UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Methods for Learning Articulated Attractors over Internal Representations

Permalink
https://escholarship.org/uc/item/30d5w23j
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 21(0)

Authors
Noelle, David C.
Zimdars, Andrew L.

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/30d5w23j
https://escholarship.org
http://www.cdlib.org/

Methods for Learning Articulated Attractors over Internal Representations

David C. Noelle
(NOELLE@CNBC.CMU.EDU)
Center for the Neural Basis of Cognition
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Abstract

Recurrent attractor networks have many virtues which have
prompted their use in a wide variety of connectionist cognitive
models. One of these virtues is the ability of these networks to
learn arriculated attractors — meaningful basins of attraction
ansing from the systematic interaction of explicitly trained pat-
terns. Such attractors can improve generalization by enforcing
“well formedness” constraints on representations, massaging
noisy and ill formed patterns of activity into clean and useful
patterns. This paper investigates methods for learning artic-
ulated attractors at the hidden layers of recurrent backpropa-
gation networks. It has previously been shown that standard
connectionist learning techniques fail to form such structured
attractors over internal representations. To address this prob-
lem, this paper presents two unsupervised learning rules that
give rise to componential attractor structures over hidden units.
The performance of these learning methods on a simple struc-
tured memory task is analyzed.

Introduction

Connectionist attractor networks have been used to model
many aspects of cognitive performance, involving domains
as diverse as word naming (Plaut and McClelland, 1993),
cognitive control (Cohen et al., 1996), and conscious aware-
ness (Mathis and Mozer, 1995). Such networks have many
virtues. Processing element activity evolves over time in
complex ways in such networks, allowing them to capture
various aspects of the dynamics of cognition. Learned re-
current connection weights often lend themselves to interpre-
tation as soft constraints between representational elements,
facilitating analysis of such models. One of the most interest-
ing advantages of these networks, however, is the manner in
which the learning of attractor basins can aid generalization
of performance.

Attractor networks can learn to enforce “well formedness”
constraints on representations, and this process of “cleaning
up” patterns of activity can facilitate generalization (Mathis
and Mozer, 1995). Such enforcement is implemented by the
instantiation of a distinct stable fixed-point attractor for ev-
ery possible well formed representation. It is important to
note that this potentially combinatoric space of valid attrac-
tor basins need not be explicitly trained, but may arise in
the interaction between trained patterns (Plaut and McClel-
land, 1993). When the dynamics of a network includes such
a compositional space of meaningful attractors, arising from
the interplay of trained patterns, we refer to the network as
possessing articulated attractors.

Previous work has shown that standard connectionist learn-
ing techniques spontaneously give rise to such structured at-

Andrew L. Zimdars
(ZIMDARS @ ANDREW.CMU.EDU)
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

tractors when recurrent connections are present at the output
layer of the network, but they fail to learn such attractors over
units which do not reccive a direct teaching signal (Noelle
and Cottrell, 1996). In other words, networks with recurrent
connections only at a hidden layer cannot learn articulated at-
tractors from backpropagated error. This means that recurrent
backpropagation networks cannot learn to actively maintain a
componential representation without having the structure of
that representation explicitly specified by a teacher or by the
environment.

This result poses a problem for cognitive models which
employ attractor networks as a form of working memory,
since it shows that such networks cannot learn internal repre-
sentations for a task and simultanecously learn to robustly re-
member those representations over time. Even models which
involve the learning of attractors at an output layer may be
challenged by this result, as the output representation of such
models is often conceptualized as a learned internal represen-
tation in a larger cognitive system. For example, the recur-
rent phonological output layer of some word naming mod-
els (Plaut and McClelland, 1993) is trained with an explicitly
structured teaching signal, despite the fact that phonology is
thought to involve a learned internal coding scheme.

This paper discusses some preliminary efforts to discover
connectionist learning methods which will give rise to articu-
lated attractors over learned internal representations. Specif-
ically, two unsupervised learning rules are presented, simu-
lated, and analyzed.

A Structured Memory Task

To facilitate analysis, we focused on an extremely simple
task. Each attractor network was to learn to act as a kind
of working memory, maintaining a presented pattern of acti-
vation indefinitely, given only a brief initial exposure to that
pattern. Furthermore, the networks were to discover regulari-
ties in the corpus of presented patterns, identify the structure
of well formed patterns, and use that knowledge to “clean
up” noisy patterns, thereby enforcing “well formedness” con-
straints. This task is depicted schematically in Figure 1. Note
that the input pattern is made available to the network for the
first few time steps only, requiring the network to both “clean
up” and remember the pattern over time.

Specifically, each network was briefly presented with an
encoding of a simple slot-filler structure. The network was
to filter out any noise in this representation and continuously
present the resulting clean pattern at the network’s output,
even after the input was removed. Thus, the network needed

480


mailto:NOELLE@CNBC.CMU.EDU
mailto:Z1MDARS@ANDREW.CMU.EDU

slot one slot two

o] Y Jelo)[elelel X )

\ Time Input

Attractor Network

ra

Activation Levels Over Settling Time

Output Target

| [ceenlee e0/00ed 00 06/ 0000000
Lee 0o 08008000 06/008 000088
1 [@00eeClesltee00eCeeCee00000Cee

1 0000000000 00000008 Cee00/00Cee

CI X YelslleX ToI T )

slot one slot two

Figure 1: The Slot-Filler Structured Memory Task

to learn a distinct stable attractor for each valid slot-filler
structure. Each input pattern represented a structure contain-
ing two slots, each holding exactly one of five distinct fillers.
The contents of the slots were considered independent, with
the specific filler in one slot in no way constraining the filler
for the other. The fillers for each slot were encoded over a
5 element binary vector, resulting in a 10 element vector for
the entire structure. Each of the five fillers was encoded as
a unique pair of adjacent “on” elements.! Thus, well formed
patterns included exactly two of the first five elements “on”
and exactly two of the last five elements “on”. With five pos-
sibilities for each slot, there were only 52 = 25 “well formed”
patterns out of the 21 = 1024 possible binary input vectors.

These simulation experiments focused on systematic gen-
eralization. The networks were to learn an attractor for ev-
ery valid slot-filler structure, given training on only a fraction
of the valid patterns. In order to investigate such general-
ization, each network was explicitly trained on some subset
of the well formed input patterns. Once trained, each net-
work was then tested on all valid slot-filler representations,
and the number of attractors corresponding to these valid pat-
terns was determined. The dynamic behavior of each trained
network was also examined to locate any spurious attractors
corresponding to ill formed patterns.

In order to generalize in a systematic way, the network
needed to learn two interrelated properties of these input pat-
terns. First, it needed to recognize that the patterns consisted
of two independent slots. Second, the network needed to
identify the structure of the filler patterns, constructing at-
tractors for patterns involving two adjacent active units but
not for other cases (e.g., 3 of the 5 units in a group active). It
is important to note that a localist code (i.e., 1 of 5 units “on”
for each filler) was nor used here. Such a localist code would
make the identification of the two independent slots very dif-
ficult. If such a code were used and the training set of the
network left out but a single valid pattern — a single pair of
slot fillers — the network would discover that the two units
for that pair were perfectly anticorrelated in the training set
and would hinder the formation of an attractor for the novel
pattern involving that pair of fillers. Thus, for a network to
discover the independence of the two slots by attending to
the pairwise statistics of pattern element values, some form
of coarse coding of fillers was needed.

Even with such coarse coding of fillers, a training set con-
sisting of only a few valid patterns displays very little inher-

'Each group of five elements was conceptualized as forming a
closed loop for the purposes of determining adjacency.

481

ent structure. As training sets get larger, however, the un-
derlying slot-filler structure of the input patterns becomes ev-
ident. In order to examine this dependence on training set
size, networks were trained with varying sized collections of
well formed patterns. Each training set contained at least five
patterns, as this was the minimum number needed to present
each filler pattern to the network at least once. The largest
training set consisted of all 25 well formed patterns. The fre-
quency of each filler value in each training set was balanced
as much as was possible given the small size of the training
sets. During training, zero mean independent Gaussian noise
with 0.025 variance was added to each input element. Noise
was resampled on every time step, and it persisted even after
the input pattern was removed. Network output targets con-
sisted of the “clean” patterns over the entire course of network
settling, as shown in Figure 1. A settling period of 10 time
steps was used during training, and 100 time steps were used
during testing. In our initial simulations, the input pattern was
presented for only a single time step.

Problems With Internal Representations

It has previously been shown that network learning tech-
niques based on the backward propagation of error, such
as backpropagation through time (BPTT) (Rumelhart et al.,
1986), can learn appropriate articulated attractors for this
structured memory task, but only if an external teaching sig-
nal is provided directly to the processing elements which are
recurrently connected (Noelle and Cottrell, 1996). Consider
the simulation results plotted on the left side of Figure 2. In
this graph, the size of the training set is displayed along the
horizontal axis, and the resulting number of valid attractors
learned is specified vertically. If a given network failed to
generalize, only learning attractors for the training set pat-
terns, then data should fall along the displayed unit slope ref-
erence line. But this graph displays substantial generaliza-
tion. Training sets consisting of 15 or more of the 25 valid
slot-filler patterns resulted in networks which generalized to
all 25 of them. The attractor network exhibiting this good
generalization performance contained recurrent connections
between the units of its output layer and was trained using
BPTT. This means that the teaching signal strictly specified
the structure of the activation vectors over which attractors
were to form. This external structuring signal is not directly
available to recurrent weights, however, when only hidden
units are recurrently connected. This results in a failure to
generalize when attractors are required to form over an inter-
nal representation — over the hidden layer of the network —



Recurrent Output Layer ot aiiwo -
P Yy 08050 OOO._‘I ) Recurrent Hidden Layer
254 I b 253
L1 JoTeT Y TeTel I )
Wlul ne whol bwa
'E 20 2 20
= 154 § 154
z c
E 104 LU — U E 104
= 0@ JOO[CO @0 £
< 5] < 5 —s— Leamned
= —— Learned
-+ Reference 00000 OOOOOO ----- - Reference
0 T T T R, % T DTN 0 T T T T T
0 S 10 1S 20 25 (Y Jelel J-Tele] 1 ) 0 5 10 15 20 25
Attractors Trained alot ne sl lwns Attractors Trained

Figure 2: Generalization Performance of BPTT With Recurrence at the Output Layer vs. the Hidden Layer

as shown in the graph on the right side of Figure 2. Without
the teaching signal directly enforcing a compositional struc-
ture on the recurrently connected layer of units, the network
can barely construct stable attractors for the training patterns.

Detailed analyses of these poorly generalizing networks
suggested four main reasons for their failures:

(1) Localist Coding. The network sometimes developed
hidden layer representations for individual slot fillers which
were approximately localist in nature. Even though the inputs
and output targets were coarse coded, the hidden layer used
a single unit to represent a given filler value. This introduced
the previously mentioned problem of localist coding to the
recurrent weights. The recurrent connections would learn to
inhibit novel, yet valid, slot value pairs.

(2) Small Weights Have Large Effects Over Time. In typical
training sets, each slot filler is somewhat anticorrelated with
all of the fillers for the other slot, because individual fillers
appear relatively rarely. This leads to small amounts of inhi-
bition between the representations for fillers in opposite slots.
This slight inhibition typically poses no problem for the main-
tenance of a pattern over the course of the 10 time steps that
the network is allowed to settle during training, but extending
the settling time beyond 10 steps (as is done during testing)
allows the network to drift, slowly losing the activation pat-
tern that it had maintained. In other words, the network does
not actually learn stable attractors for patterns, but, instead,
learns to drift away from well formed patterns slowly enough
so as to not impact network error noticeably during the 10
settling time steps of training.

(3) The Error Gradient Disappears Near Solutions. An-
other reason that these networks fail to form stable attractors
is that such attractors typically require a particular configu-
ration of large weight values. Starting with small random
weights, the connection strengths grow towards the needed
values, but network error decreases as those weights are ap-
proached, causing the weights to change less and less. Thus,
the network remains in a region of weight space correspond-
ing to the “slow drift” strategy, never quite arriving at the
magnitude of weights required for stable attractors.

(4) Polarization. The first behavior that these networks ac-
quire is the reproduction of the input pattern across the out-
put units during the initial time period when the input is still

directly available. This occurs without much use of the recur-
rent weights. The hidden layer representation that forms early
in training tends to be distributed and graded. The graded na-
ture of this representation makes it hard to form the needed
attractors. It is much easier to learn stable fixed-point attrac-
tors involving extreme activation values rather than involving
activity levels in the linear range of the unit activation func-
tion (Noelle et al., 1997).

We sought to modify the learning procedures of our net-
works so as to alleviate these problems, and we found two
very distinct and somewhat successful mechanisms for learn-
ing articulated attractors over internal representations.

Asymmetric Hebbian Learning

Our approach involves learning the recurrent connection
weights using an unsupervised learning method. The idea
is to restrict the pattern of connectivity at the hidden layer
so as to promote the formation of attractors, and then learn
the recurrent weights in a manner which is independent of
the teaching signal being provided at the output of the net-
work. A sketch of the network architecture used appears in
Figure 3. Notice that the hidden layer in this architecture con-
tained 20 units, and a new layer of 20 “interneurons” was
added. In the network diagram, the thin solid arrows rep-
resent sparse random connectivity between the layers, with
connection weights bound to be non-negative. The dashed
lines specify one-to-one patterns of connectivity, with each
hidden unit possessing a non-negative connection to itself
and a fixed positive connection to its “partner” unit in the in-
terneurons layer. The bold line from the interneurons layer to
the hidden layer represents nearly complete interconnectivity,
with weights bound to be non-positive. Each interneuron pro-
jected to all hidden units except for its hidden layer “partner”.
Thus, the architecture provided each hidden unit with a posi-
tive self connection to maintain it’s own activity and a partner
interneuron to inhibit other hidden units.

The feedforward connections, from input to hidden and
hidden to output, were trained using the standard BPTT al-
gorithm. The self connections on each hidden unit were also
learned using the backpropagated error signal, as were the
unit biases. The one-to-one connections between the hid-
den units and the interneurons had fixed weights, forcing

482



Asymmetric Hebbian Results

BPTT Results

shot one slol two 25
|..OOO OOO.. 25 4 sessseven 7
Interneurons T 20 'E 204
00000 00000
OOO{OO 00000 15 15-]
Hidden Units I s, g Y 5 -]
00000 00000 bt y 5 10
00000 00000| £ g
& - 5 —— Leamed - 5] P Py
LI IeJel J ToloL I ) -+ Reference oo R Toseries
shot one st Twir 0 : : i ; .
0 5 10 15 20 25 T T T T T
Attractors Trained 0 5 100 15 20 25

Attractors Trained

Figure 3: Network Architecture & Results for Asymmetric Hebbian Learning Technique Along With BPTT Control

the partner interneuron to come on whenever its hidden unit
became active. The inhibitory connections projecting from
the interneurons used the following new asymmetric Hebbian
learning procedure:

o Ifthe interneuron is in the upper half of its activation range,
and the hidden unit it projects to is also highly active, then
decrease the magnitude of the connecting weight by a large
amount, proportional to the product of their activities,

e If the interneuron is highly active, and the hidden unit it
projects to is not, then lower the connecting weight value
slightly, proportional to the product of the interneuron ac-
tivity and one minus the hidden unit activity.

This learning rule tends to zero out weights associated with
pairs of hidden units that have been active together, while al-
lowing hidden units that are never co-active to acquire nega-
tive connections between them, mediated by an interneuron.

This network architecture and learning technique avoids
the problem of localist codes at the hidden layer (problem
1, above) by using sparse random patterns of connectivity be-
tween the input and hidden layers and between the hidden
and output layers. Each unit in these layers received input
from only five randomly selected units from the preceding
layer. Since the inputs and targets were coarse coded, this pat-
tern of connectivity encouraged the appearance of a similar
coarse code at the hidden layer. By pushing weights strongly
towards zero if a co-occurrence of activity is detected, this
scheme also avoids the problem of small inhibitory weights
(problem 2, above). The problem of the disappearing gradient
(problem 3, above) is alleviated by using a Hebbian scheme
which is insensitive to the backpropagated error. Lastly, the
problem of developing polarized hidden layer representations
(problem 4, above) is handled by initializing the hidden unit
self weights to large values, encouraging the network to make
use of the extreme hidden unit activations which naturally
arise from such positive feedback.

Simulations of this learning mechanism were conducted
with the self connection weights initialized to values uni-
formly sampled from [5.5,6.5], feedforward weights sam-
pled from [0.0,0.2], the weights leading to the interneurons
fixed at 6, and the weights from the interneurons initialized to

zero. The unit biases were initialized to values sampled from
[-2.5,—3.5] and were bound to be non-positive. The bias
values on the interneurons, however, were fixed at —3. All
weights trained using BPTT, including the bias weights, used
alearning rate of 0.1. The weights trained using the asymmet-
ric Hebbian rule used a learning rate of 0.002 when raising
weight values towards zero and a rate of 0.0001 when mak-
ing weights more negative. A weight decay regularization, re-
ducing each weight magnitude by 0.001% on each weight up-
date, kept the Hebbian weights from growing without bound.
All processing elements used the logistic activation function,
bounding output activity between 0 and 1.

The results of these simulations are shown in the middle
of Figure 3. Notice that the network successfully general-
ized to all 25 patterns for training sets of size 15 and larger.
An analysis of the dynamics of these networks revealed more
than these 25 stable fixed-point attractors, however. A to-
tal of 96 attractors appeared for ill formed input vectors, as
well. These spurious attractors had an interesting structure,
however. They all consisted of cases in which a group of
five units encoding a slot had either one element active or
no elements active. In other words, the network successfully
learned that the two slots were independent, but came to treat
both “no units on” and “one unit on” as valid filler values. In
essence, the trained network treated the two adjacent active
elements in every valid slot filler as independently modifi-
able features. This makes sense considering that the recurrent
connections in this network could only encode independence
(zero weight) or anticorrelation (negative weight).

One might wonder how much of the success of this net-
work was driven by the asymmetric Hebbian learning algo-
rithm and how much relied on the restricted architecture and
weight initializations. To investigate this, networks which
were identical in architecture and initial weight configuration
were trained using BPTT. The weights from the hidden layer
to the interneurons remained fixed, but the connections pro-
Jjecting from the interneurons were trained used a backpropa-
gated error signal. The results of these simulations are shown
in Figure 3, on the right. While this diagram appears to dis-
play good generalization for the larger training set sizes, it
hides a multitude of sins. Every training set which resulted
in attractors for all 25 well formed patterns also resulted in a

483



stable attractor for any of the 1024 possible binary vectors, It
appears as if the network architecture and weight initializa-
tion scheme provided the means for retaining patterns over
time, but the asymmetric Hebbian learning rule provided the
means for discerning well formed patterns.

While this learning method generalizes much more ef-
fectively than any investigated method involving backprop-
agated error, it still has a number of problems. In an effort
to avoid small negative weights, the learning rule ignores less
than perfect correlations between unit activation levels. This
forces the network to treat the components of coarse coded
filler values as independent (zero weight between them) when
they are not. One might imagine augmenting these networks
with separate recurrent weights which are bound to be non-
negative, hoping that these weights would capture the posi-
tive correlations between the components of filler represen-
tations. Unfortunately, the inclusion of such weights reintro-
duces the problem posed by small negative weights — such
positive weights interfere with the formation of stable attrac-
tors. As settling time increases, such weights tend to result
in virtually all of the hidden units becoming active. Another
weakness of this asymmetric Hebbian learning strategy is that
it requires the formation of an appropriate coarse code at the
hidden layer. The feedforward connections must be tightly re-
stricted in order to ensure that the elements of the input filler
representation remain separated in the hidden layer represen-
tation. Thus, while this learning method allows articulated
attractors to form over internal representations, it only works
for a restricted class of such representations.

Competitive Inhibition Learning

In hopes of overcoming the need for tight restrictions on the
feedforward weights, our attention shifted toward finding a
method for learning the recurrent weights which could effec-
tively handle localist encodings of filler values. As previously
discussed, learning to dissociate the two slots is impossible
with a localist code if pairwise correlations in unit activity
are used to make the dissociation. A training set communi-
cates more information than just pairwise statistics, however.
If an input unit, A, has been seen co-active with another in-
put element, B, then, under a localist coding scheme, these
two elements must code for filler values in separate slots. If a
third input element, C, is never seen co-active with either A
or B, standard learning mechanisms would come to build in-
hibition between C and the other two elements. But we know,
given a localist code, that C only participates in one slot, so it
should only inhibit either A or B, but not both. Thus, by at-
tending to these ternary relationships, we can start to identify
alternative fillers for a single slot as opposed to novel pairs of
fillers across slots.

For this new learning approach we used the same net-
work architecture as before, with one exception. Since lo-
calist encodings of filler values were actually desired at the
hidden layer in this case, sparse random connectivity in the
feedforward connections was not needed. Instead, each unit
in the input layer was connected to every hidden unit, and
each hidden unit was connected to every output. Once again,
the feedforward weights were bound to be non-negative and
were trained using standard BPTT. As before, the one-to-one
weights projecting to the interneurons were of fixed positive

484

values. The inhibitory weights projecting from the interneu-
rons were modified according to a competitive learning rule:

If a hidden unit is in the upper half of its activation range,
and an interncuron projecting to it is also highly active,
then decrease the magnitude of the connecting weight by a
large amount, proportional to the product of their activities,

I a hidden unit is in the lower half of its activation range,
find all highly active interneurons projecting to it and iden-
tify the interncuron which inhibits this hidden unit most
strongly. This interneuron is the winner of the compe-
tition. Its weight is made more negative by a moderate
amount, proportional to the product of the activity levels of
the two units. Active interneurons which lose this compe-
tition have the magnitude of their weights decreased by a
large amount, proportional to the product of activations.

If a hidden unit is inactive, but no interneurons are strongly
inhibiting it, it needs to join a new group of mutually in-
hibiting units. This is done by identifying the strongest
weight to this hidden unit from the interneurons, and
raising this weight towards zero while making all other
weights slightly more negative.

The first part of this rule makes sure that only one hidden
unit is active in any group of mutually inhibitory units. The
second part further separates the slots by ensuring that a unit
is never inhibited by units belonging to different slots. The
third part keeps the network from creating too many separate
groups of mutually inhibitory units by insisting that at least
one unit be active in each group.

We found that standard BPTT training did not produce suf-

ficiently strong positive self connections, so a different learn-
ing algorithm was used on the self weights. Whenever a hid-
den unit was in the upper half of its activation range and ex-
perienced a negative change in activity level, it effectively
received an error signal driving the unit towards its maximum
activation level, resulting in an increase in the self weight.

Simulations involving this learning mechanism 1nitialized

hidden unit self weights to values uniformly sampled from
[3.5,4.5] and feedforward weights sampled from [0.0,0.2].
The weights leading to the interneurons were fixed at 8, and
the weights from the interneurons were initialized to zero. All
unit biases were initialized to —2, though these biases were
adapted via BPTT in all units except the interneurons. All
weight values trained using BPTT used a learning rate of 0.1.
The hidden unit self connections used a learning rate of 0.01.
The competitive inhibition rule essentially set weights medi-
ating between co-active hidden units to zero, used a learning
rate of 0.01 for “winning” interneurons and a rate of 0.1 to
reduce the magnitude of weights from “losing” units. When
an inactive hidden unit failed to be inhibited by any interneu-
ron, its strongest weight was raised with a learning rate of 0.1
while other weights were made more negative with a learning
rate of 0.001. The weights projecting from the interneurons
were bound to be no lower than —4. Lastly, to promote the
use of a localist code at the hidden layer, the feedforward
weights were subjected to the “weight elimination™ proce-
dure (Weigand et al., 1991) with a decay rate of 0.001.

Since this learning method was expected to thrive on lo-

calist encodings, the simpler localist encoding of slot fillers



e

Attractors Learned

5 t —e— Leamned
--- Reference

0 5 10 15 20 25
Attractors Trained

Figure 4: Results for Competitive Inhibition Learning

was used in the inputs and targets for these simulations. Each
filler was encoded as one unit active out of the group of five.
Also, the input pattern was presented for 4 initial time steps
in these simulations rather than one. This aided the learning
of strong self weights at the hidden layer.

The results of these simulations are shown in Figure 4. No-
tice that the networks generalized perfectly for training sets of
size 16 and greater. As before, the networks overgeneralized,
producing attractors for 11 ill formed patterns. Once again,
these spurious attractors had an interesting structure, always
involving a slot with no units active. The networks were able
to identify the two independent slots, but came to treat “no
units on” as a valid filler value.

While this learning method overcame the requirement for
a coarse coding of slot fillers in the hidden layer, it intro-
duced its own constraints on the internal representation in use.
Specifically, the hidden layer representation of a slot filler had
to be localist in nature. If there were multiple hidden units en-
coding a particular filler, only one of these units would be re-
cruited to participate in the mutual inhibition between fillers
for this slot. The unrecruited units would either come to par-
ticipate in other groups of mutually inhibiting units, making
generalization to novel combinations of slot fillers less likely,
or they would “stand on their own™, potentially encouraging
overgeneralization.

Conclusions

We have presented two new methods for the learning of ar-
ticulated attractors over internal representations. These tech-
niques gain their strength in large part from the use of a re-
stricted network architecture. These learning methods also
benefit from being unsupervised — from basing weight up-
dates on an inherent inductive bias rather than on a backprop-
agated error signal. Such a bias appears necessary for the
formation of true stable attractors at hidden layers.

These two learning rules do not completely resolve the
problem of hidden layer articulated attractors. Both meth-
ods are only successful when the network is constrained to
develop certain kinds of internal representations. The asym-
metric Hebbian learning method requires a coarse coding of
fillers at the hidden layer, while the competitive inhibition
method works best with a localist code. Future work will fo-
cus on modifying these learning rules so as to allow for more

485

general distributed representations at the hidden layer.

It might be the case, however, that active maintenance of a
pattern of activation requires some restricted coding scheme.
Indeed, some researchers have argued that the working mem-
ory lunctions of dorsolateral prefrontal cortex require rep-
resentations involving isolated components (Cohen et al.,
1996). Perhaps the key to learning articulated attractors at a
hidden layer, then, is learning an internal representation with
an appropriate componential structure.

Acknowledgements

This work was supported, in part, by the NIH through a Na-
tional Research Service Award (# 1 F32 MH11957-01) from
the National Institute of Mental Health, awarded to the first
author. We extend our thanks to James L. McClelland, Randy
O’Reilly, and the members of the CMU PDP Research Group
for their comments and suggestions. Thanks are also due to
three anonymous reviewers for their helpful advice concern-
ing the clear presentation of this research.

References

Cohen, J. D., Braver, T. S., and O’Reilly, R. C. (1996). A
computational approach to prefrontal cortex, cognitive
control and schizophenia: Recent developments and cur-
rent challenges. Philosophical Transactions of the Royal
Society of London B, 351:1515-1527.

Mathis, D. W. and Mozer, M. C. (1995). On the computa-
tional utility of consciousness. In Tesauro, G., Touret-
zky, D. S, and Leen, T. K., editors, Advances In Neural
Information Processing Systems 7, pages 11-18, Denver.
MIT Press.

Noelle, D. C. and Cottrell, G. W. (1996). In search of artic-
ulated attractors. In Cottrell, G. W., editor, Proceedings
of the 18th Annual Conference of the Cognitive Science
Sociery, pages 329-334, La Jolla. Lawrence Erlbaum.

Noelle, D. C., Cottrell, G. W., and Wilms, F. R. (1997). Ex-
treme attraction: On the discrete representation prefer-
ence of attractor networks. In Shafto, M. G. and Langley,
P., editors, Preceedings of the 19th Annual Conference
of the Cognitive Science Society, page 1000, Stanford.
Lawrence Erlbaum.

Plaut, D. C. and McClelland, J. L. (1993). Generalization
with componential attractors: Word and nonword read-
ing in an attractor network. In Proceedings of the 15th
Annual Conference of the Cognitive Science Sociery,
pages 824-829, Boulder. Lawrence Erlbaum.

Rumelhart, D, E., Hinton, G. E., and Williams, R. J. (1986).
Learning internal representations by error propagation.
In Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, volume 1, chapter 8, pages
318-362. MIT Press, Cambridge, Massachusetts.

Weigand, A. S., Rumelhart, D. E., and Huberman, B. A.
(1991). Generalization by weight-elimination with ap-
plication to forcasting. In Lippman, R. P., Moody, J.,
and Touretzky, D. S., editors, Advances In Neural Infor-
mation Processing Systems 3, pages 875-882, Denver.
Morgan Kaufmann.



	cogsci_1999_480-485



