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Abstract

A key aim for current genome‐wide association studies (GWAS) is to inter-

rogate the full spectrum of genetic variation underlying human traits, in-

cluding rare variants, across populations. Deep whole‐genome sequencing is

the gold standard to fully capture genetic variation, but remains prohibitively

expensive for large sample sizes. Array genotyping interrogates a sparser set of

variants, which can be used as a scaffold for genotype imputation to capture a

wider set of variants. However, imputation quality depends crucially on re-

ference panel size and genetic distance from the target population. Here, we

consider sequencing a subset of GWAS participants and imputing the rest

using a reference panel that includes both sequenced GWAS participants and

an external reference panel. We investigate how imputation quality and GWAS
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power are affected by the number of participants sequenced for admixed po-

pulations (African and Latino Americans) and European population isolates

(Sardinians and Finns), and identify powerful, cost‐effective GWAS designs

given current sequencing and array costs. For populations that are well‐
represented in existing reference panels, we find that array genotyping alone is

cost‐effective and well‐powered to detect common‐ and rare‐variant associa-
tions. For poorly represented populations, sequencing a subset of participants

is often most cost‐effective, and can substantially increase imputation quality

and GWAS power.

KEYWORD S

genotype imputation, genotyping, GWAS, rare variants, sequencing, study design, WGS

1 | INTRODUCTION

Genome‐wide association studies (GWAS) have detected
thousands of common genetic variants associated with
hundreds of complex diseases and traits (MacArthur
et al., 2016). A key aim for the next wave of GWAS is to
interrogate the full spectrum of genetic variation underlying
human genetic traits, including rare (minor allele frequency
[MAF]< 0.5%) variants, across a wide range of human po-
pulations. Detecting association at rare variants requires both
more comprehensive genomic coverage and sufficient sam-
ple size. Deep whole genome sequencing (WGS) is the gold
standard method for capturing rare variation; however, even
in the era of the $1,000 genome, large WGS association
studies remain prohibitively expensive. Genotype imputation
has been a mainstay of GWAS, providing increased genomic
coverage from inexpensive array‐based genotype call sets.
While initial imputation studies only surveyed common
variants (e.g., Scott et al., 2007), larger and more diverse
reference panels now enable more accurate and
comprehensive imputation of rare and low‐frequency
(0.5%<MAF<5%) variants across a wide range of popu-
lations (e.g., Mahajan, Wessel, et al., 2018).

Imputation algorithms model haplotypes in the study
sample as mosaics of haplotypes in a reference panel (e.g.,
from the International HapMap Project Consortium, 2010 or
1000 Genomes Project Consortium, 2015) to predict geno-
types at untyped variants (Li, Willer, Sanna, & Abecasis,
2009). By increasing genomic coverage and accuracy, im-
putation increases statistical power to detect association,
enables more complete meta‐analysis of results from multi-
ple studies, and facilitates the identification of causal variants
through genetic fine‐mapping (Das et al., 2016; Li et al.,
2009). Imputation coverage and accuracy depend crucially
on the size of the reference panel and the genetic distance
between reference and target populations (Li et al., 2009;
Roshyara & Scholz, 2015). The largest current broadly

available reference panels, for example, from the Haplotype
Reference Consortium (HRC; McCarthy et al., 2016) and
UK10K project (UK10K; UK10K Consortium, 2015), include
tens of thousands of predominantly European individuals.
These panels provide near complete imputation of genetic
variation down to MAF~ 0.1% for many European popula-
tions, but lower imputation quality for non‐European and
admixed populations and population isolates, particularly for
rare and low‐frequency variants (Deelen et al., 2014; Pistis
et al., 2015; Zhou et al., 2017). The 1000 Genomes Project and
HapMap panels include individuals from diverse worldwide
populations, but provide more limited imputation coverage
and accuracy due to their smaller sample sizes.

Capturing rare variation across diverse populations is
crucial to detect population differences in genetic risk factors,
accurately predict genetic risk, and identify causal variants
and biological mechanisms through trans‐ethnic fine‐
mapping (Kichaev & Pasaniuc, 2015; Popejoy & Fullerton,
2016). Population‐matched or multiethnic reference panels
can improve imputation quality and coverage for rare var-
iants in GWAS of diverse populations (Ahmad et al., 2017;
Deelen et al., 2014; Lencz et al., 2018; Pistis et al., 2015; Van
Leeuwen et al., 2015; Zhou et al., 2017); this approach has
enabled discovery of novel loci and refinement of association
signals for multiple populations and complex traits (Auer &
Lettre, 2015; Holm et al., 2011; Pistis et al., 2015).

Here, we consider an approach in which a subset of
study participants is whole genome sequenced and the
rest are array‐genotyped and imputed using an aug-
mented reference panel that comprises the sequenced
participants and individuals from an external reference
panel (Hu, Li, Auer, & Lin, 2015; Zeggini, 2011). This
hybrid sequencing‐and‐imputation strategy provides
more comprehensive coverage than array genotyping
alone, and is less costly than WGS the entire sample. We
and others have used this strategy (Fuchsberger
et al., 2016; Sidore et al., 2015; Steinthorsdottir
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et al., 2014; Van Leeuwen et al., 2015), but no analysis of
coverage, power, and cost‐effectiveness has been carried
out to date. Here, we assess how imputation coverage and
power to detect association vary across genotyping arrays
and as a functions of the number of population‐matched
individuals sequenced and included in the reference
panel for two admixed populations (African Americans
and Latino Americans) and two European population
isolates (Sardinians and Finns) to identify powerful
and cost‐effective GWAS strategies in these populations.
We also describe an interactive web‐based tool to assist
researchers in the design and planning of their
own GWAS.

2 | METHODS

We first describe WGS data sources used in our analysis.
Next, we describe imputation strategies, and outline proce-
dures and imputation quality metrics to compare these
strategies. Finally, we present a novel method to estimate
power for the sequencing‐only, imputation‐only, and
sequencing‐and‐imputation strategies. For ease of presenta-
tion, we assume a dichotomous trait and a multiplicative
disease model, although our findings generalize easily to
continuous traits and other genetic models.

2.1 | Data resources

We used WGS data on 11,920 individuals to assess im-
putation quality across reference panel configurations
and genotyping arrays for admixed populations and po-
pulation isolates. For our analysis of admixed popula-
tions, we used WGS data on 3,412 African Americans
(participants from the Jackson Heart Study [phs000964])
and 2,068 Latino Americans (participants of Puerto Rican
and Mexican descent from the GALA II study
[phs000920] and Costa Rican descent from the Genetic
Epidemiology of Asthma in Costa Rica and CAMP stu-
dies [phs000921]) in the National Heart, Lung, and Blood
Institute (NHLBI) Trans‐Omics for Precision Medicine
(TOPMed) WGS program. For our analysis of isolated
populations, we used WGS data on 2,995 Finns (partici-
pants of the GoT2D, 1KGP, SISu, and Kuusamo studies)

and 3,445 Sardinians (participants of the SardiNIA study)
in the HRC (EGAS00001001710).

2.2 | Procedures to evaluate imputation
coverage and accuracy

We considered three imputation strategies: (a) using se-
quenced study participants as a study‐specific reference
panel, (b) using an external reference panel alone (for
this comparison, the HRC or HRC subset excluding in-
dividuals from the target population), and (c) using an
augmented panel that comprises sequenced study parti-
cipants and an external panel.

For African Americans, who are underrepresented in
the current version 1.1 of the HRC, we constructed
population‐specific and HRC‐augmented reference pa-
nels with 0–2,000 African Americans. For Latino Amer-
icans, we used the same approach but restricted the
study‐specific panel size to <1,500 due to the more lim-
ited available sample of sequenced Latino American in-
dividuals. For Finns and Sardinians, which are present in
the HRC, we constructed augmented reference panels
that comprised the 29,470 non‐Finnish or 29,020 non‐
Sardinian individuals in the HRC together with 0–2,000
Finns or Sardinians from the HRC.

For each population, each imputation strategy, and
each of three commonly used genotyping arrays (Table 1),
we used sequence‐based genotype calls at marker variants
present on the array as a scaffold for imputation using
Minimac3, masking the remaining sequence‐based geno-
type calls (Das et al., 2016). Results using other commonly
used imputation software, for example, IMPUTE2 (Howie,
Donnelly, & Marchini, 2009) and Beagle (Browning &
Browning, 2016), are expected to be highly similar to those
from Minimac3 based on previous studies comparing
performance and consistency across genotype imputation
software (e.g., Browning & Browning, 2016; Roshyara,
Horn, Kirsten, Ahnert, & Scholz, 2016; Shi et al., 2018).
We then compared the imputed genotype dosages to the
true (masked) genotypes to estimate (a) imputation r2,
the squared Pearson correlation between true genotype
and imputed dosage, and (b) imputation coverage, the
proportion of variants with imputation r2 > 0.3 and
minor allele count (MAC) ≥5 (the MAC threshold used

TABLE 1 Genotyping arrays used for
comparisons

Array
No. marker
variants

List cost per sample
Illumina (2018)

Illumina Infinium Core 307 K $49

Illumina Infinium OmniExpress 710 K $94

Illumina Infinium Omni2.5 2.5M $172
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by the HRC panel, McCarthy et al., 2016) in the re-
ference panel.

2.3 | Estimating power to detect
association using empirical imputation
quality data

When sequenced individuals are included in the re-
ference panel, power calculations should account for the
interdependence between imputation r2 and the number
of participants sequenced n, and for the possibility that
the variant is not imputable (absent in the reference pa-
nel or not imputed due to insufficient MAC, or filtered
before association analysis due to imputation r2 falling
below a given threshold). While common variant asso-
ciations are likely to be captured by LD proxy single
nucleotide polymorphisms (SNPs) even when the causal
variant is not directly genotyped or imputed, rare variant
associations are much less likely to be captured by proxy
SNPs (Montpetit et al., 2006). Here, we assume that
power to detect association for variants that are not im-
putable is zero. This assumption affects power calcula-
tions almost exclusively for rare variants, since common
variants are almost uniformly imputable with large re-
ference panels (Das et al., 2016; McCarthy et al., 2016).

We assume that the n participants who are sequenced
are randomly subsampled from the overall sample of
n m+ study participants, and that test statistics are cal-
culated separately for the sequenced and imputed sub-
samples and combined using the effective sample size
weighted meta‐analysis test statistic Z =nm

c Z c Z+ (1 − )nm n
seq

nm m
imp1/2 1/2 , where c n n r m= /( + )nm

2 .
The asymptotic distribution of Z η n r m− +nm

2 is
normal with mean 0 and variance 1, where r2 is the
squared correlation between imputed dosages and true
genotypes, and η is an effect size parameter which is
equal to 0 under the null hypothesis of no association.
The form of η depends on the association model (e.g.,
additive, dominant, multiplicative), RR or odds ratio,
MAF, and population prevalence and, for binary traits,
the case–control ratio. Under an arbitrary association
model for binary traits, we can write

η
p p

s v v p p
=

2( − )

(1 + )( + ) + 4( − )

case control

case s control case control
1 2

where pcase and pcontrol are the alternate allele frequencies
in the disease‐positive and disease‐negative populations,
vcase and vcontrol are the variances of genotypes in the
disease‐positive and disease‐negative populations, and s

is the GWAS case–control ratio.

To estimate power while accounting for variability in
imputation r2 and the possibility that a variant is not
imputable, we average empirical imputation r2 values
and MACs across variants from experiments with real
data described in the previous section. Specifically, we
estimate power to detect association when n individuals
are sequenced and m are genotyped and imputed as
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where ϕ u e π( ) = / 2−u2

2 is the standard normal density
function, z α1− /2 is the α‐level significance threshold,
rnj
2 is the imputation r2 value for the jth variant,
C I MAC r= ( 5, 0.3)nj nj

panel
nj
2≥ ≥ is an indicator equal to 1

if the jth variant was imputable and 0 otherwise, and
MACnj

panel is the reference panel MAC for the jth variant
when the n sequenced individuals from the target po-
pulation were included in the reference panel.

We define the first weight term w P p P p= ( ˆ )/ ˆ ( ˆ )j
MAF

N
GWAS

j N j ,
where N is the total number of samples used in our analysis
for the given population (e.g., N=3,412 for African Amer-
icans), p̂j is the sample MAF for the jth variant in the total
sample, P xˆ ( )N is the proportion of variants with MAF= x ,
and P x( )N

GWAS is the probability of observing sample
MAF= x in a sample of size N given the specified associa-
tion model. For example, in a GWAS with sample size N and
case–control ratio s, the sampleMAC (which is equal to Np2 ˆ,
where p̂ is the sample MAF) is approximately Poisson distri-
buted with mean N sp p s2 ( + )/( + 1)case control , where p =case

pγ p γ/[1 + ( − 1)] and p p Kp= ( − )/control case K(1 − ) for
a variant with population MAF p and RR γ for a disease
with prevalence K . This weighting approach adjusts for dif-
ferences between the empirical distribution of MACs across
variants in real data, and the theoretical MAC distribution
for a variant with the specified MAF, effect size, prevalence
in a GWAS with sample size N and case–control ratio s.

The second weighting term wj
PS accounts for the

probability that a variant with the specified population
MAF p is population‐specific (monomorphic outside the
target population), and is defined

w

P p P p j

P p P p

=

ˆ ( )/ ˆ ( ˆ ), variant is population

‐specific,

[1 − ˆ ( )]/[1 − ˆ ( ˆ )], otherwise,

j
PS

PS PS j

PS PS j

⎧
⎨
⎪⎪

⎩
⎪⎪

where P xˆ ( )PS is the fraction of variants that are
population‐specific among variants with MAF= x in the
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target population. This adjustment factor ensures
that the weight assigned to population‐specific variants
in power calculations reflects the probability that a
variant with the specified population MAF p is
population‐specific.

3 | RESULTS

First, we compare strategies to improve imputation using
study‐specific WGS data for African Americans, Latino
Americans, Sardinians, and Finns. Next, we assess the
effects of genotyping array on imputation quality and cov-
erage for each population and reference panel. We then use
these results to estimate statistical power to detect associa-
tion as a function of study‐specific panel size, number
of participants imputed, external reference panel, and
genotyping array. Finally, we identify cost‐effective study
designs by comparing statistical power and total experi-
mental (sequencing and genotyping) costs for sequencing‐
only, imputation‐only, and sequencing‐and‐imputation
GWAS designs for each population and genotyping array.

3.1 | Strategies to improve imputation
using Study‐Specific WGS data

We compared imputation r2 and coverage (proportion of
variants with imputation r2 > 0.3 and reference MAC≥ 5)
for three imputation strategies: (a) using an external

reference panel (the HRC or HRC subset) alone, (b) using
an augmented reference panel that combines the study‐
specific and external panels, and (c) using a study‐specific
reference panel alone.

The external panel alone (HRC for Latino Americans
and African Americans, and HRC subset that excludes
individuals from the target population for Finns and
Sardinians) provided 96% imputation coverage for
MAF≥ 0.25% variants (where MAF is calculated sepa-
rately within each population) for Finns, 84% coverage
for Sardinians, 86% coverage for Latino Americans, and
77% coverage for African Americans (Figure 1, top row).
The relatively lower coverage for African Americans is
expected since the HRC consists primarily of Central and
Northern Europeans, who are genetically closer to Finns
and Sardinians, and includes relatively few Africans or
African Americans. Despite the small number of Latino
or Native Americans included in the HRC, imputation
coverage was slightly higher for Latino Americans than
for Sardinians. This may reflect the high degree of Eur-
opean admixture in many Latino American populations
(Bryc et al., 2010), and the abundance of population‐
specific rare and low‐frequency variants in the Sardinian
population (Sidore et al., 2015).

Augmenting an external reference panel with even
a relatively small number of sequenced individuals
substantially increased coverage, particularly for Afri-
can Americans and Sardinians, and for variants with
lower MAF. For example, augmenting the external
panel with 500 sequenced individuals from the study

FIGURE 1 Imputation quality by population and genotyping array. Imputation coverage (upper panels) and mean imputation r2

(lower panels) as functions of the number of population‐matched individuals included in augmented reference panels (number
sequenced, x‐axis). Here and elsewhere, MAF is calculated separately within each population. MAF, minor allele frequency
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population improved overall imputation coverage for
MAF = 0.25–0.5% variants by 4% for Finns, 9% for La-
tino Americans, 16% for African Americans, and 23%
for Sardinians genotyped using the OmniExpress re-
lative to the external panel alone (Figure 1). Similarly,
augmenting the external reference panel with even
200 individuals increased imputation coverage for
MAF = 0.1–0.25% variants by 3%, 4%, 6%, and 10%
relative to the external panel alone for Finns, Latino
Americans, African Americans, and Sardinians,
respectively.

With 2,000 individuals from the target population (or
1,500 for Latino Americans), population‐specific panels
provided roughly equivalent imputation r2 compared to
augmented panels (Figure S1A); however, augmented
panels provided higher imputation coverage overall for
low MAF variants (Figure S1B). For example, augmented
panels with 2,000 individuals from the target population
(or 1,500 for Latino Americans) provided 86%, 80%, 79%,
and 86% coverage for 0.1–0.25% MAF variants for Finns,
Latino Americans, African Americans, and Sardinians
respectively, whereas population‐specific panels alone
provided 72%, 51%, 78%, and 72% coverage using the
Omni Express array. However, imputation coverage for
variants with MAF> 0.25% differed by <1% between
augmented and population‐specific panels with 2,000
individuals from the target population (or 1,500 for
Latino Americans) for all populations and genotyping
arrays. When a smaller number (less than 500) of in-
dividuals from the target population are sequenced,
augmented reference panels provided substantially
higher imputation coverage and r2 than population‐
specific panels alone. For example, augmented panels
with 500 individuals from the target population provided
90%, 85%, 65%, and 85% coverage for 0.25–0.5% MAF
variants for Finns, Latino Americans, African Americans,
and Sardinians, respectively, whereas population‐specific
panels of 500 individuals provided <30% coverage using
the Omni Express array.

Even very rare variants (MAF = 0.1–0.25%) at-
tained high coverage across all populations given a
sufficient number of population‐matched individuals
in the reference panel. For example, attaining >70%
imputation coverage for MAF = 0.1–0.25% variants
required a study‐specific panel of >1,800 individuals
for African Americans, 1,000 for Latino Americans,
700 for Sardinians, and 0 for Finns using the Om-
niExpress. These increases in imputation coverage
primarily reflect increasing numbers of population‐
specific variants captured in the reference panel,
which are absent from or present in low copy number
in the external panel.

3.2 | Imputation coverage and quality
across genotyping arrays

Imputation coverage was generally similar for the Om-
niExpress and Omni2.5 arrays, but consistently lower for
the less dense Core array. Coverage differed by <7% be-
tween the OmniExpress and Omni2.5 across all MAF
bins, populations, and reference panels, whereas the Core
provided up to 24% lower coverage than the Omni2.5
(Figure 1, upper panels). Imputation coverage was more
heterogeneous across arrays for populations with greater
genetic distance from the external reference panel (e.g.,
African Americans and the HRC panel), particularly with
smaller (or absent) study‐specific panels. Because we
used the same reference panels for each genotyping ar-
ray, differences in imputation coverage between arrays
are solely due to differences in the proportion of variants
that attained imputation r 0.32 ≥ . Imputation r2 varied
more across genotyping arrays than did imputation cov-
erage (Figure 1, lower vs. upper panels); however, the
magnitude of differences in imputation r2 between arrays
was still generally modest, particularly for the Finns and
Sardinians.

3.3 | Powerful and cost‐effective
strategies for GWAS across populations

We compared the cost‐effectiveness of sequencing‐only,
imputation‐only, and sequencing‐and‐imputation strate-
gies by analyzing statistical power to detect association as
a function of numbers of study participants sequenced
and imputed, genotyping array, and reference panel
across a range of genetic models. Here, we define the
most cost‐effective strategy as either (a) minimizing total
experimental (sequencing and genotyping) cost while
attaining power at or above a given threshold, or
equivalently (b) maximizing power while maintaining
cost no greater than a specified constraint.

The cost‐effectiveness of sequencing a subset of study
participants varied greatly across populations. For Finns,
imputation‐only designs were most powerful to detect
association and adding sequenced individuals increased
power only minimally, even for low‐frequency and rare
variants. For Sardinians, Latino Americans, and African
Americans, sequencing a subset of study participants was
optimal, and often achieved substantially greater power
than imputation‐only or sequencing‐only studies. For
example, a GWAS of African Americans with equal
numbers of cases and controls in which 400 participants
are sequenced and 11,100 are imputed using the Illumina
Infinium Core array has 90% power to detect a risk
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variant with MAF= 0.5% and RR= 4 for a disease with
prevalence 1%, whereas an imputation‐only GWAS with
the same total cost (19,250 participants) has only 68%
power (Figure 2). Even for populations in which optimal
sequencing‐and‐imputation designs had substantially
greater power than imputation‐only, the optimal number
to sequence was often modest. For example, only
210 participants are sequenced under the optimal design
using the Illumina OmniExpress to attain 80% power in
the previous example (Figure 3). This is expected because
even a relatively small study‐specific panel can sub-
stantially increase imputation coverage (Figure 1, upper
panels).

3.4 | Denser genotyping arrays versus
sequencing: Which is more cost‐effective
to increase power?

Imputation coverage and power to detect association can
be increased by using denser genotyping arrays, which
provide a more informative framework for imputation, or
by sequencing population‐matched individuals and aug-
menting the reference panel. We assessed the cost‐
effectiveness of these two strategies by comparing power
to detect association across genotyping arrays for study
designs that have the same total cost assuming $1,000 for
WGS and current list prices for genotyping arrays
(Table 1). As expected, the optimal number of participants

sequenced to maximize power given fixed total cost gen-
erally decreased with increasing array density. For example,
the optimal number sequenced to maximize power to detect
association was 500, 300, and 90 for the Infinium Core,
OmniExpress, and Omni2.5, respectively for Sardinians gi-
ven total sequencing and genotyping budget of $2M for a
risk variant with RR= 2, MAF= 1%, and disease prevalence
1%. Power to detect association under the optimal design
given a fixed total cost was generally greater for sparser
arrays; in the previous example, power under the optimal
design was 98%, 91%, and 55% for the Infinium Core,
OmniExpress, Omni2.5.

We also compared optimal designs to attain power
above a given threshold at minimum total cost across
genotyping arrays based on the per‐sample array geno-
typing costs reported in Table 1. Generally, sparser arrays
were more cost‐effective (reached the power threshold
with lower total cost) than dense arrays. In fact, the
sparsest genotyping array in our analysis, the Infinium
Core, was most cost‐effective across all disease models
and populations apart from African Americans, for
whom the Infinium OmniExpress was most cost‐effective
for some rare‐variant disease models. This last result is
unsurprising given the substantial difference in imputa-
tion coverage between the Infinium Core and Omni ar-
rays for African Americans (Figure 1). Importantly, our
analysis assumes (a) a direct trade‐off between the GWAS
sample size and sequencing/array genotyping costs, and
(b) no additional costs per GWAS sample other than

FIGURE 2 Power and optimal design by population and genotyping array. Power to detect association for case–control studies
with equal numbers of cases and controls as a function of sequenced subsample size (x‐axis) and imputed subsample size (y‐axis) for
a variant with MAF 0.5% and RR 4 for a disease with prevalence 1%. Axes are scaled to reflect costs of genotyping arrays (Table 1)
and sequencing ($1 K per sample). Dashed diagonal lines indicate study designs with the same total cost, given by y= a− bx, where
a = (Totalcost/(Arraycost) and b = (Sequencingcost)/(Arraycost). Circled points indicate optimal study designs, which attain the
indicated power level at minimum total experimental cost (or, maximize power at the indicated total experimental cost), shown only
for optimal designs with total genotyping cost≤ $2M ($1.5 M for Latino Americans). MAF, minor allele frequency; RR, relative risk
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sequencing/genotyping. Under these assumptions, we
found that denser arrays are generally less cost‐effective
than sparser arrays; of course, denser arrays provide
higher imputation coverage given a fixed GWAS
sample size.

3.5 | Optimal study design as a function
of MAF and effect size

Power to detect association under a given study design
depends on MAF, effect size (relative risk [RR] or odds
ratio), and population prevalence Sham and Purcell
(2014). These parameters also influence the relative cost‐
effectiveness of sequencing and imputation. While com-
mon variants can be accurately imputed with small re-
ference panels, large population‐matched reference
panels are needed to capture rare (population‐specific)
variants. In Figure 3, we illustrate the impact of se-
quencing on statistical power for two combinations of
MAF and effect size in each of the four study populations.

The optimal percentage of study participants se-
quenced to attain ≥80% power to detect association at
minimum total cost increases with decreasing MAF
(Figure 4). This is expected, since larger reference panels
are needed to capture variants with lower frequency.
Finally, the optimal percentage of study participants

sequenced to attain ≥80% power decreases with increas-
ing effect size magnitude. This is expected, since the ex-
pected number of risk alleles captured in the reference
panel increases with effect size magnitude.

4 | DISCUSSION

While the cost of genome sequencing has fallen dra-
matically (Sham & Purcell, 2014), large genome se-
quencing studies remain prohibitively expensive. Large
imputation reference panels are now enabling accurate
imputation of even very rare variants (MAF > 0.001;
Mahajan, Taliun, et al., 2018; McCarthy et al., 2016;
Zhou et al., 2017), making imputation‐based GWAS vi-
able and cost‐effective for detecting associations across
much of the allele frequency spectrum. For populations
with limited reference panel data, we have shown that
sequencing a subset of study participants can sub-
stantially increase imputation coverage and accuracy,
particularly for rare and population‐specific variants, at
a fraction of the cost of sequencing the entire study
cohort. Our results also suggest that it is almost always
advantageous to augment existing reference panels, ex-
cept when the study‐specific sequenced panel is large or
the target population has high genetic distance from the
external panel.

FIGURE 3 Power as a function of MAF and effect size. Statistical power (y‐axis) to detect a rare large‐effect variant
(MAF= 0.25%, RR= 3; top row) and common modest‐effect variant (MAF= 5%, RR = 1.3; bottom row) for a disease with prevalence
1% as a function of the number of participants array‐genotyped and imputed (x‐axis) when 0, 500, or 2,000 participants are sequenced
and included in an augmented reference panel. The number of participants sequenced has a far greater impact on statistical power
for the rare variant association. Importantly, statistical power is bounded above by the probability that the variant is imputable
(r2 > 0.3 and reference MAC 5≥ ), causing power to asymptote below 1 as a function of the number of imputed participants
(e.g., upper‐left panel). MAC, minor allele count; MAF, minor allele frequency; RR, relative risk
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Complementary sequencing‐and‐imputation GWAS
strategies have been applied to refine association signals
and discover novel associations for several populations
and complex traits (Auer & Lettre, 2015; Holm
et al., 2011; Pistis et al., 2015). While most sequencing‐
and‐imputation studies to date have been carried out in
European isolated populations, our results suggest that
this strategy can also be powerful and cost‐effective for
admixed and non‐European populations. In addition to
increasing genomic coverage and power to detect asso-
ciation for the study itself, sequencing a subset of study
participants provides a data resource that can be used to
enhance imputation in future studies of the same or re-
lated populations so long as the sequence data can be
shared.

Directly augmenting an existing reference panel with
study‐specific sequence data is not always feasible due to
technical, logistical, and privacy constraints. However,
we and others have found that the distributed reference
panel approach (separately imputing with two or more
reference panels and combining the results) provides
nearly equivalent imputation quality (Figure S2). Thus,
study‐specific WGS data can be used to improve im-
putation even when directly augmenting an external
panel is not feasible.

We assumed that sequenced participants are ran-
domly selected from the overall set of GWAS participants.
When array‐based genotype data are collected before se-
quencing, samples could be strategically selected to

maximize imputation quality or minimize redundancy in
the reference panel. Indeed, strategic selection of in-
dividuals to be sequenced for an imputation reference
panel has been explored in several previous studies. For
example, Zhang, Zhan, Rosenberg, and Zollner (2013)
proposed a selection procedure to maximize phylogenetic
diversity within the reference panel; related methods
were proposed by Kang and Marjoram (2012) and Pasa-
niuc et al. (2010). Based on results of these previous
studies, we expect gains from strategic selection to be
relatively modest for the data sets considered in our
manuscript. Our results based on random selection can
be viewed as a lower bound for the improvement in im-
putation accuracy that could be gained by strategic se-
lection of individuals for a reference panel of the same
size. We also note that existing methods are intended for
selecting individuals for an internal reference panel, and
do not directly apply to the setting where an external
reference panel, for which individual‐level genotype data
are inaccessible, is used in addition to the study's own
internal reference panel. Extensions of these methods
that account for external data are certainly conceivable
and worthy of future research.

While large reference panels enable accurate im-
putation across a wide range of the allele frequency
spectrum (McCarthy et al., 2016; Zhou et al., 2017), the
extent of genetic variation that can be captured through
imputation is limited relative to WGS. For example, de
novo mutations cannot be imputed regardless of

FIGURE 4 Optimal design as a function of minor allele frequency and effect size. Percentage of participants sequenced (x‐axis)
and total sample size (y‐axis) under optimal designs to attain statistical power ≥80% for rare and common variants across two effect
size values for each of the four study populations using the Infinium Core array. Here, effect size refers to the χ2 NCP for
single‐variant association tests given perfect genotype accuracy, which is defined as η2 in Section 2. RR values corresponding to each
combination of MAF and NCP are indicated in the far‐right panel (for Sardinians). With NCP held constant, differences in optimal
design for different MAF values are solely due to differences in imputation coverage and quality across the MAF spectrum.
MAF, minor allele frequency; NCP, noncentrality parameter; RR, relative risk
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reference panel size. This is particularly salient for
monogenic disorders; for example, over 80% of achon-
droplasia cases occur from recurrent de novo mutations
in FGFR3 (Bellus et al., 1995). Thus, imputation may be
unable to detect causative alleles for traits with extreme
genetic architectures, even with very large reference
panels.

As increasingly large and diverse sequencing projects
are conducted, larger and more diverse reference panels
will become available. In the design and planning of
GWAS, it may be prudent to consider resources under
development and pending release in addition to resources
that are currently available. More broadly, our analysis
highlights the utility of collaboration and coordination
across institutions for effective study design and resource
allocation. For example, the optimal design to maximize
power in an individual study does not necessarily max-
imize meta‐analysis power across multiple studies of the
same trait and population.

Our analysis of cost‐effectiveness and optimal design
depends crucially on the relative per‐sample costs of se-
quencing and array genotyping. Both sequencing and
array genotyping costs have fallen markedly in recent
years, and are likely to continue to do so. Depending on
the relative rates of change, cost‐effectiveness and opti-
mal design also may change. In addition, the cost of
participant recruitment and DNA sample collection may
alter the relative cost‐effectiveness of sequencing and
genotyping. Finally, our cost‐effectiveness analysis as-
sumes that sample size is unconstrained; this may not
apply for small populations or rare diseases.

While our results are illustrative, investigators may
wish to explore questions of the relative cost‐effectiveness
of sequencing and array genotyping strategies in the
context of their own study and relevant assumptions
about population, reference panels, and sequencing and
array genotyping costs. To enable this exploration, we
have developed a flexible, easy‐to‐use tool, Analysis of
Power for Sequencing and Imputation Studies (APSIS),
which is open source and freely available at http://github.
com/corbinq/APSIS.

5 | CONCLUSIONS

Here, we assessed the genomic coverage, statistical power,
and cost‐effectiveness of sequencing and imputation‐based
designs for GWAS in four populations across a range of
genetic models. We developed a novel method to account
for available reference haplotype data in power calculations
using empirical data, which can be applied to inform
GWAS planning and design. For European populations that
are well‐represented in current reference panels, our results

suggest that imputation‐based GWAS is cost‐effective and
well‐powered to detect both common‐ and rare‐variant as-
sociations. For populations with limited representation in
current reference panels, we found that sequencing a subset
of study participants can substantially increase genomic
coverage and power to detect association, particularly for
rare and population‐specific variants. Our results also sug-
gest that larger and more diverse reference panels will be
important to facilitate array‐based GWAS in global
populations.
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