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ABSTRACT 

 

Gold Catalysis Enabled Cascade Reactions from C-C Triple Bonds 

 

by 

 

Zhitong Zheng 

 

Homogeneous gold catalysis has been a very hot topic in recent decades. With its 

unparalleled π-acidity, cationic gold complex exhibits a strong affinity to alkynes and 

promotes nucleophilic attack across C-C triple bonds. Such nucleophilic attacks lead to 

various reactive intermediates that trigger a wide range of cascade reactions, building 

molecular complexity readily in one step. My doctoral study is focused on the development 

and application of gold-catalyzed cascade reaction with alkyne substrates. In this 

dissertation, two methodology studies and two applications of gold-catalyzed cascades will 

be discussed. Namely: 1) one-pot synthesis of fused pyrroles from ketones and N-

alkylhydroxylations via a gold catalysis-triggered cascade; 2) synthesis of polycyclic 2H-

pyran-3(6H)-ones via a vinyl cation C(sp3)-H insertion triggered by oxidative gold 

catalysis; 3) streamlined synthesis of highly potent mitomycin C analogs with 

gold/platinum-catalyzed cycloisomerization cascade; and 4) gold-catalysis-activated 

stereoselective glycosylation reaction to construct 1,2-cis glycosyl linkage in 

glycoconjugates and oligosaccharides. 
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Chapter 1   Introduction to Gold-Catalyzed Cascade Reactions of Alkynes  

1.1  Gold Catalysis 101: History, Types of Catalyst, and Modes of Reactivity 

Gold has been recognized and valued by humans since ancient times. Despite its 

stoichiometric chemistry being thoroughly investigated,1 gold has not been widely utilized 

in transition metal catalysis until recent decades.  

One early milestone of homogeneous gold catalysis was reported by the Thomas group in 

1976, where chloroauric acid was used to promote an alkyne hydration reaction (Scheme 

1a).2 Unfortunately, not realizing the catalytic potential of Au(III) salt, the author reported 

the transformation as a “gold(III) oxidation”. Apart from a few sporadic studies,3 cationic 

gold salts and its potent catalytic activity was largely neglected until the end of the last 

century.  

Scheme 1. Early Reports of Homogeneous Gold Catalysis 

 

In 1998, Teles group reported an Au(I)-catalyzed nucleophilic addition of methanol to 

internal alkynes, marking another milestone in the development of homogeneous gold 

catalysis (Scheme 1b).4 The highlight of this work is the first introduction of ligands on 

cationic gold(I) catalyst, which soon became broadly implemented in the emerging field of 

homogeneous gold catalysis.  



2 

 

Extensive studies in the last two decades’ “gold rush” clearly showed that ligands play a 

crucial role in homogeneous gold catalysis. Ligands significantly stabilize the cationic gold 

center, extending the catalyst lifetime in the reaction media. Moreover, introduction of 

ligands with different steric, electronic, and chiral properties makes it possible to fine tune 

the catalytic activities of the gold center, leading to desirable controls of chemo-, regio-, 

and stereoselectivities in gold-catalyzed reactions.5 On the other hand, counterions have 

also been shown to affect reactivities of gold catalysts as well as selectivities of reactions, 

although the exact nature of “counterion effects” is yet to be fully rationalized.6 A summary 

of most frequently used gold catalysts is shown below in Figure 1. 

The most prominent advantage of cationic gold catalyst lies in its potent soft Lewis 

acidity, which leads to its strong affinity to π bonds, especially alkynes. The subsequent 

gold-alkyne complex is susceptible to attacks by a wide array of nucleophiles. Such 

nucleophilic attack, according to studies performed independently by Toste group7 and 

Hashmi group,8 is strictly following an anti-addition manner and affords an alkenylgold 

intermediate (i.e., 1-1, Scheme 2). 

 1-1 can then undergo further transformations. When protic nucleophiles (Nu-H) are used, 

its protodeauration of leads to an anti-addition of nucleophile over an unsaturated bond 

(Scheme 2, pathway A). Non-protic nucleophiles (Nu-E), apart from following a similar 

nucleophilic addition pathway A, is possible to undergo a competing pathway B, where 

the electrophile released could access the β-position of the alkenylgold intermediate, 

leading to a gold carbenoid species 1-4. Such a gold carbenoid can exhibit reactivity 

either as “gold stabilized carbocation” or as gold carbene, depending on the electronic 
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and plausibly the steric properties of the ligand used and the substituents to the carbene 

center.9 

 

Figure 1. Common Ligands and Counterions for Gold Catalysts 
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Scheme 2. General Reactivities of Gold Activated Alkynes 

 

The vastly diverse range of transformations of gold-activated alkynes makes it a useful tool 

in assembly of molecular complexity.10 It has been extensively employed in cascade 

reactions, often setting up multiple rings or stereocenters in one step.11 The following 

sections will focus on cascade reactions initiated/enabled by gold catalysis. 

1.2  Gold-Catalyzed Cascade Reactions of Alkynes 

Generally, gold-catalyzed cascade reactions are initiated by nucleophilic attacks of a C-C 

triple bond, followed by or resulting in the generations of reactive intermediates, and ended 

with their subsequent rearrangements or trappings. Typical reactive intermediates, as 

shown in Scheme 2, include alkene intermediate 1-2 and gold carbene 1-4, which will be 

discussed in the following sections separately. For simplification, isomerization of alkynes 

into other unsaturated substrates (alkenes, allenes, and dienes) will not be reviewed. 

1.2.1  Cascades Initiated by Formation of Alkene Intermediates  

The most straightforward way of generating alkene species 1-2 is the intramolecular 

addition of nucleophile across a C-C triple bond. The types of nucleophiles range from 

heteroatoms, enols, arenes, and heteroarenes.  
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1.2.1.1  Through Intramolecular Additions of Heteronucleophiles  

One of the simplest examples of cascade reactions initiated by gold-catalyzed nucleophilic 

attack is the tandem cyclization-isomerization process. In 2000, Hashmi et al first 

demonstrated that (Z)-enynols 1-5 can undergo intramolecular addition to form 1-6, which 

then quickly tautomerizes to furan 1-7. Comparing with established methods with Pd, Ru 

or Ag catalysis, the efficiency of Au(III) catalyst is far more superior (Scheme 3a).12 

Shortly after, Liu et al utilized this method in a stereoselective synthesis fully substituted 

furans 1-10/1-11 by using either Au(I) or Au(III) catalysts (Scheme 3b).13 A similar 

approach to construct substituted furans and pyrroles was reported by Akai et al in 2009 

using 1-amino-3-alkyn-2-ol (Scheme 3c, 1-12) as substrate.14 Instead of tautomerization, a 

dehydration process occurs after the initial cyclization step. 

Scheme 3. Gold-Catalyzed Tandem Cyclization-Isomerization or Cyclization-Dehydration Process 

 

More complicated polycyclic structures are synthesized when the alkene species formed in 

the initial nucleophilic addition are involved in further transformation. One early example 

was reported by Barluenga et al, where the enol ether 1-18 formed in the addition of alcohol 
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undergoes a subsequent Prins-type cyclization, generating bicyclic compounds 1-15 

containing an eight-membered ring (Scheme 4a).15 With an external nucleophile, Hashmi 

group has successfully intercepted the enol intermediate in the dual nucleophilic addition 

of diynyl diol substrate 1-20 in a more recent study (Scheme 4b).16 The reaction produced 

a tricyclic cage-like structure 1-23 which showed extremely high structural rigidity. 

Notably, the reaction features 1-24, a N-acyclic carbene as the ligand for the gold catalyst. 

Scheme 4. Polycyclic Structures from Gold-Catalyzed Nucleophilic Addition Cascades 

 

Apart from free alcohols, ethers/thioethers are also good nucleophiles towards gold-

activated alkynes. Upon addition, the oxonium/sulfonium species (e.g. 1-26 and 1-30) often 

fragment to a carbocation and trigger further rearrangement of the carbon backbone 

(Scheme 5a and b). Toste et al converted o-alkynylbenzyl methyl ether to indenyl ether 

with Au(I)-catalyzed intramolecular carboalkoxylation reaction.17 Double-labeled 

crossover experiment confirmed that the reaction is initiated by alkyne activation rather 
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than ionization of benzyl ether. Notably, significant chirality conservation was observed 

with enantiomerically pure substrate. Nakamura et al first successfully employed Au(I) 

catalysis in the synthesis of 2,3-disubstituted thiophenols 1-29 from 2-alkynylaryl 

thioethers.18 Shortly after, this transformation was further expanded to aryl thiosilanes by 

the same research team to afford 3-silylbenzothiophenes in high yields (Scheme 5c).19  

Another important type of intramolecular nucleophiles in gold-catalyzed cascade reactions 

is carbonyl compounds. Larock group used α-alkynyl enones to realize a cascade reaction, 

which is initiated by a gold-promoted intramolecular carbonyl addition and followed by 

intermolecular nucleophilic attack.20 Highly substituted furans 1-35 were synthesized in 

moderate to good yields with a very wide range of external nucleophiles (Scheme 6).  

Scheme 5. Cascade Initiated by Ethers/Thioethers Attacking Gold-Activated Alkyne 
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Scheme 6. A Gold-Catalyzed Cyclization-Nucleophilic Addition Cascade 

 

Oxocarbenium species generated by initial carbonyl attack could also trigger a 

cycloaddition reaction with carbon-carbon multiple bonds. Yamamoto and co-workers first 

discovered an AuCl3-catalyzed benzannulation of o-alkynylbenzaldehydes 1-36 and 

alkynes ( 

Scheme 7a).21 The cycloaddition intermediate 1-40 undergoes ring-opening aromatization 

to give α-naphthyl ketones 1-38. A similar study with intramolecularly tethered alkyne was 

reported by Yamamoto et al in 2005 ( 

Scheme 7b).22 Furthermore, Oh group later observed a different [3+2] cycloaddition 

pattern with malonate-linked substrates 1-45 ( 

Scheme 7c).23 

2-Alkynylbenzoates 1-49 combined with the gold catalysis could become a powerful 

reagent for etherification or Friedel-Crafts alkylation with the formation of isocoumarin 1-

51 as side product (Scheme 8). Such transformation was first realized by Asao et al in 

2007.24 The reaction features mild condition comparing to conventional etherification or 

Friedel-Crafts alkylation. Notably, experiment with chiral substrate suggests that the 

reaction involves a SN1 mechanism with certain degree of SN2 property. 

Scheme 7. Gold-Catalyzed Cyclization-Cycloaddition Cascade 
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Scheme 8. Etherification or Friedel-Crafts Reaction with 2-Alkynylbenzoates 

 

1.2.1.2  Through Intermolecular Addition of Heteronucleophiles  

Intermolecular addition of nucleophile allows for a much broader selection of substrates 

and nucleophiles. Thus, cascade reactions initiated by gold-catalyzed intermolecular 

nucleophilic additions exhibit much higher diversity. 
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Cyclic acetals could be synthesized under a mild condition when diol undergoes two 

sequential nucleophilic addition to gold-activated alkynes. In one example reported by 

Corma et al, the reaction is general for a range of alkynes and diols or dithiols, and cyclic 

acetals/thioacetals were obtained with high regioselectivity (Scheme 9).25 

Scheme 9. The Formation of Cyclic Acetals and Thioacetals from Diols and Dithiols 

 

Enol ethers or enamines generated by intermolecular nucleophilic addition of alcohols or 

amines could also engage in further attack as nucleophiles. Li et al reported a synthesis of 

azaisoflavanone derivatives 1-58 via a gold-catalyzed annulation of 2-aminobenzaldehyde 

and alkynes (Scheme 10).26 The method is compatible with a good variety of aromatic 

alkynes, although non-aromatic alkynes show no reactivity. 

Scheme 10. Synthesis of Azaisoflavanone Derivatives 

 

Another important type of cascade reactions with external nucleophiles is double 

hydroamination or hydration of 1,3-diynes 1-59 (Scheme 11). Cyclization of the 

intermediate 1-61, which is formed in the first hydroalkoxylation/hydroamination step, 

gives the furan or pyrrole product 1-60. Previously established approaches often require 

high temperatures or stoichiometric amounts of metal salt, making milder conditions 

enabled by gold catalysis quite appealing. Skrydstrup et al first reported such a 
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transformation with Au(I) catalyst under mild heating.27 Substituted anilines and water 

aside, the author also showed one case affording a pyrazole by using phenylhydrazine as 

nucleophile. 

A novel synthesis of 1,2-dihydroquinolines was also reported by Skrydstrup team, 

featuring a gold-catalyzed formal [4+2] cycloaddition between ynamide and imine 

(Scheme 12).28 Notably, the aza-enyne metathesis byproducts 1-71 are observed for 

ynamides with unsubstituted phenyl rings. The author proposed the formation of the 

aziridine intermediate 1-68 after an initial nucleophilic attack, which is followed by either 

ring expansion to form the isoquinoline product 1-66, or 1,2-migration to form the 

azetinium intermediate 1-69, leading to the byproducts.  

Scheme 11. Double Hydroamination/Hydration of 1,3-Diynes 
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Scheme 12. Access to 1,2-Dihydroquinolines through Gold-Catalyzed Formal [4+2] Cycloaddition 

 

When allyl alcohol 1-72 is utilized in gold-catalyzed hydroalkoxylation of alkynes, the 

resulting allyl vinyl ether 1-73 undergoes a Claisen rearrangement when heated, affording 

γ,δ-unsaturated ketones 1-74 (Scheme 13). This new approach was first reported by 

Aponick’s research team, who employed an NHC-gold complex IPrAuCl to achieve good 

yield and some degree of diastereoselectivity.29 However, one major drawback of this 

method is relatively high reaction temperature and long reaction time. Shortly after, the 

method was further refined by Nolan and co-workers with a significantly lowered catalyst 

loading and better substrate compatibility.30 
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Scheme 13. Claisen Rearrangement of Nucleophilic Addition Product 

 

In 2011, our group published a synthesis of 2-alkylindoles through 3,3-rearrangement and 

subsequent dehydrative cyclization of N-aryl-O-alkenylhydroxylamine 1-79 (Scheme 

14a).31 The cleavage of the weak N-O bond in intermediate 1-79 enables the reaction to 

proceed smoothly under room temperature. Soon afterwards, our group followed up this 

study with a cooperative Au/Zn catalysis featuring a much broader substrate scope 

(Scheme 14b).32 Notably, when internal alkynes are used, regioselectivity of the reaction 

could be controlled by the seemingly weak electronic effect of the tethered function groups 

on the alkynes. 

Scheme 14. A Novel Indole Synthesis from Aryl Hydroxylamine and Alkyne 
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1.2.1.3  Through Hydroarylation Reaction 

Gold-catalyzed hydroarylation of alkynes is a valuable method to synthesize alkenyl arenes 

or heteroarenes. The Echavarren group has reported a series of gold-catalyzed cascade 

reaction that transforms indole-type substrate 1-84 into six-, seven-, and eight-membered-

ring products (see Scheme 15, 1-85, 1-86).33 Additionally, allenes 1-93 and tetracyclic 

annulated products 1-87 are formed by the fragmentation of eight-membered ring 

intermediate 1-90.  

Scheme 15. Transformation of Alkyne-Tethered Indoles 

 

Iminium species formed by hydroarylation on indole’s 3-position (e.g. 1-88) could also be 

trapped by a tethered nucleophile to afford polycyclic structures. Some selected reports are 

shown in Scheme 16. Depending on the position of tethered nucleophile, various bridged 
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compounds (e.g. 1-95, 1-97, 1-99/99’, 1-100/100’) could be synthesized under mild 

conditions.34 

Scheme 16. Nucleophilic Trapping of Iminium Species in Gold-Catalyzed Hydroarylation 

 

1.2.1.4  Consecutive Nucleophilic Additions 

Consecutive addition of nucleophiles to diynes/poly-ynes is an important type of gold-

catalyzed transformation that builds highly conjugated system in one step. Ohno et al has 

first reported this inter-/intramolecular addition cascade of diynes and triynes to make 

substituted naphthalene and chrysenes (Scheme 17a).35 Types of nucleophile range from 

alcohols, amines to heteroarenes, making it a very flexible method building fused arene 

system. Shortly after, Wang and co-workers reported a different C1-C5 cyclization pattern 
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in a similar catalytic system (Scheme 17b).36 To initiate the nucleophilic addition sequence, 

a carboxylic acid was used as the primary nucleophile. 

Tanaka et al has reported an interesting application of this reaction in synthesizing chiral 

azahelicenes (Scheme 18).37 Combining a gold-catalyzed sequential intramolecular 

hydroarylation with chiral BINAP ligands, the author synthesized azahelicene 1-107 and 

S-shaped double azahelicene 1-108 in high ee% value and synthetically useful yields. The 

author also noted that excess Ag salt towards the Au(I) complex is crucial for this 

transformation. 

Scheme 17. Consecutive Nucleophilic Addition of Diynes 
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Scheme 18. Synthesis of Azahelicenes and S-Shaped Double Azahelicene 

 

1.2.2  Cascade Initiated by Formation of Gold Carbenoids 

As shown in Scheme 2, pathway B, the transformation of gold-activated triple bond to gold 

carbenoid involves an electrophile accessing the β-position of alkenylgold species 1-1. 

Careful selection of substrates and internal/external electrophiles enables a great variety of 

gold carbenoid with different electronic/steric properties being harnessed in building 

complicated structures. 

1.2.2.1  Through Enyne Cycloisomerization Reactions  

Gold-catalyzed enyne cycloisomerization is a very versatile reaction in synthesizing 

various types of cyclic compounds. The very first report in this field was Hashmi’s phenol 

synthesis from furan-type substrate 1-110 (Scheme 19).38 Initial hydroarylation reaction of 

1-110 gives an oxocarbenium species 1-111’, which was trapped intramolecularly by the 

alkenylgold moiety in proximity, affording exocyclic gold carbene 1-111. 1-111 undergoes 
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skeletal rearrangement to form another gold carbene 1-112. Subsequent cyclization, 

electrocyclization, and aromatization gives phenol product 1-115. 

Scheme 19. Hashmi’s First Report of Enyne Cycloisomerization 

 

Scheme 20. Echavarren’s Work on 1,6-Enyne Cycloisomerization 

 

The Echavarren group has thoroughly studied this gold-catalyzed cycloisomerization 

system and demonstrated that a wide variety of (poly)cyclic products could be obtained.39 

As shown in Scheme 20, initial nucleophilic attack could proceed through either in a 5-

exo-dig or a 6-endo-dig manner. 5-Exo-dig cyclization of starting enyne 1-116 gives 
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exocyclic carbene intermediate 1-117, which further undergoes single cleavage or double 

cleavage to form diene product 1-119, 1-120, or 1-121. On the other hand, 6-endo-dig 

cyclization leads to endocyclic carbene 1-122, followed by 1,2-H-shift or ring expansion 

to get product 1-123 or 1-125.  

Echavarren and co-workers further demonstrated that the gold carbene species generated 

by cycloisomerization of 1,6-enynes (i.e. 1-117 or 1-122) can be utilized in various 

transformations, obtaining different polycyclic molecules in one pot. Examples include 

intramolecular cyclopropanation (Scheme 21a),40 intramolecular Prins cyclization 

(Scheme 21b),41 and formal [4+2] cycloaddition (Scheme 21c).42 

Scheme 21. Application of Echavarren’s 1,6-Enyne Cycloisomerization 
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A more recent example was reported by Yu et al in 2014 (Scheme 22).43 After the initial 

6-endo-dig cyclization, the gold carbene intermediate 1-138 proceeds through a Cope 

rearrangement to afford a bent allene species 1-139. The intermediate, which is in resonate 

with vinyl cation species 1-139, then initiates a C-H insertion reaction to form a five-

membered ring. A fused 5,7,6-tricyclic product 1-137 is obtained with high 

diastereoselectivity. 

Besides 1,6-enyne, 1,5-enyne is also frequently used in gold-catalyzed cycloisomerizations. 

Generally, reaction of 1,5-enynes proceed in a 5-endo-dig pattern due to the higher stability 

of subsequent 5,3-fused system comparing to the 4,3-fused system formed by the 4-exo-

dig pathway. As shown in Scheme 23a, bicyclo[3.1.0]hexane is formed almost exclusively 

in the cycloisomerization of 1,5-enyne 1-142.44 Toste group later discovered that the 

endocyclic gold carbene formed in the cycloisomerization (Scheme 23b, 1-145) also inserts 

into the adjacent C-H bond.45 Very recently, the same research team reported a rare 

enantioconvergent kinetic resolution of 1,5-enynes utilizing a structurally well-defined 

chiral gold(III) catalyst 1-149, allowing access to a series of enantioenriched 

bicyclo[3.1.0]hexenes.46 
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Scheme 22. Construction of a Fused 5,7,6-Tricyclic System 

 

Scheme 23. Toste Group’s Studies in 1,5-Enyne Cycloisomerization 
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1.2.2.2  Through 1,2-Acyloxy Migration of Propargylic Carboxylates/Acetals 

Propargylic carboxylates (e.g. Scheme 24, 1-153) are easily-accessible substrates that 

enable construction of many complicated structures. The carbonyl group attacks the gold-

activated C-C triple bond, leading to two different class of reactive intermediates. 6-Endo 

attack, followed by Claisen-type rearrangement, gives an allenyl carboxylate 1-155’; on 

the other hand, 5-exo attack generates an alkenyl gold carbene 1-155. The preference 

between 1,2-migration and 3,3-rearrangement could be regulated electronically or 

sterically on the propargyl ester substrate. In addition to propargyl carboxylates, propargyl 

acetals are also able to undergo similar 1,2-migration process.  

Scheme 24. Reactivity of Propargylic Carboxylates/Acetals 

 

Our group has published one of the earliest examples of 1,2-migration of propargyl acetals 

in a synthesis of substituted 2,5-dihydrofurans (Scheme 25, 1-158).47 To facilitate the initial 

5-exo-dig cyclization, strong electron-withdrawing groups are installed to the alkyne 

terminus of the propargyl moiety. Notably, the electron-withdrawing group also 

destabilizes alkenyl gold carbene intermediate 1-160 to harness its 1,3-dipole reactivity.  
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Scheme 25. Synthesis of 2,5-Dihydrofurans from Propargyl Acetals 

 

The alkenyl gold carbene generated from 1,2-migration of propargyl carboxylate can also 

be trapped by various internal or external nucleophiles. One example published by Fiksdahl 

et al is cyclopropanation with various terminal alkenes (Scheme 26a).48 An earlier report 

by Toste group demonstrated an intramolecular trapping of gold carbene 1-166 by ethereal 

oxygen (Scheme 26b). The allyl group on the oxonium species 1-167 migrates 

subsequently to give benzopyran 1-165.49 

Like other electron-withdrawing groups, chlorides and bromides installed at the alkyne 

terminus of propargyl carboxylate promote 1,2-migration effectively. Our group has 

utilized this property and developed a fast, efficient, and highly diastereoselective method 

to synthesize (1Z, 3E)-1-bromo/chloro-2-carboxy-1,3-dienes (Scheme 27, 1-170).50 Upon 

formation, the carbene intermediate 1-172 undergoes a δ-deprotonation to afford halodiene 

product. Synthetic flexibilities of the products have also been highlighted in the paper (see: 

Scheme 27, 1-171/171’).  
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Scheme 26. Trapping of Gold Carbene Generated by 1,2-Migration of Propargylic Carboxylate 

 

Scheme 27. Synthesis of (1Z, 3E)-1-Halo-2-carboxy-1,3-dienes 

 

Another important gold-catalyzed cascade reaction of propargyl carboxylates is 

Rautenstrauch rearrangement, where enynes bearing propargylic α-acyloxy moiety (e.g. 1-

173) are involved. Notably, it is also possible that the reaction proceeds via enyne 

cycloisomerization to give the same product (see: Scheme 28a, the upper pathway). One 

cascade reaction initiated by Rautenstrauch rearrangement of dienyne 1-176 is shown 

below (Scheme 28b).51 



25 

 

Scheme 28. Rautenstrauch Rearrangement of Propargylic Carboxylates 

 

 

1.2.2.3  Through Gold Vinylidenes and Related Intermediates 

Metal vinylidene is a reactive intermediate that leads to the formation of various carbon-

carbon and carbon-heteroatom bonds. The first example of gold vinylidene generated by 

cyclosiomerization of benzene-1,2-diynes was reported by our group in early 2012 

(Scheme 29).52 Based on mechanistic experiments and DFT calculations, a dual-gold 

activation mechanism was proposed. Firstly, lutidine N-oxide extracts the proton from the 

terminal alkyne to generate alkynylgold complex 1-181, while another molecule of gold 

complex activates the internal alkyne triple bond. A 5-endo-dig cyclization then happens 

to afford the gold vinylidene species 1-182. The gold vinylidene is highly reactive and 

quickly undergoes an intramolecular C-H insertion to give the final tricyclic indene product 
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1-183. Shortly afterwards, a very similar approach was published independently by Hashmi 

et al.53 

Scheme 29. From Benzene-1,2-diynes to Gold Vinylidene 

 

The Hashmi group continued studying on this type of reaction and revealed a series of 

interesting transformations of the gold vinylidene intermediate. Examples include a 

cyclopropanation-ring expansion sequence (Scheme 30a)54 and intramolecular Friedel-

Crafts reaction (Scheme 30b).55 Additional to benzene-1,2-diynes, 3,4-

Dialkynylthiophenes 1-192 are also suitable for this transformation (Scheme 30c).56 
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Scheme 30. Hashmi’s Studies on Benzene-1,2-diyne Chemistry 

 

Interestingly, the mechanistic switch from 5-exo-dig to 6-endo-dig cyclization could be 

achieved by switching benzene ring with different alkenyl moiety (Scheme 31). In 2013, 

Hashmi group and our group independently reported two different types of substrates (i.e. 

1-197, 1-199) that enables the mechanistic switch.57 The increased gain in aromatic 

stabilization in cycloisomerization intermediate 1-195 is the key driving force of the 

divergence of initial cyclization step, as supported by DFT studies of both research teams. 

Additionally, a novel gold benzyne intermediate 1-195’ was suggested by mechanistic 

study.57b 
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Scheme 31. Mechanistic Switch of Dual-Gold Catalysis 

 

Another important way to generate gold vinylidene is direct isomerization of alkynes or 

haloalkynes. In 2004, Fürstner et al first reported an AuCl-catalyzed transformation of 

iodoalkyne to phenanthrenes (Scheme 32a).58 The author suggested that gold(I) catalyst 

triggers the rearrangement of iodoalkyne 1-201 to form a gold vinylidene species 1-202, 

which was subsequently trapped by the proximal aromatic ring. This gold-vinylidene 

intermediate was later supported by a DFT study published by Soriano et al.59 Recently, 

González and co-workers also demonstrated a benzylic C(sp3)-H insertion of Fürstner-type 

gold vinylidenes (Scheme 32b).60 
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Scheme 32. Gold Vinylidenes from the Isomerization of Iodoalkynes 

 

A similar way of generating gold vinylidenes from terminal alkyne was published by 

Hashmi et al in 2014 (Scheme 33).61 Deprotonative formation of alkynylgold species 1-

207 triggers an intramolecular SN2 reaction, generating the gold vinylidene species 1-208 

by the expulsion of the leaving group. This work clearly demonstrates that the β-carbon of 

the alkynylgold species 1-207 is significantly nucleophilic. 

Scheme 33. Generation of Gold Vinylidenes with Terminal Alkynes 

 

An external electrophile could also trigger the SN2-type reaction of alkynylgold species. 

Recently, our group published an intermolecular generation of gold vinylidenes from TMS-

protected ynones 1-210, followed by insertion into unactivated C(sp3)-H bonds (Scheme 

34).62 N-Bromoacetamide was added to facilitate the rearrangement of alkynylgold species 

1-212 to gold vinylidene 1-213. The method demonstrates a facile synthesis of 2-

bromocyclopentenones with a broad substrate scope and synthetically desirable 

diastereoselectivities. 
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Scheme 34. Unactivated C(sp3)-H Insertion of Gold Vinylidene 

 

1.2.2.4  Through Oxidatively-Generated Gold Carbenes 

The methods described in previous sections focused on generation of gold carbenoids with 

isomerization reactions driven by the conversion of π-bonds to stronger σ-bonds. Another 

strategy of further strengthening the driving force is introducing an oxidant and thereby 

converting the alkynes into much more stable carbonyl compounds. Such protocol has only 

been developed and broadly applied in the very recent decade.63 As shown in Scheme 35, 

the O-nucleophilic oxidant attacks the gold-activated alkyne moiety, affording an 

alkenylgold intermediate 1-215 bearing a weak O-Z bond. Subsequent expulsion of the Z 

leaving group leads to the formation of a highly electrophilic α-oxo gold carbene 1-216. 

While similar α-oxo metal carbenoid could be accessed from the decomposition of 

diazoketones 1-217, this gold-catalyzed process shows significant advantage of mild 

reaction condition, easily-accessible substrate, and higher degree of operational safety. It 

should be noted that the oxidant involved in such transformation could either be tethered 

to the substrate, or added to the reaction mixture as a reagent.10b  
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Scheme 35. Gold Carbenes Generated by an Oxidative Process 

 

One simplest way of utilizing the highly reactive α-oxo gold carbene is trapping with a 

nucleophile. Our group has done substantial studies on this subject. Some selected 

transformations realized by our group are shown in Scheme 36.64 

Scheme 36. Nucleophilic Trapping of Oxidatively-Generated Gold Carbenes 

 

Nucleophilic trapping of α-oxo gold carbenes can also trigger additional transformations. 

As shown in Scheme 37, intermediate 1-218, generated from trapping of α-oxo gold 

carbene with nitrile, undergoes a cyclization to form 2,5-disubstituted oxazole 1-219.65 The 

overall reaction is a [2+2+1]-type cyclization of an alkyne, a nitrile, and an oxygen atom 

from the oxidant.  
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Scheme 37. Oxazole Synthesis with Oxidatively-Generated Gold Carbene 

 

Like gold carbenoid generated with other methods, α-oxo gold carbenes also undergo 

cyclopropanation reaction to further introduce molecular complexity. One typical case was 

given by Liu et al in 2011, where the gold carbene reacts intramolecularly with a tethered 

alkene moiety (Scheme 38a).66 Shortly after, Zhang et al has reported a similar reaction 

using allyl 3-arylpropiolate (Scheme 38b, 1-222), which leads to an even more reactive β-

diketone-α-gold carbene species.67 Our group has also reported an enantioselective 

cyclopropanation enable by a designed chiral P,N-bidentate ligand (Scheme 38c).68 

Scheme 38. Cyclopropanation of Oxidatively-Generated Gold Carbene 

 

With carefully-designed substrate, α-oxo gold carbene undergoes 1,2-H-shift to give α,β-

unsaturated ketones. One recent example was published by Hashmi and co-workers 

featuring an umpolung of the gold carbene center (Scheme 39).69 The key design is putting 
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an OTBS group at the β-position of the gold carbene 1-230 so that 1,2-H-shift gives an 

enol ether intermediate 1-231. Intermediate 1-231 then transforms into the quinoline 

product 1-228 through a Mukaiyama aldol condensation. 

Scheme 39. Umpolung Chemistry of Oxidatively-Generated Gold Carbene 

 

Finally, C-H insertion reaction has also been realized with the oxidative gold catalysis 

system. Early trials in this area were unsuccessful with unactivated C(sp3)-H bonds, 

possibly due to the α-oxo gold carbene being not reactive enough for this energy-

demanding reaction. In 2013, Hashmi et al has reported one example of α-oxo gold carbene 

inserting into the C-H bond on a proximal tert-butyl group (Scheme 40a).70 Two years later, 

our group reported a intramolecular insertion into unactivated C(sp3)-H bonds with β-

diketone-α-gold carbenes (Scheme 40b).71 This method provides a versatile strategy of 

constructing cyclopentanones as well as various spiro-, bridged, and fused bicyclic ketones.  
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Scheme 40. Insertion of Oxidatively-Generated Gold Carbene into Unactivated C(sp3)-H Bonds 

 

1.3  Summary 

In summary, easily-available alkynes, combined with versatilities of homogeneous gold 

catalysis, provides endless possibilities in setting up cascade reaction that greatly increases 

molecular complexity. In the next three chapters, I will present my works on this topic 

during my doctoral study, which fall readily into the two categories discussed in the section 

above. 
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Chapter 2   One-Pot Synthesis of Fused Pyrroles via a Gold Catalysis-Triggered 

Cascade 

2.1  Design of a Gold Catalysis-Triggered Cascade 

Pyrrole and its derivatives makes up one of the largest family of organic compounds. It is 

also prevalent in various molecules of interest in pharmaceutical science1 and polymer 

chemistry.2 Although numerous methods of synthesizing pyrrole and its derivatives has 

been established,3 the development of new approaches, and particularly, methods featuring 

better functional group compatibility, milder conditions, and more readily accessible 

starting materials, is always in great demand.  

One rather underutilized method in pyrrole synthesis is the rearrangement of O-

vinyloximes, which is easily synthesized by addition of oxime over C-C triple bonds. Some 

of the earliest works in this area were done by Sheradsky in 1970, who demonstrated a 

two-step approach that involves a thermal 3,3-sigmatropic rearrangement of the O-

vinyloxime intermediate (Scheme 41a).4 In 1973, a similar method was developed by 

Trofimov et al utilizing strongly basic conditions that allows unactivated alkynes to be used 

in the synthesis (Scheme 41b).5 Despite the harsh condition, Trofimov’s method has been 

employed in synthesizing various pyrrole-containing molecules.6 More recently, a 

microwave-induced approach was developed by Camp et al (Scheme 41c).7 However, the 

reaction still requires alkynes with activating groups, limiting its synthetic versatility.  

Scheme 41. Pyrrole Synthesis from Oximes and Alkynes 
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Homogeneous gold catalysts are known for their unique property of promoting 

nucleophilic addition over C-C triple bonds.8 Surprisingly, gold catalysis has only been 

utilized very recently in pyrrole synthesis. Camp et al. first achieved a regioselective 

synthesis of substituted pyrroles initiated by gold-catalyzed nucleophilic addition of oxime 

across activated alkynes (Scheme 42a).9 However, synthetic versatility of the method was 

limited by the rather high reaction temperatures. 

During the same period, our group reported an efficient synthesis of 2-alkylindoles based 

on the rearrangement of O-vinyl-N-arylhydroxyamine generated via gold-catalyzed 

nucleophilic addition across an alkyne (Scheme 42b).10 Interestingly, the two seemingly 

similar reactions occur at vastly different temperatures (i.e., 100 °C versus room 

temperature). We reasoned that the difference in reaction temperature could be attributed 

to the different ways of generating key N,O-dialkenylhydroxamine species (i.e. 

intermediate 2-1 and 2-2). In Camp’s method, it takes a rather energy-demanding 

tautomerization to generate 2-2 from O-vinyloxime intermediate 2-1’. We envision that if 

the tautomerization step could be facilitated by function groups on the substrate, the overall 

reaction should be very likely to occur under room temperature and exhibit much better 

synthetic versatility.    

Scheme 42. Examples of Pyrrole/Indole Synthesis Triggered by Gold-Catalyzed Nucleophilic Addition 

 

Our design based upon the reasoning above is shown in Scheme 43. We expected that the 

condensation between ketone 2-3 and N-monosubstituted hydroxylamine 2-4 would lead 

to the electronic neutral N-hydroxylenamine 2-5 instead of the charged nitrone species 2-

5’ with the aid of electron-withdrawing group at the ketone’s α-position. With the C-C 

triple bond positioned on the alkyl group of the original hydroxylamine, 2-5 could undergo 

gold-catalyzed nucleophilic addition to deliver an N-O-dialkenylhydroxylamine 2-6, which 
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should rearrange under room temperature in a similar way as the O-vinyl-N-

arylhydroxyamine in our previously published indole synthesis. The subsequently formed 

cyclic iminoketone 2-7 could tautomerize to an enamine, which proceeds through 

dehydrative annulation to complete the cascade and deliver the product 2-9 as a 1,2-fused 

pyrrole.  

Scheme 43. Design of a Cascade Approach towards 1,2-Fused Pyrroles 

 

2.2  Condition Study, and Approaches to Achieve a One-Pot Reaction  

To verify our hypothesis, we synthesized the N-hydroxylenamine 2-5a by condensing N-

(pent-4-yn-1-yl)hydroxylamine and 1,3-cyclohexanedione and treated it with various gold 

catalysts in dichloromethane (see Table 1). To our delight, the desired reaction occurred 

readily under room temperature in the presence of Ph3PAuNTf2, affording the desired 

tricyclic pyrrole 2-9a in a moderate 50% yield (entry 1). Notably, neither of the eight-

membered ring intermediates (i.e. 2-7 and 2-8) was detected by 1H NMR, suggesting that 

its subsequent transannular condensation was facile.  This encouraging result was 

improved by using other gold catalysts (entries 2-5). Particularly, both BrettPhosAuNTf2 

(entry 3) and MorDalPhosAuNTf2 (entry 4) led to NMR yields of more than 80%. Although 

the latter catalyst was slightly more effective, BrettPhosAuNTf2 was preferred for the faster 

and cleaner reaction. On the other hand, AuCl3 was less effective as a catalyst (entry 6), 

and the reaction was most likely not promoted by a Brønsted acid as CF3COOH, even with 

a large excess amount, was incapable to promote the reaction (entry 7).  

To improve the overall efficiency, we probed whether the synthesis of the N-

hydroxylenamine precursor 2-5a and the subsequent gold catalysis could be integrated into 

a one-pot process. First, we examined the synthesis of 2-5a via the room temperature 
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condensation between N-(pent-4-yn-1-yl)-hydroxylammonium trifluoroacetates 2-4 and 

1,3-cyclohexanedione 2-3a in the presence of a base, under N2 atmosphere. The protonated 

hydroxylamine was used as its free form is prone to oxidation. To avoid gold catalyst being 

poisoned by base, we limited the choices of bases to those of mild nature. As shown in 

Table 2, while K2CO3 (entry 1) worked poorly, the other bases including 8-methylquinoline 

(entry 2), sodium tosylate (entry 3), NaOAc (entry 4) and NaHCO3 (entry 5) were all 

effective, with the last one affording the highest NMR yield of 2-5a.  

Table 1. Reaction Discovery and Catalyst Optimization 

 

Entry Catalyst Time Yield[a] 

1 Ph3PAuNTf2 4.5 h 50% 

2 IPrAuNTf2 7 h 72% 

3 BrettPhosAuNTf2 0.5 h 82% 

4 MorDalPhosAuNTf2 6 h 85% 

5 PhosphiteAuNTf2 2 h 57% 

6 AuCl3 12 h 42%c 

7 CF3COOHc 12 h <1%c 

[a] NMR yield, determined by using diethyl phthalate as the 

internal reference. [b] Not finished when stopped. [c] 10 

equivalents used. 

With the mild conditions (Table 2, entry 5) established, a gold catalysis-triggered cascade 

reaction using the optimized conditions in Table 1 in a one-pot manner was then performed. 

To our delight, the reaction proceeded smoothly although expectedly slower, and the 

overall isolated yield of 2-9a was satisfactory (Table 3, entry 1). 



42 

 

2.3  Scope Study of the Cascade Reaction 

Table 2. Optimizing the Condensation Step 

 

Entry Base Time Yield[a] (%) 

1 K2CO3 (1.5 eq.) 4 h 37 

2 8-Methylquinoline (1.2 eq.) 3 h 88 

3 TsONa (1.2 eq.) 2 h 80 

4 NaOAc (1.2 eq.) 2.5 h 83 

5 NaHCO3 (1.2 eq.) 1.5 h 93 

[a] NMR yield, determined by using diethyl phthalate as the internal reference. 

Table 3. One-Pot Synthesis of Tricyclic Pyrroles from 1,3-Cyclodiketones 

 

Entry Product Yield[a] Entry Product Yield[a] 

1 

 

2-9a, 75%, 

4 h 
5 

 

2-9e, 57%, 

3.5 h 

2 

 

2-9b, 

55%, 4 h 
6 

 

2-9f, 

63%[b], 8 h 

3 

 

2-9c, 

62%[b], 4.5 

h 

7 

 

2-9g, 50%, 

7.5 h 

4 

 

2-9d, 

52%, 4 h 
   

[a] One-pot overall isolated yield. Reaction time referring to the both steps. [b] Regiochemistry established by nOe 

eeriments. 
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We then investigated the scope of the reaction by applying a series of readily available 

substituted 1,3-cyclohexanediones. To our delight, many of them underwent the reaction 

smoothly, affording substituted tricyclic pyrroles in mostly good yields (Table 3, entries 2-

6). Interestingly, when the two carbonyl groups are sterically differentiated as in the case 

of 2-9c or 2-9f, the α-substituted one remained unchanged while the more hindered one 

was incorporated into the pyrrole ring (entries 3 and 6), indicating a high level of steric 

preference. In addition to cyclohexane-1,3-diones, cyclopentane-1,3-diones also 

participated in the reaction without accident, affording 2-9g with an exquisite linear 

azatriquinane skeleton. While the overall yields in most cases are moderate, these one-pot 

reactions are serviceable considering the enhanced operational efficiency and, moreover, 

the average yield for each step is >70%.  

To further expand the reaction scope, we turned to acyclic 1,3-diketone compounds. 

Instead of the anticipated product, an acyl-substituted 1,2-fused pyrrole 2-10, the 

isoxazonium side product was detected (Scheme 44, 2-11). This heteroarene is likely 

formed by two consecutive condensation reactions during the first condensation step in the 

absence of the gold catalysis, as shown in the proposed mechanism (Scheme 44). Indeed, 

when the substrates were mixed without the presence of gold catalyst, 2-11 was formed in 

60% NMR yield within similar period. 

Scheme 44. Applying Acyclic 1,3-Dicarbonyl Compounds to the Reaction 

 

 



44 

 

Table 4. Expanded Reaction Scope[a] 

 

entry ketone hydroxylamine product yield[b] 

1 

   

2-9h, 

42%[c], 4 h 

2 

  
 

2-9i, 37%, 

4.5 h 

3 

   

2-9j, 61%, 

4 h 

4 

   

2-9k, 56%, 

6 h 

[a] Reactions were run with the same condition as in Table 3. [b] Isolated yield. [c] Structure as shown, determined by nOe experiment. 

To circumvent the formation of isoxazonium side product, we reasoned that a strong 

electron-withdrawing R1 or R2 group on 2-11 might hinder its formation due to the 

destabilization of the positively charged isoxazole ring. To our delight, when 1,1,1-

trifluoropentane-2,4-dione was employed, the expected bicyclic pyrrole 2-9h was obtained 

in 42% yield (Table 4, entry 1). Though with a relatively low efficiency, the reaction was 

highly selective toward the less electrophilic carbonyl group. An alternative approach to 

avoid the formation of isoxazonium intermediates is to replace one of the carbonyl group 

with other electron-withdrawing groups. For example, when a 4-nitrophenyl group was 

employed, a low yet serviceable yield of the substituted bicyclic pyrrole 2-9i was obtained 

(entry 2).  A few different N-alkynylhydroxylamine were also tested. A benzene-fused 

variant 2-4b reacted without incident to afford the tetracyclic pyrrole 2-9j in a good overall 

yield for the two-step sequence (entry 3), and a homolog of 2-4a also participated in the 
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reaction smoothly, thus leading to the formation of a piperidine-fused tricyclic pyrrole 2-

9k in a good overall yield (entry 4). 

2.4  Conclusion 

In summary, we have developed a facile two-step cascade reaction for the synthesis of 

fused pyrroles from N-alkynylhydroxylamines and readily enolizable ketones. By varying 

the substrates, fused pyrroles of different bicyclic, tricyclic, and tetracyclic skeletons can 

be readily access in moderate to good yields. This reaction employs a gold-catalyzed 

nucleophilic addition reaction to trigger a cascade process featuring a facile 3,3-

sigmatropic rearrangement of N,O-dialkenylhydroxylamine intermediate, which is formed 

by the aforementioned nucleophilic addition. The method features mild condition and 

compatibility with different functional groups. 

2.5  Experimental Details 

General Procedure A:  preparation of N-alkylhydroxylammonium trifluoroacetate  

 

2-A was prepared using the method reported by Staszak et al11 from hydroxylamine hydrochloride 

and di-tert-butyl dicarbonate. 

2-A (1.165 g, 5 mmol), an alkyne (5.5 mmol, n = 1 or 2), K2CO3 (863 mg, 6.25 mmol) and DMF 

(5 mL) was mixed at room temperature. The mixture was then stirred vigorously and heated 

overnight at 60 oC. The resulting mixture was extracted with ethyl acetate and washed with water 

until most of the DMF is removed, dried with MgSO4 and concentrated under reduced pressure to 

afford product 2-B in 90% yield. 

Trifluoroacetic acid (4.5 mL) was added dropwise into a solution of 2-B (1.5 g, 5 mmol) in 10.5 

mL dichloromethane at room temperature. The mixture was then stirred vigorously for 2.5 hours 

and TLC was used to monitor the reaciton. Upon finished, the solvent and excess amount of 

trifluoroacetic acid was removed under vacuum to give the crude product as a yellow semi-solid. 

The crude product was further washed with cold hexanes to get rid of the trifluoroacetic acid 

impurities, affording the product in >90% yield as a light yellow solid. 
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N-(pent-4-ynyl)hydroxylammonium trifluoroacetate salt 2-4a 

 

N-(pent-4-ynyl)hydroxylammonium trifluoroacetate salt was prepared following the 

general procedure A, using 5-chloro-1-pentyne in the second step. 1H NMR (600 MHz, 

DMSO-d6) δ 3.14 (t, J = 7.7 Hz, 2H), 2.81 (s, 1H), 2.26 (td, J = 7.0, 2.4 Hz, 2H), 1.76 (p, 

J = 7.3 Hz, 2H); 13C NMR (151 MHz, DMSO-d6) δ 160.08 – 159.43 (q, 2JCF = 32.5 Hz), 

120.10 – 114.21 (q, 1JCF = 300.3 Hz), 83.32, 72.45, 49.66, 22.66, 15.44; IR (neat, cm-1): 

3301, 2122, 1672, 1440, 1198, 1141; ESI+ calculated for [C5H10NO]+: 100.08, found 

100.07. 

N-(hex-5-ynyl)hydroxylammonium trifluoroacetate salt 2-4c 

 

N-(hex-5-ynyl)hydroxylammonium trifluoroacetate salt (2-4c) was prepared following the 

general procedure A, using 6-bromo-1-hexyne in the second step. 1H NMR (600 MHz, 

CDCl3) δ 3.36 – 3.16 (m, 2H), 2.30 – 2.14 (t, J = 7.1 Hz, 2H), 2.02 – 1.94 (t, J = 3.3 Hz, 

1H), 1.95 – 1.82 (p, J = 7.6 Hz, 2H), 1.68 – 1.51 (p, J = 7.1 Hz, 2H); 13C NMR (151 MHz, 

CDCl3) δ 82.68, 69.49, 50.80, 24.96, 22.44, 17.83; IR (neat, cm-1): 3304, 2956, 2122, 1673, 

1439, 1201, 1144; ESI+ calculated for [C6H12NO]+: 114.09, found 114.08. 

Preparation of N-(2-ethynylbenzyl)hydroxylammonium trifluoroacetate 2-4b 
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Methanesulfonyl chloride (0.58 mL, 7.5 mmol) was added dropwise to a solution of 2-

Iodobenzyl alcohol (1.17 g, 5 mmol), triethylamine (3.5 mL, 25 mmol), and 4-

(dimethylamino)pyridine in dichloromethane (10 mL) at 0 oC. The mixture was then 

allowed to stir at room temperature overnight. The reaction was quenched by 1 M HCl and 

extracted with ethyl acetate. The organic layer was washed with saturated NaHCO3 and 

brine, dried over Na2SO4, and concentrated under reduced pressure. The crude product 2-

C was used directly in the next step. 

A mixture of 2-C (439 mg, 1.2 mmol), 2-A (280 mg, 1.2 mmol) and K2CO3 (1.5 mmol, 

207 mg) was mixed in 2 mL DMF and the mixture was heated overnight at 60 oC while 

stirred vigorously. The resulting mixture was extracted with ethyl acetate and washed with 

water until most of the DMF is removed, dried with MgSO4 and concentrated under 

reduced pressure to afford crude product 2-D, which was directly used in the next step. 

To a N2-flushed 50 mL Schlenk flask was added Pd(PPh3)2Cl2 (84 mg, 0.12 mmol), CuI 

(45.7 mg, 0.24 mmol), triphenylphosphine (31.4 mg, 0.12 mmol), 2-D (539 mg, 1.2 mmol), 

trimethylsilylacetylene (0.85 mL, 6 mmol) and triethylamine (5 mL). The mixture was 

stirred in N2 at 60 oC, while TLC is used to minitor the reaction. Upon finished, the solvent 

is removed under reduced pressure and the residue was purified with flash column 

chromatography, affording product 2-E in 82% yield. 

To a solution of 2-E (419 mg, 1 mmol) in 5 mL dichloromethane was added a THF solution 

of tetrabutylammonium fluoride (1 M, 2 mL). The mixture was stirred at room temperature 

and TLC was used to monitor the reaction. Upon finished, the reaction was quenched by 

1M HCl and washed with water, dried over Na2SO4, concentrated under reduced pressure. 

The resulting oil was dissolved in dichloromethane (2 mL) and trifluoroacetic acid (1 mL) 

was added dropwise while stirring vigorously. The mixture was allowed to stir at room 

temperature for 2 hours, then the solvent and excess amount of trifluoroacetic acid was 

removed under vacuum to give the product 2-4b in 90% yield as a dark brown solid. 1H 

NMR (500 MHz, CDCl3) δ 7.67 – 7.55 (dd, J = 5.5, 3.5 Hz, 1H), 7.47 – 7.40 (m, 3H), 4.76 

– 4.45 (s, 2H), 3.61 – 3.41 (s, 1H); 13C NMR (151 MHz, CDCl3) δ 133.31, 131.37, 130.20, 

130.05, 129.80, 122.71, 84.04, 79.95, 54.48; IR (neat, cm-1): 3310, 1672, 1440, 1201, 1144; 

ESI+ calculated for [C9H10NO]+: 148.08, found 148.06. 



48 

 

General Procedure B:  preparation of cyclic 1,3-diketones 2-3c, e, f 

 

Cyclic 1,3-diketones were prepared using a slightly modified method reported by Das et 

al:12 substituted esters (12 mmol) was mixed with NaH (60% dispersed in oil, 600 mg, 15 

mmol) at -10 oC under N2 protection. After stirring for 30 minutes, acetone (0.73 mL, 10 

mmol) was added dropwise into the suspension. The mixture was stirred at -10 oC for 1 

hour and was allowed to warm to room temperature and stir for another 2 hours (Caution! 

A lot of heat and H2 gas may be generated during this process!). The resulting mixture was 

quenched by 1M HCl and extracted with ethyl acetate. The extract was washed with brine, 

dried with Na2SO4, concentrated under reduced pressure, and purified by flash column 

chromatography. 

4-Methylcyclohexane-1,3-dione (2-3c) 

 

4-Methylcyclohexane-1,3-dione (2c) was prepared following the general procedure B 

using methyl methacrylate. Product is yellow semi-solid. Known compound. ESI+ 

calculated for [C7H11O2]
+: 127.08, found 127.06. 

 

5-Phenylcyclohexane-1,3-dione (2-3e) 

 

5-Phenylcyclohexane-1,3-dione (2-3e) was prepared following the general procedure B 

using ethyl cinnamate. Product is light yellow solid. (Known compound) 1H NMR (600 

MHz, CDCl3) δ 7.04 – 6.96 (br, 1H), 5.47 (s, 1H), 3.49 – 3.33 (q, J = 16.9 Hz, 2H), 2.82 – 
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2.29 (m, 5H), 2.29 – 1.89 (m, 2H), 1.84 – 1.44 (m, 2H), 1.30 – 1.06 (m, 6H); 13C NMR ; 

IR (neat, cm-1): 1996, 1565, 1383, 1191, 1143; ESI+ calculated for [C12H13O2]
+: 189.09, 

found 189.06. 

Ethyl 3-(2,4-dioxocyclohexyl)propanoate (2-3f) 

 

Ethyl 3-(2,4-dioxocyclohexyl)propanoate (2-3f) was prepared following the general 

procedure B using methyl crontonate. Product is light yellow oil. 1H NMR (500 MHz, 

CDCl3) δ 5.48 – 5.38 (s, 1H, tautomer), 4.19 – 4.09 (m, 2H), 3.52 – 3.34 (m, 1H), 2.75 – 

2.04 (m, 7H), 1.83 – 1.67 (ddt, J = 21.3, 14.0, 6.8 Hz, 1H), 1.65 – 1.49 (qd, J = 12.6, 4.6 

Hz, 1H), 1.32 – 1.22 (t, J = 7.1 Hz, 6H); 13C NMR (151 MHz, CDCl3) δ 203.92, 203.54, 

173.14, 60.52, 58.36, 48.36, 39.77, 31.48, 24.69, 24.35, 14.18; IR (neat, cm-1): 2928, 1730, 

1603, 1457, 1195, 1031; ESI+ calculated for [C11H16O4Na]+: 235.09, found 235.06. 

 

Preparation of substituted acyclic ketones 2-3i 

 

2-3i was prepared using the method reported by Lei:13 A mixture of 1-iodo-4-nitrobenzene 

(1.25 g, 5.0 mmol), acetylacetone (1.54 mL, 15 mmol), CuI (95.5 mg, 0.5 mmol), and 

K3PO43H2O (3.18 g, 15 mmol) in DMSO (15 mL) was stirred in N2 at 90 oC. After 

completion of the reaction, the mixture was quenched with 1 M HCl, extracted with ethyl 

acetate and dried over Na2SO4. The solvent was removed under reduced pressure and the 

residue was purified by flash column chromatography to afford 2-3i in 45% yield as a 

brown solid. (Known compound) 1H NMR (500 MHz, CDCl3) δ 8.19 (d, J = 8.7 Hz, 1H), 

7.36 (d, J = 8.6 Hz, 1H), 3.85 (s, 1H), 2.24 (s, 2H); 13C NMR (151 MHz, CDCl3) δ 204.14, 

147.05, 141.45, 130.46, 123.72, 50.01, 29.86; IR (neat, cm-1): 1715, 1598, 1517, 1346, 

1159; ESI+ calculated for [C9H9NO3Na]+: 202.05, found 202.03. 
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Preparation of 3-(hydroxy(pent-4-ynyl)amino)cyclohex-2-enone 2-5a 

 

To a 50 mL round bottom flask was added 2-4a (2.13 g, 10 mmol), 1,3-cyclohexanedione 

(1.35 g, 12 mmol) and NaHCO3 (1 g, 12 mmol). The system was degassed with N2 and 10 

mL of anhydrous 1,2-dichloroethane was added. The mixture was allowed to stir at room 

temperature until TLC showed total consumption of the hydroxylammonium salt. The 

mixture was then concentrated under reduced pressure and the residue was was purified by 

flash column chromatography and give the product in 90% yield as a light yellow to white 

solid. 1H NMR (500 MHz, CDCl3) δ 5.55 (s, 1H), 3.67 (t, J = 6.7 Hz, 2H), 2.50 (t, J = 6.3 

Hz, 2H), 2.28 – 2.18 (m, 4H), 1.98 – 1.91 (m, 5H); 13C NMR (151 MHz, CDCl3) δ 195.85, 

165.18, 95.24, 83.23, 69.42, 51.02, 34.46, 25.64, 2 

 

General procedure C: one-pot synthesis of fused pyrroles with the gold catalysis-

triggered cascade 

 

To a N2-flushed vial with magnetic stirring bar was added 2-4a (0.1 mmol), ketones 2-3 

(1.2 equiv.), NaHCO3 (1.2 equiv.) and 1,2-dichloroethane (2 mL). The system was 

degassed with N2 and the mixture was stirred at room temperature. The reaction was 

monitored by TLC. Upon finished, the cap was opened and the BrettPhosAuNTf2 (5 mol%) 

was added. The reaction was allowed to stir at room ptemperature until completion 

(monitored by TLC), and was concentrated under reduced pressure. The residue was 

purified by flash column chromatography to afford the product 2-9a-k. 
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2,3,6,7-Tetrahydro-1H-pyrrolo[1,2-a]indol-8(5H)-one (2-9a) 

 

2,3,6,7-Tetrahydro-1H-pyrrolo[1,2-a]indol-8(5H)-one (2-9a) was prepared following the 

general procedure C. 1H NMR (600 MHz, CDCl3) δ 6.13 (s, 1H), 3.81 (t, J = 7.1 Hz, 2H), 

2.78 (t, J = 7.4 Hz, 2H), 2.69 (t, J = 6.2 Hz, 2H), 2.48 (p, J = 7.2 Hz, 2H), 2.43 – 2.36 (m, 

2H), 2.09 (p, J = 6.3 Hz, 2H); 13C NMR (151 MHz, CDCl3) δ 194.25, 138.86, 137.77, 

124.23, 96.15, 44.02, 37.76, 27.77, 23.85, 23.55, 22.03; IR (neat, cm-1): 2946, 1639, 1486, 

1471, 1369, 1170; ESI+ calculated for [C11H13NONa]+: 198.09, found 198.07. 

6,6-Dimethyl-2,3,6,7-tetrahydro-1H-pyrrolo[1,2-a]indol-8(5H)-one (2-9b) 

 

6,6-Dimethyl-2,3,6,7-tetrahydro-1H-pyrrolo[1,2-a]indol-8(5H)-one (2-9b) was prepared 

following the general procedure C. 1H NMR (500 MHz, CDCl3) δ 6.14 (s, 1H), 3.81 (t, J 

= 7.1 Hz, 2H), 2.81 (t, J = 7.3 Hz, 2H), 2.57 (s, 2H), 2.50 (p, J = 7.2 Hz, 2H), 2.30 (s, 2H), 

1.10 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 193.49, 137.91, 137.59, 123.10, 96.04, 52.00, 

43.96, 36.14, 35.56, 28.75, 27.74, 23.60; IR (neat, cm-1): 2959, 2931, 2094, 1644, 1470, 

1368, 1274; ESI+ calculated for [C13H18NO]+: 204.14, found 204.11. 

7-Methyl-2,3,6,7-tetrahydro-1H-pyrrolo[1,2-a]indol-8(5H)-one (2-9c) 

 

7-Methyl-2,3,6,7-tetrahydro-1H-pyrrolo[1,2-a]indol-8(5H)-one (2-9c) was prepared 

following the general procedure C. 1H NMR (500 MHz, CDCl3) δ 6.14 (s, 1H), 3.81 (t, J 

= 7.1 Hz, 2H), 2.80 (t, J = 7.3 Hz, 2H), 2.77 – 2.67 (m, 2H), 2.53 – 2.39 (m, 3H), 2.18 (dq, 

J = 14.4, 5.0 Hz, 1H), 1.87 (dtd, J = 13.6, 9.1, 6.1 Hz, 1H), 1.20 (d, J = 7.0 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 196.71, 138.03, 137.82, 123.69, 96.39, 43.95, 41.07, 31.78, 
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27.81, 23.63, 21.02, 15.54; IR (neat, cm-1): 2962, 2932, 2103, 1644, 1470, 1372, 1149; 

ESI+ calculated for [C12H16NO]+: 190.12, found 190.10. 

6-Methyl-2,3,6,7-tetrahydro-1H-pyrrolo[1,2-a]indol-8(5H)-one (2-9d) 

 

6-Methyl-2,3,6,7-tetrahydro-1H-pyrrolo[1,2-a]indol-8(5H)-one (2-9d) was prepared 

following the general procedure C. 1H NMR (600 MHz, CDCl3) δ 6.14 (s, 1H), 3.86 – 3.76 

(m, 2H), 2.84 – 2.70 (m, 3H), 2.57 – 2.42 (m, 3H), 2.42 – 2.31 (m, 2H), 2.17 (dd, J = 16.2, 

11.5 Hz, 1H), 1.12 (d, J = 6.0 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 193.83, 138.44, 

137.88, 123.94, 96.11, 46.31, 43.98, 31.82, 30.30, 27.75, 23.57, 21.35; IR (neat, cm-1): 

2957, 2927, 2095, 1642, 1488, 1471, 1456, 1369; ESI+ calculated for [C12H15NONa]+: 

212.11, found 212.08. 

6-Phenyl-2,3,6,7-tetrahydro-1H-pyrrolo[1,2-a]indol-8(5H)-one (2-9e) 

 

6-Phenyl-2,3,6,7-tetrahydro-1H-pyrrolo[1,2-a]indol-8(5H)-one (2-9e) was prepared 

following the general procedure C. 1H NMR (600 MHz, CDCl3) δ 7.33 (t, J = 7.5 Hz, 2H), 

7.30 – 7.22 (m, 3H), 6.20 (s, 1H), 3.93 – 3.71 (m, 2H), 3.48 (tt, J = 11.1, 4.9 Hz, 1H), 3.02 

– 2.86 (m, 2H), 2.82 (t, J = 7.4 Hz, 2H), 2.75 – 2.65 (m, 2H), 2.50 (p, J = 7.2 Hz, 2H); 13C 

NMR (151 MHz, CDCl3) δ 192.75, 143.52, 138.27, 137.86, 128.69, 126.90, 126.78, 124.03, 

96.33, 44.94, 44.08, 42.49, 30.12, 27.79, 23.62; IR (neat, cm-1): 2857, 1647, 1487, 1470, 

1370, 1276; ESI+ calculated for [C17H17NONa]+: 274.12, found 274.10. 

 

Ethyl 3-(8-oxo-2,3,5,6,7,8-hexahydro-1H-pyrrolo[1,2-a]indol-7-yl)propanoate (2-9f) 
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Ethyl 3-(8-oxo-2,3,5,6,7,8-hexahydro-1H-pyrrolo[1,2-a]indol-7-yl)propanoate (2-9f) was 

prepared following the general procedure C. 1H NMR (600 MHz, CDCl3) δ 6.10 (s, 1H), 

4.08 (q, J = 7.1 Hz, 2H), 3.79 (t, J = 7.1 Hz, 2H), 2.84 – 2.62 (m, 4H), 2.54 – 2.29 (m, 5H), 

2.21 – 2.08 (m, 2H), 1.90 (dtd, J = 13.7, 8.8, 5.1 Hz, 1H), 1.78 (dq, J = 14.6, 6.9 Hz, 1H), 

1.21 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 195.42, 173.77, 137.97, 137.80, 

123.76, 96.46, 60.24, 45.49, 43.98, 32.35, 29.13, 27.81, 25.24, 23.61, 20.74, 14.22; IR 

(neat): 2929, 1730, 1647, 1471, 1372, 1266, 1180; ESI+ calculated for [C16H21NO3Na]+: 

298.14, found 298.12. 

2,3,6,7-Tetrahydrocyclopenta[b]pyrrolizin-1(5H)-one (2-9g) 

 

2,3,6,7-Tetrahydrocyclopenta[b]pyrrolizin-1(5H)-one (2-9g) was prepared following the 

general procedure C. 1H NMR (600 MHz, CDCl3) δ 5.96 (s, 1H), 3.86 (t, J = 7.1 Hz, 2H), 

2.84 (m, 6H), 2.52 (p, J = 7.2 Hz, 2H); 13C NMR (151 MHz, CDCl3) δ 196.61, 153.88, 

145.22, 131.06, 93.91, 44.20, 41.17, 28.15, 23.90, 20.36; IR (neat, cm-1): 2932, 2858, 1647, 

1498, 1355; ESI+ calculated for [C10H11NONa]+: 184.07, found 184.06. 

2,2,2-Trifluoro-1-(5-methyl-2,3-dihydro-1H-pyrrolizin-6-yl)ethanone (2-9h) 

 

2,2,2-Trifluoro-1-(5-methyl-2,3-dihydro-1H-pyrrolizin-6-yl)ethanone (2-9h) was 

prepared following the general procedure C. 1H NMR (500 MHz, CDCl3) δ 6.24 (q, J = 2.0 

Hz, 1H), 3.93 – 3.83 (m, 2H), 2.88 – 2.79 (m, 2H), 2.53 (m, 5H); 13C NMR (151 MHz, 

CDCl3) δ 176.31 – 175.39 (q, 2JCF = 33.9 Hz), 136.53 , 136.33 , 117.38 (q, 1JCF = 291.9 

Hz), 117.34 , 101.44 (q, 3JCF = 3.8 Hz), 44.49 , 27.53 , 23.84 , 13.09; IR (neat, cm-1): 2102, 

1644, 1361, 1275, 1197, 1132; ESI+ calculated for [C10H10F3NONa]+: 240.06, found 

240.04. 
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5-Methyl-6-(4-nitrophenyl)-2,3-dihydro-1H-pyrrolizine (2-9i) 

 

5-Methyl-6-(4-nitrophenyl)-2,3-dihydro-1H-pyrrolizine (2-9i) was prepared following the 

general procedure C. 1H NMR (500 MHz, CDCl3) δ 8.18 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 

8.4 Hz, 2H), 6.02 (s, 1H), 3.89 (t, J = 7.0 Hz, 2H), 2.88 (t, J = 7.4 Hz, 2H), 2.56 – 2.46 (m, 

2H), 2.39 (s, 3H); 13C NMR (151 MHz, CDCl3) δ 144.89, 144.49, 135.78, 126.70, 123.94, 

122.87, 121.86, 98.51, 44.66, 27.33, 24.33, 12.03; IR (neat, cm-1): 2012, 1643, 1505, 1332, 

1110; ESI+ calculated for [C14H14N2O2Na]+: 265.10, found 265.08. 

2,3,4,6-Tetrahydro-1H-isoindolo[2,1-a]indol-1-one (2-9j) 

 

2,3,4,6-Tetrahydro-1H-isoindolo[2,1-a]indol-1-one (2-9j) was prepared following the 

general procedure C. 1H NMR (500 MHz, CDCl3) δ 7.51 (d, J = 7.6 Hz, 1H), 7.37 – 7.31 

(m, 2H), 7.19 (t, J = 7.5 Hz, 1H), 6.61 (s, 1H), 4.77 (s, 2H), 2.75 (t, J = 6.2 Hz, 2H), 2.50 

– 2.42 (m, 2H), 2.16 (p, J = 6.3 Hz, 2H); 13C NMR (151 MHz, CDCl3) δ 194.36, 140.86, 

139.47, 138.59, 132.40, 128.36, 126.06, 124.33, 123.25, 119.73, 94.95, 77.24, 77.03, 76.82, 

48.45, 37.73, 23.52, 22.02; IR (neat, cm-1): 1642, 1483, 1432, 1412, 1352, 1191, 1170; 

ESI+ calculated for [C15H13NONa]+: 246.09, found 246.07. 

3,4,6,7,8,9-Hexahydropyrido[1,2-a]indol-1(2H)-one (2-9k) 

 

3,4,6,7,8,9-Hexahydropyrido[1,2-a]indol-1(2H)-one (2-9k) was prepared following the 

general procedure C. 1H NMR (500 MHz, CDCl3) δ 6.18 (s, 1H), 3.78 (t, J = 6.1 Hz, 2H), 

2.74 (t, J = 6.4 Hz, 2H), 2.67 (t, J = 6.1 Hz, 2H), 2.42 (t, J = 6.3 Hz, 2H), 2.11 (p, J = 6.4 

Hz, 2H), 1.96 (p, J = 6.1 Hz, 2H), 1.79 (p, J = 6.2 Hz, 2H); 13C NMR (126 MHz, CDCl3) 
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δ 194.20, 142.36, 130.87, 119.71, 100.94, 43.15, 37.88, 23.66, 23.44, 23.21, 21.34, 20.82; 

IR (neat, cm-1): 1640, 1482, 1467, 1417, 1389, 1276, 1189; ESI+ calculated for 

[C12H16NO]+: 190.12, found 190.11. 

 

NMR identification of oxazonium species 2-11 

 

2-11 was identified by crude NMR and ESI+ MS. Crude NMR is shown in the Appendix. 

ESI+ calculated for [C10H14NO]+: 164.11, found 164.08.  
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Chapter 3   Insertion into Unactivated C-H Bonds with Vinyl Cation Generated by 

Oxidative Gold Carbene Chemistry 

3.1  Introduction of Metal Carbene C-H Insertion Chemistry 

With its unparalleled potential of carrying out late-stage modification in complex molecule 

synthesis, C(sp3)-H functionalization has always been a hot topic in the past decades. Of 

particular challenge is the insertion into unactivated C(sp3)-H bonds as 1) they have 

relatively high bond dissociation energies (range from 95-110 kcal/mol); b) their 

prevalence in any organic molecule makes regio-/stereoselective functionalization a 

daunting challenge.  

Since its earliest observation 60 years ago,1 the insertion of a carbene into a C(sp3)-H bond 

has aroused great interest because of its potential in facile construction of C-C bond. 

Nevertheless, it is not until a few decades later that its synthetic applications, especially 

those featuring transition metal-carbene complexes, were reported. The Teyssie group 

discovered that when a transition metal complex was employed, the yield and selectivity 

of carbene C-H insertion could be greatly influenced by altering the properties of ligands 

on the transition metal.2 Follow-up studies on intramolecular reactions3 further 

demonstrated the synthetic advantages of transition metal catalysts, while a later study4 

focused on the regioselectivity of such C(sp3)-H insertion reaction. Up to now, hundreds 

of papers as well as several books have been published on the topic of metal carbene C(sp3)-

H insertions.5  
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3.2  Our Strategy and Initial Study to a Relayed C-H Insertion Process 

In 2010, our research group developed a general strategy to accessing α-oxo gold carbenes 

via gold-catalyzed intermolecular oxidations of alkynes.6 Comparing to commonly used 

copper, ruthenium, or rhodium carbenes, gold carbenes are considerably more reactive,7 

enabling a wider range of challenging transformations. Moreover, the mild reaction 

conditions and the use of benign alkyne substrates make the strategy a much safer and 

highly efficient surrogate of the typical metal carbene generation, where toxic and 

potentially explosive diazo compounds are used as precursors.  

Exploiting this oxidative gold carbene strategy, our group has developed a great variety of 

transformations leading to numerous valuable molecules and structures.6b, c, 8 However, this 

strategy has never been applied to functionalization of unactivated C(sp3)-H bonds, which 

is quite surprising since the high reactivity of α-oxo gold carbenes clearly suggests the 

feasibility of such reaction. To this end, our lab launched two parallel projects aiming at 

exploring the utilities of our oxidatively-generated gold carbenes in intramolecular C-H 

insertion chemistry.  

Firstly, we considered possibilities of direct C(sp3)-H insertion by oxidatively-generated 

gold carbenes (Scheme 45a). It soon became clear that despite the Thorpe-Ingold effect 

enhances the probability of the carbene center encountering the target C(sp3)-H bond, 

mono-substituted α-oxo gold carbenes are still prone to side reactions, which diminishes 

the reaction yield. As a solution, we introduced an additional carbonyl group on the carbene 

center (i.e. intermediate 3-2’), further increasing its reactivity while suppressing 

intermolecular side reactions by its steric hindrance. The strategy was proved to be very 

effective, and the work was later published in JACS.9  
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Scheme 45. Direct C(sp3)-H Insertion and Relayed C(sp3)-H Insertion 

 

While working on the direct C-H insertion strategy, we came up with a different and 

relayed approach, where an oxidatively generated gold carbene is transformed into another 

reactive species that undergoes C-H insertion process (Scheme 45b). Alkynes are known 

to be reactive towards metal carbenes.10 We envisioned that with an electrophilic α-oxo 

gold carbene, the reaction product would be a highly reactive vinyl cation. It has been 

reported that such a vinyl cation undergoes insertion into unactivated C(sp3)-H bonds in a 

concerted manner.11 As such, we proposed that with a diyne substrate 3-4a, the α-oxo gold 

carbene generated upon selective oxidation of the terminal alkyne would be trapped by the 

internal alkyne to form a vinyl cation intermediate (i.e., 3-4b). 3-4b would either undergo 

a concerted C(sp3)-H insertion to afford the cyclic product 3-5, or isomerize into the gold 

carbene intermediate 3-4c, followed by carbene C-H insertion to give the same product. 

The latter scenario has been suggested by Hashmi and Ji respectively.12 We surmised that 
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this relay strategy would allow a facile access to polycyclic products with limited prior 

functionalization.  

We started the reaction discovery and then condition optimization with the diyne substrate 

3-6a as substrate, which was readily accessed by a two-step synthesis from 3-

methylcyclohexanone. While several initial trials with common gold catalysts including 

Ph3PAuCl, IPrAuCl and JohnPhosAuCl led to complicated mixtures (Table 5, entries 1-3), 

we achieved a 24% yield of desired tricyclic product 3-8a with a combination of 

BrettPhosAuCl and 2,6-dichloropyridine N-oxide (entry 4). Improved yields (40% and 

41%) were observed when switching to sterically more hindered Me4
tBuXPhos (entry 5) 

or the P,N-bidentate ligand MorDalPhos (entry 6). Due to a shorter reaction time, 

Me4
tBuXPhosAuCl was chosen for further optimization. A brief screening showed that 

fluorobenzene was the solvent of choice, giving a 50% yield of the desired product (entries 

5, 7, 8). A series of N-oxides with different steric and electronic properties were also tested 

(entries 8-12), and 8-isopropylquinoline N-oxide 3-7e turned out to be the most effective 

with a 70% yield. To our surprise, the reaction efficiency was somewhat independent to 

the reaction temperature except a slight increase in side reactions (entries 12-15). It is 

noteworthy that the reaction was highly regioselective and diastereoselective: methine C-

H bond is preferred over the methylene counterpart, and 2D NMR studies showed that the 

endo-Ph isomer was formed in >20:1 ratio over the exo isomer. 
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Table 5. Initial reaction discovery and optimization  

  

 

 

entry         catalyst         N-oxide conditions yield 

1 Ph3PAuCl 3-7a DCE, rt, 18 h traceb 

2 IPrAuCl 3-7a DCE, rt, 18 h traceb 

3 JohnPhosAuCl 3-7a DCE, rt, 18 h traceb 

4 BrettPhosAuCl 3-7a DCE, rt, 3 h 24% 

5 Me4
tBuXPhosAuCl 3-7a DCE, rt, 2 h 40% 

6 MorDalPhosAuCl 3-7a DCE, rt, 7 h 41% 

7 Me4
tBuXPhosAuCl 3-7a PhMe, rt, 1 h 46% 

8 Me4
tBuXPhosAuCl 3-7a PhF, rt, 1 h 50% 

9 Me4
tBuXPhosAuCl 3-7b PhF, rt, 1 h 49% 

10 Me4
tBuXPhosAuCl 3-7c PhF, rt, 1.5 h 60% 

11 Me4
tBuXPhosAuCl 3-7d PhF, rt, 1 h 58% 

12 Me4
tBuXPhosAuCl 3-7e PhF, rt, 1 h 70% 

13 Me4
tBuXPhosAuCl 3-7e PhF, 50 ºC, 5 min 70%c 

14 Me4
tBuXPhosAuCl 3-7e PhF, 0 ºC, 7 h 66% 

15 Me4
tBuXPhosAuCl 3-7e PhF, -20 ºC, 36 h 65% 

a Reaction is run in vial. b Complicated mixture formed, and no desired product detected. c 

Reaction was less clean. 
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3.3  Scope Study of C-H Insertion with Vinyl Cation Generated by Oxidative Gold 

Chemistry 

With the optimal reaction condition in hand, the scope of the reaction was further explored 

with a series of substrates derived from substituted cyclohexanones, as shown in Table 6. 

First, we altered the electronic properties of the phenyl group in 3-8a, installing 4-OMe 

(entry 1) and 4-Br (entry 2) respectively. In either case, the desired product was formed in 

satisfactory yield. The methyl group on the cyclohexane ring was then modified. With 

either isopropyl group (entry 3) or phenyl group (entry 4), the reaction worked smoothly, 

affording tricyclic ketone 3-8d and 3-8e in 64% and 65% respectively. Even with the 

substituting group on the cyclohexane ring removed (entry 5), the C-H insertion product 3-

8f was still formed in a decent 50% yield, while the lowered yield (comparing to 3-8a) is 

in accordance to the apparent preference of inserting into tertiary C-H bonds.4 Substrate 3-

6g prepared from 2-methylcyclohexanone, although giving only a modest 40% yield, 

showed an unexpected regioselectivity: the methylene C-H bond vicinal to the methyl 

group is selectively functionalized. To our delight, the phenyl group at the alkyne terminus 

of 3-6a could also be replaced by alkenyl groups such as 2-propenyl (entry 7) and 

cyclohexylvinyl (entry 8), and the trycyclic products 3-8h and 3-8i were isolated in fair 

yields. 
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Table 6. Reaction Scope with Cyclohexanone-Derived Substratesa 

 

 

 2 3 

3-8b, 0.5 h, 62% 3-8c, 1.5 h, 55% 3-8d, 2 h, 64% 

4 5 6 

3-8e, 2 h, 65% 

endo/exo = 3:1 

3-8f, 1 h, 50%b 3-8g, 5 h, 40% 

7 8 9 

3-8h, 1 h, 50% 3-8i, 1 h, 54% 3-8j, 1.5 h, 64% 

10 11 

3-8k, 2 h, 60% 3-8l / 3-8l’ = 1:2, 2h, 65% 

a Isolated yield reported. b Product slightly decomposes on column. 

 

To further test the synthetic utility of this relayed C-H insertion strategy, substrates from 

readily available cis- and trans-2-decalones were also employed (Table 6, entries 9-11). 

Both cases reacted smoothly, affording tetracyclic products 3-8j and 3-8k in satisfactory 

yields. On the other hand, the substrate derived from cis-hexahydro-1H-inden-5(6H)-one 

ended up with two regioisomeric products in a combined yield of 65% (i.e. 3-8l and 3-8l’). 

The major isomer 3-8l’ came from the insertion into a secondary C-H bond, while the 

minor isomer 3-8l is the result of a typically favored insertion into tertiary C-H bond. This 

1 
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inconsistency in reaction outcome is likely caused by the higher energy barrier for cis-

fused cyclopentane ring to achieve optimal conformation for tertiary C-H insertion. 

Moreover, the conformation impact on the reaction was further supported by the fact that 

the diastereoisomer of 3-6a, where methyl is cis to phenylethynyl moiety, lead to no desired 

product despite the full consumption of substrate. In this case, it is possible that the 

insertion into the available methylene C-H bond was hampered by the energetic impact of 

the axial methyl group on the conformation that allows for such insertion. Another 

interesting observation is that except 3-8e, all the other polycyclic products were formed 

as single diastereomers, with the R’ group positioned on the endo side of the 

bicyclo[3.2.1]octane skeleton. 

Table 7. Reaction Scope with Aldehyde-Based Substratesa 

 

 

1 2 3 

3-8m, 1 h, 60% 

d/r = 5:1 

3-8n, 2 h, 66% 

d/r = 2.8:1 

3-8o, 1 h, 62% 

d/r = 4:1 

4  5 

3-8p / 3-8p’, 2 h, 71%, 4:1 3-8q, 2 h, 53% 

a Isolated yield reported. 

With the success of cyclohexanone-derived substrates, we then investigated substrates 

prepared from various aldehydes. The C-H insertion reaction worked well on a series of 

substrates bearing properly positioned methine C-H bonds, affording the desired products 
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in good yields and modest diastereoselectivities (Table 7, entries 1-3). Methylene C-H 

bond on a cyclohexane ring could also be inserted under the same condition, giving a good 

combined yield (Table 7, 3-8p and 3-8p’). Extensive 2D-NMR studies revealed that the 

two diastereomeric products differed at the ring fusion, and the trans-fused 3-8p was 

moderately favored over the cis-fused 3p’. Finally, insertion into methyl C-H bond was 

achieved on substrate prepared from pivalaldehyde, affording 3q with serviceable yield 

and excellent diastereoselectivity. This result highlighted the high reactivity of the putative 

vinyl cation intermediate 3-4b or gold carbene 3-4c. Notably, in all these cases, the reaction 

favors the diastereomer that displays trans relationship between the phenyl group and the 

ethereal oxygen. 

3.4  Mechanistic Studies that Supports a Concerted Pathway 

As mentioned previously, on most of the substrates tested, the reaction exhibits excellent 

diastereoselectivity. Additionally, substrates derived from substituted cyclohexanones 

almost always give the thermodynamically less-favored diastereomer, with bulky phenyl 

group pointing into the concave face of the molecule. Those interesting results prompted 

us to further investigate the reaction mechanism. 

To probe whether the C-H insertion in our system is concerted or not, we prepared the 

diastereomers (3R, 5S)-3-6r and (3S, 5S)-3-6r from (S)-dihydrocitronellal (95% ee) and 

subjected each of them to the optimal reaction conditions. As shown in Scheme 46, both 

reactions were efficient, and more importantly, the insertions were confirmed to be mostly 

concerted with both substrates. For (3R, 5S)-3-6r, the pair of diastereomers, i.e., (5S, 6R, 

7aR)-3-8r and (5R, 6R, 7aR)-3-8r differing only at the benzylic position, is formed in a 

12.5:1 ratio to the other pair, i.e., (5S, 6S, 7aR)-3-8r and (5R, 6S, 7aR)-3-8r, which again 



66 

 

differ at the benzylic position. The major pair has a quaternary carbon center exhibiting the 

same three dimensional orientations of the original non-hydrogen substituents, reflecting 

the conservation of original chirality and a concerted C-H insertion; on the other hand, the 

minor pair is the result of stereochemical inversion, which is only slightly more than what 

has been reported by Gaunt (~2%).11b With (3S, 5S)-3-6r as the substrate, the conservation 

is even more pronounced as the corresponding ratio is now 19.5:1. Additionally, although 

the involvement of gold carbene could not be totally ruled out at this point, previous studies 

of related donor/acceptor-type gold carbenes showed little reactivity of C(sp3)-H 

insertion.13 Therefore, it is more likely that this C-H insertion reaction is enabled by the 

vinyl cation intermediates. 

Scheme 46. Results Supporting a Mostly Concerted C-H Insertion Mechanism 

 

Upon establishing the concerted nature of the vinyl cation C-H insertion, the unique 

stereoselectivities of the reaction can be readily rationalized. As shown in Scheme 47, the 
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vinyl cation intermediate 3-9a formed by oxidative gold chemistry would have its linear 

vinyl cation moiety bisecting the cyclohexane ring. In a concerted C-H insertion scenario, 

the H atom would be delivered to the developing exo face of the bicyclo[3.2.1]octane 

system, while pushing the phenyl group into the endo face (see Scheme 47, 3-9c). On the 

other hand, if the reaction proceeds through a hydride abstraction-cyclization process, the 

cationic intermediate 3-9b would lead to formation of the unobserved exo product due to 

the approach of the cationic moiety to the back side of the alkene. Therefore, we proposed 

that the concerted pathway would be predominant under our reaction condition. 

Additionally, this rationale can also account for the formation of significant amounts of the 

exo-product in the case of 3-8e, where the benzylic hydrogen is much more susceptible to 

hydride abstraction. 

Scheme 47. Rationale for the Observed Diastereoselectivity 

 

3.5  Conclusion 

We have achieved an expedient synthesis of bicyclic/polycyclic 2H-pyran-3(6H)-ones 

from bis-propargyl ethers derived conveniently in two steps from aldehydes/cyclic ketones. 

In this oxidative gold catalysis-triggered cascade, an α-oxo gold carbene intermediate is 

initially formed and subsequently trapped by the tethered internal C-C triple bond, 
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affording a putative vinyl cation intermediate and realizing a relay of electrophilic site. 

Subsequently, the highly reactive intermediate undergoes an intramolecular insertion into 

unactivated C(sp3)-H bond, the mostly concerted nature of which is established by the 

reactions of chiral substrates. This relay strategy opens a new venue for the application of 

oxidative gold catalysis in the development of novel and synthetically streamlining C-H 

insertions. 

3.6  Acknowledgements 

Reproduced from Org. Chem. Front., 2015, 2, 1556-1560, with permission from the Royal 

Society of Chemistry. 

3.7  Experimental Details 

General Procedure A: preparation of substrates 3-6a-l 

 

A terminal alkyne (6 mmol) and tetrahydrofuran (10 mL) was mixed in a flame-dried 

Schlenk flask under N2 atmosphere. The mixture was cooled to -78 ˚C in a dry ice-acetone 

bath, to which nBuLi (2.5 M in hexane, 2.4 mL) was added slowly. The mixture was stirred 

at the same temperature for 0.5 h before a cyclohexanone (5 mmol) was added in one 

portion. The reaction was allowed to warm to room temperature and stirred for an 

additional hour. Upon completion, the reaction was carefully quenched by 5 mL saturated 

NH4Cl aqueous solution and the resulting mixture was extracted by diethyl ether. The 
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organic layers are combined, washed with brine, dried with MgSO4, filtered, and 

concentrated under vacuum. The crude residue was purified by silica gel chromatography, 

and the major diastereomer was collected. 

The desired tertiary alcohol (1 mmol) thus obtained was dissolved in DMF (5 mL). The 

solution was cooled down to 0 °C, and NaH (50 mg, 60% dispersion in mineral oil) was 

added. The mixture was stirred at 0 °C for 20 min and propargyl bromide (1.2 mmol) was 

added in one portion. The mixture was then allowed to stir at room temperature until TLC 

showed completion of reaction. The reaction was poured into a mixture of ice and saturated 

NH4Cl solution, and was subsequently extracted with diethyl ether. The organic layer was 

washed with water and brine, dried with MgSO4, and concentrated under vacuum. The 

residue was purified by silica gel chromatography to give the substrates 3-6a-l. 

 

((trans-3-methyl-1-(prop-2-ynyloxy)cyclohexyl)ethynyl)benzene 3-6a 

 

3-6a was synthesized following General Procedure A with an overall yield of 40%. 1H 

NMR (500 MHz, CDCl3) δ 7.50 – 7.39 (m, 2H), 7.34 – 7.28 (m, 3H), 4.41 (d, J = 2.4 Hz, 

2H), 2.42 (dd, J = 4.9, 2.4 Hz, 1H), 2.22 – 2.12 (m, 2H), 1.85 – 1.61 (m, 4H), 1.46 (td, J = 

12.8, 3.8 Hz, 1H), 1.22 (dd, J = 15.4, 9.1 Hz, 1H), 0.96 (d, J = 6.6 Hz, 3H), 0.92 – 0.82 (m, 

1H); 13C NMR (126 MHz, CDCl3) δ 131.71, 128.34, 128.26, 122.69, 89.16, 87.68, 81.25, 

76.56, 73.46, 51.76, 45.92, 37.36, 34.26, 30.30, 23.41, 22.16; IR (neat, cm-1): 2930, 2861, 
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2119, 1490, 1457, 1443, 1303, 1166, 1063; ESI+ calculated for [C18H20NaO]+: 275.14, 

found 275.06. 

((cis-3-methyl-1-(prop-2-ynyloxy)cyclohexyl)ethynyl)benzene 3-6a’ 

 

3-6a’ was synthesized following General Procedure A with an overall yield of 26%. 1H 

NMR (500 MHz, CDCl3) δ 7.42 (ddd, J = 4.6, 2.9, 1.3 Hz, 2H), 7.32 – 7.27 (m, 3H), 4.34 

– 4.27 (m, 2H), 2.47 – 2.35 (m, 1H), 2.18 (d, J = 14.0 Hz, 2H), 1.84 (dd, J = 6.2, 3.0 Hz, 

1H), 1.67 (dd, J = 18.0, 7.4 Hz, 2H), 1.61 – 1.56 (m, 1H), 1.32 (t, J = 13.1 Hz, 1H), 0.95 – 

0.84 (m, 4H); 13C NMR (126 MHz, CDCl3) δ 131.69, 128.25, 128.23, 122.70, 90.85, 84.85, 

81.11, 73.67, 73.27, 51.93, 44.66, 35.71, 33.93, 26.92, 22.07, 20.88; IR (neat, cm-1): 2949, 

2865, 2118, 1491, 1456, 1444, 1352, 1262, 1152, 1066; ESI+ calculated for [C18H20NaO]+: 

275.14, found 275.11. 

1-Methoxy-4-((trans-3-methyl-1-(prop-2-ynyloxy)cyclohexyl)ethynyl)benzene 3-6b 

 

3-6b was synthesized following General Procedure A with an overall yield of 45%. 1H 

NMR (500 MHz, CDCl3) δ 7.38 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 4.41 – 4.38 

(m, 2H), 3.81 (s, 3H), 2.41 (t, J = 2.2 Hz, 1H), 2.15 (t, J = 8.5 Hz, 2H), 1.82 – 1.55 (m, 

4H), 1.45 (td, J = 12.8, 3.7 Hz, 1H), 1.20 (t, J = 12.2 Hz, 1H), 0.93 (t, J = 11.5 Hz, 3H), 
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0.91 – 0.82 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 159.60, 133.14, 114.75, 113.85, 87.61, 

87.52, 81.29, 76.59, 73.38, 55.31, 55.26, 51.66, 45.93, 37.38, 34.25, 30.26, 23.40, 22.16; 

IR (neat, cm-1): 3295, 2929, 2860, 2218, 1606, 1509, 1458, 1288, 1248, 1165, 1098, 1061, 

1032; ESI+ calculated for [C19H22NaO2]
+: 305.15, found 305.11. 

1-Bromo-4-((trans-3-methyl-1-(prop-2-ynyloxy)cyclohexyl)ethynyl)benzene 3-6c 

 

3-6c was synthesized following General Procedure A with an overall yield of 37%. 1H 

NMR (500 MHz, CDCl3) δ 7.44 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 4.38 (d, J = 

2.4 Hz, 2H), 2.42 (t, J = 2.4 Hz, 1H), 2.15 (dd, J = 12.9, 5.8 Hz, 2H), 1.83 – 1.55 (m, 4H), 

1.45 (td, J = 12.7, 3.7 Hz, 1H), 1.28 – 1.15 (m, 1H), 0.95 (d, J = 6.6 Hz, 3H), 0.92 – 0.82 

(m, 1H); 13C NMR (126 MHz, CDCl3) δ 133.15, 131.53, 122.59, 121.60, 90.44, 86.56, 

81.12, 76.52, 73.56, 51.80, 45.78, 37.25, 34.20, 30.30, 23.39, 22.14; IR (neat, cm-1): 3303, 

2949, 2931, 2861, 2221, 2119, 1901, 1649, 1588, 1486, 1458, 1301, 1062, 823; ESI+ 

calculated for [C18H19BrNaO]+: 353.05, 355.05, found 353.01, 355.01. 

((trans-3-isopropyl-1-(prop-2-ynyloxy)cyclohexyl)ethynyl)benzene 3-6d 

 

3-6d was synthesized following General Procedure A with an overall yield of 39%. 1H 

NMR (500 MHz, CDCl3) δ 7.45 (dt, J = 7.3, 3.6 Hz, 2H), 7.32 (dd, J = 9.2, 5.6 Hz, 3H), 
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4.41 (dt, J = 14.4, 7.2 Hz, 2H), 2.43 (t, J = 2.4 Hz, 1H), 2.17 (dd, J = 16.2, 5.9 Hz, 2H), 

1.84 – 1.78 (m, 1H), 1.72 – 1.43 (m, 5H), 1.29 (t, J = 12.1 Hz, 1H), 1.01 – 0.86 (m, 7H); 

13C NMR (126 MHz, CDCl3) δ 131.73, 128.34, 128.27, 122.74, 89.16, 87.77, 81.23, 77.01, 

73.47, 51.77, 41.38, 41.23, 37.61, 32.45, 28.64, 23.41, 19.73, 19.63; IR (neat, cm-1): 2928, 

2853, 2223, 2117, 1490, 1444, 1331, 1072; ESI+ calculated for [C20H24NaO]+: 303.17, 

found 303.12. 

((trans-3-phenyl-1-(prop-2-ynyloxy)cyclohexyl)ethynyl)benzene 3-6e 

 

3-6e was synthesized following General Procedure A with an overall yield of 54%. 1H 

NMR (500 MHz, CDCl3) δ 7.53 – 744 (m, 2H), 7.38 – 7.29 (m, 5H), 7.27 – 7.19 (m, 3H), 

4.49 – 4.38 (m, 2H), 3.01 – 2.93 (m, 1H), 2.45 – 2.36 (m, 2H), 2.29 (d, J = 12.8 Hz, 1H), 

1.93 (d, J = 12.0 Hz, 2H), 1.89 – 1.74 (m, 2H), 1.67 – 1.59 (m, 1H), 1.46 – 1.36 (m, 1H); 

13C NMR (126 MHz, CDCl3) δ 145.77, 131.82, 128.54, 128.46, 128.35, 126.92, 126.25, 

122.55, 88.66, 88.29, 81.09, 76.69, 73.62, 51.92, 44.44, 41.67, 37.47, 33.70, 23.73; IR (neat, 

cm-1): 3082, 3061, 3029, 2933, 2859, 2223, 2126, 1599, 1491, 1444, 1335, 1308, 1067, 

1014; ESI+ calculated for [C23H22NaO]+: 337.16, found 337.11. 

((1-(Prop-2-ynyloxy)cyclohexyl)ethynyl)benzene 3-6f 
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3-6f was synthesized following General Procedure A with an overall yield of 70%. 1H 

NMR (500 MHz, CDCl3) δ 7.45 (dt, J = 7.3, 3.6 Hz, 2H), 7.34 – 7.27 (m, 3H), 4.38 (d, J = 

2.4 Hz, 2H), 2.42 (t, J = 2.4 Hz, 1H), 2.06 – 1.97 (m, 2H), 1.80 – 1.67 (m, 4H), 1.67 – 1.50 

(m, 3H), 1.32 (dt, J = 12.7, 10.0 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 131.72, 128.32, 

128.26, 122.72, 89.46, 87.03, 81.23, 75.52, 73.41, 51.77, 37.35, 25.38, 23.02; IR (neat, cm-

1): 2936, 2858, 2117, 1489, 1443, 1303, 1146; ESI+ calculated for [C17H18NaO]+: 261.13, 

found 261.09. 

((cis-2-methyl-1-(prop-2-ynyloxy)cyclohexyl)ethynyl)benzene 3-6g 

 

3-6g was synthesized following General Procedure A with an overall yield of 35%. 1H 

NMR (500 MHz, CDCl3) δ 7.52 – 7.37 (m, 2H), 7.38 – 7.30 (m, 3H), 4.47 – 4.27 (m, 2H), 

2.41 (t, J = 2.4 Hz, 1H), 2.29 (dt, J = 11.8, 2.8 Hz, 1H), 1.79 – 1.70 (m, 2H), 1.69 – 1.61 

(m, 2H), 1.57 (tdd, J = 10.5, 6.8, 3.8 Hz, 1H), 1.53 – 1.45 (m, 1H), 1.44 – 1.35 (m, 1H), 

1.30 – 1.21 (m, 1H), 1.10 (d, J = 6.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 131.74, 

128.31, 128.27, 122.82, 89.14, 87.06, 81.53, 80.25, 73.22, 52.08, 41.79, 36.78, 32.23, 

25.28, 23.84, 16.59; IR (neat, cm-1): 2931, 2857, 2119, 1643, 1444, 1373, 1344, 1286, 

1072; ESI+ calculated for [C18H20NaO]+: 275.14, found 275.08. 

trans-3-Methyl-1-(3-methylbut-3-en-1-ynyl)-1-(prop-2-ynyloxy)cyclohexane 3-6h 

 



74 

 

3-6h was synthesized following General Procedure A with an overall yield of 40%. 1H 

NMR (500 MHz, CDCl3) δ 5.30 – 5.27 (m, 1H), 5.24 – 5.21 (m, 1H), 4.34 – 4.30 (m, 2H), 

2.42 – 2.38 (m, 1H), 2.11 – 2.04 (m, 2H), 1.90 (t, J = 1.3 Hz, 3H), 1.75 – 1.64 (m, 3H), 

1.60 – 1.50 (m, 1H), 1.43 – 1.36 (m, 1H), 1.14 (t, J = 12.2 Hz, 1H), 0.93 (d, J = 6.5 Hz, 

3H), 0.88 – 0.78 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 126.32, 121.83, 88.90, 88.11, 

81.26, 76.40, 73.36, 51.61, 45.85, 37.31, 34.23, 30.21, 23.54, 23.35, 22.13; IR (neat, cm-

1): 2930, 2867, 2118, 1457, 1373, 1305, 1099, 1063; ESI+ calculated for [C15H20NaO]+: 

239.14, found 239.09. 

trans-1-((E)-4-Cyclohexylbut-3-en-1-ynyl)-3-methyl-1-(prop-2-ynyloxy)cyclohexane 

3-6i 

 

3-6i was synthesized following General Procedure A with an overall yield of 30%. 1H 

NMR (500 MHz, CDCl3) δ 6.09 (dt, J = 15.3, 7.7 Hz, 1H), 5.46 (dd, J = 16.1, 1.4 Hz, 1H), 

4.32 (d, J = 2.5 Hz, 2H), 2.41 – 2.38 (m, 1H), 2.11 – 1.98 (m, 3H), 1.79 – 1.63 (m, 8H), 

1.62 – 1.51 (m, 1H), 1.42 – 1.35 (m, 1H), 1.31 – 1.22 (m, 2H), 1.20 – 1.04 (m, 4H), 0.92 

(d, J = 6.5 Hz, 3H), 0.82 (ddd, J = 24.8, 12.8, 3.8 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 

150.50, 106.59, 87.61, 86.55, 81.37, 76.56, 73.27, 51.57, 45.92, 41.20, 37.36, 34.26, 32.21, 

30.17, 26.00, 25.82, 23.34, 22.12; IR (neat, cm-1): 3021, 2927, 2852, 2201, 1448, 1332, 

1295, 1278, 1184, 1098, 1064, 957; ESI+ calculated for [C20H28NaO]+: 307.20, found 

307.16. 
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trans-2-(phenylethynyl)-2-(prop-2-ynyloxy)-cis-decahydronaphthalene 3-6j 

 

3-6j was synthesized following General Procedure A with an overall yield of 33%. 1H 

NMR (500 MHz, CDCl3) δ 7.48 – 7.39 (m, 2H), 7.35 – 7.28 (m, 3H), 4.41 (d, J = 2.4 Hz, 

2H), 2.43 (dd, J = 5.5, 3.1 Hz, 1H), 2.13 – 2.05 (m, 1H), 1.97 – 1.80 (m, 3H), 1.80 – 1.65 

(m, 4H), 1.65 – 1.53 (m, 3H), 1.47 – 1.40 (m, 1H), 1.39 – 1.19 (m, 4H); 13C NMR (126 

MHz, CDCl3) δ 131.73, 128.33, 128.26, 122.70, 89.18, 87.51, 81.20, 73.49, 51.72, 46.71, 

44.65, 42.75, 40.09, 37.75, 37.31, 34.93, 33.56, 33.10, 32.52, 31.43, 31.02, 26.49, 21.17 

(aliphatic carbon signals are messy due to rapid conformation change); IR (neat, cm-1): 

2924, 2857, 2126, 1489, 1443, 1371, 1304, 1275, 1144, 1068; ESI+ calculated for 

[C21H24NaO]+: 315.17, found 315.12. 

 

 

 

trans-2-(phenylethynyl)-2-(prop-2-ynyloxy)-trans-decahydronaphthalene 3-6k 

 

3-6k was synthesized following General Procedure A with an overall yield of 40%. 1H 

NMR (500 MHz, CDCl3) δ 7.45 (dt, J = 7.2, 3.0 Hz, 2H), 7.37 – 7.28 (m, 3H), 4.40 (d, J = 

2.4 Hz, 2H), 2.42 (t, J = 2.4 Hz, 1H), 2.19 (ddd, J = 11.7, 6.0, 2.8 Hz, 1H), 2.13 – 2.03 (m, 
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1H), 1.75 – 1.55 (m, 6H), 1.46 – 1.18 (m, 5H), 1.09 – 0.85 (m, 3H); 13C NMR (126 MHz, 

CDCl3) δ 131.74, 128.34, 128.27, 122.74, 89.39, 87.47, 81.24, 76.49, 73.46, 51.80, 44.65, 

42.75, 40.10, 37.76, 33.51, 33.11, 31.02, 26.49, 26.24; IR (neat, cm-1): 2923, 2854, 2221, 

2127, 1598, 1489, 1444, 1321, 1068; ESI+ calculated for [C21H24NaO]+: 315.17, found 

315.12. 

trans-5-(phenylethynyl)-5-(prop-2-ynyloxy)octahydro-1H-indene 3-6l 

 

3-6l was synthesized following General Procedure A with an overall yield of 27%. 1H 

NMR (500 MHz, CDCl3) δ 7.47 – 7.41 (m, 2H), 7.32 (dd, J = 5.0, 1.6 Hz, 3H), 4.40 (d, J 

= 2.4 Hz, 2H), 2.42 (t, J = 2.4 Hz, 1H), 2.29 – 2.15 (m, 1H), 2.01 – 1.89 (m, 4H), 1.81 – 

1.67 (m, 4H), 1.67 – 1.51 (m, 3H), 1.48 – 1.39 (m, 2H); 13C NMR (500 MHz, CDCl3) δ 

80.88, 80.64, 80.63, 80.24, 77.82, 77.76, 77.30, 76.97, 76.75, 75.21, 74.28, 74.23, 74.23, 

73.82, 73.79, 73.43, 73.27, 73.11; IR (neat, cm-1): 2949, 2874, 2117, 1643, 1489, 1444, 

1371, 1312, 1070; ESI+ calculated for [C20H22NaO]+: 301.16, found 301.12. 

 

General Procedure B: preparation of substrates from aldehydes  

 

A terminal alkyne (6 mmol) and tetrahydrofuran (10 mL) was mixed in a flame-dried 
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Schlenk flask under N2 atmosphere. The mixture was then cooled to -78 °C in a dry ice-

acetone bath, and nBuLi (2.5 M in hexane, 2.4 mL) was added slowly. The mixture was 

stirred at the same temperature for 0.5 h before the corresponding aldehyde (5 mmol) was 

added in one portion. The reaction was allowed to warm to room temperature and stirred 

for an additional hour. Upon completion, propargyl bromide (1.2 mmol) was added in one 

portion, and the mixture was stirred at room temperature. The reaction was monitored by 

TLC until the complete consumption of the tertiary alcohol. If no product is forming after 

the addition of propargyl bromide, tetrabutylammonium iodide (20 mol%) and DMF (1 

mL) could be added to accelerate the reaction. Upon completion, the reaction was quenched 

by saturated NH4Cl and extracted with diethyl ether. The combined organic layers were 

washed with water and brine, dried with MgSO4, and concentrated under vacuum. The 

residue was purified by silica gel chromatography to give the substrates 3-6m-q. 

 

(5-methyl-3-(prop-2-ynyloxy)hex-1-ynyl)benzene 3-6m 

 

3-6m was synthesized following General Procedure B with an overall yield of 80%. 1H 

NMR (500 MHz, CDCl3) δ 7.50 – 7.41 (m, 2H), 7.37 – 7.28 (m, 3H), 4.57 (d, J = 6.8 Hz, 

1H), 4.38 (ddd, J = 15.7, 10.8, 2.4 Hz, 2H), 2.45 – 2.44 (m, 1H), 2.00 – 1.90 (m, 1H), 1.80 

(dt, J = 14.2, 7.2 Hz, 1H), 1.67 (dt, J = 13.7, 6.9 Hz, 1H), 0.98 (t, J = 6.3 Hz, 6H); 13C 

NMR (126 MHz, CDCl3) δ 131.74, 128.38, 128.26, 122.63, 87.54, 86.15, 79.72, 74.33, 
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67.38, 55.73, 44.57, 24.72, 22.71, 22.35; IR (neat, cm-1): 2958, 2870, 2118, 1644, 1490, 

1468, 1443, 1331, 1127, 1081; ESI+ calculated for [C16H18NaO]+: 249.13, found 249.02. 

(4-Cyclohexyl-3-(prop-2-ynyloxy)but-1-ynyl)benzene 3-6n 

 

3-6n was synthesized following General Procedure B with an overall yield of 72%. 1H 

NMR (500 MHz, CDCl3) δ 7.45 (dtt, J = 5.5, 2.9, 1.4 Hz, 2H), 7.34 – 7.30 (m, 3H), 4.60 

(dd, J = 7.8, 6.4 Hz, 1H), 4.37 (ddd, J = 15.7, 12.4, 2.4 Hz, 2H), 2.44 (t, J = 2.4 Hz, 1H), 

1.88 – 1.75 (m, 3H), 1.75 – 1.60 (m, 5H), 1.34 – 1.22 (m, 2H), 1.22 – 1.15 (m, 1H), 1.02 – 

0.92 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 131.75, 128.36, 128.30, 128.26, 122.67, 

87.68, 86.11, 79.73, 74.32, 66.89, 55.73, 43.21, 34.03, 33.44, 32.99, 26.53, 26.21, 26.13; 

IR (neat, cm-1): 3081, 3057, 3034, 2924, 2852, 2226, 2118, 1742, 1599, 1490, 1447, 1336, 

1261, 1074; ESI+ calculated for [C19H22NaO]+: 289.16, found 289.12. 

(4-Cyclopentyl-3-(prop-2-ynyloxy)but-1-ynyl)benzene 3-6o 

 

3-6o was synthesized following General Procedure B with an overall yield of 75%. 1H 

NMR (600 MHz, CDCl3) δ 7.45 – 7.41 (m, 2H), 7.34 – 7.27 (m, 3H), 4.50 (t, J = 6.9 Hz, 

1H), 4.35 (qd, J = 15.7, 2.4 Hz, 2H), 2.43 (t, J = 2.4 Hz, 1H), 2.08 (dt, J = 15.3, 7.7 Hz, 

1H), 1.92 – 1.79 (m, 4H), 1.65 – 1.58 (m, 2H), 1.58 – 1.48 (m, 2H), 1.21 – 1.11 (m, 2H); 

13C NMR (126 MHz, CDCl3) δ 131.74, 128.37, 128.25, 122.65, 87.61, 86.16, 79.74, 74.30, 
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68.44, 55.75, 41.95, 36.52, 32.72, 32.63, 25.12, 24.98; IR (neat, cm-1): 2950, 2867, 2117, 

1643, 1490, 1443, 1333, 1075; ESI+ calculated for [C18H20NaO]+: 275.14, found 275.10. 

(3-Cyclohexyl-3-(prop-2-ynyloxy)prop-1-ynyl)benzene 3-6p 

 

3-6p was synthesized following General Procedure B with an overall yield of 82%. 1H 

NMR (500 MHz, CDCl3) δ 7.46 (dd, J = 6.7, 3.1 Hz, 2H), 7.32 (dd, J = 4.6, 2.0 Hz, 3H), 

4.46 – 4.29 (m, 3H), 2.44 (t, J = 2.3 Hz, 1H), 1.98 – 1.89 (m, 2H), 1.83 – 1.62 (m, 4H), 

1.33 – 1.13 (m, 5H); 13C NMR (126 MHz, CDCl3) δ 131.77, 128.32, 128.25, 122.74, 87.02, 

86.45, 79.83, 74.22, 73.66, 55.95, 42.66, 29.06, 28.50, 26.43, 25.94, 25.91; IR (neat, cm-

1): 2927, 2853, 2117, 1643, 1490, 1444, 1331, 1261, 1072; ESI+ calculated for 

[C18H20NaO]+: 275.14, found 275.11. 

(4,4-Dimethyl-3-(prop-2-ynyloxy)pent-1-ynyl)benzene 3-6q 

 

3-6q was synthesized following General Procedure B with an overall yield of 81%. 1H 

NMR (500 MHz, CDCl3) δ 7.48 – 7.42 (m, 2H), 7.34 – 7.28 (m, 3H), 4.38 (ddd, J = 19.5, 

16.0, 2.4 Hz, 2H), 4.16 (s, 1H), 2.44 – 2.41 (m, 1H), 1.08 (s, 9H); 13C NMR (126 MHz, 

CDCl3) δ 131.75, 128.27, 128.25, 122.84, 86.81, 86.39, 79.87, 77.51, 74.16, 56.28, 35.56, 
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25.91 IR (neat, cm-1):3082, 3035, 2958, 2906, 2869, 2219, 2118, 1599, 1490, 1394, 1364, 

1321, 1246, 1195, 1073; ESI+ calculated for [C16H18NaO]+: 249.13, found 249.10. 

Preparation of chiral substrates 3-6r 

 

 

Pd/C (150 mg, 10% on carbon) was added to a dry round-bottom flask flushed with H2. To 

the flask was added ethanol (10 mL), (-)-citronellol (50 mmol, 95% ee), and concentrated 

HCl (12 M, 0.05 mL). The mixture was stirred at 50 °C under H2 atmosphere and monitored 

by TLC. Upon completion, Pd/C was filtered off by a Celite plug, and the filtrate was 

concentrated under vacuum. The residue was dissolved in DCM (20 mL) and Celite was 

added to make the solution into a slurry. Pyridinium chlorochromate (60 mmol) was added 

to the slurry, and the mixture was stirred overnight at room temperature. The reaction 

mixture was then filtered through a silica pad to remove the chromium salts. The filtrate 

was concentrated under vacuum, and purified by silica gel chromatography to give the 

dihydrocitronellal 3-A. 
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The asymmetric nucleophilic addition to 3-A (2 mmol) was performed using Carreira’s 

method.14 (+)-N-methylephedrine (95% ee) and (-)-N-methylephedrine (99% ee) were used 

to prepare the chiral tertiary alcohols 3-B and 3-C, respectively. After careful column 

chromatography, 3-B and 3-C were isolated pure in 69% and 60% yield, respectively. 

 

(S)-3,7-Dimethyloctanal 3-A 

 

1H NMR (500 MHz, CDCl3) δ 9.76 (t, J = 2.3 Hz, 1H), 2.43 – 2.35 (m, 1H), 2.22 (ddd, J 

= 16.0, 7.8, 2.6 Hz, 1H), 2.06 (dt, J = 12.5, 5.7 Hz, 1H), 1.52 (dq, J = 13.3, 6.7 Hz, 1H), 

1.36 – 1.12 (m, 6H), 0.96 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 6.6 Hz, 6H); 13C NMR (126 

MHz, CDCl3) δ 203.11, 51.09, 38.98, 37.13, 28.18, 27.89, 24.65, 22.62, 22.54, 19.97; IR 

(neat, cm-1): 2956, 2929, 2871, 2714, 1728, 1465, 1383, 1367, 1238, 1170, 1015; ESI+ 

calculated for [C10H20NaO]+: 179.14, found 179.07. 

 

 

(3R, 5S)-5,9-dimethyl-1-phenyldec-1-yn-3-ol 3-B 

 

1H NMR (500 MHz, CDCl3) δ 7.45 – 7.40 (m, 2H), 7.30 (ddd, J = 10.8, 7.1, 2.7 Hz, 3H), 

4.66 (dt, J = 8.0, 5.6 Hz, 1H), 1.89 – 1.82 (m, 1H), 1.82 – 1.73 (m, 2H), 1.61 – 1.55 (m, 

1H), 1.53 – 1.49 (m, 1H), 1.39 – 1.25 (m, 3H), 1.21 – 1.13 (m, 3H), 0.97 (d, J = 6.6 Hz, 
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3H), 0.87 (d, J = 6.6 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 131.63, 128.31, 128.25, 

122.69, 90.61, 84.65, 61.23, 45.38, 39.20, 37.26, 29.34, 27.96, 24.54, 22.69, 22.58, 19.49; 

IR (neat, cm-1): 2954, 2928, 2869, 1490, 1466, 1443, 1366, 1028; ESI+ calculated for 

[C18H26NaO]+: 281.19, found 281.04. 

(3S, 5S)-5,9-dimethyl-1-phenyldec-1-yn-3-ol 3-C 

 

1H NMR (500 MHz, CDCl3) δ 7.46 – 7.40 (m, 2H), 7.36 – 7.29 (m, 3H), 4.70 – 4.65 (m, 

1H), 1.84 – 1.74 (m, 2H), 1.69 – 1.62 (m, 1H), 1.54 – 1.51 (m, 1H), 1.41 – 1.25 (m, 4H), 

1.22 – 1.14 (m, 2H), 0.97 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 6.6 Hz, 6H); 13C NMR (126 

MHz, CDCl3) δ 131.65, 128.32, 128.25, 122.70, 90.30, 84.94, 61.74, 45.25, 39.19, 37.23, 

29.74, 27.96, 24.53, 22.68, 22.58, 19.82; IR (neat, cm-1): 2958, 2932, 2100, 1643, 1489, 

1465, 1445, 1382, 1364, 1140; ESI+ calculated for [C18H26NaO]+: 281.19, found 281.15. 

 

The chiral tertiary alcohol 3-B or 3-C (1 mmol) obtained from last step was dissolved in 

DMF (5 mL). The solution was cooled down to 0 °C and NaH (50 mg, 60% dispersion in 

mineral oil) was added. The mixture was stirred at 0 °C for 20 min and propargyl bromide 

(1.2 mmol) was added in one portion. The mixture was then allowed to stir at room 

temperature until TLC showed completion of reaction. The reaction was poured into a 

mixture of ice and saturated NH4Cl solution, and was subsequently extracted with diethyl 

ether. The combined organic layers were washed with water and brine, dried with MgSO4, 

and concentrated under vacuum. The residue was purified by silica gel chromatography to 
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give the chiral substrates 3-6r. 

((3R, 5S)-5,9-dimethyl-3-(prop-2-ynyloxy)dec-1-ynyl)benzene (3R, 5S)-3-6r 

 

1H NMR (500 MHz, CDCl3) δ 7.49 – 7.40 (m, 2H), 7.34 – 7.30 (m, 3H), 4.60 (dd, J = 8.4, 

5.5 Hz, 1H), 4.43 – 4.33 (m, 2H), 2.45 (t, J = 2.4 Hz, 1H), 1.92 (ddd, J = 13.8, 8.4, 5.4 Hz, 

1H), 1.81 (h, J = 6.6 Hz, 1H), 1.63 – 1.56 (m, 1H), 1.54 – 1.50 (m, 1H), 1.36 – 1.26 (m, 

3H), 1.22 – 1.14 (m, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.87 (d, J = 6.6 Hz, 6H); 13C NMR (126 

MHz, CDCl3) δ 131.72, 128.35, 128.24, 122.65, 87.76, 86.00, 79.73, 74.30, 67.02, 55.71, 

42.99, 39.24, 37.32, 29.22, 27.95, 24.53, 22.69, 22.58, 19.36; IR (neat, cm-1): 2955, 2929, 

2118, 1490, 1466, 1365, 1081; ESI+ calculated for [C21H28NaO]+: 319.20, found 319.16. 

(3S, 5S)-5,9-dimethyl-3-(prop-2-ynyloxy)dec-1-ynyl)benzene (3S, 5S)-3-6r 

 

1H NMR (500 MHz, CDCl3) δ 7.47 – 7.41 (m, 2H), 7.35 – 7.28 (m, 3H), 4.58 (t, J = 7.0 

Hz, 1H), 4.37 (qd, J = 15.7, 2.4 Hz, 2H), 2.44 (dd, J = 2.4, 1.9 Hz, 1H), 1.85 – 1.73 (m, 

2H), 1.73 – 1.63 (m, 1H), 1.51 (dd, J = 13.3, 6.6 Hz, 1H), 1.40 – 1.24 (m, 3H), 1.19 – 1.12 

(m, 3H), 0.96 (d, J = 6.4 Hz, 3H), 0.86 (d, J = 6.6 Hz, 6H); 13C NMR (126 MHz, CDCl3) 

δ 131.75, 128.37, 128.25, 122.64, 87.44, 86.32, 79.71, 74.31, 67.68, 55.76, 42.75, 39.19, 

37.05, 29.59, 27.93, 24.45, 22.68, 22.59, 19.84; IR (neat, cm-1): 2954, 2928, 2869, 2118, 
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1490, 1465, 1365, 1334, 1130, 1078; ESI+ calculated for [C21H28NaO]+: 319.20, found 

319.16. 

 

General procedure C: C-H insertion reactions 

 

Substrate 3-6a-r (0.05 mmol), 8-isopropylquinoline N-oxide (12.2 mg, 0.065 mmol), and 

fluorobenzene (1 mL) were mixed in a dry, clean vial with a magnetic strring bar. The 

solution was stirred briefly before NaBARF (3.3 mg, 7.5 mol%) and Me4
tBuXPhosAuCl 

(1.8 mg, 5 mol%) were sequentially added. The reaction was then allowed to stir at room 

temperature until TLC showed complete consumption of the substrate. Fluorobenzene was 

then removed under vacuum and the residue was purified by silica gel chromatography to 

give the products 3-8a-r. 

 

3-8a 

 

3-8a was prepared following General Procedure C in 70% yield. 1H NMR (500 MHz, 

CDCl3) δ 7.39 – 7.30 (m, 4H), 7.30 – 7.26 (m, 1H), 5.99 (d, J = 2.2 Hz, 1H), 4.38 (dd, J = 

141.2, 17.9 Hz, 2H), 3.89 (s, 1H), 2.64 – 2.36 (m, 1H), 1.96 (dt, J = 10.8, 2.5 Hz, 1H), 1.74 
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(d, J = 10.7 Hz, 1H), 1.70 – 1.64 (m, 3H), 1.30 – 1.22 (m, 4H), 1.18 – 1.10 (m, 1H); 13C 

NMR (126 MHz, CDCl3) δ 194.84, 175.07, 135.50, 128.87, 128.38, 127.11, 120.51, 80.59, 

67.51, 58.16, 51.39, 44.88, 32.96, 32.88, 26.65, 19.78; IR (neat, cm-1): 2954, 2874, 1669, 

1495, 1450, 1386, 1317, 1260, 1186, 1105; HRMS (ES+) calculated for [C18H20O2]
+: 

268.1463, found 268.1469. 

3-8b 

 

3-8b was prepared following General Procedure C in 62% yield. 1H NMR (400 MHz, 

CDCl3) δ 7.24 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 5.97 (d, J = 2.2 Hz, 1H), 4.52 

(d, J = 17.9 Hz, 1H), 4.23 (d, J = 17.9 Hz, 1H), 3.83 (s, 1H), 3.81 (s, 3H), 2.51 – 2.43 (m, 

1H), 1.95 – 1.90 (m, 1H), 1.76 – 1.71 (m, 1H), 1.71 – 1.52 (m, 4H), 1.29 – 1.18 (m, 4H), 

1.14 (dd, J = 13.7, 4.6 Hz, 1H); 13C NMR (151 MHz, CDCl3) δ 175.72, 158.53, 129.88, 

127.34, 120.28, 113.71, 80.57, 67.54, 57.54, 55.23, 51.22, 44.74, 32.90, 32.87, 26.55, 

19.80; IR (neat, cm-1): 2932, 1731, 1696, 1511, 1456, 1236, 1172, 1103, 1030; HRMS 

(ES+) calculated for [C19H22O3]
+: 298.1569, found 298.1571. 

3-8c 
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3-8c was prepared following General Procedure C in 55% yield. 1H NMR (600 MHz, 

CDCl3) δ 7.47 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 5.95 (d, J = 2.0 Hz, 1H), 4.51 

(d, J = 17.9 Hz, 1H), 4.24 (d, J = 17.9 Hz, 1H), 3.84 (s, 1H), 2.51 – 2.44 (m, 1H), 1.95 (d, 

J = 10.8 Hz, 1H), 1.77 – 1.64 (m, 3H), 1.62 – 1.56 (m, 1H), 1.31 – 1.20 (m, 4H), 1.12 (dd, 

J = 14.1, 5.5 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 194.69, 174.31, 134.55, 131.55, 

130.48, 121.08, 120.62, 80.50, 67.48, 57.55, 51.29, 44.85, 32.90, 32.79, 26.56, 19.78; IR 

(neat, cm-1): 2956, 2870, 1672, 1489, 1457, 1261, 1101, 1074, 1010; HRMS (ES+) 

calculated for [C18H19BrO2]
+: 346.0568, found 346.0572. 

3-8d 

 

3-8d was prepared following General Procedure C in 64% yield. 1H NMR (600 MHz, 

CDCl3) δ 7.31 (t, J = 4.3 Hz, 4H), 7.27 – 7.25 (m, 1H), 5.94 (d, J = 2.2 Hz, 1H), 4.50 (d, J 

= 17.8 Hz, 1H), 4.22 (d, J = 17.8 Hz, 1H), 4.25 (s, 1H), 2.47 (dd, J = 6.6, 3.2 Hz, 1H), 1.96 

– 1.88 (m, 2H), 1.70 – 1.59 (m, 5H), 1.10 (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 194.80, 175.69, 136.22, 128.98, 128.41, 126.97, 120.42, 80.65, 

67.54, 53.17, 51.21, 43.24, 33.34, 32.25, 29.79, 19.77, 18.63, 17.54; IR (neat, cm-1): 2962, 

2877, 1671, 1497, 1449, 1372, 1317, 1261, 1112, 1087; HRMS (ES+) calculated for 

[C20H24O2]
+: 296.1776, found 296.1779. 

3-8e 
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3-8e was prepared following General Procedure C in 53% yield. 1H NMR (600 MHz, 

CDCl3) δ 7.42 – 7.35 (m, 4H), 7.30 (dd, J = 9.7, 4.3 Hz, 1H), 7.22 – 7.13 (m, 3H), 6.86 (d, 

J = 7.5 Hz, 2H), 6.08 (d, J = 1.9 Hz, 1H), 4.54 (s, 1H), 4.56 (d, J = 17.8 Hz, 1H), 4.29 (d, 

J = 17.8 Hz, 1H), 2.63 (d, J = 11.2 Hz, 1H), 2.55 (s, 1H), 1.96 (d, J = 11.1 Hz, 1H), 1.76 

(ddd, J = 20.6, 18.4, 6.8 Hz, 5H); 13C NMR (126 MHz, CDCl3) δ 194.71, 173.38, 145.00, 

135.11, 128.62, 128.18, 128.13, 127.07, 126.81, 126.17, 121.25, 80.89, 67.46, 58.80, 

51.62, 50.46, 32.72, 30.15, 19.38; IR (neat, cm-1): 2962, 1669, 1501, 1446, 1259, 1156, 

1102; HRMS (ES+) calculated for [C23H22O2]
+: 330.1620, found 330.1625. 

3-8e’ 

 

3-8e’ was prepared following General Procedure C in 17% yield. 1H NMR (500 MHz, 

CDCl3) δ 7.07 (dd, J = 7.9, 7.5 Hz, 2H), 7.05 – 6.94 (m, 6H), 6.88 (d, J = 6.9 Hz, 2H), 5.59 

(d, J = 1.9 Hz, 1H), 4.48 (d, J = 17.7 Hz, 1H), 4.23 (d, J = 17.7 Hz, 1H), 4.06 (s, 1H), 2.89 

(dt, J = 11.0, 2.6 Hz, 1H), 2.54 – 2.44 (m, 1H), 2.18 (dd, J = 13.7, 2.5 Hz, 1H), 2.14 (dd, J 

= 11.1, 1.8 Hz, 1H), 2.07 – 2.01 (m, 1H), 1.87 – 1.67 (m, 3H); 13C (126 MHz, CDCl3) δ 

194.91, 176.78, 144.11, 140.85, 128.00, 127.72, 126.90, 126.42, 125.84, 121.66, 80.89, 

67.25, 57.03, 51.89, 46.66, 42.68, 31.89, 20.35; IR (neat, cm-1): 2958, 1671, 1494, 1452, 

1314, 1263, 1121, 1097; HRMS (ES+) calculated for [C23H22O2]
+: 330.1620, found 

330.1625. 
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3-8f 

 

3-8f was prepared following General Procedure C in 50% yield. The product slightly 

decomposes on silica gel column. 1H NMR (500 MHz, CDCl3) δ 7.37 – 7.31 (m, 4H), 7.25 

(d, J = 2.5 Hz, 1H), 6.17 (d, J = 2.2 Hz, 1H), 4.40 (dd, J = 6.7, 1.8 Hz, 1H), 4.52 (d, J = 

17.8 Hz, 1H), 4.24 (d, J = 17.8 Hz, 1H), 2.84 (s, 1H), 2.46 (d, J = 11.7 Hz, 1H), 2.14 – 2.09 

(m, 1H), 1.90 (d, J = 10.7 Hz, 1H), 1.69 (td, J = 12.4, 5.8 Hz, 1H), 1.54 – 1.50 (m, 1H), 

1.43 – 1.26 (m, 6H); 13C NMR (126 MHz, CDCl3) δ 194.88, 172.60, 136.51, 128.53, 

127.89, 126.67, 121.65, 81.36, 67.09, 51.09, 44.18, 39.53, 33.20, 26.00, 19.12; IR (neat, 

cm-1): 2937, 2587, 1678, 1494, 1448, 1314, 1256, 1130, 1084, 1033; HRMS (ES+) 

calculated for [C17H18O2]
+: 254.1307, found 254.1302. 

3-8g 

 

3-8g was prepared following General Procedure C in 40% yield. 1H NMR (500 MHz, 

CDCl3) δ 7.35 – 7.30 (m, 4H), 7.25 – 7.20 (m, 1H), 6.24 (d, J = 2.1 Hz, 1H), 4.46 (d, J = 

7.1 Hz, 1H), 4.50 (d, J = 17.7 Hz, 1H), 4.24 (d, J = 17.7 Hz, 1H), 2.54 – 2.43 (m, 2H), 2.12 

(q, J = 7.0 Hz, 1H), 1.69 – 1.60 (m, 1H), 1.50 – 1.27 (m, 5H), 1.08 (d, J = 7.0 Hz, 3H); 13C 

NMR (151 MHz, CDCl3) δ 194.91, 171.80, 136.79, 128.43, 127.91, 126.45, 123.63, 83.44, 

66.91, 48.04, 47.69, 45.71, 33.83, 27.55, 19.24, 13.31; IR (neat, cm-1): 2930, 2860, 1674, 
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1494, 1449, 1264, 1134, 1099, 1023; HRMS (ES+) calculated for [C18H20O2]
+: 268.1463, 

found 268.1465. 

3-8h 

 

3-8h was prepared following General Procedure C in 50% yield. 1H NMR (500 MHz, 

CDCl3) δ 5.91 (d, J = 2.1 Hz, 1H), 5.11 – 5.04 (m, 1H), 4.96 (d, J = 0.6 Hz, 1H), 4.44 (d, 

J = 17.7 Hz, 1H), 4.17 (d, J = 17.8 Hz, 1H), 2.41 – 2.32 (m, 1H), 1.88 (d, J = 0.6 Hz, 3H), 

1.86 – 1.82 (m, 1H), 1.70 – 1.55 (m, 5H), 1.40 – 1.34 (m, 1H), 1.24 (s, 3H); 13C NMR (126 

MHz, CDCl3) δ 194.94, 174.81, 139.49, 121.13, 115.21, 80.43, 67.25, 59.37, 52.17, 43.44, 

33.82, 32.45, 27.58, 24.32, 19.83; IR (neat, cm-1): 2952, 2872, 1668, 1457, 1316, 1286, 

1267, 1214, 1099, 1028; HRMS (ES+) calculated for [C15H20O2]
+: 232.1463, found 

232.1463. 

3-8i 

 

3-8i was prepared following General Procedure C in 54% yield. 1H NMR (500 MHz, 

CDCl3) δ 5.84 (d, J = 2.2 Hz, 1H), 5.60 (dt, J = 15.9, 8.0 Hz, 1H), 5.36 – 5.27 (m, 1H), 

4.42 (d, J = 17.9 Hz, 1H), 4.17 (d, J = 17.9 Hz, 1H), 2.98 (d, J = 8.1 Hz, 1H), 2.30 (dd, J = 

7.3, 4.5 Hz, 1H), 2.03 – 1.96 (m, 1H), 1.76 – 1.68 (m, 5H), 1.68 – 1.63 (m, 1H), 1.58 (d, J 

= 6.3 Hz, 1H), 1.56 – 1.51 (m, 1H), 1.44 – 1.24 (m, 4H), 1.19 – 1.07 (m, 3H), 1.04 (d, J = 
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2.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 195.00, 177.17, 143.03, 120.28, 118.87, 80.94, 

67.55, 55.94, 50.57, 43.09, 40.92, 33.53, 33.21, 33.11, 32.68, 26.09, 25.93, 25.92, 25.31, 

20.29; IR (neat, cm-1): 2926, 2852, 1678, 1449, 1315, 1284, 1259, 1076; HRMS (ES+) 

calculated for [C20H28O2]
+: 300.2089, found 300.2090. 

3-8j 

 

3-8j was prepared following General Procedure C in 64% yield. 1H NMR (600 MHz, 

CDCl3) δ 7.34 – 7.30 (m, 4H), 7.30 – 7.26 (m, 1H), 5.95 (d, J = 1.7 Hz, 1H), 4.50 (d, J = 

17.9 Hz, 1H), 4.22 (d, J = 17.9 Hz, 1H), 3.79 (s, 1H), 2.37 – 2.29 (m, 2H), 1.94 (tt, J = 

13.8, 6.8 Hz, 1H), 1.82 – 1.71 (m, 2H), 1.69 – 1.60 (m, 2H), 1.57 (dd, J = 14.5, 10.6 Hz, 

1H), 1.53 – 1.49 (m, 2H), 1.40 – 1.24 (m, 3H), 1.11 – 0.99 (m, 2H); 13C NMR (126 MHz, 

CDCl3) δ 194.95, 175.19, 135.05, 129.42, 128.32, 127.25, 119.97, 81.27, 67.54, 60.52, 

49.48, 43.40, 37.03, 35.53, 30.43, 29.59, 26.60, 26.11, 23.35; IR (neat, cm-1): 2929, 2859, 

1672, 1497, 1449, 1320, 1263, 1241, 1105, 1034; HRMS (ES+) calculated for [C21H24O2]
+: 

308.1776, found 308.1781. 

3-8k 

 

3-8k was prepared following General Procedure C in 60% yield. 1H NMR (500 MHz, 

CDCl3) δ 7.42 – 7.37 (m, 2H), 7.32 – 7.27 (m, 3H), 5.80 (d, J = 2.5 Hz, 1H), 4.49 (d, J = 

17.9 Hz, 1H), 4.21 (d, J = 17.9 Hz, 1H), 2.59 – 2.53 (m, 1H), 1.92 (dd, J = 10.7, 3.1 Hz, 
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2H), 1.86 – 1.76 (m, 3H), 1.74 – 1.67 (m, 1H), 1.64 – 1.54 (m, 3H), 1.46 (dd, J = 13.8, 4.6 

Hz, 3H), 1.15 – 1.05 (m, 2H), 0.61 – 0.51 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 194.84, 

177.84, 138.03, 129.03, 128.12, 127.41, 118.35, 79.92, 67.51, 60.65, 54.20, 48.53, 45.26, 

38.65, 34.04, 28.20, 27.94, 26.50, 22.52; IR (neat, cm-1): 2931, 2856, 1673, 1452, 1319, 

1284, 1253, 1107, 102; HRMS (ES+) calculated for [C21H24O2]
+: 308.1776, found 

308.1770. 

3-8l, 3-8l’ 

 

3-8l and 3-8l’ were prepared following General Procedure C as an inseparatable 1:2 

mixture, overall yield is 65%. 1H NMR (500 MHz, CDCl3) δ 7.36 – 7.28 (m, 3H), 7.25 – 

7.21 (m, 2H), 6.11 (3-8l’, d, J = 2.2 Hz, 1H), 5.94 (3-8l, d, J = 2.2 Hz, 1H), 4.45 (3-8l’, dd, 

J = 6.7, 1.7 Hz, 1H), 4.51 (3-8l, d, J = 17.9 Hz, 1H), 4.49 (3-8l’, d, J = 17.9 Hz, 1H), 4.23 

(3-8l, d, J = 17.8 Hz, 1H), 4.22 (3-8l’, d, J = 17.8 Hz, 1H), 4.09 (3-8l, d, J = 2.1 Hz, 1H), 

2.76 – 2.73 (3-8l’, m, 1H), 2.50 – 2.43 (3-8l’, m, 1H), 2.35 (ddd, J = 11.9, 7.0, 3.7 Hz, 1H), 

2.04 (dd, J = 12.4, 6.9 Hz, 2H), 1.98 – 1.90 (m, 1H), 1.85 – 1.73 (m, 1H), 1.68 – 1.56 (m, 

5H), 1.51 – 1.44 (m, 2H), 1.37 – 1.31 (m, 1H); 13C NMR (126 MHz, CDCl3) δ 195.02, 

194.95, 175.85, 173.00, 136.88, 135.79, 129.32, 128.62, 128.40, 128.04, 127.22, 126.82, 

121.55, 120.85, 81.30, 80.42, 67.75, 67.19, 55.91, 54.18, 53.42, 43.94, 43.56, 39.48, 38.81, 

38.30, 37.84, 34.15, 34.12, 33.00, 31.37, 29.85, 28.72, 23.61, 22.45, 21.46; IR (neat, cm-

1): 2947, 2870, 1673, 1496, 1449, 1314, 1122, 1100; HRMS (ES+) calculated for 

[C20H22O2]
+: 294.1620, found 294.1620. 
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3-8m, 3-8m’ 

 

3-8m and 3-8m’ were prepared following General Procedure C as a 5:1 mixture, overall 

yield is 60%. 1H NMR (500 MHz, CDCl3) δ 7.36 – 7.28 (m, 3H), 7.16 – 7.12 (3-8m, m, 

2H), 7.12 – 7.08 (3-8m’, m, 2H), 5.90 (3-8m, d, J = 1.9 Hz, 1H), 5.30 (3-8m’, s, 1H), 4.84 

– 4.78 (3-8m’, m, 1H), 4.78 – 4.72 (3-8m, m, 1H), 4.33 (3-8m’, d, J = 16.6 Hz, 1H), 4.32 

(3-8m, d, J = 9.6 Hz, 1H), 4.15 (3-8m’, dd, J = 16.8, 1.8 Hz, 1H), 4.09 (3-8m, dd, J = 16.7, 

1.7 Hz, 2H), 3.89 – 3.87 (3-8m’, m, 1H), 3.59 (3-8m, d, J = 2.3 Hz, 1H), 2.19 (dt, J = 11.6, 

7.6 Hz, 1H), 1.84 (3-8m, dd, J = 13.7, 6.1 Hz, 1H), 1.77 (3-8m’, t, J = 11.5 Hz, 1H), 1.22 

(3-8m’, s, 3H), 1.14 (3-8m, s, 3H), 0.82 (3-8m, s, 3H), 0.68 (3-8m’, s, 3H); 13C NMR (126 

MHz, CDCl3) δ 195.43, 195.06, 174.14, 173.20, 137.70, 136.50, 130.25, 129.15, 128.36, 

128.24, 127.28, 127.14, 122.33, 121.14, 78.02, 77.20, 72.91, 72.89, 60.12, 59.94, 44.79, 

44.10, 42.54, 41.34, 29.63, 28.66, 25.84, 24.45; IR (neat, cm-1): 2961, 2867, 1683, 1494, 

1451, 1334, 1289, 1260, 1236, 1110, 1026; HRMS (ES+) calculated for [C16H18O2]
+: 

242.1307, found 242.1308. 

3-8n, 3-8n’ 

 

3-8n and 3-8n’ were prepared following General Procedure C as an inseparatable 2.8:1 

mixture, overall yield is 66%. 1H NMR (500 MHz, CDCl3) δ 7.37 – 7.26 (m, 3H), 7.13 (3-

8n’, d, J = 7.4 Hz, 2H), 7.06 (3-8n, d, J = 7.2 Hz, 2H), 5.88 (3-8n, s, 1H), 5.84 (3-8n’, s, 

1H), 4.81 – 4.69 (m, 1H), 4.32 (3-8n, d, J = 16.7 Hz, 1H), 4.30 (3-8n’, d, J = 16.8 Hz, 1H), 
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4.13 (3-8n, dd, J = 16.8, 2.0 Hz, 1H), 4.08 (3-8n’, dd, J = 16.7, 1.8 Hz, 1H), 3.79 (3-8n, t, 

J = 2.3 Hz, 1H), 3.59 (3-8n’, d, J = 2.2 Hz, 1H), 2.65 (3-8n, dd, J = 12.3, 7.7 Hz, 1H), 2.27 

(3-8n’, dd, J = 13.7, 9.2 Hz, 1H), 1.92 (3-8n’, dd, J = 13.7, 7.2 Hz, 1H), 1.67 – 1.22 (m, 

10H), 1.00 – 0.92 (m, 1H), 0.60 (3-8n, td, J = 13.3, 3.9 Hz, 1H); 13C NMR (126 MHz, 

CDCl3) δ 195.37, 195.15, 174.20, 137.41, 130.69, 129.60, 128.29, 128.12, 127.21, 127.12, 

121.91, 121.07, 120.70, 115.26, 77.93, 76.68, 72.87, 72.66, 61.49, 60.37, 45.87, 45.25, 

38.79, 38.59, 38.14, 33.94, 31.78, 25.53, 25.51, 23.56, 23.40, 22.40, 22.27; IR (neat, cm-

1): 2928, 2854, 1667, 1497, 1452, 1424, 1332, 1258, 1232, 1118, 1014; HRMS (ES+) 

calculated for [C19H22O2]
+: 282.1620, found 282.1616. 

 

3-8o, 3-8o’ 

 

3-8o and 3-8o’ were prepared following General Procedure C as an inseparatable 4:1 

mixture, overall yield is 62%. 1H NMR (400 MHz, CDCl3) δ 7.34 – 7.25 (m, 3H), 7.08 (t, 

J = 5.8 Hz, 2H), 5.86 (3-8o, s, 1H), 5.74 (3-8o’, s, 1H), 4.77 – 4.66 (m, 1H), 4.31 (3-8o, d, 

J = 16.7 Hz, 1H), 4.28 (3-8o’, d, J = 16.7 Hz, 1H), 4.13 (3-8o, dd, J = 16.7, 1.9 Hz, 1H), 

4.08 (3-8o’, dd, J = 16.7, 1.8 Hz, 1H), 4.05 (3-8o, s, 1H), 3.68 (3-8o’, s, 1H), 2.27 (3-8o, 

dd, J = 11.8, 7.4 Hz, 1H), 2.14 (3-8o’, dd, J = 12.7, 8.2 Hz, 1H), 1.96 (3-8o’, dd, J = 12.7, 

9.6 Hz, 1H), 1.85 – 1.76 (m, 1H), 1.73 – 1.42 (m, 5H), 1.27 – 1.08 (m, 3H); 13C NMR (126 

MHz, CDCl3) δ 195.24, 195.04, 174.61, 174.27, 139.59, 138.15, 129.99, 129.54, 128.39, 

128.34, 127.13, 127.06, 121.81, 121.80, 78.32, 77.11, 72.75, 72.42, 57.50, 57.48, 52.90, 

52.25, 42.96, 42.55, 41.02, 38.38, 34.96, 33.34, 24.46, 23.48, 23.47, 22.97; IR (neat, cm-
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1): 3029, 2957, 2867, 1675, 1494, 1452, 1333, 1259, 1233, 1112, 1049, 1032; HRMS (ES+) 

calculated for [C18H20O2]
+: 268.1463, found 268.1461. 

3-8p, 3-8p’ 

 

3-8p and 3-8p’ were prepared following General Procedure C as an inseparatable 4:1 

mixture, overall yield is 71%. 1H NMR (500 MHz, CDCl3) δ 7.33 (dd, J = 10.2, 4.7 Hz, 

2H), 7.28 – 7.24 (m, 1H), 7.14 – 7.09 (m, 2H), 5.93 (3-8p’, s, 1H), 5.86 (3-8p, t, J = 2.0 

Hz, 1H), 4.79 – 4.74 (3-8p’, m, 1H), 4.31 (d, J = 16.6 Hz, 1H), 4.29 – 4.26 (3-8p, m, 1H), 

4.11 (3-8p’, dd, J = 16.5, 2.2 Hz, 1H), 4.10 (3-8p, dd, J = 16.6, 1.9 Hz, 1H), 3.90 (3-8p’, 

d, J = 11.0 Hz, 1H), 3.51 (3-8p, dt, J = 10.9, 2.5 Hz, 1H), 2.42 (3-8p’, td, J = 11.9, 5.4 Hz, 

1H), 2.25 (3-8p’, dd, J = 13.8, 9.1 Hz, 1H), 2.20 (3-8p, dd, J = 8.1, 4.0 Hz, 1H), 1.93 – 

1.88 (3-8p, m, 1H), 1.88 – 1.73 (m, 2H), 1.59 – 1.45 (m, 2H), 1.31 – 1.16 (m, 4H); 13C 

NMR (126 MHz, CDCl3) δ 195.18, 194.89, 174.30, 173.25, 141.79, 140.58, 128.82, 

128.76, 128.21, 128.07, 127.02, 126.97, 123.64, 122.32, 82.95, 81.97, 72.37, 72.22, 54.18, 

49.32, 48.59, 48.47, 43.54, 41.02, 29.74, 29.36, 25.78, 25.39, 24.25, 23.75, 21.98, 20.43; 

IR (neat, cm-1): 3085, 3061, 3028, 2928, 2855, 1682, 1495, 1450, 1318, 1271, 1259, 1235, 

1154, 1012; HRMS (ES+) calculated for [C18H20O2]
+: 268.1463, found 268.1464. 

3-8q 
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3-8q was prepared following General Procedure C in 53% yield. 1H NMR (600 MHz, 

CDCl3) δ 7.30 (t, J = 6.7 Hz, 2H), 7.22 (t, J = 7.3 Hz, 1H), 7.13 (d, J = 7.3 Hz, 2H), 5.93 

(s, 1H), 4.30 (d, J = 2.5 Hz, 1H), 4.29 (d, J = 16.3 Hz, 1H), 4.08 (dd, J = 16.4, 2.0 Hz, 1H), 

4.00 (dd, J = 10.7, 8.7 Hz, 1H), 2.15 (dd, J = 13.2, 8.7 Hz, 1H), 1.74 – 1.69 (m, 1H), 1.24 

(s, 3H), 0.98 (s, 3H); 13C NMR (151 MHz, CDCl3) δ 194.94, 173.16, 142.18, 128.85, 

127.41, 126.89, 123.30, 86.06, 71.85, 46.56, 45.28, 40.56, 26.20, 20.15; IR (neat, cm-1): 

2962, 2868, 1675, 1495, 1455, 1268, 1228, 1136, 1031; HRMS (ES+) calculated for 

[C16H18O2]
+: 242.1307, found 242.1306. 

 (5S, 6R, 7aR)-3-8r, (5R, 6R, 7aR)-3-8r 

 

1H NMR (500 MHz, CDCl3) δ 7.37 – 7.27 (m, 3H), 7.14 (5R, d, J = 7.5 Hz, 2H), 7.11 (5S, 

d, J = 7.5 Hz, 2H), 5.92 (5S, s, 1H), 5.89 (5R, s, 1H), 4.75 – 4.67 (m, 1H), 4.34 (5S, d, J = 

8.0 Hz, 1H), 4.30 (5R, d, J = 8.0 Hz, 1H), 4.14 (5S, d, J = 16.7 Hz, 1H), 4.08 (5R, d, J = 

16.7 Hz, 1H), 3.91 (5S, s, 1H), 3.64 (5R, s, 1H), 2.38 (5S, dd, J = 12.3, 7.5 Hz, 1H), 2.27 

(5R, dd, J = 13.9, 9.5 Hz, 1H), 1.74 (5R, dd, J = 13.9, 6.0 Hz, 1H), 1.61 – 1.50 (m, 2H), 

1.34 (pt, J = 13.9, 6.1 Hz, 3H), 1.15 (p, J = 6.5, 6.1 Hz, 1H), 1.09 – 0.92 (m, 1H), 0.87 (5S, 

dd, J = 6.7, 3.0 Hz, 6H), 0.81 (s, 3H), 0.79 (5R, t, J = 7.1 Hz, 6H), 0.63 (5S, t, J = 12.2 Hz, 

1H); 13C NMR (126 MHz, CDCl3) δ 195.43, 195.12, 173.97, 173.23, 137.01, 136.39, 

130.40, 129.33, 128.35, 128.22, 127.25, 127.16, 122.16, 121.01, 77.71, 76.58, 72.96, 

72.86, 61.86, 59.06, 45.76, 44.30, 42.46, 41.87, 40.71, 39.63, 39.60, 35.98, 27.95, 27.88, 

25.58, 23.38, 22.64, 22.62, 22.55, 22.47, 22.43, 21.98; IR (neat, cm-1): 2956, 2932, 2868, 



96 

 

1678, 1495, 1453, 1381, 1333, 1259, 1233, 1115; HRMS (ES+) calculated for [C21H28O2]
+: 

312.2089, found 312.2086. 

 (5R, 6R, 7aS)-3-8r, (5S, 6R, 7aS)-3-8r 

 

1H NMR (500 MHz, CDCl3) δ 7.30 (q, J = 9.5, 8.3 Hz, 3H), 7.12 (5S, d, J = 7.7 Hz, 2H), 

7.08 (5R, d, J = 7.5 Hz, 2H), 5.89 (5R, s, 1H), 5.84 (5S, s, 1H), 4.84 – 4.74 (m, 1H), 4.33 

(5R, d, J = 16.7 Hz, 1H), 4.31 (5S, d, J = 16.8 Hz, 1H), 4.14 (5R, d, J = 16.7 Hz, 1H), 4.09 

(5S, d, J = 16.7 Hz, 1H), 3.92 (5R, d, J = 2.9 Hz, 1H), 3.64 (5S, d, J = 2.3 Hz, 1H), 2.16 

(5R, dd, J = 11.9, 7.5 Hz, 1H), 2.09 (5S, dd, J = 13.4, 8.8 Hz, 1H), 1.92 (5S, dd, J = 13.4, 

7.7 Hz, 1H), 1.74 (5R, t, J = 11.4 Hz, 1H), 1.54 (dq, J = 21.6, 7.6 Hz, 2H), 1.46 – 1.38 (m, 

1H), 1.32 (p, J = 7.6 Hz, 2H), 1.25 – 1.15 (m, 2H), 0.88 (5R, dd, J = 6.8, 2.8 Hz, 6H), 0.77 

(5S, d, J = 6.6 Hz, 6H), 0.68 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 195.06, 195.05, 

174.20, 171.10, 137.90, 137.43, 130.45, 129.39, 128.29, 128.17, 127.16, 127.08, 122.34, 

121.61, 89.23, 78.08, 72.89, 72.73, 60.72, 60.37, 59.37, 45.12, 44.47, 42.05, 41.99, 41.51, 

39.61, 39.58, 38.23, 27.89, 27.23, 22.64, 22.54, 22.51, 22.38, 22.08, 21.03, 14.19; IR (neat, 

cm-1): 2958, 2868, 1674, 1495, 1453, 1383, 1334, 1287, 1259, 1118; HRMS (ES+) 

calculated for [C21H28O2]
+: 312.2089, found 312.2089. 
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Chapter 4   Application of Gold-Catalyzed Cascade Reactions of Alkynes 

4.1  Introduction 

In this chapter, I will present my works on the application of gold-catalyzed cascade 

reactions. The first project, done in collaboration with the Reich group from Chemistry 

Department, is mainly focused on applying gold/platinum-catalyzed cycloisomerization to 

synthesize novel mitomycin C analogs with promising anticancer potency. The second 

project, which is still ongoing, is focused on utilizing gold-catalyzed nucleophilic addition 

across C-C triple bond to activate a glycosyl donor, thereby achieving stereoselective 

construction of 1,2-cis linkages in glycoconjugate and oligosaccharide synthesis. 

4.2  Streamlined Synthesis of New Mitosene Derivatives with Improved IC50 over 

Mitomycin C 

4.2.1  A Brief History of Mitomycin C and Analogs 

Mitomycin C (MMC, Figure 2), a chemotherapeutic agent isolated from extracts of genus 

Streptomyces,1 cross links DNA and possesses potent antitumor and antibiotic activities.2 

It has been used since the 1960s to treat many types of soft and solid tumors,3 but is 

approved only for gastric and pancreatic adenocarcinoma. Its restricted use is mainly due 

to dose-limiting toxicity and delayed myelosuppression, as well as other significant side 

effects.2c  

Figure 2. Structure of Mitomycin C 
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Although MMC is readily available via fermentation,1, 4 efforts to improve its 

pharmaceutical potency via direct modification have been largely limited to C7,5 C6,6 C10, 

and N1a7 positions and minor structural perturbation due to the sensitive structure, 

especially under acidic conditions. To date, there have been only a few derivatives with 

improved efficacy and/or decreased toxicity,5a, c, 6 but none has reached the market. On the 

other hand, the chemical synthesis of MMC,8 due to the densely organized functional 

groups and the strained aziridine ring, is a great challenge. While several elegant total 

syntheses9 have been achieved, access to new structural spaces has been limited by long 

synthetic sequences and low overall yields. In addition, analogous quinone-containing 

agents with simplified structures while maintaining reductive alkylating capacities have 

also failed due to high toxicities or lost anticancer activity in vivo.10 

4.2.2  Our Preliminary Studies on a 7-Methoxymitosene Analog 

In 2008, our group has published a cycloisomerization of N-(2-alkynylphenyl)lactams 

targeting the key tricyclic pyrrolo-[1,2-a]indole skeleton of MMC (Scheme 48a).11 The 

initial nucleophilic attack of the nitrogen atom triggers a fragmentation of the lactam ring 

to give acylium species 4-4, which subsequently undergoes a series of migrations to afford 

the desired product 4-2a. Side reactions include the Friedel-Crafts-type product 4-2b and 

hydration product 4-2c. Notably, PtCl4 demonstrates much better selectivity against its 

Au(I) counterpart. Based upon this work, our group realized a formal synthesis of 7-

methoxymitosene as well as one novel analogs 4-5, later renamed MTSB-1, with an overall 

yield of 27% over seven steps (Scheme 48b).12 With the streamlined, versatile synthetic 

route to access the molecule of interest, I took over the project and endeavored into 

investigation of the new analog’s anticancer activity. 



100 

 

Scheme 48. Au/Pt-Catalyzed Synthesis of 7-Methoxymitosene Analogs 

 

Comparing to the original MMC, the structural alterations of our MTSB-1 include 

replacing the strained aziridine ring with a readily installable 1-OAc group and inserting 

an additional CH2 group at the C9 side chain. We proposed that the structural deviations 

and simplifications from MMC would give rise to unique mechanism of action and 

biological activity. The established mechanism of action for MMC (Scheme 49A) is 

initiated by a cellular reduction of the quinone moiety, followed by the formation of 7-

aminoleucoaziridinomitosene 4-6 upon elimination of MeOH, and terminated with mono- 

or bis-alkylation of DNA. Bis-alkylation most often results in cross-linking of 

complementary DNA strands and is the major cause of the irreversible damage. Meanwhile, 

MTSB-1, as shown in Scheme 49B, can also undergo an initial reduction of its quinone 

moiety to trigger the monoalkylation of DNA at the same electrophilic site. However, what 

distinct MTSB-1 mechanistically from MMC is the second alkylation. Instead of an 

eniminium intermediate 4-7, the expulsion of the second leaving group would generate an 
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electrophilic spirocyclopropane species (i.e., 4-7’). We reasoned that the strained three-

membered ring could behave like a Michael-type receptor and react with DNA molecule, 

thereby realizing the bis-alkylation. It needs to be pointed out that the order of these two 

alkylation events could be reversed.13 Nevertheless, we believed the introduction of a new 

alkylation mechanism would make unexplored chemical space around the MMC/mitosene 

skeleton available for addressing the issues associated with MMC. Notably, DNA 

monoalkylations by electrophilic cyclopropane rings have already been reported in 

exceptionally potent natural products such as (+)-yatakemycin14 and (+)-duocarmycin SA15 

(see Figure 3). 

4.2.3  MTSB-1: Evaluation of Potency and Mechanism 

To evaluate the efficacy of MTSB-1, thereby test and verify our proposed mechanism, we 

worked in collaboration with the Reich group and carried out cell toxicity experiments. We 

chose the prostate cancer cell line (PPC-1) and the normal prostate cell line (RWPE-1), 

which are frequently used to study the potency and toxicity of chemotherapeutics, 

respectively.16 We selected RWPE-1 because these immortalized normal cells divide more 

slowly than cancer cell lines and can provide information about a compound’s off-target 

toxicity. Much to our delight, MTSB-1 inhibits proliferation of the PPC-1 prostate cancer 

cell at reasonably low concentrations (IC50: 16.6 ± 1.8 μM, Figure 4C), while its IC50 

against the RWPE-1 normal prostate cell line (74.1 ± 6.3 μM, Figure 4D) is more than 4 

times higher. In comparison, MMC is over an order more potent against the PPC-1 prostate 

cancer cell line with an IC50 value of 0.8 ± 0.2 µM (Figure 4), which is similar to other 

reported values.17  However, little difference could be observed for MMC against the 
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normal RWPE-1 prostate cells (IC50: 0.9 ± 0.2 μM, Figure 4B), which is consistent with 

the considerable off-target toxicity demonstrated by MMC in vivo.  

Figure 3. Bio-Active Natural Products Carrying Electrophilic Cyclopropane Rings 

 

Scheme 49. Established Mechanism of DNA Cross-Linking by MMC and Hypothesized Mechanism of 

Action for MTSB-1 

 



103 

 

Figure 4. IC50 curves and values for MMC against PPC-1 cells (A) and RWPE-1 cells (B), and MTSB-1 

against PPC-1 cells (C) and RWPE-1 cells (D) 

 

Scheme 50. Synthesis of Mechanistic Probes for MSTB-1 

 

Conditions: i. PtCl2 (0.3 equiv.), O2 (1 atm), DCE, 80 ˚C, 12 h. ii. a) Pd/C, H2 (1 atm), THF, rt, 12 h, 88%; b) 

N2H4 (2 equiv.), K2CO3 (15 equiv.), ethylene glycol, 180 ˚C, 6 h, 50%. iii. a) AcCl (1.5 equiv.), Et3N (3 equiv.), 

DCM, 0 ˚C to rt, 83%; b) NaNO2 (1.5 equiv.), HCl (1 M), CHCl3/H2O, rt, 16 h, 20%. iv. a) NaBH4 (2 equiv.), 

MeOH, rt, 2 h, 91%; b) AcCl (1.5 equiv.), Et3N (3 equiv.), DCM, 0 ˚C to rt, 84%. c) AgO (3 equiv.), HNO3 (6 

M), THF, rt, 5 min. 
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Considering the substantially lower off-target cytotoxicity, these encouraging initial results 

on MTSB-1 strongly supported the proposed mechanism (see: Scheme 49B). To further 

probe the mechanism of action of MTSB-1, and thereby lay the foundation for improving 

its efficacy, we synthesized three of its structural variants, i.e., MTSB-2, MTSB-3, and 

MTSB-4, as mechanistic probes, following a similar synthetic strategy (Scheme 50).12 

MTSB-2, which has the OAc group at C1 removed, was prepared from the previously 

reported tricyclic fully substituted indole 4-8a12 via a four-step sequence: debenzylation, 

Wolff-Kishner deoxygenation, acetylation of the free OH group, and finally oxidative 

quinone formation; MTSB-3, which has a n-butyl group replacing the OAc at C9 side chain, 

was readily prepared from the requisite tricyclic indole 4-8b upon sequential reduction, 

acetylation and oxidative quinone formation; and  MTSB-4, which does not have any OAc 

leaving group, was accessed in two steps from 4-8b. Notably, in all the preparations, the 

final oxidation of the electron-rich benzene ring suffered from very low efficiencies due to 

a myriad of side reactions despite many efforts to improve it. 

We reasoned that if MTSB-1 exhibits its cytotoxicity by cross-linking DNA (as proposed 

in Scheme 49B), these mechanistic probes would be much less cytotoxic due to the removal 

of one or both alkylating site(s). The IC50 values of the three analogs were determined 

against the PPC-1 prostate cancer cell line. As shown in Figure 5, MTSB-2, MTSB-3, and 

MTSB-4 have IC50 values of 166.5 ± 28.6 µM, 183.0 ± 25.7 µM, and >200 µM, 

respectively, which are all ten-fold down less potent than MTSB-1, and hence are all 

largely ineffective in decreasing cell viability. Likewise, they were ineffective against the 

RWPE-1 normal prostate cell line, with IC50 values close to or over 200 μM (Figure 5B, 

D, F). These data suggest that MTSB-1 most likely double alkylates DNA, which in turn 
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supports our hypothesis that the cyclopropane species 4-7’ would be a key intermediate in 

DNA alkylation. 

Figure 5. IC50 curves and values for MTSB-2 against PPC-1 cells (A) and RWPE-1 cells (B), MTSB-3 

against PPC-1 cells (C) and RWPE-1 cells (D), and MTSB-4 against PPC-1 cells (E) and RWPE-1 cells 

(F) 

 

4.2.4  Synthesis of Derivatives Aiming at Higher Potency 

To provide further support for the involvement of the cyclopropane species 4-7’ in DNA 

alkylation, we designed a chloro analog, i.e., MTSB-5, which has the OAc at C1 of MTSB-

1 removed and the other OAc at C10 replaced by a chloride. Its synthesis is outlined in 

Scheme 51. To improve the low efficiencies encountered in the previous synthetic routes, 

we performed it upon the debenzylation of the common intermediate 4-8a and before 

manipulation of the electron-withdrawing C1 carbonyl group. An improved 40% isolated 

yield of the corresponding indoloquinone 4-10 was achieved. Subsequent two-step 
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reductive deoxygenation of the ketone moiety followed by the treatment of triphosgene 

smoothly delivered the target molecule. 

Scheme 51. Synthesis of Chloride Derivatives MTSB-5, MTSB-6, and MTSB-7 

 

Conditions: i. a) Pd/C, H2 (1 atm), THF, rt, 80%; b) NaNO2 (1.5 equiv.), HCl (1 M), CHCl3/H2O, rt, 16 h, 40%; ii) NaBH4 

(3 equiv.), MeOH, rt, 2 h, then add NH4Cl/H2O, stir in air. iii. Et3SiH (2 equiv.), CF3COOH (5 equiv.), DCM, 0 ˚C, 1 h, 

then TBAF, 73%. iv. Triphosgene (0.5 equiv.), Et3N (2.5 equiv.), DCM, 0 ˚C to rt. v. AcCl (1.5 equiv.), pyridine (3 

equiv.), DCM, 0 ˚C to rt, 80%. 

As chloride is a better leaving group than acetate, an alkylating species of that in Scheme 

49B would be formed more readily if in accordance to our hypothesis. Hence, MTSB-5 

should at least show a lower IC50 value than that of MTSB-2. Much to our delight, MTSB-

5 has a low IC50 value of 0.65 ± 0.15 µM against PPC-1 prostate cancer cells (Figure 6A), 

showing much higher potency than MTSB-2 and even slightly improved potency over 

MMC. While monoalkylation of DNA by an alkylating reagent may be repaired and thus 

non-lethal, this result is nevertheless in line with the high anticancer potency of (+)-

yatakemyin18 and (+)-duocarmycin SA19 (see Figure 3 for the structures of natural products 

involved), which monoalkylate DNA via a reactive spirocyclopropane ring. This in turn is 

consistent with the involvement of a spirocyclopropane intermediate 4-7’ in the 

hypothesized mechanism of action (see Scheme 49B) and implicates a DNA alkylating site 
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different from those of MMC. Like MMC, MTSB-5, shows similar potencies against both 

PPC-1 and RPWE-1 cell lines (Figure 6B).  

Figure 6. IC50 curves and values for MTSB-5 against PPC-1 cells (A) and RWPE-1 cells (B), MTSB-6 

against PPC-1 cells (C) and RWPE-1 cells (D), and MTSB-7 against PPC-1 cells (E) and RWPE-1 cells 

(F) 

 

Because DNA cross-linking may be more lethal to cells than the related monoalkylation in 

the cases of MMC and MTSB-1, installation of an additional alkylating site to MTSB-5 

could enhance cytotoxicity. Two such compounds, MTSB-6 and MTSB-7, with an OH 

group and an OAc group at C1 of the MTSB-5 structure, respectively, were readily 

prepared (Scheme 51).   

Indeed, MTSB-6 and MTSB-7 demonstrated increasing efficacy against PPC-1 cells with 

improved IC50 values of 0.40 ± 0.04 µM and 0.30 ± 0.04 µM, respectively (Figure 6C and 

E). Contrary to MTSB-7, which showed no difference in potency against the RWPE-1 cell 



108 

 

line (IC50 of 0.29 ± 0.08 µM, Figure 6F), MTSB-6 was 2-fold less cytotoxic against RWPE-

1 (IC50: 0.84 ± 0.20 µM, Figure 6D) than against PPC-1. These results may form the basis 

of rationally improving the potency of these analogs while lowering the toxicity, as scored 

in these cell-based assays. 

4.2.5  Conclusion 

In conclusion, we have advanced a hypothesis that, different from the mode of DNA double 

alkylation by mitomycin C, structurally related yet novel mitosene derivatives could 

likewise cross link DNA via a novel electrophilic spirocyclopropane intermediate. Rational 

design and substantial structural simplification permits rapid access to some preliminary 

examples of the mitosenes, i.e., MTSB-1 - MTSB-7. Their cytotoxicity assays against the 

PPC-1 prostate cancer cell line and the RWPE-1 normal cell line yield IC50 values that are 

consistent with the hypothesis. Among them, MTSB-6 exhibits twice as high potency 

against PPC-1 as mitomycin C but similar toxicity against RPWE-1. The facile synthesis 

of these mitosenes and the promising potency and toxicity data open novel mitosene 

structural space for systematic optimization and thus the potential for developing a new 

class of anticancer drugs. 

4.2.6  Experimental Details 

Cell Lines and Cell Culture 

The human prostate cancer cells (PPC-1) were a generous gift from Erkki Ruoslahti 

(Sanford-Burnham Medical Research Institute, La Jolla, San Diego, CA). PPC-1 cells were 

maintained in Dulbecco’s Modified Eagle Medium (DMEM) high glucose medium 

(Hyclone) supplemented with 10% fetal bovine serum (Hyclone). Noncancerous prostate 
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epithelial cells (RWPE-1) (ATCC) were grown in keratinocyte serum free medium 

(Invitrogen) supplemented with bovine pituitary extract (0.05 ng/mL) and recombinant 

EGF (5 ng/mL). Both cell lines were maintained at 37 oC in atmospheric 5% CO2 and 

grown in 96-well plates (BD Falcon) for experiments. 

Cell Treatment with Compounds  

MMC (O Chem Incorporation) was dissolved in nuclease-free water (IDT Technologies) 

and standard serial dilutions using cell growth media were performed to yield 

concentrations of 40- 0.002 µM.20 For MTSB-1 and its analogs, each compound was 

dissolved in DMSO (Fischer Scientific) and standard serial dilutions of each compound 

were performed using cell growth media to yield concentrations of 800- 0.001 µM. DMSO 

concentration was kept below 0.1% to ensure no carrier-induced decrease in cell viability. 

Controls of PPC-1 and RWPE-1 cells growing in drug-free cell growth media, and in cell 

growth media containing 0.1% DMSO, were used. 

100 µL aliquots of PPC-1 and RWPE-1 cells in cell growth media were seeded in separate 

96-well plates to a cell density of 3,000 cells per well and cells were allowed to adhere to 

wells for 24 hours at 37°C in 5% CO2. After 24 hours, cell growth media was removed and 

replaced with cell growth media supplemented with increasing concentrations of the given 

compound (MMC, MTSB-1 – MTSB-7). All compound concentrations were tested in 

triplicates.  

PPC-1 and RWPE-1 cells were incubated with media supplemented with the desired 

compound concentrations for 24 hours and then the media was removed. Each well was 

subsequently washed twice and then fully replaced with 100µL of compound-free cell 
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growth medium. Cells were allowed to incubate for an additional 48 hours at 37°C in 5% 

CO2, and then cell viability assays were performed. 

Viability Assay and IC50 Value Determination 

After 48 hours of incubation with compound-free cell growth medium, 10 µL PrestoBlue 

Cell Viability Reagent21 (Invitrogen) was added to each well of the 96-well plate and 

allowed to incubate with cells for 1 hour at 37˚C in atmospheric 5% CO2. The fluorescence 

signal was recorded in a Tecan Infinite 200 Pro reader in bottom-read mode with excitation 

and emission wavelengths of 560 nm (9 nm bandwidth) and 590 nm (20 nm bandwidth), 

respectively. Fluorescence values for each treatment were averaged and converted to 

percent viability by comparison to the control fluorescence value (PPC-1or RWPE-1 cells 

not treated with any compound, 100% viable). Percent viability data was plotted to create 

triplicate IC50 curves for the given compound. A log(dose)-response curve formulated by 

GraphPad Prism 5 software was fitted to each data set to yield triplicate IC50 values, 

reported as mean ± standard deviation (SD). The same procedure was carried out for every 

compound on at least two separate occasions. 

Synthesis of Mitosene Derivatives MTSB-2 to MTSB-4  

2-(5,7,8-Trimethoxy-6-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indol-9-yl)ethanol (4-A) 

 

To 9-(2-(benzyloxy)ethyl)-5,7,8-trimethoxy-6-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]- 

indol-1-one (4-8a)12 (41 mg, 0.1 mmol) in 2 mL THF was added Pd/C (10 mg), and the 
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mixture was then stirred in H2 atmosphere at room temperature for 12 h. After TLC showed 

complete conversion of the starting material, the mixture was filtered through a Celite pad 

and concentrated under vacuum. The crude product was charged with K2CO3 (207 mg, 1.5 

mmol), N2H4·H2O (32 μL) and ethylene glycol (4 mL) under N2 atmosphere. The mixture 

was then heated at 180 °C for 6 h. Upon completion, the system was washed with water 

and extracted with ethyl acetate. The extract was washed with brine continuously and was 

then dried over MgSO4, concentrated under vacuum and purified by column 

chromatography to furnish 4-A in 44% yield (two steps). 1H NMR (500 MHz, CDCl3) δ 

4.22 (t, J = 7.0 Hz, 2H), 3.95 (s, 3H), 3.86 (t, J = 6.1 Hz, 2H), 3.82 (s, 3H), 3.81 (s, 3H), 

3.01 (t, J = 6.1 Hz, 2H), 2.90 (t, J = 7.4 Hz, 2H), 2.56 (p, J = 7.1 Hz, 2H), 2.29 (s, 3H); 13C 

NMR (151 MHz, CDCl3) δ 143.88, 142.59, 141.94, 139.85, 124.82, 124.57, 117.05, 

101.65, 63.85, 62.24, 61.11, 60.62, 45.87, 29.27, 27.80, 22.76, 9.15; IR (neat, cm-1): 3425, 

2937, 1493, 1448, 1426, 1379, 1274, 1093, 1027; ESI+ calculated for [C17H23NNaO4]
+: 

328.15, found: 328.17. 

2-(7-Methoxy-6-methyl-5,8-dioxo-2,3,5,8-tetrahydro-1H-pyrrolo[1,2-a]indol-9-

yl)ethyl acetate 4-9a (MTSB-2) 

 

To 4-A (16 mg, 0.05 mmol) in 1 mL dry CH2Cl2 was added triethylamine (15 mg, 0.15 

mmol), the mixture was then stirred at 0 °C while acetyl chloride (5.5 μL, 0.075 mmol) 

was added. The reaction was then allowed to stir in room temperature for 1 h until TLC 
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showed the complete conversion of the starting material. Additional acetyl chloride may 

be added if the reaction did not show complete conversion after 1 h. The mixture was 

washed with saturated NaHCO3 and brine, and dried over Na2SO4. After removing the 

solvent under reduced pressure, the residue was dissolved in 2.5 mL chloroform and 3 M 

HCl (2.0 mL) was added. The mixture was stirred vigorously while sodium nitrite (4.0 mg, 

0.06 mmol) in water (0.6 mL) was added dropwise over the course of 1 h. The reaction was 

then stirred for another 15 h or until TLC showed no starting material left. The layers were 

separated and the aqueous phase was further extracted with chloroform until the extract 

becomes colorless. Combined organic phase was dried with Na2SO4. After removing the 

solvent under reduced pressure, the residue was purified by flash chromatography to 

furnish 4-9a (MTSB-2) in 17% yield (two steps). 1H NMR (600 MHz, CDCl3) δ 4.25 (t, J 

= 6.8 Hz, 2H), 4.22 (t, J = 7.3 Hz, 2H), 3.97 (s, 3H), 3.01 (t, J = 6.8 Hz, 2H), 2.80 (t, J = 

7.4 Hz, 2H), 2.58 – 2.52 (m, 2H), 2.02 (s, 3H), 1.94 (s, 3H); 13C NMR (151 MHz, CDCl3) 

δ 186.81, 179.88, 178.23, 170.93, 156.87, 143.53, 128.12, 126.17, 125.08, 113.36, 63.90, 

61.05, 46.93, 27.23, 24.76, 22.73, 21.03, 8.49; IR (neat, cm-1): 2926, 2091, 1640, 1481, 

1370, 1244, 1108; ESI+ calculated for [C17H19NNaO5]
+: 340.12, found: 340.12. 

1-(2-(Hex-1-ynyl)-3,4,6-trimethoxy-5-methylphenyl)azetidin-2-one (4-B) 

 

Compound 4-B was prepared from 1-bromo-2-iodo-3,4,6-trimethoxy-5-methylbenzene 

using our previously reported procedure[3]. 1-bromo-2-iodo-3,4,6-trimethoxy-5-methyl- 
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benzene (188 mg, 0.5 mmol), CuI (19.3 mg, 0.1 mmol), Pd(PPh3)2Cl2 (35 mg, 0.05 mmol), 

triphenylphosphine (13.1 mg, 0.05 mmol), 1-hexyne (205 mg, 2.5 mmol) were mixted in 2 

mL Et3N under N2. After being heated at 60 ºC for 4 h, the solvent was removed under 

vacuum, and the residue was filtered through a silica gel pad using hexanes/ethyl acetate 

10:1. The filtrate was concentrated under. The crude product was directly charged with CuI 

(24 mg, 0.125 mmol), K2CO3 (138 mg, 1 mmol), N, N'-dimethylcyclohexane-1,2-diamine 

(37.5 μL, 0.125 mmol), 2-azetidinone (50 mg, 0.7 mmol) and 6 mL 1,4-dioxane under N2. 

After being heated at 125 ºC for 13 h, the solvent was removed under vacuum, and the 

residue was purified by flash chromatography to furnish 4-B in 60% yield (two steps). 1H 

NMR (400 MHz, CDCl3) δ 3.88 (s, 3H), 3.82 (s, 3H), 3.76 – 3.68 (m, 5H), 3.11 (t, J = 4.3 

Hz, 2H), 2.49 (t, J = 7.0 Hz, 2H), 2.18 (s, 3H), 1.65 – 1.57 (m, 2H), 1.55 – 1.43 (m, 2H), 

0.95 (t, J = 7.3 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 166.36, 151.66, 151.63, 150.59, 

127.16, 126.41, 115.81, 99.35, 72.77, 61.08, 60.89, 60.52, 41.57, 36.99, 30.75, 21.95, 

19.47, 13.59, 9.62; IR (neat, cm-1): 2959, 2936, 2229, 1761, 1644, 1466, 1411, 1195, 1123, 

1100; ESI+ calculated for [C19H25NNaO4]
+: 354.17, found: 354.18. 

9-Butyl-5,7,8-trimethoxy-6-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indol-1-one (4-8b) 

 

To 4-B (100 mg, 0.3 mmol) in 10 mL DCE was added PtCl2 (30 mg, 0.1 mmol) under O2 

atmosphere, the mixture was then stirred at 80 ºC for 11 h. After removing the solvent 

under reduced pressure, the residue was purified by flash chromatography to furnish 4-8b 
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in 80% yield. 1H NMR (500 MHz, CDCl3) δ 4.52 (t, J = 6.4 Hz, 2H), 3.96 (s, 3H), 3.85 (s, 

6H), 3.13 (t, J = 6.3 Hz, 2H), 3.09 (t, J = 7.6 Hz, 2H), 2.31 (s, 3H), 1.73 – 1.64 (m, 2H), 

1.47 – 1.36 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 192.64, 

144.80, 144.63, 140.61, 131.98, 127.74, 124.81, 123.17, 118.59, 62.37, 60.87, 60.56, 

41.72, 40.09, 34.04, 24.59, 22.66, 13.97, 9.61; IR (neat, cm-1): 2957, 2932, 1704, 1564, 

1501, 1452, 1395, 1295, 1260, 1112, 1161, 1086, 1024; ESI+ calculated for 

[C19H25NNaO4]
+: 354.17, found: 354.19. 

9-Butyl-7-methoxy-6-methyl-5,8-dioxo-2,3,5,8-tetrahydro-1H-pyrrolo[1,2-a]indol-1-

yl acetate 4-9b (MTSB-3) 

 

To 4-8b (66 mg, 0.2 mmol) in 2 mL MeOH was added NaBH4 (15.2 mg, 0.4 mmol). The 

mixture was stirred at room temperature for 2 h and quenched by saturated NH4Cl. The 

solution was then extracted with ethyl acetate and washed with brine, dried over MgSO4 

and concentrated under vacuum. The residue was dissolved in 1 mL dry CH2Cl2 with 

triethylamine (15 mg, 0.15 mmol), and was then stirred at 0 °C while acetyl chloride (5.5 

μL, 0.075 mmol) was added. The reaction was allowed to stir in room temperature for 1 h 

until TLC showed the complete conversion of the starting material. Additional acetyl 

chloride may be added if the reaction did not show complete conversion. The mixture was 

washed with saturated NaHCO3 and brine, dried over Na2SO4, and concentrated under 

vacuum. The product was used directly without further purification. 
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To the crude product above in 2 mL THF was added silver (II) oxide (52 mg, 0.42 mmol). 

The mixture was stirred vigorously at room temperature while 6 M HNO3 (0.16 mL) was 

added dropwise. The reaction was stirred for 5 min and quenched by 2 mL water. The 

resulting solution was extracted with CH2Cl2 until the extract was colorless. The extract 

was combined and dried over Na2SO4. After removing the solvent under reduced pressure, 

the residue was purified by flash chromatography to furnish 4-9b (MTSB-3) in 16% overall 

yield. 1H NMR (600 MHz, CDCl3) δ 6.10 (dd, J = 6.7, 1.5 Hz, 1H), 4.36 – 4.24 (m, 2H), 

4.00 (s, 3H), 2.91 (dt, J = 15.2, 8.5 Hz, 1H), 2.76 – 2.67 (m, 2H), 2.56 – 2.50 (m, 1H), 2.07 

(s, 3H), 1.95 (s, 3H), 1.56 (ddd, J = 23.1, 15.4, 7.6 Hz, 1H), 1.52 – 1.45 (m, 1H), 1.35 (dq, 

J = 14.7, 7.3 Hz, 2H), 0.91 (t, J = 7.3 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 179.42, 

178.79, 170.22, 157.57, 138.76, 128.11, 126.84, 124.85, 121.98, 77.19, 76.98, 76.77, 

67.66, 61.13, 45.19, 35.72, 32.29, 24.67, 22.54, 20.98, 13.94, 8.45; IR (neat, cm-1): 2959, 

2926, 2096, 1639, 1487, 1457, 1374, 1224, 1124; ESI+ calculated for [C19H23NNaO5]
+: 

368.15, found: 368.18. 

9-Butyl-5,7,8-trimethoxy-6-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole (4-C) 

 

4-8b (100 mg, 0.3 mmol) was charged with K2CO3 (621 mg, 4.5 mmol), N2H4·H2O (0.1 

mL) and ethylene glycol (12 mL) under N2 atmosphere. The mixture was then heated at 

180 °C for 6 h. Upon completion, the system was washed with water and extracted with 

ethyl acetate. The extract was washed with brine continuously and was then dried over 
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MgSO4, concentrated under vacuum and purified by column chromatography to furnish 4-

C in 30% yield. 1H NMR (500 MHz, CDCl3) δ 4.20 (t, J = 6.9 Hz, 2H), 3.93 (d, J = 0.5 Hz, 

3H), 3.84 (d, J = 0.5 Hz, 3H), 3.81 (d, J = 0.5 Hz, 3H), 2.88 (t, J = 7.4 Hz, 2H), 2.77 (t, J 

= 7.6 Hz, 2H), 2.54 (p, J = 7.2 Hz, 2H), 2.29 (s, 3H), 1.70 – 1.61 (m, 2H), 1.45 – 1.36 (m, 

2H), 0.95 (t, J = 7.4 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 143.80, 142.64, 141.10, 

139.57, 124.66, 124.38, 116.61, 106.46, 62.20, 61.10, 60.64, 45.63, 33.67, 27.91, 25.61, 

22.98, 22.77, 14.04, 9.16; IR (neat, cm-1): 2955, 2932, 2872, 2857, 1986, 1563, 1493, 1448, 

1379, 1272, 1106, 1082, 1032; ESI+ calculated for [C19H27NNaO3]
+: 340.19, found: 

340.21. 

9-Butyl-7-methoxy-6-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole-5,8-dione 4-9c 

(MTSB-4) 

 

To C (47 mg, 0.15 mmol) in 2 mL THF was added silver (II) oxide (55.8 mg, 0.45 mmol). 

The mixture was stirred vigorously at room temperature while 6 M HNO3 (0.16 mL) was 

added dropwise. The reaction was stirred for 5 min and quenched by 1 mL water. The 

resulting solution was extracted with CH2Cl2 until the extract was colorless. The extract 

was combined and dried over Na2SO4. After removing the solvent under reduced pressure, 

the residue was purified by flash chromatography to furnish 4-9c (MTSB-4) in 17% yield. 

1H NMR (600 MHz, CDCl3) δ 4.20 (t, J = 7.3 Hz, 2H), 3.97 (s, 3H), 2.79 (t, J = 7.4 Hz, 

2H), 2.68 (t, J = 7.6 Hz, 2H), 2.58 – 2.51 (m, 2H), 1.94 (s, 3H), 1.58 – 1.53 (m, 2H), 1.38 
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– 1.31 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 179.89, 178.15, 

156.95, 142.69, 128.06, 125.84, 125.03, 118.98, 61.02, 46.79, 31.89, 27.21, 24.96, 22.89, 

22.55, 13.93, 8.48; IR (neat, cm-1): 2957, 2854, 2103, 1639, 1480, 1371, 1317; ESI+ 

calculated for [C17H21NNaO3]
+: 310.14, found: 310.15. 

Synthesis of Mitosene Derivatives MTSB-5 to MTSB-7 

9-(2-Hydroxyethyl)-7-methoxy-6-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole-1,5,8-

trione (4-10) 

 

To 9-(2-(benzyloxy)ethyl)-5,7,8-trimethoxy-6-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]- 

indol-1-one (4-8a)[3] (41 mg, 0.1 mmol) in 2 mL THF was added Pd/C (10 mg), and the 

mixture was then stirred in H2 atmosphere at room temperature for 12 h. After TLC showed 

complete conversion of the starting material, the mixture was filtered through a Celite pad 

and concentrated under vacuum. The crude product was dissolved in chloroform, 3 M HCl 

(5.0 mL) was added. The mixture was stirred vigorously while sodium nitrite (10 mg, 0.15 

mmol) in water (1.5 mL) was added dropwise over the course of 1 h. The reaction was left 

to stir overnight at room temperature. Upon completion, the layers were separated and the 

aqueous phase was extracted with chloroform until the extract becomes colorless. 

Combined organic phase was dried with Na2SO4. After removing the solvent under reduced 

pressure, the residue was purified through flash chromatography to give 4-10 in 32% yield 

(two steps). 1H NMR (500 MHz, CDCl3) δ 4.55 (t, J = 6.1 Hz, 2H), 4.08 (s, 3H), 3.92 (t, J 
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= 5.9 Hz, 2H), 3.28 (t, J = 5.9 Hz, 2H), 3.15 (t, J = 6.1 Hz, 2H), 1.99 (s, 3H); 13C NMR 

(126 MHz, CDCl3) δ 191.53, 179.72, 179.04, 158.59, 133.83, 130.27, 129.44, 125.68, 

124.15, 62.57, 61.37, 43.16, 39.19, 28.32, 8.60; IR (neat, cm-1): 2927, 1713, 1662, 1489, 

1436, 1318, 1117; ESI+ calculated for [C15H15NNaO5]
+: 312.08, found: 312.10. 

1-Hydroxy-9-(2-hydroxyethyl)-7-methoxy-6-methyl-2,3-dihydro-1H-pyrrolo[1,2-

a]indole-5,8-dione (4-D) 

 

4-10 (28.9 mg, 0.1 mmol) was dissolved in 1 mL methanol, NaBH4 (11.1 mg, 0.3 mmol) 

was then added. The mixture was stirred at room temperature for 2 h and quenched by 

saturated NH4Cl. The solution was then extracted with ethyl acetate and washed with brine, 

dried over MgSO4 and concentrated under vacuum to give 4-D in 85% yield. 1H NMR (400 

MHz, CDCl3) δ 5.13 (dd, J = 6.4, 1.6 Hz, 1H), 4.34 – 4.27 (m, 2H), 4.07 – 3.99 (m, 1H), 

3.98 (s, 3H), 3.77 (tt, J = 6.9, 3.5 Hz, 2H), 3.39 – 3.31 (m, 1H), 2.84 – 2.69 (m, 2H), 2.56 

– 2.49 (m, 1H), 1.94 (d, J = 8.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 180.14, 178.71, 

157.27, 145.32, 128.55, 126.31, 124.63, 115.69, 65.16, 62.22, 61.09, 45.73, 36.98, 27.49, 

8.55; IR (neat, cm-1): 3421, 2927, 1639, 1489, 1373, 1317, 1228, 1103; ESI+ calculated for 

[C15H17NNaO5]
+: 314.10, found: 314.11. 
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9-(2-Hydroxyethyl)-7-methoxy-6-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole-5,8-

dione (4-E) 

 

Et3SiH (11.7 mg, 0.1 mmol) was added to a solution of 4-D (14.6 mg, 0.05 mmol) in 3 mL 

dry dichloromethane. The solution was stirred at 0 °C while trifluoroacetic acid (28.5 mg, 

0.25 mmol) in 1 mL dry dichloromethane was added dropwise. The solution was kept at 

0 °C for 1 h and was then allowed to rise to room temperature. Upon complete conversion 

of the starting material (the 1º OH group might be protected by triethylsilyl group as well), 

which was indicated by TLC, the mixture was washed with NaHCO3 and treated with 

tetrabutylammonium fluoride (0.1 mL, 1.0 M solution in THF). The mixture was then 

washed with 1 M HCl, brine, dried over Na2SO4, and concentrated under vacuum. The 

residue was purified by column chromatography to give 4-E in 73% yield. 1H NMR (400 

MHz, CDCl3) δ 4.21 (t, J = 7.2 Hz, 2H), 3.96 (s, 3H), 3.84 (t, J = 6.1 Hz, 2H), 2.93 (t, J = 

6.1 Hz, 2H), 2.81 (t, J = 7.4 Hz, 2H), 2.60 – 2.51 (m, 2H), 1.94 (s, 3H); 13C NMR (126 

MHz, CDCl3) δ 180.56, 178.12, 157.03, 143.69, 128.41, 126.32, 125.45, 114.51, 63.07, 

61.08, 47.03, 28.78, 27.17, 22.65, 8.54; IR (neat, cm-1): 2930, 2854, 2092, 1639, 1481, 

1373, 1315, 1100; ESI+ calculated for [C15H15NNaO4]
+: 298.11, found: 298.14. 
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9-(2-Chloroethyl)-7-methoxy-6-methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole-5,8-

dione 4-11a (MTSB-5) 

 

4-11a (MTSB-5) was prepared from 4-E following Kartika’s method.22 4-E (5.5 mg, 0.02 

mmol) was dissolved in 1 mL dry DCM and was cooled down to 0 °C in an ice bath. Et3N 

(7μL, 0.05 mmol) was then added, and triphosgene (3 mg, 0.01 mmol) was added slowly. 

The system was kept at 0 °C for another 5 min and was allowed to stir at room temperature 

for another 2 h. The reaction was quenched by saturated NaHCO3 and extracted with 

dichloromethane. The organic phase was combined, dried over Na2SO4 and concentrated 

in vacuum. The residue was purified by column chromatography to give 4-11a (MTSB-5) 

in 70% yield. 1H NMR (600 MHz, CDCl3) δ 4.23 (t, J = 7.3 Hz, 2H), 3.97 (s, 3H), 3.79 (t, 

J = 6.5 Hz, 2H), 3.10 (t, J = 6.5 Hz, 2H), 2.85 (t, J = 7.4 Hz, 2H), 2.60 – 2.53 (m, 2H), 1.95 

(s, 3H); 13C NMR (151 MHz, CDCl3) δ 179.94, 178.24, 156.82, 144.14, 128.31, 124.87, 

113.74, 61.05, 47.03, 44.72, 28.90, 27.17, 22.82, 8.51; IR (neat, cm-1): 2923, 1637, 1479, 

1372, 1276, 1092; ESI+ calculated for [C15H16ClNNaO3]
+: 316.07, 318.07, found: 316.08, 

318.10. 
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9-(2-Chloroethyl)-1-hydroxy-7-methoxy-6-methyl-2,3-dihydro-1H-pyrrolo[1,2-

a]indole-5,8-dione 4-11b (MTSB-6) 

 

4-11b (MTSB-6) was prepared from 4-D following Kartika’s method.22 4-D (5.8 mg, 0.02 

mmol) was dissolved in 1 mL dry DCM and was cooled down to 0 °C in an ice bath. Et3N 

(7μL, 0.05 mmol) was then added, and triphosgene (3 mg, 0.01 mmol) was added slowly. 

The system was kept at 0 °C for another 5 min and was allowed to stir at room temperature 

for another 2 h. The reaction was quenched by saturated NaHCO3 and extracted with 

dichloromethane. The organic phase was combined, dried over Na2SO4 and concentrated 

in vacuum. The residue was purified by column chromatography to give 4-11b (MTSB-6) 

in 61% yield. The yield based on recovered starting material is 81%. 1H NMR (400 MHz, 

CDCl3) δ 5.23 (dd, J = 6.6, 2.2 Hz, 1H), 4.42 – 4.22 (m, 2H), 3.99 (s, 3H), 3.88 (dd, J = 

6.9, 5.3 Hz, 2H), 3.33 (dt, J = 14.4, 5.3 Hz, 1H), 3.09 (dt, J = 14.3, 6.8 Hz, 1H), 2.80 (dtd, 

J = 14.4, 8.3, 6.4 Hz, 1H), 2.53 (ddt, J = 13.6, 7.1, 3.0 Hz, 1H), 2.24 (s, 1H), 1.96 (s, 3H); 

13C NMR (126 MHz, CDCl3) δ 179.77, 178.79, 157.24, 144.34, 128.59, 126.76, 124.64, 

114.94, 65.93, 61.15, 45.53, 44.95, 37.93, 28.48, 8.55; IR (neat, cm-1): 2926, 2855, 1642, 

1484, 1373, 1318, 1229, 1153, 1096; ESI+ calculated for [C15H16ClNNaO4]
+: 332.07, 

334.06, found: 332.09, 334.09. 
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9-(2-Chloroethyl)-7-methoxy-6-methyl-5,8-dioxo-2,3,5,8-tetrahydro-1H-pyrrolo[1,2-

a]indol-1-yl acetate 4-11c (MTSB-7) 

 

To 4-11b (MTSB-6) (3.1 mg, 0.01 mmol) in 1 mL dry CH2Cl2 was added pyridine (2.4 

mg, 0.03 mmol). The mixture was then stirred at 0 °C while acetyl chloride (1 μL, 0.015 

mmol) was added. The reaction was then allowed to stir in room temperature for 1 h until 

TLC showed the complete conversion of the starting material. Additional acetyl chloride 

may be added if the reaction did not show complete conversion after 1 h. The mixture was 

washed with saturated NaHCO3 and brine, and dried over Na2SO4. After removing the 

solvent under reduced pressure, the residue was purified by column chromatography to 

give 4-11c (MTSB-7) in 80% yield. 1H NMR (600 MHz, CDCl3) δ 6.13 (d, J = 5.8 Hz, 

1H), 4.39 – 4.28 (m, 2H), 4.00 (s, 3H), 3.84 – 3.73 (m, 2H), 3.25 – 3.12 (m, 2H), 2.56 (dd, 

J = 14.3, 6.7 Hz, 1H), 2.07 (s, 3H), 1.96 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 179.55, 

178.79, 170.27, 157.44, 140.37, 128.39, 127.26, 124.77, 116.57, 67.57, 61.18, 45.43, 

44.05, 35.66, 28.29, 21.04, 8.52; IR (neat, cm-1): 2927, 2848, 1742, 1645, 1494, 1372, 1230, 

1095; ESI+ calculated for [C17H18ClNNaO5]
+: 374.08, 376.07, found: 374.10, 376.09. 
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4.3  Gold-Catalyzed Stereoselective Glycosylation Reaction to Access 1,2-cis Glycosyl 

Linkage  

4.3.1  Glycosylation: History and Challenges 

Glycans, including monosaccharides, oligosaccharides, polysaccharides, and their 

conjugates are important families of molecules that involve in a wide range of biological 

processes. Great efforts have been spent on unraveling the key role of glycans, particularly 

oligosaccharides and glycoconjugates, in numerous life activities.23 Recently, 

oligosaccharides and glycoconjugates have also shown huge potential in disease diagnosis, 

immunotherapies, and bioimaging.24  

Structurally defined, isomerically pure glycoconjugates and oligosaccharides are critical 

for the study and application of glycans. Extracting those compounds from natural sources 

is often unrealistic because of their structural microheterogeneity significantly reduces the 

efficiency of the isolation process. Chemical synthesis, on the other hand, addresses this 

problem by providing precise, reproducible, and scalable methods to obtain naturally 

occurring glycans as well as their unnatural counterparts. To this end, numerous methods 

for chemical synthesis of glycans have been developed in the past decades.25 

The chemical synthesis of glycans mainly focuses on formation of glycosyl bond with the 

aid of a chemical promoter. As shown in Scheme 52, a donor monosaccharide with a 

leaving group at the anomeric position, when activated by a promoter, would undergo 

substitution reaction with a nucleophilic acceptor. However, the seemingly simple pattern 

obscures the true complexity of the reaction. The leaving group, on one hand, should be 

sufficiently easy to be expelled by a relatively weak nucleophile (e.g., OH group from a 

saccharide acceptor); on the other hand, it cannot be so reactive that an oxocarbenium 
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species forms upon the donor molecule, diminishing the stereoselectivity of the reaction 

(see: Scheme 52, pathway A). Therefore, the intrinsic properties of the leaving group, along 

with the method of activation, have a substantial impact on the stereoselectivity of the 

reaction. Additionally, the protecting groups on the donor also affect the outcome of 

corresponding glycosylation reactions by promoting or inhibiting the formation of the 

cationic intermediates, also known as the “armed” and “disarmed” effect.26 

Scheme 52. Typical Pattern of Chemical Glycosylation 

 

Those effects, often intertwined with influences from properties of the acceptor, solvent 

effect, and substrate conformation, pose daunting challenges to the stereoselectivity of 

chemical glycosylation. Although several specific types of glycosyl linkages, for instance, 

1,2-trans, can be reliably accessed, there are still more types (e.g. 1,2-cis) that requires 

general methods for stereoselective construction.27 Moreover, most glycosyl donor 

developed need to be activated with stoichiometric amount of chemical promoter, thereby 

undermining the versatility and scalability of the method.25e, 28 To date, there is still a 

continuous effort to develop novel chemical glycosylation systems that improve upon those 

criteria to meet the need of an ever demanding glycobiology research community. 
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4.3.2  Gold-Catalyzed Glycosylation with Thioglycoside Donors: Tackling the Problem 

Thioglycosides have been extensively used as donor in glycosylation due to ease of access, 

relative high stability, and abundance of thiophilic activating reagents.29 Combined with 

versatile gold catalysis, thioglycoside donors carry great potential in achieving an efficient, 

selective glycosylation approach that works under a broad range of scenarios. Nevertheless, 

only limited studies have been done in this field. In 2002, Yu et al first realized a gold(I)-

catalyzed O-glycosylation reaction with ortho-alkynylphenyl thioglycosides 4-12 as the 

donor (Scheme 53a).30 Although the reaction was very efficient, the author was only able 

to get 1:1 anomeric mixture of the disaccharide. Shortly afterwards, a similar 1.7:1 

selectivity was observed by the Zhu group with aliphatic thioglycosides 4-13 and AuCl3 

catalyst (Scheme 53b).31 In addition, the synthetic utilities of those methods are hampered 

by relatively high catalyst loadings (at least 10 mol% Au salt). 

Scheme 53. Previous Studies on Gold-Catalyzed Glycosylation with Thioglycoside Donors 

 

The deficiencies of those preliminary results prompted us to come up with an improved 

system. We reasoned that the low stereoselectivity is caused by the activated donor, a 

thiophenium species (e.g. 4-14’ in Figure 7), being so reactive that fragments to give an 

oxocarbenium species before the acceptor could approach (see: Scheme 52, pathway A). 
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To address this problem, we designed the donor 4-14 shown in Figure 7. On one hand, 

introduction of electron-withdrawing effect on the donor’s protecting groups should 

destabilize the oxocarbenium species (i.e. 4-14”) and suppress its formation; on the other 

hand, application of terminal alkyne could reduce the steric congestion at the anomeric 

position of 4-14’, thereby further discouraging its spontaneous fragmentation. To verify 

our reasoning, we synthesized donors 4-15 and 4-15’ and tested them side by side with n-

hexanol as acceptor (Scheme 54). To our delight, a much better 7:1 selectivity was obtained 

with donor 4-15’, whose only difference from Yu’s donor is the terminal alkyne moiety. 

With the same donor used, lowering down the reaction temperature enhanced the 

selectivity to 13:1 while maintaining a similar yield. Finally, an outstanding 19:1 selectivity 

with good yield was achieved with donor 4-15 bearing electron-withdrawing protecting 

groups. It should also be noted that the usually difficult-to-access 1,2-cis glycosyl linkage 

is constructed reliably in all cases, signifying the synthetic utility of the method.  

Figure 7. Design of a New Thioglycoside Donor for Stereoselective Glycosylation 

 

Scheme 54. Initial Results with the New Thioglycoside Donor 
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4.3.3  Condition Study, Scope Study, and Future Works 

With the encouraging results, we performed a brief condition study with the combination 

of donor 4-15a and n-hexanol (Table 8). With molecular sieve added to suppress hydrolysis 

of the donor, we can still maintain high efficiency and stereoselectivity while lowering 

down the catalyst loading to 5 mol% (Table 8, entry 1). A brief screening of the counterion 

(Table 8, entries 1-4) revealed that AgNTf2 provides the best stereoselectivity and excellent 

yield. Notably, a very poor selectivity was observed when AgOTf was used, indicating that 

the thiophenium intermediate (see: 4-14’) is reactive enough to be attacked by the weakly 

coordinating triflate ion and racemizes. Formation of similar glycosyl triflates has also been 

reported in other glycosylation methods with various donors.32 Surprisingly, significant 

solvent effect was observed in the reaction (Table 8, entries 4-6). While the reaction 

exhibited slight higher efficiency in trifluorotoluene and fluorobenzene, its 

stereoselectivity saw a significant drop to 7:1 and 12:1, respectively.  

To begin our scope study, we tested the gold-catalyzed glycosylation system in 

synthesizing different glycoconjugates (Table 9). Like n-hexnol, benzyl alcohol was 

converted to corresponding benzyl glycoside 4-16b in excellent efficiency and 

stereoselectivity (entry 2). When secondary alcohol was used, a slight drop in yield and 

selectivity was observed (entries 3, 4), indicating steric hindrance has an impact on the 

reaction. Nevertheless, tert-butyl alcohol was successfully employed with yield and 

selectivity similar to those of secondary alcohols (entry 5). Benzoic acid is also applicable 

in the reaction, although with an even lower 10:1 selectivity (entry 6). Despite its similarity 

to a primary alcohol, L-serine-derived acceptor only showed a 3.5:1 selectivity despite a 

decent 67% yield. We also applied our gold-catalyzed glycosylation in the synthesis of 
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cholesterol glucosides. To our delight, we were able to obtain the desired product 4-16h at 

a decent 63% yield with 5:1 ratio of both anomers, marking a significant improvement to 

the similar synthesis reported by Yu et al.30  

Table 8. Condition Studya 

 
 

 

 

 

 

 

 

 

a Concentration: 0.05M. Reaction was stirred in a cooling bath for 6 hours before being 

quenched by nBu4NCl. b Combined yield and anomeric ratio determined by NMR with 

internal references. c Yield based on recovered donor. 

The glycoconjugate synthesis clearly demonstrated that nucleophilicity and steric 

hindrance of the acceptor play important roles in achieving a stereoselective reaction. 

Namely, when the proposed SN2 attack was hampered by a less nucleophilic acceptor, the 

activated donor proceeds through an alternative pathway and loses the stereospecificity at 

the anomeric position. With a closer examination of the reaction system, we hypothesized 

that the said pathway may involve the benzothiophene side product (Finally, we performed 

a synthesis of disaccharide with our thioglycoside donor and 1,2;3,4-di-O-isopropylidene-

α-D-galactopyranoside 4-18 (Scheme 56). To our delight, the reaction gave disaccharide 

4-19 in a synthetically useful 73% yield based on recovered starting material. Although 

entry Additive (5 mol%) solvent 
yield, selectivity 

(α/β)b 

1 AgNTf2 DCM 84%, 19/1 

2 AgOTf DCM 80%, 0.8/1 

3 AgSbF6 DCM 90%, 15/1 

4 NaBARF DCM 65%, 16/1 

5 NaBARF C6H5CF3 72%c, 7/1 

6 NaBARF C6H5F 74%, 12/1 
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only a modest 3:1 stereoselectivity was observed, this unoptimized result marks a two-fold 

improvement over similar methods reported by Yu30 and Zhu31. Our future work in this 

area will be focused on optimizing the reaction to achieve a general and efficient way to 

synthesize various disaccharides. 

Scheme 55A). As the reaction proceeds, benzothiophene accumulated in the system reacts 

with the activated donor 4-17 as a nucleophile, causing racemization at the anomeric 

position. Therefore, the less nucleophilic the acceptor is, the more anomeric racemization 

would be observed, which is in accordance with the results of stereoelectonically different 

acceptors in Table 9. Moreover, the stereoselectivity of the reaction saw a sharp decrease 

when one equivalent of benzothiophene was added (Finally, we performed a synthesis of 

disaccharide with our thioglycoside donor and 1,2;3,4-di-O-isopropylidene-α-D-

galactopyranoside 4-18 (Scheme 56). To our delight, the reaction gave disaccharide 4-19 

in a synthetically useful 73% yield based on recovered starting material. Although only a 

modest 3:1 stereoselectivity was observed, this unoptimized result marks a two-fold 

improvement over similar methods reported by Yu30 and Zhu31. Our future work in this 

area will be focused on optimizing the reaction to achieve a general and efficient way to 

synthesize various disaccharides. 

Scheme 55B). Possible ways of addressing this problem (e.g., altering the electronic effect 

on the thiophene ring or trapping the benzothiophene with Lewis acid) is still under our 

exploration. 
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Table 9. Scope Study in Glycoconjugate Synthesisa 

 

1 

 

2 

 

3 

 

4-16a, 84%, 19/1 4-16b, 83%, 19/1 4-16c, 72%, 15/1 

4 

 

5 

 

6 

 

4-16d, 76%, 16/1 4-16e, 73%, 15/1 4-16f, 66%, 10/1 

7 

 

 

8 

 

4-16g, 67%, 3.5/1 4-16h, 63%, 5/1 

a Reactions were stirred in cooling bath for 10 hours. All yields are combined isolated yield. 

Anomeric ratio was determined by NMR. 

Finally, we performed a synthesis of disaccharide with our thioglycoside donor and 1,2;3,4-

di-O-isopropylidene-α-D-galactopyranoside 4-18 (Scheme 56). To our delight, the reaction 

gave disaccharide 4-19 in a synthetically useful 73% yield based on recovered starting 

material. Although only a modest 3:1 stereoselectivity was observed, this unoptimized 

result marks a two-fold improvement over similar methods reported by Yu30 and Zhu31. 
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Our future work in this area will be focused on optimizing the reaction to achieve a general 

and efficient way to synthesize various disaccharides. 

Scheme 55. Stereoselectivity Erosion Caused by Benzothiophene Side Product 

 

Scheme 56. Synthesis of Disaccharide 

 

4.3.4  Conclusion 

In summary, we have finished the initial development of a new glycosylation method based 

on gold-catalyzed nucleophilic addition reaction. The gold-catalyzed cyclization of 2-

ethynylphenyl sulfide anomeric leaving group generates a thiophenium species at the 

anomeric position of the glycosyl donor. The introduction of electron-withdrawing effect 

to the other protecting groups of the donor significantly suppresses the spontaneous 

expulsion of the thiophene from the donor, discouraging the formation of the oxocarbenium 

species, and thereby ensuring a seteroselective glycosylation. Initial results in the synthesis 

of glycoconjugates and disaccharides demonstrates the method’s great potential in 
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achieving a reliable, efficient, and selective approach to construct 1,2-cis linkage in 

glycoconjugates and oligosaccharides. 

4.3.5  Experimental Details 

Preparation of 2,3,4,6-tetra-O-(4-chlorobenzyl)-D-glucopyranose (4-F) 

 

To a cooled (0 °C) mixture of 1-methyl-D-glucopyranose (1.94 g, 10 mmol), TBAI (369 

mg, 1 mmol), and DMF (25 mL) was added NaH (60% in mineral oil, 2 g, 5 equiv.). The 

mixture was then stirred vigorously for 20 min, and 4-chlorobenzyl chloride (8 g, 5 equiv.) 

was added in small portions. The reaction was warmed up to room temperature gradually, 

heated at 60 °C for 12 hours, and quenched by careful addition of saturated NH4Cl solution 

at 0 °C. The crude product was extracted by DCM, washed with water and brine, and 

concentrated under vacuum.  

To the crude product of the first step was added HOAc (50 mL) and HCl (6M, 10 mL), and 

the mixture was stirred at 100 °C until TLC showed complete transformation of the starting 

material. The reaction was concentrated under vacuum, dissolved by DCM, washed with 

saturated NaHCO3, and dried with MgSO4. Upon removal of DCM under vacuum, the 

crude product was purified by silica gel column chromatography to give 4-F as a colorless 

oil (4.1 g, 61%). 1H NMR (not very pure) 1H NMR (400 MHz, CDCl3) δ 7.30 – 7.27 (m, 

4H), 7.25 – 7.15 (m, 12H), 7.01 (dd, J = 8.3, 4.4 Hz, 2H), 5.25 (d, J = 3.4 Hz, 1H), 4.93 – 
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4.77 (m, 2H), 4.76 – 4.62 (m, 6H), 4.58 – 4.51 (m, 1H), 4.42 (d, J = 12.2 Hz, 2H), 4.00 (d, 

J = 9.9 Hz, 1H), 3.91 (t, J = 9.3 Hz, 1H), 3.70 – 3.48 (m, 6H). 

 

Preparation of Glucopyranosyl Chlorides (4-G and 4-H) 

 

5 mmol of corresponding D-glucopyranose and 10 mmol of oxalyl chloride was mixed in 

DCM (20 mL) at room temperature, and 5 drops of DMF was added into the solution. Gas 

evolution was ovserved immediately, and the reaction was stirred at room temperature for 

2 hours. The reaction was then concentrated under vacuum and purified with silica gel 

column chromatography to give the corresponding glucopyranosyl chlorides as colorless 

oil. 

2,3,4,6-tetra-O-benzyl-D-glucopyranosyl chloride (4-G) 

 

Prepared in 70% yield from 2,3,4,6-tetra-O-benzyl-D-glucopyranose. Its NMR data is in 

accordance with those reported by Takeo et al.33 

2,3,4,6-tetra-O-(4-chlorobenzyl)-D-glucopyranosyl chloride (4-H) 
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Prepared in 59% yield from 2,3,4,6-tetra-O-(4-chlorobenzyl)-D-glucopyranose. 1H NMR 

(400 MHz, CDCl3) δ 7.34 – 7.20 (m, 10H), 7.17 (d, J = 8.3 Hz, 2H), 7.02 (d, J = 8.3 Hz, 

2H), 6.09 (d, J = 3.7 Hz, 1H), 4.86 (d, J = 11.3 Hz, 1H), 4.71 (d, J = 10.1 Hz, 2H), 4.63 (q, 

J = 11.8 Hz, 2H), 4.54 (d, J = 12.3 Hz, 1H), 4.47 – 4.37 (m, 2H), 4.05 (d, J = 10.0 Hz, 1H), 

3.96 (t, J = 9.2 Hz, 1H), 3.7ff5 – 3.57 (m, 4H). 

 

Preparation of Glycosyl Donors (4-15 and 4-15’) 

 

2-Bromo-1-(trimethylsilylethynyl)benzene was synthesized quantitatively according to 

method reported by Ohno Group (OL 2012 326). A solution of 2-bromo-1-

(trimethylsilylethynyl)benzene (860 mg, 3.4 mmol) in THF (10 mL) was cooled to -78 °C, 

and tBuLi (1.7 M in hexanes, 4 mL, 6.8 mmol) was added dropwise. The solution was 

stirred at -78 °C for another 30 minutes, and sulfur (109 mg, 3.4 mmol) was added in one 

portion at -78 °C. The reaction was then kept at 0 °C for 1 hour and cooled down again to 

-78 °C before a solution of corresponding glucopyranosyl chloride (2.5 mmol) in THF (5 
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mL) was added in one portion. The reaction was then warmed up to room temperature and 

stirred for 10 hours or until complete consumption of the glucopyranosyl chloride. The 

mixture was quenched by water, concentrated under vacuum, dissolved in a mixture of 

methanol and DCM (1:1, 10 mL in total), added K2CO3 (200 mg), and stirred for 2 hours. 

Upon completion, the mixture was partitioned in DCM and water, extracted by additional 

DCM, dried with MgSO4, and concentrated under vacuum. Column chromatography with 

silica gel gave the desired product 4-15 and 4-15’. 

4-15 

 

Prepared in 72% overall yield from 4-G. 1H NMR (400 MHz, CDCl3) δ 7.71 – 7.65 (m, 

1H), 7.48 (dd, J = 5.8, 3.3 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.36 – 7.25 (m, 12H), 7.23 – 7.18 

(m, 2H), 7.18 – 7.11 (m, 2H), 4.95 (dd, J = 12.9, 10.5 Hz, 2H), 4.89 – 4.79 (m, 3H), 4.73 

(d, J = 10.0 Hz, 1H), 4.64 – 4.50 (m, 3H), 3.84 – 3.51 (m, 6H), 3.37 (s, 1H). 

 

 

4-15’ 
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Prepared in 60% overall yield from 4-H. 1H NMR (500 MHz, CDCl3) δ 7.63 – 7.58 (m, 

1H), 7.52 – 7.46 (m, 1H), 7.30 – 7.21 (m, 11H), 7.20 – 7.13 (m, 4H), 7.07 (d, J = 8.3 Hz, 

2H), 4.91 (d, J = 10.5 Hz, 1H), 4.81 – 4.68 (m, 4H), 4.61 (d, J = 10.5 Hz, 1H), 4.57 – 4.51 

(m, 2H), 4.46 (d, J = 12.1 Hz, 1H), 3.73 (dd, J = 10.9, 1.8 Hz, 1H), 3.69 – 3.48 (m, 5H), 

3.36 (s, 1H). 

 

General Procedure for Glycosylation Reaction 

 

To a vial equipped with septumed screw cap was added corresponding glycosyl acceptor 

(3 equiv.), IPrAuCl (5 mol %), additive (5 mol %), 5Å molecular sieve (10 mg per 0.5 

mmol donor), and dry DCM (0.5 mL per 0.5 mmol donor). The mixture was stirred at room 

temperature for 15 minutes, and was cooled down to -20 °C before a cold solution of 

glycosyl donor in DCM (0.5 mL per 0.5 mmol donor) was added with syringe. The reaction 

was stirred at -20 °C until completion, and was then concentrated under vacuum and 

purified by silica gel column chromatography. Anomeric ratio was determined by 1H NMR. 
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4-16a 

 

Prepared in 84% yield from 4-15. α-anomer: 1H NMR (500 MHz, CDCl3) δ 7.30 – 7.21 (m, 

12H), 7.19 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.3 Hz, 2H), 4.88 (d, J = 11.4 Hz, 1H), 4.79 (d, 

J = 3.6 Hz, 1H), 4.70 (d, J = 11.1 Hz, 2H), 4.68 – 4.54 (m, 3H), 4.40 (dd, J = 11.8, 2.9 Hz, 

2H), 3.92 (t, J = 9.3 Hz, 1H), 3.75 (dd, J = 10.7, 2.6 Hz, 1H), 3.70 – 3.53 (m, 4H), 3.50 

(dd, J = 9.6, 3.6 Hz, 1H), 3.41 (dt, J = 9.8, 6.7 Hz, 1H), 1.62 (p, J = 6.9 Hz, 2H), 1.38 – 

1.25 (m, 6H), 0.89 (t, J = 6.9 Hz, 3H). β-anomer: 1H NMR (500 MHz, CDCl3) δ 7.30 – 

7.18 (m, 12H), 7.13 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.3 Hz, 2H), 4.89 (d, J = 11.4 Hz, 1H), 

4.80 (d, J = 11.4 Hz, 1H), 4.71 – 4.54 (m, 4H), 4.47 (dd, J = 14.3, 11.9 Hz, 2H), 4.35 (d, J 

= 7.8 Hz, 1H), 3.93 (dt, J = 9.4, 6.5 Hz, 1H), 3.66 (qd, J = 10.8, 3.2 Hz, 2H), 3.58 – 3.46 

(m, 3H), 3.44 – 3.33 (m, 2H), 1.62 (dtd, J = 9.5, 6.6, 3.2 Hz, 2H), 1.40 – 1.20 (m, 6H), 0.88 

(t, J = 6.9 Hz, 3H). 

4-16b 

 

Prepared in 83% yield from 4-15. 1H NMR (α-anomer) (500 MHz, CDCl3) δ 7.42 – 7.09 

(m, 19H), 7.15 (d, J = 8.3 Hz, 2H), 7.02 (d, J = 8.3 Hz, 2H), 4.93 – 4.84 (m, 2H), 4.72 (dd, 

J = 11.6, 2.7 Hz, 3H), 4.56 (t, J = 11.8 Hz, 3H), 4.48 (d, J = 12.1 Hz, 1H), 4.44 – 4.38 (m, 
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2H), 3.98 (t, J = 9.3 Hz, 1H), 3.79 (d, J = 9.6 Hz, 1H), 3.67 (dd, J = 10.6, 3.3 Hz, 1H), 3.63 

– 3.47 (m, 3H). 

4-16c 

 

Prepared in 72% yield from 4-15. 1H NMR (α-anomer) (500 MHz, CDCl3) δ 7.29 – 7.18 

(m, 12H), 7.15 (d, J = 8.5 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 5.02 (d, J = 3.6 Hz, 1H), 4.86 

(d, J = 11.4 Hz, 1H), 4.71 (d, J = 10.8 Hz, 2H), 4.66 – 4.55 (m, 3H), 4.43 – 4.35 (m, 2H), 

4.00 – 3.89 (m, 2H), 3.70 (dd, J = 10.5, 3.7 Hz, 1H), 3.62 – 3.52 (m, 2H), 3.47 (dd, J = 9.7, 

3.6 Hz, 1H), 3.33 (td, J = 10.6, 4.4 Hz, 1H), 2.36 (ddd, J = 11.6, 6.9, 3.4 Hz, 1H), 2.12 (d, 

J = 12.4 Hz, 1H), 1.68 – 1.56 (m, 2H), 1.41 – 1.28 (m, 3H), 1.09 – 0.90 (m, 2H), 0.84 (q, 

J = 7.1, 6.6 Hz, 6H), 0.69 (d, J = 6.9 Hz, 2H). 

4-16d 

 

Prepared in 76% NMR yield from 4-15. Purification not successful, characteristic peaks 

for both anomers are shown. 1H NMR (400 MHz, CDCl3) δ 4.94 (d, J = 3.4 Hz, 1H, α-

anomer), 4.35 (d, J = 7.8 Hz, 1H, β-anomer). 

4-16e 
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Prepared in 73% NMR yield from 4-15. Purification not successful, characteristic peaks 

for both anomers are shown. 1H NMR (500 MHz, CDCl3) δ 5.16 (d J = 3.4 Hz, 1H, α-

anomer), 1.31 (s, 9H, β-anomer), 1.27 (s, 9H, α-anomer). 

 

4-16f 

 

Prepared in 66% yield from 4-15. 1H NMR (α-anomer) (500 MHz, CDCl3) δ 8.07 – 8.04 

(m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.32 – 7.16 (m, 14H), 7.04 (d, J 

= 8.4 Hz, 2H), 6.61 (d, J = 3.5 Hz, 1H), 4.88 (d, J = 11.4 Hz, 1H), 4.78 – 4.67 (m, 4H), 

4.57 (d, J = 11.9 Hz, 2H), 4.48 (d, J = 11.0 Hz, 1H), 4.42 (d, J = 12.3 Hz, 1H), 3.97 (q, J = 

10.8, 10.1 Hz, 2H), 3.74 (ddd, J = 11.1, 8.1, 4.0 Hz, 3H), 3.61 (d, J = 1.9 Hz, 1H). 

 

4-16g 
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Prepared in 67% yield from 4-15. Separation of anomeric mixture failed, characteristic 

peaks for both anomers reported. 1H NMR (600 MHz, CDCl3) δ 5.97 (d, J = 8.5 Hz, 1H, 

α-anomer), 5.72 (d, J = 8.0 Hz, 1H, β-anomer). 

4-16h 

 

Prepared in 63% NMR yield from 4-15. Purification not successful, crude NMR with 

characteristic peaks for both anomers are shown. 1H NMR (500 MHz, CDCl3) δ 5.36 – 

5.32 (m, 1H, α-anomer), 5.31 – 5.28 (m, 1H, β-anomer), 5.06 (d, J = 3.6 Hz, 1H, α-anomer). 

4-19 

 

Not purified, characteristic peaks for both anomers are shown. 1H NMR (500 MHz, CDCl3) 

δ 5.54 (d, J = 5.0 Hz, 1H, β-anomer), 5.51 (d, J = 5.0 Hz, 1H, α-anomer). 
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Appendix: NMR Spectra for Selected Compounds 

NMR Spectra for Compounds in Chapter 2 
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NMR Spectra for Compounds in Chapter 3
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