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Abstract 

Applications of Semi-parametric Estimation Methods  

in Causal Inference and Prediction  

by 

Farid Jamshidian 

Doctor of Philosophy in Biostatistics 

University of California, Berkeley 

Professor Nicholas Jewell, Chair 

In this thesis, we argue for the use of loss-based semi-parametric estimation methods 

as an alternative to traditional parametric models in causal inference and prediction. 

We present a brief discussion on ―black box‖ epidemiology in the first chapter and 

argue that risk factor epidemiology can be improved by using semi-parametric 

estimation methods. We demonstrate the use of semi-parametric methods by applying 

them to two different problems: one in causal inference and another in prediction. In 

each case, we demonstrate the process one would follow to define the question of 

interest, parameterize this question, and estimate it using semi-parametric methods.  

 

In the second chapter we introduce a formal concept of a perception effect, and define 

unmasking and placebo effects in the context of randomized trials. We employ 

modern tools from causal inference to derive semi-parametric estimators of such 

effects. The methods are illustrated on a motivating example from a recent pain trial 

where the occurrence of treatment-related side effects acts as a proxy for unmasking.   

 

In the third chapter, we redefine perception and unmasking effects for a longitudinal 

setting, and explore various causal graphs for the gabapentin trial. We demonstrate 

application of the semi-parametric methods in this more general setting by assuming a 

more complicated causal graph. To estimate the parameters, we use Maximum 

Likelihood Estimation and two different versions of Targeted Maximum Likelihood 

Estimation.  

 

Finally, in chapter four, we approach coronary heart disease risk prediction modeling 

from a semi-parametric perspective using data from the Framingham study. The 

―super learner‖ is used with a library of machine learning algorithms to create an 

ensemble risk prediction model for coronary heart disease. We define relative risk 

importance parameters for various risk factors and estimate them with semi-

parametric methods used in earlier chapters. The results are compared to the 

Framingham study and those obtained by fitting a parametric model to the 

Framingham dataset.
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CHAPTER 1 

 

Introduction 

 
During the past few decades, risk factor epidemiology (―black box‖ epidemiology), 

vaguely defined as speculative linking of exposures and a diseases in hope of 

discovering the causes of the disease
1,2

, has been the method of choice in most 

epidemiological studies.  Risk factor epidemiology has been described by some as the 

―unique virtue‖ of the field
3
, and by others as an ―embarrassing liability‖.

1
 Weed

4
 

refers to the discussion in the literature on the risk factor approach as the ―black box‖ 

debate and traces it back to Peto.
4,5

 In his research on cancer epidemiology, Peto 

described two different approaches: the first approach emphasized the underlying 

biological mechanism while the second approach, ―the black box strategy‖, ignored 

the biology in favor of behavioral risk associations.
5
 Even though the definition of 

black box epidemiology has been primarily used for explanatory studies, it can also 

be extended to encompass hypothetical linking of exposures to a disease for the 

purpose of prediction. Such linkage is often motivated by black box association 

studies. For instance, Gail et al.
6
 incorporated age at first live birth into a risk 

prediction model for breast cancer based on previously established association 

between the exposure and the outcome. 

 

Proponents of black box epidemiology have argued that it allows disease prevention 

in the absence of a clear understanding of the disease mechanism,
2,3

and that it has 

occasionally identified useful potential interventions.
2
 Savitz argues that well 

designed epidemiological studies carefully evaluate the data observed in studies 

outside epidemiology, and suggests that legitimate epidemiological studies contribute 

to science and public health whether ―we ignore, build upon, or contradict parallel 

information derived from other disciplines‖.
3
 Greenland further defends black box 

epidemiology for its hypothesis generating ability, as a ―valuable source of seemingly 

unrelated facts that await coherent explanation by novel theories‖.
2
 According to 

Greenland, the purely descriptive approaches (publication of observations) to 

epidemiological studies are beneficial since such observations supply data for the 

scientific community to test their theories.
2
 Yet, Greenland recognizes that a 

legitimate problem of risk-factor epidemiology is ―over-interpretation of observed 

associations as causal‖.
2
  

 

On the other hand, opponents of risk factor epidemiology have criticized the method 

for ignoring the underlying theory.
1
 They argue that risk factor epidemiology lacks an 

underlying biological hypothesis, and thus, the method is no more than ―stabs in the 

dark‖ by which researchers randomly link various exposures to various diseases.
1,3

  

Critics further argue that black box epidemiology has produced too many false alarms 

and go as far as describing much of epidemiology as wasteful research. 
1,2

 

Skrabanek rejects Savitz‘s argument for contribution of black box studies to science 

by asserting that risk factor epidemiology is an ancillary methodology.
1
 Skrabanek 
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argues that although risk factor epidemiology may provide testable hypotheses of 

causality if governed by scientific principles, it cannot contradict valid scientific 

data.
1 

Overall, risk factor epidemiology has been disparaged for its failure to account 

for various biases; from inadequate adjustment for confounding, to biases due to the 

methods used for linking the exposure and the outcome and inference regarding the 

association.   

 

The driving force behind the black box debate has been epidemiology‘s search for a 

new identity; a search for regularities. As others have suggested before,
2,7

 we believe 

that regularities can be established without reliance on explanatory theories for the 

underlying mechanisms. Greenland asserts that one definition of ―black box‖ research 

is searching for statistical regularities (data mining).
8
 He notes the advancements of 

―black box‖ statistics in machine learning when the goal is purely prediction.
8
 We 

believe that reducing explanatory problems in epidemiology to statistical prediction 

problems borrows from regularities already established in fields such as machine 

learning.  

 

The black box does not only contain the underlying biological mechanisms that are 

ignored by the risk factor epidemiologists, but it also includes various statistical 

modeling assumptions and other biases that find their way into the box. Even if 

statistical models are used for purely ―descriptive purposes‖, the interpretations of 

such descriptive statistics may not be beneficial to science as Greenland argues. Many 

false hypotheses may be generated based on such descriptive statistics and much 

valuable resources may be wasted to falsify them. Relying on the underlying 

biological theory may not be necessary for linking an exposure to an outcome; 

however, all other biases need to be accounted for, including biases due to model mis-

specification. Parametric models are almost always misspecified. An alternative 

approach to parametric modeling is to use semi-parametric models that do not model 

redundant components. Using semi-parametric models can benefit risk factor 

epidemiology since such models lack biases due to misspecifications of the functional 

form of a parametric model. Semi-parametric methods accomplish the goal of 

reducing explanatory problems to prediction problems by using predictive tools for 

estimation of a particular parameter of interest. However, such statistical methods are 

not a substitute for a poor design, and our argument only applies to well designed 

studies with a well defined question of interest.  

 

In the next few chapters, we demonstrate the use of semi-parametric methods in two 

different areas: explanation and prediction. In the second chapter, we use semi-

parametric efficient estimation methods to estimate treatment and perception effects 

in a randomized clinical trial. We demonstrate the use of these methods in a more 

general longitudinal setting in chapter 3. Finally, in chapter 4, we apply loss-based 

semi-parametric estimation methods to the Framingham study to predict risk of 

coronary heart disease. 
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CHAPTER 2 

 

Perception, Placebo, and Unmasking Effects in 

Randomized Clinical Trials 

 
2.1 Background  

Masking of participants and investigators has long been used in randomized clinical 

trials to prevent the measurement of research outcomes from being influenced by 

either the placebo effect or observer bias associated with knowledge of treatment 

assignment. This is of particular importance in clinical trials with a subjective patient 

response, or when the assessment of the outcome is quantified by clinicians. During 

the course of blinded clinical trials some patients, however, might be inadvertently 

unmasked to their assigned treatment, or at least grow to believe they are in a specific 

arm for several reasons. For instance, patients who receive treatment may believe 

they are on treatment as a result of experiencing documented treatment-related side 

effects, and/or placebo patients may believe that they are on placebo due to a lack of 

efficacy or worsening of their condition. Such ―unmasking‖ may subsequently affect 

outcome reporting. In these clinical trials, the investigator may be interested in the 

causal effect of treatment, had unmasking not occurred with the patient‘s perception 

of treatment assignment remaining at a fixed baseline level. 

In this chapter, we use recent methodology from the causal inference literature to 

formally define and estimate perception, placebo, and masking effects as theoretical 

interventions in a graphical model. We define causal treatment effects (after removal 

of unmasking effects) in terms of Type I and Type II direct effects based on a 

counterfactual framework
9
, and estimate these effects using two semi-parametric 

estimation methods, Maximum Likelihood Estimation(MLE) and Targeted Maximum 

Likelihood Estimation (TMLE). To motivate our discussion, these definitions and 

estimation methods will be applied to data from a recent clinical trial that was 

conducted to study the effect of gabapentin for treatment of painful neuropathy 

among diabetic patients. 

 

One of the most discomforting symptoms among diabetic patients is pain associated 

with peripheral neuropathy, estimated to affect about 45 percent of diabetic patients.
2 

Backonja et al.
11

 published results of a randomized double-blind clinical trial, 

conducted to evaluate the effect of a drug called gabapentin (or Neurontin) on pain 

among patients with either type I or type II diabetes. The study consisted of a seven-

day screening phase, followed by an eight-week double-blind phase, and 165 

participants were randomized to treatment or placebo groups. Baseline covariates 

such as age, height, weight, race, sex, and baseline pain and sleep scores were 

measured during the screening phase, prior to randomization. Treatment dosage was 

gradually titrated to a maximum tolerated dosage during the first four weeks of the 

double-blind phase, and it remained fixed thereafter. The main outcome measure was 
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daily pain severity, recorded by patients on an 11-point Likert scale (0-10) in daily 

diaries, and the primary endpoint was calculated as the mean score for the last seven 

recorded diary entries.
11

  

 

Using an intent-to-treat (ITT) analysis, the investigators had reported that patients 

who received gabapentin had a significantly lower (p-value < 0.001) mean endpoint 

daily pain score than patients who received placebo with the treatment difference 

estimated to be a decline of 1.2 points. In what follows, we reanalyze the gabapentin 

trial data considering patients‘ perceptions and unmasking. For all our analysis we 

will use data on 164 participants (83 and 81 in the gabapentin and placebo groups, 

respectively) as one individual had reported no pain scores.  

 

 

2.2  Non-Specific Effects of Treatment and the Placebo Effect 

Although our focus is on the effects of perception on estimation of a causal treatment 

effect, it is worth beginning with a precise definition and brief discussion of the so-

called placebo effect. Beecher first quantified this phenomenon in 1955. He observed 

that, in 15 trials studying different diseases, 35% of all 1082 patients were 

satisfactorily relieved by a placebo.
12

 Many researchers have subsequently studied the 

placebo effect and have claimed significant improvements in patients‘ outcome due to 

this effect. However, a recent meta-analysis of clinical trials, including placebo and 

no-treatment groups, has questioned the significance of the placebo effect. 

Hrobjartsson and Gotzsche
13

 performed a meta-analysis of 114 randomized trials on 

40 different clinical conditions comparing treatments, placebo controls, and no 

treatment controls. Their goal was to investigate whether patients assigned to placebo 

had a better outcome than those assigned to no treatment. The study found no 

significant placebo effect on binary or continuous objective outcomes. The only 

consistent placebo effect was observed for continuous subjective outcomes. Among 

the 40 conditions, only trials with subjective pain score assessments as an outcome 

displayed a significant placebo effect across studies.  

 

In earlier literature, the placebo effect is referred to a variety of responses that occur 

when patients are being treated with inactive placebo that in theory should have no 

therapeutic effect. This definition of a placebo effect is what we refer to as the 

placebo response (i.e. the outcome of a patient receiving a placebo), and is different 

than how a placebo effect is defined in more recent literature. Turner et al.
14

 define 

the placebo effect as the non-specific effects of treatment attributable to factors other 

than specific active components. These non-specific effects include ―physician 

attention, interest, and concern in a healing setting; patient and physician expectations 

of treatment effects; the reputation, expense, and impressiveness of the treatment; and 

characteristics of the setting that influence patients to report improvement.‖ The latter 

definition may be thought of as the difference in a patient‘s outcome had he received 

a placebo compared to no treatment at all. These two differing definitions of the 

placebo effect have long been confused. Miller et al.
15

 note that progress in 

understanding and estimating the placebo effect has been hampered by a lack of 
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conceptual clarity, some of which has been due to confusion of the placebo effect 

with the placebo response. 

 

Consider the following hypothetical experiments: In a first experiment, a group of 

patients with a headache are observed without their knowledge. These patients 

receive neither a placebo nor any treatment. Any improvement in their condition must 

be solely due to the individual mechanisms of their bodies and/or interactions of the 

latter with a personalized environment. In a second experiment, a group of patients 

with a headache are given placebos by clinicians (with at least some expectation of a 

therapeutic effect as occurs when patients assume that there is some chance of 

receiving an active treatment), and their response is observed. Improvements in 

patients‘ condition for this experiment are due to such factors as: internal patient 

mechanisms, physician attention, patients‘ expectation regarding their assigned 

therapy, etc.  The natural healing of the body cannot be attributed purely to the 

placebo effect as at least components of the effect are also present in the first 

experiment where patients do not receive a placebo. The placebo response is due to a 

combination of the placebo effect and internal patient mechanisms, and must be 

distinguished from the placebo effect. As Miller et al.
15

 conclude, placebo-controlled 

trials are inadequate for elucidating the placebo effect, and to do so, we need no-

treatment control groups. 

 

Formally, we define the placebo effect for an individual as the difference in the 

outcome if an individual received a placebo as compared to no treatment at all. 

Although the presence of an active treatment does not directly factor into the 

definition, it is necessary for a placebo effect to exist. We return to this point further 

in the next section that discusses the impact of unmasking of treatment assignment.  

Quantification of specific and non-specific effects of treatment has received 

considerable attention in recent years. Petkova et al.
16

 consider three hypothetical 

treatment scenarios of no treatment, placebo, and active treatment, combined with the 

counterfactual framework to separate specific and non-specific effects of treatment. 

To estimate the placebo effect, they compare the outcome of the placebo group to the 

baseline measurements of the outcome variable for all the patients, implicit from 

certain model assumptions.
16

 Yet, this remains unsatisfactory in situations where 

measurements on patients at baseline may not be exchangeable for those arising later 

in a ‗no treatment‘ group, as time itself is often an important factor influencing 

outcome assessment (as in the gabapentin trial). 

 

 

2.3  Perception, Unmasking, and Side Effects as a Proxy 

Masking patients in clinical trials prevents them from knowing certain information 

about the trial including the treatment group to which they are randomized. However, 

participants may develop a perception about their assigned treatment. Patients may 

either believe they are more likely to be on placebo, or more likely to be on treatment, 

or they may have no opinion about their treatment. In a more general sense, we may 

think of the patients assigning a degree of certainty to receiving a specific active 



 

6 
 

treatment. In a single treatment/placebo trial, a low degree of certainty would imply 

that the patient is leaning towards placebo and a high degree would mean that he 

thinks he is on treatment. We refer to this random variable of degree of certainty as a 

patient‘s perception, , where  indicates that a patient is certain that he has 

been assigned the active treatment; at the other end of the scale,  indicates that a 

patient is certain that he is receiving the placebo.  

In the extreme case where the investigator informs a patient about his treatment 

group, the patient would automatically have  or , depending on his 

original treatment assignment; such patients may be considered unmasked. We do not 

directly allow the variable  to distinguish here between the case where full 

unmasking has occurred and where an individual may be convinced that they are on 

active treatment (or placebo), even though this perception is incorrect. However, 

interaction effects between  and  allows differentiation of these two scenarios.  

In almost all cases, we do not observe the patient‘s perception on a continuous scale, 

nor directly observe .  For simplicity, we focus on a discrete approximation. In 

particular, we consider observation of the following three-level variable, , indicating 

perception, extending the simple version of P introduced above: 

 

 

In double blind studies, experimenters are also masked (in addition to patients) to 

prevent patient outcomes from being influenced by the experimenter‘s expectations or 

interest. In such trials, data may be collected on experimenter‘s perception in a 

similar fashion. Even though our focus is on perception and unmasking of the 

patients, it is straightforward to expand our discussion to include 

perception/unmasking of investigators. 

During the course of the gabapentin trial, some of the patients in both treatment and 

placebo arms developed a wide variety of side effects, many of which were known to 

be associated with active treatment. Backonja et al.
11

 acknowledge that since the 

study end point is subjective, the occurrence of adverse events may result in 

unmasking of some patients, potentially, biasing the results of their efficacy analysis. 

The authors circumvented this problem by separately excluding patients with 

dizziness and somnolence, ―the two most frequent adverse events, and also, the two 

with the largest difference in incidence between the treatment and the placebo 

groups‖.
11

 After excluding patients with dizziness, the estimated mean endpoint pain 

score for the gabapentin group remained 1.2 (p-value = 0.002) points lower than the 

placebo group. Effectively, this stratifies participants by occurrence of this particular 

side effect and considers the results solely in the group who do not experience these 

adverse events. By a similar stratified analysis, when patients who reported 

somnolence were excluded, the treatment-placebo difference dropped to 0.81 points 

(p-value = 0.03). By analyzing side effects one-by-one, this approach does not 

address the simultaneous impact of all treatment-related side effects, nor does it 
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account for the effect of potential confounding variables which will be discussed in 

Section 6. 

 

As in most clinical trials, patients in the gabapentin trial were not questioned on their 

perception regarding the treatment they received. It is likely, however, that the 

occurrence of any treatment-related side effects may have led patients to believe that 

they had been assigned to active treatment (incorrectly in some cases), the concern 

raised by the investigators leading to the naïve analysis above that excluded patients 

with a single such side effect. We thus use the occurrence of any treatment-related 

side effects as a proxy for perception  being set to . The list of treatment-

related side effects includes amnesia, ataxia, depersonalization, insomnia, 

nervousness, etc. A total of 43 patients, 31 in the gabapentin group and 12 patients in 

the placebo group experienced at least one of these side-effects during the eight week 

period, the imbalance reflecting the anticipated association of these side effects with 

treatment. Patients who did not experience any side effects consisted of those who 

had no knowledge of the treatment assignment and those who believed they were 

receiving placebo. For our analysis, we label this group as , keeping in mind 

that it is a combination of the   and  groups introduced earlier.  This 

point will be discussed further in the discussion section. 

 

 

2.4  Type I and Type II Direct Effects 

Consider three possible treatment ―conditions‖ that may be assigned to all members 

of a population: (0) assigned to placebo, (1) assigned to active treatment, and (2) 

assigned to neither treatment nor placebo. Such assignments may not be ethical in 

some experiments with a major outcome, and we only consider them here as a 

hypothetical experiments. For each individual, define , to be the (possibly 

counterfactual) value of the outcome for individuals exposed to the  treatment

. Then, the ―causal‖ placebo effect could be defined as: 

, that is, the population outcome mean when everyone 

receives the placebo in the experiment minus the outcome mean when all individuals 

receive neither treatment nor placebo. Note that it is important for the placebo effect 

to occur, that all individuals assigned to either treatment or placebo believe it is 

possible that they may receive active treatment. It is plausible and likely that the 

placebo effect, if it exists, depends on the perceived likelihood of receiving treatment.  

One may argue that the no-treatment control group is already unmasked by knowing 

they are not receiving a treatment, or any attempt to measure their outcome may 

affect the outcome itself, and therefore it is not possible to estimate the placebo effect. 

However, it may still be possible to estimate the placebo effect indirectly. For 

instance, consider cancer patients who visit their physician weekly to receive 

chemotherapy. At every visit, the patients are asked to rate their pain on a scale of 0 

to 10 as part of a routine. The physician could (possibly) randomize some of these 

patients to a pain treatment group, some to a placebo group, and some to a no-

treatment control group. The patients who are assigned to either treatment or placebo 

groups will be informed that they are part of a pain treatment study. The placebo 
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group may experience a placebo effect since they are aware of the possibility of being 

treated for pain, and they have a perceived likelihood of receiving the active 

treatment. Since the no-treatment group has no knowledge of the study or any 

expectations for improvement in their pain, and since their interaction with the 

clinicians is solely for cancer treatment, they may not experience a placebo effect.   

Typically, it is not feasible to observe a single individual in more than one 

experimental setting and so the chosen treatment  is randomly assigned to 

all individuals in the sample and in principle, this removes the potential for 

confounding, and allows population causal treatment and placebo effects to be 

estimated without bias. We now turn to the more common experiment where patients 

are solely allocated to either an active treatment or a placebo, so that the ‗no treatment 

or placebo‘ group  is not evaluated.  

 

For a variety of reasons individuals may vary on their perception, , of their assigned 

treatment, as defined in its approximate form at the end of Section 3. Consider an 

ideal experiment in which the investigator measures the effect of a treatment  (  

treatment, placebo) on the outcome holding all patients‘ perception at a fixed 

level . In this ideal experiment, the direct effect of a treatment on an individual 

is defined as the difference in the counterfactual outcome if the individual received 

treatment with his perception fixed at level  as compared to the counterfactual 

outcome if he received placebo with his perception again fixed at the same level

. Using standard notation, the Type I direct effect of a treatment on an individual can 

thus be written as ,  where  denotes an individual‘s counterfactual 

outcome fixing  both treatment and perception. The population direct effect of 

treatment at fixed perception level  is thus  

. Usually, in experiments where full blinding can be achieved and maintained, 

interest focuses on this mean with .  

 

Although our focus will be on Type I direct effects in the rest of the chapter, it is 

worth mentioning the alternative Type II direct effects. In the simple example above, 

Type II direct effect could be defined as the difference in the counterfactual outcome 

if an individual received placebo as compared to his counterfactual outcome if he 

received treatment, with his perception held fixed at its counterfactual level under 

placebo. In the population, the mean Type II direct effect may thus be defined as 

]. In this case  is the perception level of the individual 

(possibly counterfactual) if he received placebo.
9
 Note that a type I direct effect of a 

treatment is defined at a fixed level of perception for everyone in the population. On 

the other hand, for a type II direct effect of a treatment, the perception levels may 

vary from one individual to another. In the definition of a type II direct effect, even 

though the perception levels vary among the patients, what patients have in common 

is that each individual‘s perception is fixed at what his perception would have been 

had he received a placebo (for more information on type II direct effects see Peterson 

et al.
 
)
 9,17

. 
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One advantage of using a Type II direct effect is that it yields a single 

treatment/placebo comparison whereas with Type I direct effects, potentially different 

comparisons exist for each fixed level of P. For instance, considering a binary 

treatment  , and a binary perception , there are two possible type I 

direct effects of the treatment at fixed levels of perception, namely, 

, and , whereas the type II direct effect is given by 

]. However, the definition of a Type II direct effect implied 

by a particular graph can be represented as a weighted average of the Type I direct 

effects across the different strata of .
17

 Thus, a Type II effect may obscure the 

variation of different Type I direct effects across the strata of perception levels.  

In the following sections we discuss estimation of the Type I direct effects of 

treatment holding the post-randomization variable, perception, fixed. A general 

discussion of causal inference in the analysis of the impact of post-randomization 

factors can be found in Lynch et al.
18

 A similar causal structure (see Section 6 below) 

in a quite different setting can be found in Rosenblum et al.
19 

where the post-

randomization factor is use of a secondary treatment or intervention that is not 

randomized. 

 

 

2.5  Additional Parameters of Interest 

In addition to treatment effects at various levels of fixed perception, we may also be 

interested in the perception effects at a particular fixed treatment level. For example, 

the perception effect for placebo patients may be defined as the difference in the 

average outcome had everyone received placebo and was masked (that is, ) as 

compared to everyone receiving placebo but being unmasked (that is, ). In 

general, we define perception effects based on two distinct perception levels for 

 . The perception effect on the outcome, due to having perception  

compared to , at fixed treatment level , may be defined as 

; thus  for placebo patients, and  

 for treated patients.  This framework naturally 

lends itself to organizing the researchers‘ thoughts by defining the parameter of 

interest as the one they could have estimated when they could have performed any 

theoretical experiment of interest, and thus observed any set of counterfactuals of 

interest. 

 

 

2.6  Estimation of Type I Direct Effects 

The marginal effects of treatment and perception may be estimated using non-

parametric or semi-parametric estimators (depending on the complexity of the 

involved covariates).  Semi-parametric estimators for these marginal effects include:  

the Maximum Likelihood Estimator (MLE), the Inverse Probability of Treatment 

Weighted (IPTW) estimator
20,21

, the Double Robust Inverse Probability of Treatment 

Weighted (DR-IPTW) estimator
22,23,24

, and the Targeted Maximum Likelihood 
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Estimator (TMLE).
25,26

 We focus on the MLE and TMLE, as the former is the 

simplest of the above estimators, and TMLE satisfies the properties of the most robust 

of these estimators (possessing the so-called double robust property discussed below).  

The TMLE also has the property that guarantees a proper model for the parameter of 

interest, as well as the observed data-generating distribution, which is not a 

guaranteed property of the estimating equation approaches (IPTW and DR-IPTW), 

and it is easy to implement in this case using standard software.  

 

Let  denote treatment assignment,  denote perception, and  be the outcome (as 

above). Also, let  represent a vector of baseline (pre-randomization) covariates. We 

have alluded to causal graph theory above, but now we discuss the consequences of 

assuming a particular Direct Acyclic Graph (DAG), one that describes one set of 

possible causal relationships between  and .  A DAG is a directed graph 

formed by a collection of nodes (variables) and directed edges, each edge connecting 

one node to another.
 27

 The acyclic property of DAGs imposes a restriction on a 

directed graph such that no direct path can form a closed loop which starts from a 

node and returns to that node.
 27

  

Figure 2.1 illustrates a potential DAG that allows for (i) differing levels of perception 

across treatment groups, (ii) an effect of perception on the outcome, and (iii) a set of 

covariates that effect both perception and outcome. Note that since  is measured 

prior to treatment randomization, none of its components can lie on the causal 

pathway between  and . It is tempting to estimate the direct effects of treatment, 

controlling for perception, via simple stratification on . However, Figure 2.1 and the 

rules developed for DAG‘s show that simply stratifying on perception, ignoring the 

covariates , results in a biased estimate since this ―introduces‖ confounding of the 

direct effect of treatment on the outcome. This arises since  is a collider in the DAG, 

being caused by both  and . In graphical models, a variable on a path is called a 

collider if it is caused by two or more variables, since the arrows of the causing 

variables appear to collide on that node, blocking that path.
 27

 
 

Figure 2.1  A Direct Acyclic Graph linking treatment (A), perception (P), and covariates (W), to an outcome 

variable (Y). 
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Stratifying on colliders may result in new pathways being opened between the 

causing variables. Thus, if stratification/regression methods are to be used it is 

necessary to adjust for both  and . For further discussion of these issues, see 

chapter 3 in Pearl
17 

or chapter 9 in Jewell.
27

 Conditioning on  raises difficulties if 

the set of covariates   is high-dimensional. 

 

Returning to our general discussion, we note that the causal parameters defined in 

previous sections are defined in terms of all counterfactuals. However, we only 

observe one counterfactual for every subject. These parameters may still be estimated 

from observed data, however, if we make relevant assumptions. Different 

counterfactual outcomes are denoted as  for every value of  and , 

with the full data defined as , where we use  and  

to denote the set of possible values of treatment and perception, respectively.  First, 

we assume that the observed data for a subject can be treated as a random draw 

(according to some mechanism) of one of the counterfactuals from a theoretically 

defined full data, i.e. the observed data is assumed to be  i.i.d. copies of 

,or a censored version of the theoretical full data consisting of all 

possible counterfactuals, , (the so-called consistency assumption, closely 

related to the Stable Unit Treatment Value Assumption (SUTVA)).
28,29

  Second, we 

assume that conditional on the potential confounding variables , treatment 

assignment, and perception are independent of the outcome ( . 

This assumption is referred to as the ―randomization assumption‖ or the ―no 

unmeasured confounding assumption‖ so that  is assumed to contain all variables 

that cause both  and . Finally, we assume that each treatment/perception 

combination  is possible for all the members of the target population, i.e. 

. This last condition is referred to as the ―experimental 

treatment assignment‖ assumption or the positivity assumption.
30,31

Given the graph in 

figure 2.1, the likelihood of an observed data observation can be factorized as: 
 

where  and .  

 

 

 

2.7  Maximum Likelihood Estimation 
 

The MLE works specifically with the term , that may be estimated using 

an appropriate regression model; this approach does not require estimates of 

distributions defined by the terms that determine treatment and perception 

distribution. Counterfactual distributions of the data under specific interventions are 

defined by the G-computation formula.  The name, G-computation, stands for 

graphical computation and has roots in graphical modeling. Assuming a particular 

causal graph, the likelihood can be factorized, and the G-computation formula is 

obtained by carrying out a specific intervention on the likelihood. The obtained 
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formula represents the counterfactual distribution the data would have had under the 

specific intervention. The MLE is sometimes referred to as the G-computation 

estimator. 

 

Using the G-computation formula, estimates of the relevant population counterfactual 

means are , and thus our counterfactual means 

of interest can be estimated by , where  

indexes participants, . Each comparison, defined in Sections 4 and 5, may 

be estimated by first estimating each of two defining marginal expectations and then 

taking their difference. For instance, for a dichotomous treatment variable, , 

 may be estimated by    

 

 

(1) 

 

The MLE estimator  can be based on a parametric model; 

however the consistency of this estimator relies on the consistency of the regression.  

Given that nonparametric approaches are not feasible if  is high-dimensional, we 

suggest use of a machine-learning algorithm that allows the user to specify the degree 

of flexibility in regression terms and includes some form of model selection.  In 

particular, in the example of Section 7 we employ the Deletion Substitution 

Algorithm (DSA)
32

 to choose the final regression form.  DSA is a data-adaptive 

model selection algorithm based on cross-validation. The algorithm selects from a set 

of candidate generalized linear models that consist of polynomials of the covariates 

and their tensor products. The candidate models are produced by three different 

moves: deletions, substitutions, and additions. A deletion step removes a term from 

the model, a substitution step replaces a variable with another, and an addition step 

adds a variable to the model. The final model selected by the DSA minimizes the 

empirical risk on the learning set.
 32

 The algorithm limits the search for the best model 

through user specified parameters for the space of candidate models such as the 

maximum sum of powers for the variables and the maximum order of interaction 

between them. Standard errors (and confidence intervals) that account for data-driven 

levels of flexibility in the regression model can be based on the bootstrap.  The hope 

for using this model and a simple plug-in estimator for our parameter of interest is 

that the optimization in the balance between bias and variance in the estimate of the 

regression model using this approach will translate to a close to optimal variance-bias 

trade-off for the parameter estimate of interest.
33

 However, in section 8 we will 

discuss a generalization of this approach that more directly targets this model 

selection towards estimating the parameter of interest. 
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For the gabapentin trial, parameters of sections 4 and 5 were estimated using 

Maximum Likelihood Estimation of the G-computation formula, which requires 

modeling of the end-point pain score on treatment, perception and baseline 

covariates, . The model was selected using the machine-learning, DSA 

algorithm with perception, treatment, and the interaction between the two, forced into 

the model, with the rest of the terms selected from basis functions of the following 

measured confounding variables: sex, age, race, height, weight, baseline pain score, 

and baseline sleep score. The covariates selected in the model were restricted to no 

higher than second-degree terms and, similarly, only allowed for two-way 

interactions. Five-fold cross-validation was used within the DSA algorithm for model 

comparison and selection.  

 

Once the regression model has been fit, the marginal mean  is estimated by 

using the final fitted regression model to predict, for each individual, their outcome 

keeping the covariates as observed, but fixing treatment at and perception at 

 ; this yields, for the  observation, the ―predicted‖ value 

.  These predicted outcomes were then averaged over individuals (and thus over 

the empirical distribution of ) to give  as 

discussed in Section 6. Finally, to estimate the marginal effect , we 

simply subtracted from . Bootstrap standard errors were estimated by 

re-sampling the observations with replacement 5000 times, performing model 

selection using DSA for every bootstrap sample, and finally, estimating the desired 

parameters as above. Visual checks on the bootstrap distributions showed symmetric 

distributions of the bootstrap estimates around the full-data estimate, suggesting that 

the variability introduced by the model selection is of 2
nd

 order; note that examination 

of the bootstrap distribution provides an informal diagnostic on whether the estimate 

has the desired sampling distribution.  For each parameter, the estimated standard 

error was used to calculate a two-sided Wald test statistic and a subsequent p-value.  

For the original data, the following variables were selected by DSA for the estimator 

(in addition to perception, treatment, and their interaction, that were forced into the 

model): baseline pain score, baseline sleep score, and the second power of baseline 

sleep score. We note that the chosen model for any flexible machine learning 

algorithm with a relatively small sample size is unstable in its ‗choice‘ of included 

covariates, and so one can conclude very little about the relative importance of 

variables from a single fit.  

 

Table 2.1 shows the resulting MLE estimates for four comparisons: the treatment 

effects at both levels of perception, and the perception effects at both levels of 

treatment. For example, based on these results, the average effect of gabapentin on 

endpoint pain scores, with  fixed at no knowledge of treatment or placebo (i.e. in 

this case, no side effects), is estimated to be  points, with an associated 

95% confidence interval of (-0.14, 1.56). The estimated effect of gabapentin with 

perception set to  (i.e. everyone had side effects) is  points, with a 

95% confidence interval of (1.15, 3.84).  
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Table 2.1 Estimated parameters using MLE and the corresponding 95% confidence intervals 

Parameter G-comp Estimate 

(SE) 

P-value 95 % CI 

 0.71 (0.44) 0.10 (-0.14,1.56) 

 2.50 (0.69) 0.0002 (1.15,3.84) 

 -0.59 (0.64) 0.35 (-1.83,0.65) 

 1.18 (0.0.51) 0.02 (0.18,2.17) 

  

 

The average perception effect with treatment fixed at  (placebo) is 

 with a 95% confidence interval of (-1.83, 0.65), and, conversely, the estimate 

of the perception effect with treatment fixed at  (gabapentin) is  

with a 95% confidence interval of (0.18, 2.17). That is, the results imply that, contrary 

to fact, had everyone received the treatment, patients with treatment-related side 

effects are estimated to report significantly greater pain reduction than if they had no 

side effects. This in turn suggests that treated patients who believe that they are 

receiving active treatment report significantly greater pain reduction, on average, than 

treated individuals that have no opinion about their treatment.   

 

In summary, we estimate about 40% of the naïve estimated treatment effect (ignoring 

treatment-related side effects) disappears if no one would have experienced side 

effects and presumably remained unbiased in reporting their pain scores. That is, after 

accounting for perception, the estimated mean differences suggest that gabapentin 

does not have a statistically significant effect on pain reduction had no individual 

experienced a treatment-related side effect during the trial: the estimated treatment 

effect with  fixed at 0 is no longer significant. However, the treatment effect 

amongst those with side effects is much higher and highly statistically significant. 

There are several possible explanations for this result that are all consistent with the 

data. The obvious explanation is that unmasking creates the very bias that blinding is 

designed to protect against; an alternative hypothesis is that the occurrence of 

treatment-related side effects is an indication or proxy that the drug is having an 

efficacious effect and it is exactly this group of individuals who experience pain 

reduction. Unfortunately, the data cannot possibly distinguish between these two 

alternative interpretations. However, given that masking in subjectively scored pain 

trials is considered so key to obtaining unbiased results, it would be inappropriate in 

our view to assign the entire treatment effect when  to a therapeutic effect of 

the drug.   

 

Some participants were lost to follow up before the end of the study (14 and 18 

patients in the gabapentin and placebo groups, respectively). We followed the 

investigators in using the average of the last seven pain measurements as indicated, 

the so-called ―carry-forward‖ method. In both treatment and placebo groups, there is 

a tendency for the pain scores to decline over the eight week follow-up period. This 

means that the ‗carry-forward‘ approach to missing data for those lost to follow-up 

tends to lead to overestimates of the mean endpoint pain scores in both treatment and 
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placebo groups. To investigate the sensitivity of the findings to this form of 

imputation, we did an equivalent analysis using only participants who remained under 

follow-up the entire eight weeks. Effectively this assumes that the data for individuals 

lost to follow-up is missing at random. Although the standard errors are necessarily 

higher, there is a marked difference in the estimated average treatment effects at both 

levels of . Specifically, we now estimate  points, and . 

Thus, the entire treatment effect is now erased when unmasking (i.e. occurrence of 

side effects) is accounted for; in fact the treated patients are very slightly worse off 

than those on placebo when we set . The estimated treatment effect amongst the 

unmasked participants ( ) is still notable but smaller than when the carry-

forward method is employed, . 

 

 

2.8  Targeted Maximum Likelihood Estimation  

We discussed a MLE estimator in the previous section, but there also exist estimating 

equation approaches for these types of parameters in semi-parametric models. 

Specifically, the Inverse Probability of Treatment Weighted (IPTW) estimator
20,21 

represents a different approach to estimation of the causal parameters of interest here; 

this approach requires estimation of the treatment/perception assignment mechanism 

as determined by . In addition, this estimator can be augmented such that 

the new estimator is double robust (so-called Double Robust Inverse Probability of 

Treatment Weighted, or DR-IPTW estimator
22,23,24

). The virtue of this estimator is 

that is consistent if either the outcome regression model or the treatment/assignment 

mechanism is correctly specified.  In addition, the estimator is locally efficient, so it 

achieves (under assumptions) maximal efficiency among competing estimators in a 

semi-parametric model.  However, often these estimating equation approaches have 

very poor finite sample performance, which for instance may result in the estimator 

not necessarily being bounded between the natural limits of the parameter of interest 

(e.g., probability differences < -1 or > 1).   Optimally, one would like the asymptotic 

properties of the DR-IPTW estimator, but with the finite sample virtues of the MLE 

estimator.  This is achieved by targeted maximum likelihood estimation.  

 

What machine learning approach alone lacks is that the algorithm is not optimized 

towards the parameter of interest; whereas it might provide an optimal estimator of 

the prediction of , given , , ,  it may be a poor estimator for a particular 

parameter that is a function of this model.
25

 Typically, a plug-in estimator for the 

parameter of the density estimator will be biased due to model misspecification 

(unless the estimate is nonparametric) as noted above for the MLE. The standard 

criteria for model improvement (by making it more flexible) usually focus on the 

model and not the ultimate parameter of interest. In such cases, the TMLE directly 

addresses the bias issue by carrying out a subsequent clever parametric maximum 

likelihood fit that is directly tailored to remove bias for the target parameter of 

interest, treating the initial MLE estimator as an offset. In particular, the TMLE 

modifies maximum likelihood estimation in a way that yields a plug-in estimator with 

the influence curve equal to the efficient influence curve.
25

 Beyond its asymptotic 
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efficiency, the resulting estimator will also be double robust (in fact it will be so-

called collaboratively double robust – see Van der Laan and Gruber
33

). Practical 

consequences could be that covariates that are potential confounders ( ) for the 

association of interest might be dropped by a model selection procedure for 

estimating  as we are simply trying to get the best density estimate of  given 

 (rather than estimation of regression coefficients). To retrieve robustness, 

TMLE works by augmenting the original fit of this density (i.e., the conditional 

distribution of , given , ) by adding an appropriate ‗clever‘ covariate (the choice 

of this covariate, relative to the choice of the models for   and  is discussed in Van 

der Laan and Rubin
25

).   

 

As noted, the estimator is consistent if either  or  is 

consistently estimated. A model selection algorithm such as the DSA
32

 may be used 

for finding the initial estimate  as before. Given this initial estimate, the updated  

is given by (in the linear model): 

 

                                                        (2) 

                          

where the derived covariate  is a function of .
25

 Here  is 

estimated using maximum likelihood (e.g. least squares), where  is treated as an 

offset, as further discussed below. For the defined mean parameters  of 

Sections 4 and 5,  is equal to . If one wishes to solely 

target a difference such as , one can use as single clever covariate the 

difference of the two corresponding clever covariates. To implement TMLE, we have 

to estimate the denominator of . For the first term, , we use 

the fact that  is randomized (independent of ) and substitute either the known 

treatment assignment probabilities, or, to gain efficiency
25

, the estimated empirical 

treatment assignment proportions ignoring . The second term requires estimation 

through some form of binary (such as logistic) regression as perception presumably 

varies by treatment group and possibly the added covariates ; model selection can 

be employed here to allow as much flexibility in estimation as supported by the data.  

In observational studies for which treatment  is not randomized, the treatment 

mechanism may also be modeled using a logistic regression similar to the model for 

perception. 

 

Once the  term is approximated, the coefficient is estimated using maximum 

likelihood for the regression model (2) assuming Gaussian errors; here  is a fixed 

offset in the model and  is the coefficient to be estimated. The magnitude of the 

estimated  depends on the amount of residual confounding (for estimation of the 

targeted mean parameter) along the direction of  . This process is iterated 

until convergence. In our simple case, convergence is achieved in one step: see Van 

der Laan and Rubin
25

.  
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This estimator is identical to estimator given in (1) except that it uses the updated , 

instead of , with the consequence that bias is reduced by directly targeting the 

desired mean and double robustness is attained. Estimation of each mean requires 

separately updated s, for example, one for , and a second for 

. Each of the updated s is obtained by plugging in the 

corresponding choice of  to determine the appropriate ‗clever 

covariate‘. Under regularity conditions, TMLE is a consistent and asymptotic linear 

estimator.
18 

Consequently, for inference and testing we may use , 

where  is the true population parameter, and  is the variance of the efficient 

influence curve. The latter variance can be estimated via the sample variance of a 

plug-in estimate of the efficient influence curve, or more safely by using the bootstrap 

as illustrated in the following section. 

 

Any combination of the mean parameters can then be directly estimated from the 

TMLEs of the individual components. Of most interest, for example, the average 

causal effect of treatment had everyone‘s perception remained at a fixed level  

can be estimated by: 

 

           (3) 

A TMLE for a specific mean comparison can be computed, specifically targeting this 

parameter of interest. We do not pursue this further here as we wish to examine 

several mean comparisons simultaneously. 

 

Following our earlier analysis of the gabapentin trial, we used TMLE as an 

augmentation to the MLE with the possibility of minimizing bias due to model 

misspecification, as well as reducing the variability of estimation. As the first step in 

estimating each of the four means, , we used the MLE estimator of Section 7.3. 

To approximate the ‗clever‘ covariate, the empirical proportion of treated patients 

was used instead of using 0.5 for probability of treatment . The probability 

that  was modeled based on treatment and the baseline covariates as discussed 

in Section 6.1: the DSA algorithm was used to fit a logistic regression model with 

treatment forced into the model. Once again, predictors were restricted to second 

degree, and interaction terms restricted to two-way terms, with five-fold cross 

validation used for model comparison and selection. Subsequently, we used precisely 

the same plug-in estimator, with the model of  augmented by the clever 

covariate noted in Section 6.1. As discussed above, we ―targeted‖ each of the 

estimated marginal means  and  separately. As above, 

the marginal difference , was simply estimated by subtracting 

 from . Bootstrap standard errors were calculated by repeating the 

TMLE fit to each of 5000 bootstrap samples. For each bootstrap sample, the clever 

covariate was formed separately based on the treatment mechanism model ( ) 

selected for that particular sample.  Regression models for each sample ( ) were 
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augmented by the corresponding clever covariates, the responses were predicted for 

each individual, and the marginal means estimated as before. Once again, a two sided 

Wald test was used to calculate p-values.  

 

Table 2.2 provides the analogous estimates to Table 2.1, but now using TMLE. The 

estimates are generally similar to the un-augmented results, reflecting little residual 

bias with respect to the observed covariates in the latter method. There are increases 

in the standard errors associated with TMLE results, possibly due to finite sample 

issues with regards to the method used to estimate . With regard to the latter point, 

for a few levels of , the model predicts small probabilities for perception (= 1), 

given treatment, thereby inflating the variance of the ‗clever‘ covariate and, 

subsequently, the predicted pain scores. Though beyond the scope of this paper, one 

can construct the ‗clever‘ covariate in a manner that can ameliorate this problem.
21

 In 

summary, the approach here confirms the results and interpretation achieved through 

MLE approach.  

 

An additional efficiency enhancement could result from methods used to properly 

constrain models to predict the outcomes within a known limited range (as here 

where the pain score must lie between 0 and 10). Specifically, one can transform the 

dependent variable to lie between 0 and 1, and use a TMLE logistic regression 

approach that guarantees that all predicted scores fall within the known range
34

. This 

enhancement will be demonstrated in the next chapter for the longitudinal setting.  

One thus has several tools at their disposal that can help to optimize finite sample 

performance. 

 
Table 2.2 Estimated parameters using TMLE and the corresponding 95% confidence intervals 

Parameter TMLE Estimate 

(SE) 

P-value 95 % CI 

 0.78 (0.58) 0.18 (-0.35,1.91) 

 1.98 (0.99) 0.04 (0.04,3.91) 

 -0.07 (0.81) 0.93 (-1.64,1.50) 

 

 

 

1.12 (0.62) 0.07 (-0.09,2.32) 

   

 

      2.9  Discussion 

It is important to note an asymmetry in our analysis regarding the use of observable 

treatment-related side effects as a proxy for treatment perception or unmasking. That 

is, we have not accounted for the possibility that some participant‘s perception 

changes to  (convinced they are on placebo) during the course of the trial. 

This might occur because an individual feels no benefit from treatment thereby 

becoming convinced that they are on placebo, and possibly biasing their subjective 

endpoint pain scores upwards. That is, there is no analogue of the potential 

unmasking side effect in the other direction. It is possible that adjusting for this 

additional unmasking effect might increase treatment efficacy estimates were 
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unmasking maintained ( ) although this is impossible to determine in the 

absence of further information. 

 

This observation, and the fact that we cannot disentangle a significant perception 

effect from a stronger treatment effect for those who had the relevant side effects, 

suggest the need for collecting data on patients‘ perception in randomized trials with 

subjectively recorded outcomes, previously suggested by other authors including 

Turner et al.
35 

We note that in some vaccine efficacy trials, investigators have been 

concerned about patients increased risk behavior due to their treatment perception and 

have suggested collecting data on perception. In a hepatitis B vaccine efficacy trial, 

placebo recipients were at a higher risk of hepatitis B infection after their final 

injection. This higher risk of infection suggested that some placebo recipients may 

have assumed they were protected and increased their risk behavior.
36

 Similarly, 

Bartholow et al.
37

 investigated sexual risk behavior of participants in an HIV vaccine 

efficacy trial, and found that among younger (<30) men who have sex with men, 

perceived assignment to vaccine was associated with an increased probability of 

unprotected sex.  

 

As we demonstrated in this chapter, investigators may estimate and remove some 

adverse post-randomization confounding factors of the effect of treatment using the 

causal inference framework. Suitable definition of appropriate parameters and the use 

of semi-parametric machine-learning techniques allow investigators to obtain less 

biased and more interpretable estimates.  In particular, TMLE estimation of 

parameters defined by the G-computation formula improves upon the MLE approach 

by reducing bias and improving efficiency of estimators, with additional 

enhancements available to improve finite sample performance. In the example, the 

methods demonstrate that the naïve approaches to accommodate treatment-related 

side effects and using carry-forward to impute missing data both considerably distort 

the assessment of treatment efficacy. 

 

In the gabapentin example we focused on placebo, perception, and unmasking effects. 

However, any other measurable non-specific effect of the treatment may also be 

estimated using the same framework. Perception effects are non-specific effects of 

treatment and therefore a component of the placebo effect. As an alternative to 

adjusting for perception effects in subjective outcome clinical trials, we suggest 

conducting (i) randomized trials with no-treatment control groups to estimate the 

placebo effect as a whole (in possible settings), and/or (ii) small unmasked 

randomized trials parallel to the main trial to allow direct estimation of the masking 

effect.  

 

We note that the desired parameters of interests, and appropriate estimation 

techniques, become more complex when components of  are on the direct causal 

pathway describing the effect of treatment on the outcome. This is not the case for 

any covariates in the gabapentin example discussed in Section 7. Targeted maximum 

likelihood has been recently extended to accommodate this situation.
38,39

 

 



 

20 
 

The methods and analysis proposed in this chapter did not exploit the particular time 

when side effects and possible unmasking occurs during the conduct of the trial. 

Longitudinal observations provide such additional information and can be used to 

refine the techniques outlined here. In the next chapter we will demonstrate how the 

suggested methods can be extended to the analysis of longitudinal information on 

unmasking. 
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Chapter 3 

 

Perception and Unmasking Effects in Longitudinal 

Settings 
 

3.1  Background 
 

In the second chapter, we used a counterfactual framework from causal inference 

literature to formally define a placebo effect and some of its components such as 

unmasking and perception effects in a cross-sectional setting. We defined direct 

effects of a treatment under hypothetical interventions on patients‘ masking and 

perception; had the patients remained masked throughout the trial, or had the patients‘ 

perception regarding treatment been kept at a fixed level. This framework was 

applied to a pain trial in which occurrence of treatment-related side effects were used 

as a proxy for unmasking of the patients. Semi-parametric estimation methods such as 

Maximum Likelihood Estimation and Targeted Maximum Likelihood Estimation 

were utilized for obtaining estimates of treatment and perception effects.  In this 

chapter, we generalize the concepts of perception and unmasking effects to 

longitudinal clinical trials.  We reintroduce the gabapentin trial as a longitudinal study 

and explain the causal framework and the generalization of the assumptions required 

to estimate causal effects for the longitudinal setting. The parameters of interest will 

be defined as in the previous chapter and the generalization of the two estimation 

methods (MLE and TMLE) will be used to estimate these parameters. 

  

 

3.2  Time Dependent Perception and Unmasking  

 
In a longitudinal setting, patients‘ perception regarding their treatment may vary as a 

function of time. For instance, a patient may believe he is on a placebo during the 

early stages of the trial due to a slow effect of the treatment but may change his 

perception later on as a result of observing treatment related side effects. We refer to 

this time dependent random variable of degree of certainty as a patient‘s perception at 

time , , where  indicates that a patient is certain that he has been 

assigned the active treatment at time , and at the other end of the scale,  

indicates that a patient is certain that he is receiving the placebo at time .  
 

At any time point during the course of the trial, the investigator may inform the 

patients of their treatment groups. In this situation, the patients would automatically 

have their perception , or , for the rest of the trial ( ). If the 

investigator informs the patients of their true treatment group, the patients are 

considered to be unmasked. However, having perception , or   does 

not directly imply unmasking of a patient since the patient may be incorrectly 

convinced of his treatment assignment. On the other hand, unmasking of a patient 
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implies that his perception , or  , depending on the treatment 

assignment. In other words, unmasking may be defined as a patient having , 

and having treatment assignment , or having  and treatment 

assignment    

 

As in the cross-sectional setting, we focus on a discrete approximation for a patient‘s 

perception. In particular, we consider a three-level variable, , for perception level 

at time .   would indicate that a patient believes he is on treatment at time ,  

would denote a patient having no knowledge of the treatment, and finally, 

would show that a patient believes he is on a placebo.  

 

 

3.3  A Causal Inference Framework for Longitudinal Settings 

 
To formulate causal effects of interest for time dependent settings, we follow the 

counterfactual framework used in the second chapter. This framework was first 

considered by Neyman
40

, and later revisited by Rubin
41

, Robins 
42

, and Holland
43

. 

Direct effects have been defined by Robins and Greenland
44

, Pearl
17

, and Robins
45

 

under a general framework which regards observed data as a missing data structure 

from a full data structure consisting of all the potential counterfactuals for the 

intermediate variables and the outcome for every possible treatment. Under this 

framework, the full data structure for the gabapentin trial would consist of all pain 

measurements for different hypothetical combinations of treatment and perception for 

each patient through time. (also see Peterson et al.
46

, and Rosenblum et al.
19

). Any 

causal effect of interest may then be defined as a difference in the counterfactual 

outcomes under two hypothetical treatments. To identify such causal effects, it is 

generally assumed that such counterfactuals exist. For instance, one can imagine a 

hypothetical experiment in which the gabapentin trial investigators had randomized 

the patients to both treatment and perception groups. Even though such hypothetical 

interventions may not be ethical in some cases, we will consider them here for 

demonstrational purposes.  

 

Consider the gabapentin trial in which baseline covariates are measured and the 

patients are randomized to two different treatment arms, placebo , and active 

treatment . The investigator asks the patients to rate their pain every day on a 

scale of 0 to 10, and monitors the patients‘ side effects for the duration of the trial. At 

the end of the trial the investigator has observed the following chronological data 

structure (assuming full compliance to the assigned treatment): 

 

for   

where  is the patient‘s pain measured at time , and  is  patient‘s time 

dependent perception regarding his treatment, measured as binary variable (treatment/ 

placebo or no perception).  
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The gabapentin trial design could have been modified to include an intervention on 

perception or unmasking of the patients. As a simple example, assigning a binary 

treatment at the start of the trial and a binary perception at a particular time , 

would have resulted in four joint treatment and perception groups.  Within those 

assigned to treatment, , the subgroup assigned to perception ,  would 

have been told that they were receiving the active treatment, at time , and the 

subgroup randomized to perception , would have been told that they were 

receiving a placebo, at time . Similarly, for the patients assigned to 

placebo, , the subgroup assigned to perception ,  would have been told 

that they were receiving the active treatment, at time , and the subgroup 

randomized to perception , would have been told that they were receiving a 

placebo, at time .  If the information given to patients was regardless of their 

true treatment assignment the investigator would have observed the patients‘ 

counterfactual outcome for the assigned perception. On the other hand, if the 

information given to the patients was based on their true treatment assignment, the 

investigator would have observed the patient‘s counterfactual outcome for the 

assigned masking status.  

 

In a longitudinal setting, the full and the observed data structure are defined in the 

following manner; for convenience in notation, let  be the time 

dependent history of a variable  up to, and including time . To define the full data 

structure, let  denote the set of all possible perception histories, and let  be the set 

of all possible treatments. For every , and ,   let 

 denote the treatment specific outcome process one would have observed 

if the patient would have followed treatment , and his perception process would 

have been controlled at .  Then  is the 

complete collection of counterfactual data structure for treatment and perception 

specific history we would have observed if the patient would have received treatment 

, and his perception controlled at . To define the observed data structure 

as a subset of the full data structure, let  be the treatment assignment at time 

, and let  be the observed perception history up to 

time and including time . In addition, let  be the set of baseline variables, and let 

 be the observed pain history up to and including time 

. Then the observed data may be rewritten as 

, +1.  

 

The full data and the observed data structures are tied together by assuming that the 

observed pain, is equal to the treatment-specific pain, , corresponding 

with the treatment and perception process the subject actually followed, 

. This assumption is known as the ―consistency assumption‖ 

or the Stable Unit Treatment Value Assumption (SUTVA).
28,29,38

 For this assumption 

to hold, the observed outcome of a patient cannot be affected by the outcome of any 

other patient.  In the context of the gabapentin trial, the consistency assumption states 

that the pain outcome observed for a patient who had received treatment and was 
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unmasked at time  (perhaps due to observed side effects), would have been equal to 

the hypothetical outcome had the investigators told the patient that he was receiving 

treatment at time . 

 

 

3.4  Longitudinal Direct Effects and the Parameters of Interest 
 

Under the framework of the previous section, Robins and Greenland
44

, Robins
45

, and 

Pearl
17

 define the direct effect of the treatment in the following manner: 

 

Where,  is the perception counterfactual had the patient received a placebo, 

 is an individual direct effect of the treatment, and the population direct 

effect of treatment is defined as the mean of the individual direct effects. For the 

gabapentin trial, the type I direct effect of the treatment is defined as the difference in 

the pain outcome had all the patients received treatment and their perception set at its 

value under no treatment, and the outcome had all the patients received no treatment, 

and their perception fixed at its value under no treatment.  

 

A direct effect of the treatment for perception fixed at  may not always be the 

treatment parameter of interest. In a more general sense, the investigator may be 

interested in treatment effects under any specific perception patterns .  

 

The above parameterization allows the investigator to answer questions such as the 

effect of the treatment had all the patients been kept masked throughout the trial or 

had they been unmasked halfway through the course of the trial. 

 

In addition to a treatment effect for a particular perception pattern, the investigator 

may be interested in the effect of a perception pattern for a fixed treatment level. In 

general, we define longitudinal perception effects based on two distinct perception 

patterns for  . The perception effect on the outcome, due to having 

perception pattern  compared to , at fixed treatment level , may be 

defined as ; 

 

For such parameters to be consistently estimated we need an additional set of 

assumptions. It must be assumed that there are no unmeasured confounders of the 

effect of treatment on pain (treatment is randomized) and no unmeasured confounders 

of the effect of perception at every time point  on pain given the past  In the 

gabapentin trial where treatment is randomized, this assumption is referred to as the 

―randomization assumption‖.
28

 For the case of perception at each time point t which 

is not randomized, the assumption is referred to as ―no unmeasured confounding‖.
28

 

, and  

An additional assumption is the Experimental Treatment Assumption (ETA) for 

treatment and perception. For treatment, does not equal to 0 or 1, 
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and for perception at time ,   does not 

equal to 0 or 1, almost surely, for any values of .
28

 

Finally, it is assumed that a patient‘s pain process is not affected by his perception 

level after the pain process is measured, = . This assumption is 

referred to as the ―time ordering assumption‖.
28

  

 

  

3.5  Causal Graphs and Additional Model Assumptions  
 

In this section, a few plausible longitudinal causal graphs are compared for the 

gabapentin trial. For simplicity, we restrict our discussion of the causal graphs to 

three time points only ( . Later, we will demonstrate that considering 

additional time points for analyzing the gabapentin data requires more observations 

and we are unable to draw reasonable conclusions due to the curse of dimensionality. 

Baseline pain, , and other baseline covariates are measured and the patients are 

randomized to either treatment or placebo ( ) during week 0 of the trial, at 

time . The end of the titration period at the end of the 4
th

 week corresponds to 

time , and time  represents the conclusion of the trial at the end of the 8
th

 

week. Thus,  and represent average pain measurements during weeks 4 and 

8 respectively. The perception of the patients for the first half of the trial will be 

denoted by  and is defined as an indicator for presence of any treatment related 

side effects up to the end of week 3. Similarly, the perception of the patients at the 

end of the trial is denoted by  and is defined as the presence of any side effect up 

to the end of week 7. Based on our definition of perception and pain variables, we 

observe the following simplified chronological order: 

 

 

 

Treating the gabapentin trial as a cross-sectional study and using presence of any side 

effects during the course of the trial as a proxy for perception  ignores both the time 

of occurrence of side effects and the intermediate response measurements. The 

equivalent longitudinal model (figure 3.1) with three time points only incorporates the 

last observed perception . In this model, baseline covariates can affect both a 

patient‘s final perception and the outcome. Yet, the model allows formulation of a 

direct effect of treatment assignment on the pain outcome, and an indirect effect of 

the treatment through perception.   

 

A simple generalization of this cross-sectional model would be to incorporate the 

effect of perception at time  in addition to the final perception level at time 

. For this improved model (figure 3.2), treatment and earlier perception affect 

the outcome both directly and indirectly. The indirect effect of treatment may be 

mediated through , , or through a combination of  and . Similarly, 

 may either affect the outcome directly, or have an indirect effect on  

through . 
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Even though the improved cross-sectional model incorporates perception for all time 

points, it assumes that  and  affect the pain response directly and do not 

affect intermediate pain measurements. Relaxing this assumption and allowing the 

perception effect to be mediated through the intermediate pain variable,  we 

obtain the causal graph of figure 3.3. 

 
Figure 3.1 A cross-sectional causal graph for the gabapentin trial 

 
 

 

Figure 3.2 A causal graph for the gabapentin trial incorporating time of occurrence of side effects 
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Figure 3.3 A causal graph for the gabapentin trial incorporating time of occurrence of side effects and 

intermediate pain score 

 
  

In this graph (figure 3.3), intermediate pain measurement  confounds the effect 

of  on final pain and should be adjusted for if we are interested in the effect of 

 on pain. However  is affected by both treatment   and perception  

and adjusting for it will block the causal pathways from these two nodes to the 

outcome. Fixing  is equivalent to assuming that perception  does not affect 

intermediate pain , that pain  does not affect , and that there is no 

indirect effect of treatment through . Hence, classical longitudinal models fail to 

capture the relations portrayed in this final model, and the investigator needs to rely 

on other methods which will allow estimation of the direct effects of treatment and 

perception on the pain outcome.    

 

For the remainder of the chapter, we will focus on estimating direct and indirect 

effects of treatment and perception based on the above longitudinal model. This 

model accounts for the time of occurrence of side effects and allows intermediate 

pain measurements to vary as a function of prior perception and treatment.   

 

 

3.6  Non-parametric Estimation 

 
Suppose that the gabapentin trial investigator intended to estimate the perception 

effect, , non-parametrically based on 

the causal graph depicted in figure 3.3.  One approach would be to compare the 

average pain in the strata of patients who received a placebo and experienced side 

effects to the average pain for the subgroup that received a placebo and did not 

experience any side effects. This comparison would be equivalent to the conditional 

mean difference . Under randomization and 

no unmeasured confounding assumptions, the conditional expectations of the form 

 are equal to the marginal expectation . In other words, 

if the group who received placebo  and had their perception fixed at  was 
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similar to the population in every aspect except for their treatment and perception 

levels, we would be able to claim that their average pain would represent the 

population‘s average pain under a hypothetical experiment where everyone received 

placebo , and their perception was fixed at .  

 

It is simple to see that randomization to both treatment and perception removes 

confounding. However, in practice, we do not intervene on patients‘ perception and 

the effect of perception on pain may be confounded by baseline variables. An 

investigator who intends to estimate a perception effects non-parametrically would 

not only be obligated to stratify on presence of side effects, but would also needs to 

stratify on baseline variables which may affect both perception and the outcome. 

Such stratification may produce many strata with sparse data depending on the size of 

the study, and the investigator would be faced with the curse of dimensionality. As 

the number of confounding factors increases, the investigator necessarily needs to 

rely on model assumptions.  

On the other hand, the direct effect of the treatment on the outcome can still be 

estimated non-parametrically by excluding patients who experienced any side effects 

(stratifying on perception) and comparing the average pain score of those who 

received treatment to those who received placebo. Under this scenario, we would 

obtain an estimate for the conditional mean difference  

 which under the randomization assumption for treatment is equal to the 

marginal mean difference .  

 

The investigator may be inclined to ignore side effects and proceed by an intent-to-

treat analysis and interpret the results as the total effect of treatment. This might be 

justified by claiming that a portion of the ITT effect is due to the direct effect of the 

treatment, and the rest is due to an indirect effect of the treatment through perception. 

However the treatment effect obtained by ITT is not to be trusted since it captures a 

combination of the direct effect of the treatment and a confounded indirect effect 

through perception.   

 
 

3.7  Semi-Parametric Estimation Methods  

 

Based on the time ordering and causal graph assumptions of the previous section, the 

likelihood of the observed data may be written as , 

where  denote the nodes (i.e. observed variables), and  denote the parent 

nodes. (see Pearl
17

, and van der Laan
38

) This probability distribution can further be 

represented as a product of two factors , where  is the product of the 

conditional distribution of the non-intervention nodes and identifies the G-

computation formula, and  represents the product of the conditional distribution of 

the intervention nodes and is often referred to as the treatment or censoring 

mechanism.
38
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Various semi-parametric estimators have been suggested for estimation of causal 

effects under time dependent interventions, including IPTW
20,21

, Augmented 

IPTW
22,23,24

, Maximum Likelihood Estimators
42

, and Targeted Maximum Likelihood 

Estimators
38

. The IPTW and the augmented IPTW estimators belong to the category 

of estimating equation methodology
28

. The augmented IPTW estimator is defined as 

the solution of an estimating equation for the parameter of interest which is derived 

from the efficient influence function.
28

 MLE is a plug-in estimator that estimates the 

distribution of the data and evaluates the parameter of interest using this distribution. 

MLE balances bias and variance with respect to the distribution of the data and not 

the parameter of interest. On the other hand, TMLE is a two stage estimators which 

improve on the MLE by minimizing the bias with respect to the parameter of interest 

by consistently estimating the treatment mechanism.
38

 In this section we will 

reintroduce the MLE and TMLE estimators for the parameter of interest for the 

gabapentin trial in the longitudinal setting. 

 

 

 

3.8  Maximum Likelihood Estimation (G-computation ) 

 

Consider the general observed data structure for the gabapentin trial: 

 

Assuming a causal graph similar to figure 3.3 generalized to multiple time points, the 

likelihood for the observed data can be factorized as: 

 

 

Where for ,   is empty, and  is empty for . The factors 

of the form  will be denoted by  and the other 

factors form the treatment mechanism. Note that the treatment mechanism consists of 

factors of the form which correspond to the time 

dependent perception variable and we denote by , and also  which 

corresponds to the static treatment assignment and we denote by .  

 

Suppose we are interested in estimating the effect of the treatment had everyone‘s 

perception remained at no knowledge of the treatment, i.e. 

, where  means  for all 

. To estimate this effect we would be hypothetically intervening on , and  

for all . Let our treatment rule be denoted by ). The G-computation 

formula for the counterfactual distributions of the data under these hypothetical 

interventions, ), would be given by: 
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Each of the counterfactual means can be estimated using a Monte Carlo simulation, 

by sequentially simulating from the conditional distributions  

under the corresponding treatment rule.
38

  

 

Given an estimator  for , we obtain a substitution estimator for :  

 

 

For the simple case of three time points, we have the following time ordering:   

, 

 and the likelihood can be factorized as: 

 

 

 

As mentioned earlier, the G-computation formula involves modeling the part of the 

likelihood; possibly, using data adaptive loss based learning methods. To estimate a 

parameter such as , each of the two means can be 

estimated separately. For instance, to estimate , one would: 

I) Obtain estimates  and 

  

II) Generate a large dataset from the empirical distribution of , plug in 

the data into the model for , fixing , and  for everyone 

to generate ‘s,  

III) Plug in the generated ‘s and the other covariates into the model for , 

fixing  for everyone 

IV) Take the empirical mean 

 

 

 

3.9   Review of Semi-Parametric Efficient Estimation Theory 

 

Here, we briefly deviate from our main discussion to introduce semi-parametric 

estimation theory without delving into much technical details. Our summary follows a 

much more detailed discussion of the concepts introduced by Bickel et al.
47

 and 

Tsiatis
48

. In the next section, we will build upon the concepts introduced in this 

section to demonstrate the derivation of TMLE estimator (as in van der Laan
38

). 

 

Even though the investigators collect data on many covariates in a study, the interest 

often lies in a low dimensional parameter, , of the full data distribution. In such 
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setting, the use of semi-parametric models for the full data distribution which do not 

model redundant components are advantages since they lack biases due to 

misspecifications of the functional form of a parametric model. Suppose  are 

identically an independently distributed (iid) with density belonging to a probability 

model (or class of densities) which might have generated the data. For instance, let 

 denote the random vector for a single 

observation in the gabapentin trial. The densities in a model may be identified 

through a set of parameters . In cases where models may be described through a 

finite number of parameters, they are referred to as finite-dimensional parametric 

models. In other cases, the class of densities may be so large that the parameter  is 

infinite dimensional. For such cases, we may be interested in , a finite dimensional 

subset of . Hence,  may be partitioned as ( ), where  is the q-dimensional 

parameter of interest and  is the infinite dimensional nuisance parameter.
48

  

 

Considering an underlying probability space for , let (where  is 

the sample space) be the space consisting of q-dimensional random functions of , 

where  has mean zero ( ), and finite second moment 

( ). The space of all  that satisfy the above conditions is a linear 

space. In other words, if  are elements of this space, for any real constants  and 

,  also belongs to this space. The linear vector space of q-dimensional 

random functions with mean zero and finite second moment can be extended to a 

Hilbert space by defining an inner product .  For , let  

, which is referred to as the ―covariance inner product‖. Once an inner 

product has been defined, the norm of any element of  can be defined as 

. In addition, two vectors  are called orthogonal if .
48

 

 

A space   is a linear subspace if  implies that  for 

scalars . For Hilbert spaces, we have the following theorem for projection of an 

element of  onto a subspace :  

 

Projection Theorem: Let be a Hilbert space and  a linear subspace that is closed 

(i.e. contains all its limit points). For every , there exists a unique  that 

is closest to , or  

for all  

Furthermore,  is orthogonal to ; that is for all .  is 

the projection of  onto the space , and is denoted by .
48

 (See Tsiatis
48

 for 

proof) 

 

Most reasonable estimators for the parameter  are asymptotically linear and can be 

uniquely characterized by an influence function. An estimator  of  is said to be 

asymptotically linear if there exists a random vector (i.e. a q-dimensional random 

function)  such that , and 

.
48

 Where  is a term that converges 

in probability to 0 as  goes to infinity,  is the truth, and  is finite and 
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nonsingular. The random vector  is referred to as the influence function of the 

estimator (Tsiatis).
48

 

 

By the Central Limit Theorem, regular asymptotically linear estimators are 

asymptotically normally distributed; i.e.  

 

 

For a single observation  in a parametric model, where , 

the score vector is defined as the -dimensional vector of derivatives of the 

log likelihood with respect to the element of the parameter , where denotes the 

value of  that generates the data.
48

  

 

This vector can be partitioned according to the parameters of interest  and the 

nuisance parameters  as  , where 

 and . 
48

 Under suitable regularity 

conditions the score vector  has mean zero (i.e. ). 
48

 

  

A tangent space can be defined as the finite dimensional linear subspace  

spanned by the p-dimensional score vector  as the set of all q-dimensional 

mean-zero random vectors consisting of  for all  matrices . 
48 

For a parametric model, the subspace spanned by the nuisance score vector  

is referred to as the nuisance tangent space, .
48

  

 

To work with the nuisance tangent space for semi-parametric models, we simplify 

things by considering a finite-dimensional parametric sub-model contained within the 

semi-parametric model. For a semi-parametric model, the nuisance tangent space is 

defined as the mean-square closure (see Tsiatis
48

 for the technical definition) of 

parametric submodel nuisance tangent spaces. Furthermore, the tangent space  can 

be decomposed as the direct sum of  and  i.e. , where  is the 

subspace spanned by the score vector . 
38,48  

In the section we will use the 

above setting and the projection theorem to derive the TMLE (following van der 

Laan
38

) by using the efficient influence function for the IPTW estimator. 

  

 

3.10  Targeted Maximum Likelihood Estimation (TMLE) 

 
As discussed in chapter 2, TMLE is a two-stage estimator that modifies the Maximum 

Likelihood Estimator in a manner which reduces bias for the target parameter of 

interest if the treatment/censoring mechanism can be estimated consistently.
25,38

 The 

first stage of TMLE involves defining an initial estimate for  as in Maximum 

Likelihood estimation. This initial estimate can be obtained using data adaptive loss 
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based learning methods which will be discussed shortly. The second stage involves 

fluctuating the initial estimate for  in a way which reduces bias for the parameter of 

interest.
38

 The source of bias in the MLE of the parameter of interest is a result of the 

MLE being a plug-in estimator. For Maximum Likelihood estimation, the goal is 

optimal estimation of  rather than the parameter of interest and thus bias and 

variance is balanced with respect to the density. However, when using TMLE one is 

interested in minimizing the bias for the parameter of interest. The fluctuated function 

for targeted estimation of the parameter of interest is the least favorable parametric 

submodel through .
38

 This least favorable model is a model that has a score at zero 

fluctuation equal to the efficient influence function (canonical gradient of the 

pathwise derivative) of the target parameter . 
38

  

 

In order to present the TMLE, we need to define an efficient influence function. 

Consider various asymptotically linear estimators  for a parameter . Each of these 

estimators can be uniquely identified by an influence function. However, there is a 

unique influence function with the smallest variance (which attains the semi-

parametric efficiency bound) and is referred to as the efficient influence function, 

.
48

 We noted that the tangent space can be decomposed as . The 

likelihood of the observed data was factorized as  

, and we estimated the parameters of . These parameters of interest for a 

parametric submodel of   correspond to , and the scores of  span . In addition, 

 can be viewed as the nuisance tangent space, and the scores of  span . From this 

point on we may use  and  interchangeably.  

The efficient influence function for a given parameter of interest may be constructed 

by projecting the influence function of any consistent asymptotically linear estimator 

for that parameter onto the tangent space , where  is the space spanned by the 

scores of a parametric submodel for . For instance, to obtain the efficient influence 

function for  we may project the influence function for the IPTW estimator, 

 , onto the tangent space of ( ). , can be further 

decomposed as , where the summation represents direct sum of the 

orthogonal subspaces. Here, the  factors consist of functions of , 

with conditional mean zero, given the parents  of , for all  Hence, to 

project an influence function onto the tangent space of , it suffices to project it onto 

each of the subspaces .
38
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Figure 3.4 Efficient influence function: projection of an influence function onto the tangent space  

 
 

 

 

 

 

Let the projection of the influence function onto  be denoted by 

 , . 

Then  

 

 

 

The Targeted Maximum Likelihood Estimator can be defined as follows. Suppose we 

have an initial estimator for each , . The marginal probability 

 can be estimated using the empirical distribution of , . 

Conditional distributions for pain at the end of week 4, , and the final pain score 

 can be estimated  using machine learning algorithms.  After obtaining initial 

estimates for , we fluctuate the initial estimates in the following manner:
38
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Where,  

 

 

 

The variables  and , are the coefficients of    

from the projection of the IPTW influence function onto the tangent space, and are 

referred to as clever covariates.
38

 Assuming that the Ys (or the errors) are normally 

distributed, we may use the normal densities as fluctuation models with mean 

, and constant variance .
38

 In this case, 

the maximum likelihood estimator of  is the least square estimator, and the score of 

 at  is equal to the  component of the efficient influence function 

.  We can either estimate a common  using the 

MLE,   , or obtain separate estimates of  

for each factor , and iterate until convergence is achieved.
38

 If we use a separate 

, and first carry out the TMLE update for , and use this updated  in 

the TMLE update for , then the targeted MLE algorithm converges in two 

simple steps.
38

  

 

A parameter of interest can be estimated in the exact fashion as the previous section, 

with the difference that we use the fluctuated densities  rather than the  To 

estimate , one would 

I) Obtain estimates  and 

  

II) Generate a large dataset from the empirical distribution of , plug in 

the data into the model for , fixing , and  for everyone 

to generate ‘s 

III) Plug in the generated ‘s and the other covariates into the model for , 

fixing  for everyone 

IV) Take the empirical mean 

 

 

Consider the likelihood function for the gabapentin data.  

  ( 0)= 0 1 2   
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We need to model pain scores at two separate stages. In the full targeted maximum 

likelihood approach, we fluctuate the density for both  and  spaces in the 

direction that minimizes bias for the parameter of interest. An alternative approach 

would be to only fluctuate . This approach restricts our fluctuation moves to the 

space of   and reduces the bias in the parameter of interest incurred by optimizing 

an estimate of  rather than the parameter of interest. Note that some of the patients 

are lost to follow up and we may have less data to model , and thus balancing bias 

and variance with respect to the density may come at a higher price in terms of bias 

for the parameter of interest. This last-step TMLE will be consistent if either or  is 

consistently estimated.  However this estimator is not efficient, similar to the full 

TMLE.
25 

 

To use this last-step targeted maximum likelihood estimator we add the following 

clever covariate to the model for  

 

If we allowed the patients‘ perception to change without any restriction over time, 

considering that treatment and the perception variables are all binary, there would be 

eight possible combinations of treatment and perception variables. However, we are 

assuming that once a patient observes a side effect, his perception switches on and 

does not change for the rest of the trial. This assumption, limits the number of 

possible treatment and perception combinations to six, since we never observe the 

sequences:  or . Thus, 

any probability distribution for the treatment mechanism would assign 0 probabilities 

to those sequences. 

 

 

3.11  Estimation of the Gabapentin Trial Parameters  

 
We started the analysis of the gabapentin trial by creating average pain scores for the 

screening week, week 4 and week 8
 
of the trial. If patients were missing pain scores 

for any days during a specific week, the rest of the pain scores during that week were 

used to calculate the average, and only if a patient was missing all the seven pain 

scores we considered his pain score for that particular week as missing. In addition to 

the pain variables, we created two variables for perception. The first variable was an 

indicator for presence of any treatment related side effects between randomization 

and the end of week 3, and the second variable was and indicator for presence of any 

treatment related side effects between randomization and the end of week 7. The set 

of baseline covariates used in our analysis included sex, race, height, weight, age, 

mean baseline pain score, and mean baseline sleep score. We demonstrate how the 

parameters of section 4 were estimated by focusing on only one of the parameters: the 

treatment effect had everyone‘s perception remained at no knowledge of the 

treatment, i.e. had no one experienced treatment related side effects: 
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. Estimation of the other parameters may be carried out in a similar 

fashion. To estimate , one can estimate each of the two marginal 

means,  and , and take their difference.  

 

 

3.11.1 Maximum Likelihood Estimation (MLE) 

 

Simulation based estimation for our parameters of interest involve modeling 

intermediate and final pain scores based on the preceding parent nodes and 

sequentially generating from those models. For Maximum Likelihood Estimation, 

since we intervene on treatment and perception, we do not model the treatment 

mechanism and solely rely on the models for pain scores. To model pain at the end of 

week 4 and the final pain at the end of week 8, we employed the DSA
32

 algorithm. 

Using the DSA, we fit a logistic regression model for the intermediate pain , with 

treatment , perception , and the interaction between them forced into the 

model. To model pain at the end of the trial ,  we used the DSA to fit a 

linear regression model with treatment , perception , and the interaction 

between them forced into the model. Perception  was not forced into the model 

for , however it was contained in the covariate space that the DSA algorithm 

searched for the best model. Both models for pain scores were restricted to a 

maximum size of 10 covariates, maximum order of 2, and possibility of two way 

interactions. 

 After modeling the pain scores, we created a new dataset of the baseline covariates 

by sampling the patients 100,000 times with replacement. Depending on which 

marginal mean, , was being estimated, a column of 0‘s or 1‘s were added for 

treatment (  or ), and another column of 0s or 1s were added for the 

patients‘ perception up to the end of week 3 (  or ). The baseline 

covariates, , treatment , and perception , were plugged into the logistic 

regression model for  to generate predicted probabilities for having a high pain 

score at the end of week 4. Binary  values were obtained by generating from a 

Bernoulli distribution with the predicted probability for each observation. The column 

of  pain scores and an additional column of 0‘s or 1‘s for perception at the end of 

week 7 (  or ) were added to the generated dataset. Finally, the 

variables in the generated dataset were   plugged into the model for  to generate 

final pain scores. The mean of the predicted  pain scores was the final estimate 

for the marginal mean . Each of the parameters of interest was estimated by 

estimating the two corresponding marginal means and taking the difference.  

 

Bootstrap standard errors were estimated by re-sampling the original data 2000 times 

with replacement. For each bootstrap sample, we performed model selection using 

DSA, sequentially generated from the models to construct a simulated dataset, and 

finally, estimated the desired parameters as above. Once again, visual checks on the 

bootstrap distributions showed symmetric distributions of the bootstrap estimates 
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around the full-data estimate.  For each parameter, the estimated standard error was 

used to calculate a two-sided Wald test statistic and a subsequent p-value.  

 

 

3.11.2 Last-Step Targeted Maximum Likelihood Estimation 

 

Targeted Maximum Likelihood Estimation requires updating the pain models by a 

clever covariate which depends on the probability of receiving a certain treatment and 

perception combination. The last-step TMLE involves only updating the pain model 

for week 8 by a given clever covariate while leaving the model for pain at the end 

week 4 unchanged. The clever covariate is a function of the treatment mechanism and 

thus requires modeling perception nodes  and . For the last-step TMLE the 

clever covariate is given by: 

 

Since treatment is assigned at random, the randomization probability (0.5) can be 

used for . However, van der Laan
25

 shows that using the empirical 

proportions of treated patients results in a gain in efficiency. Thus, we estimated 

 by the proportion of the patients who received treatment. 

 

Two separate logistic regression models were fit using the DSA algorithm for 

perception , and . The models for perception were restricted to a maximum 

size of 10 covariates, maximum order of 2, and possibility of two way interactions. 

Probability of receiving a specific combination of treatment and perception was 

calculated based on the empirical probability of receiving treatment and the two 

logistic regression models for perception. Since perception works as a switch, and a 

perception  forces perception  to be equal to , we manually set 

 to 

1=1 0, ×1.  

 

Once the  term is approximated, the coefficient can be estimated using 

maximum likelihood for the regression model  assuming Gaussian error. 

However, if the probabilities of receiving some combinations of treatment and 

perception are small for some strata of the baseline variables, the Experimental 

Treatment Assumption will be violated. In this scenario, the values of the clever 

covariate can be large which may result in out of range predicted pain scores and thus 

inflation of the variance. An additional efficiency enhancement can be gained from 

constraining the model to properly predict the outcomes within the known limited 

range for the pain scores (0-10). Specifically, one can transform the dependent 

variable to lie between 0 and 1, and use a TMLE logistic regression approach that 

guarantees that all predicted scores fall within the known range.
34
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For this purpose, we transformed the predicted pain scores from the  model to 

values between 0 and 1 by subtracting the minimum predicted pain (which we call ) 

from each predicted value and dividing the values by the range of the predicted pain 

scores, , where  is the maximum predicted pain score. The restricted pain 

scores were logit transformed and bounded away from 0 and 1 by setting logit values 

less than 0.01 equal to 0.01 and logit values greater than 0.99 equal to 0.99.
34

 

Subsequently, we fit a logistic regression model using the logit transformed values as 

the outcome, and as a fixed offset to estimate the coefficient . The magnitude 

of the estimated  depends on the amount of residual confounding (for estimation of 

the targeted mean parameter) along the direction of  . In our case, 

convergence is achieved in one step and there is no need for iteration: see Van der 

Laan
38

. The predicted probabilities from this model can be transformed back to the 

correct scale by multiplying each value by  and adding .  

 

To estimate marginal means of interest, , we proceeded as in MLE by 

sequentially generating data from , and the updated . Once again, 

bootstrap standard errors were estimated by re-sampling the observations with 

replacement 2000 times and for each bootstrap sample performing model selection, 

forming the clever covariate and updating the  model, generating a simulated 

dataset from the models, and finally, estimating the desired parameters by taking the 

mean of the  generated pain scores. For each parameter of interest, the estimated 

standard error was used to calculate a two-sided Wald test statistic and a subsequent 

p-value.  

 

 

3.11.3 One-step Targeted Maximum Likelihood Estimation 

 

The one-step TMLE involves updating both pain models for weeks 4 and 8. The 

clever covariate for the  pain model is the same as in one-step TMLE, and the 

clever covariate for  pain model is given by: 

 

Note that this clever covariate is dependent on the final pain score, , under a specific 

intervention , and thus the parameter would be estimated by iteration. However, van 

der Laan
38

 shows that by updating the final model ( ) first, and reversely using the 

predicted values from the final model in the previous models (  , TMLE 

converges in one step. To update the first pain model ( ) we estimated 

 by using the empirical probability of receiving treatment for 

, and the predicted probabilities from the perception model for . For 

each parameter of interest we estimated , and 

  by taking the mean of the predicted  pain 

scores from the last-step TMLE, once among the patients who had their intermediate 
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pain  and another time among those who had . After obtaining an 

estimate for the clever covariate, we fit a logistic regression model using the 

intermediate pain scores as the outcome, and as a fixed offset to estimate the 

coefficient for the clever covariate . 

 

As for MLE, patients‘ baseline covariates were sampled 100000 times. The baseline 

covariates and the appropriate values of treatment and perception  

(depending on the marginal mean being estimated) were plugged into the updated 

model for  to obtain probabilities for having a high pain at the end of the 4
th

 

week. Binary pain values were generated based on these probabilities by sampling 

from a Bernoulli distribution for each replication. Baseline covariates, generated 

intermediate pain scores, and appropriate values of   and  were 

plugged into the updated model for  to generate the final pain scores. The 

marginal mean of interest was obtained by taking the mean of final scores, and 

parameters of interest were estimated by taking the difference of the appropriate 

marginal means. The above process was repeated for 2000 different bootstrap 

samples to obtain standard errors for the parameters of interest.  

 

 

3.12  Results for the Gabapentin Trial 

 
Using an ITT analysis, Backonja et al.

11
 had reported a significantly lower (1.2 

points, p-value < 0.001) average pain score for the treatment group compared to the 

placebo group. Additionally, once patients who reported dizziness were excluded, the 

mean difference in pain scores between the treatment and the placebo groups 

remained almost the same (1.19 points, p-value=0.002).  After excluding patients who 

experienced somnolence, even though the magnitude of the treatment effect 

decreased to 0.81, the difference remained significant (p-value= 0.03). In our cross-

sectional analysis we saw that the treatment did not have any effect on pain, had the 

patients perception regarding the treatment remained at no knowledge of the 

treatment (i.e. no side effects) (0.78 points, p-value=0.18). However, the treatment 

would have had a significant effect on the outcome had the patients‘ perception been 

fixed at believing they were on treatment (i.e. side effects present)(1.98 points, p-

value=0.04). In addition, we observed that the perception effect, had everyone 

received placebo, would not have been significant (-0.07 points, p-value=0.93), but 

had everyone received the active treatment, the perception effect would have been 

borderline significant (1.12 points, p-value=0.07). Overall, the results portrayed an 

interaction between perception and treatment.  

 

Our time dependent analysis yields similar results to the cross-sectional setting with 

the difference that standard errors are smaller and there seems to be a gain in 

efficiency. Table 3.1 shows the results of MLE estimates for four different 

comparisons: 1) the treatment effect had everyone remained at no knowledge of the 

treatment or believed to be on placebo throughout the trial (i.e. no side effects); 2) the 

treatment effect had everyone believed to be on treatment throughout the trial (i.e. 
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side effects during the titration period); 3) the perception effect had everyone received 

placebo; 4) finally, the perception effect had everyone received treatment. 

 
 
Table 3.1 Estimated longitudinal parameters using MLE and the corresponding 95% confidence intervals 

Parameter (MLE 2000 B-samples) G-comp  

Estimate (SE) 
P-value 95 % CI 

 

 

 

 

0.22 (0.41) 0.59 (-0.58, 1.02) 

 2.18(0.76) 0.004 (0.69, 3.67) 

 

 

 

 

 

 

-0.58 (0.75) 0.44 (-2.05, 0.89) 

 

 

 

 

 

 

1.38 (0.53) 0.009 (0.34, 2.41) 

 

According to this table, had everyone remained at no knowledge of the treatment or 

believed to be on placebo, the treatment would have reduced the average pain by a 

magnitude of 0.22 points (on a 0-10 scale) with a 95% confidence interval of (-

0.58,1.02). In other words, had no one experienced any side effects, the treatment 

would not have been statistically significantly different from 0. A similar conclusion 

can be drawn based on the TMLE estimates for . Tables 3.2 and 3.3 

show the last-step and the one-step TMLE estimates for the treatment and perception 

effects of interest. Since the results from the last-step TMLE and the one-step TMLE 

are similar, we focus on comparing the MLE estimates with the one-step TMLE here 

and come back to the comparison of the two different types at the end of the section. 

Based on table 3.3, had no one experienced any treatment related side effects, the 

treatment effect would have been a reduction of 0.55 points with a 95% confidence 

interval of (-0.90, 2.00). Even though the magnitude of the estimate is more than 

twice the MLE estimate, the treatment effect is still statistically insignificant.   

 
Table 3.2 Estimated longitudinal parameters using last-step TMLE and the corresponding 95% confidence 

intervals 

Parameter (last-step TMLE 2000 B-

samples) 

TMLE 

Estimate 

(SE) 

P-value 95 % CI 

 

 

 

 

0.61 (0.65) 0.35 (-0.66, 1.88) 

 2.77 (1.23) 0.02 (0.36, 5.18) 

 
-0.19 (1.22) 0.87 (-2.58, 2.20) 

 
1.96 (0.78) 0.01 (0.43, 3.48) 
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On the other hand, had everyone experienced a side effect during the titration period 

(had been unmasked for the duration of the trial), the treatment effect would have 

been statistically significant. The MLE estimate for this treatment effect is a reduction 

of 1.38 points with a 95% confidence interval of (0.34, 2.41). The less biased one-step 

TMLE estimate for this treatment effect is a drop of 2.72 points with a 95% 

confidence interval of (0.38, 5.16). The difference between the treatment effect had 

everyone seen a side effect versus had no one seen a side effect, suggest an 

interaction between the treatment and presence of side effects (or an interaction 

between the treatment and patients‘ perception).  

 
Table 3.3 Estimated longitudinal parameters using full TMLE and the corresponding 95% confidence 

intervals 

Parameter (Full TMLE 2000 B-

samples) 

TMLE 

Estimate 

(SE) 

P-value 95 % CI 

 

 

 

 

0.55 (0.74) 0.46 (-0.90, 2.00) 

 2.72(1.22) 0.02 (0.38, 5.16) 

 
-0.19 (1.21) 0.86 (-2.56, 2.18) 

 
1.97(0.83) 0.02 (0.34,3.60) 

 

In addition to treatment effects of interest, we estimated two different perception 

effects  and . Based on the 

MLE results, had everyone received no treatment and their perception fixed at no 

knowledge of the treatment or placebo throughout the trial, versus their perception 

fixed at treatment throughout the trial, their average pain score would have been 0.58 

points lower with a 95% confidence interval of (-2.05, 0.89). Once again, the 

magnitude of this effect is not statistically different from 0. TMLE estimates the 

magnitude of this effect to be closer to 0, at a 0.19 point reduction of pain.  

On the other hand, had everyone received treatment and their perception fixed at 

treatment throughout the trial versus no knowledge of the treatment or placebo 

throughout the trial, their pain would have been significantly lower. MLE estimate 

this reduction to be 1.38 points with a 95% confidence interval of (0.34, 2.41), and 

TMLE estimates the reduction to be a bit higher at 1.97 points with a 95% confidence 

interval of (0.34,3.60). 

 

 

3.13  Discussion  
  

In this chapter, we examined perception parameters comparable to those obtained in 

the second chapter. However, it is possible, and it may be interesting, to estimate the 
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effect of other perception patterns on the pain outcome as well. For instance, for the 

gabapentin trial, it is possible to estimate 

, in which patients‘ perception remains at no knowledge of the treatment 

through the trial in one scenario, and in the second scenario their perception changes 

during the second half of the trial to believing that they are on treatment (i.e. 

observing a side effect in the second half of the trial).  

  

In the cross-sectional analysis we noted that using treatment related side effects as a 

proxy for a patient‘s perception regarding his treatment results in an asymmetry in the 

analysis of the gabapentin trial. Our analysis does not account for the possibility of a 

patient‘s perception switching to placebo at a specific time point during the course of 

the trial. A patient may start believing that he is on a placebo due to lack of efficacy 

of the administered treatment, biasing the patient‘s subjective pain score, upward. 

Depending on the treatment arm which the patient belongs to, this bias can result in 

either an increase or decrease in the estimated treatment effect. Unfortunately, it is 

impossible to determine this bias in case of the gabapentin trial without additional 

information.  

 

In addition to the asymmetry that arises as the result using side effects as a proxy for 

perception, it is also impossible to disentangle perception effect from a stronger 

treatment effect. It can be argued that the treatment is having a stronger effect on 

patients who experience treatment related side effects in the treatment arm. This 

phenomenon is referred to as Philip‘s paradox. 
49 

Due to this paradox, other authors 

have suggested that the treatment be titrated before the start of the actual trial. For the 

gabapentin trial, the argument for a stronger treatment effect may be more reasonable 

for patients who experience side effects earlier in the trial during the titration period 

as the investigators try to find the maximum tolerable dosage. Yet, any treatment 

related side effects in the placebo arm cannot be attributed to the active component 

and is likely due to the patient‘s perception regarding his treatment.  

 

Issues with using side effects as a proxy for perception and Philip‘s paradox highlight 

the need for collecting data (possibly longitudinally) on patients‘ perception regarding 

their treatment in randomized clinical trials. Although, it can be argued that 

questioning patients on their perception regarding their treatment arm may affect their 

perception itself. For instance, patients who have no knowledge of their treatment 

assignment might reevaluate and change their perception if they are asked to identify 

their treatment group. In 2003, the Food and Drug Administration (FDA) noted that 

treatment related side effects have the potential to unmask subjects and investigators, 

and may bias subjective study end points. (Office of Therapeutics  

Research and Review, Center for Biologics Evaluation and Research, FDA 2003)
50

 

They recommended that a questionnaire be administered at the completion of the 

study to investigate the effectiveness of blinding of the subjects and the 

investigators.
50

  In a recent home drinking water intervention trial for estimating rates 

of highly credible gastrointestinal illness, Colford et al.
51

 assessed whether 

participants could be successfully blinded to a sham or active water treatment device 

installed underneath the kitchen sink. They administered a questionnaire every 2 
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weeks for a 4 month period, and the participants were asked to rate their degree of 

certainty regarding having the active device. Blinding of the participants was assessed 

using a blinding index, and the investigators concluded that the participants were 

successfully blinded to their treatment assignment.
51

 James et al.
52

, Howard et al.
53

, 

and Bang et al.
54

 have introduced different indices for the degree of blinding in 

clinical trials. Although these indices tell the investigators whether blinding has been 

effective or not, they do not directly explore the effect of unmasking on the outcome 

of interest.  

 

In this chapter, we demonstrated the use of efficient semi-parametric estimation 

methods for estimating causal parameters in a longitudinal setting. We described how 

one can formulate a causal parameter of interest using the counterfactual framework 

and estimate the parameter using the MLE and TMLE estimators. In the next chapter, 

we use semi-parametric modeling in a much different context, where the primary goal 

of statistical modeling is prediction rather than explanation.  
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Chapter 4 

 

Re-examining the Framingham Coronary Heart 

Disease Models  

  
     4.1  Background 

 
Recent statistical history of observational epidemiology has been one dominated by 

the use of parametric statistical regression models. Statistical modeling is typically 

used for one of two purposes: explanation of a phenomenon or prediction. Although 

there is a longstanding tradition of parametric modeling for explanation and 

prediction in public health and medical research, the objectives of statistical modeling 

are often not a priori clarified by the investigators. Rarely have statistical models been 

applied to medical data uniquely for the purpose of prediction, and often the use of 

explanatory models has been extended to prediction. Ambiguities regarding the 

objectives of statistical modeling have led investigators to employ models for one 

purpose, despite the fact that such models are intended and developed for other 

purposes.  For instance, to examine the form of models apparently designed for 

prediction to make statements regarding the relative influence of variables.  

 

In addition, the class of models considered has been traditionally based more on 

convenience, rather than a scientifically rigorous decision (i.e. what is actually 

known) about the statistical model of the data-generating process.  

 

In most health studies, there is little knowledge outside the data about the true 

functional form of the model.  This lack of knowledge to constrain the model could 

have resulted in three different directions: 1) estimating aspects of the data-generating 

distribution such as associations by making as few modeling assumptions as possible,  

2) imposing arbitrary models that are convenient for returning estimates of a 

parameter of interest such as adjusted associations, or 3) A combination of the last 

two that acknowledges the lack of knowledge about the statistical model but uses a 

low-dimensional approximation.
55

 

 

 The first requires either a (possibly coarse) discretization of the covariate space, or 

sophisticated methods of searching through a large model space.  The
 
second requires 

widely available regression packages made trivial to implement with modern 

computers. Evident from publications in medicine and public health, the latter 

approach has dominated the field.  

 

A further objectionable aspect of common practice is that the algorithms used to 

choose such parametric models are often not pre-specified, and thus, the resulting 

estimates and inference have been the result of an ad hoc data adaptive procedure.  

Though this type of procedure can take the form of a reproducible algorithm (e.g., as 
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formal step wise regression with main terms regression), they are often a complicated 

process, which can involve the screening of covariates based on analyses such as 

contingency tables, and somewhat random processes such as dialogue among 

researches about the importance of a variable. Thus, there is a complicated feedback 

of model and data, a process many in good faith try to relate in publications, but is 

certainly almost always ignored in the reported inference. Inference based on 

estimates from such models can be wildly optimistic since it ignores the fact that the 

data has been used for both estimation and validation.  Without a well-defined 

algorithm for deriving an estimate, one has no estimator, and thus, no way to define 

the statistical properties of the estimate.  For instance, in many approaches, one 

cannot define what is being actually estimated, as that itself is random given the 

procedure.
56

  

 

In this chapter we tackle the prediction and explanation objectives separately in re-

analyzing the Framingham study. We present a roadmap (based on previously 

published work on estimation in semi-parametric models) that demonstrates how 

robust information can be derived by applying more rigorous methods, which allow 

more reliable statistical inference (e.g., p-values that are calculated based on 

experiments that are commiserate to what was actually done). In particular, we use 

semi-parametric loss based estimation methods for prediction, and estimate variable 

importance using TMLE for explanation. As described in chapter 3, semi-parametric 

methods lack biases due to misspecifications of the functional form of a parametric 

model. Furthermore, using machine learning methods reduces any biases inherent in 

ad hoc modeling approaches.  

 

 

4.2 Framingham Coronary Heart Disease Risk Scores  
 

Coronary heart disease has been the leading cause of death in the United States since 

1921.
57 

In 2006, cardiovascular disease was responsible for 31.7% of all deaths; 

26.0% from heart disease and 5.7% from stroke.
57

 Early prediction of CHD may 

allow changes to modifiable life-style factors such as diet, exercise, and smoking that 

may in turn lower the risk of CHD. Various risk prediction models have been 

developed for CHD including the Framingham models. In 1998, Wilson et al.
58

 

incorporated the Joint National Committee (JNC-V) blood pressure and National 

Cholesterol Education Program (NCEP) cholesterol categories into sex-specific 

coronary heart disease (CHD) risk prediction models using a sample from the 

Framingham Heart Study. The objectives of the study were defined as examining the 

association of JNC-V blood pressure and NCEP cholesterol categories with CHD, as 

well as developing a simple coronary disease prediction algorithm which allowed 

physicians to predict CHD risk in patients without overt CHD.
58

 

 

The study was designed as a prospective, single-center study within the Framingham 

Heart Study. The sample included 2489 men and 2856 women 30 to 74 years old at 

the start of their follow-up in 1971 to 1974. Risk factors considered for the models 

included age, blood pressure, cigarette smoking, total cholesterol (TC), low-density 
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lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and 

diabetes. Study subjects were followed up for 12 years, and the outcome was defined 

as occurrence of any ―hard CHD‖ which included recognized and unrecognized 

myocardial infarction, coronary insufficiency, and death due to CHD. The 

relationship between various independent variables and CHD outcome were tested 

using age-adjusted Cox proportional hazard regression, and the discriminatory ability 

of the risk prediction models were evaluated by the accompanying c-statistics.  

 

The models were fit once including TC categories and excluding LDL-C categories, 

and a second time including LDL-C categories and excluding TC categories.
58

 

Quadratic terms for age were considered in the risks models, and among women the 

term was found to be significant.  Furthermore, Wilson et al. argued that the relative 

risk for TC and CHD declines with age, and thus interaction terms for TC and age 

were considered in the prediction models. However, neither the interaction between 

age and TC nor an interaction between age and LDL-C was found to be significant in 

either sex. The model building process used for development of the Framingham 

models involved a combination of investigators‘ knowledge regarding the association 

of the risk factors with the outcome and a set of assumptions regarding the type and 

form of the models. Parameters of interest in the Framingham study were the 

coefficients of the risk factors included in the Cox proportional hazard model.  

 

Wilson et al. evaluated the prediction models in various ways. The efficacy of 

prediction with continuous variables was compared with that obtained with 

categorical variables using a c-statistic which equals to the area under receiver 

operating characteristic curve. Area under the curve (AUC) provides a measure of the 

discriminatory power of a prediction model. Using AUC as an evaluation criterion 

assumes that a higher AUC directly corresponds to a lower value of the risk. The 

investigators concluded that the curves were nearly identical for the continuous and 

categorical models, and that TC and LDL-C categories had similar effects.
58

 The c-

statistics associated with TC categories were 0.74 in men and 0.77 in women for 

continuous variables by proportional hazards or accelerated failure models, and 0.73 

in men and 0.76 in women for categorical variables. Similarly, the corresponding c-

statistics associated with LDL-C categories were 0.74 in men and 0.77 in women for 

continuous variables by proportional hazards or accelerated failure models, and 0.73 

in men and 0.77 in women for categorical variables.
58

  

 

To evaluate the relative importance of each variable in the Framingham models, the 

investigators explored the association of each risk factor with the outcome using the 

coefficients of the Cox proportional hazard models. Wilson et al. noted that the CHD 

rates were significantly associated with the specified categories of blood pressure, 

TC, HDL-C, and LDL-C in both sexes. The relatives risks obtained from the 

Framingham study are shown in table 4.1. 
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          Table 4.1 Multivariable-Adjusted Relative Risks for CHD According to TC Categories 

 Men Women 

Relative  

Risk 

95% CI Relative  

Risk 

95% CI 

Blood 

Pressure 

Normal 1.00 Referent 1.00 Referent 

 High Normal 1.31 

 

0.98–1.76 

 

1.30 

 

0.86–1.98 

 

Hyper I 1.67 1.28–2.18 1.73 1.19–2.52 

Hyper II-IV 1.84 1.37–2.49 2.12 1.42–3.17 

Smoke Yes/No 1.68 1.37–2.06 1.47 1.12–1.94 

Diabetes Yes/No 1.50 1.06–2.13 1.77 1.16–2.69 

TC (mg/dL)  

 <200 1.00 Referent 1.00 Referent 

200-239 1.31 1.01–1.68 1.51 1.01–2.24 

>=240 1.90 1.47–2.47 1.72 1.15–2.56 

HDL-C 

(mg/dL) 

 

 <35 1.47 1.16–1.86 2.02 1.29–3.15 

35-59 1.00 Referent 1.00 Referent 

>=60 0.56 0.37–0.83 0.58 0.43–0.79 

 

In addition to assumptions regarding the form of the model, Framingham models 

appear to have been estimated and validated on the same learning set. It is well-

known that performance estimates based on the same data used for estimation can be 

optimistic. In this case, given that model selection appears ad hoc, and all of the data 

appears to have been used to select the model, we cannot derive an unbiased estimate 

of the risk for their approach. We can only obtain an unbiased estimate the risk for the 

final model, assuming (incorrectly) that it was chosen a priori.  

 

 

4.3 The Estimation Roadmap 
 

In this section, we present an alternative approach based on established theory of so-

called loss-based estimation in a semi-parametric model.  This approach provides a 

benchmark for estimator comparison (loss-based) and admits that we are typically 

ignorant of the underlying true model form (semi-parametric).  To develop the loss-

function necessary to compare competing models and estimate the relative optimal 

one, we begin by defining the parameter of interest explicitly as the minimizer of an 

expected loss. 

In a series of papers
59,60 

and summarized in a recent book
61

, van der Laan et al. 

develop a unified loss-based cross-validation methodology for estimator construction, 

selection, and performance assessment in presence of censoring. Risk prediction 

modeling and performance assessment can be approached under the same framework. 

Some aspects of loss-based performance evaluation for risk prediction have received 
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attention in recent years. For instance, Gail and Pfifer
62

 review various risk prediction 

performance criteria under a decision theoretic framework and develop specific loss-

function based criteria for different clinical applications. Yet, it is rare to find studies 

which incorporate these loss functions into estimation of a risk prediction model and 

more so to use such criteria to choose among a large class of competitors. 

 

Van der Laan and Rose
61

 proposed a  general roadmap for estimation which  can be 

partially summarized in the following steps: 1) define the research question of 

interest, 2) define the parameter as  the minimizer of an expected loss, or risk, apart 

from any specific statistical model of the data, 3) estimate the relevant components of 

the data-generating distributions using an ensemble learning (Super learner) 

approach, using pre-specified algorithms only constrained by the assumptions about 

the model that are known to be true, and finally, 4) draw conclusions based on robust 

sampling-based inference. This above roadmap will guide us in creating a risk 

prediction model for CHD.  

 

For the prediction goal, we are specifically interested in an individual‘s risk of CHD 

given his characteristics. Suppose we observe  where  

is the outcome,  are the predictors, and  is the unknown underlying data –

generating distribution. Specifically, let the true parameter of interest, , be 

defined as the minimizer of the mean loss function,  over the entire set of 

possible models for , from a class of  (in our case this will be semi-parametric 

meaning for now, nearly all models) for the data-generating distribution, .  It 

should be noted that the syntax  is used to recognize that the parameter of 

interest can be understood as a mapping applied to the data-generating distribution. 

Our goal is to estimate a model for , but a model that does the ―best‖ job of 

estimating, not the entire distribution, but rather a particular parameter of interest, 

.  

 

Assuming that the outcome, , is a binary event (0=no, 1=yes), the parameter of 

interest will be one that minimizes a reasonable loss-function.  In our case, either by 

choosing –log(likelihood) loss: , or mean 

squared error-loss .   For both the minimization of this 

expected loss under the true  over all functions of  gives: 

, where  refers to the mean under the true data-generating 

distribution, . This formulation shows that if the objective is to find the best 

predictor, one needs the best estimate of the risk.  In practice, one will find 

, in other words the best algorithm among a number of 

candidate ( ) estimators, where the number  can depend on the 

sample size. There are ad hoc approaches for this model selection (e.g., AIC, BIC, 

other fit statistics) and there are objectively optimal ways via cross-validation. The 

gold standard is to choose an estimate of the risk, , such that when the 

same procedure is invoked, one obtains the results one would have obtained had we 

known the true ―best‖ one of the candidates, or the oracle. Among  estimators 

for the risk, the ―oracle‖ selector is the estimator which minimizes risk under the true 
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data generating distribution, .  Since the true data generating distribution is 

unknown, this oracle selector is also unknown. 

 

Ideally, one would like a procedure of proposing models and evaluating them that 1) 

converge to the actual true model as the sample size, n, gets larger, and 2) performs 

optimally with the sample size at hand.  This phrases the problem explicitly and 

accurately without invoking the finding of the true model as a possibility – just the 

one closest to the truth among the candidates considered.  The basis of such a 

procedure will be a consistent estimate of the risk. 

 

 

4.4 Super Learning 
 

Once the parameter of interest has been defined as the minimizer of a risk, estimates 

are obtained by searching over a model space. Difficulty in searching the entire model 

space may lead us to pre-specify a collection of candidate algorithms, each searching 

over a different subspace of the model space. Optimality of the estimators depends on 

how well each algorithm searches the parameter space. Given a set of algorithms, 

cross-validation and risk comparison can be used to select the ―optimal‖ estimator. 

Recent work by van der Laan et al.
60

 and Polley and van der Laan
63

 has demonstrated 

that an ensemble of the set of algorithms searching the parameter space is the 

asymptotically optimal estimator. Van der Laan et al.
60

 introduce an algorithm called 

―super learner‖ which is a loss based prediction algorithm that combines a collection 

of prediction algorithms into an ensemble estimator by optimally weighting them 

using cross-validation. The initial collection of algorithms may differ in various 

aspects such as the subset of covariates used, the basis functions, the loss functions, 

etc. Based on established theoretical oracle properties for the cross-validation 

selector, the super learner performs asymptotically as well as the so-called oracle 

selector as defined above.
60 

 

Following Polley and van der Laan
63

 we briefly summarize the algorithm in a few 

steps (readers may refer to van der Laan et al.
60

 for a more detailed discussion). For a 

given set of candidate algorithms: Consider the learning data , 

 where  is the outcome of interest, and  is a p-dimensional set of 

predictors. The parameter of interest is the conditional probability of CHD given the 

covariates: . Let , be a library of 

candidate estimators, each a mapping from the empirical probability distribution  

into the parameter space , where  is the total number of algorithms in this 

library. The super learner involves the following steps:
63

 

 

1. Fit each algorithm on the entire dataset 
 
to estimate 

. 

 



 

51 
 

2. Split the dataset  into a training and validation sample, according to a V-fold 

cross-validation scheme. . Define  to be the v-th training data split 

and  to be the corresponding validation data split  

 

 

3. For the v-th fold, fit each algorithm in the library on and save the predictions 

on the corresponding validation data,  for . 

 

4. Stack the predictions from each algorithm together to create a  by  matrix, 

 

 

 

5. Propose a family of weighted combinations of the candidate estimators indexed 

by weight vector : 

 

 

 

6. Find the that minimizes the cross-validated risk of the candidate estimator 

: 

 

 

 

7. Combine  with  to create the final super learner fit: 

 

 

 

Oracle results for the super learner are dependent on the loss function being 

bounded.
60

 The convex combination restriction of the weights implies that if each 

candidate algorithm is bounded, then the convex combination will be bounded as 

well. Van der Laan and Dudoit
59

 establish oracle results for the cross-validation 

selector among a set of candidate estimators for general bounded loss functions. Van 

der Laan et al.
60

 apply these results to the super learner. In summary, they establish 

that if the number of candidate estimators is polynomial in sample size, then the 

cross- validation selector is either asymptotically equivalent with the oracle selector, 

or it achieves the parametric rate of convergence log n/n. (see van der Laan et al.
60

 

and Polley and van der Laan
63

) 

 

In what follows, we apply the super learner algorithm to a subset of the Framingham 

data using various pre-specified algorithms. We demonstrate that semi-parametric 

estimation of risk of CHD, using the estimation road map introduced earlier and the 
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super learning algorithm, performs as well as the approaches used for construction of 

the Framingham models without relying on the investigators‘ knowledge about the 

form of the models. 

 

 

4.5 Application of Super Learning to the Framingham Study for 

Prediction 
 

A subset of the Framingham Study data was obtained from the National Heart, Lung, 

and Blood Institute. The data was collected as part of the Framingham study and 

included information on age, sex, height, weight, blood pressure, diabetes status, 

smoking status, total cholesterol, HDL-C, and LDL-C for 4,434 participants. The 

covariates were measured during three examination periods, approximately 6 years 

apart, roughly from 1956 to 1968. We used the third examination period as the 

baseline since blood cholesterol was only measured during this examination period.  

Participants were followed for a total of 24 years (12 years from our baseline) for the 

outcome of the following events: Angina Pectoris, Myocardial Infarction, 

Atherothrombotic Infarction or Cerebral Hemorrhage (Stroke) or death. 

 

We categorized hypertension according to JNC-V blood pressure category 

definitions. TC, HDL-C, and LDL-C were also categorized based on the same cutoffs 

as in Wilson et al.
58

 we defined the outcome of interest as occurrence of any ―Hard 

CHD‖ (recognized and unrecognized, myocardial infarction, coronary insufficiency, 

and death due to CHD) in a 10-year follow up period. Any participants who were 

missing at least one of the risk factors, or dropped out of the study earlier than 10 

years were dropped in our analysis, assuming the values were missing at random. 

After removing the missing values, our data consisted of 1118 men and 1578 women.  

 

To replicate the models derived by Wilson et al.
58

, we approached risk modeling two 

different ways: once we fit a sex-specific logistic regression model with the exact 

form as the Framingham models, and a second time we applied the super learner to 

the data. Although the assumption of any difference between sexes should be based 

on risk comparison as discussed in the road map for estimation, we repeated our 

analysis for each sex separately to derive sex-specific models similar to Wilson et al.  

 

The following set of algorithms was pre-specified to be used in the super learner: 

Random Forest
64

, K-nearest neighbors
65

, neural networks
65

, generalized linear 

models
66

, generalized linear model via penalized maximum likelihood
67

, generalized 

additive models
68

, and the Deletion/Substitution Algorithm
32

.  

 
         

 



 

53 
 

 

Table 4.2 Algorithms used in the library of Super Learner for Prediction of CHD 

Algorithm  Description Author 

randomForest Random Forest Liaw and Wiener
69

 

Nnet Neural networks Venables and Ripley
65

 

Knn K-nearest neighbors Venables and Ripley
65

 

glm  generalized linear models R Development Core 

Team 

Step stepwise glm with interactions  Hastie & Pregibon
70

 

Glmnet generalized linear models via 

penalized maximum likelihood 

Friedman, Hastie and 

Tibshirani
67

 

gam  generalized additive models Hastie
68

 

DSA Deletion/Substitution/Addition 

algorithm 
 Sinisi and van der Laan

32
 

 

The learning set was divided into 10 different splits for cross validation, each time 

using 9/10
th

 of the data as the training set and the remaining 1/10
th

 as the validation 

set. On each training set, once we estimated the coefficients for the Framingham 

model, and another time we applied the super learner algorithm. For each validation 

set, CHD risk scores were predicted and the AUC was calculated based on the models 

fit to the corresponding training set. We obtained average AUCs for the super learner 

and the Framingham models by averaging the AUCs obtained from each validation 

set. It should be noted that we biased the risk estimates downward for the 

Framingham models since we assumed that model form was pre-specified. For men, 

the average AUC obtained by the Framingham model was 0.735, and the average 

AUC obtained for the super learner was equal to 0.737. For women, the average AUC 

obtained for the Framingham model was equal to 0.728, and the average AUC 

obtained for super learner was equal to 0.735.  

 
Table 4.3 Super Learner weights calculated for prediction of CHD 

 

Algorithm  

SL 

Weights 

for Men 

SL 

Weights 

for Women 

randomForest 0.004 0.106 

Nnet 0.000 0.000 

Knn 0.000 0.066 

glm  0.568 0.000 

Step 0.164 0.000 

Glmnet, α=0.25 0.116 0.827 

Glmnet, α=0.50 0.000 0.000 

Glmnet, α=0.75 0.000 0.000 

gam  0.145 0.000 

DSA 0.000 0.000 
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4.6 Variable Importance 
 

A secondary goal of the study was to estimate and test the importance of each 

variable for predicting risk of coronary heart disease. As we described earlier, Wilson 

et al. approached this goal by testing the coefficients of the sex-specific Cox 

proportional hazard models. Recently, van der Laan
71

, proposed a new approach to 

variable importance. Based on this approach, one defines the variable importance as a 

real valued parameter of the data generating distribution (inspired by the causal 

inference framework of chapters 2 and 3), and uses locally efficient semi-parametric 

estimators of variable importance that are specifically targeted toward the estimation 

of this parameter.  

In particular, for the Framingham study we defined the variable importance parameter 

of interest as: 

 

for a particular level of the variable of interest ( ), compared to the baseline 

group ( ), where the last equality refers to a ratio of so-called counterfactual 

means. Note that this last step comes from certain assumptions on a causal graph or a 

non-parametric structural equation model.
17

   If the assumptions are true, this 

parameter can be interpreted as the marginal relative risk of the outcome, had 

everyone had their  set to  , adjusting for other variables, , compared to  had 

everyone had their  set to the baseline value , adjusting for other variables  

The  parameter is only well defined if both  and 

.
70

 We will refer to violations of this assumption as Experimental Treatment 

Assignment (ETA) bias.
30,31

  

   

As suggested, this variable importance parameter is inspired by the causal inference 

framework and under additional assumptions may have a causal interpretation. The 

reason for choosing this parameter was to compare the estimates to relative risks 

obtained from a parametric model. As part of our analysis we fit a log-linear model to 

the data and compared the exponentiated coefficients to our parameter estimates.  

For estimation of the above importance variable, one can rely on the super learner as 

discussed above. However, we used the simpler DSA algorithm, to save computation 

time. As described in chapters 3 and 4, DSA is a data-adaptive model selection 

algorithm based on cross-validation. The algorithm selects from a set of candidate 

generalized linear models that consist of polynomials of the covariates and their 

tensor products by using three different moves: deletions, substitutions, and additions. 

DSA was used earlier in the chapter as one of the algorithms in the super learner 

library for prediction of risk of CHD.  

 

To estimate the parameter of interest, indicator variables were created for each level 

of the categorical variables. The variable importance measure for each level was 

estimated by comparing it to a baseline level. The model space was restricted to the 

models of the form (  may be a vector). 

In other words, we modeled occurrence of CHD using a logistic regression model by 

forcing the exposure variable of interest into the model and allowing the DSA 
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algorithm to select the rest of the predictors. For categorical variables such as blood 

pressure, all the indicator groups were forced into the model with the exception of the 

baseline.  

To obtain MLE estimates of the relative risk, we estimated the parameter of interest 

by the following formula (referred to as G-computation formula
42

, see chapters 3,4):  

 

 

 

 

where . We first plugged in 1 for everyone‘s exposure level of 

interest, (and 0 for all the other categories), and calculated the marginal mean in the 

numerator by taking the average predicted probabilities over all participants, and a 

second time, we plugged in 0 for all the variables (baseline category), and calculated 

the marginal mean of the predicted probabilities in the denominator. As an example, 

to estimate the relative risk for having high-normal blood pressure category compared 

to optimal, we modeled CHD by forcing in all blood pressure categories into the 

model except the optimal (baseline) category, and allowed the DSA algorithm to pick 

the rest of the terms using 5-fold cross-validation. We then plugged in 1 for 

everyone‘s high-normal category, and 0 for all the other categories, and averaged the 

predicted probabilities to obtain an estimate of the marginal mean in the numerator. 

The second time, we plugged in 0 into all the blood pressure categories, and averaged 

the predicted probabilities to obtain the marginal mean in the denominator.   

 

In the next step of our analysis, we used TMLE to estimate the relative risks by 

targeting the marginal means in the numerator and the denominator separately. As 

described in chapters 3, and 4, TMLE modifies MLE by adding a clever covariate to 

the model, treating the initial MLE estimator as an offset, in a way that reduces bias 

for the target parameter of interest. We noted that, a plug-in estimator for the 

parameter of the density estimator may be biased due to model misspecification 

(unless the estimate is nonparametric). In such cases, the TMLE directly addresses the 

bias issue by carrying out a subsequent clever parametric maximum likelihood fit that 

is directly tailored to remove bias for the target parameter of interest, treating the 

initial MLE estimator as an offset. In addition to being asymptotically efficient, the 

resulting estimator will also be double robust.
25,33,34 

The TMLE estimator for the 

marginal relative risk is given by:  

 

 

where  is the updated 

model,  (  may be a vector of parameters) is the MLE model, 

and is the clever covariate.  The probabilities in the denominator of 

the clever covariate, , can be estimated either by assuming a model and 
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estimating the parameter (e.g. logistic regression), or by performing model selection 

(see van der Laan and Gruber
36

).     

 

To obtain the TMLE estimates, we modeled the exposures using a generalized linear 

models with all the other variables fixed into the model. If the exposure was binary 

(e.g. diabetes) we fit a logistic regression model, and if the exposure was categorical 

we fit a multinomial logistic regression (before creating indicators) to predict the 

probabilities for exposure categories. For each exposure variable we formed the 

clever covariate, , and updated the corresponding model for CHD by adding 

the clever covariate in the model and treating the initial MLE estimator as an offset. 

 

We repeated the steps in estimation of the marginal means as in MLE estimation with 

the difference that the updated CHD model was used to obtain the predicted 

probabilities. Note that small predicted probabilities in the denominator of the clever 

covariates may result in large values for the clever covariate which in turn results in 

inflation of the variance. This may occur due to the ETA assumption being violated. 

To check for such violations we plotted the predicted probabilities from the exposure 

models. The probabilities need to be bounded away from 0 and 1. (see figure 4.1) 
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Figure 4.1 Distribution of the predicted probabilities for the risk factors in the Framingham study 
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To compare our estimates to similar ones obtained from a parametric model, we fit a 

log-linear model with all the variables used in the Framingham study included in the 

model. The exponentiated coefficients from this log-linear model provide adjusted 

relative risk measures of importance comparable to the ones defined earlier. To show 

this, we use a log-linear model and the formula we used for MLE as follows: 

 

, 

. 

 

Thus,  

 

, 

.  

 

So,  

 

, 

. 

 

It follows that  

 

 

Finally, we used non-parametric bootstrap to obtain robust standard errors. We re-

sampled our data 500 times. For each bootstrap sample we obtained MLE, TMLE, 

and parametric estimates as described in this section.  

 

 

4.7 Results of Variable Importance Analysis 
 

Table 4.4 contains the bootstrap estimates obtained from fitting a log-linear model. 

Based on this table, relative risks for having stage I or higher hypertension (compared 

to normal blood pressure) and smoking were statistically significantly different from 

1 in men. For women, the relative risks for having stage II or higher hypertension, 

smoking, and diabetes were statistically significantly different from 1.  
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Table 4.4 Adjusted parametric estimates based on 500 bootstrap samples 

 Men Women 

Relative 

 Risk 

95% CI Relative 

 Risk 

95% CI 

Blood 

Pressure 

Normal 1  1  

 High 

Normal 

1.292(0.216) (0.960, 1.640) 1.023(0.243) (0.644, 1.444) 

Hyper 

I 

1.811(0.255) (1.406, 2.229) 1.379(0.243) (0.993, 1.812) 

Hyper 

II-IV 

1.948(0.293) (1.524, 2.469) 1.775(0.317) (1.321, 2.333) 

Smoke Yes/No 1.505(0.153) (1.254, 1.762) 1.719(0.239) (1.325, 2.121) 

Diabetes Yes/No 1.145(0.167) (0.884, 1.428) 2.233(0.339) (1.723, 2.802) 

TC 

(mg/dL) 

 

 <200 1  1  

200-

239 

1.082(0.129) (0.885, 1.301) 0.873(0.166) (0.635, 1.176) 

>=240 1.021(0.121) (0.830, 1.229) 0.885(0.157) (0.660, 1.160) 

HDL-C 

(mg/dL) 

 

 <35 1.125(0.133) (0.907, 1.352) 1.220(0.220) (0.885, 1.626) 

35-59 1  1  

>=60 1.025(0.157) (0.757, 1.277) 0.950(0.134) (0.725, 1.174) 

  

Table 4.5 illustrates the MLE estimates obtained from the bootstrap samples. Similar 

to the parametric estimates, the relative risks for having stage I or higher hypertension 

and smoking were statistically significantly different from 1. Furthermore, the relative 

risk for having the highest level of cholesterol (>=240 mg/dL) compared to the 

baseline(<200 mg/dL) was statistically significantly different from 1 for men. This 

change in significance was mainly due to a rise in the magnitude of the relative risk 

when estimated using MLE (as there is also an increase in the standard error).  
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Table 4.5 Semi-parametric Maximum Likelihood Estimates based on 500 bootstrap samples  

 Men Women 

Relative 

 Risk 

95% CI Relative 

 Risk 

95% CI 

Blood 

Pressure 

Normal 1  1  

 High 

Normal 

1.268(0.202) (0.987,1.636) 0.996(0.219) (0.668, 1.379) 

Hyper I 1.792(0.260) (1.427,2.263) 1.332(0.237) (0.996, 1.751) 

Hyper 

II-IV 

1.930(0.285) (1.506,2.432) 1.755(0.304) (1.306, 2.294) 

Smoke Yes/No 1.453(0.143) (1.219,1.700) 1.628(0.213) (1.310, 2.012) 

Diabetes Yes/No 1.173(0.190) (0.863,1.517) 2.476(0.404) (1.880, 3.156) 

TC 

(mg/dL) 

 

 <200 1  1  

200-

239 

0.993(0.145) (0.740,1.248) 0.808(0.207) (0.526,1.144) 

>=240 1.355(0.160) (1.105,1.630) 1.063(0.232) (0.746, 1.451) 

HDL-C 

(mg/dL) 

 

 <35 1.083(0.128) (0.879,1.304) 1.226(0.245) (0.846,1.658) 

35-59 1  1  

>=60 1.025(0.163) (0.768,1.301) 0.977(0.140) (0.764, 1.208) 

 

 

Finally, the results obtained from TMLE are shown in table 4.6. Similar to the 

parametric results and the MLE results, the relative risk for having stage I or higher 

hypertension and smoking were statistically different from 1 in men. Additionally, the 

relative risk for being diabetic was significantly different from 1. This was due to an 

increase in the magnitude of the relative risk when estimated using TMLE. Similar to 

the parametric results, and unlike the MLE estimates, the relative risk for having high 

TC was not statistically different from 1 in men.  

 

For women we observed similar results to the parametric and MLE estimates. The 

relative risk for having stage II or higher hypertension, smoking, and diabetes were 

statistically significantly different from 1. However, the magnitude of relative risk 

estimated for diabetes in women using TMLE (RR=1.47) was smaller than both the 

MLE estimate (RR=2.47), and the parametric estimate (RR=2.23).  
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Table 4.6 Semi-parametric Targeted Maximum Likelihood Estimates based on 500 bootstrap samples 

 Men Women 

Relative 

Risk 

95% CI Relative 

 Risk 

95% CI 

Blood 

Pressure 

Normal 1  1  

 High 

Normal 

1.269(0.207) (0.994,1.653) 0.987(0.221) (0.653,1.387) 

Hyper I 1.794(0.262) (1.418,2.260) 1.331(0.239) (0.992,1.744) 

Hyper 

II-IV 

1.933(0.286) (1.503,2.438) 1.753(0.305) (1.305,2.282) 

Smoke Yes/No 1.460(0.145) (1.237,1.702) 1.609(0.210) (1.301,1.996) 

Diabetes Yes/No 1.386(0.206) (1.060,1.690) 1.477(0.333) (1.055,2.013) 

TC 

(mg/dL) 

 

 <200 1  1  

200-

239 

1.076(0.153) (0.851,1.334) 0.818(0.179) (0.572, 1.130) 

>=240 0.965(0.193) (0.611,1.274) 0.852(0.234) (0.559,1.268) 

HDL-C 

(mg/dL) 

 

 <35 1.061(0.139) (0.841,1.320) 1.086(0.283) (0.632,1.572) 

35-59 1  1  

>=60 1.024(0.164) (0.766,1.299) 0.978(0.142) (0.758,1.210) 

 

 

4.8 Discussion 
 

Overall, the AUCs obtained from our risk prediction models are similar to those 

obtained by Wilson et al. The AUC estimated for the super learner for men is exactly 

the same as the Framingham study (0.73). The AUC for women is slightly lower than 

the original Framingham study (0.73 compared to 0.76). This difference may be due 

to over-fitting in the original Framingham study as it appears that Wilson et al. 

created and evaluated the Framingham models on the same dataset.  

 

Based on our variable importance analysis (using TMLE), we found that the relative 

risk for having stage I or higher hypertension and smoking were statistically different 

from 1 in men. In addition, we observed a statistically significant relative risk in men 

similar to women. This finding corrects the inconsistency we observed in our 

parametric and the MLE estimates which show a significant relative risk for women 

but not for men. Wilson et al. had reported relative risks significantly higher than 1 

for diabetes in both men and women.  
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In our analysis, variable importance was defined based on causal inference definitions 

of marginal relative risk in our analysis. This definition may not necessarily be the 

most interesting to the investigator. In particular, one may define importance of a 

variables for prediction purposes as any improvement in the risk estimate, when the 

variable is included in the model (or the covariate space the machine learning 

algorithms are searching) versus when the variable is excluded. Significance of this 

parameter may be formally tested by comparing risk estimates from including and 

excluding the variable.  

 

In this chapter, we examined alternatives to traditional approaches for statistical 

modeling using the Framingham study. Parametric models (and in some cases semi-

parametric models, i.e. Cox proportional hazard) are nearly always mis-specified, and 

add unwarranted assumptions to the estimation and interpretation of the parameter of 

interest. Relying on statistical theory for loss-based estimation, semi-parametric 

modeling, and robust sampling based inference, allows much flexibility in estimation 

and interpretation of the parameter of interest. This point was demonstrated in our 

paper by applying the super learner to the Framingham study for risk prediction. 

Given the power of computers and availability of machine learning software, loss-

based semi-parametric estimation methods will perhaps replace the common use of 

parametric modeling using ad hoc methods.  
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