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A Structural Coarse-Grained Model For Clays Using Simple

Iterative Boltzmann Inversion

Karl Schaettle1, Luis Ruiz Pestana5, Teresa Head-Gordon1-3,5*, Laura Nielsen Lammers4,6* 
1Department of Chemical and Biomolecular Engineering, 2Department of Chemistry, 3Department

of Bioengineering, 4Department of Environmental Science, Policy, and Management

University of California, Berkeley
5Chemical Sciences Division and 6Earth and Environmental Science Area

Lawrence Berkeley National Laboratory

Berkeley, California 94720

Cesium-137 is a major byproduct of nuclear energy generation, and is environmentally threatening

due to its long half-life and affinity for naturally occurring micaceous clays. Recent experimental

observations of illite and phlogopite mica indicate that Cs+ is capable of exchanging with K+ bound

in  the  anhydrous  interlayers  of  layered  silicates,  forming  sharp  exchange  fronts  that  lead  to

interstratification (phase separated) Cs- and K-illite. We present here a clay coarse-grain (ClayCG)

model using Iterative Boltzmann Inversion of the all-atom ClayFF model, which we develop first

for an anhydrous illite clay, that reproduces features of a previously proposed feedback mechanism

of ion exchange. The ClayCG model represents a 70-fold speedup over all-atom classical force

fields  of  clay  systems,  and predicts  interlayer  expansion  for  K-illite  near  ion  exchange  fronts.

Contrary to the longstanding theory that ion exchange in a neighboring layer increases the binding

of K in lattice counterion sites leading to interstratification, we find that the presence of neighboring

exchanged layers leads to short-range structural relaxations that increase basal spacing and decrease

cohesion  of  the  neighboring  K-illite  layers.  We  also  provide  evidence  that  the  formation  of

alternating Cs- and K-illite interlayers (i.e. ordered interstratification) is both thermodynamically

and mechanically favorable compared to exchange in adjacent interlayers. 

*corresponding authors



Introduction

The  environmental  impact  of  cesium  adsorption  and  diffusion  into  various  types  of  naturally

occurring layered silicates has received renewed interest in recent year, especially in the aftermath

of the Fukushima Daiichi Nuclear disaster.1-3 One of the most environmentally threatening products

of nuclear fission is Cesium-137, both because of its relatively long half-life (30.2 years) and its

affinity  for  mineral  surfaces,  which  prevents  it  from leaching  from surface  soils.4-5 Cesium is

strongly and irreversibly adsorbed to various clay surfaces in the presence of other ions, and can

slowly diffuse into the bulk volume of both anhydrous and hydrated layered silicates. 6-8 Due to its

intermediate  half-life  and  its  relative  abundance  as  a  nuclear  decay  product,  Cesium-137  can

contaminate environmental sites with dangerous levels of radiation for decades, while most other

fallout isotopes may only present a threat on the order of months or years. 9

Cesium  diffuses  deep  into  naturally  occurring  clays  and  displaces  other  types  of  ions

normally found in the interlayer, such as potassium, sodium, and calcium. Because of its ability to

selectively exchange radiocesium, illite and similar clays have been investigated for the possibility

of  remediating  radioactive  plumes  of  cesium.  10 Despite  extensive  experimental  study  of  ion

adsorption at  the frayed clay edge and exchange of ions in the clay interlayer7-8,  11-13,  the exact

mechanism  of  cesium uptake  remains  elusive.14 It  is  especially  unclear  how  cesium displaces

potassium within the interlayer far from the edge in anhydrous interlayers for clays such as illite 11, 15-

17. Some groups have suggested that only hydrated ions within the interlayer or near a clay edge

should be capable of exchange18; however, this exchange mechanism is very thermodynamically

unfavorable in bulk illite, since both potassium and cesium strongly favor anhydrous interlayers.19

Moreover, cesium is found to have a strong affinity for the weathered clay edge, further suggesting

that interlayer hydration is likely not a necessary step either for cesium binding or penetration into

the interlayer. 14, 20-24

Recent experimental7-8 and computational work25 supports the direct exchange by diffusion

for large ions in the interlayer of several clay types without repeated hydration and dehydration at

the edge sites. Instead, cesium has been hypothesized to first bind to frayed clay edges, and then

more slowly exchange with the potassium naturally  found in the  interlayer through a diffusive

mechanism.17, 26 Once potassium begins exchanging for cesium at the weathered edge, it has been

proposed that there is a thermodynamic and kinetic driving force to displace additional potassium

ions, resulting in an accelerated replacement of potassium ions for cesium.27 Despite this proposed

feed-forward  mechanism,  it  has  been  observed  that  the  rates  of  ion  exchange  over  moderate



timescales in neighboring interlayers can vary drastically, and thus suggest that the interlayer ion

species  becomes  stratified.7-8 Although  some thermodynamic  arguments  have  been  proposed to

explain the stability of interstratified clay particles in other clay types28-30, the physical reason for the

disparity in neighboring interlayer exchange rates in illite is still not entirely clear.

In order to adequately predict the ability of micaceous minerals both to uptake radioactive

cesium  and  its  susceptibility  to  remobilization,  it  is  necessary  to  understand  and  model  the

mechanisms  that  drive  the  adsorption  and  exchange  of  various  ionic  species  in,  for  example,

anhydrous illite. Recent computational work from our group using the classical ClayFF force field

and density functional theory (DFT) has indicated that the presence of cesium ions within potassium

interlayers  creates  mechanical  forces  that  significantly  increase  the  interlayer  spacing.25 This

expansion in turn results in lower rate coefficients for ion exchange by 6 to 10 orders of magnitude

which  accelerates  the  diffusion  of  potassium  ions.25 However,  the  problem  of  characterizing

interstratified particles by definition requires the evaluation of kinetic barriers involving multiple

interlayers.  Probing  the  energy  landscape  of  large  atomistic  simulations  of  this  type  is

computationally expensive, and motivates the development of a coarse-grain (CG) model that is

capable  of  reproducing  the  energy  barriers  to  ion  diffusion  near  an  exchange  front  and  in

interstratified clay particles.

Previous CG simulations of clay include both continuous and discrete models of the clay

interlayer31-34.  In  one study,  Marry et  al.  investigated a montmorillonite  system with a  hydrated

interlayer.31 Their CG model consisted of two uniformly charged plates representing the clay layers

held a fixed distance apart. Water was modeled implicitly, and both cations and anions in solution

were modeled continuously as an effective density that was allowed to vary over space. This model

accounted for the excluded volume of the ions using the mean spherical approximation, an advance

on previous continuous models of hydrated clay systems. Using classical density functional theory,

the grand potential was minimized to derive the density of ions as a function of distance from the

clay surface for sodium ions. These types of CG models can be highly accurate for the calculation

of continuous properties such as tensile strength or average interlayer spacing. Several groups have

also successfully modelled clay and clay-polymer systems by coarse-graining entire clay layers into

one  single  particle.35-37 However,  continuous,  ultra  coarse-grained  models  are  fundamentally

incapable  of  capturing  site-specific  effects  such  as  ion  binding,  and  due  to  mean-field

approximations,  would not  be  expected to  reproduce  the  observed variation  in  the  ion  binding

energy landscape in anhydrous clay25.



Other groups have developed more detailed coarse-grain clay models that  map multiple

atoms to single pseudo-atoms, a common coarse-graining technique.38 In the model of clay-polymer

composites developed by the Coveney group, each montmorillonite clay layer is represented by

bonded pseudo-atoms corresponding to ion binding sites.39-40 The pseudo-atoms in the Suter et al.

model are bonded with harmonic potentials derived from an iterative Boltzmann inversion (IBI) of

the corresponding all-atom RDFs, and represents the three sheets of the clay layer as a single layer

of coarse-grain sites27. Many of the coarse-grain potentials of ion-sheet interactions in this model

were derived using PMF matching with fixed sheets, and the various coarse-grain potentials were

converged sequentially27. When deriving the potential between free ions and the bulk sites on the

clay  sheet,  Suter  and  co-workers  used  the  layer-averaged  z-coordinate.  This  method  faithfully

reproduced the behavior of ions in the fluidized system, but would likely not be sufficiently accurate

for reproducing the behavior of confined ions, which is strongly influenced by charge localization. 

Simulations with both DFT and ClayFF indicate that ions in the anhydrous illite interlayer

approach  interlayer-facing  oxygen  atoms  extremely  closely,  suggesting  that  compensatory

compression  of  the  neighboring sheets  could play  an  important  role  in  determining the  energy

landscape.25 In addition, potassium and cesium ions at equilibrium within the interlayer are tightly

confined within ditrigonal coordination cavities with oxygen, with interatomic distances of roughly

3.0 – 3.4  Å.7,  19 Due to this extreme confinement and the detailed structure of ion binding sites,

representing an anhydrous clay layer by a single sheet of coarse-grain sites would likely eliminate

important stiff  stretching and bending degrees of freedom for determining the energetics of ion

diffusion.

We present a coarse-grain model of an anhydrous illite clay system with different coarse

grain types for representing both the tetrahedral and octahedral sheets that attempts to overcome

some of  these  previous  limitations,  and derived through  IBI  using  structural  information  from

ClayFF. Our ClayCG model runs approximately 70 times faster than the all-atom implementation in

ClayFF within the LAMMPS41 simulation environment due to both reduced number of interaction

sites as well as permitting much larger timesteps of up to 10 fs for molecular dynamics simulations.

Hence while ClayFF is typically used to study only a few layers, our ClayCG model is capable of

investigating large systems (10-6 m) on simulation timescales of microseconds, and the model is

available to others through the LAMMPS simulation package. We show that the representation of a

much larger numbers of clay layers is necessary to completely eliminate finite size effects in the

determination  of  converged  diffusion  barriers,  and  allowing  us  to  provide  evidence  of  a



thermodynamic  compensation  mechanism  for  interstratification  of  potassium  and  cesium  ion

distributions in anhydrous illite clay interlayers.

Methods

Simulation cell setup. Classical molecular dynamics (MD) simulations of an atomistic 2-layer illite

clay under periodic boundary conditions were used as a reference for generating a coarse-grain

(CG) model using iterative Boltzmann inversion. The all-atom MD simulations were performed

using the ClayFF42 forcefield within the LAMMPS41 simulation package. The ClayFF forcefield is a

generalized,  nonbonded  model  for  hydrated  clays,  and  consists  mainly  of  Lennard-Jones  and

electrostatic interactions between atomic centers for bulk clay. It has been fitted to multiple multi-

sheet,  aluminosilicate  clay  types  including  kaolinite  (Al2Si2O5(OH)4)  and  pyrophyllite

(AlSi2O5(OH)),  and  has  been  shown  to  reproduce  the  swelling  behavior  of  montmorillonite

(Na3(Si31Al)(Al14Mg2)O80(OH)16) very accurately.42 In addition, ClayFF has been used extensively to

study the dynamics of ion adsorption in hydrated interlayers.43-45 Because of its ability to model

multi-layered  clay  systems  under  a  variety  of  physical  conditions,  ClayFF  was  chosen  as  the

reference atomistic forcefield for our coarse-grain model, and hence the resulting ClayCG model

will inherent all of the strengths and limitations of the parent all-atom force field. 

All-atom molecular dynamics simulations were run at 300 Kelvin for 100 picoseconds with

a timestep of 1 fs after an initial equilibration period of 120 picoseconds. Coordinates of all atoms

were sampled every 250 fs to build an ensemble for using the IBI algorithm. Each coarse-grain

simulation was sampled in the NVT ensemble for 40 picoseconds after an equilibration of 100

picoseconds with a timestep of 3 fs to compromise between fast turnaround time and sufficient

sampling for IBI. To ensure faithful reproduction of the all-atom data, the coarse-grained systems

used during the IBI procedure were mapped directly from the corresponding all-atom systems.

CINEB calculations. Climbing-Image Nudged Elastic Band (CINEB)46-48 calculations were

performed using the  “neb” command within  LAMMPS to  obtain  energy barriers  for  interlayer

counterion (K+ and Cs+)  migration,  using 25 images integrated with a  5 femtosecond timestep.

Before beginning each NEB calculation, both ion position and substitution sites were randomized.

The first image for each NEB calculation was generated by equilibrating the randomized structure,

and the  final  image had one ion from the  first  image displaced to  an  empty binding site.  The

remaining images were generated by linear interpolation of the ion position, so that the ion’s initial

trajectory was a linear path between an occupied and unoccupied site. Oxygen atoms surrounding



the  initial  and  final  ion  binding  sites  were  included  in  the  reaction  coordinate  due  to  their

displacement  during  ion  diffusion.  By  including  these  atoms  in  the  reaction  coordinate,  the

distribution of energy barriers was reduced by around 30% without significantly altering the mean

diffusion barrier value, indicating that this accurately captures important physical effects.

To determine system enthalpies, five-interlayer clay systems with different patterns of ion

interstratification,  periodic  in  the  x-  and  y-directions  with  dimensions  of  93  Å  and  60  Å,

respectively,  were relaxed in the non-periodic z-direction over a period of 150 ps using a  3 fs

timestep.  The z-direction  was non-periodic,  and was initialized at  50 Å.  The simulations  were

integrated  using  the  multilevel  summation  method  (MSM)  real-space  electrostatics.49-50 This

electrostatic integration method computes short-range interactions exactly, and computes long-range

interactions by decomposing the potential into a sum of smooth potentials which are integrated with

a series of progressively coarser meshes. MSM has a competitive level of accuracy as PME for

calculating  long-range  electrostatic  interactions,  and unlike  PME can  be  used  for  non-periodic

systems. Using the “shrink-wrap” feature in LAMMPS41, the z-dimension of the simulation box was

allowed  to  dynamically  change  over  the  course  of  each  simulation  until  convergence.  This

procedure resulted in the system reaching the interlayer spacing that minimized the system enthalpy.

ClayCG  model  parametrization.  The  iterative  Boltzmann  inversion  (IBI)  algorithm  for

coarse-graining attempts to reproduce all-atom pair correlation functions by constructing a pairwise

interaction potential, a consequence of Henderson’s uniqueness theorem.51-52 CG simulations are run

iteratively, and the new pair correlation function  gCG (r)  is used to update the old interaction

potential. Assuming only pairwise effects, the all-atom pair correlation function gA(r)  of gases

can be roughly approximated:

gA (r ) ≈ A e−βu(r )

 (1)

where A is an arbitrary constant, β  is the thermodynamic beta, and u (r )  is the potential as a

function of the radial separation. The iterative Boltzmann inversion algorithm updates the coarse-

grain potential based on the all-atom and CG pair correlation functions:

uCG ,n+ 1 (r )=uCG, n (r )+
1
β (ln ( gCG (r )

gA (r ) ))   (2)



Henderson’s uniqueness theorem is only precisely true for a homogenous fluid, but IBI is a robust

method  of  coarse-graining  that  works  for  heterogeneous  fluids  and  other  phases  as  well.  In

particular,  good  performance  of  the  IBI  algorithm  can  be  expected  if  run  simultaneously  for

“orthogonal” degrees of freedom, such as the inter- and intra-sheet forces in our ClayCG model of

illite. The iterative Boltzmann inversion procedure was interfaced with LAMMPS by updating non-

bonded and bonded coefficients as well as tabulated potentials after each iteration. 

The ClayCG model  of  anhydrous clay  consists  of  5  different  coarse-grain  centers.  This

mapping reduces the number of tracked centers in ClayFF by approximately 2:1 for the bulk clay.

The five ClayCG centers are as follows: 1 CG type for the octahedral sheet (Type Al) corresponding

to the structural Al3+ cations; 2 CG types for the tetrahedral sheet, representing O2- anions directly

adjacent to the interlayer, but are separated into CG types corresponding to oxygen anions near sites

with and without isomorphic substitutions of Al3+ for Si4+ (Type Os and O), so that their interactions

with other CG centers are computed separately in order to capture differences in the binding site

characteristics. In addition, there are two types of ions (Type K and Cs). Silicon and aluminum are

not explicitly tracked in the tetrahedral sheet.

The  ClayCG  sites  experience  five  types  of  forces  based  on  the  following  interaction

potential:  harmonic bonds and angles between neighboring centers in the octahedral and tetrahedral

sheets, Lennard-Jones interactions between CG centers, electrostatics between ion and substituted-

oxygen CG centers, and finally tabulated forces (Eq. (3)). 

U=∑
bonds

kb (r−r0 )
2
+ ∑

angles

ka (θ−θ0 )
2
+∑

LJ

4 ϵ (( σ
r )

12

−( σ
r )

6

)+∑
i

U tab, i. (r )+U electrostatic      (3)

The Lennard-Jones interactions are defined between each pair of CG centers, and are not based on

mixing rules;  this approach was chosen because the CG centers represent different numbers of

atoms  from  the  all-atom  model,  and  therefore  the  pairwise  interactions  are  unlikely  to  be

characterized  by  effective  radii.  Lennard-Jones  interactions  are  slightly  less  computationally

expensive than tabulated forces, and are sufficient for the purposes of this study for characterizing

the forces between sheets. Tabulated potentials are used between the ion and tetrahedral CG centers

to  more  accurately  capture  the  nature  of  the  binding  sites.  Lennard-Jones  interactions  and

electrostatics are excluded for 2nd, 3rd, and 4th neighbors based on the bond and angle topology. After

each round of IBI, the updated ClayCG potential is fitted to either a harmonic or Lennard-Jones

function for most of the degrees of freedom, and this fit is used in the next round of MD simulation.



In some cases, the same parameters were used to characterize multiple interactions due to

the  corresponding  all-atom  model  centers  having  very  similar  pair  correlation  functions.  For

example, one single Lennard-Jones potential was used to govern the nonbonded interaction between

the octahedral and tetrahedral CG sites. This approach further simplifies the model, although it does

not  affect  its  computational  cost. To  run  our  CG clay  model,  all  that  is  needed is  a  properly

configured input script and data file with the clay system coordinates, charges, and topology. No

modification to the LAMMPS software itself is needed to run the model, and the software used to

run the IBI algorithm is entirely separate from the core codebase of any simulation software. The

CG model is highly portable, and should be able to run on any other molecular simulation package

that allows for the implementation of tabulated potentials.

Results

ClayCG performance. Figures 1 and S1 show the distribution of bond distances and angles for the

all-atom and ClayCG models for the degrees of freedom fit with harmonic bonds, in which we

observe overall  excellent agreement. For the non-bonded degrees of freedom, Figures 2 and S2

present the radial  distribution function (RDF) of the all-atom model in comparison to the most

converged iteration for the ClayCG model. Since the fit for the nonbonded degrees of freedom to

the  Lennard-Jones  functions  used  only  the  first  peak  of  each  rdf,  there  is  a  relatively  good

agreement for all pair correlations with the exception of the O-O and O-Al CG types. However,

even in these cases there is relatively good reproduction of the positions of secondary peaks in the

RDFs, indicating that the geometry of the ClayFF and ClayCG systems are quite similar. The model

is well converged based on the similarity of the oxygen-ion CG center RDF to the corresponding

distribution in the all-atom ClayFF model, since these degrees of freedom are the most important

for fully characterizing the ion binding site.

In order to quantify the increase in speed for our coarse-grain model, the all-atom ClayFF

model and the corresponding ClayCG model were run for 3 nanoseconds on 32 cores, and the real

time needed to simulate each 100 fs was recorded. The all-atom system consisted of 2 clay layers

with periodic boundary conditions and a total of 9099 atoms. The ClayCG model ran roughly 6.9

times faster than the corresponding all-atom model with the same timestep. The shortest vibrational

period in the all-atom model is on the order of 10 fs due to the explicit modeling of hydrogen53, and

in contrast the fastest vibrational mode in the coarse-grain model presented here is between oxygen-

oxygen centers, which is on the order of 100 fs.53 Because of this, the ClayCG model is stable with a



timestep of up to 10 fs, while ClayFF must use an integration timestep on the order of 1 fs. Thus our

ClayCG  model  represents  a  roughly  70-fold  speedup  compared  to  the  corresponding  all-atom

forcefield,  which is  comparable  to  the  speedup obtained by other  groups using similar  coarse-

graining techniques.39-40 

Figure 1. Comparison of the probability distribution of bond distances and bond angles for the ClayFF
(solid) and ClayCG model (dotted). (a) Distribution of bond distances for the O-O CG bond; (b) Distribution
of bond angles for the O-O-O 60 degree angle type bond.

Figure 2. Comparison of the radial distribution function (RDF) for the ClayFF (solid) and ClayCG model
(dotted). RDFs for (a) O-Cs CG types and (b) Os-Cs CG types. RDFs were sampled every 250 fs over a time
period of 40 ps in equilibrated systems.

As shown by Johnson et al., the Henderson uniqueness proof implies that there is always a

representability  problem  as  a  general  feature  of  a  CG  potential,  i.e.  a  CG  procedure  cannot

simultaneously  resolve  all  the  properties  at  a  given state  point.54 For  example,  reproducing the

energetics of a system when the coarse-graining approach is based on reproducing structural or

geometric features of the more complex reference system is not formally guaranteed.20, 55 However,



the structural coarse-graining approach is likely to reproduce qualitative trends in properties such as

energetic  barriers  for  ion  diffusion  in  anhydrous  clays,  since  these  barriers  will  be  primarily

determined by mechanical forces. 

Energy barriers to ion migration in pure phases

We  sought to further validate our ClayCG model by performing NEB calculations to determine

diffusion  barriers  for  different  ions  in  the  presence  of  the  same  or  different  ions  in  the  clay

interlayers. The mean energy barrier for the migration of potassium in pure K-illite was found to be

300 ± 94 kJ/mol (Figure 3a) on average, compared to 226 ± 51 kJ/mol in the corresponding ClayFF

model (Figure 3b). We also found for both K+ and Cs+, the energy barrier for diffusion was found to

be much lower in systems with a higher fraction of  Cs+ atoms in the interlayer. This result is in

agreement with the trend derived from the all-atom forcefield, which has led to our determination of

a mechanism for interlayer exchange25, whereby as more Cs+ enters an interlayer, both ion species

become much more mobile, effectively increasing the rate at which the exchange front will advance

into  the  interlayer.7-8,  27 While  the  energy  barriers  derived  from  the  coarse-grain  model  were

consistently higher and had a broader distribution than the corresponding barriers in the all-atom

ClayFF model, these results confirms that the ClayCG model qualitatively reproduces the trends in

diffusion energy barriers for K+ and Cs+ found previously in the all-atom clay model.25

 
Figure 3. Energy barrier distribution for potassium ion diffusion in a 4-layer periodic clay system with
100%  potassium  interlayers.  (a)  ClayCG  model  and  (b)  all  atom  Clay-FF  model1 (reproduced  with
permission). The distribution of energy barriers in the ClayCG model was consistently found to be about 70
kJ/mol higher and 30% more broad than the corresponding all atom barriers. This effect is likely due to the
inherent undersampling of high-energy paths during the IBI algorithm.

Both the CG and all-atom energy barriers correspond to timescales that are inaccessible for

direct observation of diffusion events in MD simulations25, but the ability of the ClayCG model to



approximate the energy barrier trends with respect to all atom ClayFF is promising for using this

coarse-grain model as a probe for changes in diffusion barriers to infer the kinetics of ion exchange.

Properly modeling ion diffusion near and far from the exchange front necessarily requires a model

capable of simulating a large, heterogeneous interlayer, as well as overcoming finite size effects by

modeling many interlayers (i.e. greater than 2), which is extremely computationally expensive in

all-atom ClayFF. 

For sufficiently small periodic systems, the finite size effect can dramatically impact the

compressibility,  and  would  be  expected  to  increase  the  calculated  barrier  to  ion  diffusion

artificially.56 Therefore, we used the ClayCG model to determine the magnitude of the NEB barriers

as a function of the number of simulated layers using periodic 2-interlayer, 4-interlayer, and 12-

interlayer  systems.  Table  1  shows the  average  energy  barrier  for  K+ diffusion  in  K-illite  as  a

function of the number of clay layers, and the energy barrier distributions determined by NEB are

presented in Figure S3. Since there is essentially no observed change in the average energy barrier

and variance between the 4- and 12-interlayer systems, simulating at least 4 interlayers should be

sufficient to approximate an effectively infinite clay for the purposes of this study. 

Table 1. Average Energy Barrier (and variance) for K+ ion diffusion in periodic K-illite as a function of the
number of interlayers. Very small systems greatly overestimate the barrier due to finite size effects. Both the
ClayCG model and the all-atom model in ClayFF feature very broad energy barrier distributions.

# of Interlayers Average Energy Barrier and
variance (kJ/mol)

2 332 +/- 131

4 300 +/- 94

12 298 +/- 95

Interlayer energetics and ion migration barriers in interstratified and homostructured illite.

Mixing of unlike ions in layered silicate interlayers can adopt different structures depending on the

ion distributions in the interlayer of the multi-layer structure. When interlayer ions form random

mixtures the phase is homostructured, and when ions are separated into distinct phase-separated

layers the phase is interstratified.  One advantage  of  our ClayCG model  is the  ability  to  model

numerous clay structures with significantly reduced computational cost. In the following section we

analyze  the  impact  of  homostructured  vs.  interstratified  clay  structures  on  the  barriers  to  ion

migration, and consequently on the kinetics of ion exchange, using ClayCG. 



These systems consisted of four periodic anhydrous interlayer regions between five illite

clay layers stacked in a vertical configuration. The outer layers lack counterions on the exterior

basal  surfaces,  which  is  necessary  to  allow convergence  of  the  simulation  cell  size  during the

shrinkwrap procedure in  LAMMPS. Although redistributing these  ions in  the  interlayers  is  not

physically realistic,  it  is not expected to significantly alter the equilibrium interlayer spacing or

NEB energies, because basal spacing is controlled primarily by the counterion size. 

Table 2. Average energy barrier (and variance) for Cs+ and K+ ion diffusion in a 4-layer periodic
clay system as a function of interlayer composition. Each system featured a homogenous mixture of
bound Cs+ and K+ ions in all four interlayers. Interlayer expansion as a function of composition was
very nearly linear, with an interlayer expansion of 0.071 Å under complete exchange for Cs+.

Fraction Cs+ in 
the interlayer

K+ NEB Barrier and 
Variance (kJ/mol)

Cs+ NEB Barrier and 
Variance (kJ/mol)

Interlayer
Spacing (nm)

0 300 ± 94 321 ± 83 0.984

0.25 286 ± 83 309 ± 75 0.997

0.5 279 ± 94 295 ± 68 1.015

0.75 262 ± 84 283 ± 88 1.032

1 243 ± 74 272 ± 83 1.055

Figure  4.  Visualization  of  a  periodic  four  layer  homostructured  clay  particle  in  VMD.59

Orthographic representation showing bulk clay (gray), cesium (red), and potassium (blue) coarse-
grain types. The structure is periodic in all three dimensions, with ions at the top in contact with the
clay layer at the bottom of the image.

The results in Table 2 summarize the energy barriers to ion migration as a function of layer

Cs+ content for homostructured K/Cs-illites (Figure 4), in which each interlayer consisted of both

Cs+ and K+ ions positioned randomly at counterion binding sites. As expected, both ions experience

dramatically reduced energy barriers in Cs-illite compared to K-illite due to interlayer expansion,



and there is a  nearly linear trend in  the change in barrier  height as a function of composition,

consistent with prior results using atomistic models.25 As a function of the change in equilibrium

interlayer  spacing,  these  results  correspond  to  a  decrease  in  the  average  barrier  energy  of

approximately -71 kJ/mol per Å for Cs+ and -78 kJ/mol per Å for K+. This ClayCG result is similar

in magnitude to the change in energy barrier found in the previous all-atom ClayFF model of -92

kJ/mol per Å for K+,25 on which the CG model is based. 

We next consider the change in thermodynamics and kinetic barriers arising from illite clay

structures with interstratification. We evaluate the excess mixing enthalpy computed as:

Δ Hmix=H X−f Cs HCs−f K H K                                                     (4)

where  Δ Hmix  is the excess enthalpy of mixing (i.e., the difference between the real and ideal

enthalpy values),  H X  is the computed minimum enthalpy of the clay system being simulated,

f i  is the fraction of ion i  in the clay system, and HCs  and HK  are the enthalpies of five-

layer clay containing only cesium and potassium in their interlayers, respectively (see Methods).

For all of the five-layer systems investigated, each interlayer was occupied exclusively by one type

of  ion  and did  not  have  an  exchange  front.  In  the  following tables,  each five-layer  system is

abbreviated using the identity of the ions in its interlayers from the bottom to the top as a code. For

example, the system corresponding to “Cs Cs K K” had two adjacent interlayers filled by cesium

ions below two interlayers filled by potassium ions as seen in Figure 5.

Figure  5. Visualization  of  a  non-periodic  five  layer  interstratified  clay  system  in  VMD.57 (a)
Orthographic representation showing bulk clay (gray), cesium (red), and potassium (blue) coarse-
grain types; (b) top-down visualization of the three sheets in each clay layer; (c) CG centers of the
tetrahedral sheet with substitutions shown in purple; (d) CG centers of the octahedral sheet.



Table 3 summarizes the trends in the layer basal spacing, energy barriers to migration, and

normal  stress  in  the  z-direction  on  both  types  of  ions  within  different  interstratification

arrangements. For both K+ and Cs+ ions, the overall trend is towards increasing normal stress (and

therefore cohesion) with decreasing interlayer spacing. The presence of Cs-illite decreases z-axial

stress on K-illite layers, while the presence of K+ in the structure tends to increase z-axial stress on

Cs+ interlayers. This finding suggests that the longstanding supposition2 that exchange on a layer

increases cohesive energy in neighboring K+ interlayers is incorrect, at least when the adjacent layer

also contains anhydrous counterions. Instead, we find that exchange on one layer, regardless of its

proximity to the clay interior, alters the basal spacing and cohesive energies of ions in immediately

adjacent layers. As shown in Figure 6, the magnitude of this effect decreases rapidly as a function of

distance from the exchanged layers, and is nearly undetectable only a few layers away from the Cs-

illite/K-illite interface.

Table 3. Trends in interlayer spacing, ion diffusion energy barrier, z-axial stress, and excess mixing
enthalpy  versus  interstratification.  In  general,  both  z-axial  stress  and  diffusion  energy  barrier
increase  dramatically  with  increasing  interlayer  confinement.  Adjacent  Cs+ interlayers  are
associated with a higher excess enthalpy of mixing, suggesting a thermodynamic compensation for
alternation of Cs-illite and K-illite interlayers interstratified particles. For interstratified particles,
NEB barriers are computed for interlayers adjacent to the of Cs-illite/K-illite interface.

Interstratification Type
Interlayer

spacing (nm)
NEB energy

(kJ/mol)
z-stress 

(atm)
ΔΗmix 

(kJ/mol)

Cs in Cs Cs Cs Cs 1.055 273 1.25

Cs in K  Cs Cs Cs 1.046 284 1.27 3.33

Cs in Cs Cs K  K 1.043 289 1.29 -5.89

Cs in Cs K  Cs K 1.038 291 1.35 -9.93

Cs in Cs K  K  K 1.041 288 1.41 -7.09

Cs in K  Cs K  K 1.037 286 1.38 -7.32

Cs in Cs K Cs Cs 1.049 279 1.30 0.70

K  in K  K   K  K 0.984 299 1.64

K  in Cs K  K  K 0.994 289 1.60 -7.09

K  in Cs Cs K  K 0.999 278 1.57 -5.89

K  in Cs K  Cs K 1.005 275 1.48 -9.93

K  in K  Cs Cs Cs 1.001 273 1.47 3.33

K  in K  Cs K  K 0.990 294 1.60 -7.32



K  in Cs K Cs Cs 1.001 274 1.50 0.70

Figure 6.  Reduction in  K+ diffusion barrier  in  a four  layer  interstratified particle.  The barrier
reduction to K+ diffusion in a “Cs K K K” particle relative to bulk K-illite is shown as a function of
the distance from the Cs-illite/K-illite interface.

For both types of ions, there is a clear trend of increasing energy barrier under increased

confinement. In the case of only one Cs-illite layer present in bulk K-illite, it is clear from the

interlayer spacing and normal stress that the cesium interlayer experiences maximal compression.

To confirm this, NEB calculations were run on the displacement of a Cs+ ion in Cs-illite in the

middle of a 12-layer K-illite particle. The barrier in this case was found to be 288 kJ/mol, very

similar to the 286 kJ/mol barrier for Cs+ diffusion in the “K Cs K K” particle (Table 3), supporting

the conclusion that interlayer compression and expansion in interstratified particles is a localized

effect. Similarly, a K-illite layer isolated in bulk cesium relaxes to a much larger spacing. 

The compensatory expansion and compression of neighboring layers may explain why the

change in Cs+ and K+ diffusion barriers in interstratified systems is greater than the corresponding

change in homostructured systems for a given interlayer spacing (summarized in Figure S4). In

homostructured clays, the local interlayer spacing near a Cs+ counterion is greater than the average

interlayer spacing due to its larger atomic radius, resulting in a lower migration barrier for a given

spacing. The opposite is true for K+ counterions, which experience greater local confinement in



homostructured clays than would be expected from measuring the average interlayer spacing alone.

In contrast, the compression and expansion of interlayers in interstratified clays results in a more

uniform interlayer spacing, and therefore a more dramatic change in the diffusion barrier of ion

migration. This effect may also be an artifact of using ClayFF as the all-atom reference model to

create our CG model, as ClayFF is known to overpredict flexibility in large clay systems.

From the trends in the energy barriers to ion diffusion in K-illite interlayers adjacent to Cs-

illite  interlayers  (Table  3),  one  would  assume that  exchange  would  be  enhanced near  cesium-

dominated interlayers instead of being inhibited. That is, diffusion energy barriers in neighboring K-

illite  interlayers  are  lowered  in  the  immediate  vicinity  of  a  Cs-illite  interlayer.  Experimental

evidence for the Cs/K system is insufficient to confirm or refute this hypothesis, but there is some

visual evidence that Cs exchanged layers occur in clumps in a K-phlogopite and are not randomly

distributed, as expected from these results.8 

Impact of the exchange front on barriers. Exchange of ions of different size leads to bending

deformation of the layer structure locally, which may alter the coordination of K+ in the vicinity of

the exchange front.58 In this case, the selectivity for and mobility of K+ is expected to vary with the

sharpness and uniformity of the front. In order to capture the effects of the sharp exchange front in

anhydrous illite clay systems7-8, 25, a series of simulations were performed in which all ions on one

half of the exchanging layer were assigned to be Cs+  and all ions on the other half were assigned to

be  K+. The exchange front was modelled in a periodic, four-layer clay system that featured one

completely exchanged interlayer below the exchange front and two fully unexchanged interlayers

above the exchange front. Ions far from the exchange front did not have significantly altered energy

barriers to diffusion compared to barriers in an interstratified particle, but K+ ions characterized at

the interface showed a slightly reduced average energy barrier compared to an interstratified clay

with no exchange front barrier (273 kJ/mol vs. 278 kJ/mol). In comparison with the results of the

energy  barrier  distribution  presented  in  Table  2,  K+ ions  near  the  exchange  front  experience

approximately 20% additional barrier lowering (27 kJ/mol) with respect to the barrier in pure K-

illite as compared to ions far from the front (22 kJ/mol), and ions more than approximately 2 to 3

nm from the exchange front are essentially unaffected by it.

Thermodynamic  compensation  for  ordered  interstratification.  Amongst  all  of  the  non-

periodic  four  interlayer  systems  studied,  the  system  “K  Cs  K  Cs”  exhibited  the  greatest

thermodynamic compensation for interstratification. Overall, the Δ Hmix  trends indicate that there



is a thermodynamic driver during the exchange process to form alternating  K-illite and  Cs-illite

layers (i.e. ordered interstratified structures).11, 28, 59 Exchange will tend to disrupt bulk K-illite, and

thermodynamic  feedback  will  favor  exchange  that  leads  to  the  formation  of  ordered

interstratification instead of regions of bulk Cs-illite. However, the thermodynamic compensation

for forming ordered interstratification is quite small (at most around 10 kJ/mol), indicating that it is

unlikely to be the primary cause of experimentally observed differences in the exchange rate of

adjacent interlayers.7-8

Conclusions

We have presented a coarse-grain model of anhydrous K- and Cs-illite, ClayCG, that represents a

70-fold speedup over its  parent all-atom ClayFF forcefield.  Although using tabulated potentials

between the oxygen coarse-grain centers may slightly improve the fidelity of modeling the ion

binding sites, there is a non-negligible computational cost savings associated with using Lennard-

Jones potentials as compared to splined tabulated potentials.60 While other CG clay models have

represented ion  binding sites  as  single  CG centers39-40,  the  model  presented here  is  capable  of

capturing physical degrees of freedom important during ion diffusion in the confined interlayer.7, 19

By modeling  all  the  atoms  within  and  adjacent  to  the  interlayer,  we  were  able  to  accurately

reproduce the structure of ion binding sites without significant computational overhead. 

The reduction in particle density due to the coarse-grain procedure is especially helpful for

nudged elastic band simulations, since the number of molecular dynamics steps necessary to reach

convergence of the energy pathway is heavily dependent on system size and the number of particles

surrounding  the  transition  path.  We  were  able  to  converge  NEB pathways  on  relatively  large

systems,  which  is  promising  for  probing  the  energy  barriers  in  physical  scenarios  that  would

necessitate investigating bulk effects. Our ClayCG model qualitatively reproduced the ion diffusion

energy trends as a function of interlayer separation found in ClayFF25 and demonstrates interlayer

expansion  near  sharp  exchange  fronts  and near  fully  exchanged layers.  Our  model  indicates  a

significant enthalpy of mixing associated with adjacent K- and Cs-illite interlayers in interstratified

particles, which may impact exchange front propagation in adjacent interlayers. Future work will

extend the coarse-graining strategy used here for ClayCG to other anhydrous and swelling clays.

While the intrasheet CG bond potentials developed here for anhydrous illite will be directly portable

to other clay systems, this will require introducing new intermolecular potentials for additional CG

types using IBI, including water61.
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