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Dissecting the treatment-naïve ecosystem of human melanoma 
brain metastasis

A full list of authors and affiliations appears at the end of the article.

SUMMARY

Melanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma, yet 

our understanding of the underlying salient biology is rudimentary. Here, we performed single-

cell/nucleus RNA-seq in 22 treatment-naïve MBM and 10 extracranial melanoma metastases 

(ECM), and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer 

cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and 

enriched for spatially variably expressed metabolic pathways. Key observations were validated 

in independent patient cohorts, patient-derived MBM/ECM xenograft models, RNA/ATAC-seq, 

proteomics, and multiplexed imaging. Integrated spatial analyses revealed distinct geography of 

putative cancer immune evasion, and evidence for more abundant intra-tumoral B to plasma 

cell differentiation in lymphoid aggregates in MBM. MBM harbored larger fractions of monocyte-

derived macrophages and dysfunctional TOX+CD8+ T cells with distinct expression of immune 

checkpoints. This work provides comprehensive insights into MBM biology and serves as a 

foundational resource for further discovery and therapeutic exploration.
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“In Brief”:

Multi-modal single-cell analysis reveals genomic, transcriptional, and tumor-microenvironmental 

features of treatment-naïve human melanoma brain metastases compared to extracranial 

metastases.

INTRODUCTION

Melanoma brain metastases (MBM) are the third most common cause of brain metastases 

after carcinomas of the lung and breast (Eichler et al., 2011) and lead to significant 

morbidity and mortality (Davies et al., 2011). While treatment with combination immune 

checkpoint blockade can be effective in patients with MBM (Tawbi et al., 2018), many 

patients do not respond, and MBM frequently develop or evolve in situations where 

extracranial disease is controlled, thus posing a particular therapeutic challenge (Brastianos 

et al., 2013). Prior genomic profiling studies identified divergent somatic mutations (and 

putative drivers) in brain metastasis across carcinomas (Brastianos et al., 2015), but not 

in MBM (Fischer et al., 2019). This suggests that other genomic, phenotypic or tumor-

microenvironmental features play a role in MBM (Fischer et al., 2019; Fukumura et al., 

2021), yet a precise understanding of the cellular composition, as well as molecular and 

spatial underpinnings of the MBM ecosystem remains rudimentary.

Single-cell RNA-sequencing (scRNA-seq) has provided important biological insights in 

multiple cancer types, including metastatic melanoma, revealing cell states associated with 
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resistance to targeted/immune-therapies (Jerby-Arnon et al., 2018; Tirosh et al., 2016). To 

date, scRNA-seq studies (including a study of brain metastasis (Gonzalez et al., 2022)) have 

been conducted on fresh tissue specimens, the use of which poses significant practical 

challenges, and frequently result in inclusion of patients with variable prior treatment 

exposures, thus, making it challenging to discern underlying biology from potential therapy 

effects.

Here, we built a multi-omic single-cell atlas of treatment-naïve MBM and extracranial 

melanoma metastases (ECM). Integrated analyses of this atlas coupled with validation in 

pre-clinical models and additional patient cohorts identified genomic, adaptive and tumor-

microenvironmental features enriched in MBM ecosystems. This study offers important 

insights into salient MBM biology, identifies putative targets for therapeutic modulation, and 

a rich reference for the brain metastasis research community.

RESULTS

Building a single-cell atlas from small archival specimens

We performed single-cell(sc)/nuclei(sn) transcriptome profiling of 22 treatment-naïve MBM 

(from 21 patients) and 10 ECM (Figure 1A, Table S1), totaling 114,455 cell transcriptomes 

(Methods), 7,575 matched T cell clonotypes from five patients and spatial transcriptomics 

using SlideSeqV2 (Stickels et al., 2021) of 16 matched specimens (Table S1). Performing 

high-quality snRNA-seq from very small frozen tissue specimens, which approximates 

routinely collected clinical biopsy specimens (~1–10 μg) (Methods), enabled access to 

tissue banks, including specimens collected more than 15 years ago, and permitted profiling 

on well-curated patient cohorts (Slyper et al., 2020; Wang et al., 2022). To determine 

whether comparable technical and biological outputs can be gleaned, we split a metastatic 

lesion (MBM05) immediately following resection for scRNA-seq (MBM05_sc), and snap-

froze the other half, on which we performed snRNA-seq (MBM05_sn) approximately 12 

months later. This comparison yielded several important insights: at approximately the 

same sequencing saturation and following streamlined quality control filters (Methods), 

the median number of genes detected per cell was 2,137 in MBM05_sc and 2,504 in 

MBM05_sn and remained comparable within the CD45+ and CD45− compartments (3,817 

and 1,698 in MBM05_sc and 3,551 and 1,457 in MBM05_sn, respectively) (Figures 

S1A and S1B). We evaluated the expression levels of general “stress” signatures and 

a recent microglia specific stress signature (Table S1) that are artifactually introduced 

during fresh tissue processing (Li et al., 2019; Marsh et al., 2022), and found these 

more strongly expressed in MBM05_sc compared to MBM05_sn (Wilcoxon rank-sum 

test; p<2.2e-16) (Figures 1B and S1C). Nonetheless, following batch correction (Butler et 

al., 2018), transcriptomes of MBM05_sc and MBM05_sn samples clustered by respective 

cell types in Uniform Manifold Approximation and Projection (UMAP) embedding rather 

than by method (Figures 1C and 1D), indicating that data from these two modalities 

yield comparable global biological outputs and recovery of major cell types. Finally, 

we inferred copy-number alterations (CNAs) from single-cell transcriptomes (Tirosh et 

al., 2016) (Methods) and find that the canonical CNAs (e.g. Chr. 7 amplification) were 

detected MBM05_sc and MBM05_sn (Figures 1E and S1D). Overall, this comparison 
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demonstrates that biological and inferred genomic insights can be gleaned from snRNA-seq 

data generated from minute frozen samples.

The cellular landscape of melanoma brain and extracranial metastases

To enable integrated analyses across samples, where possible, we used a standardized 

quality-control pipeline (Figure S1E; Methods) and tested the performance of different 

integration methods (Figure S1F; Methods). UMAP embedding and clustering of all 

transcriptomes yielded clusters determined by cell types and independent from profiling 

method, including transcriptomes from multiple individuals (Figures 2A-D and S2A-D). 

Malignant cells (cycling and non-cycling) (Figure 2E) were identified by CNA inference 

(Tirosh et al., 2016) (Figure 2F). We defined nine major cell types, including malignant 

(n=92,733 cells), myeloid (n=20,449), T and NK lymphocytes (n=18,650), B lymphocyte 

and plasma (n=3,695), low-quality (n=3,804), stromal (n=3,344), central nervous system 

(CNS) (n=1,708), endothelial (n=896), and epithelial cells (n=276) (Tables S1 and S2). 

Re-clustering of main clusters of non-malignant cells, identification of cluster markers, 

manual annotation, and cross-referencing with external signatures yielded cell type labels 

for sub-populations (Methods, Table S1). At the most granular level, we identified a total 

of 26 different cell types (or major cell states) (Figures S2A-H, Table S2). Important 

compositional differences included a higher fraction of “dysfunctional” CD8+ T cells and 

myeloid cells in MBM compared to ECM (see below) (Figures S2G and S2H).

MBM is associated with increased chromosomal instability

Among malignant cells, we find significant heterogeneity of underlying aneuploidy patterns 

described previously (Akbani et al., 2015) suggestive of underlying chromosomal instability 

(CIN) (Figure 2F). Analysis of whole-exome sequencing (WES) data (Methods) (Fischer 

et al., 2019), revealed that MBMWES (n=21) indeed show a significantly larger fraction 

of genome altered compared to ECMWES (n=23) (Figures 2G and S2I-J). Because CIN is 

a dynamic process (Bakhoum and Cantley, 2018), we sought to validate our observation 

in isogenic MBM and ECM cell culture models. Using WM239A-derived 131/4-5B1 cells 

(hereafter 5B1) and 113/6-4L cells, (hereafter 4L) (Cruz-Munoz et al., 2008); and 12-273 

BM and 12-273 LN (Kleffman et al., 2022; de Miera et al., 2012), which were extracted 

from two metastases in the same patient, we performed high-throughput microscopy and 

quantified the frequency of micronuclei, a commonly used measure for CIN (Bakhoum et 

al., 2018). In both matched pairs, MBM-derived cancer cells had a significantly higher rate 

of micronuclei compared to their respective ECM counterparts (Figure 2H). Importantly, 

in addition to increased migratory capacity of MBM-derived models in vitro (Figure 

2I), 5B1 (and additional patient-derived MBM models from our cohort) maintained their 

brain-metastatic organotropism following intracardiac injection in immunocompromised 

mice (Figure 2J), while 4L metastasized nearly exclusively to extracranial organs (Figures 

2K and 2L, Figure S2K-M). Together, our data suggest that CIN is not only associated 

with increased migratory capacity as previously described (Bakhoum et al., 2018), but 

preferentially with brain metastasis. While further work is necessary to elucidate underlying 

mechanisms, our results are consistent with a recent large-scale clinical genomic study 

(Nguyen et al., 2021), suggesting that CIN associates with brain metastasis in melanoma and 

lung cancer.
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A cancer cell signature enriched in MBM

We next determined whether tumor cells from treatment-naïve MBM differ from those from 

ECM in expression of the previously described AXL-high program, which is associated with 

increased invasiveness and drug resistance, and the MITF-high program, which is defined by 

expression of melanocyte-lineage markers including the master regulator MITF (Garraway 

et al., 2005; Tirosh et al., 2016). MBM scored more strongly for the MITF-high program, 

while ECM scored stronger for the AXL-high signature in ECM (Figures 3A-B) suggesting 

that the AXL-high program is not a defining feature of MBM.

To further explore site-specific differences, we performed differential gene expression 

(DGE) and found that cancer cells from MBM had significantly higher expression of 

several genes implicated in tumorigenesis and tumor maintenance (e.g. MET), as well 

as neural differentiation, morphogenesis, and adhesion (e.g., NRG3, NCAM1, NELL1, 

LRRC1, AKAP12 and CADPS2) (Figure 3C; Table S3), while ECM strongly expressed 

genes involved in epithelial-to-mesenchymal transition (EMT), including CTNNA2. Gene 

set enrichment analysis (Methods) revealed several pathways overrepresented in MBM, 

including oxidative phosphorylation (OxPhos), PI3K (Chen et al., 2014; Fischer et al., 2021; 

Fukumura et al., 2021), insulin, platelet-derived growth factor receptor beta (PDGFRB), 

ERBB, and KIT signaling, and genes involved in resistance to tyrosine kinase inhibitors 

(TKI), while ECM enriched for EMT, cell adhesion molecules, and MTORC1 signaling 

(Figure 3D; Table S3). Notably, there was significant heterogeneity in the expression of 

these pathways. For example, while OxPhos overall enriched in MBM, there was a broad 

distribution of cells within MBM samples, and we also detected cell populations in ECM 

with strong expression of OxPhos (Figures 3D and S3A). This heterogeneity also manifested 

on a gene level related to these pathways, when probing for recurrent drivers of variability 

across metastatic sites (Methods; Figures S3B-E). In another approach, we used network-

based inferences (VIPER) (Alvarez et al., 2016) to infer activity of proteins and transcription 

factors (TFs) based on the expression of their downstream regulons (Methods). VIPER 

revealed increased activity of MITF and RELB, a key mediator of the non-canonical NFkB 

pathway that is activated in CINhigh cancer cells (Bakhoum et al., 2018), in MBM (Figure 

3E; Table S3). The top differentially regulated proteins in ECM cells included CREB1; 

BACH1, a regulator of several genes involved in metabolism and metastasis (Kaur et al., 

2021); and SOX4, a key EMT TF (Cheng et al., 2017). Using an orthogonal method 

for TF activity inference (SCENIC) (Aibar et al., 2017) (Methods) revealed consistently 

top-enriched TFs, including MITF and RELB in MBM, and SOX4 in ECM (Figures S3F 

and S3G; Table S3).

Next, we asked whether the MBM cancer cell intrinsic signature identified in our single-

cell analysis was conserved in other human datasets. We scored an external cohort 

of MBM (n=88) and ECM (n=50) tumors profiled using bulk-RNA-seq (MBMbulk and 

ECMbulk, respectively) (Fischer et al., 2019) (Methods) and found that our MBM signature 

significantly enriched in MBMbulk compared to ECMbulk (Figure 3F).

Furthermore, using the 5B1 and 4L cell lines, we generated MBM and ECM in vivo, and 

performed RNA-seq of 17 metastases (Methods). Transcriptomes from MBM clustered 
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distinctly from ECM and scored significantly stronger for the single-cell-derived MBM 

signature (Figures 3G and S4A). Additionally, for two patients (MBM03 and MBM05) 

from our single-cell profiling cohort, we established cell lines and performed bulk RNA-seq 

which correlated strongly with our in-situ profiling (Spearman’s Rho of 0.83 and 0.80 

in MBM03_sc and MBM05_sc, respectively). After intracardiac injections we found that 

45% and 90% of mice injected with MBM03 and MBM05 developed macroscopic MBM, 

respectively (Figures S2L and S2M). This high rate of MBM development is notable in 

light of recent work showing that brain metastasis is a highly inefficient process (Kleffman 

et al., 2022), and suggests that MBM-derived models maintain their brain-metastatic 

organotropism. We reasoned that MBM and ECM may differ in their chromatin accessibility. 

ATAC-seq (and matched RNA-seq) of four MBM- and four ECM-derived patient cell lines 

(including two matched pairs) indeed showed increased chromatin-accessibility of lineage 

genes (e.g., TYRP1, DCT) in MBM, and EMT-related genes (e.g., COL5A1, COL4A5, 

ITGA3/4) in ECM (Figures S4B-D; Table S3). Lastly, we identified enriched motifs and 

binding TFs using foot printing (Methods), which revealed five TFs enriched in MBM 

that were also shared with SCENIC and VIPER analyses, all of which are involved in 

melanocytic lineage and neuronal differentiation (MITF, SOX10, NPAS2, ZNF317 and 

CUX1) (Figures S4C-E; Table S3).

Overall, these results suggest that cancer cells show significant transcriptional heterogeneity 

and variation between MBM and ECM. Our MBM signature, which includes several 

neuronal genes, enriches in both human and murine brain metastasis profiling, and may 

be involved in promoting brain-metastatic organotropism.

Neuronal-like differentiation is a distinct feature of MBM

We next sought to discover coherently regulated programs of tumor heterogeneity among 

MBM and ECM cancer cells. For this purpose, we used KINOMO, a semi-supervised 

non-negative matrix factorization (NMF) approach (Methods) (Tagore et al., 2022) to first 

discover programs (factors) of heterogeneity within each individual patient, followed by 

identification of metaprograms (MPs) defining shared programs across patients (Methods, 

Table S4). Across MBM and ECM, we identified 87 factors that converged on seven MPs 

(Figures 3H-K, Table S4). Five MPs contained factors from MBM and ECM samples, 

while MP7 and MP4 were specific to MBM and ECM, respectively (Figures 3J and 3K). 

Shared MPs represented MYC targets; mTORC1 signaling and antigen presentation (MP1); 

lineage-defining genes and antigen presentation (MP2); cell-cycle and mitosis genes (MP3); 

apoptosis and stress response (MP5); and NOTCH signaling and IL2/STAT5 signaling 

(MP6) (Figure 3I). MP4 contained meta-genes of glucose metabolism, hypoxia response, 

unfolded protein response, matrix proteins, negative regulators of cell cycle progression, and 

TNF-alpha signaling (Figures S4F).

MP7 was exclusively representative of MBM (Figures 3J and 3K). While preserving meta-

genes of melanocytic lineage, MP7 contained a wide range of genes involved in neuronal 

development and differentiation (e.g., NGFR, NLGN3, NRXN), and synapse function and 

formation (e.g., SNCA, SYT11, GPHN) (Figure 3I), and concordantly scored significantly 

for signatures of neuronal differentiation and lineage (Figures S4G). Notably, neuronal 
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growth factor receptor (NGFR) is associated with melanoma plasticity and drug resistance 

(Fallahi-Sichani et al., 2017; Landsberg et al., 2012; Liu et al., 2021).

Together, multiple analyses suggest that neuronal-like differentiation may represent a feature 

of cancer cells in MBM. To further interrogate this observation, we performed an integrated 

analysis of our single-cell data, public RNA-seq data of MBM and ECM, and proteomics 

data from patient-derived MBM/ECM short-term cell cultures (Kleffman et al., 2022) 

(Methods). Across datasets, platforms, and analytes, six genes/proteins were consistently 

enriched/upregulated in MBM compared to ECM, including NCAM1, NELL1, and LRRC1, 

involved in neuronal adhesion and differentiation, and ST6GALNAC3, TBXAS1, and 

WNK4 (Figure 3L; Table S3). We assembled 42 additional melanoma (cutaneous and uveal) 

patient samples, including 19 from MBM and 23 from ECM, and performed multiplexed 

immunofluorescence staining, including markers for neural adhesion (NCAM1), melanocyte 

lineage (SOX10 and HMB-45), and lymphoid and myeloid immune infiltrates (CD8, CD68 

and CD138) (Methods). NCAM1 was strongly enriched in cancer cells in MBM (Figure 

3M), but only sporadically found in non-malignant cells in ECM (Figure 3N) (likely 

representing NK cells that express NCAM1, which is also known as CD56). Single-cell 

segmentation and quantification revealed a significantly higher fraction of cancer cells 

expressing NCAM1 and higher NCAM1 intensity in melanoma cells from MBM (Figures 

3O and P and S4H-K). Together, these data suggest that malignant cells from MBM express 

a neuronal-like phenotype, which may be important for brain-metastatic organotropism and 

represent a potential opportunity for therapeutic development.

Compositional and phenotypic differences among monocyte-derived macrophages in 
MBM

We recovered a total of 17,562 myeloid cell transcriptomes, including 12,579 from MBM 

and 4,983 from ECM, encompassing monocyte-derived macrophages (MDM; n=13,049), 

monocytes (n=2,119), microglia (n=1,658), three types of dendritic cells (DCs; n=663; 

including cDC1, cDC2, and DC3), and mast cells (n=73) (Figures 4A-D and S5A-H, 

Table S2). Diffusion component (D.C.) analysis (Methods) revealed two major clusters 

(MDM-c1 and MDM-c2) among macrophages arising from a classical monocyte pool 

(Figures 4A and 4E), that expressed a gradient of putative pro-tumorigenic MDM features 

(e.g., CD163L1, SELENOP, F13A1, DAB2, SIGLEC1) (Adamson et al., 2016; Cassetta 

et al., 2019; Gonzalez-Dominguez et al., 2015; Solinas et al., 2010; Wang et al., 2021) 

(Figures 4D, Table S5). Importantly, recovered MDMs were not clearly representative of 

the previously reported M1-like/M2-like phenotypes (Figures S5G and S5H) (Yunna et 

al., 2020). Among the most strongly differentially expressed genes (DEGs) between the 

two MDM clusters was FTL (in MDM-c2); we thus labeled MDM-c2 as FTL+ MDM, 

and the remainder MDM-c1. FTL encodes for the light chain of ferritin (which is further 

composed of FTH1 encoding for the heavy chain), an intracellular iron storage protein 

complex critical in regulating iron homeostasis and sequestration (Winn et al., 2020) 

that is suppressed in pro-tumorigenic macrophages (Recalcati et al., 2010). Compared 

to MDM-c1, FTL+ MDM showed increased expression of mitochondrial genes encoding 

proteins of the electron transport chain (MT-CO1/2/3, MT-CYB, mitochondrial NADH 

dehydrogenase subunits, and ATP-synthase subunits), reactive oxygen species detoxification 
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(GPX4), interferon gamma response genes, and antigen presentation genes, among others, 

while MDM-c1 showed higher expression of efferocytosis receptors (AXL, MERTK) and 

several marker genes associated with a pro-tumorigenic macrophage program, such as 

CD163 (Skytthe et al., 2020) (Figures S5I and 5J, Table S5). To glean insights into 

the potential temporal relationship among MDMs, we used RNA velocity (La Manno 

et al., 2018) and scVelo (Bergen et al., 2020) (Methods), and identified FTL+ MDM 

cells as an early cell state from which MDM-c1 may arise (Figures 4F-G and S5K-L). 

Comparison of macrophages among metastatic sites revealed that those from MBM showed 

lower expression of antigen presentation genes (HLA-A/B/C/E, B2M, CIITA, CD74, HLA-
DP/DQ/DR) and matrix proteases (MMP2/14) and higher expression of CD163, TLR2, 
MERTK, AXL, and IL2RA (Figures 4H, Table S5)). Differences between metastatic sites 

were also preserved when stratifying by FTL+ MDM and MDM-c1 (Figures S5M and S5N), 

suggesting that macrophages in the MBM ecosystem showed generally higher expression 

of genes associated with a pro-tumorigenic phenotype. While our cell fraction analysis 

suggested that myeloid cells, and in particular MDM-c1 were more frequent in MBM 

(p=0.061) (Figure S2H) we next analyzed the frequency in an independent patient cohort of 

19 MBM and 23 ECM and found that MBM indeed showed a significantly higher fraction 

of macrophages (Figure 4I). Furthermore, macrophages in MBM had a higher expression 

intensity of CD163 protein in MBM, corroborating our transcriptional findings (Figure 

4J). Together, these data suggest the presence of two major MDM populations, including 

FTL+ MDM, which express genes associated with anti-tumor immunity, and MDM-c1, 

which express several genes linked with pro-tumorigenic polarization. MBM enriched for 

tumor-permissive MDM, defining an important feature of their ecosystem.

Inflammatory SPP1+ microglia

Recovery and interpretation of microglia (MG) single-cell transcriptomes from human 

tissues is challenging as these cells are particularly sensitive to fresh-tissue processing 

(Marsh et al., 2022) and strongly express artifactual stress signatures (Figure S1C). 

Nonetheless, we recovered key MG marker genes (e.g., P2RY12, SLC2A5, NAV3) in both 

snRNA-seq and scRNA-seq (Figure 4D, Table S2). Using D.C. analysis, we identified two 

major clusters (MG1 and MG2), wherein MG1 was characterized by significantly higher 

expression of SPP1 (encoding for osteopontin; an indicator for a pro-tumor phenotype (Wei 

et al., 2019)), chemokines (e.g., CCL2/3/4), and inflammatory cytokines (e.g., TNFA and 

IL1B), irrespective of profiling modality (Figures 4K, 4L, S5O and S5P). Accordingly, 

MG1 enriched strongly for inflammatory and activation pathways, among others (Table 

S5). Together, this data suggests that profiling MG from frozen tissues is feasible, avoids 

cell-specific artifacts, and in MBM identifies a SPP1+ sub-population with an activated 

phenotype.

Integrated analyses of T cells define common axis of variation in MBM and ECM

The T/NK cell compartment comprised 17,149 transcriptomes with six major clusters, 

including NK cells (n=759), T-regulatory cells (Tregs; n=2,284), conventional CD4+ T cells 

(n=3,657), T follicular helper (TFH)-like cells (n=1,300), and CD8+ T cells (n=9,149) 

(Figures 5A-D and S6A-E; Table S2). Among CD8+ T cells, we distinguished two 

major populations (Figure 5D): CD8+ T cells, with high expression of TOX (n=5,474) 
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(TOX+CD8+ T cells), a marker associated with and required for T cell dysfunction (Khan 

et al., 2019), and effector memory T cells characterized by expression of TCF7 (n=3,675) 

(TCF7+CD8+ T cells), a marker of progenitor-like function (Zhao et al., 2021). TOX+CD8+ 

T cells showed strong expression of multiple immune checkpoints, effector genes, and 

chemokines (Figure 5D). TCF7+CD8+ T cells expressed markers consistent with a naïve 

or memory phenotype as well as effector molecules, and had low expression of immune 

checkpoints, such as PDCD1/PD1 and HAVCR2/TIM3 (Figure 5D). Because we noted 

differential capture of important T cell hallmark genes in scRNA-seq and snRNA-seq 

data (Figure S6F, Table S5), we validated our annotation with an orthogonal approach 

using ProjecTILs (Andreatta et al., 2021) (Methods), an automated method for reference-

based analysis of T cell states. This confirmed our manual annotation, yielding robust 

identification of T cell subtypes irrespective of the queried sequencing technology (Figures 

S6G-M).

Compared to ECM, MBM showed a higher abundance of TOX+CD8+ T cells and CXCL13+ 

CD4+ TFH-like cells (Cohen et al., 2022) (Figures 5D and S2H). While TOX+CD8+ tumor-

infiltrating T cells have previously been defined as “exhausted”, recent work shows that 

this is a dynamic pool of cells with proliferative capacity (Li et al., 2019) and potential anti-

tumor activity (Ho et al., 2022). Furthermore, TFH-like cells resemble T helper tumor cells, 

which were recently defined in non-small cell lung cancer, breast cancer, and melanoma 

(Cohen et al., 2022), and may have an important role in tumor-antigen recognition and 

response to PD-1 blockade. We next aimed to delineate differences among T cells from 

MBM and ECM. Among others, we found significantly lower expression of PDCD1/PD1, 

LAG3, TIGIT, and HAVCR2/TIM-3 in TOX+CD8+ T cells from MBM compared to ECM 

(Figure 5E; Table S5).

T cell expansion and differentiation in MBM

We generated matched TCR-seq data for 7,575 cells from five MBM patients, which enabled 

annotation of clonally expanded and non-expanded cells in T cell compartments, including 

mucosal associated invariant T (MAIT, n=1,396) cells and invariant NKT (iNKT, n=59) 

cells that have limited anti-tumor activity (Godfrey et al., 2019) (Figure S7A). CD4+ T cells 

accounted for 1,893 unique clonotypes with a clone size up to 157, wherein clonal expansion 

was most frequent among Tregs and TFH-like cells (Figure S7B). Among CD8+ T cells, we 

identified 1,470 unique clonotypes, with a clone size of up to 336 (Figure S7B).

D.C. analysis integrating clonality and gene expression showed clonal expansion varied 

along the TCF7+CD8+ to TOX+CD8+ T cell trajectory (Figures 5F and 5G), which 

is consistent with prior work in ECM and indicates progressive loss of progenitor 

function (Li et al., 2019) and increased differentiation (Azizi et al., 2018) (Figure 

S7B). Within individual samples, shared clonotypes were captured among TCF7+ and 

TOX+CD8+ T cell pools, directly supporting the notion that detected clonotypes arise 

from a specific progenitor pool (Figure S7C). Comparison of clonally expanded (n=2,121) 

and non-expanded (n=901) CD8+ T cells showed significant enrichment of IL7R, LTB, 

SELL, and TCF7 in non-expanded T cells, and increased expression of genes associated 

with cytokine production, cytotoxicity (IFNG, GZMB), co-stimulation (TNFRSF9/4-1BB), 
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immune checkpoints (e.g., CTLA4, HAVCR2), and terminal differentiation (MIR155UG) 

(Dudda et al., 2013) in expanded T cells (Figure 5H; Table S5). Overall, this analysis 

suggests that while the differentiation trajectory of T cells in MBM is consistent with that 

described in ECM, important differences may exist with respect to expression of immune 

checkpoints.

Intra-tumoral plasma cell differentiation and lymphoid aggregates

We recovered 3,175 single-cell transcriptomes spanning a functional differentiation 

trajectory from naïve (n=166 cells; LAIR1, TCL1A) to activated B cells (n=1,032; BANK1, 

BLK) and plasma cells (n=1,977; SDC1, CD38, PRDM1) across 28 patients (Figures 

5I, S7D and S7E; Table S2). We reconstructed immunoglobulins by determining mRNA 

co-expression of the variable heavy (IGHV) and light (IGLV) chains and isotypes on a 

per cell basis (Melms et al., 2021) and identified recurrent combinations (Methods; Table 

S5). Notably, we recovered the entire differentiation arch from naïve to activated B cells to 

plasma cells, and in some specimens, cells along this developmental trajectory shared the 

same variable chain expression (Figure S7F), suggesting that differentiation of B to plasma 

cells occurs intratumorally. Next, we analyzed the spatial distribution of plasma cells (IF 

staining of CD138) in 42 additional melanoma samples (19 MBM and 23 ECM, as above) 

and found that plasma cells were present in a spatially restricted manner in both MBM 

and ECM (Figure 5J), and surprisingly, plasma cell aggregates were significantly more 

abundant in MBM (Figure 5K). Recent studies in kidney cancer showed that intra-tumoral 

plasma cell differentiation occurs in tertiary lymphoid structure (TLS) (Meylan et al., 2022), 

and that lymphoid aggregative or TLS are predictive of response to anti-PD-L1 therapy in 

non-small cell lung cancer (Patil et al., 2022). Thus, our results raise the possibility that 

intra-tumoral B to plasma cell differentiation occurs in a spatially restricted manner and 

indicates the presence of a subset of metastatic melanomas that are more likely to respond to 

immunotherapies.

Spatial single-cell transcriptomics identify distinct cell clusters and geographically 
variable transcriptional features

We performed spatial transcriptomics using SlideSeqV2 (Stickels et al., 2021) of 16 tissue 

sections (11 MBM and five ECM) from 11 matching tumors also profiled by snRNA-seq 

(Figure 6A, Tables S1 and S6) (Methods). Due to the fine resolution, the same fixed 

pixel may represent transcripts captured from different cells. Thus, we first leveraged the 

matched snRNA-seq/SlideSeqV2 data and used robust cell type decomposition (RCTD) 

(Cable et al., 2021) to deconvolve cell mixtures and assign the spatial configuration 

of discrete cell types (Figure 6B) (Methods). This approach resulted in recovery of 

fractions of malignant and non-malignant cells that was highly correlated with that of 

matching snRNA-seq cell type composition (e.g., for malignant cells, R2=0.75; p=1.6e−5) 

(Figures 6C, Table S6), and showed expected compositional variability with high technical 

reproducibility (Figure S7G). To discover spatially regulated genes, we determined genes 

with the highest spatial auto-correlation by Moran’s I (>0.05 and p<0.001) for each 

individual tissue slide (Methods, Table S6) and integrated identified spatial expression 

with corresponding cell type assignments (Figure 6B). Orthogonally, we used C-SIDE 
(Cable et al., 2022), to identify spatially variable gene expression, which yielded highly 
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overlapping results (Table S6). We then categorized these genes by biological function, such 

as metabolism (oxidative phosphorylation, glycolysis), antigen presentation, interferon and 

chemokine responses, hemorrhagic regions, and immunoglobulins (indicating clustering of 

plasma cells) (Table S6) and determined their spatial expression across the entire cohort 

and assessed cell type co-localization (Table S6). Consistent with analyses and imaging of 

B/plasma cells (Figure 5K), we found strongly spatially restricted clusters of lymphoid 

aggregates that are dominated by plasma cells (with enrichment for specific variable 

IGHV/IGHL combinations) in multiple specimens (Figures 6D-G). Another spatial pattern 

involved large regional expression of cancer cell intrinsic antigen presentation genes that 

was reciprocal to expression of TIMP1, a matrix metalloproteinase with a potential role 

in promoting melanoma immune evasion (Zurac et al., 2016) (Figure 6H). Notably, while 

antigen presentation genes were more broadly expressed, there was a spatially restricted 

expression of type I interferon response (e.g., ISG15, IFI27, CXCL9) in specific areas, 

indicating that antigen presentation was not sufficient to promote anti-tumor responses 

(Figure 6H). Furthermore, cancer cells show spatially dichotomous expression of oxidative 

phosphorylation and glycolysis metabolic pathways (Figure 6I). While our snRNA-seq 

analyses indicated heterogenous expression of oxidative phosphorylation (Figure 3D), these 

findings suggest that this variability was also spatially defined. Together, these analyses 

provide important examples for spatial contexts of cell states, responses, and interactions in 

a preserved tumor architecture.

DISCUSSION

Despite significant therapeutic advances in the treatment of metastatic cancers, MBM 

remains a challenging problem. Here, we begin addressing this challenge by interrogating 

MBM and ECM ecosystems using multi-modal single-cell transcriptomics coupled with 

functional approaches and human and murine models. Focusing on treatment-naïve MBM 

enabled us to examine the salient biology of this metastatic site, unaffected by the potential 

effects of prior treatments. Among cancer cells, increased chromosomal instability (CIN) 

was associated with MBM. In matched cell line cultures (MBM and ECM from the 

same individual) we demonstrate that CIN was enriched in MBM-derived models, which 

maintain an increased invasive capacity and brain-metastatic organotropism in vivo. While 

CIN is associated with metastasis (Bakhoum et al., 2018), recent large-scale genomics 

studies suggest enrichment of CIN in brain metastases in melanoma and non-small cell 

lung cancer (NSCLC) (Nguyen et al., 2021). CIN and associated cellular adaptation may 

represent promising therapeutic vulnerabilities, that are particularly relevant in MBM. 

Furthermore, using KINOMO, we detect a relative increase (beyond potential underlying 

neural crest lineage gene expression (Opdecamp et al., 1997)) in neuronal differentiation 

genes exclusively in MBM. Phenotypic plasticity is a hallmark of melanoma biology, and 

can be associated with invasive melanoma behavior and drug resistance (Fallahi-Sichani et 

al., 2017; Hoek et al., 2008; Konieczkowski et al., 2014; Liu et al., 2021; Sun et al., 2019; 

Tirosh et al., 2016; Tsoi et al., 2018). Thus, the interplay of the brain metastatic niche and 

the neuronal-like cell state implicated by our study, which is further supported by recent 

xenograft work (Wingrove et al., 2019), may be important for niche-specific metastasis and 

drug resistance and warrants further mechanistic investigation. Furthermore, our integrated 
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snRNA-seq and spatial transcriptomics analyses reveal increased yet variable expression of 

metabolic pathways in MBM (e.g. OxPhos), and spatially restricted cancer cell expression 

of type I interferon responses (indicating ensuing T cell responses), despite broad expression 

of antigen presentation. This suggests that antigen presentation alone is not sufficient to 

promote anti-tumor immunity, as recent work in patient models suggests (Ho et al., 2022), 

and may indicate areas prone to cancer immune evasion, possibly through expression of 

TIMP1 (Zurac et al., 2016).

Collectively, this study represents the most comprehensive single-cell profiling effort 

of human brain metastases to date, providing foundational insights into the molecular 

underpinnings of cancer cells and cells in the tumor microenvironment that are distinct 

or shared in different metastatic sites. By focusing on treatment-naïve MBM, this study 

sets the stage for further mechanistic studies and serves as an important reference for 

understanding how different perturbations (e.g., various systemic or local treatments) 

influence brain metastasis ecosystems. Building on this work, future experimental and 

analytical innovations that capture additional layers of single-cell biology and resolve 

the role of genomic, cellular, and transcriptional features (e.g., CIN, neuronal-like 

differentiation, and varying immune checkpoint expression) enriched in MBM may facilitate 

therapeutic discovery.

Limitations of the study

Although we validated key observations gleaned from single-cell analyses, our study did 

not include matching MBM and ECM collected from the same patients which would 

allow us to directly study differences between metastatic niches in genomically similar 

specimens. Concurrent resection or biopsy of an MBM and ECM (and possibly primary 

tumor) from the same patient is rarely indicated, however, the ability to perform single-cell 

profiling from snap-frozen tissue removes important barriers to enable multi-institutional 

efforts to collect and analyze larger sample sizes in such instances. This may also enable 

investigation of differences among matched primary tumors and multiple different metastatic 

sites. Although we identify important features associated with MBM (e.g., CIN, neuronal-

like differentiation, distinct features of the microenvironment), further work is necessary 

to determine their mechanistic interactions and roles along the metastatic cascade. Lastly, 

expanded studies including other common cancers associated with brain metastasis (e.g., 

lung cancer) will further inform whether these mechanisms are relevant in other lineages.

STAR METHODS

Resource availability

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Benjamin Izar (bi2175@cumc.columbia.edu).

Materials availability—Presented materials are made available upon reasonable request to 

the lead contact.
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Data and code availability—Processed data generated using sc/snRNA-seq, TCR-seq, 

SlideSeqV2, RNA-seq and ATAC-seq have been deposited at GEO and are publicly 

available. Accession numbers are listed in the key resources table. Raw data derived from 

human samples will be made available through dbGaP and are listed in the key resources 

table. All original code has been deposited at GitHub and is publicly available as of the date 

of publication. The repository is listed in the key resources table. Any additional information 

required to reanalyze the data reported in this paper is available from the lead contact upon 

request.

Experimental models and subject details

Patient tissue collections—Frozen tissue specimens were collected under institutional 

review board (IRB) approved protocols at New York Presbyterian Hospital/Columbia 

University Medical Center (from 2001 to 2017), Dana Farber Cancer Institute (from 2017 to 

2018), Georgetown University (2014 to 2015) and UCLA (from 2012 to 2013). Treatment-

naïve melanoma brain metastasis specimens were collected during surgery and banked 

at −80°C after allocation by qualified pathologists according to institutional guidelines. 

Extracranial melanoma metastases were collected as biopsies and banked at −80°C after 

allocation by qualified pathologists according to institutional guidelines. Formalin-Fixed 

Paraffin-Embedded (FFPE) tissue specimens of melanoma brain and liver metastases were 

collected under IRB approved protocols at Universität Tübingen (2007-2020). Samples were 

selected based on treatment status and metastatic site and allocated to respective groups. 

Sample size was based on prior studies of similar scope. All available patient information is 

summarized in Table S1. All procedures performed on patient samples were in accordance 

with the ethical standards of the IRB and the Helsinki Declaration and its later amendments.

Cell lines and cell culture—Human melanoma cell lines were derived under IRB 

approved protocols. Cell line 2686 was originally derived and provided by MD Anderson 

Cancer Center (IRB 2004-0069). Cell line MaMel-134 was kindly provided by UK-Essen. 

MBM03 and MBM05 cell lines were derived from surgical resections of melanoma brain 

metastases at Dana Farber Cancer Institute (IRB 10-417). 113/6-4L (“4L”) cells and 

131/4-5B1 (“5B1”) cells were originally generated by Cruz-Munoz et al. (Cruz-Munoz et 

al., 2008). 12-273-BM and LN were originally derived in the laboratory of Iman Osman at 

NYULH Melanoma Program (Kleffman et al., 2022; de Miera et al., 2012).

2686, MaMel-134 and MBM cell lines were cultured in melanoma growth medium (RPMI 

1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS), GlutaMax, 10 mM 

HEPES, 10 mg/L insulin, 5.5 mg/L transferrin, and 6.7 μg/L sodium selenite, and 55 μM 

2-mercaptoethanol). 4L/5B1 and 12-273 cell lines were cultured in DMEM supplemented 

with 10% FBS, and 1% (v/v) penicillin/streptomycin. For 12-273 the medium further 

contained 1% non-essential amino acids. All cell lines were maintained in a 5% CO2 

incubator at 37°C. Cell lines were routinely tested to exclude Mycoplasma contamination 

using PlasmoTest (InvivoGen).

Animal Studies—All mice experiments preformed at Columbia university were following 

the Institutional animal care and use committee (IACUC) protocol #AC-AABE6570 using 
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6–8 week-old, male NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (NSG, Jackson labs, #5557). 

All mice experiments at NYULH were performed in compliance with a referenced protocol 

(IA16-00051) approved by the NYULH IACUC using 4–6 week-old NSG mice (male 

and female, Jackson labs, #5557) All mice were maintained under standard pathogen free 

conditions.

Method details

Fresh tissue specimen processing—After allocation of specimens by pathology, 

samples were immediately placed in ice cold RPMI 1640 (Thermo Fisher, #21875034) 

without supplements and transported to the laboratory space for processing. Samples were 

cut to 0.5-1 mm3 cubes and transferred to a 50 mL Falcon tube (Corning) filled with ice cold 

RPMI. The tissue was collected by centrifugation. All centrifugation steps were conducted 

in a swinging bucket rotor for 5 minutes at 400 x g at 4°C. The tissue was resuspended 

in 4.7 mL RPMI (prewarmed to 37°C) supplemented with human tumor dissociation 

enzymes (Miltenyi Human Tumor Dissociation Kit, #30-095-929) prepared according to 

manufacturer’s guidelines. The sample was digested in a 37°C water bath and swirled every 

2 minutes. After 5- and 10-minutes incubation the sample was mechanically dissociated 

using pipettes with decreasing orifice size. After the final dissociation step the sample was 

filtered through a pre-wetted 70 μm cell strainer (Corning) into a fresh 50 mL Falcon tube. 

The cells were collected by centrifugation and the supernatant was carefully discarded. 

The cell pellet was resuspended in 3 mL ACK buffer (Thermo Fisher; #A1049201) and 

incubated for 1 minute at room temperature to lyse red blood cells. After dilution with 

30 mL ice cold sorting buffer (2% FBS/1 mM EDTA in PBS) the cells were collected by 

centrifugation. After this step the cells were resuspended in ice cold PBS, filtered through 

a 40 μm cell strainer attached to a FACS tube, counted and 1e6 cells were processed for 

fluorescence-activated cell sorting.

Fluorescence-activated cell sorting—To sort viable immune and non-immune cells 

the cell suspension was stained with Zombie NIR viability dye (Biolegend, San Diego, CA; 

#423106) in PBS (1:500) for 10 minutes at room temperature in the dark. The reaction 

was terminated with sorting buffer and the cells were collected by centrifugation. After 

collection, the cells were stained with the following antibodies for 15 minutes on ice in the 

dark (all Biolegend): Human TruStain FcX (#422302), Pacific-Blue-aCD45 (#304022), PE-

Dazzle594-aCD3 (#300450), PE-CY7-aCD66b (#305116), APC-aCD15 (#301908). After 

staining, cells were washed twice with sorting buffer and filtered through a 40 μm cell 

strainer attached to a FACS tube and sorted into ice-cold sorting buffer using a FACS Aria 

II (BD Biosciences). For each specimen we sorted 12–15x103 viable cells for the following 

populations: 1.) CD45− cells including tumor and stromal cells. 2.) CD45+/CD66b− cells 

including all immune cells but CD66b+ granulocytes which are reported to interfere with 

scRNA-seq using 10x genomics. After sorting, the cells were placed on ice and processed 

immediately for scRNA-sequencing.

Single cell RNA library preparation and TCR dial out—Sorted single cell 

suspensions were centrifuged and washed two times in PBS with 0.05% RNase-free 

BSA (Thermo Fisher, #AM2616). After the final wash the supernatant was carefully 
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removed to leave a final volume of 31 μL. Each sorted single cell suspension was 

loaded in separate channels on a Chromium controller using Chromium Single Cell V(D)J 

Reagents (10x genomics, Pleasanton, CA; #1000006) for 5’ RNA capture. Gene expression 

libraries and TCR expression libraries (from CD45+ channels) were generated according 

to manufacturer’s instructions using the Chromium Single Cell 5’ Library construction kit 

(#1000020) and Chromium Single Cell V(D)J Enrichment Kit for human T cells (#1000005) 

respectively.

Sequencing of single-cell RNA libraries—Final libraries were quantified using 

Tapestation D5000 and D1000 reagents on a 2200 TapeStation system (Agilent). Each donor 

sample was mixed individually based on the molarity of the libraries (45% for each gene 

expression library, 10% TCR library) and sequenced with 2x150 bp paired-end sequencing 

on an Illumina HiSeq 4000.

Frozen tissue processing—Frozen archival tissue specimens were embedded in optimal 

cutting temperature (OCT) compound (Tissue-Tek, Sankura) on dry ice. Tissue sections 

were collected in pre-cooled 5 mL tubes (Eppendorf, Hamburg, Germany) and stored on 

dry ice until processing. Single nuclei were isolated using salt tris (ST) buffer (146 mM 

NaCl, 10 mM Tris-HCL pH7.5, 1 mM CaCl2, and 21 mM MgCl2 in ultrapure water) with 

Tween-20 as previously described (Slyper et al., 2020) with the following modifications. All 

centrifugation steps were carried out in a swinging bucket centrifuge cooled to 4°C. Tubes 

were placed on wet ice and left to equilibrate for 30 seconds. Then 4 mL of ice-cold PBS 

without calcium or magnesium (Thermo Fisher) was added and the tube was inverted until 

all OCT had dissolved. The tissue pellet was then collected by centrifugation at 300 x g for 

2 minutes. The supernatant was discarded, and the tissue pellet was resuspended in 1 mL 

salt-tris buffer with 0.03% Tween-20 (Sigma Aldrich, p-7949) and 0.1% BSA (New England 

Biolabs, B9000S) (TST buffer) supplemented with 40 U/mL RNAse OUT (Thermo Fisher). 

The suspension was vigorously pipetted and then incubated for 5 minutes on ice. After 5 

minutes the tissue suspension was again pipetted and the reaction was quenched by adding 

4 mL of ST buffer supplemented with 40 U/mL RNAseOUT. The suspension was filtered 

through a 70 μm nylon mesh filter (Fisher Scientific) into a precooled 50 mL conical on 

ice. The filter was washed with additional 5 mL ST buffer and the tube was centrifuged at 

500 x g for 5 minutes. The supernatant was discarded, and the nuclei were resuspended in 

100–400 μL ST buffer without RNAse inhibitor and filtered through a 40 μm mesh filter 

attached to a FACS tube (Fisher Scientific). A 5 μL aliquot of the filtered nuclei suspension 

was mixed at equal volume with PBS with a final concentration of 50 μg/mL Hoechst 33342 

(Thermo Fisher) to stain nuclear DNA and the nuclei concentration was determined using 

a fluorescent microscope (EVOS FL, Thermo Fisher) and disposable Neubauer counting 

chambers (Bulldog Bio, Inc. Portsmouth, NH).

Single nuclei RNA library preparation—14,000 nuclei were diluted in ST buffer 

without RNAse inhibitor and loaded on a Chromium controller using Chromium Single 

Cell 3’ reagents v3.0 (10x genomics, Pleasanton, CA; #1000006) for 3’ RNA capture. After 

reverse transcription and cleanup, gene expression libraries were generated according to 

manufacturer instructions using the Chromium Single Cell 3’ Library construction kit. To 
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increase cDNA yield from nuclei the initial amplification was carried out with 1 additional 

cycle compared to the recommendations for single cells.

Sequencing of single nuclei RNA libraries—Gene expression libraries were 

quantified as described above and equimolarly mixed before sequencing. Libraries were 

sequenced targeting a minimum of 2e8 reads per sample using paired-end sequencing with 

2x150 bp on a NovaSeq 6000 with S4 flow cell (Illumina, San Diego, CA).

Generation of cell lines from melanoma brain metastases—Cell lines from 

MBM03 and MBM05 were established by placing excess melanoma tissue pieces (~0.5 

mm3) not used for scRNA-sequencing into individual wells of a 24 well cell culture plate 

filled with melanoma growth medium (RPMI 1640 medium supplemented with 10% heat-

inactivated fetal bovine serum, GlutaMax, 10 mM HEPES, 10 mg/L insulin, 5.5 mg/L 

transferrin, and 6.7 μg/L sodium selenite, and 55 μM 2-mercaptoethanol (all from Thermo 

Fisher Scientific)). For the first two weeks the medium was supplemented with 100 IU/mL 

penicillin and 100 μg/mL streptomycin (Thermo). Tissue pieces were cultured at 37°C and 

5% CO2, and ambient O2 in a humidified incubator until adherent melanoma cells had 

crawled out of the tissue. The tissue was then removed, and the cells were allowed to grow 

to 80% confluence before pooling of individual wells for further expansion. Cells were then 

tested for mycoplasma contamination using PlasmoTest (InvivoGen) and cryopreserved in 

Bambanker (Bulldog Bio) and stored in liquid nitrogen vapor phase until future use.

In vitro culture of melanoma cell lines—Human MBM, 2686 and MaMel-134 

melanoma cell lines were grown in melanoma growth media (see above). MBM03 and 

MBM05 were generated from MBM as described above. ECM melanoma cell lines 2686 

and MaMel-134 were previously derived and provided by MD Anderson Cancer Center and 

UK-Essen, respectively. 113/6-4L (“4L”) cells and 131/4-5B1 (“5B1”) cells were originally 

generated by Cruz-Munoz et al. (Cruz-Munoz et al., 2008). 12-273-BM and LN were 

originally derived in the laboratory of Iman Osman at the NYULH Melanoma Program 

(Kleffman et al., 2022; de Miera et al., 2012). Culture media for these cell lines is comprised 

of DMEM, 10% fetal bovine serum, and 1% (v/v) penicillin/streptomycin. All cell lines 

were grown under adherent conditions at 37°C and 5% CO2 in a humidified incubator.

Migration assays—Falcon FluoroBlok 96-well HTS plates were used to evaluate in vitro 
cell migration. Cells were resuspended at a density of 10,000 cells per well in 1%FBS 

supplemented growth media and migrated towards 10% FBS growth media. The transwell 

migration plate was incubated for 22 h at 37°C in 5% CO2, followed by staining with 

a 4 μg/mL solution of Calcein AM in Hanks Balanced Salt Solution for 1 h at 37°C. 

Fluorescence intensity was measured from the bottom of the migration plate using Synergy 

H1 Hybrid Reader.

Micronuclei quantification—Cells were seeded at a density of 1,000 cells per well in 

a 96 well plate, fixed, and stained after 24 h as previously described (Melms et al., 2020). 

In brief, cells were fixed with 4% paraformaldehyde for 30 minutes and incubated with 

1:5000 Hoechst in Odyssey blocking buffer overnight at 4°C before imaging on the Zeiss 

Celldiscoverer 7. Cells were counted using ImageJ software. Each individual data point is 
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the percentage of micronuclei out of total nuclei per high power field. 28–30 high-power 

fields were imaged per cell line, encompassing 750–1250 cells per cell line.

In vitro culture for RNA-seq/ATAC-seq—For bulk RNA-seq and matching ATAC-seq 

melanoma cells were cultured as described above split in triplicates for 10 days. Throughout 

this time cells were split and propagated to obtain ~80% cell density on day 10. On day 10 

cells were then detached using 0.025% trypsin, quenched with full melanoma media, washed 

once with PBS and immediately processed for ATAC-seq or stored as frozen pellets for RNA 

extraction.

RNA extraction and bulk RNA-seq of in vitro cultured cell lines—Total RNA 

was extracted from frozen pellets using RNAeasy Plus (Qiagen) with 5e5 cells per column. 

The RNA samples were quantified using Qubit 2.0 Fluorometer (ThermoFisher Scientific) 

and RNA integrity was checked using TapeStation (Agilent Technologies). The RNA 

sequencing libraries were prepared using the NEBNext Ultra II RNA Library Prep Kit 

for Illumina using manufacturer's instructions (New England Biolabs). Briefly, mRNAs 

were initially enriched with Oligod(T) beads. Enriched mRNAs were fragmented for 15 

minutes at 94°C. First strand and second strand cDNA were subsequently synthesized. 

cDNA fragments were end repaired and adenylated at 3'ends, and universal adapters were 

ligated to cDNA fragments, followed by index addition and library enrichment by PCR with 

limited cycles. The sequencing libraries were validated on the Agilent TapeStation (Agilent 

Technologies), and quantified by using Qubit 2.0 Fluorometer (ThermoFisher Scientific) as 

well as by quantitative PCR (KAPA Biosystems, Wilmington, MA, USA). Final libraries 

were sequenced on a NovaSeq 6000 with S4 flow cell with 2x150 bp paired-end sequencing.

ATAC-seq processing—ATAC-seq was carried out as previously described (Ackermann 

et al., 2016; Buenrostro et al., 2013) with some minor modifications. Briefly, 50,000 cells 

were washed once with ice-cold PBS and the pellet subsequently resuspended in 50 μL of 

ice-cold lysis buffer (10 mM Tris-Hcl, 10 mM NaCl, 3 mM MgCl2, 0.1% w/v NP-40). After 

centrifugation at 500 x g for 10 minutes at 4°C, the supernatant (comprising cytoplasm) 

was discarded and the pellet (nuclei) was resuspended in 50 μL of 2x TD Buffer (25 μL), 

pre-assembled Tn5 (2.5 μL) and distilled water (22.5 μL). TD Buffer and Tn5 were prepared 

as described previously (Ma et al., 2020; Wang et al., 2013). The transposition mix was 

incubated at 37°C for 30 minutes, after which DNA was isolated using the Qiagen MiniElute 

Reaction Cleanup Kit, eluting in 10 μL of Buffer EB.

A 5 cycle PCR was carried out using all 10 μL of isolated DNA, 10 μL nuclease-free 

water, 2.5 μL 25 μM Ad1_noMX primer, 2.5 μL 25 μM Ad2.* indexing primer and 25 

μL NEBNext High-Fidelity 2x PCR Master Mix under the following conditions: 72°C for 

5 minutes, and then for 5 cycles: 98°C for 30 seconds, 98°C for 10 seconds, 63°C for 

30 seconds and 72°C for 1 minute. 5 μL of partially amplified DNA was removed and 

combined with 4.41 μL nuclease-free water, 0.25 μL 25 μM Ad1_noMX primer, 0.25 μL 25 

μM Ad2.* indexing primer, 0.09 μL 100x SYBR Green 1 and 5 μL High-Fidelity 2x PCR 

Master Mix under the following conditions: 98°C for 30 seconds, and then for 20 cycles: 

98°C for 10 seconds, 63°C for 30 seconds and 72°C for 1 minute. By plotting the relative 

fluorescence against cycle number, the number of additional PCR cycles required for each 
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sample was determined by assessing the cycle number needed to reach 1/3 of the relative 

fluorescence. The PCR reaction was then continued using the remaining 45 μL of partially 

amplified DNA under the following conditions: 98°C for 30 seconds, and then for required 

number of cycles determined by qPCR: 98°C for 10 seconds, 63°C for 30 seconds and 72°C 

for 1 minute. A double-sided bead purification using AMPure XP Beads was then carried 

out using a 0.5x cleanup followed by 1.3x cleanup. Libraries were quantified using a 2200 

TapeStation system (Agilent) and D5000 tapes. Final libraries were sequenced on a NovaSeq 

6000 with S4 flow cell with 2x150 bp paired-end sequencing.

In vivo metastasis assay

Intracardiac injection: 4L and 5B1 cells were first transduced with Green Fluorescent 

Protein/luciferase reporter lentivirus. MBM03 and MBM05 cell lines were used without 

additional modification. 4L and 5B1 were resuspended in sterile PBS at a concentration of 1 

x 105 cells per 100 μL aliquoted into Eppendorf tubes and maintained on ice until injection. 

Male NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were anesthetized by exposure to 

isoflurane. On day 0, anesthetized mice were injected with 1 x 105 4L or 5B1 cells 

resuspended in 100 μL sterile PBS into the left ventricle of the heart using Visualsonics Vevo 

770 Ultrasound Imaging System. For MBM03 and MBM05 5 x 104 cells were injected.

Harvesting of melanoma cells: Animals were sacrificed between 3–8 weeks post-

intracardiac injection, once the animal exhibited 20% weight loss or symptoms meeting the 

IACUC protocol standard (e.g., limb paralysis). Animals were anesthetized with a ketamine 

(100 mg/kg) and xylazine (10 mg/kg) cocktail. Organs of interest were dissected and placed 

in a plate containing HBSS (Hank's buffered salt solution) on ice. GFP+ metastases were 

visualized using a Leica M205 FA fluorescence stereo (dissecting) scope. GFP+ areas 

were dissected away from the organ parenchyma. Tissue fragments were then minced and 

dissociated using type I collagenase (Worthington, LS004196) and DNAse I (Worthington, 

LS002139) at 37°C for 45 minutes, with vortexing every 5 minutes. Samples were then 

strained successively through a 70 uM and 40 uM strainer and centrifuged. Cells were 

resuspended in 1 mL of RBC lysis buffer, incubated for 1 minute at RT, followed by 

quenching in 20 mL of dPBS. For brain samples, cells were resuspended in 38% (v/v) 

Percoll solution and centrifuged at 800 x g for 20 minutes, after which the top layer of 

myelin was removed. All cells were resuspended in 1 mL of RBC lysis buffer, incubated for 

1 minute at RT, followed by quenching in 20 mL of dPBS. After pelleting and resuspending 

in FACS buffer (5% FBS in dPBS), cells were sorted for GFP+ status, pelleted, and snap-

frozen. Cells were stored at −80°C until RNA extraction using the miRNEasy kit (Thermo 

Fischer, 217004). RNA quality was verified by Bioanalyzer for all samples. All samples 

had a RIN score of >7.8, with an average RIN score of 9.53. After RiboZero Plus library 

preparation, RNA sequencing took place using the Illumina NovaSeq 6000 platform and an 

S1 100 Cycle Flow Cell v1.5.

Quantification of brain metastasis: MBM03 and MBM05 brain metastasis were quantified 

macroscopically, and brain metastatic burden was calculated. To compare the organotropism 

of 4L and 5B1 mice were sacrificed after 4–5 weeks and livers and brains were dissected. 

The organs were formalin-fixed and paraffin embedded and three levels of each organ were 
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stained with hematoxylin and eosin. Whole slides were then scanned at 40x magnification 

using a Leica AT2 (Leica) slide scanner and metastatic burden was quantified by a blinded 

investigator in QuPath v.0.3.2.

Multiplexed immunofluorescence—Multiplexed immunofluorescence (mIF) staining 

of 19 metastatic brain and 23 liver lesions from patients with metastatic melanoma was 

performed using antibodies targeting CD8 (Leica, #4B11; 1:100), CD68 (Biogenex, #KP1; 

1:1), CD138 (Leica, #MI15; 1:2), HMB45 (Cell Marque, #HMB-45; 1:100), NCAM1 

(Invitrogen, #123C3; 1:200), and SOX10 (BioCar, #BC34; 1:100) using the Opal 7-color 

automation IHC kit (Akoya Bioscience) on a Leica Bond RX automated stainer (Leica 

Biosystems). 10 matching specimens from each group were also stained with CD163 (Leica, 

#10D6; 1:500). FFPE tissue sections (5 μm) were baked for 2 h at 60°C, followed by 

automatic deparaffinization, rehydration, and antigen retrieval in BOND Epitope Retrieval 

Solution 2, pH 9 (Leica Biosystems) for 30 minutes at 95°C. Immunofluorescence staining 

with Opal and tyramide signal amplification (TSA) were performed in six cycles. In each 

cycle, the tissue was incubated sequentially with a primary antibody for 30 minutes at 

room temperature, the secondary antibody conjugated to polymeric horseradish peroxidase 

(HRP), an Opal fluorophore in TSA buffer, and BOND Epitope Retrieval Solution 1, pH 

6 (Leica Biosystems) for 20 minutes at 95°C to strip the tissue-bound primary–secondary 

antibody complexes before the next staining cycle. For the full panel, the cycles contained 

NCAM1, no antibody (antibody diluent in lieu of primary antibody and 1X Bond Wash 

solution in lieu of HRP and Opal fluorophore), an HMB45 and SOX10 mixture (defined 

as lineage, LIN), CD8, CD138, and CD68, respectively. For CD163 quantification the 

antibody was added in position 2 of the multiplexed panel. After nuclear counterstaining 

with DAPI, slides were coverslipped with Vectashield HardSet Antifade mounting medium 

(Vector Laboratories). Whole slide scans (WSS) were captured at 10× magnification using 

the Vectra Polaris automated multispectral microscope (Akoya/PerkinElmer) with Vectra 

Polaris 1.0.13 software. Regions of interest were chosen by the investigator for multispectral 

imaging (MSI) at 20× magnification using the Phenochart 1.1.0 software (Akoya). Spectral 

unmixing was performed using the InForm v2.5.1 software (Akoya). Demultiplexed images 

were exported as 32-bit component TIFF files for further analysis.

Quantification and statistical analysis

Generating single-cell and single-nucleus gene expression matrices—
Demultiplexed FASTQ files from raw 3’-single-nuclei and 5’-single-cell RNA sequencing 

reads were aligned to the human GRCh38 genome and gene counts were quantified using 

Cell Ranger ‘count’ with introns included (v6.1.1; 10x Genomics).

Removal of background noise in gene expression matrices—We used the 

‘remove-background’ function of CellBender v0.2.0 to remove technical ambient-RNA 

counts and empty droplets from the gene expression matrices (Fleming et al., 2019). Cell 

Ranger generated 'raw_feature_bc_matrix.h5' files, which served as input for CellBender. 

The parameter ‘expected-cells’ was obtained from the Cell Ranger metric ‘Estimated 

Number of Cells’, while the parameter ‘total-droplets-included’ was set to a value between 

10,000–40,000 representing a point within the plateau of the barcode-rank plot.
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Quality control and filtering—The resulting expression matrices were processed 

individually in R v4.1.1 using Seurat v4.1.0 (Stuart et al., 2019). Filters were applied 

to keep cells with 500–10,000 genes, 1,000–60,000 UMIs, and <10% of mitochondrial 

reads in each individual sample. Additionally, Scrublet v0.2.1 (Wolock et al., 2019) 

and DoubletFinder v2.0.3 (McGinnis et al., 2019) were applied to identify and remove 

doublets with an expected doublet rate ranging from 2.8–6.4% based on the loading rate. 

Filtered gene-barcode matrices were normalized with the ‘NormalizeData’ function using 

the ‘LogNormalize’ method. The top 2,000 variable genes were identified using the ‘vst’ 

method in the ‘FindVariableFeatures’ function. Gene expression matrices were scaled and 

centered using ‘ScaleData’. Next, we performed principal component analysis (PCA) as 

well as uniform manifold approximation and projection (UMAP) dimension reduction using 

the top 30 principal components. UMAPs of individual samples were inspected prior to 

integration. In scRNA-seq samples, the two batches per patient derived from CD45+ and 

CD45− cells were merged. For patient MBM01_sc the CD45− batch failed and was excluded 

from subsequent analyses. Cell types were preliminarily annotated using SingleR v1.8.0 

(Aran et al., 2019) against its built-in reference ‘BlueprintEncodeData’.

Identification of malignant cells—Chromosomal CNA profiles of individual cells were 

inferred from transcriptional data using inferCNV v1.10.1 (Tirosh et al., 2016). For each 

sample, we used cells that were identified as immune cells by SingleR (Aran et al., 2019) 

using ‘BlueprintEncodeData’ as a diploid reference to estimate CNAs in the non-immune 

cells. We applied a cutoff of 0.1 for the minimum average read counts per gene among 

reference cells/nuclei, set the clustering to ‘subcluster’, denoised the output using the default 

‘sd_amplifier’ of 1.5, and ran Hidden Markov Models (HMM) to predict the CNA level. 

The proportion of scaled CNAs was then averaged over all chromosomes in each cell 

individually. We identified malignant cells using sample-specific thresholds for the average 

proportion of inferred copy number alterations (CNAs) per cell, which is largely defined by 

the cell-type composition of the sample.

Integration of individual samples—All individual samples were integrated in Seurat 

using the canonical correlation analysis (CCA) pipeline to remove batch effects. The 

‘SelectIntegrationFeatures’ function was applied to choose the features ranked by the 

number of datasets they were detected in. Next, the ‘FindIntegrationAnchors’ function 

selected 2,000 anchors between different samples using the top 50 dimensions from 

the CCA to specify the neighbor search space. ‘IntegrateData’ was then applied to 

integrate the datasets using the pre-computed anchors and the integrated dataset was scaled 

using ‘ScaleData’. PCA and UMAP dimension reduction based on the top 50 principal 

components were performed. In addition, we also integrated three separate batches of the 

dataset for cell type annotation: MBM with scRNA-seq, MBM with snRNA-seq and ECM 

snRNA-seq. These batches were subset to non-malignant cells, rescaled and PCA, UMAP, 

finding-neighbor and cluster analyses were applied to create the dataset for manual cell-type 

annotation.

Benchmarking of integration methods—To identify the best approach for batch 

correction of our dataset consisting of samples from different patients, different tissues 
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and different sequencing methods, we performed a comprehensive comparison of different 

integration methods (CCA (Butler et al., 2018), Harmony (Korsunsky et al., 2019), Conos 

(Barkas et al., 2019), STACAS (Andreatta and Carmona, 2021)) in comparison with the 

non-integrated baseline. We performed the different integration methods on four batches 

consisting of all profiled cells (MBM+ECM scn, i.e. single cells and nuclei), snRNA-seq 

alone (MBM+ECM sn), and also specific comparisons for T cells as STACAS was largely 

benchmarked on T cells (MBM+ECM scn T cell; MBM+ECM sn T cell).

Harmony: To integrate the different batches with Harmony v0.1.0 (Korsunsky et al., 2019), 

we used the top 30 principal components as input for Harmony and removed the bias 

resulting from the ‘patient’ variable. Subsequently, the top 30 Harmony dimensions were 

selected for quantifying UMAP embeddings.

Conos: We generated a Conos object containing the individual, Seurat-preprocessed samples 

using Conos v1.4.4 (Barkas et al., 2019). Next, we built a joint graph with default settings 

that encompasses all samples using PCA space including the top 50 principal components. 

Then, we generated an embedding of the joint graph using the function ‘embedGraph’ with 

UMAP setting selected.

STACAS: Sub-Type Anchoring Correction for Alignment in Seurat (STACAS) v1.1.0 

(Andreatta and Carmona, 2021) is a method for anchor identification and was performed 

on T-cell subsets of our dataset. We excluded samples with <50 T cells and ran the 

Seurat preprocessing pipeline on each sample individually with 20 principal components 

and 500 anchor features excluding mitochondrial, RPL, RPS and cell cycle genes. Next, we 

computed an integration tree with STACAS anchors that was passed as a parameter to the 

Seurat function ‘IntegrateData’.

Local Inverse Simpson Index (LISI) score: To quantify how different integration methods 

perform, we used the recently developed Local Inverse Simpson Index (LISI) score 

(Korsunsky et al., 2019). Specifically, we determined the integration LISI score (iLISI) 

which measures how well cells from different batches (patients) mix, and where higher 

scores indicate better mixing and therefore integration. We also used the cell-type LISI 

(cLISI), which measures how well specific cell-type clusters are separated from other cell-

type clusters, and where a lower score is desirable.

Differential gene expression (DGE) and geneset enrichment—For cell type 

annotation, DGE was performed using the Seurat function ‘FindAllMarkers’ on normalized 

count data to identify positive (overexpressed) markers in each population (Table S2). 

The MAST algorithm was used to identify differentially expressed genes (DEGs) between 

two groups of cells unless stated otherwise and the log-fold change was set to 0.25. The 

parameter ‘min.pct’ was set to 0.25 to assure that genes are detected at a minimum fraction 

of 25% of cells in either of the populations.

To identify differences between MBM and ECM for each cell type, we first downsampled 

the snRNA-seq dataset to ensure that the average per-cell total count is equal between 

MBM and ECM using the function ‘downsampleBatches’ from the scuttle R-package v1.4.0 
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(McCarthy et al., 2017). Additionally, the number of cells for DGE was downsampled to 

the number of cells in the smaller batch. The resulting DEGs were analyzed for geneset 

enrichment using hypeR v1.10.0 (Federico and Monti, 2020). The background population of 

genes was set to include all detected genes and geneset over-representation was determined 

using the hypergeometric test. In the MBM vs. ECM comparisons, we scored the following 

pathways of MSigDB v7.4.1 (Dolgalev, 2021): GO BP, GO MF, Canonical Pathways, 

Hallmarks, Kegg, Reactome, PID, and WikiPathways. Pathways with an FDR <0.0001 

were applied as module scores to the Seurat object. We then used a modified version of 

the GmAMisc R-package v1.2.0 (Alberti, 2021) to perform a permutation-based t-test to 

compare the module scores identified as significantly different between MBM and ECM. 

Outliers (defined as >90th percentile or <10th percentile) were excluded from the input 

dataset and 10,000 permutations were performed to identify the most robust differential 

pathways between MBM and ECM. Violin plots of selected, permutation-significant 

pathway module scores were reported including p-values from Wilcoxon rank-sum tests.

To identify differences between the single-cell and single-nuclei transcriptomes in TOX+ 

CD8+ T cells and microglia, we removed all RPL, RPS and MT genes to find differences 

aside from known stressors based on sample handling. Next, we downsampled using 

the function ‘downsampleBatches’ to adjust for differences in quality between the two 

sequencing techniques followed by DGE using the 'FindMarkers' function with ‘logFC’ 

and ‘min.pct’ set to zero and 'max.cells.per.ident' set to the number of cells in the smaller 

batch. DEGs with an adjusted p-value <0.05 and log2FC >2 or <−2 were considered as 

differentially regulated. The average expression of each sequencing group was calculated 

by taking the log2 (with a pseudocount of 1) of the averaged exponent (minus 1) of the 

normalized output from the downsampled Seurat assay. The resulting two vectors were 

plotted in a scatter plot and correlation was assessed using Pearson correlation.

Volcano plots are based on DEGs using the 'FindMarkers' function with ‘logFC’ and 

‘min.pct set’ to zero. In DGE of T cell subsets, TRAV/TRBV genes were removed before 

applying the 'FindMarkers' function.

Cell type annotation—We integrated profiles based on their sequencing method and 

tissue origin to enable the most concise cell-type annotation. The main cell types were 

identified by manual annotation of differential gene expression (DGE) between clusters 

in the non-malignant data subset based on known markers and signatures (Table S1) 

(Azizi et al., 2018; Cahoy et al., 2008; Lein et al., 2007; Olah et al., 2020; Zilionis 

et al., 2019). The initial labeling resulted in the identification of endothelial, epithelial, 

stromal, CNS, myeloid, low-quality, T/NK and B/plasma cell populations. Next, we 

split the Seurat object into subsets of the main labels and reran scaling, PCA, UMAP 

dimension reduction, clustering and DGE analysis on each subset. The resulting clusters 

were annotated manually or using cell-type-specific single-cell signatures from respective 

cell atlases (Table S2), and the cell-type labels were added to the main integrated object. 

The ‘AddModuleScore’ function was applied to calculate average expression levels of gene 

signatures on single-cell level. Additionally, cell-cycle phases were scored in the subsets 

using the ‘CellCycleScoring’ function, adjusted for individual cutoffs and added to the main 
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object. Mouse-derived signatures were converted to human homolog genes using biomaRt 

v2.46.3 (Durinck et al., 2009).

Cell type frequency comparison—We calculated frequencies of cell types in all 

snRNA-seq samples from MBM and ECM groups and compared medians of the two groups 

to determine differences in frequency. For MBM samples, cell type frequencies between 

scRNA-seq and snRNA-seq samples were calculated as well. Significance was assessed 

using Wilcoxon rank-sum test.

Diffusion component (D.C.) analysis—We applied diffusion maps as a nonlinear 

dimensionality reduction technique to examine the major components of variation across 

different cell types. We computed D.C.s using the ‘DiffusionMap’ function of the Destiny 

R-package v3.9.0 (Angerer et al., 2016). To identify drivers of tumor-cell variability, non-

cycling snRNA-seq samples of MBM and ECM tumor cells were analyzed individually. The 

Destiny-derived eigenvectors were added to the respective Seurat objects as embedding for 

a dimension reduction object. For each sample, we considered the top 50 features with the 

largest absolute value of projected loadings for each of the first three D.C.s and computed 

the overlap of recurring genes among samples. Genes that were detected at a frequency 

of >0.25 were included in geneset enrichment analysis using hypeR v1.10.0 (Federico and 

Monti, 2020).

ProjecTILs analysis of T cell states—Without batch effect correction, T cell profiles 

clustered mainly by technology (scRNA-seq vs. snRNA-seq) and by patient/batch. To 

interpret T cell states irrespective of batch and technology, we applied a reference-based 

approach (Andreatta et al., 2021). Briefly, pure T cell transcriptomes from large samples 

(>200 cells) were integrated using Seurat-STACAS (Andreatta and Carmona, 2021; Stuart 

and Satija, 2019), and unsupervised cell clusters were manually annotated to generate a 

“reference atlas”. This hybrid sc/snRNA-seq reference atlas defines five TIL subtypes that 

are consistently observed across sequencing technologies and samples: TOX+ CD8+ T cells 

co-expressing TOX and multiple co-inhibitory receptors including HAVCR2 and ENTPD1; 

TCF7+ CD8+ T cells with low levels of inhibitory receptors and high levels of IL7R, CD69 
and CCL5; helper/memory CD4+ T cells expressing high levels of TCF7, SELL, IL7R; 

Tregs expressing FOXP3 and IL2RA; and follicular helper-like CD4+ T cells (Tfh-like), 

co-expressing TOX, TOX2 and TCF7. ProjecTILs v1.0 using default parameters was then 

used to project new samples (either sc- or snRNA-seq datasets) into the reference hybrid 

sc/snRNA-seq atlas.

TCR data processing and integration—TCR FASTQ files were aligned using Cell 

Ranger ‘vdj’ (v6.1.1; 10x Genomics). The resulting filtered contig annotations were 

consolidated and added to the Seurat object. TCRs with sequencing information for both 

chains were considered for downstream analyses. Clones with more than one detected copy 

were labelled as expanded.

B cell chain analysis—To analyze the distribution of heavy and light chains in B and 

plasma cells, the dataset was subset to include only B and plasma cells. For the identification 

of variable chain regions, we selected the highest expressed heavy and light chain gene of 
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each cell that expressed both, heavy (starting with 'IGHV’) and light (starting with ‘IGLV’ 
or ‘IGKV’) chain encoding genes. Next, we identified the highest expressed constant chain 

region among expressed genes following the pattern ‘IGH[G, M, A, or E][number]’. The 

resulting pairs of heavy and light chains were visualized as a heatmap using average linkage 

for hierarchical clustering analysis.

Non-negative matrix factorization (NMF) using KINOMO—Non-negative matrix 

factorization (NMF) is a widely used method for performing dimensional reduction and 

feature extraction on ‘non-negative’ data. The conventional NMF (Lee and Seung, 1999) 

decomposes matrix A into two matrices with non-negative entries with smaller ranks, A 
≈ WH, where A ∈ R(n×m), W ∈ R(n×k), H ∈ R(k×m). Without loss of generalization, rows 

of A represent features (e.g., genes) and columns of A represent samples. Depending on 

context, W can be interpreted as a feature mapping, rows of W represent disease profiles or 

meta-genes (Brunet et al., 2004) and columns of H are compact representations of samples, 

i.e., sample profiles. In this manuscript we rely on using Kernel dIfferentiability correlation-

based NOn-negative Matrix factorization algorithm using Kullback-Leibler divergence loss 

Optimization (KINOMO), a semi-supervised NMF model that is robust to noises and uses 

‘prior’ biological knowledge for better refinement (Tagore et al., 2022). KINOMO has 

three major steps, namely, i) subsetting the dataset to snRNA-seq-derived tumor cells, ii) 

NMF core module, and iii) meta-gene and meta-program (MP) estimation. The filtration 

and cleaning steps begin with a scRNA-seq sample, followed by tumor cell estimation, 

normalization and scaling. The second step consists of two sub-steps a) Factorization Error 

analysis, using L2,1 norm loss to handle outliers, add prior knowledge by introducing 

graph regularization parameters, sequential quadratic approximation for Kullback-Leibler 

divergence loss, local geometrical structure preservation, optimizing the update rules for 

approximation matrix WH and clustering using Kernel differentiability correlation; and b) 

factor rank survey analysis. The third step consists of meta-gene and factor block estimation 

by performing co-correlation analysis of estimated factors (sample-wise) using Spearman’s 

correlation. The consensus factors are selected using significance testing (p-value) and/or 

correlation value among all factors and using a correlation threshold of 0.4–0.9. This is done 

iteratively, until consensus MPs (metaprograms) are obtained (Tagore et al., 2022).

Master regulator analysis—The regulatory network in this study was reverse-

engineered from scRNA-seq data using the ARACNe-AP algorithm (Basso et al., 2005; 

Lachmann et al., 2016). We generated networks for each patients’ tumor cells and integrated 

the networks by taking a union of the predictions of all networks. p-values of Master 

regulator (MR)-target interactions predicted by the networks were integrated using Fisher’s 

method (Fisher, 1992). The final tumor network contained predictions for regulators 

regulating target genes through interactions, respectively. The final tumor network contained 

predictions for 3,112 regulators regulating 8,210 target genes through 145,065 interactions, 

respectively. The relative activity of each protein represented in the tumor network was 

inferred using the VIPER algorithm v1.26.0 (Alvarez et al., 2016; Ding et al., 2018). 

Conceptually, the VIPER algorithm is similar to the master regulator inference algorithm 

(MARINA) (Lachmann et al., 2016; Lefebvre et al., 2010), which uses the MR targets 

inferred by the ARACNe algorithm to predict drivers of changes in cellular phenotypes. 
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In addition to calculating the enrichment of ARACNe-predicted targets in the signature 

of interest, VIPER also considers the regulator mode of action, regulator–target gene 

interaction confidence, and the pleiotropic nature of each target gene’s regulation. Statistical 

significance, including p-value and normalized enrichment score (NES), was estimated by 

comparison to a null model generated by permuting the samples uniformly at random 1,000 

times.

SCENIC (single-cell regulatory network inference and clustering)—SCENIC/

pyscenic v0.11.2 (Aibar et al., 2017) is a computational method for gene regulatory 

network (GRN) reconstruction and cell-state identification that predicts transcription factor 

(TF) activities. Co-expression modules between TFs and target genes were inferred using 

GRNBoost based on correlations between expression of genes across snRNA-seq-derived 

tumor cells. RcisTarget then refined the selection of modules by keeping only modules with 

significantly enriched TF binding motif. Subsequently, AUCell scored the activity of each 

regulon in each cell.

RNA velocity—We used velocyto v0.17 (La Manno et al., 2018) to generate loom files 

from bam files, which were generated by Cell Ranger. Next, the individual loom files were 

merged and Harmony-integrated using scanpy v1.8.2 (Wolf et al., 2018) in python v3.9.9. 

We then ran scVelo v0.2.4 (Bergen et al., 2020) using default settings to obtain RNA 

velocity and pseudotime.

Processing of cell line bulk RNA-seq (in vitro)—We quantified abundances of 

transcripts from bulk RNA-sequencing of cell lines using Kallisto v0.46.1 (Bray et al., 

2016). Next, we imported the abundance.h5 files into R using tximport v1.22.0 (Soneson 

et al., 2016) and summarized the counts to gene-level. Differential gene expression was 

performed using DESeq2 v1.34.0 (Love et al., 2014) on raw counts with an additive model 

including the cell line and tissue origin (i.e., MBM vs. ECM).

Processing of cell line bulk ATAC-seq data (in vitro)—Raw sequencing FASTQ files 

were evaluated for quality and adapter content using FastQC v0.11.9 followed by adapter 

removal (-a CTGTCTCTTATA -A CTGTCTCTTATA) and quality trimming using cutadapt 

v3.6 (Martin, 2011) and finally aligned with hisat2 v2.2.1 (Kim et al., 2019) (default, -X 

1000) to the human genome (GRCh38). Using samtools the BAM files were sorted, filtered 

for extra-chromosomal DNA, mitochondrial DNA and for reads overlapping blacklisted 

regions (Amemiya et al., 2019). Duplicate reads were removed using sambamba v0.6.8 

(Tarasov et al., 2015) before downstream analyses. Accessible peaks were identified for 

each sample using MACS2 (v2.2.7.1, parameters: --nomodel --shift −100 --extsize 200 –

broad) (Feng et al., 2012). BigWig files were generated using bamcoverage from deepTools2 

(v3.5.1; --normalizeUsing CPM --binSize 25 --smoothLength 100) (Ramírez et al., 2016). 

The BAM, BED, and BigWig files were used as input in CoBRA v2.0 (Containerized 

Bioinformatics Workflow for Reproducible ChIP/ATAC-seq Analysis) (Qiu et al., 2021) to 

perform differential peak calling, generate differential site heatmaps and motif discovery. 

Footprinting analysis was done using the TOBIAS pipeline v0.13.2 (Bentsen et al., 2020) 

starting with transcription factor motifs from the JASPAR CORE 2020 (Castro-Mondragon 
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et al., 2022). When comparing differentially expressed genes with ATAC-seq, we used 

a q-value of 0.1 and a two-fold-change in expression as thresholds. The negative log of 

p-adjusted values was plotted against log2FC.

Scoring signatures on bulk RNA-seq data—We used the top 100 genes of our 

snRNA-seq-derived DEG comparisons for MBM and ECM tumor cells as signatures on the 

bulk-RNA-seq of the Fischer dataset (Fischer et al., 2019). The singscore R-package v4.0.3 

(Foroutan et al., 2018) was used to apply bidirectional gene signatures (with the top 100 

snRNA-seq derived MBM markers as up-set and ECM as down-set in MBMbulk; and vice 

versa for ECMbulk samples) on bulk-RNA-seq data. The bulk-RNA-seq genes were ranked 

based on their transcript abundance in increasing order for the up-set and in decreasing 

order for the down-set. Mean ranks were normalized separately, centered and then summed 

to provide the score which ranges between −1 and 1. High scores show concordance to 

the specified signature. The resulting scores reflect the relative mean percentile rank of the 

provided markers within each sample.

Analysis of bulk RNA-seq data from xenograft models (in vivo)—Alignment 

of FASTQ files was done using the seq-n-slide pipeline route rna-star (Dolgalev, 2022). 

Briefly, the Trimmomatic package v0.36 (Bolger et al., 2014) was used to trim adapters and 

low-quality bases. STAR v2.7.3a (Dobin et al., 2013) was used to align to human genome 

hg38, in addition to screening for alignment to other species and common contaminants. The 

featureCounts package v1.6.3 (Liao et al., 2014) was used to generate a gene-samples counts 

matrix. Read quality was assessed using FASTQC v0.11.7, picard v2.18.20, and FastQ 

Screen v0.13.0 (Wingett and Andrews, 2018). Differential gene expression was performed 

using DESeq2 v1.34.0 (Love et al., 2014) on raw counts with an additive model including 

the cell line and tissue origin (i.e., MBM vs. ECM). The sample distance matrix was 

generated based on the Euclidean distances of the ‘vst’ (varianceStabilizingTransformation) 

function output and clustered using ‘complete’ linkage.

Differential protein expression in proteomics data of short-term cultures—The 

proteomics dataset was obtained from Dr. Eva Hernando’s Lab and is part of a recently 

published study (Kleffman et al., 2022) and deposited at MassIVE (accessible at https://

massive.ucsd.edu/; ID: MassIVE MSV000088814). In brief, the MS/MS spectra were 

searched against the UniProt human reference proteome with the Andromeda search engine 

(Cox et al., 2011) integrated into the MaxQuant environment v1.5.2.8 (Cox and Mann, 2008) 

using the following settings: oxidized methionine (M), TMT-labeled N-term and lysine, 

acetylation (protein N-term) and deamidation (asparagine and glutamine) were selected as 

variable modifications, and carbamidomethyl (C) as fixed modifications; precursor mass 

tolerance was set to 10 ppm; fragment mass tolerance was set to 0.01 Th. The identifications 

were filtered using a false-discovery rate (FDR) of 0.01 using a target-decoy approach at 

the protein and peptide level. Only unique peptides were used for quantification and only 

proteins with at least two unique peptides were reported. Data analysis was performed using 

Perseus (Tyanova et al., 2016). Protein levels were median centered and log2-normalized. 

To identify differentially expressed proteins between the MBM and ECM cohorts, a paired 

t-test was performed on three sample pairs.
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MBM signature overlap—To identify overlapping genes differentially expressed in 

MBM across techniques in snRNA-seq (this study), RNA-seq (Fischer et al., 2019), and 

proteomics (Kleffman et al., 2022) datasets, we applied a log2FC cutoff of 0.4 for all cohorts 

and an adjusted p-value of 0.05 in snRNA-seq and RNA-seq.

Copy number alteration (CNA) analysis—For each MBM and ECM sample in our 

dataset, we used inferCNV results to calculate the median tumor-cell copy number of each 

gene. We then defined a gene as amplified if its median copy number was higher than the 

median inferred copy number of all genes in each sample, and conversely as deleted if its 

median copy number was lower. We obtained WES seg files from the authors of the Fischer 

et al. dataset (Fischer et al., 2019) and processed them using the Bioconductor package 

DNAcopy v1.66.0 (Venkatraman and Olshen, 2007) with an interval of [−0.4 0.4] as lower 

and upper thresholds to define a segment as deleted or amplified, respectively.

Fraction of the genome altered—For the MBMWES and ECMWES samples obtained 

from the authors of the Fischer et al. (Fischer et al., 2019) dataset, we calculated the 

fraction of the genome for each sample that was either amplified or deleted according to 

the above criterion. We then used the ‘plotFreq’ function from the Bioconductor package 

copynumber v1.32.0 (Nilsen et al., 2012) to visualize the altered genome fraction across 

each chromosome.

Initial processing and quality control of spatial data generated using 
SlideSeqV2—We used the Slide-seq tools pipeline (Stickels et al., 2021) to process our 

Slide-seq data, and loaded the data into Seurat. For all pucks besides MBM05 replicate #3 

and MBM11 replicate #3, we did not apply any additional quality control thresholds. For 

MBM05 replicate #3 and MBM11 replicate #3p, due to their lower quality compared to the 

other samples, we filtered out cells with fewer than 20 unique genes.

Assignment of discrete cell types with Robust Cell Type Decomposition 
(RCTD)—We used the RCTD pipeline v1.2.0 (Cable et al., 2021), as part of the R package 

spacexr, which accepts two inputs: 1. count matrices for a spatial single-cell sequencing 

dataset, and 2. a non-spatial single-cell sequencing dataset with cell type annotations. We 

used count matrices from our SlideSeqV2 dataset for MBM and ECM samples. For our 

reference in this case, we used non-spatial single-nuclei sequencing data from all MBM 

and ECM samples, with the main cell types manually annotated as described previously. 

RCTD then uses the reference dataset to learn expression profiles for each annotated cell 

type, and uses these profiles to deconvolve cell type proportions at each location in the 

spatial single-cell data. Based on these inferred cell type proportions, discrete cell types 

were assigned by taking the cell type with the highest inferred proportion at a particular 

location.

Analysis of spatial differential gene expression (DGE) in SlideSeqV2 samples
—We used the ‘SCtransform’ function in Seurat (Hafemeister and Satija, 2019) to 

normalize and stabilize the variance of the spatial data. We then used the function 

‘FindVariableFeatures’, with ‘selection.method’ parameter set to ‘vst’, to determine the top 

1,000 genes whose expression was variable in each puck. Finally, we used the function 
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‘SpatiallyVariableFeatures’, with ‘selection.method’ parameter set to ‘moransi’, to rank 

genes whose expression was spatially variable in each puck.

We then manually examined patterns of gene expression in our spatial data in order to 

determine shared patterns of spatial co-expression. We observed that genes with a Moran's 

I value greater than .05, roughly corresponding to a p-value of <.01, often showed high 

levels of spatial DGE, with expression being clustered in distinct regions of the puck. On the 

other hand, genes below this threshold usually did not show any distinct pattern of spatial 

DGE. Therefore, we extracted all genes with Moran’s I above .05, and manually classified 

those with shared spatial DGE patterns into groups (Table S6). We then used these groups as 

signatures to score spatial and non-spatial data using the Seurat function ‘AddModuleScore’, 

as described previously.

Finally, focusing on ECM_01 replicate #2, we observed that TIMP1 and HLA-A appeared 

to be spatially anti-correlated, with TIMP1 expression highest on the left side of the puck, 

and HLA-A higher on the right side. We therefore calculated the Spearman correlation 

of expression of each gene in our data with TIMP1, and selected those with a Bonferroni-

corrected p-value <0.05. We then manually examined plots of gene expression for each gene 

with significant correlation with TIMP1, to confirm that they were spatially correlated or 

anti-correlated.

Cell type co-occurrence analysis—We wrote custom R and Python scripts to 

transfer spatial cell type annotations from RCTD into AnnData objects within the squidpy 

framework (Palla et al., 2022). We then used the spatial_neighbors and nhood_enrichment 

functions in squidpy to calculate the significance of co-occurrence between every pair of 

cell types in each sample. The significance of each co-occurrence interaction is given as a 

Z-score value after permutation testing within the nhood_enrichment function. We gathered 

all interactions within a Z-score >3.09, corresponding to a p-value of .001.

Spatial DEG detection with CSIDE, and comparison with spatial DEG from 
Moran’s I—We used the run.CSIDE.nonparam function from the spacexr package to 

calculate cell type-specific spatial DEG, using as input the RCTD output objects that were 

generated by RCTD, also from the spacexr package. Following the online tutorial for 

CSIDE, we decided to use very permissive parameters of gene_threshold=0.01, fdr=0.25, 

and cell_type_threshold=15 for the run.CSIDE.nonparam function. However, with these 

parameters, we encountered a problem during our analysis in which some of the parameter 

estimates for some genes failed to converge in the course of the algorithm. The algorithm 

thus halted before reporting any results. After correspondence with the author of the spacexr 

package, Dylan Cable, we decided to work around this problem by slightly modifying 

the code of the spacexr package, so that it no longer checks for gene convergence before 

reporting results.

For each sample, we thus obtained a list of spatial DEG from CSIDE for each cell type in 

the sample. We combined the lists of cell-type specific spatial DEG into one gene list for 

each sample, and then checked for overlap with the list of spatial DEG obtained by Moran’s 

I on the same sample. We used two statistical tests for this comparison. First, we used the 
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hypergeometric test with the R function phyper(q, m, n, k, lower.tail=FALSE), with q being 

the number of overlapping spatial DEG between the two methods, m the number of Moran’s 

I spatial DEG, n the number of genes in the sample – the number of Moran’s I spatial DEG, 

and k the number of CSIDE spatial DEG. Second, we also used a simple permutation test. 

Given a sample with the number of Moran's I spatial DEG=x, we randomly selected 10,000 

subsets of size x from all genes in that sample, and calculated the overlap of each random 

subset with the set of CSIDE spatial DEG for that sample. We then compared the resulting 

distribution of overlaps with the overlap of the true Moran’s I and CSIDE spatial DEG, and 

computed the probability of getting an overlap as large or greater than the true overlap. Both 

the hypergeometric and permutation tests returned very significant p-value results, which are 

reported in Table S6.

Multiplexed image analysis—Raw images were processed with bfconvert from bftools 

v5.8.2 for performing cell segmentation (Linkert et al., 2010). Whole-cell segmentation was 

performed on raw images using MESMER v.0.3.0 with the containerized version using 

singularity v3.9.2 (Greenwald et al., 2021) on a computational cluster. Mesmer is a deep-

learning cell segmentation algorithm trained on a large number of images to segment nuclei 

and cells in histological images with human level performance. We used DAPI staining to 

identify nuclei and CD138 staining for the membrane marker as input for Mesmer with 

whole-cell segmentation and --mpp 0.49 settings to specify the micron per pixel image 

resolution. Cell segmentation masks were then used with the MCMICRO (Schapiro et al., 

2021) quantification module using the nextflow (v21.10.6.5660) (Di Tommaso et al., 2017) 

implementation of MCMICRO, to quantify marker intensities for all identified cells for each 

image. Additional cell segmentation by using DAPI staining, and marker classifiers were 

created with QuPath v.0.3.2 (Bankhead et al., 2017), used to cross check thresholds utilized 

in image data analysis.

Quantified marker intensities were analyzed and processed using a local instance of Python 

and Jupyter notebook v 3.9.0 (Kluyver et al., 2016). A metadata file was created for each 

image file, containing tissue and sample information as well as the number of cells detected 

by MCMICRO. For the CD68 marker the raw intensities were log-scaled, all the raw 

intensities equal to 0 were removed from the log-scaled data. The data distribution for both 

raw and log-scaled maker intensities were visualized. A raw intensity value of 1.7564 was 

chosen as the cutoff to call CD68+ cells on all images. This cutoff value was visually 

reviewed by an expert by overlaying the original marker intensity with the Mesmer predicted 

mask (Figure S4H,I,J).. The marker intensity distribution of CD68+ cells was calculated and 

visualized by tissue of origin and by sample. We calculated the distribution of the number of 

CD68+ cells (per image) and the proportion of CD68+ cells to the total number of identified 

cells (per image). The proportion of CD68+ cells was then visualized by tissue and sample. 

To test the null hypothesis that two given populations are equal, we performed a two-sided 

Wilcoxon rank-sum test to compare both the intensities and the proportion of CD68+ cells 

between MBM and ECM.

The raw intensities for the CD138 marker were log-scaled, any raw intensity equal 0 was 

removed from the log-scaled data. The intensity distribution was visualized for both raw 

and log-scaled intensities and a cutoff value of 1.6312 was chosen to label CD138+ cells. 
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Expert visual inspection of the cutoff value was performed by overlaying the original marker 

intensity with the predicted mask (Figure S4H,I,J). The average CD138+ cells / total cells 

ratio per image was obtained by applying the CD138 cutoff value to all cells in an image 

and dividing it by the total number of detected cells. All images without CD138+ cells 

were removed from further analysis. The CD138+/Total ratio was visualized by sample and 

tissue of origin. A two-sided Wilcoxon rank-sum test was performed to test the CD138+ 

ratio between MBM and ECM samples. For all images with at least two CD138+ cells a 

neighborhood analysis was performed. The analysis consisted in the identification of all 

CD138+ cells in the close neighborhood of all other CD138+ cells per image. To obtain the 

CD138+ cell neighborhood the pairwise euclidean distances between all CD138+ cells was 

calculated. From these distances we counted all the CD138+ cells below a given distance 

threshold and averaged the neighborhood value for each cell in the image. For this study 

a threshold value of 50 micrometers was used. After the CD138+ neighborhood value 

was calculated for all images, two-sided Wilcoxon rank-sum tests were performed at all 

threshold values to compare the neighborhood values between MBM and ECM samples. For 

NCAM1 and melanoma lineage markers (LIN; SOX10 and HMB-45) visualization of raw 

and log-scaled intensity values were performed and gates were visualized (Figure S4H,I,J). 

Cutoff values of 1 for NCAM1 and 1 for LIN were chosen and validated by visual inspection 

by overlaying original image values with the predicted mask. Data was gated for LIN and 

the NCAM1 intensity values for the gated data were then visualized by tissue of origin and 

compared between MBM and ECM samples using a two-sided Wilcoxon rank-sum test. We 

also visualized and calculated the proportion of double positive NCAM1+ LIN+ cells to all 

the LIN + cells (NCAM1+ LIN+/ LIN+). This was performed by first gating on LIN and 

subsequentially on NCAM1. The number of double positive cells was then divided by the 

number of LIN+ cells by image. Finally, a two-sided Wilcoxon rank-sum test was performed 

comparing the double positive to LIN+ ratio between MBM and ECM samples.

Quantification of CD163 protein expression—Images for the DAPI and CD163 

stains were imported into CellProfiler-3.1.9 (Broad Institute). For image analysis, nuclei 

were first segmented using minimum cross entropy method, and then, using the segmented 

nuclei as seeds, total cellular areas were segmented using the propagation method. Size 

restrictions were entered in the primary nuclei segmentation to improve accuracy; objects 

with diameters either below or above a pre-specified pixel length were excluded. After 

detection of cells, a local background area surrounding each cell was determined by 

expanding the cells by a set number of pixels, and then subsequently subtracting out the 

initial cellular area. For fluorescence calculation, the mean fluorescent intensities inside 

the cellular area (MFI_cell) and in the background area (MFI_sig) were measured, and the 

final intensity was calculated as MFI_CD163 = MFI_cell - MFI_sig. To restrict analysis 

to CD163+ cells and lower the number of false positives due to autofluorescence, we 

ultimately performed calculation on cells whose MFI_CD163 was above a threshold set at 

the mean of the total distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Single-cell/spatial transcriptomics atlas of melanoma brain and extracranial 

metastases

• Chromosomal instability is associated with brain metastasis

• Cancer cells in brain metastases enrich for a neuronal-like metaprogram

• Macrophages have a pro-tumorigenic phenotype in brain metastases
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Figure 1. Study design and comparison of fresh vs. frozen profiling
(A) Study design including specimens, analyses and validation approaches. (B) Quality-

control parameters of a matched MBM specimen profiled with sc/snRNA-seq. (C,D) UMAP 

embedding with (C) cell type assignment and (D) profiling method. (E) Inferred copy 

number alterations (CNAs) from a matched MBM specimen processed with scRNA-seq 

(top) and snRNA-seq (bottom).
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Figure 2. Cellular and genomic landscape of MBM
(A) UMAP of integrated transcriptomes of 22 MBM and 10 ECM samples showing cell 

type assignment, (B) sequencing, and (C) metastatic site. (D) Cell type distribution of 

MBM/ECM profiled by snRNA-seq. (E) UMAP of integrated malignant cell transcriptomes 

profiled by snRNA-seq data and indicated cycling status and tissue origin (inset). (F) CNA 

inference in cancer cells (rows) across chromosomes (columns) with amplifications (red) 

and deletions (blue) based on method (far left bar), tissue site (middle bar) and patient (inner 

bar). (G) Fraction of genome altered in MBMWES and ECMWES from Fischer et al. (H) 

Frequency of micronuclei per visual field in patient-derived MBM (5B1 and 12-273 BM) or 

ECM (4L and 12-273 LN, respectively) cell line cultures. (I) Relative in vitro migration of 

MBM/ECM models as in (H). (J) Design for in vivo experiments using 5B1 and 4L models. 

(K) Frequency of animals with/without MBM and (L) ECM burden from experiment in 5B1 

and 4L injection as in (J). Bars, mean±SD. Wilcoxon rank-sum test.
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Figure 3. Cancer cell specific programs of MBM profiled by snRNA-seq
(A,B) Module scores of (A) MITF and (B) AXL programs in melanoma cells of MBM/

ECM. Wilcoxon rank-sum test. (C) DEGs between MBM and ECM cancer cells. Patient and 

tissue origin of individual cells (ticks) indicated on top bar. Selected genes (rows) indicated 

with gene name. (D) Pathway module scores of selected, differentially enriched pathways 

(adjusted p<0.0001) in MBM/ECM melanoma cells. (E) Differential inferred protein activity 

in melanoma cells from MBM/ECM (indicated by ticks on top bar) with selected rows 

(proteins) highlighted. (F,G) Scoring of MBM signature on MBMbulk/ECMbulk from Fischer 

et al. and (G) mouse xenograft-derived MBM/ECM transcriptomes from 5B1/4L and 12-273 

BM/LN; Wilcoxon rank-sum test. (H) Spearman correlation of individual programs from 

cancer cells and metaprograms (MP) (black boxes) using KINOMO; left bar indicating 

tissue origin. (I) Normalized gene contribution of MPs (columns) identified in (H) and 

biological function (left). (J,K) Count of programs from tissue sites (J) and individual 

samples (K) in metaprograms from (H). (L) Log2FC of DEGs in MBM with recurrent 

identification in snRNA-seq (this study; x-axis), bulk RNA-seq (Fischer et al.; y-axis) 
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and proteomics datasets (Kleffman et al.; dot size). (M,N) Exemplary immunofluorescence 

micrograph showing nuclei (DAPI), CD8, NCAM1, CD68, CD138, and SOX10/HMB-45 

(=LIN) expression in MBM (M) and ECM (N). Scale bar=100 μm. (O) Fraction of 

NCAM1+ melanoma (LIN+) cells in MBM/ECM (boxplot indicating mean + quartiles) 

and (P) intensity of NCAM1 in melanoma cells. Wilcoxon rank-sum test.
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Figure 4. Landscape and differences of myeloid cells in MBM/ECM profiled by snRNA-seq.
(A) UMAP of integrated myeloid cells from 17 MBM and 10 ECM samples, indicating cell 

type assignment. (B) UMAP as in (A) with tissue origin. (C) Fractions of cell types in the 

myeloid compartment of MBM and ECM. (D) Violin plots of marker genes in myeloid cells 

separated by tissue origin. Columns indicate cell type assignment. Rows represent selected 

marker genes. (E) Diffusion component (D.C.) analysis of monocytes/macrophages colored 

by FTL expression (left), cell type (top right) and tissue origin (bottom right). (F,G) RNA 

velocity-based UMAP of MDM-c1 and FTL+ MDM in MBM showing FTL expression (F) 

with cell type assignment (inset) and pseudotime (G). (H) Violin plots of selected genes 

across all MDMs and separated by tissue site; MAST, adj. p-value as indicated. (I,J) Fraction 

of macrophages (CD68+ cells, boxplot indicating mean and quartiles) (I) and intensity 

of CD163 protein (J) measured by IF in an independent patient cohort of MBM/ECM. 

Wilcoxon rank-sum test. (K) D.C. 1–3 of microglia profiled showing two major populations, 

microglia (MG)-1 and MG-2. (L) Volcano plot of DEGs between MG-1 (activated) and 

MG-2 subpopulations.
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Figure 5. Transcriptional and clonal T and B cell landscape in MBM.
(A,B) UMAP embedding of T/NK cells profiled by snRNA-seq showing cell type 

assignment (A) and tissue origin (B). (C) Fraction of T/NK cell subsets shown in (A). 

(D) Violin plots of selected genes (rows) in T/NK cell subsets (columns) and separated 

by tissue origin. (E) Violin plots of CD8+ TOX+ T cells profiled by snRNA-seq showing 

differentially expressed immune checkpoints (rows) by tissue origin. MAST, adj. p-value as 

indicated. (F) D.C. 1-3 of CD8+ T cells (profiled by scRNA-seq) indicating subsets (TCF7+ 

or TOX+, inset) and clonal expansion. (G) T cell terminal differentiation signature score 

on in D.C. embedding shown in (F). (H) Volcano plot depicting DGE of expanded and 

non-expanded CD8+ T cells in MBM profiled by scRNA-seq. (I) D.C. embedding of B cell 

differentiation showing pseudotime projection in B and plasma cells profiled by sc/snRNA-

seq. (J) Exemplary IF micrograph showing plasma cell aggregates in an MBM. Scale bar = 

100 μm. (K) Box plot showing local neighborhood in MBM and ECM quantifying number 

of CD138+ plasma cells in direct vicinity of CD138+ plasma cells as a metric for plasma cell 

clustering in tissue. Boxes display mean and quartiles, Wilcoxon rank-sum test.
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Figure 6. Spatial features of metastatic melanoma.
(A) Illustration of SlideSeqV2 experimental protocol. (B) Illustration of computational 

approach to analyze spatially auto-correlated genes (using Moran’s I) in specific cell 

types and tumor regions, and measurement of cellular co-occurrence. RCTD, robust cell-

type decomposition. (C) Correlation of malignant cell fraction in spatial transcriptomics 

and matched snRNA-seq. Error bands, 95% s.e. interval on the Spearman’s correlation 

coefficient. (D-G) RCTD-based cell type assignment (left puck) and spatial expression 

pattern of immunoglobulins (IG signature, right puck) in MBM05 (D), MBM11 (E), 

MBM18 (F) and ECM01 (G), identifying plasma cell clusters. (H) Spatial plots of 

ECM01 showing expression of MHC-I genes, TIMP1, type I interferon response genes, 

and chemokines (pucks from left to right). (I) Malignant cell rich MBM13 with spatial 

plots showing expression of GAPDH, a glycolysis signature, and antithetical expression of 

OxPhos signature (pucks from left to right).
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Fluorescence-activated cell sorting

anti-human CD15, APC Biolegend Cat# 301908

anti-human CD3, PE-Dazzle594 Biolegend Cat# 300450

anti-human CD45, Pacific blue Biolegend Cat# 304022

anti-human CD66b, PE-CY7 Biolegend Cat# 305116

anti-human TruStain FcX Biolegend Cat# 422302

 

Multiplexed Immunofluorescence

anti-human CD138 (MI15) Leica Cat# PA0088

anti-human CD163 (10D6) Leica Cat# CD163-L-CE

anti-human CD68 (KP1) Biogenex Cat# AM416-5M

anti-human CD8 (4B11) Leica Cat# CD8-4B11-L-CE

anti-human HMB45 9HMB-45) Cell Marque Cat# 282M-95

anti-human NCAM1 (123C3) Invitrogen Cat# MA1-06801

anti-human SOX10 (BC34) BioCare Cat# ACI3099C

 

Bacterial and virus strains

C3013 Competent Cells New England Biolabs Cat# C3013I

 

Biological samples

Fresh human melanoma brain metastases This study Table S1

Frozen human melanoma brain and extracranial metastases This study Table S1

Formalin-fixed paraffin-embedded melanoma brain and liver metastases This study Table S1

 

 

Chemicals, peptides, and recombinant proteins

10% NP-40 Surfact-Amps Detergent Solution Thermo Fisher Scientific Cat# 28324

2-mercaptoethanol Thermo Fisher Scientific Cat# 21-985-023

4’,6-diamidino-2-phenylindole (DAPI) Akoya Bioscience Cat# NEL821001KT

70 μm cell strainer Corning Cat# 431751

Acetic Acid Thermo Fisher Scientific Cat# A38S-500

ACK buffer Thermo Fisher Scientific Cat# A1049201

Amicon Ultra-4 Centrifugal Filters, 30kDa EMD Millipore Cat# UFC803024

AMPure XP Beads Beckman Coulter Cat# A63880

Bambanker Bulldog Bio Cat# BB01

Benzonase Nuclease Millipore Sigma Cat# E1014-25KU

Cell. Author manuscript; available in PMC 2023 July 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Biermann et al. Page 50

REAGENT or RESOURCE SOURCE IDENTIFIER

BOND Dewax Solution Leica Cat# AR9222

BOND Epitope Retrieval Solution 1, pH 6 Leica Cat# AR9961

BOND Epitope Retrieval Solution 2, pH 9 Leica Cat# AR9640

Bovine serum albumin (BSA) New England Biolabs Cat# B9000S

CaCl2 1M VWR Cat# 97062-820

Calcein AM Invitrogen Cat# C1430

Chitin Resin New England Biolabs Cat# S6651L

Collagenase I Worthington Cat# LS004196

cOmplete Protease Inhibitors Millipore Sigma Cat# 1167498001

D1000 Reagents Agilent Technologies Cat# 5067-5583

D1000 ScreenTape Agilent Technologies Cat# 5067-5582

D5000 Reagents Agilent Technologies Cat# 5067-5589

D5000 ScreenTape Agilent Technologies Cat# 5067-5588

Dimethylformamide Thermo Fisher Scientific Cat# D119-500

DMEM Gibco Cat# 11965092

DNAse I Worthington Cat# LS002139

DTT 1M Millipore Sigma Cat# 646563-10X.5ML

Econo Pac BioRad Cat# 7321010

Econo-Column Chromatography Columns BioRad Cat# 7372512

EDTA 0.5M Thermo Fisher Scientific Cat# AM9262

Ethanol 99.5% 200 proof Thermo Fisher Scientific Cat# 615090010

Falcon® Round-Bottom Tubes with Cell Strainer Cap Thermo Fisher Scientific Cat# 08-771-23

Fetal Bovine Serum Gibco Cat# 10-437-028

GlutaMax Thermo Fisher Scientific Cat# 35050061

Glycerol Thermo Fisher Scientific Cat# BP229-1

H2O (RNA/DNA clean) Thermo Fisher Scientific Cat# 10-977-015

Hank's Balanced Salt Solution Thermo Scientific Cat# J67763.K2

HEPES Thermo Fisher Scientific Cat# 15-630-106

HEPES Thermo Fisher Scientific Cat# BP310-100

Hoechst 33342 Invitrogen Cat# H3570

Human Tumor Dissociation Kit Miltenyi Cat# 30-095-929

Insulin-Transferrin-Selenium Thermo Fisher Scientific Cat# 41400-045

IPTG Thermo Fisher Scientific Cat# BP1755-1

Luria Broth Thermo Fisher Scientific Cat# BP9723-2

MEM Non-essential Amino Acids Gibco Cat# 11140050

MgCl2 1M Thermo Fisher Scientific Cat# AM9530G

MinElute Reaction Cleanup Kit Qiagen Cat# 28206

NaCl 5M Thermo Fisher Scientific Cat# AM9759

NEBNext High-Fidelity 2X PCR Master Mix New England Biolabs Cat# M0541S
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REAGENT or RESOURCE SOURCE IDENTIFIER

NEBNext Ultra II RNA Library Prep Kit New England Biolabs Cat# E7420L

Odyssey Blocking Buffer Li-Cor Cat# 927-40000

Opal 7-Color Automated IHC Staining Kit Akoya Bioscience Cat# NEL821001KT

Optimal cutting temperature compound (OCT) Tissue-Tek, Sankura Cat# 94-4583

Optiprep Density Gradient Medium Sigma Aldrich Cat# D1556

PBS Thermo Fisher Scientific Cat# 20-012-050

PBS (10X) Thermo Fisher Scientific Cat# BP399-500

Penicillin Streptomycin (10,000 U/mL) Thermo Fisher Scientific Cat# 15-140-122

Plasmotest InvivoGen Cat# rep-pt1

Qubit 1X dsDNA HS Assay Kit Thermo Fisher Scientific Cat# Q33230

RNAeasy Plus Qiagen Cat# 74134

RNAse OUT Thermo Fisher Scientific Cat# 10-777-019

RPMI 1640 Thermo Fisher Scientific Cat# 21875034

Slide-A-Lyzer Dialysis Cassete Kit, 10K MWCO Thermo Fisher Scientific Cat# 66807

SPRIselect beads Beckman Coulter Cat# B23318

SYBR Green I Nucleic Acid Gel Stain 10000x Thermo Fisher Scientific Cat# S7563

Tris HCL pH7.5 1M Thermo Fisher Scientific Cat# 5567027

Tris pH8.0 1M Thermo Fisher Scientific Cat# 15568-025

Tris(hydroxymethyl)aminomethane Millipore Sigma Cat# 252859-100G

Triton X100 Millipore Sigma Cat# X100-500ML

Tween-20 Sigma Aldrich Cat# p-7949

UltraPure Distilled Water Thermo Fisher Scientific Cat# 10977-023

Vectashield HardSet Antifade mounting medium Vector Laboratories Cat# H-1400

Zombie NIR viability dye Biolegend Cat# 423106

 

Critical commercial assays

Chromium Single Cell 3’ reagents v3.0 10x genomics Cat# 1000006

Chromium Single Cell 5’ Library construction kit 10x genomics Cat# 1000020

Chromium Single Cell V(D)J Enrichment Kit for human T cells 10x genomics Cat# 1000005

Chromium Single Cell V(D)J Reagents 10x genomics Cat# 1000006

Falcon™ FluoroBlok™ HTS 96-Well Insert Systems, 8.0 um pore Thermo Fisher Scientific Cat# 08-771-007

 

Deposited data

sc/snRNA-seq data of brain and extracranial melanoma metastases This study GSE185386

TCR-seq of melanoma brain metastases This study GSE185386

SlideSeqV2 of brain and extracranial melanoma metastases This study GSE185386

RNA-seq (patient-derived cell lines of brain and extracranial melanoma 
metastases) This study GSE185386

ATAC-seq (patient-derived cell lines of brain and extracranial 
melanoma metastases) This study GSE185386
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REAGENT or RESOURCE SOURCE IDENTIFIER

Raw data generated using sc/snRNA-seq, TCR-seq, SlideSeqV2, RNA-
seq, and ATAC-seq This study

dbGaP (https://
www.ncbi.nlm.nih.gov/
gap)

RNA-seq (patient samples of brain and extracranial melanoma 
metastases) Fischer at al., 2019

DOI: 
10.1158/2159-8290.C
D-18-1489

Whole-exome sequencing (patient samples of brain and extracranial 
melanoma metastases) Fischer at al., 2019

DOI: 
10.1158/2159-8290.C
D-18-1489

Proteomics data (brain and extracranial melanoma metastases) Kleffman et al., 2022

https://
massive.ucsd.edu/ 
(ID: MassIVE 
MSV000088814)

RNA-seq data (xenografts) This study Available upon request

 

Experimental models: Cell lines

131/4-5B1 "5B1" Cruz-Munoz et al, 2008 Authenticated by STR 
analysis by ATCC

113/6-4L "4L" Cruz-Munoz et al, 2008 Authenticated by STR 
analysis by ATCC

12-273-BM "273-BM" Eva Hernando, NYU N/A

12-273-LN "273-LN" Eva Hernando, NYU N/A

2686 MD Anderson N/A

MaMel-134 UK-Essen N/A

MBM03 This study N/A

MBM05 This study N/A

 

Experimental models: Organisms/strains

Mouse: NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) The Jackson Laboratory Strain# 005557

 

Oligonucleotides

Ad1_noMX Buenrostro et al., 2013

AATGATACGGCGAC
CACCGAGATCTACA
CTCGTCGGCAGCG
TCAGATGTG

Ad2.1_NNNNNNNN Buenrostro et al., 2013

CAAGCAGAAGACG
GCATACGAGATNNN
NNNNNGTCTCGTG
GGCTCGGAGATGT

 

Recombinant DNA

CMV-Luciferase-EF1α-copGFP BD Biosciences Cat# BLIV511PA-1

pTXB1-Tn5 Addgene Cat# 60240

 

Software and algorithms

Cell. Author manuscript; available in PMC 2023 July 07.

https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://massive.ucsd.edu/
https://massive.ucsd.edu/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Biermann et al. Page 53

REAGENT or RESOURCE SOURCE IDENTIFIER

Andromeda Cox et al., 2011

https://
bioinformaticshome.co
m/tools/proteomics/
descriptions/
Andromeda.html

ARACNe-AP algorithm Basso et al., 2005; 
Lachmann et al., 2016

http://
califano.c2b2.columbia
.edu/aracne

biomaRt v2.46.3 Durinck et al., 2009
https://
bioconductor.org/
packages/biomaRt/

Cell Ranger v6.1.1 10x Genomics

https://
support.10xgenomics.c
om/single-cell-gene-
expression/software/
overview/welcome

CellBender v0.2.0 Fleming et al., 2019
https://github.com/
broadinstitute/
CellBender

CoBRA v2.0 Qiu et al., 2021 https://doi.org/10.1016/
j.gpb.2020.11.007

Conos v1.4.4 Barkas et al., 2019 https://github.com/
kharchenkolab/conos

cutadapt v3.6 Martin, 2011

http://
journal.embnet.org/
index.php/
embnetjournal/article/
view/200

deepTools2 v3.5.1 Ramírez et al., 2016

https://
academic.oup.com/nar/
article/44/W1/
W160/2499308

DESeq2 v1.34.0 Love et al., 2014
https://
bioconductor.org/
packages/DESeq2/

Destiny v3.9.0 Angerer et al., 2016 https://github.com/
theislab/destiny

DoubletFinder v2.0.3 McGinnis et al., 2019
https://github.com/
chris-mcginnis-ucsf/
DoubletFinder

FastQC v0.11.9 Babraham Institute

https://
www.bioinformatics.ba
braham.ac.uk/projects/
fastqc/

Fastqscreen v.0.13.0 Wingett and Andrews, 
2018

https://
www.bioinformatics.ba
braham.ac.uk/projects/
fastq_screen/

featureCounts v1.6.3 Liao et al., 2014 https://doi.org/10.1093/
bioinformatics/btt656

GmAMisc v1.2.0 Alberti, 2021
https://CRAN.R-
project.org/
package=GmAMisc

Harmony v0.1.0 Korsunsky et al., 2019
https://github.com/
immunogenomics/
harmony
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REAGENT or RESOURCE SOURCE IDENTIFIER

hisat2 v2.2.1 Kim et al., 2019

https://
www.nature.com/
articles/
s41587-019-0201-4

hypeR v1.10.0 Federico and Monti, 
2020

https://github.com/
montilab/hypeR

ImageJ ImageJ https://
imagej.nih.gov/ij/

inferCNV v1.10.1 Tirosh et al., 2016
https://github.com/
broadinstitute/
inferCNV

inForm v2.5.1 Akoya Biosciences
https://
www.akoyabio.com/
support/software/

Kallisto v0.46.1 Bray et al., 2016
https://
pachterlab.github.io/
kallisto/

LivingImage software Xenogen Corp., 
Alameda, CA

http://
www.perkinelmer.com/
product/spectrum-200-
living-image-
v4series-1-128113

MACS2 v2.2.7.1 Feng et al., 2012
https://
www.nature.com/
articles/nprot.2012.101

MaxQuant v1.5.2.8 Cox et al., 2008 https://maxquant.org

MCMICRO Schapiro et al., 2021 https://mcmicro.org

Mesmer 0.3.0 Greenwald et al., 2021

https://
hub.docker.com/r/
vanvalenlab/deepcell-
applications

MSigDB v7.4.1 Dolgalev, 2021
https://CRAN.R-
project.org/
package=msigdbr

Perseus Tyanova et al., 2016 http://www.perseus-
framework.org

Phenochart v1.1.0 Akoya Biosciences
https://
www.akoyabio.com/
support/software/

Picard v2.18.20 Broad Institute
https://
broadinstitute.github.io
/picard/

ProjecTILs v1.0 Andreatta et al., 2021 https://github.com/
carmonalab/ProjecTILs

Python v3.9.9 Python Software 
Foundation

https://
www.python.org

R v4.1.1 The R Foundation https://www.r-
project.org/

RCTD v1.2.0 Cable et al., 2021 https://github.com/
dmcable/spacexr

sambamba v0.6.8 Tarasov et al., 2015
https://
lomereiter.github.io/
sambamba/index.html

SCANPY v1.8.2 Wolf et al., 2018 https://github.com/
theislab/Scanpy
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REAGENT or RESOURCE SOURCE IDENTIFIER

SCENIC/pyscenic v0.11.2 Aibar et al., 2017 https://github.com/
aertslab/pySCENIC

Scrublet v0.2.1 Wolock et al., 2019 https://github.com/
swolock/scrublet

scuttle v1.4.0 McCarthy et al., 2017
https://
bioconductor.org/
packages/scuttle/

scVelo v0.2.4 Bergen et al., 2020 https://
scvelo.readthedocs.io/

Seq-n-slide Dolgalev, 2022 https://github.com/
igordot/sns

Seurat v4.1.0 Stuart et al., 2019 https://github.com/
satijalab/seurat/

SingleR v1.8.0 Aran et al., 2019 https://github.com/
dviraran/SingleR

singscore v4.0.3 Foroutan et al., 2018
https://CRAN.R-
project.org/
package=devtools

squidpy v1.1.2 Palla et al., 2022 https://github.com/
theislab/squidpy

STACAS v1.1.0 Andreatta and Carmona, 
2021

https://github.com/
carmonalab/STACAS

STAR v2.7.3a Dobin et al., 2013 https://github.com/
alexdobin/STAR

TOBIAS v0.13.2 Bentsen et al., 2020 https://doi.org/10.1038/
s41467-020-18035-1

Trimmomatic v0.36 Bolger et al., 2014
http://
www.usadellab.org/cm
s/?page=trimmomatic

tximport v1.22.0 Soneson et al., 2015 https://github.com/
mikelove/tximport

velocyto v0.17 La Manno et al., 2018 http://velocyto.org/

VIPER v1.26.0 Alvarez et al., 2016; 
Ding et al., 2018

https://doi.org/10.1038/
ng.3593

 

Other

Original code generated in this study This study

https://github.com/
IzarLab/
Melanoma_Brain_Met
astasis

Bond RX Fully Automated Research Stainer Leica Cat# 21.2821

Chromium Controller 10x genomics Cat# 120270

Evos FL Auto 2 microscope Thermo Fisher Scientific Cat# AMAFD2000

Facs Aria II BD Biosciences N/A

HiSeq 4000 Illumina N/A

Leica AT2 Leica N/A

Leica CM1950 Leica N/A

Neubauer counting chambers Bulldog Bio Cat# DHC-N01

NovaSeq 6000 Illumina N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

PhenoImager HT Akoya Biosciences

https://
www.akoyabio.com/
phenoimager/
instruments/
phenoimager-ht/

Qubit Flex Fluorometer Thermo Fisher Scientific Q33327

Synergy H1 Hybrid Reader Agilent Biotek N/A

TapeStation 2200 Agilent N/A

Vevo 770 Ultrasound Imaging System Visualsonics N/A

Zeiss Celldiscoverer 7 Zeiss N/A
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