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ABSTRACT OF THE THESIS
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in Multi-layer Networks

by
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Professor Arash A. Amini, Chair

The community structures commonly exist in real-world networks such as brain networks,

social networks, or trade networks. Since the information of a real-world network is of-

ten captured by us with di↵erent measures of view, such real-world networks often have a

multi-layer structure with di↵erent layers sharing the same community assignment. In this

scenario, being able to find out the community assignment consistently will help us under-

stand the properties and behaviors of the network so that we can exploit these networks

more e↵ectively. In this thesis, we adopt multiple methods to solve the community detection

task in di↵erent scenarios and discuss the pros and cons of them by comparing the results

from multiple methods. We also propose and compare some of the rank-estimation methods,

which are used for solving the number of di↵erent communities in a network.
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CHAPTER 1

Introduction

The behaviors of networks are a widely studied topic in statistics during recent years, and

there are multiple models proposed to simulate the random networks in the real world,

including the Erdos-Renyi model [ER11], stochastic block model [MNS12], latent space

model [HRH02], etc. Real-world networks often have multiple properties such as the small-

world property and heavy-tailed degree distributions, among which we are interested in the

community structure property as shown in [GN02]. The community structure states that the

nodes in a real-world network can often be grouped into multiple sets where the connections

are dense within the same group and sparser between di↵erent groups; furthermore, being

able to find out community assignment of the nodes could give us important information

about the nature of the network, and could help us to understand and exploit these networks

more e↵ectively.

Mathematically, with the complex networks as input, we can solve the community detec-

tion problem to find out the community assignment of all the nodes. In this thesis, di↵erent

methods for the community detection task are tested under the multi-layer network setting

generated by the block model. We adopt both spectrum-based methods, and spectrum-free

methods (these methods are usually based on an optimization problem which aims to find

out a common community factor for all the layers), then compare community detection re-

sults for di↵erent methods, and try to give some intuition and some theoretical justifications

about the reason why some methods work better in certain situations.

The rest part of the thesis is organized as follows. For this chapter, we will first define
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the notations of graph theory and the models we use for generating the random graphs,

and then introduce the NMI (normalized mutual information) as our criterion for testing

the community detection result. In Chapter 2, we focus on the methods that we test in the

experiments; and we will present the experiments, results, and conclusions in Chapter 3.

1.1 Background and Notations

1.1.1 Graphs

In graph theory, a graph (or network) with n nodes is formally defined by G = hV,Ei, where

V = {1, 2, · · · , n} is the vertex set and E is the edge set. In this thesis, we mainly discuss

the simple undirected graph, which contains no duplicate edges between a pair of nodes, and

no loops (an edge from some vertex back to itself); furthermore, the edges are unweighted

in a simple undirected graph. The edge set of a simple random graph G can be expressed

as E = {(i, j) | i, j 2 V, i 6= j}.

An alternative approach to representing a given graph G = hV,Ei is to use the matrix-

type statistics. For a simple random graph G, the widely-used adjacency matrix A 2 Rn⇥n is

defined as Aij = 1{(i, j) 2 E}. A is symmetric, and the diagonal elements of A are all zero.

Based on the adjacency matrix, we can further define the degree of a node i as di = #{(i, j) 2

E} =
Pn

j=1 Aij, which is used to measure how “connected” node i is with the other nodes

in the graph. Then, we can define the degree matrix as D = diag{d1, d2, · · · , dn} 2 Rn⇥n.

With the statistics defined above, we can express the graph Laplacian as

L = A�D,

which is a powerful matrix representation of the graph as mentioned in [CG97]. The eigen-

values and eigenvectors of graph Laplacian are informative; in fact, the Laplacian always

has an eigenvalue 0 with the corresponding eigenvalue 1n, given the fact that A1n =

(d1, d2, · · · , dn)> = D1n. If the graph is further divided into two or more separate com-
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munities, that is, A =

0

@A1 0

0 A2

1

A with A1 2 Rm⇥m, then the Laplacian also has a second

eigenvector as (

mz }| {
1, · · · , 1, 0, · · · , 0| {z }

n�m

)>. As a result, the eigenvectors of graph Laplacian con-

tain community-related information, which is the intuition of the spectral clustering method

(to be introduced in Chapter 2). We can also define the normalized graph Laplacian as

Lnorm = D�1/2LD�1/2 = In � D�1/2AD�1/2. It can be shown that Lnorm and L have the

same eigenvalues when all nodes have a positive degree.

1.1.2 Multi-Layer Stochastic Block Model (MLSBM)

The idea of the stochastic block model (SBM) is first proposed in [HLL83], which is named in

reference to an older non-stochastic block model widely used in social science. Compared to

the famous Erdos-Renyi model [ER11], SBM is more realistic yet still fairly explainable, since

all the edges in the model are not as homogeneous as those in the Erdos-Renyi model. In this

chapter, we extend the basic SBM to the multi-layer setting with the following modifications.

For a stochastic block graph model with multiple layers (MLSBM), we assume there are

L layers in total and there are n same nodes across all layers. We further assume there

exist K distinct communities, namely {1, 2, · · · , K}; for a given layer l, the community label

assignment matrix is given in the one-hot form by Z(l) 2 Rn⇥K , where the i-th row of Z(l) is

the community label vector for node i at layer l, that is,

Z(l)
ik =

8
<

:
1, if node i belongs to community k at layer l;

0, otherwise.
(1.1)

The community label assignment can also be expressed in the vector form as z 2 Rn, where

the community label of node i is given by the quantity zi.

We further denote B(l) 2 RK⇥K as the connectivity matrix at layer l. Here, B(l)
pq = B(l)

qp 2

[0, 1] is the mutual probability that a pair of nodes in community p and q form an edge.
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With this model, whether there is an edge between node i and node j at layer l follows a

Bernouli distribution, A(l)
ij ⇠ Bern(B(l)

zizj). We can also re-express this Multi-Layer Stochastic

Block Model (MLSBM) in the matrix form as

E(A(l)) = Z(l)B(l)Z(l)>

for l = 1, 2, · · · , L. The aim of (consensus) community detection problem on MLSBM is

formalized as solving the community label assignment matrix Z(l) for all layers based on the

adjacency matrices A(l).

A simplified version of this model assumes that the same label matrix Z is shared across

all layers. Hence, the MLSBM degenerates to the following form:

E(A(l)) = ZB(l)Z> (1.2)

for l = 1, 2, · · · , L. The aim is still to solve the true community label assignment matrix Z.

We will mainly focus on (1.2) in the Methods chapter.

1.1.3 Degree-Corrected (Multi-Layer) Stochastic Block Model (DCSBM)

In the MLSBM (1.2), since the nodes within a certain community are exchangeable, they

have exactly the same expected degrees which could be very di↵erent from the real-world

setting. A solution to this issue is to use the Degree-Corrected (Multi-Layer) Stochastic

Block Model (DCSBM) as in [KN11], which gives each node a di↵erent degree-correction

parameter to modify the actual degrees.

Formally, the DCSBM is defined by A(l)
ij ⇠ Bern(✓i✓jB

(l)
zizj), where each ✓i > 0 is the

degree-correction factor associated with node i showing its individual tendency of forming

ties. Alternatively, if we denote ⇥ = diag{✓1, · · · , ✓n} 2 Rn as the degree-correction matrix,

then the DCSBM can be expressed in the matrix form similar to (1.2):

E(A(l)) = ⇥ZB(l)Z>⇥. (1.3)
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Both (1.2) and (1.3) are studied in this thesis in order to compare the performance of

di↵erent methods under various conditions. Furthermore, one can also introduce a parameter

⇢ > 0 to both of the models in order to control the sparsity for the whole layer, that is,

E(A(l)) = ⇢⇥ZB(l)Z>⇥. An estimation to the degree of node i at layer l is further given by

di =
X

j 6=i

E(Aij) =
X

j 6=i

⇢, ✓i✓jB
(l)
zizj (1.4)

which can be controlled as the independent variable in the Methods chapter.

1.2 Normalized Mutual Information (NMI)

Having simulated network data generated by the models introduced above, one may use

normalized mutual information (NMI) as the criterion to quantify the clustering performance

of di↵erent methods in the experiments. The concept of mutual information is widely used in

the domain of information theory as in [Cov99], but we have made some slight modifications

in order to fit our label matching scenario. Given the predicted label as z and true label as

y in vector form, the NMI is formally defined by

NMI(z,y) =
2⇥ I(z;y)

H(z) +H(y)
. (1.5)

Here, H(·) is the entropy of a distribution defined asH(z) = �
PK

k=1 Pr(z = k) log Pr(z = k),

where Pr(z = k) is the frequency of nodes assigned with community k in a given label z.

On the other hand, I(·; ·) is the (un-normalized) mutual information, which is given by the

di↵erence between the entropy of z and the conditional entropy of z|y:

I(z;y) = H(z)�H(z|y)

= H(z) +
KX

k=1

Pr(z = k)
KX

j=1

Pr(z = k|y = j) log Pr(z = k|y = j). (1.6)

In order to serve as a criterion of clustering e↵ect, NMI is ranged from 0 to 1, where

higher NMI leads to a better match between the predicted label assignment and the true

label distribution. This property is shown and proved in the following proposition:
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Proposition 1. 0  NMI(z;y)  1. The left inequality holds when z and y are independent;

the right inequality holds when z and y are the same label assignment.

Proof. In this proof, we denote pz(k) = Pr(z = k), py(j) = Pr(y = j), and pz,y(k, j) =

Pr(z = k, y = j) for brevity. Then, changing the summation order in the definition of

mutual information (1.6) gives us

I(z;y) = �
KX

k=1

pz(k) log pz(k) +
KX

k=1

KX

j=1

pz,y(k, j) log
pz,y(k, j)

py(j)

= �
KX

k=1

pz(k) log pz(k) +
KX

k=1

KX

j=1

pz,y(k, j) log
pz,y(k, j)

pz(k)py(j)
+

KX

k=1

KX

j=1

pz,y(k, j) log pz(k)

=
KX

k=1

KX

j=1

pz,y(k, j) log
pz,y(k, j)

pz(k)py(j)
. (1.7)

(1.7) shows the symmetric property of mutual information: I(z;y) = I(y; z), because both

sides are simplified to the same form above. With this alternative definition, we can prove

both sides of the inequality.

First we prove the right inequality that NMI(z,y)  1. By definition (1.6) we know

I(z;y)�H(z) = �H(z|y)  0 since each of the summation term in �H(z|y) is negative; as

a result, I(z;y)  H(z). Following the same process we have I(y; z)  H(y). Combining

this result with the symmetric property, we shall have 2I(z;y)  H(z) +H(y), which leads

to the result that NMI(z,y)  1.

The left inequality is given by Jensen’s inequality. For a convex function f(x) = � log x,

Jensen’s inequality states that E(f(X)) � f(E(X)) for any random variable X. Hence,

I(z;y) = �
KX

k=1

KX

j=1

pz,y(k, j) log
pz(k)py(j)

pz,y(k, j)

= Ez,y


� log

pz(k)py(j)

pz,y(k, j)

�

� � logEz,y


pz(k)py(j)

pz,y(k, j)

�
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= � log
KX

k=1

KX

j=1


pz,y(k, j)⇥

pz(k)py(j)

pz,y(k, j)

�

= � log
KX

k=1

KX

j=1

pz(k)py(j) = 0.

The equality holds when the labels are independent.

We will use the NMI for measuring the clustering e↵ect in the following chapters. For

each method tested in the experimental setting, we compute the corresponding NMI between

the predicted label assignment and the true label assignment, and finally plot all the NMIs

and compare the clustering e↵ectiveness based on these NMI curves.
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CHAPTER 2

Methods

The basic community detection problem, also known as the community recovery task, is

formalized with the following setting: for a given a simple random graph G (or equivalently,

the corresponding adjacency matrix A) and the number of community K, the task aims

to find out an estimation of the community assignment vector ẑ 2 Nn
k , where each entry

ẑi 2 Nk = {1, 2, · · · , K} denotes the community that node i belongs to.

In this chapter, we discuss the extended version of this problem, where there are multiple

layers in the model sharing the same community labels z. Note that we use the vector

form notation of community assignment z 2 Rn for brevity (previously we the matrix form

Z 2 Rn⇥k) as mentioned in Subsection 1.1.2. This task is often studied under both the

stochastic block model setting (1.2) and the degree-corrected SBM (1.3) setting.

Most of the methods adopted in this chapter, such as co-regularized clustering and aggre-

gated spectral kernel-based clustering [PC20], bias-adjusted spectral clustering [LL21], and

likelihood-based clustering [LCL20], are specifically designed to address the di�culty under

the multi-layer community detection setting. We will list out all the methods and discuss

their motivation and possible advantages, and will eventually compare their performances

in the next chapter with NMI (1.5) as the criterion.

Besides, we also discuss the scenario before community detection can be applied, when the

number of community K is unknown. In this case, we mainly use the edge cross-validation

framework from [LLZ16] to find out a viable estimation of community number. It can be

proved that when the expected node degree satisfies E(
P

di/n) = O(log n), the method will

8



give a consistent estimation of the number of communities.

2.1 Basic Method: Spectral Clustering for Community Detection

Spectral clustering has been a widely used method even before the actual network community

detection problem comes into sight. Initially analyzed in details by [NJW01], the general

spectral clustering method first models the data with a graph where the edge weights are

defined by the similarity of corresponding node pairs, then perform the clustering task and

output the predicted clusters. On the other hand, the dataset is already organized as the

graph format in our setting, which enables us to take advantage of the spectral clustering

and view it as the most important baseline in our experiments.

For the rest part of this chapter, we first introduce the method of spectral clustering below

and then describe several variants of spectral clustering as well as other optimization-based

(“spectrum-free”) methods in the following sections.

Our notations for basic spectral clustering are similar as in (1.2), but the method is

based on the most simple single-layer condition instead of the multi-layer setting. Here, the

population version of the adjacency matrix is defined as A = E(A) = ZBZ>. A has exactly

K nonzero eigenvalues if all elements in B are positive and all K di↵erent communities are

presented in the assignment Z.

When no two columns in the connectivity matrix B are linearly independent, the popu-

lation adjacency matrix will also be of rank K, thus having K di↵erent eigenvectors. Then,

the eigendecomposition of the population adjacency matrix A = U⇤U> will give us the

community assignment as

ui = uj () zi = zj

for any pair of nodes (i, j), which makes the community detection problem solvable.

Since the eigenvectors of any instance of the adjacency matrix A will converge to the

9



eigenvectors of the population adjacency matrix, we can apply this spectral clustering al-

gorithm based on the observed adjacency matrix. The details of the spectral clustering

algorithm are shown below in Algorithm 1.

Algorithm 1: Spectral clustering for adjacency matrix A on K communities
Result: Predicted community assignment z

Step 1 Do a truncated eigendecomposition over A and find out the eigenvectors

corresponding to the top K largest eigenvalues as U = (u1, · · · ,uK) 2 Rn⇥K .

Step 2 Apply k-means algorithm to the row of the eigenvector matrix U to get the

K clusters for the predicted community assignment.

We can also use the Laplacian instead of the adjacency matrix in the Algorithm 1 for the

Laplacian-based spectral clustering. It is proved in [RCY11] for the convergence result and

consistency of the normalized Laplacian-based spectral clustering.

2.2 Spectral Clustering on Mean Adjacency Matrix

In order to extend the basic spectral clustering method to the multi-layer setting, one might

directly apply Algorithm 1 on the mean adjacency matrix as a baseline.

Given the assumption that all connectivity matrices B(l) are the same and all community

assignment vectors are identical, when the number of layer L increases, the di↵erence between

mean adjacency matrix 1
L

PL
l=1 A

(l) and the population version A will be very small due

to the Central Limit Theorem, which means the method is expected to work well in this

scenario. However, in reality, the assumption of same B is often not satisfied; furthermore, if

rank
�P

B(l)
�
< K, the spectral clustering method on mean adjacency matrix will degrade

and will not obtain a consistent result as specified in Section 2.1. In order to address this issue

and achieve better consensus on the multi-layer network model, we list di↵erent methods

below and will compare their outcome in terms of NMI.
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2.3 Spectral Clustering on Aggregate Spectral Kernel

Another baseline we consider in this thesis is to use a “late-fusion” fashioned improvement

to the Algorithm 1 from the review paper [PC20]. Following the notations in basic spectral

clustering, if we define the matrix consisting of the eigenvectors corresponding to the top-K

eigenvalues from layer l as U(l) 2 Rn⇥K , then the spectral kernel matrix aggregating this

layer-level information is given by

Kagg =
1

L

LX

l=1

U(l)U(l)> 2 Rn⇥n.

Applying the spectral clustering method again on aggregate kernel matrix Kagg will

provide us with the desired community detection result. We will refer to this method as

“SpecK” in the plot legends in the next chapter.

2.4 Clustering on Low-rank Spectral Approximation

Much like the late-fusion method in Section 2.3, we propose another baseline approach that

makes use of all the individual U(l)s instead of the sum, keeping more information in this

process. Denote ⇤(l) as the eigenvalue matrix of layer l, which is a diagonal matrix consisting

of the top-K eigenvalues; then, putting the eigenvectors together gives us the kernel matrix

Kmulti =
�
U(1)⇤(1) |U(2)⇤(2) | · · · |U(L)⇤(L)

�
2 Rn⇥KL,

which is further processed with K-means algorithm with regard to the n rows to obtain the

community assignment. We will refer to this method as “mspec” in the following chapters.

2.5 Bias-adjusted Spectral Clustering

As mentioned in the previous sections, while the spectral clustering method on mean adja-

cency matrix often gives good result in experiments, it will not perform well in cases when

11



the sum of connectivity matrices
�
B(l)

 
degrades to a lower-rank matrix or has eigenvalues

close to 0. To address this issue, the bias-adjustment spectral clustering algorithm [LL21] is

proposed. Instead of using the mean adjacency matrix, the algorithm performs the eigende-

composition on the bias-adjusted sum of squared adjacency matrices

S0 =
LX

l=1

h�
A(l)

�2 �D(l)
i
. (2.1)

The reason for adding the bias-adjusted term
P

l D
(l) is shown in the following justification.

If we let �(l) = A(l) �A(l) be the di↵erence between the observed adjacency matrix and

the population version of the adjacency matrix at layer l, we shall have

LX

l=1

�
A(l)

�2
=

LX

l=1

�
�(l) +A(l)

�2

= S+ 2
LX

l=1

�(l)A(l) +
LX

l=1

�
A(l)

�2
, (2.2)

where S =
PL

l=1

�
�(l)

�2
. In (2.2), the second term has zero expectation since each individual

�(l) has mean 0 and each A(l) is a constant. Hence, when we use the sum of squared

adjacency matrices for estimation, the only error term that adds up over the layers and

might cause systematic bias is S. It is further proved in [LL21] that only the diagonal

elements Sii have nonzero expectations contributing to the bias, which can be expressed as

Sii =
LX

l=1

nX

j=1

⇣
A(l)

ij �A(l)
ij

⌘2

=
LX

l=1

nX

j=1

⇣
1�A(l)

ij

⌘2

1(A(l)
ij = 1) +

⇣
A(l)

ij

⌘2

1(A(l)
ij = 0)

�
. (2.3)

The first term in (2.3) can be relaxed into
PL

l=1

Pn
j=1 1(A

(l)
ij = 1) =

PL
l=1 d

(l)
i , and the

second term can be bounded by

✓
nLmaxl;i,j

⇣
A(l)

ij

⌘2
◆
; both of the approximation formu-

las work especially well when the network is very sparse on each layer. However, since

E
⇣PL

l=1 d
(l)
i

⌘
=
PL

l=1

Pn
j=1 A

(l)
ij ⇡ nLmaxl;i,j A(l)

ij , this term is much larger in scale and is
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the leading part of bias terms in (2.3). As a result, we can use
PL

l=1 D
(l) to approximate the

bias term, and the bias-adjusted sum of squared adjacency matrices (2.1) becomes a good

approximation of
PL

l=1

�
A(l)

�2
.

Doing eigendecomposition on
PL

l=1

�
A(l)

�2
should give us the same eigenvectors but avoid

the potential rank degrading issue that
P

l B
(l) has. Hence, by using this bias-adjusted sum

for spectral clustering, we can have more consistent results than the vanilla version of the

spectral clustering algorithm. The process of bias-adjusted spectral clustering is shown in

Algorithm 2, which we will refer to as “bias adjusted” in the plot legend afterward.

Algorithm 2: Bias-adjusted spectral clustering on multi-layer network
Result: Predicted community assignment z

Step 1 Compute the bias-adjusted sum S0 =
PL

l=1

h�
A(l)

�2 �D(l)
i
.

Step 2 Apply Spectral Clustering (Algorithm 1) to matrix S0 to obtain predicted

community assignment z.

2.6 Linked Matrix Factorization

Previously, we mainly focus on the spectrum-based methods, where most methods either

make use of the eigenstructure of the adjacency matrices to generate the spectral kernel or

directly use the eigenvectors to perform the clustering task for network community detection.

These methods work especially well for block models given the good spectral structures of

the networks generated from block models but might fall short in performance when the

connectivity matrix B has multiple many zero eigenvalues.

For the next methods, we will discuss more general approaches which formalize commu-

nity detection as an optimization problem. These methods are usually more time-consuming,

but the nature of using more information also tends to make these methods perform better

in some di�cult scenarios.
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The first method we will introduce is the Linked Matrix Factorization (referred to as

LMF in the following chapters and plots) from [PC20], which is a slightly modified version

from [TLD09] because we force the common factor matrix P in (2.4) to be strictly or-

thonormal. LMF is called an ”intermediate fusion” method because it attempts to find the

community assignment using information from every individual adjacency matrix separately.

This method aims to solve the following optimization problem for a multi-layer network:

h
P̂,

⇣
⇤̂(1), · · · , ⇤̂(L)

⌘i
= arg min

P>P=I

LX

l=1

��A(l) �P⇤(l)P>��2
F
, (2.4)

where the P 2 Rn⇥K is the consensus (or common factor matrix) across layers and the ⇤(l) 2

RK⇥K is a symmetric matrix for capturing each layer’s specific features or characteristics.

After the optimization process is finished, the K-means algorithm is applied to the rows

of common factor P̂ to obtain the predicted K communities.

2.7 Co-regularized clustering

The second intermediate fusion method we will talk about is the co-regularized based clus-

tering from [PC20] and [KRD11]. This method solves the following optimization problem

h
Û(1), · · · , Û(L), Û⇤

i
= argmin

LX

l=1

{tr(U(l)>A(l)U(l)) + �l tr(U
⇤>U(l)U(l)>U⇤)}, (2.5)

subject to Û(l)
>
Û(l) = I, 8l; Û⇤>Û⇤ = I

and does a K-means clustering on the matrix Û⇤ to yield the predicted community label.

We will refer to the co-regularized clustering as “co-Reg” in the following plots and sections.

2.8 Likelihood-based community detection

For an observation A of the multi-layered network data coming from the SBM, the expec-

tation of adjacency matrix on each layer is a block-wise constant matrix. Based on this
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fact, we can solve the following least-square optimization problem with regard to community

assignment vector z and connectivity matrix B(l):

(ẑ, B̂) = argmin
z,B

LX

l=1

X

i 6=j

⇣
A(l)

ij � B(l)
zizj

⌘2

, (2.6)

which is a more straightforward method than spectrum-based methods mentioned before.

The optimization problem (2.6) has no direct solution, and one way to solve it is to use an

EM-like algorithm [LCL20], which we call “likelihood-based community detection”. First,

we can solve the community assignment z based on a group of fixed connectivity matrices B,

and then we find out the optimal connectivity matrix B based on the community assignment

found in the previous step. The details of the algorithm are discussed below.

The community assignment z is usually initialized with the K-means algorithm, which is

proved to give consistent results in [ADK08]. However, for most experiments in this thesis,

the proposed K-means initialization tends to give an initialization with very low NMI; at

the same time, changing the initialization in likelihood-based algorithm to random guessing

still yields the same community detection power.

With the initialized guess to the community assignment z, we can first estimate the

connectivity matrix. Denote n(l)
p (z) =

P
1(zi = p) as the count of node at layer l within

community p, and N (l)
pq (z) =

P
A(l)

ij 1(zi = p, zj = q) as the block sum of the community

p and q. Based on these notations above, for a given community assignment vector z, the

lease square question (2.6) has a closed form solution to the connectivity matrix B as

B(l),new
pq =

8
>>>><

>>>>:

N (l)
pq (z)

n(l)
p (z)n(l)

q (z)
, p 6= q;

N (l)
pq (z)

n(l)
p (z)(n(l)

q (z)� 1)
, p = q.

(2.7)

Afterwards, with the estimated matrix Bnew, we can update the community assignment

by simply going over all K possible value for each node i and find out the community
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assignment that minimizes the following L2 distance:

znewi = arg min
k2Nk

LX

l=1

X

i 6=j

⇣
A(l)

ij � B(l),new
zizj

⌘2

, i = 1, 2, · · · , n. (2.8)

Note that in the right-hand side of (2.8), when solving for the new community assignment,

we actually use the estimation of z from the previous round of iteration.

Once we obtain the estimation of Bnew and znew, we should compute the least square

error in (2.6) again. If the loss reduces, we update the estimation: B  Bnew, z  znew.

This process is then repeated until convergence. We shall also extend the method to the

scenario when the underlying model is DCSBM instead of MLSBM. It can be proved that,

under DCSBM, the estimation process of B (2.7) and z (2.8) remains the same; furthermore,

the estimation to ⇥ = diag{✓1, · · · , ✓n} is simply computed by

✓i =
n(l)
zi (z)⇥ diP
j:zj=zi

di
. (2.9)

The process of likelihood-based community detection is shown in Algorithm 3 below.

Algorithm 3: Likelihood-based community detection on multi-layer network
Result: Predicted community assignment z

Initialization Compute the initial community assignment z0 by K-means.

while not converged do
Obtain the estimation of connectivity matrices Bnew by (2.7);

Compute the estimated znew by (2.8);

if the model is DCSBM then
Estimate ⇥new according to (2.9);

else
⇥new = In.

end

Compute the loss function based on the estimated Bnew, znew and ⇥new.

Update the estimations if the loss function improves.

end
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2.9 Rank Estimation Methods

In previous methods, we try to solve the community detection problem with various methods.

A drawback of the community detection algorithms is that the number of the communities

must be given in advance. For simulated data, this is a minor problem; however, when

processing the real-world datasets, we typically do not have access to the ground truth, not

even the community number. In this scenario, rank estimation methods are required to

determine the number of communities.

Inspired by the cross-validation idea which is widely used in model selection tasks in

statistics and computer science, one can use a edge cross-validation (ECV) method [LLZ16]

to perform the rank estimation task. The general ECV for rank selection is given as follows:

Algorithm 4: general ECV framework for rank estimation with loss function L
input : the adjacency matrix A, the training proportion p, rank range

[Kmin, Kmax] and the number of replications T .

output: The best rank selected by the ECV

Step 1 for t = 1, · · · , T do
Randomly choose a subset of node pairs ⌦ 2 V ⇥ V , by selecting each pair

independently with probability p;

for k = Kmin, · · · , Kmax do
Fit a DCSBM on the sampled subset of the graph with rank k to get

parameters z, B and ⇥;

Apply the model to estimate the population adjacency matrix A on the

held-out set {Aij | (i, j) 2 ⌦c};

Evaluate loss L(t)
k by computing the loss function L between the input

adjacency matrix A and the estimated population adjacency matrix A.

end

end

Step 2 Let Lk =
PT

t=1 L
(t)
k /T and return K̂ = argmink Lk as the rank.
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CHAPTER 3

Experiments and Discussion

In this chapter, we test the methods in di↵erent experimental settings and try to give an

explanation about the reason why some methods perform better in specific settings.

Recall both of the block models in (1.2) and (1.3) where the general model structure

is E(A(l)) = ⇥ZB(l)Z>⇥. There are two types of experiments exploring the community

detection problem by conditioning on the connectivity matrix B(l). In the first experiment

inherited from [LL21], two pre-defined di↵erent connectivity matrices are used to address

the necessity of bias-adjusted spectral clustering; while in the second experiment, the con-

nectivity matrices for each layer are randomly generated with a fixed diagonal/o↵-diagonal

ratio. Both of the experiments are designed such that clustering on average adjacency matrix

should not give a satisfactory result, which would further address the importance of other

“late-fusion” methods or optimization-based methods.

We also test the behavior of the rank-estimation method, specifically, the Edge Cross-

Validation (ECV) algorithm, on another simulated dataset, and discuss the pros and cons

of the algorithm based on the results.

3.1 Two connectivity matrix experiment

3.1.1 Experimental Setting and Brief Analysis

In this section we try experimental settings based on Jing Lei’s paper [REF]. The number

of communities K = 2, and the connectivity matrix B(l) for each layer is selected from the
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following options with equal probability:

B1 =

0

@ 3/4
p
3/8

p
3/8 1/4

1

A ,B2 =

0

@ 7/8 3
p
3/8

3
p
3/8 1/8

1

A . (3.1)

Both (B1+B2) and (B2
1+B2

2) have an eigenvalue very close to 0 which will make the spectral

clustering process on mean adjacency matrix and on mean of squared adjacency matrix very

di�cult. However, the eigenstructures of both individual connectivity matrices B1 and B2

are good enough for spectrum-based methods to detect the community on the layer-level,

which in theory emphasizes the importance of the bias-adjustment spectral clustering.

As for the experimental settings, we set number of nodes n = 600, number of layers

L = 10, and MLSBM (1.2) for simulation. It is worth noticing that we adopt the modified

model with the parameter ⇢ for sparsity control, i.e. E(A(l)) = ⇢ZB(l)Z> as specified in (1.4).

The range of ⇢ is [0.02, 0.4]. For each ⇢, the community detection is performed with di↵erent

methods; then we compare the NMI and summarize them in the following plot.
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Figure 3.1: Comparison of di↵erent methods under Jing Lei’s experiment
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Results. From Figure 3.1 we can see most of the methods compared outperform the spec-

tral clustering method on the mean adjacency matrix. Besides, the likelihood-based method

consistently performed perfectly in this case.

3.1.2 Changing the model to DCSBM

In Figure 3.2, we only change the model to DCSBM and keep the other parameters un-

changed. We need to modify the methods slightly, using the Laplacian as the input, in order

to make them compatible with the DCSBM setting. Here, to generate the degree-correction

parameter ⇥, we use a Pareto distribution with parameters xm = 2/3 and ↵ = 3. This

distribution has an expectation of 1 and keeps all the corrected degrees positive.
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Figure 3.2: Comparison of di↵erent methods under Jing Lei’s setting and DCSBM
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Results. This time, the likelihood-based method falls behind in terms of NMI. It is worth

noticing that, under the DCSBM setting and in the very sparse regime, the estimation of

the degree-correction parameter ⇥ could have a much larger variance. Figure 3.3 shows the

results from numerical experiments computing the distance
Pn

i=1 |✓̂i � ✓i|/✓i, where the ✓̂i

is the estimated degree correction parameters from likelihood-based model. The error could

be as high as 35% as ⇢ = 0.02. The variance in the estimation of ⇥ contributes to the

underwhelming performance of the likelihood-based method in Figure 3.2 especially in the

very sparse regime, while the other two methods compared (bias adjustment clustering and

aggregate spectral kernel) are less a↵ected by the degree correction parameter ⇥.
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Figure 3.3: The L1 distance between true ⇥ and the ⇥ estimated by likelihood-based method

3.2 Random-generated connectivity matrix experiment

3.2.1 Experimental Setting and Brief Analysis

In this section, we try experimental settings based on S. Paul’s paper [REF]. We set the

number of nodes n = 600, the number of communities K = 4, and the average expected
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degree d = 12. We change the number of layers to see how the addition of more layers a↵ects

di↵erent methods’ performance in the community detection task.

Here, the connectivity matrix B(l) for each layer is generated randomly. The o↵-diagonal

elements B(l)
ij (they are the probability of forming edges between two nodes in the di↵erent

communities) are sampled from a uniform distribution U [a, b]; while the diagonal elements

(the probability of forming edges between two nodes in the same community) are sampled

from another uniform distribution U [�a, �b]. Specifically, in this section, the factor � is set

to be 3 for 2/3 of the layers, which means the in-community connection propensity is much

stronger than the cross-community ones. For the rest of the layers, � is set to be 1/3 to

balance out the influence of the previous layers with � = 3. As for the choice of a and b, we

generally let a = 0.1 and b = 0.2. The Bs are normalized after the sampling process.

The independent variable in this experimental setting is the number of layers in the whole

graph. Both the models, i.e., MLSBM and the DCSBM, are tested in the experiment. For

DCSBM, the degree-correction parameter ⇥ is generated in the same way as Section 3.1,

the Pareto Distribution with parameters xm = 2/3 and ↵ = 3.

Results. The results are shown in Figure 3.4. It is expected that most of the models

can perform the community detection task well since the signal is very strong in each in-

dividual layer. However, averaging over the adjacency matrices will make the model lose

information about the original multi-layer data, thus the average adjacency matrix-based

clustering is also expected to perform the worst out of all the methods. Among all methods,

the likelihood-based method and the clustering method based on low-rank spectral approx-

imation perform the best on both DCSBM and MLSBM. Bias-adjusted clustering performs

excellently on MLSBM which is expected but falls short when the degree correction param-

eters are introduced.
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(b) Multi-layer Degree-corrected Stochastic Block Model

Figure 3.4: Comparison of di↵erent methods under S Paul’s setting

3.2.2 Modification 1: varying the expected degree

In this section, we propose a modification to the original experiment Subection 3.2.1, only

changing the independent variables to the average expected degree, instead of the number

of layers, and keeping all other settings identical. The average expected degree is given

by d(l) = E
⇣Pn

i=1 d
(l)
i

⌘
/n, which has similar e↵ect as the parameter ⇢ in Section 3.1. By

conducting this experiment, we hope to see how the sparsity within each layer a↵ects di↵erent

methods’ community detection results. The simulated results are summarized in Figure 3.5.

Results. As we can see from the plots, in the more sparse regime, the spectrum-based

methods tend to perform better, while most optimization-based methods are more sensitive

to the possible disturbance from the sparse regime. It remains as the case that in DCSBM

settings; spectral clustering on average adjacency matrix will yield the overall worst perfor-

mance, while the likelihood-based detection remains the most consistent method. Besides,

the low-rank estimation methods, including the clustering on low-rank spectral approxima-

tion and clustering on the aggregate spectral kernel, generally give more consistent results
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(b) Multi-layer Degree-corrected Stochastic Block Model

Figure 3.5: Comparison of di↵erent methods with varying sparsity

than the other methods.

3.2.3 Modification 2: setting � = 1 for all layers

A more di�cult yet interesting modification to the previous problem setting in Subsec-

tion 3.2.2 is to further force � = 1 for all layers. In this case, the connectivity matrices B

are highly unstable, resulting in most of the methods being less e↵ective since E(B(l)) is a

constant matrix with K ⇥K identical entries, or alternatively, degrades to lower rank. This

problem requires a high capability of keeping all information from the original multi-layer

network, which gives the optimization-based methods better potential.

The other hyper-parameters remain the same for this experiment as in Subsection 3.2.2,

with n = 600, d = 12 and tuning the number of layers. The results for this much harder

problem are shown in Figure 3.6.
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Results. One could see from the plot that, only the likelihood-based method can produce

satisfactory results for both MLSBM and DCSBM settings.
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Figure 3.6: Comparison of di↵erent methods with � = 1

3.3 Rank Estimation Experiment

In this section, we provide another perspective of analyzing the network data by performing

rank estimation on the FAO (Food and the Agricultural Organization of the United Nations)

worldwide food import/export network dataset from [DNA15]. This multilayer network has

n0 = 214 nodes and L0 = 364 layers. The nodes in this network represent countries and

layers represent the import/export relationships of a specific food product.

We preprocess this multi-layer network dataset by selecting the top 30 layers with the

most edges, computing the cumulative degree for each node across these 20 layers, and

filtering out the nodes with a cumulative degree less than 20. After preprocessing, the final

dataset contains n = 177 nodes and L = 30 layers.

Our experiments based on this multi-layer network is explained in the following section
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and can be split into two parts, the first one of which is based on simulated data and uses the

edge cross-validation framework adopted from [LLZ16], while the second one directly uses

the pre-processed dataset without simulation, and the BIC (Bayesian information criterion)

as the standard.

3.3.1 FAO Data Simulation and Edge CV

The main drawbacks to the FAO network are that we still have no access to the number of

communitiesK (ground truth) and that di↵erent layers are likely to have completely di↵erent

community structures due to the variability nature of the real-world dataset. Consequently,

directly testing the ECV framework (Algorithm 4) with this dataset is not plausible.

Here, we design an alternative method to address this issue. We first set a pre-defined

number of communities K, and then perform the spectral clustering (algorithm 1) on the

processed FAO dataset to obtain the estimated parameters of the DCSBM, namely, z, B

and ⇥. After that, we sample a network based on the estimated DCSBM parameters as

well as the pre-defined K, and then check if the ECV framework works well and results in

the correct pre-defined K on the sampled network. The simulation process is shown in the

following Algorithm 5:

Specifically, we do T = 20 repetitions, and the range of the number of communities is

selected to be [3, 4]. After obtaining the simulated data, we put the graphs into the ECV

framework and select the best estimated rank (K) by L2 distance as the loss function L spec-

ified in Algorithm 4. The holdout values for edges are set to be [0.01, 0.09, 0.25, 0.49, 0.81],

and the maximum rank used in ECV is set as 30. Finally, for both K = 3 and K = 4 sce-

narios, we compute the proportion of repetitions where ECV estimates the rank K correctly,

and plot the results in Figure 3.7.
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Algorithm 5: Data simulation for FAO dataset

input : the FAO network {A(l) | l = 1, 2, · · · , 30}, the number of repetitions T , the

range of the number of communities to test [Kmin, Kmax] .

output: The simulated data
ˆ

A(l)
t,k.

for t = 1, · · · , T do

for k = Kmin, · · · , Kmax do

for l = 1, · · · , L = 30 do

Perform the spectral clustering on A(l) with k communities to obtain the

community assignment ẑl;

Estimate the corresponding degree-correction parameter ⇥̂l and the

connectivity matrix B̂l based on (2.9) and (2.7), respectively;

Sample a new graph from the DCSBM(1.3) as
ˆ

A(l)
t,k.

end

end

end
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Figure 3.7: Comparison of rank estimation result with K = 3 and K = 4.

Results. One can see the results are not very good especially when K = 4. For K = 3,

the results are not consistent for most of the layers.

3.3.2 BIC experiment directly on FAO dataset

Another way to do the rank selection and model selection is to use Bayesian information

criterion (BIC) as a criterion. BIC is a widely-used criterion for model selection, balancing

the value of likelihood and the model complexity. For the single-layer DCSBM scenario, BIC

is first defined by [WB17], and is implemented in [ZA20]. The formula of BIC is given as

log-likelihood minus K(K + 1) log(n)/2:

BIC =
nX

i=1

log Pr(z = zi) +
X

i<j

�(Aij; ✓i✓jBzizj)�K(K + 1) log(n)/2.

In this section, we take the processed FAO dataset as the input directly. For each layer

l and each K 2 [Kmin, Kmax] tested, we perform spectral clustering based on the K we

used and the sampled sub-graph to obtain the predicted community assignment z, and then,
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compute the BIC score based on K and z. The resulting BIC values are averaged across

layers to show which K gives the best fit of DCSBM. The resulting BIC plot is shown below.
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Figure 3.8: The BIC curve

Results. The model with the lowest BIC is presented with K ⇡ 20.

3.4 Discussion and Conclusion

Among the community detection methods, the likelihood-based methods give consistent re-

sults in most of the scenarios, and it performs especially well for the most di�cult experiment

where � = 1 (Section 3.2.3). However, this method falls short when the disturbing e↵ect

of degree correction is too large and the network, in general, is sparse, and this method is

slow in computation speed. Other than that, the bias-adjusted spectral clustering outper-

forms the other methods in most MLSBM settings, but its performance is underwhelming

in DCSBM settings. The other spectrum-based methods, including spectral clustering in

aggregate kernel and clustering on low-rank spectral approximation, are faster and more

consistent, while those optimization-based methods are slower and sometimes perform low
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NMI results even when the network is dense enough.

For the rank estimation methods, ECV performs inconsistently at computing the correct

community number especially when the number of communities is larger. The BIC is more

consistent but gives us a much larger number of communities (K ⇡ 20) which is unexpected

in this scenario. Both of the results occur probably due to the nature of real-world data not

following the DCSBM setting.
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