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ABSTRACT OF THE DISSERTATION 
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Bacteria are present in nearly all terrestrial environments and play varied 

and important roles.  Understanding their impacts on the environments and hosts 

where they reside is greatly aided by an accurate estimation of the number and 

types present.  We have adapted polony technology to Oligonucleotide 

Fingerprinting of Ribosomal rRNA Genes (OFRG), a hybridization-based method 

for clustering similar 16S rDNA sequences.  We present a new OFRG probe set 

design method that utilizes the available taxonomic information of training 

sequences to improve the clustering of fingerprints into biologically meaningful 

groups.  A software tool is presented that quickly and accurately identifies 

randomly placed polonies in microarray images.  The polony OFRG method is 

applied to DNA from a mock bacterial community created from a clone library, as 

well as to PCR amplicons made from the same mock community to examine 

PCR bias.  We also examine several natural bacterial communities, making 
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polonies starting directly from genomic DNA templates.  The method successfully 

clusters the known bacterial community and reveals the presence of artifacts in 

template from the mock community PCR.  Natural bacterial communities are 

differentiated using a weighted UniFrac analysis.  Due to the initial spatial 

separation of sample DNA strands, polonies are essentially free of the PCR bias 

and chimeric sequence formation that occurs in mixed-template PCR reactions.  

An additional benefit of the polony format is that sequences of near full-length 

rDNA can be obtained when desired – a feature not possible with current high-

throughput sequencing methods.  We anticipate polony OFRG may be an 

invaluable tool for microbial population studies where these two characteristics 

are required. 
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Chapter 1 

Introduction  

Microbes often exist in complex and dynamic communities that can have 

profound effects on the environments or hosts in which they live.  A better 

understanding of these interactions and the impacts microbes have on their hosts 

is needed and can begin by an assessment of which microbes are present.  An 

even better understanding of these interactions is made possible by frequent 

sampling, such that the changes in population levels themselves can be 

scrutinized for clues regarding the interplay between microbe and host. 

Many methods currently exist to study microbial communities.  These 

methods range from inexpensive, coarse-grained tools such as culturing, to 

methods that detect various characteristic differences in microbial rRNA genes 

such as denaturing gradient gel electrophoresis (DGGE)(Muyzer 1999) and 

terminal restriction fragment length polymorphism (T-RFLP) (Schütte et al. 2008), 

to the significantly more expensive and more accurate “gold-standard” of 

sequencing near full-length rRNA genes (Frank et al. 2007).  Recently, strategies 

for using high-throughput sequencing machines for microbial community analysis 

have been developed as well (Wu et al. 2010)(Caporaso, Lauber, et al. 2010). 

The coarse-grained methods are useful for examining large changes in 

microbial communities but the low resolution is inadequate for many studies.  

Sequencing near full-length 16S rRNA genes provides the highest available 

taxonomic resolution when an accurate “snapshot” of a microbial community is 



2 
 

required.  However, though costs are dropping, multi-sample longitudinal studies 

that employ full-length sequencing are often still too expensive for many labs.  

High-throughput sequencing currently provides the best compromise between 

accuracy and throughput but due to the short read-lengths these are still limited 

in describing the taxonomic makeup of a microbial community.  Currently, 

taxonomic assignments can be confidently made only at the order level; 

assignments at the genus level can also be made but with less confidence. (Wu 

et al. 2010)(Caporaso, Lauber, et al. 2010). 

The focus of this research is on improving an alternative method for 

detecting changes in microbial communities termed oligonucleotide fingerprinting 

of ribosomal rRNA genes (OFRG) (Valinsky, G. Della Vedova, T. Jiang, et al. 

2002).  OFRG may be useful for multi-sample studies requiring low cost and high 

taxonomic resolution.  In addition, the new OFRG method that this research 

focuses on has two important advantages over current sequencing methods.  

First, the pre-sequencing PCR step known to bias results is skipped (Suzuki and 

Giovannoni 1996).  Second, near full-length rRNA genes are available for 

sequencing, when desired.  The former allows for a truer depiction of the 

microbes present and the latter provides a way to more confidently assess the 

identity of any microbe or group of microbes present in a sample. 

To estimate the proportions of microbial species present in an 

environment the OFRG method uses a set of 40 computer-designed DNA probes 

chosen from a set of training sequences and hybridizes them against an array of 
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sample-derived microbial rRNA gene clones.  The hybridization affinity of each 

probe/clone combination is quantified and then processed in one of two ways. 

Traditionally these data are transformed into a 40-digit binary “fingerprint” for 

each clone, where a 0 denotes no hybridization and a 1 denotes a successful 

hybridization event.  These fingerprints are then clustered based on their 

similarity to the fingerprints of other clones in the array.  Alternatively, hierarchical 

clustering can be performed on the data without a binary transformation of the 

hybridization intensities.  These clusters provide a low-cost estimate of the 

relative proportions of the various microbial taxa present in an environment since 

similar fingerprints arise from similar rRNA genes.   

OFRG originally employed a printed macroarray format.  In a labor 

intensive procedure, the DNA for each spot on the array was printed from the 

PCR products of a clone library of microbial rRNA genes originating from 

environmental samples.  The capacity of the method was 9,600 clones per 

experiment and has been used successfully in several studies (E. Bent et al. 

2006)(Lee et al. 2008)(McGuire et al. 2010).  The new OFRG method will replace 

the labor-intensive macroarray with a low-cost microarray, termed a “polony” 

microarray, with a current capacity of 1K-5K clones per sample and a theoretical 

capacity of perhaps millions. 

Polonies, or “polymerase colonies,” are analogous to and replace the 

spots of the macroarray.  Rather than being printed, each polony is grown in 

place; each polony consists of many thousands of localized copies of an 
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individual DNA molecule generated through solid-phase PCR in a polyacrylamide 

hydrogel.  Because diffusion of the PCR amplicons is inhibited somewhat by the 

gel the process results in spots of DNA molecules – the polonies – randomly 

placed in the gel, one for each original DNA molecule. 

Polony technology has been employed in several applications such as 

DNA sequencing, SNP detection, gene expression studies, genotyping, 

haplotyping and alternative pre-mRNA splicing (Shendure et al. 2005)(Butz et al. 

2004)(Rieger et al. 2007)(Robi D Mitra et al. 2003)(Zhang et al. 2006)(Jun Zhu et 

al. 2003).  There are several important characteristics of a polony microarray that 

also make it a useful tool for OFRG.  These are, 1) polony DNA is anchored to 

the gel and can be made single-stranded, making it durable and available for 

probe hybridizations, 2) sample microbial DNA can be spatially isolated, thus 

eliminating the formation of chimeric amplicons during PCR and 3) microbial 

genomic DNA can be used directly, without an intermediate PCR step, thus 

reducing PCR bias of the true makeup of a microbial community. 

Despite these advantageous characteristics, however, polony technology 

is not without its challenges.  The most difficult of these challenges is the random 

placement of polonies in the hydrogel microarray.  As a consequence, some 

polonies overlap with other polonies to varying degrees.  Another challenge is 

that polonies vary in diameter and can contain different amounts of DNA.  These 

characteristics make detection and/or quantification of polony intensities difficult, 

and most existing microarray software is unable to properly handle these issues 
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as they are designed for ordered arrays.  Lastly, the OFRG paradigm of an 

“inverted” array (where the spots are sample-DNA and a small set of probes are 

sequentially hybridized to the array) necessitates that the probes be carefully 

selected in order to maximize the information gleaned from them.  Part of this 

research involves the development of bioinformatics tools to address the 

challenging aspects of polonies.  Finally, several samples of bacterial DNA were 

analyzed with the polony OFRG method and the results are reported herein.  

This research involves strategies to overcome these challenges.  Chapter 

two explains a method for OFRG probe set design that considers the taxonomic 

information of available training sequences.  Chapter three deals with an 

approach to handle the inherent difficulties involved in gathering data from polony 

hybridization images.  Chapter four presents the working polony OFRG method 

with experiments that show its ability to distinguish a range of bacterial 

communities.  
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Chapter 2:  Probe Set Design 

2.1 Introduction 

Microbes often exist in complex and dynamic communities that can have 

profound effects on the environments or hosts in which they live.  A better 

understanding of these interactions and the impacts microbes have on their hosts 

is needed and must begin by an assessment of which microbes are present.  An 

even better understanding of these interactions would be made possible by 

frequent sampling, such that the changes in population levels themselves could 

be scrutinized for clues regarding the interplay between microbe and host. 

Many methods currently exist to study microbial communities.  These 

methods range from inexpensive, coarse-grained tools such as culturing, 

denaturing gradient gel electrophoresis (DGGE) (Muyzer 1999) and terminal 

restriction fragment length polymorphism (T-RFLP) (Schütte et al. 2008), to the 

significantly more expensive and more accurate “gold-standard” of sequencing 

near full-length rRNA genes (Frank et al. 2007).  . 

The coarse-grained methods are useful for examining large changes in 

microbial communities but the low resolution is inadequate for some types of 

studies.  Sequencing near full-length 16S rRNA genes provides the highest 

available taxonomic resolution when an accurate “snapshot” of a microbial 

community is required.  However, though costs are dropping, multi-sample 

longitudinal studies that employ full-length sequencing are often still too 

expensive for many labs.  High-throughput sequencing currently provides the 
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best compromise between accuracy and throughput but due to the short read-

lengths these are limited to describing a microbial community confidently only at 

the order level and some confidence at the genus level (Wu et al. 2010) 

(Caporaso, Lauber, et al. 2010). 

This study focuses on improving an alternative method for analyzing 

microbial communities, termed oligonucleotide fingerprinting of ribosomal rRNA 

genes (OFRG) (Valinsky, G. Della Vedova, T. Jiang, et al. 2002), which can be 

made both accurate and inexpensive, and may be useful for studies that require 

many samples at higher taxonomic resolution than current high-throughput 

sequencing methods provide. 

To estimate the proportions of microbial phylotypes present in an 

environment the OFRG method uses a set of 40 computer-designed DNA probes 

chosen from a set of training sequences to hybridize against an array of sample-

derived microbial rRNA gene clones (J Borneman et al. 2001).  The hybridization 

affinity of each probe/clone combination is quantified and transformed into a 40-

digit binary “fingerprint” for each clone.  These experimentally-derived fingerprints 

can be clustered based on their similarity to the fingerprints of other clones in the 

array.  Because similar fingerprints arise from similar rRNA genes, and because 

the new OFRG arrays are inexpensive to produce and contain many thousands 

of clones, these clusters can provide a low-cost estimate of the relative 

proportions of the various microbial species present in an environment.  
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One challenge with the ORFG method is choosing an optimal set of 

probes.  Previous work to create a probe set for OFRG built upon the work of 

Drmanac and Maier (R Drmanac and S Drmanac 1999)(S Drmanac and R 

Drmanac 1994) (Meier-Ewert et al. 1998) which investigated strategies to screen 

cDNA and BAC clone libraries with carefully chosen sets of probes.  This concept 

was adapted to microbial community analysis by Borneman (J Borneman et al. 

2001) that used available 16S rRNA gene sequences as training data.  The 

optimal probe set of Borneman most pertinent to this work is termed the 

Maximum Distinguishing Probe Set (MDPS). 

As the name implies, the MDPS attempts to create a probe set that 

produces a distinct binary fingerprint for all training sequences – maximizing the 

ability of the probe set to distinguish all sequences.  Neither sequence similarity 

nor taxonomy is taken into account, however.  By chance, fingerprints from 

similar DNA sequences do tend be similar or identical to each other, and 

fingerprints coming from dissimilar DNA sequences tend to be dissimilar to each 

other – but this is not always the case. 

Although MDPS has been used successfully in several studies (Valinsky, 

G. Della Vedova, Scupham, et al. 2002) (Yin et al. 2003) (Scupham et al. 2006) 

(E. Bent et al. 2006)(Jingxiao Ye et al. 2008), the limitation of the MDPS from a 

biological perspective is that it considers all undistinguished clones (those having 

the same fingerprint) equally undesirable.  More specifically, it makes no attempt 

to produce a probe set based on the taxonomy of sequences having the same 
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fingerprints – very divergent sequences having the same fingerprint are 

considered no worse than very similar sequences having the same fingerprint.  In 

the present study we address this shortcoming of the MDPS with a new 

formulation for heuristic probe selection termed the Maximum Fidelity Probe Set 

(MFPS) and a new processing pipeline for preparing the training data used by 

the MFPS. 

2.2 Methods 

The new method involves a change to the cost function within the 

simulated annealing algorithm used by Borneman et al (2001) (J Borneman et al. 

2001).  In addition, a processing pipeline was developed to prepare the training 

data.  Within the simulated annealing algorithm the Maximum Fidelity Probe Set 

(MFPS) scores each transient probe set using multiple penalty levels 

corresponding to the taxonomic levels of the training sequences.  After many 

iterations of (random) probe substitution/probe set evaluation a final probe set is 

output.  Below we describe the new pipeline and cost function, highlighting the 

elements contributing to improved performance.   

Data processing pipeline.  The processing pipeline prepares the training 

data for the cost functions to operate on.  The three most important differences 

between the new and original processing pipelines are that in the new pipeline 

the sequences have their hypervariable regions removed, are clustered into 

species-like operational taxonomic units (OTUs) and are labeled with their OTU 

and higher-level taxonomic information. 
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Download Sequences

Sequence Quality Filter

Truncate Ends

Remove Duplicates

Training Sequences

Probes Matrix (Internal)
And Probe Sets

A

Align Sequences

Download Pre-Aligned 
Sequences by Genus  From 

RDP2

Remove Hypervariable Regions

Per Genus Distance Matrices

OTUs

Training Sequences
with Taxonomic Labels

Remove Duplicates

Probes Matrix

Probe Sets

Truncate Ends

Sequence Quality Filter

B  

Figure 2.1. Diagrams of the New and Original Proces sing Pipelines.  (A) the original processing pipeline 
and (B) the new processing pipeline for training sequences. The three main differences (shaded boxes) in 
the new are 1) sequences have their hypervariable regions removed, 2) distance matrices allow grouping 
(<= 1% sequence difference) into Operational Taxonomic Units (OTUs), and 3) sequences are labeled with 
their taxonomic designations. 
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 Figures 2.1, A and B show the new and original processing pipelines, 

respectively.  Both pipelines start with downloading rRNA gene sequences.  

However, the new processing pipeline gathers pre-aligned sequences and a 

“mask” sequence denoting the location of hypervariable regions within the 

alignment (see first shaded box, Figure 2.1B); these are used in combination to 

remove the hypervariable regions in the sequences, as any probes designed to 

bind in those regions would hybridize to only a few taxonomic groups and thus 

provide little to no help in distinguishing most other taxonomic groups. 

In addition, the pre-aligned sequences simplify the creation of distance 

matrices used to create OTUs and the task of truncating the ends of the 

sequences.  It is useful to truncate the ends to create more consistent training 

data.  To do so we truncated ten nucleotide positions “inward” of the locations of 

two highly conserved primer regions (27F – AGAGTTTGATCMTGGCTCAG and 

1392R – ACGGGCGGTGTGTRC), thus leaving only the portions of the 16S 

molecule intended as the target for probes.  For both pipelines a sequence was 

considered too short and rejected if there was an end gap in the alignment after 

truncation and the truncated section from that end contained only gaps. 

Using these aligned sequences, we then use the program MOTHUR 

(Schloss et al. 2009) to make distance matrices and OTUs on a per genera basis 

(middle two shaded boxes, Figure 2.1B).  OTUs were made with a minimum 

sequence similarity of 99%.  The OTU, genera and phyla information was then 
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concatenated to the corresponding DNA sequences.  The last step in preparing 

the training sequences is checking for and removing any duplicate sequences. 

Both processing pipelines then create a probe matrix from the training 

sequences.  The matrices are comprised of a list of candidate probes and their 

putative binding ability to each of the training sequences and include the 

taxonomic information of each sequence (bottom shaded box, Figure 2.1B).  

Making a matrix once and saving it allows the cost functions to operate more 

efficiently.  Constructing the probe matrix begins by creating a list of all 10mers 

that occur at least once in the training sequence data.   This list can grow to over 

750,000 probes depending on the size of the data set and must be reduced due 

to practical considerations of computational time and memory limitations.  The 

size reduction is accomplished by a filtering step to keep only 1000 of the most 

highly conserved probes (based on how many OTUs a probe is found in).  For 

each probe/sequence combination in the probes matrix, a 1 or 0 denotes whether 

the probe sequence was found in or not found in the training sequence, 

respectively.  Taxonomic data are converted to numbers and added to the 

probes matrix so it is accessible to the MFPS.  The original MDPS cost function 

uses the same probe and binding information but the taxonomic information is 

ignored. 

To compare the two pipelines we made training sequences and probe 

matrices with both.  The training data from the original pipeline differs from the 

new in that the hypervariable regions were not removed from the sequences prior 
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to making the probe matrix, and the list of candidate probes in the two matrices 

are not identical because of this.  To examine just the pipeline’s effect on probe 

sets, apart from any added benefit of using taxonomic information, we employed 

only the original MDPS cost function, making probe sets of sizes 20, 30, 40, 60 

and 80 probes per probe set. 

Maximum Fidelity Probe Set (MFPS).  By employing a heuristic strategy, 

the MFPS scores a randomly chosen set of probes using multi-level penalties 

corresponding to the taxonomic levels of the training sequences.  By doing so, it 

addresses the main weakness of the original MDPS cost function, which 

attempts to choose a probe set that creates a distinct binary fingerprint for each 

training sequence without regard to sequence similarity or taxonomy. 

To adequately explain the MFPS, we first define several terms.  A 

simulated fingerprint is a binary vector of k digits representing the putative 

hybridization pattern of k DNA probes on a DNA sequence of interest.  For our 

purposes, the sequences we are interested in are bacterial 16S rRNA genes and 

the DNA probes are 10 bases long.  If the sequence of a probe occurs exactly in 

the sequence of a gene, we assume it would hybridize to the gene in a real 

hybridization experiment and if it does not occur exactly we assume it would not 

hybridize.  Therefore, we place a 1 or 0 into each of the k characters of the 

simulated fingerprint of a gene sequence to denote a putatively successful or 

unsuccessful hybridization event for each of the k probes of a probe set. 
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A distinct fingerprint is a single representative of a group of identical 

simulated fingerprints produced by a probe set P in a set of sequences S.  It is 

useful in determining a probe set’s quality score - its fidelity. 

The term fidelity is explained as follows.  If a distinct fingerprint f is 

produced by probe set P on one or more sequences in taxonomic group γ in a 

set of sequences S, and f is not produced in any other taxonomic group at the 

same level as γ, then f is said to have high fidelity – a desirable trait.  Conversely, 

if fingerprint f is produced on one or more sequences outside of taxonomic group 

γ in S, then f is said to have low fidelity.  Additionally, the more groups outside of 

γ where fingerprint f is produced, the lower its fidelity is said to be. 

Note that fidelity is always associated with a taxonomic level.  For 

instance, a distinct fingerprint f may have low fidelity at the OTU level (if it occurs 

in the sequences of two or more OTUs) yet have high fidelity at the genus level 

(if it occurs in the sequences of only one genus).  The goal is to choose a set of 

probes that together produce high-fidelity distinct fingerprints at the taxonomic 

level(s) desired.  If this can be achieved, distinct fingerprints arise within 

biologically meaningful taxonomic groupings and can be used as proxies for 

them.  To that end, probe sets are evaluated in the MFPS by the cost function, 
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where C is the total cost, N is the number of distinct fingerprints produced by the 

probe set on the training sequences, i is one of three taxonomic levels (we used 

OTU, genus and phyla but others could be used), f is an individual, distinct 

fingerprint, γi,f is the number of taxonomic groups where f occurs at taxonomic 

level i, and Pi is the penalty (for low-fidelity fingerprints) at taxonomic level i.  

Note that if a distinct fingerprint is found in only one taxonomic group (γi,f =1) then 

no penalty will accrue to the probe set from that fingerprint.  This cost function of 

our MFPS replaces the cost function in the simulated annealing algorithm used 

by Borneman (J Borneman et al. 2001). 

Note that the cost function allows one to vary the penalty level for up to 

three taxonomic levels simultaneously.  Experiments to find optimal penalty 

settings were conducted by systematically varying them and comparing the 

results.  These experiments were conducted with probe sets containing 20, 30, 

40, 60 and 80 probes.  For each experiment at each penalty level and probe set 

size, one hundred probe sets were created for the MFPS and MDPS cost 

functions. 

When cross-validation was performed, we used a variation of 5-fold cross-

validation.  Instead of the traditional 80% training/20% validation, we chose to 

use a 20% training/100% validation strategy.  Due to the nature of one of our 

evaluation metrics, this strategy allowed us to better compare the results of other 

tests where we used 100% of the training data to make and evaluate probe sets.  
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The 20%/100% also provides a more stringent test of probe set design than 

80%/20%.  All cross-validation data shown are an average of 5-fold results. 

Evaluation Metrics.  Two evaluation metrics are used to compare the two 

pipelines and cost functions.  The first metric is termed the high fidelity ratio 

(HFR), which is the ratio of distinct high-fidelity fingerprints produced by probe 

set P (on validation data) and the total number of distinct fingerprints produced 

by P on the same data.  In essence, the HFR is a measure of how closely the 

simulated fingerprints arising from a probe set on the training sequences are 

representing real OTUs and genera.  Importantly, the HFR metric is comparable 

across probe sets; because the raw scores of the cost functions are dependent 

upon the penalty levels chosen, as well as the number of probes in a probe set, 

they cannot be used to compare probe sets made with different penalty levels or 

different numbers of probes.  Note that a probe set can have one HFR for each 

taxonomic level evaluated.  In our experiments we examine OTU and genera 

HFRs only as phyla HFR automatically improves when lower-level fidelity 

improves. 

The second metric is the average pairwise sequence distances of each 

distinct low-fidelity fingerprint in a probe set.  Rather than a single number, this 

metric is shown as a line graph and is constructed as follows.  For each low-

fidelity distinct fingerprint f in probe set P, we take all sequences having f and 

compute their average pairwise sequence distance.  Bin each average into bin 

sizes of 1% difference.  Continue this for as many probe sets as were made for 
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the experiment (usually 100) and graph the overall averages for each bin.  Note 

that it is not necessary to examine the high-fidelity distinct fingerprints as they 

cannot, by definition, exceed the OTU cutoff threshold of 1% sequence 

difference. 

Both new and original processing pipeline scripts were written in Perl, 

version 5.8.  Sequences and taxonomic information were downloaded from 

Ribosomal Database II (Maidak et al. 1999). 

2.3 Results and Discussion 

Comparison of Data Processing Pipelines.  We compared the new and 

original processing pipelines using the High Fidelity Ratio (HFR) metric and the 

Maximum Distinguishing Probe Set (MDPS) cost function of Borneman (J 

Borneman et al. 2001); the MDPS does not use taxonomic information so any 

differences in the results can be attributed solely to the pipelines. 

The new processing pipeline shows an improved OTU HFR over the 

original pipeline in probe sets ranging in size from 20 – 80 probes (Figure 2.2A).  

The improvement is approximately the same across the range of probe set sizes.  

The poorer performance of the original pipeline is likely due to the increased 

number of OTUs created by it, as having more OTUs will tend to lower the odds 

of successfully distinguishing them.  There were 203218 sequences distributed in 

34701 OTUs using the new pipeline and 216414 sequences distributed in 52983 

OTUs with the original.  The average OTU sizes for the new and original 

pipelines are 5.86 and 4.08 sequences, respectively.  The increased numbers of 
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Figure 2.2. Processing pipeline’s effect on fidelit y. The effect on fidelity of the new (NPP) and original 
processing pipelines (OPP) in a range of probe set sizes using only the MDPS cost function with the 
20%/100% training/validation data. (A) OTU fidelity appears higher in the new. (B) Genera fidelity shows 
little difference between the two pipelines. Error bars are standard deviations of 25 probe sets per data 
point. All unstarred comparative points are significant using the two-tailed Student’s t-test assuming unequal 
variance (P < 0.005). Stars indicate no significant difference. 

 



21 
 

OTUs, in turn, is due to both the greater number of sequences allowed into the 

training set by the original pipeline and the presence of the hypervariable 

regions, which often makes the average pairwise sequence distances greater 

and thus leads to more and smaller OTUs.  The genera-level HFRs were very 

similar to each other, however, with a slightly better score seen in the original 

pipeline with probe sets of size 30 and 40 (Figure 2.2B).  The high overall 

similarity of HFR scores at the genera level is reflective of the fact that the 

number of genera represented in the data from both pipelines is the same; 

genera designations are made by the RDP2 database, unlike OTU designations 

that are made by the processing pipelines.  The slightly better genera-level HFR 

in the original pipeline is thus either due to the presence of hypervariable regions 

or the increased numbers of training sequences per genera. 

Regarding the hypervariable regions, the rationale for removing them in 

the new pipeline is that candidate probes arising from these areas may target 

only a narrow range of taxa and may thus be less informative than more 

conserved probes – yet they may be common enough in the training data (where 

some taxa may be overrepresented) to be chosen for a final probe set. 

By removing the hypervariable regions the average pairwise sequence 

similarities will tend to increase – a situation that leads to larger and fewer OTUs 

that can potentially contain sequences exceeding the maximum pairwise identity 

of 97% that traditionally defines a species (Stackebrandt and Goebel 1994).  To 
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compensate for this, we increased the stringency for inclusion into an OTU to 

99% sequence similarity. 

The new pipeline’s contribution to better probe sets is supportive and 

indirect.  It enriches the pool of more informative candidate probes and attaches 

the taxonomic information of the sequences for the MFPS cost function to 

operate on.  In addition, the new pipeline facilitates updating an OFRG probe set 

with the latest sequence information.  With relatively minor modifications the 

pipeline can be adapted for use on ribosomal (or other) genes of different 

microorganisms. 

Optimizing Penalty Levels of the MFPS Cost Function.  The new cost 

function (MFPS) has three penalty settings that correspond to the three levels of 

taxonomic information supplied in the training data (OTU, genus and phylum) 

and a series of optimizations of these settings was performed before comparing it 

to the MDPS.   

Figure 2.3 shows how the HFR metric is affected as the genus penalty 

increases relative to the OTU penalty.  In each panel (A and B) two results are 

shown.  The dashed lines show the average HFR scores of 100, 5x cross-

validation probe sets per point, and the solid lines show the average scores of 

100 probe sets per point but using 100% of the data for training and validation. 

Notice in Figure 2.3A that there is a slight increase in the OTU HFR before 

beginning a downward trend.  This effect is seen in both 100% and 20% cross-

validation probe sets, with the 20% cross-validation reaching a maximum at a  
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Figure 2.3.  Optimizing the genus penalty for the MFPS cost func tion . The genus penalty was varied 
from 0 to 200 while holding the OTU penalty at 1. (A) OTU fidelity rises slightly as the genus penalty 
increases from zero then declines. (B) Genera fidelity rises sharply then plateaus. A penalty of 10 achieves 
the highest OTU fidelity in the 20% cross-validation data (CV) and OTU fidelity is highest in the 100% data 
set at a penalty of 30. 
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genus penalty of 10 and the 100% sets reaching a maximum at a genus penalty 

of 30.  Figure 2.3B shows how genera-level HFR is affected as the genus penalty  

increases.  This number rises and eventually plateaus, with more variation and a 

lower plateau seen in the 20% cross-validation data.   

An OTU penalty of 1 and a genus penalty of 30 for the MFPS were chosen 

as optimal for a comparison to the MDPS.  Our rationale for choosing a genus 

penalty of 30 was as follows.  The initial rise in OTU fidelity makes intuitive sense 

because the increasing genus penalty improves the chances a distinct fingerprint 

will occur in only one genus – but if more distinct fingerprints are occurring in only 

one genus it becomes more likely some will also occur in only one OTU within 

that genus.  However, as the genus penalty increases further and the total 

penalty score for a candidate probe set becomes dominated by any mistakes in 

genera classification, the MFPS begins to sacrifice OTU fidelity for better genera 

fidelity.  Finally, the peak OTU fidelity occurs at a lower genus penalty level in the 

smaller 20% cross-validation data than in the 100% data set (10 and 30, 

respectively), suggesting that the size and/or makeup of the training data 

influences the optimal genera penalty level. 

This led us to conclude that the larger the data set the farther to the right 

the OTU maximum might appear.  And, since we planned to order a set of 

probes for laboratory use on environmental samples we should design them with 

a large data set in mind.  Nevertheless, choosing a genus penalty above 30 

would be an extrapolation. 
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The risk of overfitting may be higher when using the full data set, but since 

it is impossible to predict what bacteria a sample will contain, it is not clear how 

we can know we have or have not over-fit the data.  Also, based on the severe 

tests of removing whole phyla (see Figure 2.6 and discussion) and using only 

20% cross-validation data evaluated on 100%, the solution-space appears to be 

broad, and good solutions abundant, even if an optimal one is elusive. 

Comparison of MFPS and MDPS Cost Functions.  For this comparison we 

prepared training sequences using the new pipeline only.  Figure 2.4 shows the 

performance of the MFPS and MDPS cost functions, using the HFR metric, with 

probe sets containing between 20 and 80 probes.  In both the OTU and genera 

HFRs the MFPS scores higher than the MDPS in all probe set sizes examined.  

The difference is most pronounced in probe sets of size 20 and gradually 

narrows up to probe sets of size of 80.  For OTU HFRs, the scores at n=80 are 

nearly identical, but for genera HFR the MFPS still shows a slightly improved 

performance over the MDPS.   

As a control, probe sets were created randomly from one of two 

differently-sized probe matrices – either 1000 probes (the same one used to 

compare the cost functions) or 4000 probes, and are also included in Figure 2.4.  

The HFRs of the MFPS and MDPS cost functions are indeed higher than the 

random probe sets from the 1000 probe matrix.  Interestingly, the HFRs of 

random probe sets from the 4000 probe matrix were much lower than the probe 

sets made from the 1000 probe matrix.   
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Figure 2.4. Comparison of the MFPS and MDPS cost fu nctions using the High Fidelity Ratio (HFR) .  In 
both (A) OTU and (B) genera HFRs the MFPS scores higher than the MDPS in all probe set sizes examined 
but the difference narrows from n=20 to n=80 probes. Randomly chosen probe sets perform less well. The 
Random 1000 probe sets selected probes from the top 1000 most conserved probes and the Random 4000 
from the top 4000. The MFPS and MDPS also selected probes from the 1000 most conserved probes. All 
four values within each probe set size are significantly different from each other using the two-tailed 
Student’s t-test assuming unequal variance (P << 0.01) with 100 probe sets per data point. 
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To explain this difference, recall that the random 1000 probe sets contain 

probes from the top 1000 most conserved probes and the random 4000 from the 

top 4000.  The higher HFR scores observed from the smaller probe matrix 

therefore suggests these are somehow more informative taxonomically.  More 

work could be done to see how far this could be taken, and at what point some 

type of bias could be introduced, if any. 

Our laboratory experiments will be done with a set of 40 probes as this is 

a practical maximum and provides very high (theoretical) fidelity.  Genera-level 

HFR is over 98% and OTU-level HFR is over 81%.  It is also worth noting that 

with 40 probes the majority of low-fidelity distinct fingerprints (~55%) occur in 

only two OTUs, but within the same genus. 

Average Pairwise Sequence Distances.  The average pairwise sequence 

distances results are shown in Figure 2.5.  Unlike the High Fidelity Ratio, which is 

a measure of the taxonomic accuracy of a probe set, this metric focuses on the 

inaccuracy of a probe set’s low-fidelity fingerprints, measuring the dissimilarity of 

the underlying DNA sequences from which they arose.  Figure 2.5 reveals a 

considerable overall improvement of the MFPS over the MDPS cost function, as 

well as the effects different penalty settings have in the MFPS. To evaluate the 

two cost functions for this metric, we compared their results using two different 

penalty schemes. 
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Compared to the MDPS line, MFPS A (OTU and genus penalties set to 1 

and 0, respectively) is superior except for having a few more sequences from 0% 

to 1%.  The improved scores beyond 1% difference reflect the tendency of all 

distinct fingerprints (high and low fidelity) to more closely pattern real taxonomic 

groups; even if they do occur in more than one OTU they tend to occur in more  
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Figure 2.5. Average pairwise sequence distance metr ic . This metric focuses on the inaccuracy of a 
probe set’s low-fidelity fingerprints, measuring the dissimilarity of the underlying DNA sequences from which 
they arose. MFPS A (OTU and genus penalties set to 1 and 0, respectively) is superior to MDPS except for 
having a few more sequences from 0% to 1%; scores in this range are from highly similar sequences but 
from OTUs in different genera.  MFPS B (OTU and genus penalty levels set to 1 and 30, respectively) shows 
further improvement in distances greater than 1%, but unlike MFPS A or MDPS, has markedly fewer low-
fidelity distinct fingerprints with distances less than 1%.  The improvement in distances greater than 1% is 
the same windfall seen in HFR scores when the genus-level penalty was set to 30 (see figure 2.3). Error 
bars are standard deviations of 100 probe sets per data point. 

similar sequences.  Likely for the same reason, the MFPS A performs more 

poorly from 0% to 1%.  These scores are from highly similar sequences in 

different OTUs but presumably from different genera (otherwise they would have 
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been grouped into the same OTU).  This phenomenon is consistent with the fact 

that there was no genus-level penalty imposed in MFPS A. 

MFPS B (OTU and genus penalty levels set to 1 and 30, respectively) 

shows further improvement in distances greater than 1%, but unlike MFPS A or 

MDPS, has markedly fewer low-fidelity distinct fingerprints with distances less 

than 1%.  The latter is clearly an effect stemming from the genus-level penalty 

imposed during probe set creation; now, probe sets are shepherded away from 

these “near-misses.”  The improvement in distances greater than 1% is the same 

windfall seen in HFR scores when the genus-level penalty was set to 30 (see 

Figure 2.3). 

Effect of Removing Whole Phyla.  To examine how the fidelity of probe 

sets might behave if sequences from unknown phyla are encountered, MFPS 

and MDPS probe sets were made after sequentially removing several of the 

largest phyla, each ranging in size from approximately 10% to 33% of all training 

sequences.   

Evaluations of the probe sets were performed with all phyla included.  The 

results shown in Figure 2.6 indicate that although both MFPS and MDPS are 

negatively affected generally, the effect is relatively minor, and the MFPS 

outperforms the MDPS.   

Interestingly, OTU HFR went up in the MFPS and MDPS when the phyla 

Proteobacteria and Actinobacteria were removed, respectively.  When looking at 

the genera-level HFRs for these phyla, removing Proteobacteria does not  
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Figure 2.6. Fidelity Effect When Removing Whole Phy la From Training Data . (A) OTU and (B) genera 
fidelity.  Although both MFPS and MDPS are negatively affected generally, the effect is relatively minor, and 
the MFPS outperforms the MDPS.  OTU HFR goes up in the MFPS and MDPS when the phyla 
Proteobacteria and Actinobacteria are removed, respectively.  At the genera-level HFRs for these phyla, 
removing Proteobacteria does not improve in MFPS, yet removal of Actinobacteria improves HFR in the 
MDPS. 
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improve in MFPS, yet HFR still improves in the MDPS when removing 

Actinobacteria.  It is not clear why an increase of HFR scores would occur when 

removing a phylum before making probe sets, other than that something in these 

phyla are causing the cost functions to become confused, perhaps trapping them 

in a local minimum. 

 Positional Bias of Probes in MFPS and MDPS.  We were curious if the  
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Figure 2.7. Positional Bias of Probes from MFPS and  MDPS. This graph was constructed by finding the 
starting positions of all probes in 100 probe sets of size n=40 probes and plotting the frequency where they 
occurred at each position for both cost functions.  Although probes arising from some positions appear to be 
chosen by both cost functions there are several positions that appear to be favored by the MFPS or MDPS, 
sometimes exclusively. 



32 
 

probes chosen by the two cost functions would show any positional bias on the 

16S rDNA molecule.  Figure 2.7 was constructed by finding the starting positions 

of all probes in 100 probe sets of size 40 and plotting the frequency they 

occurred at each position for both cost functions.  Although probes arising from 

some positions appear to be chosen by both cost functions there are several 

positions that appear to be favored by the MFPS or MDPS, sometimes 

exclusively. 

The regions favored by the MFPS suggest these may tend to be more 

conserved within taxonomic groups, whereas the regions favored by the MDPS 

may tend to be less conserved within the same groups.  Alternatively, because 

probes in a probe sets are chosen to work together to provide information about 

the sequences there may be some kind of complex within-group conservation 

between the regions being favored.  More investigation would need to be 

performed to determine if there was some underlying biological significance to 

these patterns. 

2.4 Conclusion 

With its multi-level penalty scheme the MFPS improves the quality of 

probe sets as measured by two biologically relevant metrics: fidelity and 

sequence distances.  By pre-clustering training sequences into biologically 

meaningful groups and then choosing probe sets based on how closely their 

resultant fingerprints represent those groupings we increase the chances that the 
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underlying sequences of those fingerprints are more similar to each other than 

they would be in the original MDPS. 

Attempts have been made to assign taxonomy using the relatively small 

sequencing reads produced by high-throughput sequencing technology such as 

454 and Illumina (Wu et al. 2010)(Caporaso, Kuczynski, et al. 2010).  With the 

Illumina platform in Caporaso et al, 16S rRNA gene reads were placed on a pre-

built guide tree and the taxonomy reported was the highest level that can 

confidently be predicted; these sequences can be from any portion of the rRNA 

gene.  Using the 454 platform and reads of ~450 nucleotides, Wu et al. 

compared taxonomic predictions from the sequencing results of different 

hypervariable regions.  Both methods were able to achieve genus level 

taxonomic predictions in most cases, though not always.  With 10-mer probes 

and 40 probes per probe set, the MFPS is essentially interrogating 400 

nucleotides but is not restricted to a contiguous portion of the molecule, as is the 

case in 454.  And the probes act together to produce a fingerprint for each clone, 

unlike Illumina reads which are disconnected from each other and so can be 

utilized only in isolation. 

One future improvement in the MFPS would be to take into account more 

complex interactions between the probe and DNA strand.  It is known, for 

instance, that in real hybridization experiments a probe can hybridize with varying 

degrees of affinity depending on several factors.  These factors include being 

able to hybridize at a detectable level even when there is a single nucleotide 
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mismatch between the probe and DNA, or that a probe may bind to more than 

one location on a DNA strand simultaneously.  In a small bioinformatics trial (data 

not shown), allowing an A:G mismatch at the 10th position of the probe to count 

as a successful hybridization event actually enhanced the HFR scores of probe 

sets.  In a post-hoc analysis these events could be detected and characterized, 

and this information incorporated into the cost function itself, potentially leading 

to a much higher fidelity probe set  
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Chapter 3: Polony Image Analysis 

3.1 Introduction 

Polony technology has been employed in several applications, such as 

DNA sequencing, SNP detection, gene expression studies, genotyping, 

haplotyping and alternative pre-mRNA splicing (Shendure et al. 2005)(Butz et al. 

2004)(Rieger et al. 2007)(Robi D Mitra et al. 2003)(Zhang et al. 2006)(Jun Zhu et 

al. 2003), and has now been adapted to oligonucleotide fingerprinting of 

ribosomal rRNA genes (OFRG)(Valinsky, G. Della Vedova, T. Jiang, et al. 2002).  

The raw data produced by polony technology are scanned images, analogous to 

a microarray but different in important aspects. The data from the polony array 

must therefore be collected with software tailored to its particular characteristics. 

Unlike a traditional array, where unbound sample DNA is hybridized to 

thousands of anchored probes, the polony microarray is inverted: sample DNA is 

anchored and unbound probes are hybridized to them.  Polony microarrays are 

created by adding sample DNA into a polyacrylamide gel mixture and casting the 

mixture in a thin layer on a microscope slide.  After the gel has fully polymerized 

a chamber is placed over the gel and PCR reagents are added, the chamber is 

sealed and the slide is subjected to thermocycling.  During thermocycling, the 

DNA strands are duplicated again and again, diffusing outward from each original 

strand.  Because diffusion of the amplicons is inhibited somewhat by the gel the 

process results in randomly placed spots of DNA molecules – the polonies – one 

for each original DNA molecule.  Once made, the polonies can be visualized with 
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Sybr or ethidium bromide staining or interrogated, either by single-base 

extension using fluorescently labeled nucleotides or by hybridization using 

fluorescently labeled DNA probes. 

There are several advantages of polonies over traditional arrays that make 

them an attractive tool for certain applications.  Polonies are inexpensive and 

easy to make; more importantly, they can be used to accurately quantify and 

characterize a sample of DNA, such as in haplotyping, since each polony 

originates from a single, isolated DNA molecule (Zhang et al. 2006).  The ability 

to amplify spatially isolated DNA molecules is an important property that makes 

polony technology a useful tool for analyzing bacterial communities via 16S rRNA 

gene analysis.  Other molecular approaches for bacterial community analysis 

necessarily involve a “mixed-template” PCR step that can bias the original ratios 

of the species or create chimeric amplicons of two or more species (Suzuki and 

Giovannoni 1996)(Lahr and Katz 2009a). 

We have adapted polony technology to OFRG, a hybridization-based 

method for grouping similar rRNA genes.  With this method, 42 different DNA 

probes are sequentially hybridized to a polony microarray.  Then, each probe’s 

affinity for the DNA of each polony is measured and together become that 

polony’s hybridization “fingerprint.”  This fingerprint is used to cluster together 

polonies with similar fingerprints and the clusters tentatively represent real 

taxonomic groups. 
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There are also characteristics that make the use of polonies difficult, such 

as their random placement, the problem of overlapping polonies, and diameters 

that can vary substantially.  These characteristics make detection and 

quantification of polonies a challenge, especially at higher densities.  Most 

existing software for microarray analysis is designed for organized grids and fails 

when applied to the randomly ordered polony array.  Also, existing software 

packages are not designed to deal with overlapping spots on arrays, such as by 

flagging them or by selecting a suitable non-overlapping portion from which to 

measure. 

The Illumina high-throughput sequencing platform is most similar to 

polonies because template DNA is also randomly placed before being grown into 

“clusters” of DNA via bridge PCR amplification.  To locate clusters, both 

Illumina’s “Firecrest” and an open source program called, “Swift” (Whiteford et al. 

2009), employ thresholding approaches.  Although these packages may be 

adaptable to polony images they are tailored to the specific needs and 

characteristics of the sequencing platform.  

This paper presents a straightforward algorithm for finding polonies using 

a simple approach based on finding local maximum pixels and harnessing the 

additive information contained within the multiple images of OFRG hybridizations 

of the same polony microarray. Because of the nature of the hybridization 

patterns across the 42 scanned images – overlapped polonies can occasionally 

“appear” isolated when a probe binds to only one polony of an overlapping group 
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of polonies – an opportunity to precisely locate these polonies presents itself.  By 

taking advantage of this phenomenon we can ameliorate the problem of overlap 

in the polony microarray, allowing for higher polony densities and more accurate 

quantification.   

We compare the ability of our approach with a new approach developed 

recently that combines the Expectation-Maximization (EM) algorithm with a 

model of polony intensities using multiple Gaussian distributions (Wei Li et al. 

2010).  Both algorithms were originally developed to find polonies using a single 

image but have been extended to use the multiple images produced in a polony 

OFRG microarray. 

3.2 Methods 

Polony microarrays are created from randomly-placed DNA molecules that 

are subsequently amplified via PCR, and these newly created strands of DNA 

are fixed to the acrylamide gel in which they were grown (see Figure 3.1).  

Hybridization/wash cycles of 42 different probes to the polony array are 

performed sequentially two probes at a time.  The probes are designed to bind to 

different taxonomic subsets of bacterial DNA.  Thus, each of the 42 images has a 

unique pattern of visible polonies.  Figure 3.2 shows just six hybridization scans 

of a small section of a polony microarray.  Polony arrays are imaged with a two-

laser scanner to gather the intensities of each probe/polony pair.  Techniques 

developed to accurately locate and measure polony intensities within the raw 

images are the subject of this study.  All image processing with our algorithm is  



 

Figure 3.1.  The polony microarray.
shows a close up of a small area. Maximum po
images has been increased for display purposes.

 

 

Figure 3.2.  Multiple hybridizations.
hybridized and scanned with one of six fluorescently labeled probes (
ATACCGCATA, C: GCCTAACACA
leftmost panel (A) is the reference probe, showing all eight polonies.  Though physically still present, some 
polonies do not appear in subsequent images because the indicated probe did not hybridize to their DNA.
The contrast in all images has been increased for display 
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The polony microarray. The array in the left panel contains ~10,000 polonies. The right panel 
shows a close up of a small area. Maximum polony width is ~22 pixels (110um).  The contrast of both 
images has been increased for display purposes. 

Multiple hybridizations. Each panel is an image of the identical region on a polony microarray, 
hybridized and scanned with one of six fluorescently labeled probes (A: GYACACACCGCCCG

GCCTAACACA, D: GCTAGTTGGT, E: CAATGGGCGA, F: GACTGAGACA
) is the reference probe, showing all eight polonies.  Though physically still present, some 

polonies do not appear in subsequent images because the indicated probe did not hybridize to their DNA.
The contrast in all images has been increased for display purposes. 

 

 
The array in the left panel contains ~10,000 polonies. The right panel 

lony width is ~22 pixels (110um).  The contrast of both 

 
Each panel is an image of the identical region on a polony microarray, 

GYACACACCGCCCG, B: 
GACTGAGACA). The 

) is the reference probe, showing all eight polonies.  Though physically still present, some 
polonies do not appear in subsequent images because the indicated probe did not hybridize to their DNA. 
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performed using a plugin written for the National Center for Biotechnology 

Information’s ImageJ program (Rasband 1997).  Post data-acquisition filtering is 

performed in R. 

Image analysis.  Polony gels are affixed to a microscope slide and a 2700 

x 4000 pixel image (16 bit grey-scale TIFF) is sufficient to encompass all 

polonies.  The resolution of each pixel is currently 5um and the largest polonies 

are ~22 pixels in diameter, and images contain ~1,000-10,000 polonies.  The 

images are processed in ImageJ in a single “stack” of images; each image in a 

stack is referred to as a “slice.”  Once all hybridization images have been 

acquired and loaded as a stack the processing can begin and involves several 

main steps: i) align the slices, ii) determine putative polony locations and 

background regions in each slice, iii) select the polonies most likely to be real, iv) 

determine areas of overlap, v) measure polony and background intensities.  

Table I shows the sizes and polony densities of images used to compare the EM 

and LM algorithms 

Aligning images.  A convenient way to measure polony intensities 

throughout all slices in an ImageJ stack is to define a region of interest (ROI) for 

each polony.  An ROI’s size, shape and position can be defined for each polony 

once they are known.  To get accurate measurements, however, the images in 

the stack must be aligned first so that polonies remain in the same x-y position as 

their corresponding ROIs.  Although the 42 images are of the same polony array, 

they may be out of alignment with each other due to positional variations that can 
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occur when placing the slides in the laser scanner, or due to the slight offset 

between its two lasers.  The first image in a stack is of the reference probe and it 

is used as the standard to which all other images are aligned.  By checking in a 

+/- 5 pixel offset range, alignment is performed by comparing the local maximum 

pixels in the reference image to local maximums of the other images.  The x-y 

offsets where the most local maximum pixels align are chosen to shift an image 

into alignment.  Local maximum pixels are defined as those whose intensity 

values are brighter than their eight neighbor pixels and are 200 or more above 

the average intensity value of the whole image but less than the saturation value 

of 65535. 

Determining polony locations and measurement areas.  In images, 

polonies are located by exploiting three simple and common physical 

characteristics: they are brightest in the center, their intensities taper off gradually 

when moving out from the center and they are circular.  Polony centers are 

located first by finding local maximums across an image.  A local maximum is 

defined as a pixel whose intensity is greater than its eight neighbor pixels.  

However, due to the high amount of variation in the pixel intensities of raw 

images, using this criterion alone would result in finding many false positives. 

Therefore, local maximums in a slice are determined only after a smoothing step.  

The search for local maximums is repeated for each slice in a stack and results 

in a list of putative polony-center locations. 
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Next, three successive perimeters surrounding each local maximum are 

found.  The perimeters are used to define ROIs for intensity and size 

measurements.  The innermost perimeter defines the pixels to be used for 

measuring a polony’s intensity.  They are found by searching outward from the 

local maximum in eight directions until encountering pixels whose intensity is 

close to but not less than 85% of the maximum intensity.  The second set of 

points delineate where (the DNA boundary of) a polony ends.  Each of these 

points are found when, starting from the center and moving outwards, any one of 

the following are true: i) a rise in intensity is detected, indicating another polony 

may be nearby, ii) little to no change in intensity is detected, indicating the DNA 

boundary of the polony has been reached, iii) a preset maximum distance from 

the center has been reached; this can occur when polonies closely overlap and a 

long, gentle slope of pixel intensities are encountered that will not trigger i and ii.  

The third and outermost set of points is the background-measurement area.  

These points are just beyond the polony DNA boundary and are found by simply 

extending outward from it by five pixels.  Each local maximum represents, 

together with their three corresponding perimeters, the putative locations and 

measurement areas of real polonies.  Several validation checks must then be 

performed before a final ROI list is made. 

Selecting the highest quality polonies.  There are three main types of 

polonies in the initial list of putative polonies:  real, pseudo and duplicates.  

Within the group of real polonies are two subtypes:  isolated and overlapping.  
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Detecting each main type involves assigning a confidence level that is based on 

the observation that real polonies almost always have a circular form.  After 

pseudo and duplicate polonies are removed, overlapping cases can be 

determined. 

Duplicate polonies arise from any real polony that is bright enough to have 

its local maximum detected in more than one slice in a stack.  Recall that local 

maximum pixels represent putative polony centers and a search for them is 

performed in every slice of a stack.  We say that a local maximum pixel in one 

slice having the same x-y coordinates (or within a distance of 3 pixels to allow for 

alignment variations) as local maximum pixels in other slices represent the same 

physical polony.  Therefore only one of these duplicates need be kept as the ROI 

to measure it.  To choose the best duplicate we select the one we are most 

confident represents the size and shape of the physical polony at that position on 

the gel.  Typically this will be the largest and most circular of the duplicates.  The 

circularity of each duplicate is gauged by finding the standard deviation of the 

distances from its center to its eight center-measurement boundary points.  The 

most circular is kept and the rest are discarded. 

A pseudo polony is defined as a local maximum that does not represent 

the true center of any physical polony.  Pseudo polonies arise as a result of 

overlapping polonies that fluoresce simultaneously or from debris.  Overlapping 

polonies often appear in an image as a single, misshapen polony with no clear 
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boundary between them.  A local maximum in this case will often be found at a 

point somewhere in between the two (or more) real polony centers. 

Detecting overlapping pseudo polonies.  To detect pseudo polonies 

caused by overlapping we use the circularity confidence criteria.  A pseudo 

polony will usually (but not always) have a non-circular perimeter.  Polonies 

whose circularity falls below a user-defined threshold are removed from the list of 

polonies.  Any pseudo polonies that are not removed at this step can usually be 

detected in measurement data using the standard deviations of their center-

measurement area’s pixel values; if a pseudo polony is centered between two or 

more physical polonies, measurements will be of their downward sloping sides 

and they will have considerable intensity changes across the measurement area.   

In contrast, real polony ROIs are correctly centered and the variation in 

measured pixel intensities are much smaller. 

Detecting debris pseudo polonies.  Debris on a gel is similar enough to 

real polonies to be detected as local maximums and the algorithm will find three 

perimeters for them.  Detection of debris is done in several ways.  The initial filter 

for debris uses the circularity criterion; most debris ROIs will not be circular and 

so will be removed.  However, for debris that is circular, it is convenient to detect 

and remove them using an R script (R Development Core Team 2010) after 

measurements are made.  To do so, three detection criteria are used.  When 

debris is large it will often be very bright and the image will be saturated.  These 

are filtered out by removing polonies whose average intensity is above a 
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threshold.  When debris is small it will usually have large standard deviations in 

pixel intensities and can be filtered out accordingly.  The last method to detect 

debris is by examining the ratio of its center-measurement area to its DNA area.  

Real polonies have a small center to DNA area ratio.  Debris will have a ratio 

close to one, however, because they have an almost instantaneous drop from 

bright to background; this causes their DNA areas to be only slightly larger than 

their center-measurement areas. 

Determining overlaps and optimal measurement areas.  After duplicate 

and pseudo polonies are filtered out it is necessary to detect which real polonies 

are overlapping each other.  Measurements are made in two of the three areas 

defined for each polony – its center area and the background area surrounding 

the polony.  (Two of the three areas defined for each polony are where intensity 

measurements are made – the polony’s center pixels and the background area 

surrounding the polony).  Overlaps in these areas are detected and handled by 

creating a “mask” image (Figure 3.3).  The mask is created by superimposing the 

three areas of all polonies found.  Each polony’s three areas are plotted in the 

mask using white and three shades of grey.  White, medium grey and dark grey 

denote center-measurement, DNA and background-measurement areas, 

respectively.  Light grey pixels denote the overlap of one polony into another 

polony’s center-measurement area.  Overlap areas are reported for that polony 

during the measurement step.  This information can be used to eliminate 

potentially bad data if desired.  Overlaps in background-measurement areas are  
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Figure 3.3.  Measurement areas and mask. The left panel shows polonies with their center-measurement 
Region Of Interest (ROI) areas displayed. The right panel is the measurement areas mask of the same 
section.  White pixels in the mask indicate center-measurement areas. Dark grey pixels indicate allowed 
background-measurement areas. Medium grey pixels designate polony DNA boundary areas (not 
measured). Light grey pixels denote the amount of neighbor DNA areas that overlap with a center-
measurement area.  The two large rings in the lower left denote one polony’s total background-
measurement area. When measurements are taken, however, only values corresponding to the dark grey 
pixels within this boundary are used. The contrast of the image in the left panel has been increased for 
display purposes. 

handled in a different manner.  Rather than reporting how many pixels from a 

neighbor polony are intruding into the background area, during the measurement 

step the program refers to the mask and only measures the portion of each 

polony’s background area where no overlap occurs. 

Measuring polony intensities.  Once a final list of ROIs has been 

determined the intensities of each polony in each slice can be measured using a 

modified ImageJ ROI Manager.  The data is saved and is ready for further 

processing with an R script that performs multiple quality control checks (such as 

detecting any remaining pseudo polonies), transforms the data and clusters the 

polonies according to the similarity of their transformed hybridization patterns. 

 

 

White: center-measurement 

Dark grey: background-measurement 

Medium grey: polony DNA boundary 

Light grey: neighbor DNA overlap 

Background measurements for this 
polony are taken only from dark grey 
area within its background ROI ring. 
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3.3  Results 

We compare the accuracy and relative speeds of the local maximum (LM) 

and Expectation Maximization (EM) algorithms in (Wei Li et al. 2010) in single 

and multiple slices.  Concerning accuracy, Li et al. (2010) found that for a single 

slice the algorithms performed similarly when polony density (defined as the 

number of polonies divided by the total number of pixels in an image) was low 

(less than 0.6 x 10-3) but the EM algorithm outperformed the others when polony 

density was high.  For multiple slices, however, we find the LM begins to have an 

advantage in both speed and accuracy. 

Accuracy comparison.  We use a Precision-Recall curve (PR) and an Area 

Under the PR curve (AUPR) to compare the accuracy of each algorithm in 

identifying polony locations.  The PR curves are constructed from their precision 

and recall performances on a polony image or series of images (slices).  If N real 

polonies exist and an algorithm locates M polonies, K of which are correct, then 

precision = K/M and recall = K/N.  The x-y position of the center pixel of a polony 

is defined as its location.  These locations were manually annotated in real 

images and known precisely in simulated images.  If one of an algorithm’s x-y 

coordinates for a polony are less than 3 pixels in distance from a known polony 

location it is deemed to have found that polony. 

Single real image accuracy.  Figure 3.4 shows the precision/recall values 

for the LM and EM algorithms in a high density real polony image (see Table 3.1, 

Image 1).  We can see that EM has correctly identified more polonies than LM 
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(recall of 0.56 versus 0.33) but has incorrectly identified some as well (precision 

of 0.86 versus 1.0 for LM).  Using the AUPR to compare we find the EM has 

outperformed the LM by 0.72 to 0.67. 
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Figure 3.4.  Shown is a Precision/Recall graph comparing local maximum (LM) and expectation-
maximization (EM) algorithms. The image used is a small, high density section of a single image of a real 
polony microarray (see Table 1, Image 1). 

Multiple real images accuracy.  Figure 3.5 shows the AUPR for LM and 

EM algorithms in the same high density polony microarray (see Table 3.1, Image 

1) but where multiple images (slices) are used.  The EM shows an initial increase 

when a second image is used but its performance mostly decreases or levels out 

with additional images.  However, the performance of LM continues to improve 

with additional images, leveling off after 20 images. 

Multiple simulated images accuracy.  Because no very high density real 

images were available we simulated a highly dense polony microarray and  
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Figure 3.5.  Area Under the PR curve (AUPR) for high density real images. The performance of LM is worse 
than EM when processing 1 to 5 images but its performance improves over EM after being supplied with 10 
or more images. The image used is a small, high density section of a single image of a real polony 
microarray (see Table 1, Image 1). 
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Figure 3.6.  Area Under the PR curve (AUPR) for very high density simulated images. In this simulated set of 
images the performance of LM is slightly better than EM when processing only one image. Its performance 
improves rapidly over EM after being supplied with more images. The image used is a very high density 
simulated polony microarray (see Table 1, Image 4). 
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compared the LM and EM algorithms.  Figure 3.6 shows the AUPR of both 

algorithms in images with a polony density of 3.00 x 10-3 (see Table 3.1, Image 

4).  Surprisingly, in these simulated images the AUPR of the LM is higher than 

that of the EM in all cases, even when using only one image. 

Relative Speeds.  Runtimes of both algorithms were found on images 

using a full, 42-slice stack and reported on a time-per-slice basis.  In Table 3.2, 

the results on Image 2 using the LM and EM algorithms shows the average time 

per slice of the LM algorithm is over 200 times less than the EM.  The EM is not 

practical for large images but the time per slice of the LM on full-sized polony 

microarray images was about 4 seconds (Image 3). 

 

Image ID Image Source  Pixels  Polonies  Density  

1 Real 150 x 150 33 1.47 x 10-3 

2 Real 500 x 500 247 9.88 x 10-4 

3 Real 2968 x 4400 8020* 1.03 x 10-3 

4 Simulated 500 x 500 750 3.00 x 10-3 

Table 3.1.  Source, size and density information on images used. * Estimated. 

 

Image ID Algorithm  Pixels  Slices  Time per Slice  Density  

2 LM 500 x 500 42 0.36s 9.88 x 10-4 

2 EM 500 x 500 42 77.95s 9.88 x 10-4 

3 LM 2968 x 4400 42 4.02s 1.03 x 10-3 

Table 3.2.  Processing times of Local Maximum (LM) and Expectation Maximum (EM) algorithms. All images 
were of real polony microarrays. 
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3.4 Discussion 

As with any microarray, accurate data collection is of primary importance.  

Polony microarrays offer the researcher a low cost platform with the unique 

ability to interrogate thousands of genomic DNA molecules simultaneously by 

spatial isolation of the molecules and subsequent PCR amplification.  The 

random placement of the DNA molecules leads to an inherent difficulty 

associated with polonies – namely, the problem of overlap. 

To address this weakness we have developed a simple yet effective 

algorithm to locate polonies in scanned images.  We have also developed a 

method to locate suitable areas for background measurements, as well as 

estimate overlap amount by neighbor polonies.  Our approach achieves higher 

precision-recall rates than other published polony finding algorithms at a fraction 

of the speed.  The higher precision-recall rates are achieved by taking advantage 

of the fact that in the multiple hybridization images produced by polony OFRG, 

polonies will often appear isolated as their overlapping neighbors go dark, 

revealing their truer, more circular shapes.  Metrics for post data acquisition 

quality control have been developed that enable false polonies or highly 

overlapped polonies to be detected and removed from analysis. 

A straightforward method for polony image alignment has been developed 

that relies on the same local maximum information used to find polonies.  By 

using only these data points instead of correlating all pixels in an image, as is 

done in Swift (Whiteford et al. 2009), we also achieve some improvement in 
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speed and accuracy (data not shown) since the algorithm is made to operate on 

only a small subset of the most relevant pixels in polony images. 

The advantage the EM algorithm has over the LM is most pronounced 

when only one high density image is used.  The reason for this is that the EM 

models whole intensity profiles of overlapping polonies well, even during overlap 

events, and can often tease out their locations better than the LM.  In contrast, 

the LM focuses on a single bright pixel to make its determination, which during 

overlap events is often not a true polony center. 

For multiple images, however, the LM algorithm has the advantage in both 

accuracy and speed.  The results of the very high density simulated image 

(Figure 3.6) shows a continual increase in the AUPR value when more images 

are used, reaching a high of nearly 0.74.  The EM AUPR values peak at 0.56 

after 20 images are used and then mostly plateaus, even declining at some 

points.  The steady uptick of the LM demonstrates that it is effectually using the 

additional information provided by more images but that the EM unable to do so.   

A slightly different situation is seen in Figure 3.5, the comparison on a real 

image.  Here, the LM AUPR values also decline occasionally with more images, 

though both LM and EM achieve higher overall AUPR values.  The higher AUPR 

values can probably be best explained by the lower polony density, which makes 

the job of finding polonies easier for both algorithms.  The occasional decline of 

LM values may be due to the greater variation in real images – including the 

range of polony intensity variation, the presence of debris and the slightly 
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different polony shapes, which is an artifact of the offset between the two lasers 

in the microarray scanner. 

We have created a software package, written as an ImageJ plugin, for 

accurately and efficiently finding polonies and measuring their intensities across 

multiple images.  The measured intensity data and other quality control 

information about each polony can be saved in a comma delimited file for post 

data acquisition processing.  The software is open source and can easily be used 

or adapted for use in other methods that employ polony technology. 
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Chapter 4: Polony OFRG 

4.1 Introduction 

Microbes often exist in complex and dynamic communities that can have 

profound effects on the environments or hosts in which they live.  A better 

understanding of these interactions and the impacts microbes have on their hosts 

is needed and can begin by an assessment of which microbes are present.  An 

better understanding of these interactions can be made possible by frequent 

sampling, such that the changes in population levels themselves can be 

scrutinized for clues regarding the interplay between microbe and host. 

Many methods currently exist to study microbial communities.  These 

methods range from inexpensive, coarse-grained tools such as culturing, to 

methods that detect various characteristic differences in microbial rRNA genes 

such as denaturing gradient gel electrophoresis (DGGE) (Muyzer 1999) and 

terminal restriction fragment length polymorphism (T-RFLP) (Schütte et al. 2008), 

to the significantly more expensive and more accurate “gold-standard” of 

sequencing near full-length rRNA genes (Frank et al. 2007).  Recently, strategies 

for using high-throughput sequencing machines for microbial community analysis 

have been developed as well (Wu et al. 2010)(Caporaso, Lauber, et al. 2010). 

The coarse-grained methods are useful for examining large changes in 

microbial communities but the low resolution is inadequate for many studies.  

Sequencing near full-length 16S rRNA genes provides the highest available 

taxonomic resolution when an accurate “snapshot” of a microbial community is 
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required.  However, though costs are dropping, multi-sample longitudinal studies 

that employ full-length sequencing are often still too expensive for many labs.  

High-throughput sequencing currently provides the best compromise between 

accuracy and throughput but due to the short read-lengths these are still limited 

in describing the taxonomic makeup of a microbial community.  Currently, 

taxonomic assignments can be confidently made only at the order level; 

assignments at the genus level can also be made but with less confidence. (Wu 

et al. 2010)(Caporaso, Lauber, et al. 2010).  Single molecule sequencing offers 

perhaps the most promising eventual solution to microbial community analysis 

but the read lengths of this technology are still too short currently. 

The focus of this research is on improving an alternative method for 

detecting changes in microbial communities termed oligonucleotide fingerprinting 

of ribosomal rRNA genes (OFRG) (Valinsky, G. Della Vedova, T. Jiang, et al. 

2002).  OFRG may be useful for multi-sample studies requiring low cost and high 

taxonomic resolution.  In addition, the new OFRG method that this research 

focuses on has two important advantages over current sequencing methods.  

First, the pre-sequencing PCR step known to bias results is skipped (Suzuki and 

Giovannoni 1996).  Second, near full-length rRNA genes are available for 

sequencing, when desired.  The former allows for a truer depiction of the 

microbes present and the latter provides a way to more confidently assess the 

identity of any microbe or group of microbes present in a sample. 
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To estimate the proportions of microbial species present in an 

environment the OFRG method uses a set of 40 computer-designed DNA probes 

chosen from a set of training sequences and hybridizes them against an array of 

sample-derived microbial rRNA gene clones.  The hybridization affinity of each 

probe/clone combination is quantified and then processed in one of two ways. 

Traditionally these data are transformed into a 40-digit binary “fingerprint” for 

each clone, where a 0 denotes no hybridization and a 1 denotes a successful 

hybridization event.  These fingerprints are then clustered based on their 

similarity to the fingerprints of other clones in the array.  Alternatively, hierarchical 

clustering can be performed on the data without a binary transformation of the 

hybridization intensities.  These clusters provide a low-cost estimate of the 

relative proportions of the various microbial taxa present in an environment since 

similar fingerprints arise from similar rRNA genes. 

OFRG originally employed a printed macroarray format.  In a labor 

intensive procedure, the DNA for each spot on the array was printed from the 

PCR products of a clone library of microbial rRNA genes originating from 

environmental samples.  The capacity of the method was 9,600 clones per 

experiment and has been used successfully in several studies (E. Bent et al. 

2006)(Lee et al. 2008)(McGuire et al. 2010).  The new OFRG method will replace 

the labor-intensive macroarray with a low-cost microarray, termed a “polony” 

microarray, with a current capacity of 1K-5K clones per sample and a theoretical 

capacity of perhaps millions. 
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Polonies, or “polymerase colonies,” are analogous to and replace the 

spots of the macroarray.  Rather than being printed, each polony is grown in 

place; each polony consists of many thousands of localized copies of an 

individual DNA molecule generated through solid-phase PCR in a polyacrylamide 

hydrogel.  Because diffusion of the PCR amplicons is inhibited somewhat by the 

gel the process results in spots of DNA molecules – the polonies – randomly 

placed in the gel, one for each original DNA molecule. 

Polony technology has been employed in several applications such as 

DNA sequencing, SNP detection, gene expression studies, genotyping, 

haplotyping and alternative pre-mRNA splicing (Shendure et al. 2005)(Butz et al. 

2004)(Rieger et al. 2007)(Robi D Mitra et al. 2003)(Zhang et al. 2006)(Jun Zhu et 

al. 2003).  There are several important characteristics of a polony microarray that 

also make it a useful tool for OFRG.  These are, 1) polony DNA is anchored to 

the gel and can be made single-stranded, making it durable and available for 

probe hybridizations, 2) sample microbial DNA can be spatially isolated, thus 

eliminating the formation of chimeric amplicons during PCR and 3) microbial 

genomic DNA can be used directly, without an intermediate PCR step, thus 

reducing PCR bias of the true makeup of a microbial community. 

Despite these advantageous characteristics, however, polony technology 

is not without its challenges.  The most difficult of these challenges is the random 

placement of polonies in the hydrogel microarray.  As a consequence, some 

polonies overlap with other polonies to varying degrees.  Another challenge is 
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that polonies vary in diameter and can contain different amounts of DNA.  These 

characteristics make detection and/or quantification of polony intensities difficult, 

and most existing microarray software is unable to properly handle these issues 

as they are designed for ordered arrays.  Lastly, the OFRG paradigm of an 

“inverted” array (where the spots are sample-DNA and a small set of probes are 

sequentially hybridized to the array) necessitates that the probes be carefully 

selected in order to maximize the information gleaned from them.   

This work presents the polony OFRG method with several experiments 

that show its ability to distinguish a range of bacterial communities.  

4.2 Methods 

Probes.  Probes were designed computationally using the Maximum 

Fidelity Probe Set algorithm developed as part of this work and were purchased 

from Exicon, Woburn, MA.  To increase annealing temperatures of the short (10-

mer) probes we added three Locked Nucleic AcidTM nucleotides on the 5’ ends.  

Two spacers and a fluorophore were also added at the 5’ ends. Fluorophores 

were either TYETM 563 or TYETM 665. 

Polony slides.  Polony slides are created by adding a sample of DNA to an 

acrylamide gel mixture, casting the mixture onto a microscope slide and then 

performing solid-phase PCR on the cured gel. 

Bind Silane.  Teflon-coated slides (Thermo Fisher, Waltham, MA) were 

cleaned by submersing them in 2M HCL for 2 hours with gentle stirring then 

triple-rinsing in DI H2O.  The slides were then treated with Bind Silane (GE 
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Healthcare Biosciences, Pittsburgh, PA) by submersing them in a treating 

solution (193mL EtOH, 6mL DI H2O, 600ul glacial acetic acid, 500ul Bind Silane) 

overnight.  Slides were washed 2x in 100% EtOH, allowed to air dry and stored in 

a desiccator.  

Template.  For the artificial community experiment, ten clones of 16S 

rDNA genes, each from different phyla, were selected from a clone library.  

Phylum designations were determined using Ribosomal Database Project’s 

Naïve Bayesian Classifier (Qiong Wang et al. 2007) with the full sequences of 

each clone.   Plasmids from broth cultures of these clones were extracted with a 

Miniprep Kit (Qiagen Sciences, Germantown, MD).  Their concentrations were 

determined with a NanoDrop spectrophotometer, mixed in equimolar amounts 

and diluted. 

Using the mixture of plasmids as template, the the 35 cycle template was 

prepared by PCR (94C for 2 min; 35 cycles of 94C 20 s, 50C 30 s, 72C 60 s; 72C 

4 min) using M13 forward and reverse primers in 10ul reactions x 4 replicates.  

Replicates were pooled and gel purified using a Gel Extraction Kit (Qiagen, 

Sciences) without the use of ethidium bromide staining or UV light.  Polonies 

were made with either the 0-cycle plasmid DNA or the purified 35-cycle DNA. 

For the multi-environment experiment, three human gut samples (CD, UC 

and healthy) and one ocean sample were selected.  Genomic DNA was 

extracted with a FastDNA Spin kit (MP Biomedicals, Solon, OH) following 

manufacturer’s protocol and a Fast Prep instrument setting of 5.5 for 30 s.  
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Pacific Ocean water (one gallon, collected at lat.  33.193104, long. -117.386267, 

in Oceanside, CA), was first passed through a 0.22um filter (Millipore Co., 

Billerica, MA). The filter membrane was removed, air-dried and cut into small 

pieces with a clean razor blade. One fourth of the membrane was placed in the 

Fast Prep tube for DNA extraction.  The DNA was gel purified with the same 

technique used for the 35 cycle template described above.  Polonies were made 

using these genomic DNA as template. 

Primers.  To increase the efficiency of solid-phase PCR on full-length 

bacterial 16S sequences we used a modified 27F primer, adding an M13R 

sequence to the 5’ end 

(ACAGGAAACAGCTATGACCATGAGRRTTTGATYHTGGYTCAG).  The reverse 

primer is the universal bacterial primer 1492R but with an acrydite moiety at the 

5’ end that covalently attaches to the acrylamide gel during polymerization 

([5Acrd]GBTACCTTGTTACGACTT). 

ABD mix.  A stock of ABD mix was made with 450ul of 40% Acrylamide, 

50ul of Bis:Acrylamide and 10mg of DATD. 

Acrylamide Gels.  The acrylamide gels are prepared first then a PCR 

master mix is applied to the cured gel for thermocycling.  Eighteen microliters of 

gel mixture (2uM reverse acrydite primer, 20% ABD mix, 2mg/mL BSA, 0.1% 

TEMED, 0.1% APS) plus template were placed on a coverglass (Fisherbrand 12-

543-A, 22x40-2) and a 17x40mm, single-well Teflon-coated slide (Thermo Fisher, 

Waltham, MA) was carefully brought upside down to the droplet until capillary 



66 
 

action pulled the coverglass off the bench and onto the slide; this helps prevent 

the formation of bubbles in the gel.  The slides were allowed to polymerize for 45 

minutes at RT.  Coverglasses were removed and the slides were washed in H2O 

for 15 minutes to remove unbound acrylamide.  The gels were dried in air 

completely before adding 45ul of PCR master mix. 

PCR master mix (50mM Tris (pH 8.3), 2.5mM MgCl2, 250uM each dNTP, 

400nM of forward primer and 0.24U/ul ThermoSequenase DNA polymerase 

(USB Corp. Cleavland, OH) and 2mg/mL BSA) was spread onto the gel and 

allowed to soak in for at least 2 minutes.  A 20x35mm coverglass was carefully 

lowered onto the mix to allow bubbles to escape. A 22x40mm Secure Seal 

hybridization chamber (SA-500, Grace Bio Labs, Bend, OR) was affixed over the 

coverglass and filled with mineral oil to prevent evaporation.  The slides were 

cycled in a PTC-100 thermocycler (Biorad Laboratories, Hercules, CA) as 

follows: 94C for 2 min; 8 cycles of 95C 10 s, 48C 30 s, 72C 4 min; 62 cycles of 

94C 20 s, 60C 30 s, 72C 2 min; 72C 5 min. 

Post PCR.  Slides were placed in a glass hexane-filled Copeland jar for 

~10 minutes to loosen the chambers and dissolve the mineral oil.  The slides 

were separated from the chambers and placed in another Copeland jar with fresh 

hexane for a few moments to remove residual mineral oil.  The coverglasses 

were then removed and four slides each were placed into a LockMailerTM 

Microscope Slide Jar (Electron Microscopy Sciences, Hatfield PA) for 

subsequent processing. 
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Stripping unbound DNA strands.  Seven mL of 70% formamide solution 

were added to each mailer tube and the tubes were placed in a water bath at 

75C for 15 minutes to strip the free DNA strands away from the acrydite 

anchored strands.  To cool the solution the tubes were placed in RT H2O for 5 

minutes.  The formamide solution was removed and replaced with DI H2O then 

gently shaken for 3 min.  This was repeated two more times to remove residual 

formamide. 

Hybridizations.  For each hybridization, two fluorescently labeled 10-mer 

probes were added to a hybridization solution (6x SSPE) at a final concentration 

of 10nM and 7mL of the solution was added to each mailer tube containing four 

slides.  The tubes were placed in an 87C waterbath for 4 minutes for a short 

denature step then transferred to a RT waterbath for 30 minutes. 

Washes.   Hybridization solution was replaced with 3x SSC and the tubes 

were gently shaken for 5 to 30 minutes, depending on which probes were being 

hybridized.  At the end of the wash time the tubes were immediately placed on 

ice to inhibit further washing during transport to the scanner. 

Scanning.  Slides were scanned with a GenePix 4000b Microarray 

Scanner (Molecular Devices, Sunnyvale, CA) using both the 635nm and 532nm 

wavelengths at 100% power.  The gain settings for each laser were adjusted for 

each probe-pair to achieve the maximum brightness possible without saturation 

of the polonies.  All subsequent slides in an experiment were scanned at the 
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same optimized gain setting.  Each scan for each probe was saved as a 2969 x 

4400 pixel image in 16-bit tiff format. 

Removing probes.  The 3x SSC solution was replaced with DI H2O and 

the tubes were placed in a 65C waterbath for 7 minutes.  The slides were then 

either hybridized with the next set of probes or stored overnight in Wash 1E at 

4C. 

Data acquisition and processing.  Raw intensities for each polony and 

hybridization were measured using ImageJ (National Center for Biotechnology 

Information, Bethesda, MD) and the PolonyFinder plugin.  The intensities were 

processed using a script written in the R programming language.  The raw data 

for each polony was kept as a vector of 42 values, one value for each of the 42 

probes, and was processed as follows. All intensities were background 

subtracted.  To adjust for polony size the values were converted into a 

percentage of the total intensity measured for all probes for each polony.  A 

distance matrix was created between all polonies from all slides in the 

experiment using a Euclidian distance metric and then hierarchical clustering was 

performed to create a dendrogram (not shown). 

To better visualize 0-cycle and 35-cycle data, the distance matrix was 

converted to two separate 2D plots using R’s “cmdscale” function. This function 

attempts to make the distances between points on the plot as close as possible 

to the distances found in the distance matrix from which it was made.  Note that a 

single distance matrix was made with combined data (three replicates per 
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treatment); the two scatter plots (0-cycle and 35-cycle) were plotted separately 

but were taken from this combined data. 

The four environmental samples with replicates were compared using a 

community-level comparison method.  UPGMA trees with jackknife support were 

created where each leaf in a tree represents a whole bacterial community/polony 

microarray.  Distances between bacterial communities were calculated using the 

Weighted UniFrac beta diversity metric (C. A. Lozupone et al. 2007) via Chiime 

(Caporaso, Kuczynski, et al. 2010).   

Chiime is a processing pipeline made for sequence data.  In order to use it 

with polony intensity data it was necessary to start “in the middle” of the pipeline.  

At the point of entry, Chiime requires two input files: an OTU table designating 

the OTUs and the OTU membership counts from each environment, and a 

Newick-formatted tree file containing the distances between those OTUs.  R 

scripts were written to create these two files from the dendrogram and polony 

hybridization vectors.  A Euclidean distance matrix of the polony intensity vector 

averages from each cluster was created and the Newick-formatted tree file was 

created from it using the “ctc” package in R (Lucas and Gautier 2005). 

Rather than compare the environmental samples from clusters formed at a 

single dendrogram “cut level,” three pairs of OTU tables and trees were created 

from the full dendrogram, creating subtrees having 10, 100 and 200 clusters.  

Weighted UniFrac analyses of the different environments were performed using 

the OTU tables and trees at these cut levels. 



70 
 

Polony sequences were obtained as follows.  Starting with a probe-free 

microarray, the gel was placed in DI H2O for 3 minutes to remove buffer salts. 

The array was then removed and gently shaken to remove excess water.  200ul 

of 1x Sybr Gold was placed on the gel for 5 minutes to stain the DNA.  The slide 

was rinsed and placed in clean DI H2O. Individual polonies were manually 

excised from a moist gel under UV illumination and magnification using a Leica 

MZ FLII stereo microscope (Leica Microsystems, Heerbrugg, Switzerland) with a 

no. 15 stainless steel needle (Minucie Sphinx, Czech Republic) held by a pair of 

clamping forceps.  The needle and gel fragment containing the polony was 

placed into 6ul of DNA elution buffer (10mM Tris-HCl pH 8.3, 50mM KCl, 1.5mM 

MgCl2, 0.1% Triton-X-100) in a 200ul microcentrifuge tube, heated for 60 

minutes at 95C (Sanguinetti, Dias Neto, and Simpson 1994) and subjected to 

thermocycling (94C 2min, 35 cycles of 94C 20s, 50C 30s, 72C 60s, then 72C 

5min) using universal bacterial primers modified for the USER vector (Invitrogen) 

27F (GGAGACAUAGRRTTTGATYHTGGYTCAG) and 1392R 

(GGGAAAGUACGGGCGGTGTGTRC), and sequenced. 

4.3 Results and Discussion 

To see if polony OFRG could differentiate the clones of a known bacterial 

community, and to see if any affect from 35 cycles of PCR on the same 

community could be detected (versus 0 cycles of PCR), we constructed an 

artificial bacterial community using clone library plasmids having inserts from 10 
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different bacterial phylotypes and used this as our 0-cycle template.  Our 35-

cycle template was the 35-cycle PCR products of the 0-cycle template. 

The polony counts for each replicate microarray in the artificial bacterial 

community are shown in Table 4.1.  A dendrogram containing this data was 

constructed but was too large for display.  For easier visualization the same data 

is displayed as two scatter plots in Figure 4.1.  Figure 4.1A, showing polonies 

made from plasmid DNA (0-cycles of PCR) clearly show the ten bacterial 

phylotypes as ten relatively tight clusters of points, with some overlap seen in 

clusters near the center.  In Figure 4.1B, showing polonies made from the 35-

cycle PCR products of the same plasmid DNA used in Figure 4.1A, one can see 

a similar pattern of clustering, yet the groups are much more diffuse than in 

Figure 4.1A.  The clusters near the center are essentially merged and a new 

cluster appears to have formed in the lower-left quadrant (see arrow in Figure 

4.1B). 

There are several possible explanations for this pattern but they all likely 

involve a change to the DNA relative to their plasmid originals.  PCR artifacts are 

known to occur in mixed-template reactions.  One of those artifacts is the 

formation of chimeric sequences, where a partially duplicated amplicon from one 

 Artificial Community  Multi -Environment  
Replicate  0-Cycle  35-Cycles  Ocean CD UC HC 

1 1771 2050 1502 4051 1727 2428 
2 2054 2287 1049 4685 1595 2239 
3 1219 2419 1052 4457 1959 2174 

Total 5044 6756 3603 13193 5281 6841 
Table 4.1 . Polony counts for each microarray in our artificial community (10-clone) and multi-environment 
samples. 
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Figure 4.1 . Two dimensional scatter plots of the (A) 0-cycle and (B) 35-cycle templates. Polonies made 
from 35-PCR cycle templates form much more diffuse groupings as their genomic template counterparts do 
in A, indicating changes to the DNA have been introduced. An apparently new group in B (see arrow) 
suggests a certain error is occurring with some regularity under the PCR conditions used. 

species is fully extended from the template of one or more different species 

(Suzuki and Giovannoni 1996)(Lahr and Katz 2009b).  If this occurred in the 35-

cycle templates the hybridization patterns from them would also be chimeric.  

Another source of DNA change is the errors introduced by the polymerase itself 

during the 35 cycles of PCR.  In this case, a polony arising from a mutated 

amplicon would have the same mutations or more, potentially causing one or 

more probes to hybridize differently than the original DNA would have.  Whatever 

artifacts may have occurred in the 35-cycle templates, the new cluster in Figure 

4.1B (see arrow) may indicate a certain type has occurred with some regularity. 

Though the ten bacteria are from ten different phyla and they cluster into 

ten readily distinguishable groups (Figure 4.1A), a few of those groups are rather 

close together.  It is not known how close two species in the same genus would 

cluster using polony OFRG.  We do know from past experiments using the 9600-

clone macroarray version of OFRG that clones with the same 40-digit binary 
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fingerprint have 97% or more sequence similar to each other (E. Bent et al. 

2006).  We also know similar species have similar computationally predicted 

(binary) fingerprints, though about 20% of the time they are identical, suggesting 

polony OFRG will not be able to distinguish some sequences at the species level 

(though it is able to distinguish above 98% at the genus level). 

 
Figure 4.2 . Hybridization data provides more than binary information. Each of the three colors represents 
the transformed and sorted hybridization intensities of a different probe to the same polony microarray, 
revealing multiple levels of hybridization affinity exist and can be detected. This additional information may 
allow a higher taxonomic resolution than predicted in the probe design phase, which was based on binary 
classification of hybridization intensities. 

However, actual hybridization behavior is not always as predicted, and 

there is reason to believe that the real, more complex behavior, can lead to 

higher resolution. The reason for such optimism is due to the fact that although 

each probe was designed to provide only one bit of information about a strand of 
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DNA (1 or 0), indicating whether the probe can bind perfectly or not – it often 

provides more information, and it may be possible to leverage that information 

into higher resolution.  Specifically, partial match hybridization events may be 

detectable.  Figure 4.2 shows sorted hybridization values for three different 

probes on the same polony microarray.  It is readily apparent from the figure that 

hybridization data contains intermediate values between a perfect match and a 

non-perfect match (i.e., where at least one base is a mismatch). This additional 

information may contribute to a higher resolution than predicted during the probe 

design phase. 

The polony counts for each replicate slide in the multi-environment 

experiment are shown in Table 4.1.  We tested the ability of polony OFRG to 

differentiate bacterial communities in different environments using a Weighted 

UniFrac analysis.  Because in this experiment the true number of bacterial OTUs 

is unknown we performed the analysis using several cutoff levels to give differing 

numbers of clusters.  Figures 4.3A-C show the results for 10, 100 and 200 

clusters, respectively.  We also included one of the 10-clone, 0-PCR cycle 

replicates in the data for comparison (topmost leaf in all trees). One can see in all 

three figures that the replicate polony microarrays cluster together much more 

closely than the different microbial communities themselves, indicating a degree 

of consistency can be achieved with the method.  Many more optimizations could 

be done, such as automating the hybridization and scanning steps, which would 

lead to even better repeatability and with less noise. 
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Figure 4.3 . UPGMA UniFrac clustering with jackknife 
support comparing the similarity of several bacterial 
communities. Red branches indicate 75-100% 
jackknife support. Yellow indicates 50-75% support. 
Bacterial DNA used in the 13 microarrays that make 
up the trees came from five sources: Ocean water, 
Crohn’s patient (CD), Ulcerative Colitis patient (UC), 
healthy patient (HC) and one artificial community of 10 
bacterial phylotypes (10_clone). Microarray replicate 
numbers are indicated after label abbreviations. Each 
tree shown is a UPGMA tree of a Weighted UniFrac 
beta diversity distance matrix of the communities at 
three different levels of clustering. A) Polonies from all 
communities were grouped into only 10 large clusters. 
B) Polonies were grouped into 100 clusters. C) 
Polonies were grouped into 200 clusters. Grouping 
polonies was accomplished by selecting an 
appropriate “cut level” on a dendrogram, which was 
itself made from a Euclidean distance matrix of all 
polonies. Community level distance increases (see 
bars in lower left corners) with increasing clusters and 
their orders shift but replicate microarrays stay 
together, implying a higher degree of similarity. The 
distance between the 10-clone community and the 
others increases fastest, reflecting its simple structure 
in relation to the more complex natural communities. 
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It is interesting to observe that the artificial community (10-clone) not only 

clusters separately in every case (using 10, 100 and 200 clusters) but that its 

distance from other communities increases more than the natural communities 

do from themselves at higher cluster numbers.  This is likely due to the fact that 

the simple artificial community does not contain 100 or 200 OTUs.  The data 

does not distribute naturally into more than 10 clusters and many OTUs remain 

empty when dividing the data into so many clusters.  The Weighted UniFrac 

metric detects this and reports it as a greater increase in community distance 

than is occurring with the natural, more complex communities. 

We attempted to sequence five polonies from two clusters by excising the 

polonies from the gel and performing PCR, ligation, etc., as described in the 

methods section.  Only two polonies out of the five (from different clusters) 

showed a strong gel band after PCR, which reduced our confidence in the 

sequencing results of the others.  However, in Figure 4.4, using the polony 

sequences of the two strong bands, we predicted probe binding affinities and 

aligned them with tiled pictures of the group of polonies that were sequenced.  

The predicted binding is in good agreement with the polony intensities we 

observe.  However, differences between what one might expect and what 

actually occurs can be seen.  The differences, such as strong binding when 2 or 

more mismatches occur between probe and polony DNA, are likely due to the 

type and location of the mismatches; if either mismatch occurs near the middle of 
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the probe or on one of the LNA bases at the 5’ end it will destabilize the duplex 

more than if both occur near the 3’ end. 

 
Figure 4.4 . Predicted binding of differential probes versus observed binding. Images of eight polonies (rows) 
across 40 hybridizations (columns) are shown. The top panel shows four polonies from cluster 8 and the 
bottom panel shows four polonies from cluster 52. DNA sequences were obtained from the polonies in rows 
2 and 7 and were used to predict three types of binding behavior. A ‘0’ means zero mismatches exists 
between probe and polony DNA (strong binding). A ‘1’ likewise indicates a one base mismatch (weak 
binding) and a ‘2’ indicates two (or more) mismatches (very weak binding). 

Although we are making a crude prediction about probe binding behavior 

here, it is important to note that our clustering method is not dependent on 

predicted behavior.  Rather, clustering is based on observed intensities.  We 

included other polonies in the figure that are members of the same clusters as 

the sequenced polonies for an example of how our clustering method groups 

polonies with similar hybridization patterns.  In general, other clusters have 

polonies with highly similar patterns as well, though there are exceptions and 

more work could be done to improve the method. 

The cost of producing 50 polony microarrays is currently about $4400.  An 

Illumina run with 50 libraries costs approximately $16,800.  The number of 

Illumina reads per library in this scenario would be about 2 million, vastly 

outnumbering the 5000 polonies per array.  Most of the polony OFRG costs are 
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for labor for hybridizing and scanning the arrays, however.  If these steps could 

be automated, as the sequencing/scanning cycles for Illumina and other 

platforms are, the costs per array could drop dramatically; using three or four 

colored fluors could also decrease costs. Another way to increase throughput 

and lower cost is to increase the density of polonies.  Polony diameters can be 

made smaller to allow for an estimated 5 million polonies per array (R D Mitra 

and G M Church 1999).  Eliminating overlaps would allow even higher densities. 

Polony OFRG is a new technology, and although we compare it to 

sequencing technologies in several ways we do not claim it is superior for most 

applications.  Rather, the main advantages of polony OFRG – reducing PCR bias 

in mixed template reactions and having access to full-length 16S rDNA gene 

sequences – are only so for specialized applications. 
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Chapter 5: Conclusion 

Microbes are present in nearly all terrestrial environments and play varied 

and complex roles.  Understanding these roles – the interactions and impacts on 

the environments and hosts where they reside – requires gathering data on many 

levels.  Some of the most basic facts required are to know which microbes are 

present and in what number.  To the degree such information can be obtained 

accurately and inexpensively, the more varied and more thorough such studies 

can be performed.  Finding patterns in microbe population levels can provide a 

basis from which to make a rational hypothesis regarding which microbes might 

be involved in a certain functional parameter of interest, such as inflammation 

level or cancer progression.  Such hypotheses can form a starting point for more 

detailed analyses of the effect a particular microbe or microbes may be playing, 

helping to tease apart the myriad interactions between the microbial world and 

their environments. 

Current high-throughput sequencing technologies are a vital tool in this 

endeavor, and are able to provide vast amounts of important information about 

the structure and function of microbial communities.  Yet, their ability to 

accurately survey microbial communities may be negatively affected by the 

phenomenon of PCR bias, and their short read-lengths make species-level 

identification nearly impossible.  Thus, for studies where such information is 

required, high-throughput sequencing has limited value.  The “gold standard” 
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alternative – Sanger sequencing thousands of full-length clones – is still 

prohibitively expensive in many instances. 

To address these issues we have improved the accuracy and throughput 

of OFRG using polony technology. The new probe set design method for OFRG 

incorporates available taxonomic information of the training sequences.  It 

attempts to generate a set of 40 probes that, when sequentially hybridized to the 

small subunit rRNA genes of a polony, create a pattern of hybridization 

intensities that is unique for each species.  These 40-digit hybridization 

“fingerprints” are clustered based on their similarity to other fingerprints and 

tentatively represent real microbial taxonomic groups.  After data analysis is 

complete, the near full-length DNA sequence of any clusters deemed worthy of 

further investigation can be determined by retrieving and sequencing one or 

more polonies in a cluster.  It may also be possible to develop a database of 

hybridization fingerprints and sequence information that allows tentative but rapid 

identification of the microbes in a microbial community prior to sequencing. 

The ease of polony microarray construction is both an advantage and 

disadvantage.  They are inexpensive mainly because the DNA is spread 

randomly on the microarray, which negates the need for expensive equipment 

that would be necessary to place them in ordered grids.  Unfortunately, the 

random placement of DNA molecules results in randomly placed polonies, which 

greatly complicated the task of measuring their intensities.  No software package 

existed that satisfactorily met the unique challenges polony OFRG images 
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presented.  The software we developed to handle the task uses a simple yet 

effective strategy to identify true polony locations, overlapping polonies and 

suitable background measurement areas for each polony. The simple strategy of 

using local maximum pixel intensities to identify polony centers is extremely fast.  

It is also accurate when it leverages the additional information about polony 

locations provided in the 42 unique probe hybridization images of a polony 

OFRG microarray to choose the most probable location.  Written as an ImageJ 

plugin and an R script for post-measurement processing, the software is open-

source and can be used by anyone or modified for related applications if desired. 

Polony OFRG replaces the previous OFRG method that used a 9600 

clone macroarray.  Whereas previously it was necessary to allocate the 9600 

clones equally among all the samples being tested, each polony OFRG 

microarray contains the DNA of one and only one sample; a new microarray is 

made for each sample.  Thus, the number of clones analyzed is independent of 

the number of samples and total throughput is flexible.  We expect the number of 

clones per polony microarray can be easily raised to 10K or more with very little 

optimization.  We may reach densities up to 50K per array with our current 

microarray scanner by shrinking the maximum polony sizes to 50um from a 

current 120um. 

There are a several ways to improve polony OFRG.  Hybridization 

conditions can be individually optimized to reduce background and increase 

signal intensities.  New data normalization methods can be developed that use 
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an artificial polony control construct that has sequences that perfectly match to all 

probes.  As mentioned earlier, a hybridization fingerprint database can be 

constructed that connects fingerprints to sequence information.  This information 

would grow over time as more and more polonies are sequenced.  The probe 

design pipeline could be improved by incorporating the knowledge gained about 

mismatch behavior, leading to development of a probe set specifically designed 

to leverage this information into higher taxonomic resolution. 

Polony OFRG is a new technology with strengths and weaknesses.  

Although we compare it to sequencing technologies in several ways we do not 

claim it is superior for most applications.  As a hybridization-based method it 

suffers from the inherent difficulties associated with these strategies, such as 

optimizing the hybridization conditions and normalizing data from one array to the 

next.  Unlike sequencing, the raw hybridization data produced by OFRG is not 

quantitative.  Nevertheless, the main strengths of polony OFRG – reducing PCR 

bias in mixed template reactions and allowing access to near full-length 16S 

rDNA gene sequences – are currently unavailable with other tools used for 

microbial community analysis.  Polony OFRG may be a useful tool in studies 

where these capabilities are needed. 

 




