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Abstract

Cognitive Science has typically proceeded with two major
forms of research: model-building and experimentation.
Traditional parametric statistics are normally used in the
analysis of experiments, yet the assumptions required for
parametric testsare almost never met in Cognitive Science.
The purpose of this paper is twofold: to present a viable
alternative to traditional parametric statistics—the
randomization test—and to demonstrate that this method
of statistical testing is particularly suited to research in
Cognitive Science.

Introduction

One of the oldest methods of investigating the
phenomenology of human cognition is the experiment,
usually conducted in the laboratory. Experiments, however,
are only useful to the extent that they can demonstrate
reliable results.

The reliability of experimental results has, for some
time, been assessed through the use of inferential statistics.
While this is conceptually a sound process, the actual
methods usually employed to do this have recently been
subjected toincreasing scrutiny and suspicion. Traditional
statistical techniques for the analysis of experiments rely
on parametric tests of statistical reliability. These tests
make assumptions about the underlying form of the data
and the method used to collect the data.

Probably the most common statistical method used to
analyze experiments is the analysis of variance,or ANOVA.
In the case of two-sample tests, a simpler equivalent, the t-
test, is normally employed. The ANOV A F-test (taken as
the typical parametric test) makes anumber of assumptions

IThis work was supported by a graduate fellowship from
the National Science Foundation.

which are rarely met in Cognitive Science research.
Following is a list of the assumptions and the nature of the
violation typically encountered.

Assumptions of Parametric Tests

Random Sampling

One of the most fundamental assumptions made in
parametric inferential statistics is that of random sampling.
The hypotheses in parametric tests concern population
parameters (usually means), where estimators of those
parameters are found by randomly sampling from a
population. In essence, at-test tests a hypothesis like , =
W,. The terms p, and p, only have meaning in the context
of random sampling from some population. Indeed, the
mathematics underlying the t-testis based on the estimation
of a “standard error of the mean,” which refers to the
standard deviation of the theoretical sampling distribution
of the mean. Ifrandom sampling is notemployed, references
to this distribution make little sense.

In Cognitive Science, as in almost all experimental
research, random sampling is not only not done, but is
almost totally impractical. Experimenters do not generate
exhaustive lists of their populations and generate random
numbers to select people—samples of subjects are almost
always convenience samples, such as “those subjects who
sign up for the experiment.” Random sampling is
occasionally carried out by survey researchers, but rarely
by experimenters.

Normally Distributed Data

Parametric methods assume that the distribution from
which the random sample is drawn has a distribution that
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is, or closely approximates, the “normal” bell-shaped,
symmetric curve. The null probability distributions to
which parametric test statistics are compared are
mathematically derived from the normal probability
distribution.

Fortunately, sampling from a population, even if that
population does not conform to the normal distribution,
yields normal distributions for the parameter estimates as
the number of subjects grows larger. Thus, large random
samples insure that even if the underlying distribution in
the population is not normal, the sampling distributions of
the parameters will be. Unfortunately, most Cognitive
Science experiments fail to meet this criteria on several
levels.

First, data in Cognitive Science are typically not
distributed normally. Reaction times and error rates, for
example, are almost always skewed distributions because
they by definition cannot have large left-hand tails (negative
scores are not possible, while there is no upper bound on
positive scores). Real data sets are also prone to outliers,
to which parametric tests are not particularly robust.

This alone does not constitute a fundamental problem
if the sample size is large and is based on random sampling.
While samples of 200 or so are not uncommon in some
branches of behavioral research, samples of as many as 50
are large for Cognitive Science.

Homogeneity of Variance

Parametric tests on means (such as the ANOVA) assume
equality among the variances of the groups from which the
samples being compared are drawn. That is, if three
groups are being compared, then the variances around all
three means must be equal in order for the statistical test to
be valid. Innormal distributions, the mean and the variance
of adistribution are independent, but this is not true in other
distributions. In most real data, for example, groups with
higher means tend to have higher variances as well.
Cognitive Science data is no exception.

Inrepeated-measures or within-subjects experiments,
a stronger form of this assumption, called sphericity, is
required. While the details of the sphericity assumption
are complex, the basic conceptis that the repeated-measures
ANOVA makes critical assumptions about the nature of
the data distribution. Even relatively minor violations of
sphericity can have a serious impact on the validity of the
ANOVA. Unfortunately, it is often difficult to accurately
determine if the sphericity assumption ismet (Hays, 1988),
so any within-subjects experiment analyzed with an
ANOV A (which are not uncommon in Cognitive Science)
is a possible cause for concern.

Random Assignment

One other assumption that is almost universal in
experimental work is that of random assignment. That is,
experimental units, typically subjects, have equal
probability of being assigned to cach level of the
independent variable(s). The classic example of random
assignment is in a two-group design wherein the
experimenter flips a coin for each subject to determine the
group into which that subject is placed.

Random assignment is not so much a statistical
assumption as it is a common and necessary practice to
insure the internal validity of an experiment (Campbell &
Stanley, 1963). That is, random assignment is generally
necessary in order to help insure that any differences that
are observed can be attributed to the experimental
manipulation and not to subject differences. Meeting this
assumption is not difficult, and is the norm in laboratory
work, including that in Cognitive Science.

Since it is nearly impossible to guarantee that
experiments in Cognitive Science will meet any of the
assumptions normally associated with statistical testing
and experimentation save for random assignment, what is
clearly necessary is a method for performing statistical
tests that makes no assumptions about the data other than
random assignment. Fortunately, such a method exists,
though it is only recently that it has become practical. This
method iscalled the “randomization” approach tostatistics.

Randomization Tests

While the practical development of randomization tests is
arelatively recent phenomenon, the basic principles were
developed almost 60 years ago (Fisher, 1935). The basic
tenet underlying randomization testing is simply this: if,
under the null hypothesis of no effect of grouping, random
assignment was used, every possible arrangement of the
dataisequally likely. Thus, much like the simple binomial
test, it is possible toempirically generate anull distribution
without making any further assumptions about the data.
An example will help illustrate.

Taking a paradigm that should be familiar to all
Cognitive Science readers, consider an experiment
comparing two isomorphs of the Tower of Hanoi in which
the dependent measure is the number of minutes the
subjects take to solve the problem they are given. Group
A receives the standard TOH, while Group B receives a
more difficult isomorph, such as the “Monster Change”
isomorph. The results of running nine subjects are as
follows:
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Group A: 12,7,4,3
Group B: 8,10, 12, 15,22
The difference between means is 6.9.
If subjects were randomly assigned, there are

9 9
(4) = a3~

possible unique arrangements of the data, and, if the null
hypothesis of no association between the groups is true, all
of these arrangements are equally likely. Yetsome of these
arrangements are clearly more “extreme” in some sense
than others. Consider

Group A: 3,4,7,8

Group B: 10, 12, 15,22
and

Group A: 3,22,8,10

Group B: 4,7,12, 15, 12.

The difference between the means in the first case is 6.3
minutes, while in the second it is a mere 0.75. Yet under
the null hypothesis, these are equally probably outcomes.
Given these nine scores, what is the probability that they
would randomly fall into this most extreme arrangement?
It is 1/126, which is approximately 0.008. Moving up a
level of abstraction, what is the probability of observing a
result that is as extreme or more than the result that was
actually obtained? Thatis, What is the probability that the
results observed could have been observed by chance if the
null hypothesis is true?

As with the binomial test, one simply figures out the
probability of each outcome that is as extreme or more than
the obtained data. Doing this requires permuting the data
and obtaining some index of difference (in this case, the
difference between the means) forevery unique permutation
of the data so that those permutations that are as or more
extreme than the observed date can be identified. The
number of permutations that meet the extremity criteria is
then divided by the number of possible permutations,
directly yielding a probability value. This can then be
compared to the nominal alpha level (conventionally, .05),
and, if less that this value, one can conclude that the data
are notindependent of the grouping—thatis, that there was
an effect of the manipulation.

In the example presented, assuming a one-tailed test,
there are five permutations (including the one observed)
thatmeet the criteria. Thus, the p-value for this experiment
would be 5/126, or about .04. In this case, this is almost
exactly the same p-value that one would obtain with a
traditional t-test. Parametric tests and randomization tests
do not always agree, however. For example, if the most
extreme observation in the data (22) is changed in the
direction of greater difference, as little as five minutes (to
27), the t-test is no longer significant! On the other hand,
the randomization test is not affected at all by this change.

How is this possible? A moment’s reflection should
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make this clear. Under randomization, the more extreme
data point will change the size of the differences observed
in each permutation, but will not change the ordering. In
the case of the t-test, however, even though the difference
in means used to compute the ¢ statistic is larger (7.9 as
opposed to 6.9), the estimate of the standard error of the
mean (the denominator of the ¢ statistic) is inflated as well
(3.29 vs. 4.20), and the p-value of this test is just slightly
higher than .05, and would lead the researcher to fail to
reject the null hypothesis. Parametric tests are sensitive to
extreme data points, particularly when sample sizes are
small.

Evaluating Randomization Tests

There are several relevant questions beyond simple
appropriateness—there are practical considerationsas well.
The remainder of this paper will address several issues
relevant to the use of randomization tests in behavioral
research.

Flexibility

While the logic underlying the randomization test is quite
straightforward for two independent samples, it is not
immediately obvious that such a method generalizes to
more complex designs. While the logic is somewhat more
complex, the same basic techniques can be applied to
arbitrarily complex factorial designs, repeated-measures
designs, correlations, trend analysis and so on (Edgington,
1987). There is still some disagreement on how to treat
interactions in complex designs, but a seemingly sound
method has been developed by ter Braak (1992).

More complex multivariate statistical methods, such
as factor analysis, path analysis, and the like, do not yet
have randomization counterparts. However, the use of
such statistical techniques is rare in Cognitive Science.

Acceptability

Despite the apparent sensibility of randomization testing,
one important consideration is the general acceptance
level associated with such a technique. Could one, for
instance, publish a paper having used such a technique?
While randomization tests are not yet a common
practice in behavioral research, they are discussed in such
conservative statistical references as Siegel & Castellan
(1988). Randomization tests are beginning to appear in
introductory statistics texts (May, Masson, & Hunter,
1990) and have been discussed seriously in statistical



psychology journals for over a decade (e.g. Still & White,
1981).

Agreement

Certainly, one consideration is whether or not the adoption
of a new slatistical technique will greatly change the
expectations of the researcher in terms of things like
statistical power. That is, will these tests generally behave
as well or better than the tests currently in use?

The answer to this question is a qualified yes. When
the distributional assumptions of the ANOV A are met, the
randomization test and the ANOVA generally agree with
one another (e.g. Bradbury, 1987). This leads to the
rationale used by some proponents of parametric tests—
why use less standard randomization tests when the results
generally agree?

The critical issue is that theresults of the two procedures
do not always agree, as demonstrated in the example
above. It is generally difficult to predict exactly what the
behavior of both parametric and randomization methods
will be with different kinds of distributions. Violation of
distributional assumptions tends to result in less power
with parametric statistics, particularly with smaller sample
sizes. Randomization tests appear to be more robust to
such violations. (For anexcellent brief review of parametric
vs. nonparametric methods, see Hunter & May, 1993).

Pedagogy

Another important issue thatarises in the use of any tool is
the ease with which it can be learned/taught. It should be
relatively clear thatit is possible to learn the basic concepts
of randomization testing rapidly, as the example used
earlier should illustrate. It may, in fact, be easier to learn
randomization tests, as one does not have to first master
concepts like sampling distributions, variance pooling,
and the like, which are typically prerequisites to
understanding even simple t-tests. Some instructors (e.g.
Peterson, 1991) maintain that instruction in randomization
concepts focuses students’ attention on issues of statistical
inference and away from the more mundane memorizing
formulae and such.

Availability

The case for using randomization tests, particularly in the
kind of experiments typically done by Cognitive Scientists,
is a strong one, perhaps “too good to be true.” If
randomization tests are the best thing to do, why isn’t

everyone already using them?

There are several answers 1o this question. First, the
full development of randomization techniques (especially
for analyzing interactions) is a relatively recent
phenomenon, of which too few practitioners are aware.
People simply do not know what the tests are or how they
are available.

Second, most researchers use standard statistical
packages such as SAS, SPSS, BMDP, SYSTAT, etc.
These packages have yet to incorporate randomization
tests, so performing such tests requires the use of some
other program, or alternately, programming the tests by
hand. There are statistics programs that include
randomization tests, such as NPSTAT (May, Masson, &
Hunter, 1989), StatXact (Mehta & Patel, 1991),RT (Manly,
1991), and CANOCO (ter Braak, 1988).

Programming randomization tests by hand is actually
not all that difficult, and some texts even include code to
make this easier. Siegel & Castellan (1988) includes code
for the two-sample case, and Edgington (1987) includes
extensive amounts of code for a variety of randomization
tests.

One consideration when doing randomization tests is
that of computational power. The number of permutations
grows explosively as the number of data points increases.
For example, there are over four million permutations in a
design with three groups and nine cases per group.
Increasing the design to ten cases per group raises this
number to over 30 million. Obviously, computing all the
possible permutations would be impractical in such cases.
However, randomly sampling from the space of possible
permutations yields an approximate test that is still valid,
but for power considerations the largest possible sample
should be used (see Edgington, 1987, for a complete
explanation for this method of approximation). 10,000
permutations is typically considered more than adequate,
but this is still time-consuming.

Computational considerations provide another reason
why randomization tests are particularly appropriate to
research, orrather, researchers in Cognitive Science. Many
Cognitive Science researchers are both competent
programmers and have access to high-speed workstations,
which typically provide excellent floating-point
performance.

Conclusions

Since most empirical research in Cognitive Science is
based on experimentation, and most experiments violate
one or more of the assumptions of traditional parametric
statistical tests, the Cognitive Science community should
be sensitive to issues of statistical methodology.
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Randomization tests provide a viable, practical altemative
to parametric tests, and thus it is recommended that
Cognitive Science research adopt, or at least carefully
consider, the use of randomization tests.
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