the distribution
of the peaks fit to the noise from the tails in the 30–50 ps interval, as shown
in Fig. 5.2 d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7 Figure a) shows two extremes both in terms of their total integrated value,
and the interval, τL, of their low frequency oscillations. The uncertainty
envelope for the integrated HCACF in purple is slightly above the maximum
standard error (in blue), whereas that of the HCACF integral in brown is
below. The corresponding noise, and noise integrals for these extrema are
shown in Fig. b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 Figure a) shows the averaged HCACFs for all simulations along x (in cyan)
and y (in magenta), the HCAFCs for x (in blue) and y (in red) for the
large, 8 ns, simulation and the corresponding integrals in the same color. To
observe the effect of a single outlier, all HCACFs except the purple one (see
Fig. 5.7) are averaged. The resulting HCACF and integral are plotted in
dashed yellow. Figure b) shows the integrals (using the same color scheme
as in Fig. a)) with the corresponding uncertainty envelope around them. . . 99

5.9 This Fig. shows the integrated HCACF average for all simulations along x (in
cyan) and y (in magenta) for the subset of 800 ps simulations resulting from
the 8 ns simulation, the integrated HCAFCs for x (in blue) and y (in red)
for the large, 8 ns, simulation and the corresponding uncertainty envelope
around them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xiv



5.10 In a), in addition to the HCACF, the moving average of the uncertainty enve-
lope computed using the random walk approach is also propagated through
the simulation time. In b) the % error is computed as the uncertainty enve-
lope over the total integral. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.11 The heat-flux (in black), J, a 0.4 ps moving average of J (in red), and a
gradual cut-off of the higher peaks of J (in green) are shown in Fig. a). The
HCACF and integral for each of the above cases is shown in Fig. b) as is,
and is normalized in Fig. c). Figures d) and e) are a zoom in on Figs. b)
and c) in that order. The color coding is maintained throughout the figures. 101

5.12 Figure a) shows J (in black), a transform on J that keeps its higher peaks
and replaces data between the peaks with a zero value (in blue), and a line
at 550 ps representing a cut-off of the J data above it. Figure b) shows
the normalized HCACF for the above cases, and including those depicted in
Fig. 5.11 a). The HCACF as is is shown in Fig. c). The color code is kept
constant between Figs. 5.11 and 5.12. . . . . . . . . . . . . . . . . . . . . . 101

6.1 Illustration of the scalability of the the thermal conductivity tensor between
breathing states in MIL-53. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 MIL-53(Al) thermal conductivity classical potential calculations at different
pressures and corresponding standard error, and expected change in thermal
conductivity as predicted by the geometric model (solid lines). The inset
shows the actual thermal expansion/contraction of the framework as a func-
tion of temperature, in a classical potential. . . . . . . . . . . . . . . . . . . 112

6.3 Fig. a) is the dispersion relation computed along the linker and aluminum
chain, and the density of states for MIL-53(Al) for the open-pore structure.
A zoom-in on the lower phonon modes of the dispersion relation in the same
region given in b). Figure c) shows a zoom in of the dispersion relation along
a and c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Figure a) is the dispersion relation computed along the linker and aluminum
chain, and the density of states for MIL-53(Al) for the closed-pore structure.
A zoom-in on the lower phonon modes of the dispersion relation in the same
region given in b). Figure c) shows a zoom in of the dispersion relation along
a and c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Model of a 1-d chain with a rattler, as portrayed in b), and an example, Fig.
a), where its acoustic mode is dampened by the optical mode of the rattler. 116

6.6 2-dimensional dispersion relation of a cross-section through Γ along the plane
defined by the reciprocal vectors a∗ and b∗. . . . . . . . . . . . . . . . . . . 116

6.7 A zoom in on the acoustic modes near the gamma point for the closed and
open-pore structures along the chain and the linker is shown in a). The
corresponding group velocities at each point are shown in b). The red arrows
point to two modes with seemingly the same slope (and thus group velocity)
in the 1-D region represented in a), and their very divergent group velocities,
in b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.8 Phonon flux of the open-pore structure depicted for the whole Brillouin zone. 118

xv



7.1 Total and partial (for the orbitals listed in the legend) electronic density of
states for UO2 with U correction for a) our calculations and b) Wang et al.’s
calculation [163]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Phonon dispersion relations for UO2. . . . . . . . . . . . . . . . . . . . . . . 123
7.3 a) 2-dimensional dispersion relation of UO2 at a cross section of the Brillouin

Zone, passing through Γ. b) Radiance in the same region as a), computed
for each dispersion surface. Each surface does not necessarily correspond to
a single phonon branch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 Plots showing DFT predicted phonon properties as a function of spin concen-
tration. In plots (a)–(e) results are plotted for spin concentrations of 0, 0.046,
0.23, 0.46, 1.39, 2.3, 3.2, and 4.6 per 103 valence electrons, with the plot color
from blue through green to yellow going in order of increasing spin concen-
tration. Plot (a) shows the phonon dispersion, plot (c) the phonon density
of states with inset (c) the showing the reduction in the gamma point optical
phonon frequency as a function of spin. Plot (d) shows the group velocity of
acoustic phonons along the {100} direction for different spins from which it
can be seen that there is a marked softening of the transverse acoustic modes.
Plot (e) shows the resulting predicted variation in thermal conductivity due
to spin (κ(T,H)/κ(T, 0)−1) as a function of temperature. This was obtained
from Boltzmann transport theory assuming the single relaxation approxima-
tion. Plot (f) shows the predicted variation in thermal conductivity when
sweeping the spin concentration at temperatures of 300, 250, 200, 150, 100,
and 50 K (colored from dark red to orange with increasing temperature. It is
clear from this data that spin induced phonon softening can account for some
of the observed reduction in thermal conductivity, but not all of it indicating
that is probably increases phonon scattering due to phonos participating in
spin relaxation processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xvi



List of Tables

4.1 Classical MD energy calculations for single and double interstitial defect types
based on location. The values obtained for a single interstitial are compared
with available density functional theory (DFT) calculations using the local
density approximation (LDA) from Ref.[87]. . . . . . . . . . . . . . . . . . . 67

6.1 Table of bond lengths obtained for MIL-53(Al) using DFTB, DFT, and Van-
duyfhuys et al. [158] classical potential. The subscripts n and l indicate a
node and a linker atom, respectively. C1 is the carbon linked to the linker
oxygens, the C2 atom bonds to C1, and C3 refers to the hydrogenated carbon
atoms in the benzene rings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Table of lattice parameters for MIL-53(Al). The lattice parameters and an-
gles described herein follow the orientation indicated in Fig. 6.1 . . . . . . . 110

6.3 Group velocities for the lp and np MIL-53(Al) acoustic modes in units of
m/s. The modes (1, 2, and 3) for each direction are listed in increasing order
of frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xvii



Chapter 1

Introduction and motivation

Heat transfer is ubiquitous in both naturally-occurring and engineered materials,

and it is unsurprising that accurately predicting thermal transport is essential in a wide

array of engineering applications. Heat sinks and thermal barrier coatings are obvious ex-

amples of such applications, where thermal conductivity is directly linked to the materials’

performance and lifetime. There are also a large number of materials applications for which

thermal transport properties are interrelated with a number of other properties that dic-

tate performance. For instance, phase change materials and the hypothesized memristors

depend on thermal transport to set the resistance memory. Thermoelectric materials, i.e.

materials allowing a direct conversion between electric power and a temperature difference,

are also an excellent example of this indirect relationship — the performance of a ther-

moelectric material is determined by its thermoelectric figure-of-merit, ZT, which, in turn,

is a partial function of thermal conductivity. Thermal transport has also featured heavily

in nanofluids research. Nanofluids are a promising new material for numerous engineering
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applications beyond cooling (e.g. lubrication [31], sheathing [83], or hydraulics [151]), as

well as applications in other fields (e.g. medicine [173], geophysics [174]). It is clear from

these examples that understanding and controlling heat transport is pivotal to research in

both materials and devices within a broad range of scales.

Electronic and phononic transport are the fundamental mechanisms for heat trans-

port in solids. In metals heat is transported primarily by free electrons, whereas in semi-

conducting and insulating materials heat is primarily carried by phonons (i.e lattice vi-

brations). That said, the relationship between materials and their thermal properties is

substantially more complex than merely determining the dominant heat carriers. The size,

composition, structure and composition of a material all play a role in thermal transport.

Moreover, thermal treatments, such as annealing, sintering, and irradiation, can affect the

structural properties of materials and thus alter their thermophysical properties as well.

Defects or imperfections in the crystal structure are among the structural changes that

affect the thermal conductivity of solid-state materials.

During the 19th century, and the first half of the 20th century, transport cal-

culations were limited to Fourier’s law (proposed in 1811). Fourier’s law is an empirical

formulation of heat transfer and, despite its vast applicability at the macroscale, it fails to

provide an accurate overview of heat transfer at smaller time and length scales. Debye was

the first to attribute heat conduction to delocalized lattice waves [35], and Peierls the first

to use the Boltzmann transport equation (BTE) towards phonon transport, which accounts

for phonon scattering mechanisms [125]. The evolution of computational methods such

as classical molecular dynamics and electronic structure methods has since advanced our
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knowledge of thermal transport at the atomic level. Of the computational tools available

to date, molecular dynamics (MD) simulations provide a powerful approach for quickly

obtaining atomistic-level insight into the physics of mass, momentum or energy transport

processes in materials. For MD calculations of thermal conductivity two approaches are

possible: (1) perturb and drive systems out of equilibrium to then measure their response,

or (2) simulate systems in equilibrium and measure small local fluctuations with the Green–

Kubo formulation. Quantum mechanical methods, such as density functional theory (DFT),

provide additional information on phonon properties, such as dispersion relations or even

anharmonic scattering matrices [106]. Different methods can often be combined to obtain

more accurate and faster predictions.

The first topic addressed in the course of my PhD was to quantify the thermal re-

sistance from irradiation defects in graphite for a collection of different defects and clusters

of defects (chapter 4). This work was performed primarily using classical MD simulations

of systems in equilibrium (approach (2)), with the choice of defects to investigate being par-

tially informed by DFT calculations. Additional work has continued to rely on these meth-

ods, and variants thereof, to study thermal transport. What we learned from using equilib-

rium MD to study of thermal transport was leveraged to develop a new method to manage

integration error in the Green-Kubo method on-the-fly (chapter 5). Uncertainty quantifi-

cation on-the-fly is particularly useful towards high-throughput computational screening of

materials. The work produced on phonon-focusing and rattler-mode interference in ther-

mal conductivity transitions of the breathing metal-organic–framework MIL-53 (chapter 6)

was also partially motivated by the recent focus in high-throughput materials research. In
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it we develop a heuristic to quantify thermal transport changes in breathing metal–organic

frameworks. In the process of validating the suggested heuristic, we discover and investigate

phonon-focusing and rattler-mode phonon-interference phenomena in the MIL-53 framework

isomers. DFT calculations similar to the ones performed towards this last project have been

put to use to study thermal transport in fuels, and spintronic materials (chapter 7) towards

collaborative projects developed in conjunction with an experimental team in the Mechani-

cal Engineering department at the University of California, Riverside, and a computational

Nuclear Science and Engineering team at Oregon State University. A brief introduction

to each of the research projects in chapters 4–7 and what motivated them is provided in

the next paragraphs, followed by chapters on the background and theory (chapter 2), and

the computational methods (chapter 3) used towards the research presented. In each of the

research chapters (i.e. chapters 4–7), additional background and methodology details are

provided. Some details will be repeated, as chapters 4–7 are in full or in part reproduced

from accepted (chapters 4, 5, and 7) and submitted (7) manuscripts.

1.1 Thermal resistance from irradiation defects in graphite

In the early 1940s, polycrystalline graphite was the only abundantly produced ma-

terial with the required purity to be used as a moderator in nuclear reactors [68]. While other

reactor materials have since been adopted, graphite continues to be used as a moderator and

reflector in older commercial reactors and research reactors. At the present time, graphite is

being considered for the development of high-tech fuel elements for next-generation nuclear

reactors. The moderating properties of graphite are structure and temperature dependent
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and accurately predicting the thermal conductivity of graphite and other fuel assembly ma-

terials — including how their thermal conductivity evolves under irradiation — is vitally

important for the design of accident-tolerant fuels.

The objective of this research is to obtain an atomistic-level understanding of

scattering processes from collections of irradiation-induced point defects and to establish a

systematic understanding of how defect-type, number and different defect-type ensembles

affect thermal resistance and phonon mean free path in graphite. We do so, hoping that

the insight we garner can be incorporated into approaches for quantitatively predicting the

lattice thermal conductivity that are based on solving the Boltzmann transport equation.

Such a tool would be useful to nuclear engineers and materials scientists in the process

of designing new reactors and fuel systems that are accident tolerant. To this end we

performed equilibrium molecular dynamics simulations and computed the change to thermal

conductivity due to a series of clustering and non-clustering point defects using the Green-

Kubo method.

1.2 Method to manage integration error in the Green-Kubo

method

As described above, the ability to reliably predict transport properties is essential

in the search for new materials for a wide variety of applications. The Green–Kubo for-

malism [49, 82] is a well-established approach to compute transport properties, including

thermal conductivities, using equilibrium molecular dynamics (EMD) — the underlying
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principle is that the processes that dissipate small local fluctuations are the same that are

responsible for a material’s feedback to a stimulus. There are clear advantages to using an

equilibrium approach: while both equilibrium and non-equilibrium methods suffer from size

artifacts, the use of periodic boundary conditions in EMD allows for a smaller system size;

for anisotropic systems, one EMD simulation suffices to compute the full transport tensor;

and EMD can be used irregardless of the linearity of the transport regime with system

size. There is, however, also one major pitfall. Fully converging the autocorrelation func-

tion requires very long simulation times, and often a compromise has to be made between

including the contribution of slow processes and introducing a random error, or excluding

these processes and introducing a systematic truncation error.

In this project we use the knowledge obtained from the research performed towards

expanding our understanding of Thermal resistance from irradiation defects in graphite, in

which we tested multiple approaches to converge the integral of the heat current autocorre-

lation function (HACF), to accomplish our objective of developing a method that allows

researchers to make better informed decisions about where to truncate the autocorrelation

function (ACF) and how to optimize computational resources on-the-fly, based on recog-

nizing that the integrated ACF error mimics a random walk. This method was inspired

by thermal transport calculations, but is applicable to other transport quantities computed

with the Green–Kubo approach.
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1.3 Phonon-focusing and rattler-mode interference in ther-

mal conductivity transitions of the breathing metal-organic–

framework MIL-53

Metal–organic frameworks (MOFs) are crystalline structures comprised of sec-

ondary building units (SBUs), i.e. single nodes or clusters of metal-ions, bridged by organic

linkers. MOFs are highly porous and have exceptionally large surface area, which makes

them ideal for gas sorption and storage applications, such as carbon sequestration and hydro-

gen storage. Furthermore, because MOFs are inherently modular with property-correlated

building blocks (SBUs and linkers) and topology, they can be tailored to a myriad other

applications [36, 76, 60, 150, 84, 170]. Unsurprisingly, there is an increased trend in the use

of high-throughput approaches to explore the phasespace of MOFs, for which it would be

useful to develop heuristic methods that allow the rapid computing of framework properties.

“Breathing” MOFs, such as MIL-53, are flexible MOFs that undergo a reversible

transformation between narrow pore (np) and large pore (lp) structures as a response to

external stimuli such as temperature [97] and pressure [95] changes, or host-interaction

[95, 96]. Flexible MOFs are desirable for sorption-related applications, but new possibili-

ties, such as shock absorption [171] are also currently being explored. Sorption processes

involve exothermic and endothermic reactions [172], and the ability of the framework to

transport heat or transfer it to the host is paramount in determining applicability. Mechan-

ical dampening likewise requires heat dissipation. Our objective is to determine if thermal

transport properties can be estimated from the vibrational modes of lp and np structures
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and, moreover, if these properties scale continuously with framework geometry, working

towards the development of heuristic models for thermal conductivity prediction in MOFs.

To this end, a suite of DFT and tight-binding DFT calculations of MIL-53(Al) were per-

formed, including computing the dispersion relations for the first time (to our knowledge),

which led to the discovery of rattling modes and phonon focusing effects in this framework.

In this work, I have not been responsible for producing the thermal conductivity

calculations, the data for which was provided to me. Additionally, the rattler toy model

was also developed by other people.

1.4 Thermal transport in fuels, and spintronic materials

In addition to the research projects above, collaborative projects have been un-

dertaken with research groups at the University of California, Riverside and at Oregon

State University. Two of these projects, the results from which have been incorporated

into one submitted manuscript and one accepted manuscript of which I am a secondary

author, all fall under the umbrella of thermal transport. The first project described herein

relates to predicting variability of thermal conductivity in nuclear fuels, and the second con-

cerns the spin Hall effect and spin phonon interactions in p-Si.An introduction to these

collaborations is described in the following subsections.

1.4.1 Predicting variability of thermal conductivity in nuclear fuels

For this project, our group is collaborating with researchers in the Nuclear Science

and Engineering department at Oregon State University. Ultimately, the goal is to develop
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a frequency-dependent phonon transport solver (based on the BTE) to perform engineering-

scale thermal transport predictions taking into account atomistic-scale materials properties.

The inclusion of thermal boundary resistance within phonon transport calculations has been

a first step in reaching the goal. This was accomplished for UO2, a material that undergoes

fission and experiences a reduction in thermal conductivity due to emerging xenon bubbles

and other fission byproducts, and thus greatly benefits the study of heat transfer at a

microscopic level. Our objective in this project is to perform DFT calculations to produce

the atomistic phonon transport properties needed to obtain accurate thermal transport

results with the phonon BTE, as implemented by our colleagues.

1.4.2 Spin Hall effect and spin phonon interactions in p-Si

Our collaborators at UCR have observed the coupling of spin, charge and thermal

transport (SMTR) behavior in p-Si for the first time [93]. At the origin of SMTR behavior in

p-Si are spin-phonon interactions [93]. Kumar and his group further hypothesize that spin

relaxation due to phonon absorption or emission may change phononic thermal transport

behavior [93], and thus propose monitoring changes in thermal properties to quantify the

spin-mediated behavior. We have calculated phonon properties of silicon with various spin

concentrations with the objective of ascertaining the influence of spin polarization on

phonon properties.

9



Chapter 2

Background and theory

2.1 Phonon thermal transport

Fourier’s law was proposed in 1811 based on experimental results and can be

written in differential form as

J = −κ∇T, (2.1)

where J is the heat flux, κ is the thermal conductivity of a material, and ∇T is the tem-

perature gradient. The heat equation, which governs the temperature distribution in an

object, can be written as

Cvρ
∂T

∂t
= −∇φ+Q, (2.2)

where ρ is the mass density, Cv the specific volumetric heat (in J · Kg−1K−1), t the time

and ψ is the heat flow, or J , through the material, and Q is energy being added or removed

from the system [1, 101]. At equilibrium, i.e. when Q is zero, by combining Fourier’s law
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and the heat equation (Eq. 2.2), assuming no mass transfer and constant properties, one

obtains the partial differential equation

−κ∇2T = ρCv
∂T

∂t
[101]. (2.3)

This equation can be solved to give the temperature distribution in a system of interest,

given the appropriate boundary and initial conditions. Fourier’s law accurately describes

the diffuse nature of heat transfer at the macroscale. However, in the last 30 years, the

lengths and time scales that are accessible have greatly decreased and become comparable

to mean free paths (MFPs) and relaxation times. Macroscopic theories do not provide an

accurate overview of heat transfer at such small scales [106]. An example of this is the several

orders of magnitude under-prediction of thermal conductivity at localized hotspots at the

junctions of transistors [129]. In another example, the nanostructuring of materials, i.e.

the patterning or inclusion of structural features in the nanometer (nm) scale, has resulted

in the substantial reduction of thermal conductivity of materials in comparison with their

bulk counterpart [94, 43]. Accurately describing and understanding heat transport at small

length scales requires an atomistic perspective of transport. Moreover, ballistic transport

— which occurs when the mean free path (MFP) and relaxation times of the carrier are

comparable to the length and time scales of transport in a material — is not described

by Eqs. 2.1 and 2.3, which further require knowledge of materials’ properties and that the

system behaves classically and can be modeled as a continuum.

A modern approach to thermal transport was first established by the Einstein and

Debye models, both based on Planck’s quantization and able to account, to some extent,

for the temperature dependence of thermal conductivity (at high temperatures). Debye
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was the first to attribute heat conduction to delocalized lattice waves [35]. Lattice vibra-

tions, or phonons, are responsible for most of the heat transfer that occurs in insulators and

semi-conductors. In the case of radiation, photons are the heat carriers, and in the case

of convection and conduction heat transfer mechanisms, atom and molecular collisions,

phonons, and electrons are responsible for heat transfer. In electrically conducting mate-

rials (e.g. most metals and metal-alloys), thermal transport is predominantly carried by

electrons, and in effective semi-conducting thermoelectric materials electronic transport is

non-negligible. Electronic transport is proportional to the electrons’ relaxation time, τ(E);

the electrons’ group velocity, ν(E); the electronic density of states, D(E); the fermi energy,

f0; and the temperature, T . The quantities that depended on the energy, E, are generally

computed with electronic methods, and must be integrated over the Brillouin Zone to yield

electronic thermal conductivity. Electronic transport is not featured in the research on this

thesis, and this is the only mention of it, but the calculation of electronic thermal transport

in this way is described clearly in Ref. [154].

Resuming the phonon discussion, the Einstein model treats each solid as many in-

dividual, non-interacting quantum harmonic oscillators, with a single associated frequency.

This is not the case in the Debye model, which assumes multiple allowed frequencies, with

an upper bound defined by the distance between atoms in a material. As with the Einstein

model, phonons obey Bose–Einstein statistics and the average phonon number is given by

the Bose–Einstein distribution:

〈n〉BE =
1

ehω/kBT − 1
, (2.4)

where h is Planck’s constant, ω is the phonon frequency, kB is the Boltzmann constant, and
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T is the temperature. At the core of Debye’s model is also the Dulong–Petit law, which

accurately approximates the molar specific heat capacity of many elementary solids at high

temperatures to 3R, where R is the gas constant (8.314 J ·mol−1), but which does not take

into account anharmonicity, as with the rest of Debye’s model. A harmonic interatomic

potential would yield an infinite thermal conductivity for an idealized solid, whereas an

anharmonic potential accounts for scattering and yields a finite thermal conductivity as a

result [154]. If the forces between atoms were purely harmonic, there would be no mech-

anism for phonon-phonon collision, and scattering would be limited by phonon collisions

with lattice imperfections and crystal boundaries. The scattering that occurs due to an an-

harmonic potential can be classified into normal (i.e. momentum conserving) and Umklapp

scattering [154]. Imperfections and boundaries scatter phonons elastically, and the phonon

energy is conserved. Changing individual phonons’ energy is required to obtain thermal

equilibrium, and this occurs only through phonon-phonon scattering, and Umklapp scat-

tering in particular. Umklapp scattering is the reflection or translation of the phonon wave

vector to another Brillouin zone. In Umklapp scattering momentum is conserved through

the addition of another reciprocal vector G that “flips” the phonon back into the first BZ,

as in

k1 + k2 = k3 +G, (2.5)

where k1, and k2 are the two interacting phonon waves. In Umklapp scattering, the waves

are beyond the long wavelength limit and k3 is the resulting vector, that places the scattering

phonon outside the BZ. A more detailed explanation of normal and Umklapp processes can

be found in Kittel’s Introduction to Solid State Physics [72]. These interactions can be
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incorporated as scattering mechanisms within the phonon Boltzmann transport equation

(BTE) formalism suggested by Peierls [125]:

∂ψλ
∂t

+ vλ · ∇rψλ =

(
∂ψλ
∂t

)
collision

, (2.6)

where ψλ is the phonon distribution as a function of time, t, and the spatial coordinate,

r, vλ is the phonon group velocity, and λ denotes a particular phonon mode of wave-

vector q and a given polarization [106]. The left-hand side of Eq. 2.6 describes the phonon

population in a region of phase-space as a result of phonons’ ordinary spatial velocities

and temporal variations. An external field term has been assumed to be zero in the BTE

phonon transport formulation in Eq. 2.6. The collision term on the right-hand side of the

equation denotes the change in the phonon distribution function due to (elastic and inelastic)

collisions between phonons and interactions with the background medium. The difficulty in

solving this equation depends largely on the assumptions made about the collision term. If

a single mode relaxation time approximation is made, the collision term can be written as

(
∂ψλ
∂t

)
collision

=
ψλo − ψλ

τ
, (2.7)

where the initial distribution function, ψλo, is the Bose–Einstein distribution (Eq. 2.4),

〈n〉BE , and τ is the relaxation time, i.e. the time between phonon scattering events. The

total relaxation time is related to the relaxation times of individual mechanisms (e.g. im-

purity scattering, normal scattering, Umklapp scattering) by Matthiessen’s rule:

1

τtotal
=

1

τimpurities
+

1

τUmklapp
+

1

τNormal
+ ... . (2.8)

This, of course, assumes these mechanisms are independent. A more complex form of

the BTE includes a 3-phonon linearized collision integral most often specified under the
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assumption of a uniform, one-dimensional temperature gradient [106]. The single mode

relaxation time approximation and the inelastic-3-phonon linearized collision integral terms

are a good approximation and the most commonly used methods for solving the BTE in

the thermal sciences [106], but do not include 4-phonon and higher order processes.

Expressions for thermal conductivity can be obtained by solving the BTE — a

derivation of a thermal conductivity expression from the 3-phonon approach is offered by

Minnich et al. [106]. The use of relaxation times due to three-phonon scattering was pi-

oneered by Klemens [73], Herring [55], Callaway [19], Holland [58] and Slack [145] in the

1950–60s, but the lack of knowledge of the 3-phonon scattering matrices even for simpler

solids meant this method was not fully considered until 2003 [17, 106]. Under the single

relaxation time approximation, by enforcing energy conservation, thermal conductivity for

an isotropic crystalline material can be expressed using simple kinetic theory as

κp =
1

3

∫ ωmax

0
C(ω)v(ω)λ(ω)dω, (2.9)

where the specific heat is

C(ω) = h̄ωD(ω)
d〈n〉BE
dT

. (2.10)

In the above equation, D(ω) is the phonon density of states per unit volume and unit

frequency interval; 〈n〉BE is again the Bose–Einstein distribution, v(ω) the phonon group

velocity; λ = vτ the phonon mean free path (MFP), and τ(ω) the phonon lifetime. Some

of the inputs required by this formalism have only become computationally feasible in the

last 30 years or so, in parallel with atomistic scale materials research and development.

For instance, phonon dispersion relations — which describe the phonon frequency, ω, for
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different wave vectors q and polarizations throughout the Brillouin Zone (BZ) — can now

be computed from first principles for some materials, and can be measured using inelastic

neutron scattering including for some asymmetric materials [106].

2.1.1 Computation

Computational tools that permit the study of thermal transport have been ad-

vancing at a fast pace and over different length scales. The use of increasingly complex

approximations within the BTE formalism as mentioned in the last paragraph is a good

example of these advancements. Figure 2.1 shows some of the state-of-the art approaches

used to understand thermal transport at different scales. Green’s functions (used at the

nano-scale, as shown in Fig. 2.1) are a formalism that can be used to solve for inhomoge-

neous differential equations with specified initial conditions or boundary conditions. This is

the only reference to Green’s functions, as they are not relevant for the research reproduced

in this document. Further information on the application of Green’s functions to thermal

transport can be found in Minnich’s review of advances in the measurement and computa-

tion of thermal phonon transport properties [106]. First principles, or ab initio methods,

however, in particular density functional theory (DFT), are crucial to some of the work

done in the course of my PhD. In addition to a short description of its application to heat

conduction, DFT is discussed in more detail in the Computational Methods section. In ad-

dition to DFT, classical molecular dynamics simulations — not included in Fig. 2.1 — also

allow for atomistic- to nano-scale thermal transport calculations and will feature heavily in

the research discussed in this document.
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Figure 2.1: Overview of state-of-the-art tools to study heat conduction and enable a micro-
scopic understanding of thermal conductivity across different scales [106].

The use of the BTE was historically limited due to the unavailability of quantum-

based calculations of phonon properties, such as dispersion relations or anharmonic scatter-

ing matrices [106]. There is a wide array of density functional theory packages (currently

the most commonly used ab initio method), such as VASP, Siesta, Quantum Expresso or

GAMESS, to mention a few. In addition to their direct use to obtain phonon properties,

ab initio approaches are used to determine interatomic potentials for various crystal struc-

tures without the need to include adjustable parameters. Such potentials can, in turn, be

used within the substantially more expedient classical molecular dynamics approach. In-

teratomic potentials were most often empirically or semi-empirically constructed, but the

widespread use of DFT has resulted in an increasingly large number of ab initio potentials

that are more widely applicable — empirical potentials are often only adequate to describe

a limited set of structures, based on the experimental data the potential parameters have

been fit to. First principles calculations of both harmonic and anharmonic parameters are

increasingly more common. In 2010, Ward and Broido computed harmonic and anharmonic

interatomic force constants (IFCs) from density functional perturbation theory (DFPT), i.e.
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without introducing any adjustable parameters [166], to properly reflect the physically dis-

tinct behaviors of the normal and Umklapp scattering processes and include the scattering

of acoustic phonons by optic phonons. Ward and Broido further used their results to assess

the validity of the relaxation time approximation for silicon and germanium, which they

found to accurately represent the thermal conductivity of both materials [166]. In DFPT,

the second order perturbation of the DFT total energy is obtained by expanding the total

energy with respect to changes in the Kohn-Sham electron wave functions. A section in

DFPT can be found in the Computational Methods chapter. In general, ab initio calcu-

lations have elucidated several heat transfer mechanisms that had escaped researchers for

years. One such example is the breadth of the thermal phonon spectrum and the relevance

of low frequency, long MFP phonons to heat conduction. We are no longer limited to

treat the phonon spectrum using average properties in a grey approximation. For instance,

calculations of Silicon based on its average MFP have underestimated the contribution of

low frequency phonons to thermal conductivity. In fact, at room temperature MFPs in

Si range from a few nanometers to 10 microns, and phonons with a MFP above 1 micron

contribute over 40% to thermal conductivity [40, 30]. This illustrates the importance of

considering multiple relaxation times when interpreting thermal measurements in bulk and

nano-structured materials. While not directly contributing to heat transfer, optical modes

provide important scattering channels for acoustic phonons and thus indirectly contribute

to heat conduction; the effect of optical mode scattering varies between materials and is also

manifest in the temperature dependence of thermal conductivity [166, 153, 152]. Using ab

initio methods, Lindsay et al. [91] have recently identified new criteria that affect thermal
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conductivity at a microscopic level, including acoustic phonon bunching, which restricts the

interactions among acoustic phonon modes, and a large acoustic-optical gap, which similarly

inhibits the participation of optical modes in phonon-phonon scattering.

DFT provides the most detailed atomistic information, but is very computationally

expensive and is often not feasible for domains larger than a few atoms or long simulation

times. A useful approach to bypass some of the difficulties of DFT is classical molecular

dynamics (MD). As large-scale computing capabilities continue to grow, parallel simula-

tions are starting to be able to handle systems with tens of millions of atoms [134, 65].

The position and momentum space trajectories of a system of classical particles can be

predicted using the Newton laws of motion — in an MD simulation, the only required in-

puts are an atomic structure and an appropriate interatomic potential. A whole section in

classical MD can be found in the Computational Methods chapter. Classical MD has the

advantage of naturally including anharmonic effects through the form of the interatomic

potential. Neglecting electrons removes the ability to model the associated electrical and

thermal transport, but phonon transport can often be modeled with classical MD, the po-

tentials for which can, as discussed earlier in this section, be informed by ab initio methods.

Harmonic theory is only exact at zero temperature [101], making classical MD also suit-

able for modeling systems at temperatures where the anharmonic effects, which are more

difficult to model theoretically, become important.

There are two major approaches for predicting thermal conductivity from MD

simulations: equilibrium and non-equilibrium methods. Each has advantages and disadvan-

tages, and the method chosen strongly depends on the problem of interest [101]. Generally
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speaking, the equilibrium approach is superior for bulk phase simulations and the direct

method is best for finite structures [101]. Non-equilibrium or direct methods rely on dis-

turbing the system of interest and measuring its response, while in equilibrium methods the

principle is the same, but the response is ascertained from small, local deviations from equi-

librium. The Müller-Plathe method [116] is a simple and popular non-equilibrium approach

that consists of creating a temperature differential by exchanging the energy/momentum

of the hottest molecule in a region of a slab selected to be the cool region, with that of the

coolest atom in the hot region thus imposing a flux on the system. The thermal conductivity

is obtained from the linear parts of the temperature distribution of the fictitious gradient.

I briefly dabbled with the Muller-Platte method, but did not use it towards the research

reproduced in this document. As such, a greater focus will be place on the Green-Kubo

(GK) equilibrium approach instead, which features heavily in this thesis (chapters 4 and 5).

2.1.2 Green–Kubo method

Mathematically, transport properties can be obtained from small, local fluctuations

by integrating the current autocorrelation function as

γ = α

∫ ∞
0
〈A(t)A(t+ τ)〉 dτ, (2.11)

where γ is the transport property of interest and A the current that drives it. The expres-

sion 〈A(t)A(t+ τ)〉 is the autocorrelation function of quantity A and α is a temperature

dependent coefficient, and this is the Green–Kubo method. For thermal conductivity, κ,

the Green–Kubo expression becomes

κ =
V

3kBT 2

∫ ∞
0
〈J(t)J(t+ τ)〉 dτ, (2.12)
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where kB is Boltzmann’s constant, T the temperature, and V the volume of the simulated

region, J is the heat-flux, and 〈J(t)J(t+ τ)〉 is the non-normalized heat current autocorre-

lation function (HCACF). Within classical molecular dynamics J is computed as

J =
1

V

[∑
i

eivi −
∑
i

Sivi

]
, (2.13)

where ei is the total energy per atom i at a given time, t (i.e., Eq. 2.13 corresponds to a

single time step), v is the atom velocity vector and Si is the stress tensor for each atom and

has 6 components: xx, yy, zz, xy, xz, yz. The HCACF, 〈J(t)J(t+ τ)〉, can be numerically

computed as

〈JnJn+m〉 ≡
N−m∑
n=0

JnJn+m
N −m

, (2.14)

where Jn is the value of J at the nth time step, i.e. Jn = J(tn), for n = 0, 1, 2, ..., N ,

and Jn+m is J at the (n + m)th time step, or J(tn + τm), for m = 0, 1, 2, ...,M . N and

M are, respectively, the maximum number of steps in the simulation and in the HCACF.

Analytically, the autocorrelation function is computed as the inverse Fourier transform of

the same transform of the current multiplied by its complex conjugate, averaged over N−m.

It follows that to obtain good statistical averaging M must be significantly less than N ,

and that the error associated with the HCACF increases over time for fixed N. The Green–

Kubo method is reiterated in chapters 4 and 5. In chapter 4 it is used to compute thermal

resistance from irradiation defects in graphite. For a system in equilibrium the average

current of any property is zero, and the HACF is expected to decay to zero given sufficient

time. Instead, large oscillations with a significant contribution to the integral have been

observed [119, 140, 24, 86, 34]. In chapter 5, we devise a new method to quantify the
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uncertainty from these oscillations on-the-fly and better use resources to compute thermal

conductivity with the Green–Kubo formalism.

2.1.3 Imperfections

Crystal structure defects can be of different types and dimensions. Vacancies,

interstitials, and impurities are zero-dimensional or point defects. A vacancy, as the name

indicates, occurs when an atom is missing from a periodic crystal structure, and can either

be formed when the solid is formed, occur naturally as a result of thermal vibrations, or

can be induced, for instance in a cascading reaction due to neutron scattering. Interstitials,

atoms that occupy a place outside the normal lattice positions, are a type of point defect

that can form in the same way as vacancies. In the first project we consider such type of

defects and clusters of defects in graphite, which can occur during the processing of the

material or while in service due to irradiation. We also consider the Stone–Wales defect,

involving a change in connectivity of two π-bonded atoms, which are rotated by 90o with

respect to the midpoint of their bond. The details and results of this research can be found

in chapter 4.

Imperfections have an important contribution in limiting the MFP. The effect of

imperfections becomes more noticeable at low to medium temperatures. In this regime

phonon-phonon scattering is weak, and defect scattering plays a more significant role [154].

Fig 2.2 shows the predominance of different types of scattering with temperature. The

different regimes have informed the choice of temperature (300 K) of the simulations per-

formed in the first project. While molecular dynamics is only rigorously applied to solids

above the Debye temperature, to determine the comparative scattering effect of different
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types and concentrations of impurities it is to our advantage to consider a regime before

phonon-phonon scattering becomes the dominant mechanism.

Figure 2.2: The solid line corresponds to results predicted from a model that considers
phonon dispersions and contributions from different phonon branches, and is compared
with experimental results (symbols) [25, 154]. The different scattering regimes are also
indicated.

Beyond point defects, dislocations (linear defects), stacking faults, twin or grain

boundaries (planar defects) have a significant effect on thermal conductivity. The impact

of the structure (e.g. through nanostructuring) and defect inclusion to thermal transport

is a good example of this effect. Let us consider boundary scattering, which plays a more

significant role at low temperatures, a regime where phonon-phonon scattering is weak, and

the thermal conductivity is approximately proportional to 1
T 3 (see Fig 2.2). In the limit that

ballistic scattering becomes dominant, and boundaries scatter diffusively versus specularly,

boundary phonon scattering is essentially agnostic to the direction of phonons and a “gap”

(decrease) in thermal conductivity forms around the boundaries. This effect was discovered

by Haas and Biermasz [33] and later explained by Casimir [20] and is thus often designated

the Casimir effect. The Boltzmann transport equation is never directly used in this research.
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However, some of the first principles calculations described in chapter 7 are used to inform

the solution of the BTE for phonon transport in Si and UO2 performed by our collaborators.

Ultimately, the aim of this work is to include the whole phonon spectrum and corresponding

life times into the BTE, and further correctly describe phonon boundary scattering.
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2.2 Random Walk

In a random walk, a trajectory is defined by a succession of random steps. An

example of a simple one-dimensional random walk is to flip a fair coin and select to move

one step right or one step left for a fixed, heads or tails, outcome. If vi is the velocity (i.e.

step length and direction) at some step i, where i = 1, 2, 3, ..., n, the position of the random

walk after n steps, x(n), is the sum of velocity oscillations up to that point:

x(n) =

n∑
i=1

vi. (2.15)

For any velocity distribution with mean zero and standard deviation σv, the root mean

square translation distance after n steps or, in other words, the expectation of the absolute

value of the displacement of a random walk is

E(x(n)) = σv
√
n. (2.16)

Consider the random walks in Fig. 5.2 b), with a step size distribution N ∼ (0, σv) as shown

in Fig. 5.2 c). The expectation of position as a function of time for the random walk is

E(x(t)) = δtσv

√
t

δt
= σv

√
tδt. (2.17)

The Green-Kubo method, introduced in section 2.1, requires large systems, and

long simulation times to reduce the error associated with computing the autocorrelation

function (Eq. 5.3). In chapter 5, by characterizing the integrated autocorrelation function

noise as a random walk, we are able to estimate an expectation envelope for the noise, as

that defined in Eq. 2.17 for the random walk.
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Figure 2.3: a) corresponds to velocity fluctuations that give rise to a random walk; b) a
set of 10 random walks is shown in black and the expected root mean square translation
distance at time t is plotted in red; c) is the distribution of the random walks shown in b).
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2.3 Metal–organic frameworks

The term metal–organic framework (MOF) was introduced in 1995 [168] to des-

ignate extended crystalline structures comprised of secondary building units (SBUs), i.e.

single nodes or clusters of metal-ions, bridged by organic linkers. An example of a MOF

and its most basic components are shown in Fig. 2.4. The highly porous nature and excep-

tionally large surface area of MOFs make them ideal for gas sorption and storage applica-

tions [133, 164], such as carbon sequestration and hydrogen storage [117, 105]. Beyond their

porosity, MOFs are inherently modular. Moreover, the building blocks of MOFs (SBUs and

linkers), and the framework topology are often property-correlated, making MOFs suitable

for a wide array of applications. Separation [36, 167], chemical sensing [76], drug transport

[60], catalysis [150], and charge storage/conduction [84, 170] are some examples of other

common applications for which MOFs are heavily researched.

Figure 2.4: MIL-53(Cr), where MIL stands for Matriaux de l’Institut Lavoisier, is a type
of MOF. The metal ion and ditopic linker are its constituting elements. While a chromium
metal ion is depicted in this figure as the MIL-53 SBU, other studied systems include Al,
Ga, In, Fe, and Sc as the metal-ion instead.

For the past 15 years, the discovery, study and synthesis of new MOFs have been

increasing rapidly [46]. The increasing amount of not only experimental, but computa-

tional research done on MOFs with the intent of predicting novel structures is evidenced by
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the number of available framework databases. A database of computation-ready MOF

structures derived from experimental data, and a method for assembling periodic and

non-periodic framework structures in-silico, termed Automated Topological Generator for

Framework Structures (AuToGraFS), has been implemented by Addicoat et. al. [2]. The

Cambridge Structural Database (CSD) included about 20, 000 MOFs in 2013 [138]. Yet

another useful database of MOFs is the CoRE (computation-ready, experimental) MOF

database, with publicly available atomic coordinates for over 4700 porous structures [28].

The challenge of efficiently designing and constructing new crystalline solid-state

materials from molecular building blocks has driven a significant portion of the research

in MOFs in the last few years. This research has promoted the abstraction of MOFs to

simpler geometries. Reticular chemistry offers a way to represent MOFs as elementary

building blocks abstracted as shapes such as triangles, squares, tetrahedra and octahedra.

Reticular chemistry applied to MOFs first appeared in 2003 in the work of Yaghi et al. [169],

and a comprehensive description of MOF geometries (see Fig. 2.5 for examples) can be found

in the work of Li et al. [88]. O’Keeffe and Yaghi et al. have also put forth the reticular

chemistry structure resource (RCSR) database of, and symbols for, crystal nets [122]. This

level of abstraction is useful for the high-throughput discovery of MOFs, which has been

the underlying motivation of the research developed on MOFs in the course of my Ph.D. In

chapter 6, we propose abstracting linkers and nodes as resistors as an heuristic for the fast

screening of framework thermal properties.
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Figure 2.5: Figure a) corresponds to MOF-505. The second and third figures in a) illustrate
how the structure can be abstracted as shapes. Two possible abstractions are shown.
This image was reproduced from [88]. Fig. b), partially reproduced from [88] and [29],
corresponds to MOF-5 and its abstraction, showing the Zn4(−CO2)6 SBU as an octahedron,
and the terephthalate linker as a rod. Fig c) provides a glimpse into the diversity of MOFs.
Fig. i) is an HKUST-1 MOF [88]; Fig. ii) is an nnt-a type net MOF [88]; Fig. iii) is a MOF
with a ttu type net, which is a derivative from a net-type designated corundum [88]; and
Fig. iv) is a mIm-MOF-14, an example of an interpenetrated MOF [74].

The 2013 review article written by Furukawa et al. [46] offers an encompassing

overview of the effects of framework chemistry on the functionality and application of MOFs.

Furukawa et al. discuss design strategies to facilitate the synthesis of families of materials

with similar framework topology but varying in pore size and the type of functional groups

present in the linkers. The focus of the paper is on how ultrahigh porosity, high thermal

and chemical stability, elevated catalytic activity and proton conductivity can be achieved

and tuned, not just across families of MOFs, but within a single MOF. Heterogenous func-
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tionalities of MOFs can be obtained by flexible, or otherwise isomerizing, frameworks. In

2002, Kitagawa [156] and Férey [142, 10] independently published pioneering works on

“breathing” MOFs, the phenomenon by which flexible MOFs undergo a reversible transfor-

mation between narrow pore (np) and large pore (lp) structures. The dynamic micropores

of breathing MOFs have been shown to open and close as a response to external stimuli

such as temperature [97] and pressure [95] changes, or host-interaction [95, 96].

2.3.1 Flexible metal–organic frameworks

Flexible MOFs exhibit structural reversible transformability while maintaining

crystalline order. The varying chemical interactions within MOFs, ranging from strong

coordination bonds to weaker dispersion forces and hydrogen bonding interactions, may

result in significant structural flexibility in response to temperature, hydrostatic pressure,

or uniaxial stress [89]. In addition to thermal and mechanical stimuli, host-guest interactions

and photochemical stimuli may also induce phase transitions in MOFs. Studies of flexible

MOFs have been increasing since the first major conceptual article appeared in 2004 [70,

138], but only less than 100 compounds revealing significant breathing transitions or related

stimuli responsive properties were included in the Cambridge Structural Database as of

2014 [138]. The most reported phenomena are breathing and swelling (see Fig. 2.6).

Breathing MOFs, as the MIL-53 in Fig. 2.4, transform between narrow pore (np)

and large pore (lp) forms resulting in a major volume change. Researchers have found that

lattice-fence or wine-rack motifs, like that of MIL-53, can be designed by adding dangling,

flexible side groups pinned to the backbone of the linkers and whose motion is transduced

to the framework [138]. Swelling (e.g. in MIL-88) is characterized by an enlargement of
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the cell without changes in the unit cell or, generally, the space group [138]. A volume-

conserving flexibility mode (e.g. in ZIF-8), as described by Schneemann et al. (Fig. 2.6),

is linker rotation, where the spatial alignment of the linker changes as it rotates around

an axis [138]. Seo et al. have developed a 3-D pillared-layer coordination polymer which

selectively rotates to allow adsorption for guests that interact with the nodes only [141].

Subnetwork displacement requires that a system have disconnected frameworks that interact

only through weak forces. A 2-D example of an interdigitated framework that shows gate

opening/closing as a function of pressure from a nitrogen, oxygen and methane mix is

reported by Kitaura et al. [71]. There are also examples of so called rigid MOFs that show

phase transitions due to thermal expansion (e.g. MOF-5, HKUST-1) [138]. MOFs can also

undergo reversible amorphization when exposed to mechanical stress, or exhibit drastic

pressure-induced phase transitions, associated with striking bond rearrangements. Some

MOFs have been reported to exhibit negative linear compressibility (NLC) and massive

positive or negative thermal expansion (PTE and NTE) [89].

Figure 2.6: Fig. a) is a paddle-wheel and serves as an inorganic brick for many known
flexible MOFs [138], as is the case with the flexible Mil-53 shown in Fig. c). Fig b) is
MIL-88A, and exhibits an entirely different form of flexibility [22]. Fig. d) is a classification
of different flexibility modes in MOFs [138]. Types A, B and C are non-volume conserving.

In chapter 6, we apply our heuristic approach to a single property — estimating
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thermal transport —, and to a single flexible framework, but not only could the same

strategy be used to estimate other properties, such as elastic constants by approximating

the nodes and linkers as springs instead of resistors, it could be (better) applied to other

flexible modes (examples are mentioned above). While to our knowledge, there have been

no similar heuristic models proposed for heat transport, Sarkisov et al [136] have proposed

a simple method to predict framework flexibility based on treating the structures as a

system of rigid elements connected by hinges (or ‘sticks and balls’ as informally referred

to in the previous section). This approach has the drawback that MOFs are therefore

exclusively classified based on their topology. As Cheetham et al [89] points out, the

framework topology describes the overall connectivity pattern of the MOF building units

and it is vitally important not only for its mechanical properties, but also for its chemistry.

Cheetham et al. [89] show that SBUs can be analyzed and their rigidity and flexibility

estimated based on strong (covalent or coordinative bonds) and weak (hydrogen bonds,

dispersion forces) interactions [89]. Both Cheetham et al. [89] and Sarkisov et al [136]

provide complementary ways to systematically guide the search for flexible (or rigid) MOFs.

The motivation for the research produced in chapter 6 further supports the need

for more studies of thermal transport in MOFs, which to date have received limited at-

tention [51]. Gas sorption involves exothermic and endothermic processes, and the ability

to transport heat into and out of a framework can be a limiting factor in the performance

of MOFs for sorption-related applications, such as adsorption chillers or hydrogen storage.

The limitation of these devices is not storage capacity, but the efficient removal of latent heat

of adsorption [172, 132]. Mechanical dampening, for shock adsorption [171] or energy stor-
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age applications, likewise requires heat dissipation. For applications requiring or benefiting

from dynamic, or flexible, MOFs, it is not only necessary to compute thermal conductivity,

but to understand how it varies with structural transitions between breathing states. Our

aim is to determine if thermal transport properties can be estimated from the vibrational

modes of lp and np structures and, moreover, if these properties scale continuously with

framework geometry.
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Chapter 3

Computational methods

Molecular dynamics (MD) encompasses several approaches or models used to sim-

ulate (n-body) materials at the atomic and molecular scale. In classical MD, simulations

are advanced by numerically solving Newton’s equations of motion; in some quantum-based

MD approaches (e.g. Hartree-Fock theory) the Schrödinger equation is used, while others

resort to different strategies: density functional theory (DFT) is based on an electronic

density functional formulation, and there are some hybrid approaches, such as the Car-

Parrinello method which combines equations of motion with a density functional approach.

While molecular dynamics simulations are often used to infer nano-scale properties, the use

of periodic boundaries makes it a useful tool to compute meso- and macro-scale properties

as well. In addition to property calculations, MD further allows insight into the physics of

atoms and molecules, depending on the methods and approximations used. Classical molec-

ular dynamics, density functional theory, and time-dependent density functional theory are

the most relevant methods for the execution of the work done and proposed in this thesis,
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and an overview of these methods is therefore provided below. A more thorough discussion

of these and other molecular dynamics methods can be found in: Computational Materials

Science, Fundamentals to Applications [85], and Ab Initio Molecular Dynamics, Basic The-

ory and Advanced Methods manual [99]. Other sources are indicated in the text; in order

to maintain consistency throughout this discussion the notation used deviates slightly from

that of the various sources used.

3.1 Classical molecular dynamics

Classical molecular dynamics (MD) is a computational technique for simulating

complex systems at the molecular and atomic scale. The development of computational

approaches based on quantum mechanics (QM) has yet to render classical MD obsolete.

Predictions and understanding of various systems’ kinetic and thermodynamic properties

and mechanistic behavior can be made without resorting to QM, and classical MD is sig-

nificantly less computationally expensive, allowing for simulations of thousands of atoms.

Furthermore, quantum behavior can, in some cases, be approximated with an appropriate

interatomic potential.

In classical MD the total forces on all atoms are computed and used to solve New-

ton’s equations of motion to determine how the atoms evolve. This is done iteratively, using

a numerical scheme. For each atom, i,

Fi = miai = mi
d2ri
dt2

, (3.1)
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where Fi is the force exerted on atom i, m its mass and ai its acceleration. If the interatomic

force is conservative (i.e. it depends on positions, not velocity), then

Fi = −∇iU(r1, r2, ...rN ) = −∇iU(rN ), (3.2)

where U is the potential energy of the system as a function of the position, r, of all of its N

particles. There is not a complete analytical solution for systems comprised of more than

two bodies, and in order to integrate the equations of motion for many-body systems it

is necessary to resort to numerical schemes [16]. For this reason, Eq. 3.2 consists of 3N

second-order differential equations, N for each coordinate, which are coupled through the

nonlinear potential function. To find the three-dimensional phase-space trajectory of the

system at hand, initial conditions (at least position and velocity) need to be specified prior

to beginning the calculation. A discrete time step, δt, to advance the simulations needs to

be selected, such that the positions and velocities can be found at t + δt from the forces

evaluated at t. There are several possible self-consistent preserving methods to advance the

equations of motion, but the Verlet algorithm [159, 160] is often used due to its simplicity

and reasonably low error. While it is not necessarily the case that MD codes will use this

algorithm or variation of it shown below, it serves to illustrate how the equations of motion

are advanced. The leapfrog [110], or velocity Verlet, includes a mid-step calculation of the

velocity,

v
(
t+ 1

2 δt
)

= v(t) + 1
2 a(t) δt, (3.3)

based on the initial velocity, v(t), and acceleration, a(t), to be included in the calculation

of the new position,

x(t+ δt) = x(t) + v
(
t+ 1

2 δt
)
δt. (3.4)
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The acceleration at the next time step, a(t + δt), is directly obtained from the interaction

potential. The new velocity then becomes

v(t+ δt) = v(t) + 1
2 (a(t) + a(t+ δt)) δt. (3.5)

3.1.1 Interatomic potentials

The interaction between the atoms is defined by Fi (see Eq. 3.2) and modeled

through interatomic potentials, making them paramount in classical MD simulations. Inter-

atomic potentials are generally based on simple functional forms that reflect on the types of

bonding they are designed to represent, but can have varying degrees of complexity. Atomic

force field models describe the behavior of the atoms in the system through the use of in-

teratomic potential functional forms selected to best describe the system and properties of

interest [102]. The problem of finding a potential to accurately mimic true energy surfaces

is not trivial. Adjustable parameters are generally chosen such that the empirical poten-

tial matches results obtained with first principles calculations or experimental data [102].

Potentials also vary in terms of the number of atoms that interact with each other (pair

potentials versus many-body potentials), the nature of the bonding described (covalent,

polar covalent, ionic, metallic, hydrogen, van der Waals), and whether short and/or long

range interactions are being considered [102, 85]. The Lennard-Jones potential [63],

φ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(3.6)

where σ and ε are fitting parameters, is commonly used due to its simplicity and reasonably

good performance for neutral atoms [85]. Other potentials include the Born-Meyer, and the

Morse potentials [114], both central-force potentials, i.e. a function only of the distances
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between pairs of atoms [85]. In simple metals there is little to no directionality to the

bonds but the interaction between delocalized electrons must be included in the description

of the bonding; accurate descriptions of the interatomic potentials must include quantum

mechanical effects that arise from when charge distributions overlap and the electrons are

forced to occupy a smaller volume [85]. Embedded-atom model (EAM) potentials are used

to compute metallic materials’ properties — in addition to a pair potential, they includes

an electron energy functional dependent on the interatomic distance between atoms [85].

In bond-order potentials, the general expression for each atom’s energy is

Ei =
1

2

Zi∑
j=1

[qVR(r) + bVA(r)] , (3.7)

where parameter q depends on the local electronic density, VA and VR are repulsive and

attractive parameters, respectively, Z the number of nearest neighbors and b is the bond

order parameter, meaning it controls the strength of the chemical bond (including the

number of bonds and sometimes also angles and bond length). The total system energy is the

sum of all atomic energies [85]. The Tersoff potential [149], the Brenner potential [14], the

charge-optimized many body (COMB) [143, 90], and the reactive force field (ReaxFF) [157]

are examples of bond-order potentials.

The adaptive intermolecular reactive empirical bond order (AIREBO) potential [148]

is a bond-order potential designed for carbon and hydrogen systems. The AIREBO poten-

tial consists of three terms:

E =
1

2

∑
i

∑
j 6=i

EREBOij + ELJij +
∑
k 6=i

∑
l 6=i,j,k

ETORSIONkijl

 . (3.8)

Starting from the end of Eq. 3.8, the TORSION term describes various dihedral angle pref-

erences in hydrocarbon configurations; the Lennard-Jones (LJ) term adds longer-ranged
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interactions using a form similar to the standard Lennard-Jones potential; and the REBO

term shares some of the same terms with Brenner’s potential, and confers the model re-

active capabilities. Reactive force potentials are variations of bond-order potentials that

enable atoms to respond to their local environment and determine their charge: bond for-

mation and breaking, for instance, can be simulated with this type of potential. These offer

more resolution to some problems, but are more computationally expensive than simpler

potentials; that computational expense is still lower than density functional calculations.

Interatomic potential functions are approximations, and thus so are the calculations that

are based on them.
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3.2 Time-independent density functional theory

The behavior and properties of materials are often a direct result of the atomic

bonding type. Knowledge of the electronic distribution of a system is paramount to un-

derstanding the nature of bonding and it is not surprising that we should need to rely on

electronic structure methods to understand and predict certain materials properties. The

time-independent Schrödinger equation, which describes the energy of the electrons and

nuclei in a material, is

Hψ = Eψ, (3.9)

where E is the system energy, ψ the wave function and H is the Hamiltonian operator given

by

H =
N∑
i=1

(
−1

2
∇2
i + Vext(ri)

)
+
∑
i

∑
j>i

1

rij
, (3.10)

for many-body electronic structure calculations, in atomic units. The above Hamiltonian

assumes the Born-Oppenheimer approximation is used, i.e. the positively charged nuclei of

the atoms that integrate the system are considered to be fixed with respect to the electrons,

such that a static external potential, Vext(ri), describes the interaction between the nuclei

and the electron, and the wave function, ψ, a stationary electronic state. For a system with

M nuclei, if Zα is the nuclear charge and riα is the distance between the ith electron and

the αth nucleus, the external electrostatic (Coulomb) potential is

Vext(ri) = −
M∑
α=i

Zα
riα

. (3.11)

In Eq. 3.10, the first term in the Hamiltonian corresponds to the kinetic energy of the

electrons in the system and N is the total number of electrons; the last (summation) term
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is the electron-electron interaction energy, where rij is the distance between the ith and

jth electrons. Even with the Born-Oppenheimer approximation, the Schrödinger equation

(Eq. 3.9) can not currently be solved exactly for systems larger than the hydrogen atom,

making it necessary to find other methods to solve more complex problems. Of the existing

approaches to perform many-body electronic calculations, the most ubiquitously used is

based on a density functional theory (DFT) formulation of quantum mechanics [85].

At the core of DFT is the relationship between the electron density of a system, ρ, and the

system’s wave function, ψ:

ρ(r1) = N

∫
...

∫
|ψ(rN )|2dr2...drN , (3.12)

where r1 corresponds to an arbitrary electron position, and rN is the position of all N elec-

trons in the system. The most remarkable aspect of this relationship is that, for any value

of N, it bijectively maps a function with 3N variables, ψ, to a function, ρ, that is dependent

on only 3 variables as shown by Hohenberg and Kohn [75]. In other words, for each unique

wave function there is a unique electronic density function. DFT furthermore relies on the

second Hohenberg–Kohn theorem, which states that there exists an energy functional, E[ρ],

for which the correct ground state electron density is a global minimum. The energy density

functional is not known, nor is it currently known how to find it exactly.

The Thomas-Fermi (TF) and Thomas-Fermi-Dirac (TFD) models are the earliest

formulations of DFT and precede the Hohenberg–Khon theorems by nearly four decades.

The Kohn–Sham method was published shortly after Hohenberg and Khon’s theorems and

it addresses several inadequacies of the TF/TFD models. It is also the basis of most DFT
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calculations done today. Following from the Hamiltonian described by Eq. 3.10, a density

functional could be written as

E[ρ] = T [ρ] +

∫
Vext(r)ρ(r)dr + Vee[ρ], (3.13)

where T [ρ] is the kinetic energy of the system’s electrons, Vee[ρ] is the electron-electron

interaction and the middle term is the nuclear-electron interaction. If the classical Coulomb

integral (or Hartree energy),

EH [ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

|r2 − r1|
dr1dr2 (3.14)

is used to describe the electrostatic energy of the charge distribution, Vee[ρ], then

Vee[ρ] = EH [ρ] + (Vee[ρ]− EH [ρ]), (3.15)

where Vee[ρ]−EH [ρ] is a correction factor. As aforementioned, a major innovation in Kohn

and Sham’s approach is the assumption that a many-electron system can be written as the

sum of one-electron orbitals, ψi, as

ρ(r) =
N∑
i=1

|ψi(r)|2, (3.16)

the discrete equivalent of Eq. 3.12. This simplifies how to find solutions to the Schrödinger

equation, and it includes shell discontinuities as a natural part of the solution — the discrete-

ness of the shell structure of electrons was a major source of error in the earlier, TF/TFD

models. According to the Kohn–Sham approach the kinetic energy can be obtained as

TKS [ρ] =
N∑
i=1

〈
ψi

∣∣∣∣−1

2
∇2
i

∣∣∣∣ψi〉 . (3.17)

We can therefore rewrite E[ρ]:

E[ρ] = TKS [ρ] +

∫
Vext(r)ρ(r)dr + EH [ρ] + EXC [ρ] (3.18)
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where EXC [ρ] is a correction term that includes all the corrections between the sum of the

kinetic and Coulomb energies and the correct answer. This term is called the exchange-

correlation energy because it includes the exchange interaction that occurs in electrons,

and other fermions, due to the Pauli’s exclusion principle, and the electron-electron correla-

tion [5]. The minimum for the Kohn–Sham functional (Eq. 3.18) can be obtained by varying

the functional for a fixed number of electrons with respect to the density (Eq. 3.16) [99].

Summarily, the Kohn–Sham equation is equivalent to the Schrödinger equation of a fic-

titious system of non-interacting particles, usually electrons, with the same density as a

system of interacting particles. Furthermore, expressing the Kohn–Sham in terms of ρ(r)

allows mapping a many-body problem onto a single-body problem with the same internal

energy.

The optimization procedure is generally started with an initial wave function, ψ0
i

guess, from which an initial electron density, ρ0 is constructed, according to see Eq. 3.16.

The Kohn–Sham potential, found by taking the derivative of the Kohn–Sham functional

(Eq. 3.18), is

VKS(r) = Vext(r) +

∫
ρ(r)

|r− r1|
dr1 +

δExc
δρ(r)

. (3.19)

The Hamiltonian (which includes the kinetic energy term excluded in the potential above)

is therefore:

HKS = −1

2
∇2 + VKS(r). (3.20)

Solving the Schrödinger equation,

HKSψi(r) = εiψi(r), (3.21)

yields a new set of N orbital wave functions ψ. From these a new ρ is computed and used
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in Eq. 3.19, the process is repeated until a ρ does not vary by more than the specified

tolerance [85].

The exchange-correlation energy term is the unknown in the Kohn–Sham expres-

sion, and how it is approximated is thus key to DFT. The most widely used approximation

are the generalized gradient approximation (GGA), and the local density approximation

(LDA), but several others exist [99]. While the LDA depends exclusively on the value of

the electronic density at each point in space, and are of the form

Exc =

∫
ρ(r)εxc(ρ)dr, (3.22)

GGA methods are also based on its local gradient, and is of the form

Exc =

∫
ρ(r)εxc(ρ,∇ρ)dr, (3.23)

where ∇ρ(r) is the gradient of ρ(r). Often times the correlation-exchange energy will be

represented as the sum of a correlation and an exchange terms [85].

The initial wave function with which the calculation is generally started is the sum

over a set of functions designated the basis set. Different structures benefit from varying

basis sets. For instance, for solids, the basis set should satisfy Bloch’s theorem:

φk(r + R) = eik·Rφk(r). (3.24)

In Eq. 3.24, R is a direct lattice vector, r is the position, and k the wave vector; φ is a

repeating wave function with the same periodicity as the crystal it is intended to describe.

According to the theorem the energy eigenstates for an electron in a crystal can be written
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as the periodic wave described in Eq. 3.24, i.e. as a Bloch wave [85]. Plane waves,

φk(r) = eik·r
∑
G

cGe
iG·r, (3.25)

where G is a reciprocal lattice vector, satisfy that condition, and are therefore often used to

model solids [85]. Plane waves are also relatively easy to code and evaluate, and including a

large number of plane waves often suffices to obtain the desired accuracy; the convergence

properties are often governed by a single energy cut-off parameter, which corresponds to

the basis set with the highest energy [85]. For strong directional bonds, atomic orbitals are

preferable for the basis set and generally fewer gaussian functions are needed to describe

the electronic distribution so they can be computationally less expensive; non-plane-wave

basis sets also facilitate calculations of non-periodic structures [85]. Overall there needs to

be a balance between accuracy and computational expense, though convenience (e.g. the

software available) also comes into play.

Finally, the topic of pseudopotentials should be addressed. Pseudopotentials are

used to model the inner shell of the atoms, including the nucleus and inner electrons.

Inner core electrons contribute less significantly to bonding than valence electrons, and in

order to speed calculations these electrons and the nucleus are sometimes treated as non-

responsive by means of a pseudopotential [85]. Use of pseudopotentials is normally first

validated against calculations performed including all electrons. While empirical methods

can be used to derive pseudopotentials, they are more likely to be computed with first

principles [85].
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3.3 Density functional perturbation theory and the frozen-

phonon method

As briefly discussed in the section on phonon thermal transport, density functional

perturbation theory (DFPT) has been used in the literature to obtain harmonic and anhar-

monic interatomic force constants (IFCs) to compute the phonon spectra and vibrational

and elastic properties of materials. Within the scope of the research described in this doc-

ument, DFPT has been and will be used in addition to non-DFPT methods to perform

calculations to obtain both phonon density of states and dispersion relations, and elastic

constants. As such, a summary of DFPT and some of its the underlying approximations

are discussed in this section. A more detailed review and discussion of the formalism and

its applications can be found in Refs. [9, 99].

The Born-Oppenheimer approximation, introduced in the previous section on

DFT, is a necessary condition to DFPT. Because the electrons respond instantaneously

to changes in the ionic positions, the forces acting on the ions in equilibrium can be calcu-

lated from the energy obtained with DFT as

FI ≡
∂E(R)

∂RI
= 0, (3.26)

where RI is the position of the Ith ion, and FI the force acting on it [9]. Similarly, several

other experimental observables can be obtained from taking various order derivatives of

DFT energy or charge density calculations. Marx and Hutter [99] offer a table with some

examples. In the harmonic approximation, the second-order derivative of the ground state
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energy with respect to the atomic positions is used to calculate the dynamical matrix,

DIα,Iβ =
1√

MIMJ

∂2EKS
∂RIα∂RIβ

, (3.27)

where the different ions are labeled I, J = 1, 2, ..., N and the cartesian coordinates with α, β

= 1, 2, 3, and from which the vibrational properties of materials can be computed (e.g. the

frequencies are the eigenvalues of the matrix). In the course of this research, we resort to

the frozen-phonon method more often than DFPT. In the frozen-phonon method, the force

constant matrix is calculated by explicitly displacing each atoms in all directions computing

the energy with DFT. One drawback of the frozen-phonon method is that large supercells

are needed to accurately calculate the force constant matrix — the cells need to be large

enough not to feel the forces due to atomic displacement across the boundaries. Another

approach is using the Linear Response method.

In addition to the Born-Oppenheimer approximation, the Hellman-Feynman theo-

rem [54, 42] is also fundamental to DFPT; it states that the first derivative of the eigenvalues

of a Hamiltonian, Hλ, that depends on a parameter λ (R in the case of lattice dynamics) is

given by the expectation value of the Hamiltonian derivative. Eq. 3.26, for instance, would

thus become

FI ≡
∂E(R)

∂RI
= −

〈
ψ(R)

∣∣∣∣∂HBO(R)

∂RI

∣∣∣∣ψ(R)

〉
, (3.28)

where ψ(R) is the electronic ground-state wave function of the Born-Oppenheimer Hamil-

tonian. For a generalized potential and the more general perturbed parameter λ, it follows

from the Hellmann-Feynman theorem that:

∂E

∂λi
=

∫
∂Vλ(r)

∂λi
ρλ(r)dr, (3.29)
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and

∂2E

∂λi∂λi
=

∫
∂2Vλ(r)

∂λi∂λi
ρλ(r)dr +

∫
∂ρλ(r)

∂λi

∂Vλ(r)

∂λi
, (3.30)

where ∂ρλ(r)
∂λi

is the electron density response and can be evaluated by linearizing Eqs. 3.16

and 3.17, leading to

∆ρ(r) = 2
N∑
i=1

ψ∗i (r)∆ψi(r), (3.31)

where in density functional perturbation formalism the ∆ operator,

∆ =
∑
i

∂

∂λi
∆λi, (3.32)

applied to the Konh-Sham orbitals, i.e. ∆ψi(r), indicates the orbitals’ variation which can

be obtained by standard first-order perturbation theory [103, 9]:

(HKS −εi|∆ψi〉 = − (∆VKS −∆εi) | ψi〉 , (3.33)

where HKS is the unperturbed Kohn-Sham Hamiltonian (see Eq. 3.20),

∆VKS = ∆Vext(r) +

∫
∆ρ(r)

|r− r1|
dr1 +

d

dρ

(
δExc
δρ(r)

)∣∣∣∣
ρ=ρ(r)

∆ρ(r) (3.34)

(i.e. the variation of the Kohn-Sham potential (Eq. 3.19)), and ∆εn = 〈ψi|∆VKS |ψi〉.

Including the variations to the Kohn-Sham potential does not alter the self-consistent nature

of the approach. There are different perturbation formalisms, but this section provides an

overview of the method.
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3.4 Density functional tight-binding method

The density functional tight-binding (DFTB) method is a semi-empirical approach

rooted in DFT, as the name suggests. DFTB offers a significant improvement in efficiency

without a significant compromise on accuracy, given it is based on first principles, for a wide

array of molecules, and solid state materials [48]. DFT is perhaps the most popular first

principles approach for materials properties calculations, but its computational cost makes

it difficult to use with larger systems, longer time scales, multiple system simulations (e.g.

for high-throughput calculations), etc.. The trade off between speed and accuracy makes

DFTB optimal in such cases. The “tight-binding” aspect of the method refers to the tight

binding of the electrons to the atom to which they belong. It implies a limited interaction

with the potentials and states of the surrounding atoms and that the wave function of

the electrons should therefore be similar to the atomic orbital of the corresponding atom.

Expressing every one-electron wavefunction as the linear combination of atomic orbitals,

ψi(r) =
∑
µ

ciµφµ(r), (3.35)

where the summation of the Greek letters runs over all basis functions [6], is the key idea

behind DFTB, introduced by Slater and Koster [146]. Slater and Koster call it the tight

binding or Bloch method and their historic paper — which includes the Slater–Koster

table used to build a tight binding hamiltonian — provides the systematic procedure for

formulating a tight binding model [124]. For DFTB, the eigenproblem is set up as follows:

∑
ν

Hσµνcσν = εσµ
∑
ν

Sµνc
σ
ν , (3.36)
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where the Hamiltonian is

Hσµν =
〈
φµ|Ĥσ|φν

〉
(3.37)

and the overlap matrices are

Sµν = 〈φµ|φν〉 . (3.38)

In the above equations, φµ and φν are located on atoms A and B, respectively, and the

index σ indicates the spin state [6]. Henceforth, however, I will neglect the spin index for

simplicity. Most often, only valence electrons are considered and Eq. 3.35 includes only

one radial function for each momentum state: one for s-states, three for p-states, etc. [85].

Eq. 3.36 can be arrived at in a couple of different, but equivalent ways [85, 44]. Matthew et

al. state that semi-empirical tight binding calculations start from the assumption that the

total electronic energy of a solid can be written as

E =
N∑
i=1

εi +
1

2

∑
µ

∑
ν(6=µ)

U(|Rµ −Rν |), (3.39)

where U(|Rµ − Rν |) is a short-range pairwise repulsion between atoms A and B and the

εi’s are the eigenvalues of a Schrödinger-like equation that is not self-consistent:

Ĥψi(r) =

(
−1

2
∇2
i + V (r)

)
ψi(r) = εiψi(r) [44]. (3.40)

Eq. 3.40 is solved variationally within the basis of localized atomiclike functions (Eq. 3.35),

leading to the secular Eq. 3.36 [44]. At this point I will again remark that the notation

in this document has been modified from the original sources to maintain consistecy. An

important distinction between DFT and tight binding DFT, is that the basis functions do

not need to be evaluated in the tight binding approach, the only information required to
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compute the electronic structure of the system are the Hamiltonian and S matrix elements,

which are written in parameterized form [130].

Let us return to Eq. 3.17 from the previous section. It can be shown that Eq. 3.17

can also be written as

TKS [ρ] =
N∑
i=1

εi −
∫
V (r)ρ(r)dr, (3.41)

where V (r) is the one-electron potential, unique up to a constant. A careless comparison

between this result (i.e. Eq. 3.17/3.41) and the total DFTB electronic energy (Eq. 3.39)

suggests that this a very simplistic form of the energy, as it appears to neglect all the

other terms in the Kohn–Sham functional (Eq. 3.18) and further assumes that all terms

are now pairwise and short-range [44]. Moreover, it seems self-consistency is no longer

being enforced. This is, of course, not the case. Instead, the one-electron potential V (r)

can be estimated by substituting it for the Kohn-Sham potential, VKS(r) (Eq. 3.19). This

would yield a potential much like the Kohn-Sham potential with an additional term. In

this approach to solving Eq. 3.40, DFBT becomes more efficient that DFT by substituting

a superposition of atomic densities into the Kohn-Sham form (Eq. 3.19).

Yet another approach — the most common — relies on treating the matrix ele-

ments as disposable parameters and to fit them to experiments and other calculations and

to assume the basis functions are orthogonal so that the S can be taken to be a unit ma-

trix [44]. To reiterate, Slater and Koster proposed a parameterization that includes at least

four functions (ssσ, spσ, ppσ and ppπ) of interatomic distance to fit for a solid with sp

bonding [146]. In the same way, a solid with s, p, and d orbitals would have at least 10

functions. Other approaches and a detailed explanation of the variational principle used to
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solve the DFTB equations is offered by Refs. [124]. As Paxton [124] points out, tight binding

is the cheapest and simplest model that can capture the quantum mechanical subtleties in

bonding. This makes it ideal for calculations of phonon properties using the frozen phonon

method (introduced in the previous section) on large, highly anisotropic systems, such as

the metal–organic framework MIL-53.
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Chapter 4

Thermal resistance from

irradiation defects in graphite

4.1 Introduction

In the early 1940s, polycrystalline graphite was the only abundantly produced material

with the required purity to be used as a moderator in nuclear reactors [68]. While other

reactor materials have since been adopted, at the present time, graphite is still in high de-

mand for the development of high-tech fuel elements for next-generation nuclear reactors.

Graphite or pyrolytic carbon is included in many nuclear fuel assemblies to encapsulate the

fissile material. In these applications, in addition to utilizing its high temperature strength

the graphite acts as a neutron moderator and reflector. In some fuels graphite encapsulates

the fissile materials in which case all the heat produced by fission in a fuel pin must be

conducted out through the graphite. As the moderating properties of graphite are temper-

53



ature dependent, accurately predicting the thermal conductivity of graphite and other fuel

assembly materials — including how their thermal conductivity evolves under irradiation

— is vitally important for the design of accident tolerant fuels.

The thermal conductivity (κ) of graphite is experimentally found to change with

synthesis conditions and while in service as a direct result of radiation [69]. This indicates

that κ is not an intrinsic property and is instead governed by the defect morphology of

the graphite. Simulations typically measure intrinsic properties, but we aim to determine

an atomistic level understanding of scattering processes from collections of irradiation in-

duced point defects and to establish a systematic understanding of how defect type, number

and different defect-type ensembles affect thermal resistance and phonon mean free path in

graphite. We do so with the goal that the insight that we gain can be incorporated into

approaches for quantitatively predicting the lattice thermal conductivity that are based on

solving the Boltzmann transport equation. Such a tool would be useful to nuclear engineers

and materials scientists in the process of designing new reactors and fuel systems that are

accident tolerant. As the first step along this path, we have computed the energy and struc-

ture of a zoo of point defects and determined their separate effects on thermal conductivity

along and across the basal plane.

In section 4.2 we establish and validate our method for computing thermal con-

ductivity of defect-free graphite. More specifically, we discuss advantages and challenges

associated with the Green-Kubo formalism: in section 4.2.1 we discuss different approaches

to converge the heat current autocorrelation function (HCACF) and propose a solution

based on our findings; the issue of size convergence is explained and addressed in section
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4.2.2. After establishing an adequate system size, we introduce defects and compute their

formation energies in Section 4.3. Values are obtained using classical molecular dynam-

ics and compared with density functional theory (DFT) calculations. Interstitial defects

are also annealed to find the most energetically favorable configuration. In section 4.4 we

compare the perfect crystalline system, where transport is limited by crystal lattice anhar-

monicity and the acoustic phonons carrying the bulk of heat are only scattered by other

phonons, with systems with point defects, where defect scattering is expected to play a

crucial role in thermal transport. Concluding remarks are presented in section 4.4.1.

4.2 Computational method and validation

Molecular dynamics modeling captures the anharmonic interactions of atomic vibrations

that carry heat and both equilibrium and non-equilibrium simulations can be used to predict

thermal conductivity [137]. The Green-Kubo formalism [49, 82] is a well established equi-

librium molecular dynamics approach that has been used successfully to compute thermal

conductivity in a wide range of materials from silicon [161] to metal-organic–frameworks

[52]. This method is derived from the fluctuation-dissipation theorem and computes the

thermal conductivity, κ, from the equilibrium fluctuations in the heat current vector, J, by:

κxx =
V

kBT 2

∫ ∞
0

CJxx(τ) dτ, (4.1)

where kB, T and V are the Boltzmann’s constant, temperature and volume of the simu-

lated region respectively. The term CJ(τ) = 〈J(t)J(t+ τ)〉, and is the non-normalized heat

current autocorrelation function (HCACF). The net flow of heat fluctuates about zero at

equilibrium and the thermal conductivity is related to how long it takes for the fluctuations
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to dissipate. Both equilibrium and non-equilibrium molecular dynamics (NEMD) simula-

tions suffer from size artifacts that must be mitigated. In NEMD, the simulated system

size must be larger than the intrinsic mean-free path of the phonons in order to eliminate

ballistic transport between the heat source and sink [137]. Equilibrium MD affords one a

smaller system size as phonons may move through periodic boundaries unhindered.

Simulations were performed with the large-scale equilibrium classical molecular

dynamics software LAMMPS [128] in the microcanonical ensemble (NVE) at 300 K for 0.6

ns with a 0.2 fs time step and periodic boundary conditions. Note that this is well below the

Debye temperature for graphite (approximately 2500 K in the basal plane and 950 K along

the c-axis [69]). However, our goal is a comparative analysis of phonon scattering from and

around the defect. As scattering from classically occupied high frequency modes is present

with and without the defect this has little contribution to the change in κ. The adaptive

intermolecular reactive empirical bond-order (AIREBO) potential function formulated by

Stuart et al. [147] was used for all simulations. The AIREBO potential includes anharmonic

terms in the carbon bonds, an adaptive treatment of the non-bonded and dihedral angle

interactions and has the capability to model the interaction between layers in graphite [147].

Two main challenges result from using the Green-Kubo: (1) determining an appropriate

system size and (2) converging the HCACF. We shall first address the later challenge and

propose a solution based on the work of Chen et al. [26].

4.2.1 HCACF convergence

There is no average net heat flux, 〈J〉, for a system in equilibrium, and the HCACF, i.e.

the term inside the integral in Eqn. (6.1), is therefore expected to decay to zero given suffi-

56



cient time. Instead, long lived oscillations with a significant contribution to the computed

thermal conductivity have been observed [120, 140, 24, 86]; this behavior is illustrated in

Fig. 4.1. The HCACF is crucial in computing κ using the Green-Kubo method and yet

there is little consensus among researchers on whether these oscillations are significant to

thermal transport or a result of noise, and on what approach to take. A discussion of

this behavior and of possible approaches is essential in understanding the limitations of the

Green-Kubo and validating thermal transport calculations.

Figure 4.1(a) shows the accumulation of the averaged HCACF along a basal direction over

a typical simulation. It can be seen that the tail of the HCACF contains many fluctuations,

but rather than these decaying smoothly as more data is averaged there occur sporadic

events that can overwhelm the average to add new fluctuations to CJ(τ) and significantly

change the initial value CJ(0). These large events show up in the majority of simulations

and for all simulated system sizes. Long lasting oscillations are prevalent along the basal

plane and different in character to oscillations along the c-axis (see Fig. 4.1). Fluctuations

along the c-axis exhibit a much higher frequency and oscillate around zero with the HCACF

converging to zero with only minor instabilities affecting its integral. Fluctuations along

the basal plane, on the other hand, do not fade away during computation time and signif-

icantly affect κ. In graphite, κ calculations in the c-direction are not affected by HCACF

fluctuations as much as basal plane calculations are. This makes results perpendicular to

the basal plane easier to compute and more reliable.

Along the basal plane the HCACF exhibits a two-stage decay: a rapid decay as-

sociated with high frequency phonons and a slower decay associated with lower frequency
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Figure 4.1: In Fig. 4.1(a), the HCACF is computed as the simulation progresses along x
for the perfectly crystalline 11x11x11 super cell. At first only a few values contribute to the
ensemble average and the initial HCACFs are noisy. As the averaging time progresses the
HCACF becomes smoother with the exception of well defined crests and troughs, most of
which do not fade away during the total simulation time. Figures 4.1(b), 4.1(c) and 4.1(d)
correspond to the HCACF noise (computed as F(t)), the final HCACF, and the integral
of the HCACF, respectively, for all simulations of the perfect 11x11x11 super cell system
along y and z (or c).

phonons. Similar two-stage decay (or three-stage decay) is observed in many single element

materials and different authors have modeled κ by fitting the HCACF to the sum of two or

more exponentials [24, 86, 100]. This is a more physically meaningful approach than a single

exponential fit in that it captures multiple relaxation processes, but it appears to neglect

the contribution of the HCACF tail and to play a part in the systematic underestimate of

κ [137, 86]. When addressing the issue of convergence in the HCACF we have examined a

wide variety of strategies. These strategies included direct integration of the HCACF trun-
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cated to various cutoffs, fits of varying sums of exponentials to the truncated HCACF, and

fits in the frequency domain. Here we present only a few of the best or otherwise insightful

findings and a brief discussion of our approach.

(i–iv) Direct numerical integration of the truncated HCACF up to (i) 50 ps, (ii) 5 ps, (iii-iv)

and a noise dependent cut off time, tc, proposed by Chen et al. and described below

[26]. For (iv) individual cut-offs were computed for each HCACF as shown in Figs.

4.1(b)–4.1(d) , and for (iii) an average tc was used for each simulation set.

(v) Single exponential fits to the first 5ps of the HCACF.

(vi) The fitting procedure proposed by Chen et al., which includes a fixed offset term in

the fitting function:

CJ(τ)

CJ(0)
= A1e

−τ/t1 +A2e
−τ/t2 + Y0, (4.2)

such that κ is computed as

κxx =
V CJxx(0)

kBT 2
(A1t1 +A2t2 + Y0tc), (4.3)

where A1, A2, Y0, t1 and t2 are fitting parameters. Chen et al. argue that including

the offset Y0 reduces the computational error. In our implementation of this we used

the simplex method to optimize the fit variables. It is physically meaningless to have

negative Y0 and this term was weighed with a Heaviside function to prohibit negative

Y0 terms. We also imposed the condition that A1 +A2 + Y0 = 1.

(vii) Double exponential of the form in (vi) with Yo set to zero.
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(viii) Triple exponential of the form:

CJ(τ)

CJ(0)
= A1e

−τ/t1 +A2e
−τ/t2

+(1−A1 −A2)e
−τ/t3 , (4.4)

fit to each HCACF.

The issue of the cut-off time should now be discussed, before analyzing the results in Fig.

4.2. The necessity to truncate the HCACF is illustrated in Fig. 4.1 in which it can be

seen that after roughly 2–5 ps the integrals of the autocorrelations diverge even though the

HCACF is almost zero. This divergence arises from the integration of random fluctuations

in CJ(τ) effectively adding a random walk to the integral of CJ(τ). The error from this

random walk grows over time, while the systematic error from omitting the long tail of slow

decay processes in the HCACF diminishes over time. There exists an optimal truncation

point that minimizes the error in the integral of CJ(τ), but there is little consensus in the

literature on how to determine it [140, 137]. While selecting a consistent cut-off may often

suffice to obtain a comparative analysis, it introduces a systematic error in the estimation

of the HCACF, potentially neglecting the contribution to k of lower phonon modes. Chen

et al. [26] propose obtaining a quantitative description of the numerical noise in the relative

fluctuation of the HCACF, F(t), defined as

F (t) =

∣∣∣∣ σ(CJ)

E(CJ)

∣∣∣∣ , (4.5)

where σ is the standard deviation and E the expected value of the HACF in an interval (t,

t+ δt). The cut-off point is determined to be above an F(t) of 1 (see Figs. 4.1(b)–4.1(d)),

i.e. when the fluctuations become the same scale as the mean. Chen suggests that F(t) is
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insensitive to the choice of δ. We find this is the case for only small variations and between a

δ of 1, 3, and 5 ps the best results correspond to the 1 ps interval. Both 3 and 5 ps intervals

resulted in outliers with a significant effect on κ. The variability we observed with the choice

of δ suggests that to obtain a good fit using this method requires a balance between having

sufficient data points to compute the local averages while maintaining enough temporal

resolution to reasonably determine when in time the noise exceeds F (t) = 1. A cut-off

point was computed for each run and the average cut-off point for a given system was then

obtained. Each system was simulated 10 times. We compared κ for the cases when δ was

1, 3 and 5 ps with κ being computed using both each independent simulation’s cut-off (as

in Chen et al.) and using the average cut-off for all simulations. We found that using the

average cut-off yielded similar results with error bars significantly smaller than using the

corresponding systems’ individual run cut-offs to compute κ for each simulation within a

cell size. In theory, if we could consider the average local fluctuations in the heat flux over

an infinite amount of time, we should be able to find a “true” thermal conductivity of a

given system. It is then reasonable to assume that each HCACF is an approximation to an

HCACF obtained over infinite time and that there is a “true” cut-off point, thus providing an

argument for using the average cut-off on each individual run to compute κ. When

only the first two terms of the HCACF were computed, as in (vii), Y0 contributed up to

nearly 100 W/(mK) in the most extreme case. This illustrates the insufficiency of the

two exponential fits to estimate κ. The sum of three exponential fits yields results very

similar to the strategy adopted by Chen et al. with the added modification of using the

average cut-off instead of each individual simulation’s cut-off. However, as the number of
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Figure 4.2: These figures correspond to κ measured for different super cells along x (4.2(a))
and y (4.2(b)) in the basal plane and along the c-axis (4.2(c)). In addition to establishing
size convergence, the figures illustrate a set of different approaches (labeled in the legend)
considered to converge the HCACF and the corresponding standard error. Method (iii) was
selected.

fitting variables increases, results are expected to mimic those of a full integration and the

fit loses its physical significance. This correspondence nevertheless suggests Eqn. (4.4) to

be an adequate fit and substantiates the cut-off method. More strikingly, simply using

the average cut-off as the HCACF integration limit yields similar results with error bars

comparable to the fit. The correct behavior of the HCACF along the basal plane is thus

more accurately explained by the fit type suggested by Chen at al. than merely the sum

of exponentials, but in order to compute actual κ values, the fit introduces an unnecessary

hassle to no gain. Furthermore, the nature of the HCACF along the c-axis is very different

62



than that of the basal plane, as can be seen by looking at Figs. 4.1 and 4.2 and this fit type

is not adequate to explain the HCACF perpendicular to the basal plane. That said, the

error bars are noticeably smaller when the HCACF is integrated only up to tc than when

they are integrated over the total HCACF time. The simplest, most effective approach is

to select the cut-off for each simulation by setting F(t) = 1, but to use the average cut-off

of all simulations when computing each simulation’s individual κ. This method is adequate

to compute κ along any direction for highly oriented graphite. In light of this analysis, a

similar simulation time with a lower HCACF is likely to yield more accurate κ results, as

it would allow more time for convergence and not necessarily lower the cut-off.

While there is no consensus on the best method to reduce noise and capture the

nature of the HCACF of graphite and other materials, the approach selected in this paper

yields κ estimates higher than a sum of exponentials, with moderately small error bars and

without the need of a complicated fit. This method was used for all defect calculations

along the basal plane and along c, taking into account that the cut-off along c must neglect

the first values of F(t) = 1 which take place in the initial decay stages (see Fig. 4.1). Being

consistent with the choice of method is often sufficient for a significant comparative analysis

and this method allows us to do that.

4.2.2 Size convergence

Periodic boundary conditions allow simulations of a small number of particles to mimic

the behavior of an infinite solid; however, they limit the number and wavelength of the

vibrational modes available to carry heat. Thus, when using the Green-Kubo method it is
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first necessary to establish size convergence. Thermal conductivity values were computed

for perfectly crystalline systems of varying size, as can be observed in Fig. 4.2. An 8 atom

unit cell was defined and 7 systems ranging between 3x3x3 and 15x15x15 super cells were

simulated (again 10 times each). Along the basal plane the systems’ size was asymmetric

in the x and y dimensions with x smaller than y — this was done to better gauge potential

size artifacts. While there was a large variability in the thermal conductivity, the values are

scattered between 300 and 400 W/(mK) along the x direction and 350 and 450 W/(mK)

along the y. This suggests a size artifact not evident just looking at the system size increase

within each direction and that only comes into play within each system. For this reason

different x and y values were maintained when computing thermal conductivity in defective

systems as well. For computations performed with defects, the 11x11x11 super cell was

selected to allow for a big enough compute cell with a feasible computational expense

associated. The 11x11x11 super cell corresponds to a 10648 atom system in the perfect

graphite, with a 270.5 × 468.6 × 737.9 nm3 volume in the x, y, and z directions,

respectively.

4.3 Identifying defect structures

In irradiated graphite carbon atoms are displaced due to cascade reactions giving rise to

many point defects. We categorize these into defects that have a strong driving force for

clustering, such as vacancies and interstitials, and defects that are less driven to cluster

such as bond rotation defects, and isotopic defects. The following clustering defects were

considered: a single interstitial (Fig. 4.3(b)), a single vacancy (Fig. 4.3(j)), clusters of 2–8
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interstitials (Figs. 4.3(c)–4.3(i)) and clusters of 2–3 vacancies (Figs. 4.3(k) and 4.3(l)). For

a single interstitial, three interstitial locations were considered, as depicted in Fig. 4.4(a).

Similarly, four configurations were simulated for 2-interstitial clusters, as shown in Fig.

4.4(b). The single vacancy site is between the centers of hexagonal voids on the planes

adjacent to the plane of the vacancy, i.e. where the type A single interstitial is positioned

in Fig. 4.4(a), but in the lower, less visible layer. The added vacancies lie directly between

atom sites on the adjacent layers. The non-clustering defects considered were a Stone-

Wales defect (Fig. 4.3(a)) and an isotope. The C14 isotope was selected for having a higher

mass than C13, another common carbon isotope, and thus being expected to have a higher

contribution to changes in κ. The defects were introduced to the center of the selected

11x11x11 perfect system; the interstitial defects were placed between the 11th and 12th

layer of the 22 layer cell, and the remaining defects within the 11th layer, as shown in Fig.

4.5.

Formation energies were computed using classical MD for all defects. These calculations

were used to estimate the likelihood of formation of each defect, where the energy per defect

is given by

Ed = ED −
EO
NO
∗ND. (4.6)

ND and NO are the number of atoms in the defective system and the corresponding non-

defective system, in that order. ED corresponds to the total energy of the system and EO

to the total energy of the perfect system of the same size.

The optimization process for the classical calculations is described in the flowchart
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Figure 4.3: Illustration of the defects examined in this study: Stone-Wales defect (4.3(a));
single interstitial (4.3(b)); 2-8 interstitials (4.3(c) -4.3(i)); single vacancy (4.3(j)), di-vacancy
(4.3(k)), and 3 vacancies (4.3(l)). The interstitial defects are shown in their annealed
configurations.

Figure 4.4: Possible defect types for single (Fig. 4.4(a)) and two-interstitial defects (Fig.
4.4(b)).

in Fig. 4.6 as was performed using the FIRE scheme [11] as implemented in LAMMPS. As

part of the process to optimize the geometry of the interstitial defects, low energy intersti-

tials (type A in Fig. 4.4(a) and type C in Fig. 4.4(b) for one and two-interstitial defects

respectively) were also annealed and subsequently cooled. The defects were annealed to

1500 K for 500 ps and cooled to 300 K for 1 ns, in the canonical (NVT) ensemble. By
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Figure 4.5: Slice of a graphite system with an hexagonal platelet, indicating the location of
the defect. There are 22 total layers in the system.

Defect Type Single: A Single: B Single: C Two: A Two: B Two: C Two: D

LAMMPS 3.57 eV 4.73 eV 4.46 eV 4.99 eV 3.27 eV 2.95 eV 2.98 eV

Literature (DFT, LDA) [87] 6.7 eV 7.7 eV 7.4 eV - - - -

Table 4.1: Classical MD energy calculations for single and double interstitial defect types
based on location. The values obtained for a single interstitial are compared with available
density functional theory (DFT) calculations using the local density approximation (LDA)
from Ref.[87].

doing this we allowed the already low energy interstitial defects to migrate and rearrange

themselves into potentially lower energy configurations.

Energy values for the different defect types and numbers are depicted in Fig. 4.7 and in

Figure 4.6: Schematic of the optimization procedure applied to classically simulated defects
before computing formation energies.
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Table 4.1. Classical interstitial defect energies were computed for the optimized structures

before and after annealing. It is notable in Fig. 4.7, that the annealing process often yielded

defect structures with considerably lower energy than those reached by direct relaxation us-

ing the FIRE algorithm — even for very simple defects such as a lone interstitial. There

is, however, good agreement in the overall trend of defect energies as modeled with the

AIREBO empirical potential and those from Li et al., computed using density functional

theory (DFT) with the local density approximation (LDA) [87]. Furthermore, the type A

single interstitial when annealed becomes structurally similar to Li et al.’s 5.5 eV formation

energy “free” interstitial, computed with DFT. Stone-Wales defects have the lowest forma-

tion energy of all intrinsic defects in graphenic systems [108], calculated with DFT at 5.2

eV [87].

Figure 4.7: These energies correspond to the defects depicted in Fig. 4.3. In the case of the
interstitial defect-types, values were computed both for annealed and non-annealed systems.
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Figure 4.8: Anisotropy ratio (κa/κc) computed for both x and y for different defect types,
including defects found to be most energetically favorable (Fig. 4.8(a)); κ obtained for
different defect types along x and y (Fig. 4.8(b)) and in the basal plane (Fig. 4.8(c))

4.4 Thermal resistance from defects

While the thermal conductivity of near-perfect graphite has been reported to be as high

as 4180 W/(mK) along the basal plane [113], the experimentally measured anisotropy ratio

(κa/κc) of near-ideal graphite has been found to be just below 210 at 300 K [59]. This

suggests the Green-Kubo calculations to be an order of magnitude below experimental values

in the basal plane, but within the expected order of magnitude for κ along the c-axis. Finally,

κ for nine defects including the more energetically favorable ones was computed using the

Green-Kubo method as with the perfect crystal. Thermal conductivity for the hexagonal

platelet was also computed using different super cell sizes (Fig. 4.10). While κ is within

the error bars along the basal plane for all defects, the overall trend suggests a decrease in

thermal conductivity with the presence of defects, as would be expected. More distinctly,

the systems with interstitial clusters exhibit a clear decrease in the thermal conductivity

along c (see Fig. 4.8(c)). Note that these defects correspond to low configuration energies

as well and are therefore more likely to occur. Frenkel pairs is one type of defect that is

expected to emerge from exposure to radiation due to knock-out reactions; the added effect
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of vacancy and interstitial clusters would significantly reduce κ perpendicular to the basal

plane.

Performing a discrete cosine transform (DCT) of the HCACF reveals the presence

of localized modes exclusively associated with the lower thermal conductivity defect types

(see Fig. 4.9). We performed DCTs for the defect systems both along x, y and z, and

found two notable differences between systems in the DCT of the c-axis HCACF. Systems

containing interstitial platelets develop a series of peaks at ∼ 1.3, 2.5 and 3 THz. We

attribute these to rattling of the platelets in the c-direction and the defects being large

enough to have relatively low frequency vibrational modes. More interestingly, there is a

dramatic reduction in the intensity of low frequency modes in the HCACF of the systems

with diminished thermal conductivity.

Figure 4.9: Discrete cosine transform applied to the c-axis HCACF for different defect types.

There is little difference in terms of how the number of interstitials (between 5 and

8) in a cluster affect the overall thermal conductivity in the system, but there is a noticeable
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change as the system size increases — the systems containing an hexagonal platelet increase

in κ with system size (see Fig. 4.10). This seems to suggest that the defect concentration

has an effect on the total thermal conductivity as well. The last system corresponds to an

11x11x11 super cell with two hexagonal defects equally spaced and, as expected, it shows

a lower thermal conductivity than the same system size with a single defect.

Figure 4.10: Hexagonal platelet κ and corresponding standard error computed along x and
y in the basal plane (Fig. 4.10(a)) and along the c-axis (Fig. 4.10(b)) for 4 different super
cell sizes including the 10648 base atom system, and for two hexagonal platelets in the same
base system.

If instead of considering κ we assume that defects make an additive contribution

to the systems’ thermal resistance, r, then we might expect rdefect = rdefective− rperfect, and

that thus the thermal resistance for a system containing two defects would be r2defects =

rperfect + 2 · rdefect, or r2defects = 2.32± 0.32W/(mK) for the hexagonal platelet. It appears

from Fig. 4.10(b) that adding a defect does not double its thermal resistance, but reducing

the size to half does; a fit through a system with varying defect numbers may shed light

into how κ scales with defect concentration for each defect type.
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4.4.1 Conclusions

In this work we have reported calculations of the reduction in thermal conductivity of

graphite due to a series of point defects typical under irradiation. The calculations reveal

three important conclusions:

• Clustered interstitial defects are stable (with respect to lone interstitials) and strongly

detrimental to the thermal transport in both the in-plane and c-axis directions.

• In addition to lowering the thermal conductivity they also increase the thermal con-

ductivity anisotropy.

• Although the noise in the calculations of κ is large, it is clear that the platelets create

larger thermal resistance than the constituent number of lone interstitials.

In pebble bed reactors graphite is used to encapsulate the fissile materials and thus the

graphite experiences an extremely large neutron dose. The average fuel temperatures in

such a reactor is 1200 K (with peak temperatures expected to stay below 1500 K) [62].

At these temperatures interstitials are highly mobile and readily condensing to interstitial

platelets. These platelets are responsible for c-axis swelling under irradiation [69]. Our

work indicates that this has a doubly negative effect on thermal conductivity; elongating

grains along their thermally resistive directions while also increasing the thermal resistance

in these directions.

In addition to computing the reduction in thermal conductivity due to defects

we have performed a systematic comparison of various numerical strategies for reducing

uncertainty in the integration of the HCACF. Our simulations reveal infrequent large heat
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current fluctuations that are large enough to overwhelm the averaged HCACF. The origin

of these fluctuations is unclear to us at this stage and we speculate two possible causes. It

is possible that the fluctuations are a manifestation of Fermi-Pasta-Ulam recurrence [41]

or some related breakdown of ergodicity over the time period accessible to simulation. An

alternative explanation is that the fluctuations are physically realistic processes similar

to rogue ocean waves and caused by amplitude dependence of the phonon dispersion in

graphite. It has been proposed that carbon nanotubes possess soliton-like heat carriers

[23] and it is possible that similar conditions may arise in graphite. These two potential

explanations are incompatible and would require one to treat the fluctuations differently:

in the first case removing their effect from computed thermal conductivity, and in the latter

case performing enough simulations to obtain a statistically significant sampling of these

infrequent fluctuations.

73



Chapter 5

Method to manage integration

error in the Green-Kubo method

5.1 Introduction

Transport properties are ubiquitous in materials science and engineering. Heat

sinks and thermal barrier coatings are two obvious examples where thermal conductivity

is paramount for materials’ performance, but there are also a huge number of materials

applications in which transport properties are folded in with a number of other properties

to dictate performance. Nanofluids are a promising new material for numerous applica-

tions [21, 66, 107] that include heat dissipation [66, 107] for which, in addition to thermal

transport, viscosity calculations are necessary to better our understanding of heat trans-

fer mechanisms. Moreover, the rheological characterization of fluid materials has numer-

ous engineering applications beyond cooling (e.g. lubrication [31], sheathing [83], or hy-
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draulics [151]), as well as applications in other fields (e.g. medicine [173], geophysics [174]).

Viscous ionic electrolytes in batteries are an example where viscosity, diffusion and ionic

conductivity [64] all play an important role in the materials’ eventual performance. In

short, the ability to reliably predict transport properties is essential in the search for new

materials for a wide variety of applications. Molecular dynamics (MD) simulations provide

a powerful approach for quickly obtaining atomistic level insight into the physics of mass,

momentum or energy transport processes in materials. Two approaches are possible: MD

can be used to (1) simulate systems in equilibrium or (2) perturb and drive systems out of

equilibrium to then measure their response.

Equilibrium molecular dynamics (EMD) calculations are performed using the well

established Green–Kubo formalism [49, 82], which relates transport quantities to the du-

ration of fluctuations in a microscopic state of the system — the underlying principle is

that the processes that dissipate small local fluctuations are the same that are responsible

for a material’s feedback to a stimulus. Mathematically this is achieved by integrating the

current autocorrelation function as is shown in the general expression for the Green–Kubo

method:

γ = α

∫ ∞
0
〈A(t)A(t+ τ)〉 dτ, (5.1)

where γ is the transport property of interest and A the current that drives it. The expres-

sion 〈A(t)A(t+ τ)〉 is the autocorrelation function of quantity A and α is a temperature

dependent coefficient. For instance, for thermal conductivity, κ, the Green–Kubo expression

becomes

κ =
V

3kBT 2

∫ ∞
0
〈J(t)J(t+ τ)〉 dτ, (5.2)
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where kB is Boltzmann’s constant, T the temperature, and V the volume of the simulated

region, J is the heat-flux, and 〈J(t)J(t+ τ)〉 is the non-normalized heat current autocor-

relation function (HCACF). This method is widely used by materials scientists, chemists

and physicists. In addition to thermal conductivity calculations [52, 161, 59, 140], it has

been used to calculate viscosity [31, 13, 174], diffusivity [67, 118] and ionic conductivity [64]

for a wide range of materials, by integrating the pressure tensor, velocity and ionic flux

autocorrelation functions (ACFs), in that order.

There are clear advantages to using an equilibrium approach: while both equilib-

rium and non-equilibrium methods suffer from size artifacts, the use of periodic boundary

conditions in EMD allows for a smaller system size; for anisotropic systems, one EMD

simulation suffices to compute the full transport tensor; and EMD can be used irregard-

less of the linearity of the transport regime with system size. There is, however, also one

major pitfall. Fully converging the autocorrelation function requires very long simulation

times, and often a compromise has to be made between including the contribution of slow

processes and introducing a random error, or excluding these processes and introducing a

systematic truncation error. In this paper, by recognizing that the integrated ACF error

mimics a random walk, we propose a method that allows researchers to evaluate this trade

off on-the-fly and make better informed decisions about where to truncate the ACF and

how to optimize computational resources. In the remainder of the paper, we will focus

exclusively on thermal transport. It is left for the reader to draw the obvious parallels

with other transport properties. The next paragraphs concern the origin of the oscillations,

existing approaches to integrate the autocorrelation function, and the introduction of the
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concept of a random walk in the HCACF. Our proposed method and its implementation to

an example data set are described next, followed by the discussion and conclusion remarks.

5.1.1 The oscillatory behavior of the autocorrelation function

The HCACF, 〈J(t)J(t+ τ)〉, can be numerically computed as

〈JnJn+m〉 ≡
N−m∑
n=0

JnJn+m
N −m

, (5.3)

where Jn is the value of J at the nth time step, i.e. Jn = J(tn), for n = 0, 1, 2, ..., N ,

and Jn+m is J at the (n + m)th time step, or J(tn + τm), for m = 0, 1, 2, ...,M . N and

M are, respectively, the maximum number of steps in the simulation and in the HCACF.

Analytically, the autocorrelation function is computed as the inverse Fourier transform

of the same transform of the current multiplied by its complex conjugate, averaged over

N − m. It follows that to obtain good statistical averaging M must be significantly less

than N , and that the error associated with the HCACF increases over time for fixed N.

This is applicable to other transport properties. For a system in equilibrium the average

current of any property is zero, and the ACF is expected to decay to zero given sufficient

time. Instead, large oscillations with a significant contribution to the integral have been

observed [119, 140, 24, 86, 34]. Fig. 5.1 a) depicts an example of fluctuating HCACFs

and the growing error in the corresponding integrals, and Fig. 5.1 b) the longevity of the

fluctuations.

If we were able to sample an infinite system for infinite time, we should find the

system’s true ACF and thus a fixed true transport quantity. It follows that, for the thermal
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transport example we have been using, κ, computed with Eqn. 6.1, is

κ = κtrue ±∆κ = (5.4)

α lim
t→∞

∫ ∞
0
〈J(t)J(t+ τ)〉 dτ ± α

∫ τmax

0
η(τ) dτ,

where τmax is the maximum time for which the HCACF is computed, and α = V
3kBT 2 . The

first term in the equation is the true integrated HCACF, and the second term the integral

of the HCACF noise that comes about due to insufficient averaging. As shall be discussed

more thoroughly in due course, at least two sets of different frequency oscillations can be

distinguished that mirror the fast and slow fluctuations in the heat current.

Accurately predicting the ACF is critical for transport predictions using the Green–

Kubo method. Notwithstanding, there is little consensus in the literature as to what ap-

proach to take to mitigate the noise and the cumulative quality of the integrated noise

has seldom been used to inform the choice of ACF integration approach. The next para-

graphs reference some of the most common ACF integration approaches and a few less

common strategies found in the literature. While it has been shown that the Green–Kubo

approach can be successfully used with quantum-based calculations [4, 98], simulation size

and length present a major difficulty in using EMD approaches within ab initio, and other

methods [162, 18] continue to offer greater advantages. However, as computers become

faster, DFT MD transport calculations could become more common, and error estimation

more important. Within classical MD, the evolution of computing means averaging large

enough systems for longer will become less of an issue, thus reducing or even eliminating

the error from these calculations. However, there is an increasing trend to develop high-

throughput approaches for the rapid screening of materials, which in turn require quick,
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on-the-fly approaches for uncertainty quantification. The method introduced herein meets

these requirements.

5.1.2 Common autocorrelation function integration approaches

A common strategy to reduce the noise in the ACF is to fit an exponential to the

first few picoseconds (τ < 10) [24, 86]. The system depicted in Fig. 5.1 exhibits a rapid

decay associated with high frequency phonons and a slower decay associated with lower

frequency phonons; similar two- or three-stage decay is observed in many single element

materials and different authors have modeled κ by fitting the HCACF to the sum of two or

more exponentials [24, 86, 100]. This approach captures multiple relaxation processes and

is therefore more physically meaningful than a single exponential fit, but it is ineffective

when the HCACF can not be represented by an exponential fit [135, 52, 34] and it forces

a behavior description of the HCACF that might not be accurate. The same is true of

shear relaxation times in viscosity calculations. For ionic liquids’ calculations, authors have

also fit the pressure tensor autocorrelation function to Kohlrausch’s law [50, 104] and/or

applied weighing factors to their fits [175, 56]. Fits to the frequency domain are also a

solution, depending on the resulting ACF for given data [135, 52]. Some strategies include

direct integration of the ACF truncated to various cutoffs. Whether direct integration is

performed or a fit is applied, the cutoffs are oftentimes arbitrarily selected [61, 115, 111].

They can also be more systematically determined, for instance by taking the running mean

of the integrated autocorrelation at its plateauing region [27, 32]. Recently, Chen et al.

have proposed a noise sensitive mathematical approach: to truncate the HCACF when the

scale of the fluctuations becomes the same as the mean, i.e. when
∣∣ σ
E

∣∣ > 1, where σ is
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the standard deviation and E the expected value of the HCACF in an interval (τ , τ + δτ)

[26]. Chen et al. further suggest including a fixed offset term, Y0, to the exponential

fitting approach (e.g. A1e
−τ/t1 + A2e

−τ/t2 + Y0) to the normalized HCACF. In a study

concerning thermal transport in irradiated graphite, we implemented and compared this

and other methods [34]. The method of Chen et al. is a useful, systematic approach, but it

neglects the growing nature of the uncertainty that results from integrating over the noise.

Other approaches that acknowledge the incremental error of the HCACF integral have been

proposed [175, 3]. For instance, Zhang et al. [175] use a time decomposition method to

compute a growing standard deviation to which they suggest fitting a power law, and from

which a cutoff can be selected based on a desired % error. With the insight gained from

the graphitic systems studied, we develop here a new approach to quantify and mitigate

the noise introduced with the Green–Kubo. This approach is based on recognizing that

the ACF fluctuations around zero integrate into Brownian noise, i.e. for each simulation a

random walk is effectively added to the integral of the true ACF. Before proceeding , it is

perhaps useful to briefly introduce the notion of a random walk and how it relates to the

noise in the HCACF.

5.1.3 Random walk

A random walk is a succession of Markovian (uncorrelated) random steps. This

has the property that the expected root mean square (RMS) displacement after N steps is

〈xN 〉 = σd
√
N , where σd is the standard deviation of the magnitude of the steps (i.e. the

displacement). Here we argue that the noise in the HCACF has the statistical properties of

a stream of uncorrelated fluctuations or excursions from zero. Although these fluctuations
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have a characteristic duration the time integral of a fluctuation equates to one jump in a

random walk. If one determines the timescale over which the HCACF noise is uncorrelated

(the jump frequency δt) and the typical integrated excursion (jump magnitude, d) then

one can equate the accumulation of noise integration error to the RMS displacement of

the equivalent random walk. The equivalence of the HCACF to a stream of uncorrelated

fluctuations that when integrated yield a random walk is demonstrated in Figs. 5.2 a)–c).

In these simulations the average step size is σvδt, where σv is the standard deviation of the

noise velocity (d/δt), i.e. the velocity at which the random walk occurs through time. The

standard deviation of the velocity (σv) is effectively that of the steps. The total number

of Markovian steps over time t is N = t/δt, and so the expected uncertainty U(t) after

integrating to time t is given by:

U(t) = δtσv

√
t

δt
= σv

√
tδt (5.5)

In this relationship computing σv is straight forward, and so the remaining challenge is to

determine the uncorrelated fluctuation time δt.

By characterizing the integrated HCACF noise as a random walk, or as a sum of

random walks, in terms of δt and σv, we propose that one can use Eqn. 5.5 to compute

an uncertainty envelope that informs on how quickly the integrated noise error in a single

simulation grows. From the uncertainty envelope of a single simulation one can compute

the expected uncertainty in the average of any number of simulations. The crucial point is

that information about the distribution of error in many simulations can be obtained from

a first, short (a few hundred picoseconds) simulation, and thus after the first simulation

has been performed, one can decide on an optimal computational strategy for minimizing
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uncertainty.

Upon quick inspection, the HCACFs shown in Fig. 5.1 appear to be converged by

20 ps. Fig. 5.2 e) shows the result of integrating random fluctuations in the 20–50 ps interval

of the HCACF tail. To parallel Figs. 5.2 a) and b), which depict an example of fluctuations

(in a)) that give rise to a random walk (in b)), a single HCACF tail is depicted in Fig. 5.2

d), but the integrals of 18 HCACFs’ tails are plotted in Fig. 5.2 e). The noise in this data

(Fig. 5.2 b)) is not uncorrelated from point to point along the data stream but instead has

some memory of itself. To predict the uncertainty from this noise we must compute the

lifetime for this memory to find the timescale at which the noise becomes uncorrelated.

Instead of a jump (or walk) at every interval in the autocorrelation, jumps are bet-

ter described by (some of) its peaks (see the line in magenta in Fig. 5.2 d)). The distribution

in Fig. 5.2 f) corresponds to the compound HCACF tails for the 18 simulations. Fig. 5.2 g)

was obtained from the peaks as exemplified in Fig. 5.2 d). A normal distribution with the

standard deviation for each case and mean zero is shown in red, and the distributions with

the correct mean in black and magenta for the whole set of tails and peaks, respectively, in

Figs. 5.2 f) and g). The distributions will again be addressed in the Results section.

The method developed to quantify the uncertainty that results from the Green–

Kubo approach by treating the noise in the autocorrelation function as a random walk

is introduced in the Methods section, but not before a more detailed explanation of the

dataset used for Figs. 5.1 and 5.2 is offered.
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5.2 Methods

All simulations used to perform error analysis were obtained with the large-scale

equilibrium classical molecular dynamics software LAMMPS [127], using the adaptive inter-

molecular reactive empirical bond-order (AIREBO) potential function formulated by Stuart

et al. [147]. The simulations correspond to a size-converged 11×11×11 perfectly crystalline

graphite supercell with 10648 atoms and a 27.05× 46.86× 73.79 Å3 volume in the x, y, and

z directions, respectively. Previous work has shown that this system is large enough to be

size converged for thermal conductivity [34]. We use data from nine simulations that were

relaxed and equilibrated in the microcanonical ensemble (NVE), using a standard Velocity-

Verlet quadrature scheme, for 50 ps after being given a thermal energy equivalent to 300 K

before starting to record the HCACF. Each of the nine runs was simulated for an additional

0.6 ns with a 0.2 fs time step and periodic boundary conditions. Because κ can be computed

in all lattice directions from a single simulation using the Green–Kubo formalism, there are

18 HCACFs along the basal plane of the graphite supercell with which to perform data

analysis (nine each along x, and y, that is [21̄1̄0], and [011̄0]). This data was obtained for

a previous publication on the thermal conductivity of irradiated graphite [34]. A longer 8.0

ns simulation with a 0.4 fs time step was also performed, under the same conditions. Based

on the premise that the noise of the integrated HCACF is akin to a random walk, we can

use Eqn. 5.5 to compute the root mean squared of the noise integrated up to time τmax.

This is the expected deviation (or error) from the mean for each random walk, and we can

thus compute the standard deviation of said error at time τmax in an average of N random

walks, with the same characteristic δt and σv, as SN = σv

√
τmaxδt
N .
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Decomposing the noise into uncorrelated fluctuations is the first step, required

to discern between a single random walk or the sum of varying frequency random walks.

Then, to characterize the random walks one must determine the standard deviation of these

fluctuations and the average interval between them. If the random fluctuations occurred

at the same interval that the HCACF is recorded, the expected noise uncertainty envelope

would be as indicated in Fig. 5.3 c), in the dashed red line. This largely underestimates

the integrated noise. A moving average low pass filter with a 0.4 ps window applied to the

noise reveals that at least two distinct sets of noise frequencies are present (see Fig. 5.3 a)).

This indicates that instead of a single random walk with the same time step as that of

the HCACF, the noise is best described by the sum of different frequency random walks.

Finding the contribution of each random walk to the expected error can be difficult, but

a series of frequency passes (see Fig. 5.4) can help examine the contribution of varying

frequencies in the noise to the expected error. The subsequent analysis is performed with

the separate sets of noise identified as having the largest contribution to the expected error

and shown in Fig. 5.3 a). While the noise behaves similarly to a random walk, the system

has a memory of itself and the fluctuations should be correlated with each other. The

correlation time obtained from the autocorrelation function of the noise gives the average

time interval, δt, at which the fluctuations are Markovian. This method is applied to a

single simulation as detailed in the following steps, with the aid of Fig. 5.3:

i The first step is to isolate the noise from the data. This is easily done by selecting a

portion of the tail, if it is clear the HCACF is converged after some time. Otherwise,

a fit could be used to extract the noise. Using the tail of the HCACF to analyze
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the noise is generally preferable to using a fit, as it removes the uncertainty that

arises from guessing the behavior of the HCACF. The choice of interval (30–50 ps) to

characterize the noise is explained in the Results.

ii The second step is to filter the noise for different frequencies. This step is exemplified

in Fig. 5.3 a). A low pass filter allows us to distinguish two main sets of oscillations,

in red and in blue. While only one pass, separating frequencies below and above 2.5

THz, is illustrated in Fig. 5.3 a), more could be applied (see Fig. 5.4) to gain a better

understanding of the noise. This is discussed more throughly in the Results. The

contribution of each set of data is considered as described next.

iii The third step consists in computing the autocorrelation of the different frequency

noise components. For the low and high frequency noise found in step ii and depicted

in Fig. 5.3 a), the ACFs are shown in red and blue, respectively, in Fig. 5.3 b).

iv The fourth step is to fit a single exponential aie
− t
τ to each of the above autocor-

relations. The fits are shown in magenta and cyan, for the low and high frequency

cases, in that order. The fitting parameter τ provides an estimate of the interval of

our near-random walk noise. The autocorrelation of the low frequency noise (in red)

is comparable to that of the whole system (in black). It is already clear that the

contribution of the low frequency HCACF noise explains most of the random walk

uncertainty.

v The fifth step is to compute the standard deviation, σ, of each of the noise contribu-

tions.
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vi The sixth and final step is to compute the uncertainty envelope by using the calculated

τ and σ in Eqn. 5.5. In Fig. 5.3 c), the magenta uncertainty envelope corresponds to

the low frequency oscillations, and the cyan envelope to the contribution of the high

frequency noise. As anticipated, the high frequency noise envelope is not much greater

than the envelope calculated with the HCACF interval (in dashed red). The combined

error of high and low frequency noise (in dashed black) is barely distinguishable from

that of the low frequency noise (in magenta). As expected, the contribution of low

frequency oscillations largely explains the noise.

τ and σ are all that is necessary to characterize the random walk. This means

a simulation could be undergoing and its data used to evolve the uncertainty envelope

on-the-fly. An example of this is shown in the results. For the present data set, the low

frequency oscillations explain nearly all of the noise, and it would suffice to consider the

autocorrelation of the whole, unfiltered noise, to obtain an estimate for the integrated noise

envelope. A more thorough discussion of the filtering is offered in the Results. Also in the

Results, this approach is applied to the 18 HCACFs, thus allowing us to obtain an error

estimate of the uncertainty envelope. We also show that a frequency decomposition analysis

similar to that applied to the HCACF can be used directly on the heat-flux to determine a

suitable simulation time-step to optimize HCACF convergence.
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5.3 Results

We applied steps i–vi to all HCACFs. The second step involves identifying differ-

ent noise frequencies. It is worthwhile to remark on the difficulty of extricating individual

random walks from a sum of random walks. For instance, applying a filter (as in Fig. 5.4)

can syphon out data that belongs to a lower frequency random walk. In Fig. 5.4, frequency

filters are applied with windows ranging between 0.04 and 0.56 ps at a 0.04 ps interval.

Each time, the data filtered is removed from the overall noise. One might be tempted to

say, from evaluation of Fig. 5.4, that there are multiple high frequency random walks, with

time fluctuations τ = 0.04, 0.08, and 0.12 ps, for instance, and that might be correct or

the sets of filtered data might belong to a single random walk. If the former is true, the

contribution of the independent sets of high frequency data were calculated to be negligible

compared to the low frequency data, in the same way the high frequency data obtained

with a single (0.4 ps) filter, as shown in Fig. 5.3 a), does not significantly contribute to the

overall noise (see Fig. 5.3 c)). Similarly, the low frequency noise could be resumed to the

sum of its parts, but this would remove the underlaying characteristics of the noise. For

this reason, having identified distinct frequency ranges in the noise, and having determined

that their contribution is remarkably unequal we proceed with the analysis performed as

described in steps i–vi.

For all simulations, τ was computed as to minimize the standard deviation, with

the caveat that the maximum allowed value for τ was limited by the lowest intercept with

zero between all noise autocorrelation functions. This is because we fit to the natural

logarithm of the noise autocorrelation. This does convene us, however, in that we aim
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to calculate the effect of the fast rate of decay of the systems’ memory reflected in the

noise. Moreover, a similar argument to there being a true autocorrelation function for the

heat–flux can be made with regards to the noise. If the frequency of the noise is the same

across samples, there is one true autocorrelation function that describes the interval for

which the noise is correlated, i.e., before it becomes random. For the high frequency noise,

τH = 0.27± 0.02 ps and is one order of magnitude greater than the interval of the HCACF

(δt = 0.02 ps), but, as depicted in Fig. 5.3 c) for the calculated uncertainty envelope of a

single HCACF tail, it has a low impact in the overall uncertainty envelope. For the low

frequency noise, τL is 4.6 ± 0.78 ps. The standard deviation for the high frequency noise,

σH , is 8.06± .11× 10−8 eV 2/Å4ps2 and for the low frequency noise σL is 2.89± 16× 10−7

eV 2/Å4ps2. Figure 5.5 a) shows how the noise integrals compare to the envelope (in cyan)

computed from the mean τL and σL obtained from the 18 HCACF tails, using Eqn. 5.5,

including the error (in blue) obtained by propagating the standard error of each quantity;

the above stated uncertainties for τH , τL, σH and σL are the standard error. In Fig. 5.5 b)

in the inset the envelope is compared with the full HCACF integrals. The standard error

computed over of the 18 HCACF integrals is also depicted in Fig. 5.5 b) (in solid green),

including in the inset, as is the standard error computed over the set of 216 sets of 50 ps

HCACF integrals to which the 18 sets can be reduced (in dashed green) by splitting each

600 ps set of J values in 12 sets of 50 ps. This method of splitting the heat current data into

many small parcels and computing the HCACF independently for each parcel means that

the individual HCACF’s are more noisy, but there are more data sets from which to infer

the standard error in the integral. This method predicts an uncertainty slightly smaller that
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the random walk method. The approach is appealing because it is simple and it appears

to provide a narrow estimate of uncertainty. Unfortunately, the tails of HCACFs computed

from neighboring data windows is found to be correlated and so the approach underestimates

the error providing a false degree of certainty. It can be seen in Fig. 5.5 b) that nearing 30

ps the error defined as the standard error of the HCACF integrals becomes more ill defined.

Again, this is because over time each of the HCACFs has less data to average over. The

possibility that J is still correlated after the length of the HCACF implies that, unlike the

method proposed herein, a correct noise estimate with the standard error approach requires

multiple simulations with differing starting points. As seen in Fig 5.10, with the random

walk approach a few hundred picoseconds suffice to characterize the error and obtain an

uncertainty envelope.

In Figs. 5.2 f) and g) it can be observed that for the 20–50 ps interval selected the

HCACF tails have a non-zero mean. This suggests that the HCACFs might not have been

fully relaxed by 20 ps. In Fig. 5.6 we consider the distributions of J (Fig. 5.6 a)), the noise

in the 30–50 ps interval for the entire data (Fig. 5.6 b)), and for the case where the peaks are

computed from a moving average with a 1 ps interval (Fig. 5.6 c)) as shown in Fig. 5.2 d).

Figures 5.6 b) and c) correspond to Figs. 5.2 e) and f) for the smaller interval. Figure 5.6

reassures us that over all simulations the system is close to relaxed by 30 ps. However, not

all individual simulations seem to have converged by 30 ps. While the distribution of J for

each simulation reveals a consistently normal distribution with mean zero, the mean of the

distribution of individual HCACF tails fluctuates around but is not consistently at zero.

This is not an issue because the random walk approach to estimate the uncertainty of the
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Green-Kubo method is largely insensitive to prevailing steady deviations from zero and it

considers these variations as real slow decay processes.

Figure 5.7 evidences that the random walk method is robust to slow decay processes

affecting the characterization of the noise. Upon first impression the integral in purple, in

Figs. 5.5 b) and 5.7 a), stands out as having a large noise — it is well above the mean

of all integrals (shown in red in the inset in Fig. 5.5 b)). Yet, since its value is large, the

error is a smaller fraction of the total integral value. There are possibly three factors at

play here. (1) A random walk is, well, random, and the uncertainty envelope is merely an

estimate of the expected value of any random walk for a given σ and τ . (2) Figure 5.7 a)

includes the individual uncertainty envelopes computed with the random walk approach for

each simulation. In both cases σL ≈ 2.9 × 10−7 eV2.Å−4.ps2. However, τL is 1.24 ps for

the simulation (in brown), and 6.32 ps for the simulation in purple, so some of the error

does seems to be due to a lower noise frequency and it is accounted for in the envelope.

(3) A closer look at this HCACF reveals that it is not yet converged (see Fig. 5.7 b)).

In this particular case, the noise due to the random walk is not the main cause for the

discrepancy between this HCACF integral and the remainder. This is in agreement with

the above discussion of the individual simulations’ distribution. The uncertainty envelope

for this simulation being below the integrated HCACF is thus consistent with the random

walk method being broadly agnostic to slow decay processes. To reinforce this idea, we

computed τL after displacing the HCACF tail by the mean so it oscillates around zero

and it equals 6.28 ps, not noticeably different from τL = 6.32 ps as calculated above. In

other words, because we’re interested in the rapid decay process of the HCACFs, slow rate

90



processes in the HCACF are not mistaken for noise.

The random walk uncertainty quantification approach could be a valuable tool for

guiding researchers on how the noise varies over time or across simulations. To test this,

a simulation of the same system was performed along x and y for 8.0 ns. For the 8.0 ns

simulation data was collected at 0.04 ps intervals. The set of 18 simulations of 600 ps each

adds to 10.8 ns, or 5.4 ns if we consider the x and y independently, with data collected

every 0.02 ps. A total of 200,000 data points are available for averaging over the single

simulation, and 270,000 for a 9 simulations set. As expected, the final HCACF for the

8.0 ns simulation is much smoother than any of the HCACFs from the 600 ps simulations,

but as shown in Fig. 5.8 it continues to retain some of its oscillatory features. In Fig. 5.8,

the integrated mean HCACFs for x and y for each of the two sets of 9 simulations are

compared to the x and y HCACF integrals obtained from the 8.0 ns simulation and their

corresponding uncertainty envelopes. Fig. 5.8 a) also shows the impact of a single outlier on

the integrated HCACF average. Strikingly, the noise obtained from a single large simulation

with fewer data points is lower than that obtained by averaging multiple simulations over

a greater number of data points.

Recall that each simulation was performed from scratch by replicating a unit cell

and conferring each system a temperature using individual seeds for each simulation. To

determine if the discrepancy between the cross-autocorrelation averaging and the single-

simulation autocorrelation averaging was maintained over a similar simulation length for

the same seed, we subdivided the 8 ns simulation into a set of 10 800 ps simulations and

averaged over them (see Fig. 5.9). Cross-simulation averaging with the same amount of data
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actually seems to reduce the error slightly. Most importantly, the smaller interval selected

for a larger simulation is a worthwhile tradeoff.

An example of an on-the-fly application of the suggested approach is given in

Fig. 5.10 a), which shows the running mean of the evolving random walk uncertainty enve-

lope as the simulation progresses. The correlation (R) between τ and the evolving envelope

is 0.52, and that between σ and the envelope is 0.56, both with a zero P value. This

indicates a strong dependence of the envelope variance on both variables. The % error is

computed throughout the simulation as the ratio between the envelope and the integral of

the HCACF (see Fig. 5.10 b)). It is interesting to notice that around 4 ns there is a steep

decrease in the expected HCACF integrated noise, after which point the variation in the

uncertainty diminishes.

To determine if there was an apparent direct correspondence between the system’s

Lyapunov memory and the system’s energy fluctuation memory, we computed the Lyapunov

instability, λ, which was found to be around 0.55 THz. Several simulation intervals for

the system size were considered, including the 0.2 fs interval used for our simulations.

The systems lose coherence between 15–20 ps. The distance, d(t), between systems was

computed as |(X)A − (X)B|, where (X)A are the coordinates of system A, started an

approximate 10−5 Å distance away from system B.

To evaluate the hypothesis that the origin of the noise in the tails results from

larger peaks in J that have not been averaged out due to insufficient data, we performed

an autocorrelation through J with both a gradual and a rough cut-off of these peaks (see

Fig. 5.11 a)). The results obtained (see Fig. 5.11 b)–e)) indicate otherwise. A cut, soft —
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i.e., such that the value of J is reduced by a higher fraction the further away from zero J it

is — or abrupt — i.e., removing peaks above and below a cut-off — through J reveals the

importance of the peaks to set the shape of the HCACF (see Fig. 5.11 b)), but it provides

evidence contrary to our hypothesis that the correlation between a few wider peaks were

at the origin of the random walk type noise. If we consider a moving average (in red)

through J, we find that it perfectly captures the trend of the HCACF (see Fig. 5.11 b)).

The normalized HCACF obviates that the trend of the data is more acutely captured by the

moving average. The normalized HCACF discrepancy between the moving average and the

actual data could be omitted by normalizing the moving average autocorrelation function

by the first element of the true HCACF.

If we, conversely, only consider the data from the highest peaks, setting all other

data to zero (in blue in Fig. 5.12), some of the noise fades away, but so does the overall

trend of the HCACF. A cut through the data increases the noise as expected (in yellow in

Fig. 5.12), by reducing the amount of data to average over. In as far as we can ascertain,

the noise is coupled to the overall fluctuations of J.

5.4 Conclusion

In this paper we propose a method for quantifying the uncertainty of the auto-

correlation function and thus that of transport properties computed using the Green-Kubo

approach. This method is based on the premise that the noise of the autocorrelation func-

tion is akin to discrete white noise and it integrates into a random walk. The value of
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this method goes beyond estimating the error of a single simulation and it can be used

to determine the minimum duration of a simulation to achieve a desired error threshold,

as evidenced in Fig. 5.10. Most valuably, for a stipulated error, this method can be used

to determine the optimal simulation time on-the-fly. While we have not found conclusive

evidence for the origin of the noise, we have determined it is coupled to the overall trend

of the measured flux, and that the error is largely the result of fluctuations at frequencies

below terahertz. Moreover, our results indicate that it is preferable to trade off a smaller

time step for a longer total simulation time with a wider time step, to smooth the long-term

oscillatory behavior of the HCACF, provided the time step is large enough to account for the

relevant physics of the simulated system. Transport properties computed with equilibrium

MD can be optimized by combining (1) performing a single simulation to determine the

minimum required simulation time to reach a desired Markovian error with (2) performing

multiple independent simulations with which to obtain a robust average autocorrelation

function and standard error. The suggested approach can also be used to determine if slow

decay processes are present in the autocorrelation by comparing the noise distribution to a

normal with the mean and standard deviation found to characterize the noise. The method

herein is suitable for high-throughput approaches for which expeditious simulations and

uncertainty quantification are paramount.
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Figure 5.1: Panel a) shows the HCACFs (the decaying functions) plotted along side their
integrals (the curves that rise to a plateau) computed from 9 separate simulations of a
10648 atom perfectly crystalline and periodically contiguous block of graphite. The data
was taken from a study to determine the influence of Wigner defects on thermal transport
in graphite [34]. The dashed lines correspond to the heat flux along the [21̄1̄0] direction
and the solid lines to the heat flux along [011̄0]. The system was found to be converged for
size, and κ is expected to be the same in both directions along the basal plane. This plot
illustrates the increasingly diverging noise of the HCACF integrals, present even after 50
ps. To the eye, the ACFs look nicely converged after 10–15 ps. Plot b) shows the gradual
convergence of the HCACF with increasing averaging time during a single simulation. The
amplitude of the fluctuations in the tail of the HCACF decays over time, but it is notable
that continued averaging does not remove the pattern of the fluctuations.
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Figure 5.2: a) corresponds to the step or velocity fluctuations that give rise to a random
walk; b) a set of 10 random walks is shown in black and the expected root mean square
translation distance at time t is plotted in red; c) is the distribution of the random walks
shown in b). d) corresponds to the tail of a HCACF, depicting the noise fluctuations that
integrate to a large error akin to a random walk, shown in e) for all HCACF tails. The
black lines correspond to heat-flux measurements along the x-direction ([21̄1̄0]), and the
blue ones along the y-direction ([011̄0]). Both values were measured along the basal plane,
and this distinction should not matter. The data set is explained in the Methods section.
For the selected 20–50 ps interval, the distribution of all data points across the multiple
simulation tails is shown in f). A 1 ps moving average was used along with a peak find
algorithm to plot major peaks in the HCACF tails, as shown in d), in magenta. The peak
distribution for all data is offered in g). The dashed red lines in f) and g) correspond to a
normal distribution with the standard deviation of each of the distributions and mean zero.
A normal distribution with the mean for each of the data sets is shown in the solid lines for
each case.
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Figure 5.3: The noise of a HCACF tail in the 30–50 ps interval is shown in a) decomposed
into high frequency (in blue) and low frequency (in red) noise. The autocorrelations of
the noise (in black), the high frequency (in blue) and low frequency (in red) components
of the noise are shown in b), along with fits through the high frequency (in cyan) and the
low frequency (in magenta) autocorrelations. In c) the integrated tail appears in black, the
uncertainty envelope for δt equal to the interval of the HCACFs is shown in dashed red;
the uncertainty envelopes corresponding to the high frequency and low frequency noise are
in cyan and magenta, respectively. The dashed black line that follows along the magenta
is the combined uncertainty envelope of the high and low frequency noises, i.e. the square
root of the sum of their squares.

Figure 5.4: This graph shows the application of multiple pass filters to isolate existing
frequencies in the HCACF noise. The first filter applied selects out data below a 0.04 ps
interval (the blue high frequency line at the bottom of the graph) and leaves the remaining
frequencies. The next filter has a 0.08 ps window and is used to filter the low frequency
data remnant from the first pass. This procedure is performed for 0.04 ps intervals up to a
filter with a 0.56 ps window.
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Figure 5.5: In a) the tail of the HCACFs, their integral, the uncertainty envelope (cyan)
calculated as described in the text and its error (in blue) are all plotted. On the inset
in b), instead of only considering the noisy tails of the HCACFs, the whole HCACFs are
represented. In both a) and the inset in b) the solid black lines correspond to results along
the y-direction, and the dashed black lines to results along the x-direction. The bold red
line in the inset in b) is the integral of the average of the HCACFs; the solid green line is
the standard error computed for the 18 HCACF integrals; and the dashed green line is the
standard error of the 216 50 ps HCACF integrals that can be obtained from the 18 sets of
data with 600 ps each. These lines are shown in the inset in b) for perspective, but also in
the larger plot in b) for a clearer distinction between them and the cyan line, which shows
the uncertainty calculated as described in the text, using the random walk approach.

Figure 5.6: Figure a) is the normal distribution over all J. Figure b) is the distribution of
the noise from the tails in the 30–50 ps interval. Figure c) is the distribution of the peaks
fit to the noise from the tails in the 30–50 ps interval, as shown in Fig. 5.2 d).
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Figure 5.7: Figure a) shows two extremes both in terms of their total integrated value, and
the interval, τL, of their low frequency oscillations. The uncertainty envelope for the inte-
grated HCACF in purple is slightly above the maximum standard error (in blue), whereas
that of the HCACF integral in brown is below. The corresponding noise, and noise integrals
for these extrema are shown in Fig. b).

Figure 5.8: Figure a) shows the averaged HCACFs for all simulations along x (in cyan) and
y (in magenta), the HCAFCs for x (in blue) and y (in red) for the large, 8 ns, simulation
and the corresponding integrals in the same color. To observe the effect of a single outlier,
all HCACFs except the purple one (see Fig. 5.7) are averaged. The resulting HCACF and
integral are plotted in dashed yellow. Figure b) shows the integrals (using the same color
scheme as in Fig. a)) with the corresponding uncertainty envelope around them.
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Figure 5.9: This Fig. shows the integrated HCACF average for all simulations along x
(in cyan) and y (in magenta) for the subset of 800 ps simulations resulting from the 8
ns simulation, the integrated HCAFCs for x (in blue) and y (in red) for the large, 8 ns,
simulation and the corresponding uncertainty envelope around them.

Figure 5.10: In a), in addition to the HCACF, the moving average of the uncertainty enve-
lope computed using the random walk approach is also propagated through the simulation
time. In b) the % error is computed as the uncertainty envelope over the total integral.
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Figure 5.11: The heat-flux (in black), J, a 0.4 ps moving average of J (in red), and a gradual
cut-off of the higher peaks of J (in green) are shown in Fig. a). The HCACF and integral
for each of the above cases is shown in Fig. b) as is, and is normalized in Fig. c). Figures
d) and e) are a zoom in on Figs. b) and c) in that order. The color coding is maintained
throughout the figures.

Figure 5.12: Figure a) shows J (in black), a transform on J that keeps its higher peaks and
replaces data between the peaks with a zero value (in blue), and a line at 550 ps representing
a cut-off of the J data above it. Figure b) shows the normalized HCACF for the above cases,
and including those depicted in Fig. 5.11 a). The HCACF as is is shown in Fig. c). The
color code is kept constant between Figs. 5.11 and 5.12.
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Chapter 6

Phonon-focusing and rattler-mode

interference in thermal

conductivity transitions of the

breathing

metal-organic–framework MIL-53

6.1 Introduction

The term metal–organic framework (MOF) was introduced in 1995 [168] to des-

ignate extended crystalline structures comprised of secondary building units (SBUs), i.e.

single nodes or clusters of metal-ions, bridged by organic linkers. The highly porous nature
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and exceptionally large surface area of MOFs make them ideal for gas sorption and storage

applications [133, 164], such as carbon sequestration and hydrogen storage. Yet, that is

only the tip of the iceberg. Because MOFs are inherently modular with property-correlated

building blocks (SBUs and linkers) and topology, they can be tailored to a myriad other

applications. Separation [36, 167], chemical sensing [76], drug transport [60], catalysis [150],

and charge storage/conduction [84, 170] are some examples of other common applications

for which MOFs are heavily researched. It is unsurprising that there is an increased trend

in the use of high-throughput approaches to explore the vast phasespace of MOFs, for

which it becomes necessary to develop heuristic methods that allow the rapid computing of

framework properties.

In 2002, Kitagawa [156] and Férey [142, 10] independently published pioneer works

on “breathing” MOFs, the phenomenon by which flexible MOFs undergo a reversible trans-

formation between narrow pore (np) and large pore (lp) structures. The dynamic micropores

of breathing MOFs have been shown to open and close as a response to external stimuli such

as temperature [97] and pressure [95] changes, or host-interaction [95, 96]. Photoresponsive

frameworks, while still very scarce, are beginning to emerge in the literature [109, 15, 38],

and electrical and magnetic interactions are predicted as possible mechanisms for tuning

pore size [138], making MOFs ideal candidates as smart materials. Flexible MOFs are desir-

able for sorption-related applications, but new possibilities, such as shock absorption [171]

are also currently being explored. Sorption processes involve exothermic and endothermic

reactions [172], and the ability of the framework to transport heat or transfer it to the

host is paramount in determining applicability. The US Department of Energy is currently

103



developing hydrogen storage devices with powder compacts of MOF-5 as the adsorption

bed as part of the Hydrogen Fuel Cell Program. The limitation of these devices is not stor-

age capacity, but the efficient removal of latent heat of adsorption [172, 132]. Mechanical

dampening likewise requires heat dissipation. For applications requiring or benefiting from

dynamic MOFs, it is not only necessary to compute thermal conductivity, but to understand

how it varies with structural transitions between breathing states. Our aim is to determine

if thermal transport properties can be estimated from the vibrational modes of lp and np

structures and, moreover, if these properties scale continuously with framework geometry.

To this end, the dispersion relations of MIL-53(Al) were computed, in ab initio, for the first

time, and equilibrium molecular dynamics (MD) simulations were performed to investigate

phonon thermal transport in lp and np states of MIL-53(Al). We further derived a model

for the thermal conductivity tensor in terms of linker and node resistances to evaluate its

scalability between breathing phases, as illustrated in Fig. 6.1. Heuristic methods have

the benefit of being exceptionally useful towards high-throughput MOF design. The work

presented herein begins to probe the extent to which heuristic models can be of use for

thermal conductivity prediction in MOFs.
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6.2 Methods

6.2.1 Thermal Conductivity

The MIL-53(Al) thermal conductivities, κ, were computed using the well-established

Green-Kubo formalism [49, 82]:

κ =
V

3kBT 2

∫ ∞
0
〈J(t)J(t+ τ)〉 dτ, (6.1)

where kB, T and V are the Boltzmann’s constant, the temperature, and the volume of the

simulated region respectively. J is the heat-flux, and 〈J(t)J(t+ τ)〉 is the non-normalized

heat current autocorrelation function (HCACF). The Green-Kubo expression (Eqn. 6.1),

based on the fluctuation-dissipation theorem, relates instantaneous fluctuations in the sys-

tem heat-flux to thermal transport, and it allows thermal conductivity calculations from

equilibrium classical molecular dynamics simulations. Classical molecular dynamics simu-

lations were performed with the large-scale atomic/molecular massively parallel simulator

(LAMMPS) software [127]. All simulations were performed on a 3×3×3 supercell with

2,052 atoms and periodic boundary conditions. This supercell size is shown to converge κ,

in agreement with thermal conductivity studies of MOF-5 that have independently shown

a 2×2×2 supercell size to yield converged κ values [52, 61]. Molecular dynamics sim-

ulations require the specification of an appropriate set of interatomic potentials. In this

paper we use the intramolecular and non-bonded force field parameters adjusted by Van-

duyfhuys et. al. along with the atomic partial charges resultant from Vanduyfhuys et al.’s

DFT Mulliken population analysis [158] to explore the host-independent pressure behavior

of the MIL-53(Al) framework.
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To compute the lattice parameter of the MIL-53 at 300 K, the 3×3×3 MIL-53

supercell was optimized at 0 K. In the isothermal–isobaric ensemble (NPT) with the cell

free to change volume, the temperature was increased slowly to 1,000 K and cooled down

back to 0 K. The negative expansion coefficient was obtained by fitting to the simulation.

The 3×3×3 MIL-53 supercell was scaled to its mean volume at 300 K. In addition to a

SCHEME minimization, to find the most energetically favorable configuration, the 3×3×3

MIL-53 supercell was annealed to 300 K for 5 ns from 0 MPa to 300 MPa and back to 0 MPa

for another 5 ns in NPT, relaxing the atomic structure as well as supercell shape and size.

After relaxing the atomic structure, along with the size of the compute cell, all systems were

given a thermal energy equivalent to 300 K and equilibrated in the microcanonical ensemble

(NVE) for 50 ps before starting to record the HCACF. The simulations were then performed

for an additional 5 ns with 1 fs time step and periodic boundary conditions. Throughout

the period in NVE the average temperature remained at approximately 300 K, the HCACF

was computed out to 50 ps, and 40 simulations with different starting configurations were

averaged to obtain each datum.

6.2.2 Phonon properties

Phonon properties for both lp and np MIL-53(Al) were computed with a self-

consistent-charge density functional tight binding (SCC-DFTB) approach [39], using the

DFTB+ software package [7]. The parameter sets, or Slater Koster files, used for the cal-

culations are provided by the developers [45] and can be downloaded from the DFTB+

website (under “matsci”). A comprehensive review of DFTB can be found in the litera-

ture [131, 139, 39]. Relaxation calculations were performed with a 76 atom unit cell obtained
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from a database of computation-ready MOF structures derived from experimental data, the

CoRE (computation-ready, experimental) MOF database [28]. The atomic positions were

optimized using the conjugate-gradient algorithm to near 5× 10−7 eV/Å and the electronic

optimization was within 3 × 10−7 eV. The Brillouin zone was sampled by a converged

2×2×2 Monkhorst-pack scheme k-point mesh [112, 123]. The hessian was computed us-

ing a double-sided finite difference approach implemented through Phonopy [155] from the

force constants obtained for a 2×2×1 supercell and a displacement amplitude of 0.01 Å

for each one-sided atomic displacement. Periodic boundary conditions were enforced in all

directions.

Group velocities, vg, were calculated for the acoustic bands, i.e. ν = 1, 2, 3, along

the reciprocal wave vectors, k, corresponding to the a, b, c, and linker directions, using the

Phonopy software package [155], as

vg(kν) =
1

2ω(kν)

〈
e(kν)

∣∣∣∣∂D(k)

∂k

∣∣∣∣ e(kν)

〉
, (6.2)

where e and D are the eigenvectors and density of states, respectively. The values in

Table 6.3 are the Γ point velocities, and were approximated by calculating the average of a

plateauing region of group velocities along the modes near the Γ point, where the velocities

are stable.

The number of phonon states at a given frequency, ω, wave vector, k, and tem-

perature, T , can be approximated by the Bose–Einstein distribution, f(ω, T ). We define

phonon flux at a given wave vector, k, frequency and temperature, φ(k, ω, T ), as

φ(k, ω, T ) = vg(k, ω)h̄ω(k)D(k, ω)f(ω, T ), (6.3)

where 2πh̄ is Planck’s constant, such that E(ω) = h̄ω. In the approximation that MIL-
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53(Al) is orthogonal, which holds true for both DFT and DFTB calculations (see Table 6.2),

the volume of the Brillouin Zone is given by VBZ = |ka∗ ·kb∗ ·kc∗ |, where a∗, b∗, and c∗ are

the reciprocal lattice vectors. The density of states D(k, ω) is the number of phonons at k of

frequency ω, per volume, such that D(k, ω) =
∫ VBZ
0 ω(k) dVBZ =

∫ VBZ
0 ω|dka∗ ||dkb∗ ||dkc∗ |.

The flux here is arbitrarily defined over a surface that is |dk|2.

Sorting the phonon branches can be a daunting task and we have, therefore, opted

to consider the sum of the phonon flux over multiple frequencies. Over all frequencies at a

given k, the sum is given by:

φk(T ) =

3N∑
ν

φm(k, T ), (6.4)

where N is the number of atoms in a unit cell, and 3N the total number of phonon branches.

Validation of DFTB+

Albeit less accurate than the more common density functional theory (DFT) ap-

proach, DFTB has been shown to perform well on various systems from molecules to periodic

materials [7], and offers a significant reduction in computational costs. In addition to the

DFTB calculations, we relaxed the lp and np MIL-53(Al) with DFT to compare the relaxed

geometries obtained with both methods. For the DFT calculation, a unit cell was relaxed

with the plane-wave Vienna Ab-initio Simulation Package (VASP) [80, 77, 78, 79], using

the project-augmented wave (PAW) method [12, 81] in the local density approximation

(LDA)[126]. Energy convergence to 0.1 eV was attained with a Γ-centered 4×4×4 irre-

ducible Monkhorst-Pack k-point sampling of the Brillouin zone and a 800 eV kinetic energy

cut-off. The structure, cell size and shape were relaxed with a Gaussian smearing approach,
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until ionic and electronic tolerances reached 0.05 eV/Å and 0.01 meV, respectively.

Bond DFTB (Å) DFT (Å) Potential [158] (Å)

Ol -C1 1.309 1.264 1.27
C1-C2 1.489 1.476 1.50
C2-C3 1.401 1.390 1.40
C3-C3 1.388 1.379 1.39
C3-Hl 1.101 1.095 1.08
O1-Al 1.921 1.886 1.95
On-Al 1.908 1.830 1.85
On-Hn 0.960 0.972 0.91

Table 6.1: Table of bond lengths obtained for MIL-53(Al) using DFTB, DFT, and Van-
duyfhuys et al. [158] classical potential. The subscripts n and l indicate a node and a linker
atom, respectively. C1 is the carbon linked to the linker oxygens, the C2 atom bonds to C1,
and C3 refers to the hydrogenated carbon atoms in the benzene rings.

All bond lengths are within 0.1 Å of each other, as can be seen in Table 6.1. The

lattice parameters, volume and angles are shown in Table 6.2 for the lp and np MIL-53(Al)

structures. The DFTB calculations consistently overestimate b and c and underestimate a.

Experimental measurements of thermally-actuated MIL-53(Al) [92] result in a monoclinic

structure, not observed in either DFT or DFTB calculations. The np MIL-53 structure

appears to be barely triclinic for both DFT and classical potential calculations.

6.3 Thermal conductivity model

A simple heat propagation model for MOFs can be derived from the thermal

resistivities in the nodes and linkers, RN and RL. Fig. 6.1 illustrates this idea. Notice

that each unit cell has four nodes and RN corresponds to a two-node cluster and includes

the bridges between the cluster and the linker on each side of it. The MIL-53 structure is

approximately orthorhombic, and we shall use this approximation to describe the suggested
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MIL-53 (Al) Method a (Å) b (Å) c (Å) volume (Å3) α deg β deg γ deg

lp

DFTB 16.306 6.858 13.836 1,547.2 90.000 90.000 90.000
DFT 16.466 6.602 13.007 1,414.3 90.000 90.003 90.000
Experiment (77 K) [92] 16.913 6.624 12.671 1,419.6 90.000 90.000 90.000
Potential [158] 16.410 6.541 13.757 1,476.6 90.062 90.000 90.007

np

DFTB 19.240 8.436 7.383 1,198.3 90.000 90.031 90.000
DFT 19.067 7.191 6.579 902.383 90.003 89.988 90.001
Experiment (77 K) [92] 20.824 6.871 6.607 863.9 90.000 113.949 90.000
Potential [158] (at 300 K, 300 MPa) 19.417 6.374 6.319 782.1 89.996 90.001 89.934

Table 6.2: Table of lattice parameters for MIL-53(Al). The lattice parameters and angles
described herein follow the orientation indicated in Fig. 6.1

thermal transport model. For heat to travel across one unit cell in either the [100] or [001]

directions it must travel along an alternating sequence of linkers and nodes (crossing exactly

two of each per unit cell). The heat flow along any chain can be written as Q̇ = −2Clinker∆T ,

where ∆T is the temperature change along the chain, and the thermal conductance of the

chain, Clinker, is obtained from the thermal resistance across a node and a linker

Clinker =
1

2(RN +RL)
. (6.5)

Armed with the heat current along a single chain we can now determine the heat flux in

any direction. For the heat flux Jxx along [100] it would thus follow that

Jxx = −2Clinker∆T

LyLz
= −2Clinker

Lx
LyLz

∂T

∂x
= −κxx

∂T

∂x
(6.6)

where Lx, Ly and Lz are the length of the unit cell along the x-, y- and z-directions, and

κxx is the thermal conductivity along x. Using the same approach, and assuming a thermal

conductance Cchain along the alternating chain of metal and oxygen atoms in the z direction,

we can write the thermal conductivity tensor:

κ = 2Clinker


Lx
LyLz

0 0

0 Lz
LxLy

0

0 0 Cchain
Clinker

Ly
LxLz

 (6.7)
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Figure 6.1: Illustration of the scalability of the the thermal conductivity tensor between
breathing states in MIL-53.

6.4 Computational Results and Discussion

6.4.1 Thermal conductivity simulations and model results

The values for Clinkerand Cchain were obtained from a zero pressure thermal con-

ductivity calculation, and used with the also classically obtained thermal expansion results

to determine the model predicted thermal conductivities. The solid lines in Fig. 6.2 corre-

spond to the expected thermal conductivity based on the model, plotted against the actual

thermal conductivity values obtained. The error bars correspond to the standard error for

the thermal conductivity. Although heat is conducted along the linkers for both axes, from

Fig. 6.2 we can observe that the thermal conductivity of lp MIL-53(Al) is over twice as large

along a than c. This anisotropy is in good agreement with the elastic constants in those

directions, as computed by Ortiz et al. [121] — 90.85 GPa along a, and 33.33 GPa along c,

not taking into account sheer stresses — which indicate that the softer modes correspond

to the deformation direction.

It is clear from Fig. 6.2 that the trend predicted by the geometric framework model
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Figure 6.2: MIL-53(Al) thermal conductivity classical potential calculations at different
pressures and corresponding standard error, and expected change in thermal conductivity
as predicted by the geometric model (solid lines). The inset shows the actual thermal ex-
pansion/contraction of the framework as a function of temperature, in a classical potential.

is followed at least to some extent, but does not accurately match the computational re-

sults. The linkers are not interconnected along the channels and, in the vacuum, heat would

be solely conducted through the chains of aluminum nodes. As the pores of the MIL-53

close, the density of chains in the plane perpendicular to the b-axis (as indicated in Fig 6.1)

increases and so does the thermal conductivity. Albeit overestimated, the geometric model

correctly predicts this behavior (the green line in Fig. 6.2). A similar argument for κ along a

and the increase in linker density. In this case, the model response is grossly overestimated

(see blue line in Fig. 6.2). Contrary to the change along a, the plane perpendicular to b

expands and the density of linkers is reduced, thus the model predicted decrease in thermal

conductivity (the orange line in Fig. 6.2). This trend is not matched by our calculations,

which predict a nearly steady response to the geometric change in this direction. The geo-

metric model does not fully capture the thermal conductivity behavior during the geometric

transition. To elucidate the discrepancy between the simulation and the model results, we

have computed phonon properties semi-empirically for the lp and np MIL-53(Al).
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6.4.2 Features of the open- and closed-pore MIL-53(Al) dispersion rela-

tions

The phonon dispersion relations along a, b, c, and in the linker direction for both

the lp (Fig. 6.3) and np (Fig. 6.4) MIL-53(Al) have been calculated with tight-binding DFT.

The group velocities along the same directions near the Γ point are shown in Table 6.3.

Figure 6.3: Fig. a) is the dispersion relation computed along the linker and aluminum
chain, and the density of states for MIL-53(Al) for the open-pore structure. A zoom-in on
the lower phonon modes of the dispersion relation in the same region given in b). Figure c)
shows a zoom in of the dispersion relation along a and c.

If we contrast Figs. 6.3 a) and 6.4 a), we observe only a small variation in the

density of states for the lp and np frameworks: there is a small fractional increase in the

113



Figure 6.4: Figure a) is the dispersion relation computed along the linker and aluminum
chain, and the density of states for MIL-53(Al) for the closed-pore structure. A zoom-in on
the lower phonon modes of the dispersion relation in the same region given in b). Figure c)
shows a zoom in of the dispersion relation along a and c.

number of states in the acoustic region in the np structure; lower frequency optical modes

are also slightly more abundant in the np structure, and higher modes in the lp MIL-53(Al).

For the most part, the optical modes are mostly flat in both frameworks and therefore do not

carry heat. However, a small number of curved optical modes can be found in the lp MIL-

53(Al) that are suppressed in the np structure. In non-bulk materials, where the length of

the material is comparable to phonon mean free paths, the flattening of dispersion branches

noticeably reduces the average group velocity of the phonon population [8]. This induces

a phonon confinement effect, whereby both defect and Umklapp scattering increase as a
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Direction Chain (or b) Linker a c

Mode 1 2 3 1 2 3 1 2 3 1 2 3

lp 1,767 3,438 10,082 8,611 3,517 12,025 4,018 8,777 10,785 3,443 6,761 8,664

np 6,801 4,062 4,366 4,816 4,591 13,721 8,246 4,376 14,001 6,450 6,489 9,449

Table 6.3: Group velocities for the lp and np MIL-53(Al) acoustic modes in units of m/s.
The modes (1, 2, and 3) for each direction are listed in increasing order of frequency.

result of the reduction in phonon group velocity [8]. Thin film materials of MIL-53 would

be expected to incur a noticeable decrease in thermal conductivity due this mechanism.

In Figs. 6.3 b), 6.3 c), 6.4 b), and 6.4 c) we consider the more revealing acoustic

modes. The deformation of MIL-53 is accompanied by changes in phonon group velocities

along the chain and linker directions. This suggests that the lattice mode contributions to

the linker resistance RL changes as the network is deformed, and so the central premise that

the linkers are independent thermal resistors does not hold. The average group velocities

along the chain is barely altered in the “breathing” of the MIL-53. The average linker group

velocity is smaller along the chain for the closed pore structure, yet it decreases for both a

and c. This increase in the group velocity along c, albeit small, could contribute to increase

thermal conductivity in this direction, opposing model expectations.

Rattler modes

To help interpret the phonon dispersion we have developed a simple chain and

spring model for an idealized framework. The model is as depicted in Fig. 6.5 b), a 2-D

network comprised of a 1-D chain of masses connected to each other by springs, and an

additional spring and mass to model a rattler. The dispersion of these toy models reveals

rattler behavior in which the acoustic band flattens into a rattler mode with zero group

velocity and the trajectory of the acoustic band is picked up by an optical mode. This
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crossover behavior produces a band gap in the dispersion, and flattens the acoustic mode.

As the framework transitions between the open- and closed-pore structures, it tenses up

both along the linker and chain (see Table 6.2). As indicated in Fig. 6.3, the same feature of

the dispersion shows up along the linker, and channel (b) directions in the lp structure, but

not in the np one. Fig 6.6 reveals this feature as a kink that shows up along the projection

of the linker in a and c.

Figure 6.5: Model of a 1-d chain with a rattler, as portrayed in b), and an example, Fig.
a), where its acoustic mode is dampened by the optical mode of the rattler.

Figure 6.6: 2-dimensional dispersion relation of a cross-section through Γ along the plane
defined by the reciprocal vectors a∗ and b∗.
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Phonon focusing

Yet another interesting phenomenon we have observed is phonon focusing. Evi-

dence of phonon focusing is suggested by the apparent inconsistency in the group velocities

(in Table 6.3) and the 1-D dispersions, as in Figs. 6.3 and 6.4. A zoom in on the acoustic

modes near the gamma point, shown in Fig. 6.7 a), and the corresponding group velocities

in Fig. 6.7 b), help illustrate that the 1-D dispersion is insufficient to portray the behavior of

the acoustic modes in the open and closed-pore frameworks. The phonon flux (see Eq. 6.4)

of the open-pore structure is depicted in Fig. 6.8 for the whole Brillouin zone. In it, we

can, for instance, observe that modes existing along the linker direction, beyond the gamma

point, focus along the chain.

Figure 6.7: A zoom in on the acoustic modes near the gamma point for the closed and
open-pore structures along the chain and the linker is shown in a). The corresponding
group velocities at each point are shown in b). The red arrows point to two modes with
seemingly the same slope (and thus group velocity) in the 1-D region represented in a), and
their very divergent group velocities, in b).
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Figure 6.8: Phonon flux of the open-pore structure depicted for the whole Brillouin zone.

Conclusion

In addition to suggesting a heuristic for determining the effect of topological

changes on thermal transport in metal–organic frameworks, we have also proposed a toy

model for understanding the dispersion behavior of the frameworks. To our knowledge, the

phonon properties of MIL-53 had not been before been calculated. In performing these

calculations we further found evidence of rattler modes, in agreement with the toy model

developed, and phonon focusing effects. This research is not yet in publication form, and

is expected to suffer some small transformations before being submitted to a journal. A

reader is therefore advised to look for the published version of this work.
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Chapter 7

Thermal transport in fuels and

spintronic materials

7.1 Predicting variability of thermal conductivity in nuclear

fuels

7.1.1 Introduction

The calculations described in this section are part of a larger effort to accurately

simulate thermal properties in nuclear fuels and structural materials. For this project,

our group is collaborating with researchers in the Nuclear Science and Engineering depart-

ment at Oregon State University. Ultimately, we aim to develop a frequency-dependent

phonon transport solver to perform engineering-scale thermal transport predictions capable

of taking into account atomistic-scale materials properties. By bridging the gap between

atomic-scale and meso- and macro-scale simulations, we expect to expand on the capa-
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bilities of existing approaches to model more complicated transport phenomena, including

anharmonic (three- and four-phonon) scattering contributions from normal and Umklapp

processes and materials defects (e.g. point defects, clusters of point defects, grain bound-

aries). To achieve this, our collaborators have already adapted the neutron transport solver

RattleSnake [165] to accept input from variables consistent with phonon transport simula-

tions [53]. Rattlesnake was developed using the Multi-physics Object Oriented Simulation

Environment (MOOSE) [47] framework, and solves a second-order form of the Boltzmann

transport equation (BTE) using the Self-Adjoint Angular Flux formulation in a finite ele-

ment spatial discretization.

A first application of the aforementioned code adaptation has been the simulation

of phonon transport in uranium dioxide with xenon impurities, including the role of thermal

boundary resistance (TBR). The uranium dioxide (UO2) fuel in nuclear reactors experi-

ences a significant reduction in thermal conductivity during its operation cycles. Daughter

products from fission, including emerging xenon bubbles, build up and cause disruption

to thermal transport. The build up of xenon drastically reduces thermal conductivity in

the fuel. Towards this project, phonon properties of UO2 have been calculated and used

within the single mode relaxation time approximation of the BTE. These results have been

incorporated into a manuscript currently accepted by the Journal of Heat Transfer [53].

The phonon DFT calculations performed for this project are detailed in the next section.

In addition to the UO2 calculations, preliminary calculations have been performed with Si.

Si has been exhaustively studied (see phonon thermal transport section of this report) and

thus is an ideal material to perform verifiable frequency-dependent deterministic transport
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simulations. Moreover Si has a diamond-like crystal structure (i.e. two interpenetrating

face-centered cubic cells) and thus relatively small unit and primitive cells, which allow it

to be modeled with DFT quickly and with relative ease. The dispersion relations, frequency

and MFP spectrum over the frequency domain, temperature, and mode dependent specific

heat capacity can be used to inform BTE deterministic transport calculations. In the fu-

ture, the code being developed by our collaborators will likely include frequency coupling

(i.e. phonon-phonon scattering), for which different higher-force constants would need to

be obtained. Two- and three-order force constants can be computed with Phono3py [?],

which interfaces with VASP, and is a later version of the Phonopy [] code, frequently used

throughout my PhD.

7.1.2 Results

For the first-principles calculations, we employed the plane-wave basis projector

augmented wave method within the framework of density functional theory as implemented

by VASP [77, 78, 79]. The local density approximation (LDA) [126] was used for the

exchange correlation potential. A plane-wave energy cutoff of 600 eV was employed. Cal-

culations were performed with a 2× 2× 2 super-cell of the UO2 unit cell (with 4 O and 8 U

atoms). This includes the interatomic force constants (the hessian matrix), computed with

atomic displacements implemented by Phonopy [155] based on the structure symmetry of

UO2 (Fd-3m). The perfect super-cell was found to be relaxed beyond 1× 10−3 eV/Å ionic

tolerance and a 1× 10−5 eV electronic tolerance. The phonon dispersion (see Fig. 7.2) and

phonon group velocities were computed using Phonopy. A large 6× 6× 6 Monkhorst-Pack

k-point grid was used for all calculations (Fig. 7.1). Such a large grid is unnecessary for
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phonon calculations. However, UO2 is anti-ferromagnetic and there exist ferromagnetic so-

lutions to the Kohn Sham equation nearby the anti-ferromagnetic one, and VASP can get

trapped into a ferromagnetic state. To guaranteed calculations have been correctly per-

formed, it is convenient to plot the electronic density of states for which a higher number

of k-points than is otherwise needed is usually advisable. On the account of the proximity

of the existing solutions, the calculations performed for UO2 proved more complex than

initially anticipated. The MAGMOM tag was selected to ensure that alternating uranium

atoms in the structure had opposing spins, and the spin of the oxygen atoms was set to zero.

We further used a Hubbard parameter, U , of 4.50 eV , and a Hund’s exchange parameter,

J , of 0.50 eV . The results agree with those obtained by Wang et al. [163]. Similarly, the

phonon dispersion, shown in Fig. 7.2 relation is in good agreement with that obtained in

the same reference [163]

Figure 7.1: Total and partial (for the orbitals listed in the legend) electronic density of states
for UO2 with U correction for a) our calculations and b) Wang et al.’s calculation [163].

.

Similar calculations have been successfully performed with Si. The Si calculations
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Figure 7.2: Phonon dispersion relations for UO2.

are much more straightforward and can be computed with a primitive, 3 atom, unit cell,

instead of the full unit cell (needed for UO2 to force opposing spins on its uranium atoms

such that the total magnetic moment was zero).

For a frequency dependent phonon distribution in steady state, the first order

form of the Boltzmann transport equation (BTE) can be written in terms of an equilibrium

radiance, φg,p(r), within the single mode relaxation time approximation, as

Λg,pΩ̂ · ∇ψg,p(r, Ω̂) = φg,p(r, , ~̂Ω)− ψg,p(r, ~̂Ω) [53]. (7.1)

In Eq. 7.1, Ω̂ is a direction vector in polar and azimuthal coordinates, defined such that

φ0 =
∫
4π ψ(r,Ω); Λg,p is the mean free path; and ψg,p is the angular radiance and solution

of the BTE, all defined in terms of G equally spaced discrete frequency intervals, or groups

[ωg−1, ωg], where g = 2, ..., G, and polarization, p. For an isotropic material, assuming an

equal distribution of states in k-space, the equilibrium radiance can be approximated as

φg,p(r) =
h̄

8π3

∫ kg

kg−1
d|k||vg,p|ωg,pδp|kg|2〈n〉BE [53] (7.2)

where δp is the degeneracy in the phonon branches, and 〈n〉BE the Bose–Einstein distri-
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bution (Eq. 2.4). Figure 7.3 b) shows the radiance for the dispersion relation of UO2 at a

cross section of the Brillouin Zone through the Γ point, depicted in 7.3 a).

Figure 7.3: a) 2-dimensional dispersion relation of UO2 at a cross section of the Brillouin
Zone, passing through Γ. b) Radiance in the same region as a), computed for each dispersion
surface. Each surface does not necessarily correspond to a single phonon branch.

In addition to the calculations performed to date, future work will require obtaining

the second- and third-order interatomic force constants (IFCs). As mentioned earlier, this

can be done using Phono3py. The calculation details for Si are the same as are shown in

the next section, and have not been repeated here.
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7.2 Spin Hall effect and spin phonon interactions in p-Si

7.2.1 Introduction

Spintronics is a relatively new field of solid state physics pertaining to the study

of the intrinsic spin of the electron and its associated magnetic moment aimed at using spin

— rather than charge — as a way of encoding, transferring and processing information.

Spin injection from a ferromagnetic source and the Spin Hall Effect (SHE) are two methods

by which spin can be injected into a material [93]. The SHE was first predicted in 1971

by Dyakonov and Perel [37], and again in 1999 by Hirsch [57]. Spin and charge currents

are coupled through the spin-orbit interaction, in that an electric current induces a spin

current that is transverse to it resulting in an accumulation of spins of opposite signs on

opposing boundaries, much like in the magnetic Hall effect. Unlike with the magnetic Hall

effect, however, the presence of a magnetic field is not necessary to induce spin separation.

Silicon is considered an ideal material for spintronics due to its relatively long

spin diffusion length [93], and it has been suggested that p-Si exhibits the spin Hal effect,

though to date no evidence had been obtained. Sandeep Kumar’s group at the UCR,

however, have observed the coupling of spin, charge and thermal transport behavior in

p-Si — specifically, magneto-thermal transport behavior, which is analogous to spin Hall

magnetoresistance and is called as spin Hall magneto thermal resistance (SMTR) [93]. At

the origin of SMTR behavior in p-Si are spin-phonon interactions [93]. Kumar and his group

further hypothesize that spin relaxation due to phonon absorption or emission may change

phononic thermal transport behavior [93], and thus propose monitoring changes in thermal

properties to quantify the spin-mediated behavior. The experimental set up designed to
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test this approach is described in detail in the manuscript [93]. To ascertain the influence

of spin polarization on phonon properties, we have calculated phonon properties of silicon

with various spin concentrations. The results obtained are reproduced in the next section,

close to the form they are in the manuscript [93] to be published in which this research is

included.

7.2.2 Results and discussion

The spin-phonon interaction may remove or scatter a band of phonons from the

heat current [93, 144] leading to a reduction in thermal conductivity. This behavior is

observed in the experiments. To ascertain the influence of spin polarization on phonon

properties, a suite of density functional theory (DFT) calculations were performed to com-

pute Si’s phonon dispersion and group velocities with increasing spin concentration. The

phonon dispersion of silicon containing a net spin concentration was computed for spin

concentrations from zero to 4.6× 10−3 per valence electron using the plane-wave DFT Vi-

enna Ab-initio Simulation Package (VASP) [79, 78, 79]. All calculations were performed

in the local density approximation (LDA) [126] using the project-augmented wave (PAW)

method [12, 81], with a Monkhorst-Pack grid of 3× 3× 3 irreducible k-points and a plane

wave energy cutoff of 1200 eV. The interatomic force constants (the hessian matrix) were

computed from a single 3 × 3 × 3 super-cell constructed from the Si primitive cell with

atomic displacements implemented by Phonopy [155] based on the structure symmetry of

Si (Fd-3m). The equivalent perfect super-cell was found to be relaxed to within 1 × 10−3

eV/Å ionic tolerance and a 1 × 10−6 eV electronic tolerance. The phonon dispersion and

phonon group velocities were also computed using Phonopy. The net estimate of the mean
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variation in acoustic mode group velocity as a function of temperature and spin concen-

tration was determined by integrating velocities computed on a 101 × 101 × 101 k-point

grid over the Brillouin zone. The results are summarized in Fig. 7.4 (a)-(f), and show a

monotonically increasing red shift in the frequency of optical gamma point phonons with

increasing spin polarization. This prediction is in agreement with the Raman spectroscopy

measurements performed by Kumar’s group at UCR.

Accompanying the red shift of Γ-optical phonons is a reduction in the group veloc-

ity of the transverse acoustic phonons (plotted explicitly in Fig. 7.4 (d)). This retardation

of acoustic phonons can by itself yield a reduction in thermal conductivity before additional

thermal resistance due to the acoustic phonon scattering in spin relaxation processes. Fig-

ures 7.4 (e) and (f) show the fractional reduction in thermal conductivity (computed from

Boltzmann transport theory using the single relaxation time approximation) as a function

of sweeping temperature and sweeping through spin concentration. The overall trends show

a marked similarity with the experimentally measured magneto-thermal transport results

presented in this work indicating that phonon softening can contribute to the measured

results but that there are probably also additional phonon scattering contributions due to

phonon participation in spin relaxation processes.
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Figure 7.4: Plots showing DFT predicted phonon properties as a function of spin concen-
tration. In plots (a)–(e) results are plotted for spin concentrations of 0, 0.046, 0.23, 0.46,
1.39, 2.3, 3.2, and 4.6 per 103 valence electrons, with the plot color from blue through
green to yellow going in order of increasing spin concentration. Plot (a) shows the phonon
dispersion, plot (c) the phonon density of states with inset (c) the showing the reduction in
the gamma point optical phonon frequency as a function of spin. Plot (d) shows the group
velocity of acoustic phonons along the {100} direction for different spins from which it can
be seen that there is a marked softening of the transverse acoustic modes. Plot (e) shows
the resulting predicted variation in thermal conductivity due to spin (κ(T,H)/κ(T, 0)− 1)
as a function of temperature. This was obtained from Boltzmann transport theory assum-
ing the single relaxation approximation. Plot (f) shows the predicted variation in thermal
conductivity when sweeping the spin concentration at temperatures of 300, 250, 200, 150,
100, and 50 K (colored from dark red to orange with increasing temperature. It is clear
from this data that spin induced phonon softening can account for some of the observed
reduction in thermal conductivity, but not all of it indicating that is probably increases
phonon scattering due to phonos participating in spin relaxation processes.
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Chapter 8

Future work

In this final chapter, a few suggestions are offered for the direction the work pre-

sented in this document could take.

An approach to quantify the uncertainty in the Green–Kubo method with a single

simulation, on-the-fly, is proposed in chapter 5. We further investigate the nature of the

noise, and determine it to be coupled with the overall trend of the measured flux. This

deviation from ergodicity could be further investigated by characterizing the noise according

to the method proposed for a variety of systems. Introducing systematic changes in atomic

mass, crystal structure and atomic inhomogeneity, i.e. considering more complex, multi-

element systems, and determining how that affects the size and frequency of oscillations,

and their attenuation through time, might help shed some light on the origin of the noise.

Our calculations seem to indicate that the system size has no influence in the frequency at

which oscillations in the flux autocorrelation become random; however, the effect of system

size could be investigated more thoroughly. Additionally, flux autocorrelations have varying

129



shapes. It would be worthwhile to determine what adaptations of the method developed in

chapter 5 would be necessary to quantify uncertainty for the most common forms of flux

autocorrelation functions, so the method can be universally applied.

In chapter 6, we offer a heuristic to quantify the switching behavior in thermal

conductivity in metal–organic frameworks with breathing modes. It would be worthwhile

exploring deviations from this heuristic for other flexibility modes (e.g. swelling, sliding

of interdigitated frameworks, linker rotation). Moreover, this could be done by collecting

data for multiple structures with the same flexibility mode and determining if structure

conformations for each mode tend to obey similar behavior. It is important to note that the

heuristic suggested here for breathing MOFs is not adequate at its current stage to be used

independently to estimate thermal transport variations in flexible frameworks. In addition

to this heuristic for predictions in the variation of thermal transport, a similar model can be

investigated for transformations in the elastic properties of the material, by modeling nodes

and linkers as springs. Importantly, because of the coupling between transport and elastic

properties, it is possible these models can be combined for a more accurate description

of the variations in thermal transport, or alternatively that these models deviate from the

predicted results in the same way. More complex versions of the geometric thermal transport

model, with variational resistances, for instance, could be explored, but it is unclear at this

point if there would be an added benefit to doing this.

The aim of this work is to guide our understanding of thermal transport in MOFs,

such that it can be used in the design of tunable transport properties. Towards this goal,

the toy spring model developed to illustrate the effect of rattling modes as those present
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in the MIL-53, could further be probed to investigate other dispersion properties, such as

the observed phonon-focusing. Beyond the development of phenomenological approaches

to predict thermal transport, the use of phonon intensity to investigate phonon focusing

effects in computational studies of materials is something that seems to be generally missing

in the literature. Therefore, developing a consistent methodology for investigating this

phenomenon would also be worth pursuing.
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