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Notation
The symbols used in this report are defined in the text where they
are first introduced. For convenience, they are summarized here in

alphabetical order.

a, b © = dimension of typical element of core shown in Figure 1

d = thickness of the members of the shear loading frame; refer
to Figure 8

E? s E?, = moduli of elasficity of the core element ABCD in the { and
? directions, respectively; refer to Equations (13) and

(1)

E " By |

F = area of typlcal element of core as defined by Equation (2)

fl = d/Ll

£, = d/Lb

G ' = ghear modulus of the core material

Gc = effective shear modulus of the honeycomb cellular material

as defined by Equation (1); refer also to Equation (53)

H -%’(a-i-'b)

K, K, = loading frame coefficients as defined by Equations {46)
and (52) (

Ké ' = quantity defined by Equation (50)

L u:depth of the core; refer to Figure 1

Ll,,L2 = dimensions of the shear loading frame; refer to Figure 8

My My

M5’ M8 = frictional moments developed at the joints of the shear

loading frame; refer to Figure 8
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P V = diagonal loads applied to the shear loading frame; refer

to Flgure 8
P, Q - = ghear flows in the typical core element induced by the shear

forces V& and Vx, respectively
Q, Q = shear forces between the core and the shear loading frame;

refer to Figure 8

R = b/a

r _ = radius of the shea; loading frame holes

S = dimensionless quantity defined by Equation (35)

5 = width of the core; refer to Figure 8

T = dimensionless quantity defined by Equation (36)

t = thickness of the core material; refer to Figure 1

u, v = displacement camponents of the typical element ABCD ih the

¢ and y directions, respectively; refer to Equations (13)
and (14)
Vv - = gshear force applied on the faces of the typical element of

core; refer to Figure 2

V&, V& = ccmponents of V in the x and y directions, respectively;
refer to Figures 3 and 5

W = varpage parameter defined by Equation (10)

(o = angle of inclination of the load P applied to the shear

loading frame; refer to Figure 8
& = overall shear strain of the typical element of the core
Xx’ Xy = cdﬁponents of ¥ in the x and y directions, respectively
5?7 = shear strain in element ABCD; refer to Equation (15)
813 52 = ghear strains arising in the unrestrained typical element

of the core under the shearing forces Yk; refer to Figure 3b
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relaﬁive shear displacément vector of the typical element
of core; refer to Figure 2

camponents of A in the X and y directions, respectively
normal strain components of the typical element ABCD in

the f and ;/ directions, respectively; refer to Equations

~n

(13) and (14)
geametrical quantity of the typical core elemént; refer to
Figure 1

coefficient of sliding friction between the pins and the
shear loading frame holes

Poisson's coefficients of the typical element ABCDvin the

\g and ¥ directions, respectively; refer to Equations (13)
and (1h4)

densities of the core material and the core, respectively;
refer to Equation (54)

norm;l stress components of.thg‘prical element ABCD in
the { and ¥ directions, respectively

shearing stress in the typical elgment‘ABCDv
angles sﬁecifying the directions of the shear force V, and
the relative shear displacement &; respectively; refer to

Figure 1




I. Introduction

Honéycamb cellular materials are now widely used 1n the alrcraft and
missile industry because of their high strength to mass ratios. Usually
these materials aré bonded between flat or curved surfaces to form
integral parts of load carrying structural elements. |

Due to their charécteristic geometry, honejccmb cellular materials
are especlally effective in transmitting shear loads. .When carrying such
loads, the amounts of shear deformatibn produced may be important design
criteria; therefore, it is important that design engineers be able to
predict these deformations analyticaily. To make these predictions,

however, the effective shear moduli of these honeycomb cellular materials

.must be known. While both analytical and experimental methods have been

used to predict effective shear moduli, considerable reluctance has been
expressed by some engineers to accept these va}ugs a8 being sufficiently
accurate. This reluctance 1s understandable when one observes the large
variations in moduli which have been measured‘exper;mentally by several
methods and the poor correleations which éppear to exist in scme instances
with theory.

It is the purpose of this report to set forth a sufficiently accurate
theory for predlcting effective shear moduli_of»hpneycqmb cellular‘mater-
ials and also to suggest an effective test procedure for measuring these
quantities. A correlation of experimental results qbtained by this
suggested procedure with the theory presented herein is also included.

II. Theoretical Analysis

The honeycomb cellular (or core) materiql gnalyzed in this report
has a cross-section as shown in Figure 1. To determine the effective

shear modulus of this material, consider the basic element of which
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it is made as shown in Figure 2. A shear force resultant V is applied
to both the upper and lower faces of this element in opposite directions
and at an angle ¢ with the longitudinal or x axis. The direction of
the resulting relative shear displacement vector A of the faces of the
element does not, in general, coincide with the direction of the applied
shear forces. If one defines an angle ¥ as the angle between the shear
displacement vector A and the longitudinal axis, then an effective shear

modulus may be defined as

= A
G = F5cos (9 -v) (1)

where
Fe2(b+acos 0)asiné (2)

is the rectangular area enclosing the typlical element and J = % is

the overall shear strain of the element due to the applied shear force

V; L being the depth of the core. It is evident from geometrical con-
siderations that the component of the applied shear force in the
transverse (longitudinal) direction does not produce shear displacement
in the longitudinal (transverse) direction. Therefore, one mey determine
the relation between V. and ?S‘x (= —-I-fs) and the relation between

Vy and @ v (?- :;I) separately. Here A and Ay represent the components
of A in the longitudinal and transverse directions, respectively; thus,

the tetal shear strain 0§ is given by

Y/ el (3)

and the direction of the shear displacement by

¥ = tent % (4)




-8 -

To obtain the relation between Vx and Kx’ consider the typical
element as shown in Figure 3a, which is subjected to & uniform shear flow
q. To satisfy the equilibrium condition in the vertical (z) direction
at each corner of the cell, the shear flow in each panel must, of course,
be equal. Figure 3b is an elevation view of the element showing the
shear strain in each panel.

It is readily seen that

RN (5)
by = &ta(t(,liacgisoc);) (6)

where @ is the shear modulus of the core material. The overall shear

strain 5; is

-2H
K; = Bi + ZS\2.‘ = é%ra(R + cos 9) (1)
where
R -2— (8)
and
H=Z (a+b) (9)

ﬁnder this loading condition, it is apparent that warping occurs at the
upper and lower faces of the core element. The warpage parameter w is

defined as

v & g Y = gb (1 - cos 9)

2 26t (R + cos 9) (10)

However, in most practical cases, as well as in the experiment which
will be described in the subsequent section, the faces of the core are
constrained so that they remain essentially plane during deformation;
that is, the actual configuration of the deformed core element is as

shown by the dashed lines in Figure 3b.
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To étudy the effect which the constraint against warpage of the
faces has on the shear modulus of the core, consider the element ABCD
in Figure 3b. One must now find the corrective state of stress in this
element when subjected to the displacement boundary conditions that the
vertical edges AD and BC are simply supported and tﬁe upper and lower
edges AB and CD are subjected to vertical displacements equal in magni-
tude but opposite in direction to the warpage indicated in Figure 3b.
Several simplifications and assumptions.are made in the following analysis.
First, the inclined panel I is unfolded into the plane of panel II.
Second, it 1s assumed that the amount of stretching of the panels in the
direction perpendicular to the direction of the essential normal stresses
is negligible. Consequently, one may consider the panels as composed of
an orthotropic material which is rigid in one diréction. Third, the
thickness t of the panels is so small ccmpared_vith other dimensions that
one can conslder the state of stress in the panels as being plane stress.
The typical element ABCD is again shown in Figure 4.

The equations of equilibrium for element ABCD are given by

S, . Oy
-g;—-l-—g-_;-lo (ll)
and
T da
The stress-strain relationships are
€; 3%-’3%' (0; - uf 0'?,) (13)
du 1 .
57“T7'E—{/-(°7(‘“7°{) (14)
and
ou , ov
By =SS E T (15)
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In these equations ¢ o T and € € J are the stress and
S G 14 AN S 14
strain components, respectively, and u, v are the displecement compo-

nents in the §{ and 7 directions, respectively. The terms E, , E? and

ui s “7 are the modulli of elasticity and Poisson's ratios of the core

meterial in the f and 7 directlons, respectively. For a plate which

is rigid in one direction,
E?. = o (16)
and , ;,
qu = 0 _ (27) r

Thus, Equation (13) becomes

g% =0 (18)

and u is a function of the variables % only; that is u = u (?)

If E is written for E,l , Equations (14) and (15) take the form

E % - o (19)
G 351{- =Ty - u (%) @ (20)

Differentiating Equations (19) and (20) with respect to 7 and § ,

respectively, and substituting into Equation (12), one obtains

2 2
G%+E§-Y-2--O (21)
d 3
f ¥

The boundary conditions are

V(O,v?) = V(H)?) = 0

= ; osfs 2 |
V(g: 0) "V(g) L) = : (22)
M(E-f) ; 2<ESH
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The solution of the partial differential Equation (21) with boundary con-
ditions (22) may be obtained by Fourier's method. The final solution,

which results by this method is

oo
1 .
Z Bn sin %; m-;—-g;—i [s:.nh gn (L—%) + sinh gn ?jl (23)
n=1 -
where
2
g =3 (B)? - 211“? (2)2 (24)
and
g H
Bn=% %i?sing%idf-l- %’—(H-f)sin%;d; (25)
o b
2

Substituting Bquation (10) into Equation (25) and integrating, one

obtains

sin (an ——

ll-q (1 - cos 6) 1+R) (26)

Pn = Gta (R + cos ) (_ry_t_)2
H

The normal spresses in the panels may now be obtained from Equation (19);

thus

sn(f-nlr-) .

n=1

The shear stresses are similarly obtained from Equation (20). Equation
(18) shows that u is independent of § ; that is, u = u (?), and therefore
since u (v() =Oatboth {=0Oand §=H, u () = 0 throughout the

panel. Hence, Equation (20) gives

cos(
152( -G——an sinhgnL [inhg (L-%)+sinhg ?(] (28)

n=1
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The total shear stresses and the normal stresses in the unwarped deformed

element ABCD in Figure 3b are

T=%+T§% (29)

and

g = 01{ (30)

The corresponding shear forces VX may now be evaluated by energy
considerations. The total external work is

v
(YX L 745 (31)

External work =

I+

where KX is the overall shear strain given by Equation (7).

The total strain energy is

2 2
Strain energy = ,S%E an + _(%f an (32)

where d\ is the differential volume of the element under considera-
tion and the integration extends over the entire volume of the element
ABCD. Substituting Equations (7), (27), (28), (29), and (30) into
the energy Equation (33)

%JXL-}’Ezfg—gmﬁ»%;dx (33)
gives after integrating and rearranging the following expression for

the shear V
X

Vx =2 qa (R + cos 0)(1 + ST) (34)

where

g = 2(1 - cos 9)2 (1 + R)2 Ve (1 + p,()

(35)
% 3 ( R+ cos 9)2
and ,
4. nnR 2
1 [SBTR
T = 3 -s‘fn-ﬂ-?g:_ﬂ (sinnh an L - 2 sinh g, L) (36)
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Eliminating g fram Equations (7) and (34) gives

- £ gee f (37)

Gt a° (R + cos 9)2 (1 + 8T1)

X

vhere V cos ¢ = VX. The term ST is due to the prevention of warpage.

To determine the relation between v, end ﬁy consider the typical
element acted upon by the shear flows p as indicated in Figure 5. It
is evident from geometrical considerations that there will be no

warping. The overall shear strain in

6y “ Gt sin © (38)
and the shear force Vy is

Vy = 2pa sin © (39)
Eliminating p from Equations (38) and (39) gives the following
relation between 8 and V .

y y
5‘ = V sin ¢ (hO)
Y 2a Gt sin 20

where

V sin A

p = ¥

The effect of preventing warpage upon the value of the shear
modulus of the core is now studied for the particular case where
=0, R=1, 0= 60° and u?, = 0.33. The final result of this study
is shown in Figure 6. It is seen that for moderately large values of

% the effect of the prevention of warpage may be ignored. In such
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cases, Equation (37) reduces to

o H V cos § )
5\’( Gt a° (R + cos 9)2 (k)

Equation (41) together with Equation (40) gives

5\' 'GX'Z E_Hz cos> ¢ . sin® ¢g]l/2 (42)

a2 (R + cos Q)LL b sinh

and

cos (B - ¢) = {hina PRdrwoves ’J - cos” § _, sin® ﬁ:f% (13)

2 sin® © a(R + cos 0) aa(R + cos 0)1+ L sin” ©

}Subetituting these expressions into Equation (1), glves

G

e sin © (R + cos Q)
) = (M)

-i— Kl-l-R) sin® © cos> P + (R + cos 0)2 sin® ;-6]

III. Experimental Investigation

To induce pure shear in the core, a rigld freme pinned at the
corners with the honeyccmb core bonded within the freme on all four !
sldes was desigﬁed, see Figure 7. A tensile load with its line of ac-
tion through the diagonal of the freme wes applied. The relative diéplace-
ment A of the uppér and lower faces of the frame was measured by a |
J\;v:t'aa.ru:';d.l.wer a.ttacﬁhed to the lower member of the frame and a rod which was
rigidly attached to the upper member and extended down to the transducer.
The load and corresponding relstive displacement were recorded grephically
as the load was increased. Three series of tests were performed on the
Hexcell Alumimum Honeycomb-Alloy 5052-H39, Al 1/8-5052, 0.000TP with
cére depth of k4, 5, and 6 inches. All test specimens.were loaded in the
longitudinal direction. To deduce the shear modulus of one of these cores

from the test results, consider the 1dad.ing frame shown in Figure 8.
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Acting on the frame are the externally applied forces P and the inter-

'
acting shear forces Q and Q between the core and the frame where

L -4
1
Q = Q{ f2___:__5> by consideration of the equilibrium condition of the
1

core. The relation between the shear force V and the applied force P
can be deduced easily by applying the principle of virtual work on the

equilibrium of the frame shown in Figure 8. Whereby, one gets

Q= Ki P cos (45)
where
R U (46)
1 1- fl f2
and where
£, = éi 3 I,y = ﬁi (47)

During the tests, frictional forces were observed to develop at the
Jjoints between the frame holes and the pins--notably at the joints where
the loads P were applied. From static considerations, it can be shown
easily that the forces at joints A.l and A3 (Fig. 8) are small compared

to those at joints A2 and A}+ where the forces P are applied, and the

resultant frictional moments at joints A2 and Ah may be approximated by

M =M = S (1+K) (48)

L
o2
M, =My = I (1 + K3) (49)

K (50)

r is the radius of the frame holes and p is the coefficient of sliding
friction between the pins and the holes. Again, by means of the prin-
ciple of virtual work, one obtains

Q =K, P cosa (51)
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where
-
g-g -0 (52)
If the pins and frame holes were well lubricated so that the coefficient

of frietion p could be greatly reduced, then K. could be approximeted

2
by Ki.
The measured shear moduli of the cores is deduced from the

experimental data by the expression

L -4 PKicosa L, 1-7°

2 2 2
G = = — (53)
¢ Os Ll - d Ls Ll 1 - fl

where s is the wldth of the core and 1 assumes a value of one or two
depending on vhether the lubrication problem is properly taken care of

or not.

IV. Comparison of Experimental and Theoretical Shear Moduli

Since all tests were performed on cores whose depths L compared
to the lateral dimensions H of the cells are la:;'ge, the effect of
warpage mey be neglected and Equation (44) may be used for the deter-
mination of the theoretical shear moduli of the cores. Introducing now

the density of the honeycomb

- (1+R) {5k
/00 %(R+cosO)sin0p (54)

vhere /% and /9 are the densities of the core and the foil materisl,

respectively, Equation (4lt) reduces to

E‘i L. (R + cos 9)2vsin2 0 (55)
G '/'vc' (14R) [(1+R) sin® © cos® P+ (R + cos 0)2 sin® Qﬂ
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Since, in the experiments the load P was applied in the longitudinal

direction, i.e., § = O, Equation (55) becomes

2
o (R + cos §)

S /£
¢ A ()2

Using Equations (53) and (56) it is found that the ratio of the
experimental effective shear moduli of the cores to their respective

theoretical values ranges approximately from 1.0k to 1.10 when the

effect of friction forces at the Joints are not taken into considera- .

tion. When the friction forces are considered and a value u = 0.25 is

used, this same ratio ranges from 1.04 to 1.06.

V. Conclusions

Based on the results of this investigation, the following general

conclusions have been deduced:

(56)

(1) The effective shear modulus of typical honeycomb cores can be
determined with sufficient accuracy for design purposes using
the theory presented in this report.

(2) The prevention of warpage of the core cross section has only
a small effect on the effective shear modulus when the ratio
of the depth of core L to the lateral dimension H of the cell
is large; e.g. & 1 percent change results when L/R is approxi-
mately T (see Figure 6).

(3) The effective shear modulus of honeycomb cores can be measured
effectively using the "shear frame" test described herein. The
variations in moduli measured for a given core material by this
method are within a range which would be expected as a result of
the variations in the geometrical quantities froam one sample to
another and due to the varistions in the shear moduli of the

core material itself.
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