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%DN THE EQUIVALENCE OF ANNNI MODEL POLYTYPES

FORMED BY SQUARE WAVE MODULATION AND BRANCHING MECHANISMS*

by

D. de Fontaine

Universitvy of California
Department of Materials Science and Minerals Engineering
Berkelev, CA 94720

ABSTRACT

It 15 proved that long-period structures tormed by a square wave modulation
of a lattice are identical to those of stable phases found in the ANNNI
model. The proot 1s based on a continued +fraction expansion of the
modulation halt-period, producing structural formulae shown to be
equivalent to those obtained bv a structure-combination branching process.
The same sctructures have been observed experimentally by high-resalution

transmission electron microscopy 1n certain ordered allovs.

*This work was supported by the Director, Office of Energy Research, Office
of Basic Energy Sciences, Materials Sciences Division of the U. S. Depart-
ment of Energy under Contract No. DE-AC03-76SF00098.



In .order to interpret certain x-ray diffraction patterns of
ordered alloys featuring satellite reflections, Fujiwarwa (1957} proposed
that the crystal structure was.-modulated by a periodic function +(x), 1n
thch tﬁe coordinate represented a ’ continuoué variable in the
(cr?stallographic) direction of the observed long-wavelength modulation. In
particular,vFujfwara shﬁwed that a square wave modulation could account
quite well for both the positions and relat;ve intensities of the satellite
reflectioné.'The modulation wavelength was written as A = 2Ma,, the number
M thus. representiﬁg the half-wavelength expesSedv in units of the lattice
parameter a, in the direction of the modulation. Actually, it is not
necessary faor £hé ffx) profile to be a sharp square wave: it suffices for
the zeroes of’.the modulafiﬁg function to be equiaistant on the ¥ axis, a
property wh{th Fujiwara described as that of urifore mixing, as explained
elsewhere (de Fontaine and Kulik, 1984; henceforeth to be referred to as
FK, for short). A more proper condition on $(¥) isvthat it posess a Fourier
spectrum containing only odd harmonics. For simplicity, however, we shall
continue to refer to that class of modulations as "square wave"; the set of
all such modulations of half-period M=P/Q (where P and @ are relative
primes) will be denoted by the symbol Sq. The numerator P, oar
coamensuration number (FK), is seen to be equal to the number of lattice
planes between two successive coaemensurations, where the lattice and the
modulation are in step; the denominator @ is then equal to the number of
half-periods of the modulation within an interval of P plénes.

Figure 1 (a) illustrates the effect of a square wave modulation of
half-period M = 8/3 on a lattice. The open and clesed symbols may

represent, respectively, (predominantly) positive (spin up) and negative
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ispin down) lattice plane magnetisation, or A-rich and B-rich planes in a
binarv AB allov., or positive and negative antiphase shifts i+ the lattice
planes have two-dimensional order (FK), etc.. It 1s seen that the
modulation creates a polytype of the original structure, with new unit cell
of lattice parameter Fap 1f @ 1is even and twice that if @ is odd. The
commensuration number P is here equal to 8. The structural formulia for this
polytvpe is indicated-just above the modulation protile in Fig. t (a}, and
written in shorthand notation as <22121>, a notation pioneered by Fisher
and Selke (1981).

Polvtypes resulting from the set of Sq modulations were called
Fuiiwara phases (FW) in FK. In that paper, it was shown that the
coresponding structural formulas could be derived bv a continued Yraction
algorithe, preoposed independently.by "Hubbard (1978) and by Pokrovsky and
Uimin (1978) in a quite different context. The algorithm, in the notation
of FK, 15 as tollows: one +irst expands the half-period M in a continued

traction

Since M can be approximated as closely as desired bv the rational fraction
P/Q, the continued traction expansion must terminate at some level, say k.
At any intermediate level i, the integers n; are determined uniquely by the

remainder (r) at level 1-1 :

, = n. p. 2
t/ri-y ng + 7irj (2)



- wWith

=1/2 < ry £ #1/2 , | (3)
so that =
yi T ori/firgl = ot 4) 3
. c C ' _ 4
Now detine the sequences (X} and (Y} by the recursion formulas
Xg = Ng - - T (sa)
Yo = ng ‘ 74 {5b)
= oo™ty ] (Sc)
: ' ool o= 1,2, k=10
vy gopMtithy ) v (5d)
The fofmula fur’polyfvpe of half-period M is>then
| O =X . | . (6)
At any level Ofi<k. Xy and v; wiil be calléd partial dorainsi Xg and Yq Will
bé called najéftty éﬁd ainority donain#. reépe#tively.brhe setvof.ﬁoivtypes
whose strucfural formulas result +from the apppliﬁation ot the above
algorithm‘will be deSiqnatedv as'the C;vset. Sinﬁe the sets Sq énd‘t;‘havé
kbeen shown elsewhere (FK) to 59 i&enti&alr both Sd and Cg pdlytypes may be
called FW pha%es., |
Tﬁus_ far. '.the descriptioh of FW phases has been purely
qeometrical., Hoﬁever, in a remarkable paper, Fisher and Selke (1981) showed
that such structures could well result from a statistical mechanical model, "
the so-called Axial Next-Wearest Neighbor [Ising (ANNNI) Hodel. In /

_ particular, these: authors showed 'that a low-temperature expanéion of fhe
éxact +ree_energy yielded (rfgorouslyf stable pﬁases of structural formulae
<233>, provided that the ratio of next-nearest (J,<0) to nearest \J,)O)
neighbor interactions in the axial .direction were gqreater than 1/2 in

magnitude. A change of sign of J; (antiferromagnetic) produced structures



ot the type <211>, stable at low temperatures (FK). More generally, it
appears (FK) that a scheme of interactions J can alwavs be found which will
vield stable low-temperature polytvpes of structural formulae {Xquoﬁ.
where X, and Y, are, respectively, the "majority" and “minoritv" domains
defined above. These phases have been called FS phases, for shaort (FK);
they are FW phases resulting +froem a continued +raction expansion
terminating at level one.

Fisher and Selke {1981) also mentioned that, at higher
temperatures, the common boundary between two successive FS5 phases, say
<233y and <23%13>, may become unstable and split to produce the
intermediate ﬁhase <23323*135, In 1ater papers, Duxbury and Selke (1984)
and Selke and Duxburv (1984) showed, by mean-field calchlations. that
higher-temperature stable phases could indeed result from, as thev put it,
a structure-combination branching process. The set of structures derived in
this manner will be denoted as the B, set, for short. The purpose of this

communication 1s to prove the equivalence of C¢ and B, mechanisms:
C; 7 B, ' (7)

I[n each direction, the proof will be carried out by induction.

First note that the branching process 1in question <can be
represented by a graph, 1in fact by a (rooted) tree (Fig. 2). A particular
structural tormula, say <X> = Xk. must be tfound at some branching point, or
node ot the tree, from which the path to the "root" is unique. That path may
be reqarded as the “trunk" of the tree, with "“branches” springing "right"
and "left". Any two successive branches may lie either on the same side of
the trunk <(parallel canfiquration), or on opposite sides <{anti-parallel

-

contiquration), as illustrated bv branches at points t and u in Fig. 2 (b} .
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and (a), respectively. Assignment of domain symbols X and Y to interbranch
regions ot the graph will turn out to depend on the nature ot the branching,

parallel or antiparallel.

B

2

Let us prave that any.Cg structure'vtan be obtained by a B,
process. Assume that partial domains Xi—i and Yj_{ have been obtained
cq;rect}y by the appropriate branching tree. For arbitrary integer £ (21},
_if is clearly possible to produce the formula xi-lz-lyi—l by successive

parallel branchings, as sﬁown in Fig.2, nodes p to s. The next two damains
"béyoﬁd points s and t, which we uish to relabel X; and Y;, must result from
antiparallel branching (otherwise we would simply go on raising the ;power"
£i. One alternative, Xj_(#7lv;_y = vy xy.4%vyoy = X;, corresponding to
7i=—1'in Eq. (3d), is thén obtained by braﬁchinq at point u in antiparallel
kashion (Fig. 2a),  the opposite alternative, corresponding to »; =+1, is
graphed by branching at'u in parallel ;ashion (Fig. 2b). Arbitrarily high
"powers" of Xi can then be obtained by successive parallel branchings
bevond node u, to reach, at w, the desired structural formula for level i:
X;Pyy. Assiqnmenf of symbols X 4y Or Y4 to that domain proceeds in a like
manner. Since the procedure is obviously valid for transition from level 0
to 1 (producing FS phase <Xon°>), _the C¢ 4 By part of the proof i§
completed.

We now prove the converse: that any "structure-combination o,
- branching process" gives rise to structural +ormulas conforming to fhe o
continued +fraction algorithm. Assume that interbranch regions of the
representative graph have been correctly labeled bv.X and Y symbols up to
level 1-1. Bevond that 1level, arbit?ary branching processes <can be
represented in all qgenerality by a succession of sub-trees of the tvpes

illustrated in Fig. 2. Parallel branching from point p to s unambiguously



leads to structural formula Xi_lx'lYi_l at s. Since antiparallel branching
accurs at (s,t), resulting domains must he relabeled; the choice of svmbols
X;y ar Y; depending on the type af branching at <{t,u). I+ the latter
branching is antiparallel, Y; must be located at s, and X; at t, from which
tt is concluded that ~;=-1 (Fig. 2a}. Conversely, it the branching is
parallel, labeling ot domains must be inverted, and y;=+1 (Fig. 2b). Thus,
it is seen that structural +formulae of the C;y set can be assigned
unambiguously to interbranch regions of an arbitrary sub-tree from level
i-1 to 1. The ambiguity which mav result +from consecutive atiparallel
branching, vielding formula X;Y; can be lifted by adopting the convention
embodied in inequalities (3). Since the process just described is obviously
valid in going from level 0 to 1, the B, 9 Cy; part of the proposition is
proved. Hence, the complete Bijection (7) is proved. As an éxample.
consider the FW polytype <22121>, pictured as a square wave modulation in
Fig. 1 (a). lts continued fraction expansion is
M=8/3=2-1/(2 + 1/2) .

with partial domains X;, Y; (i = 0,1,2) shown in the eqguivalent graph of
Fig. | (b), in complete agreement with the results of the continued
traction algoritham.

By this proof, and the one given in Appendix [ of FK, it is thus
established that polytypes resulting from (a) the sguare wave modulation
mechanism Sy, (b) the continued fraction algorithm Cy4, and (c) the
structure-combination branching process B, are identical. The practical
signifticance of this result is that structural formulae which were
introduced for the purpose of explaining certain diffraction patterns fronm
long-period superstructures in ordered alloys are precisely the ones which

also minimize the fee energy of the ANNNI model. Added confirmation is



proVided by high-resolution +transmission electron microscopy on, for
inétance, AgsMg allovs with periodic antiphase boundaries (Portier et al.,
1980). In these alloys, polytype structures can be analyzed directly in
vreal space: FS phases <231 are clearly seen, possibly also more general FW
phases. Furthermore, since the low-tehperature expansion of Fisher and
Selke (1981) can be extended tao the face-centered cubic latfice. a very
good case indeed can be made for direct application ot the ANNNI -quel to
certain classes“ of long-pefiud superstructures in ardered alloys:
diffraétion evidence, direct structure analysis, and statistical mechanics
all converge to pfoduce the'same set of structural formulas, that of the’

Fujiwara phases (FW).
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Figure Captions

Fiqure 1. Fujiwara phase <22121>: (a} square wave modulation f{x) of pericod
2May, with polytype period 2Pa,, where a, 1s the (unmodulated) lattice

-.parameter; (b) equivalent graph of corresponding structure-combination

branching process, with partial domains X;, Y; determined by continued-

fraction expansion algorithm.

Fiqure 2. Sub-trees used in proof of equivalence of C; and B, processes:

(a) antiparallel branching at (t,u}; (b) parallel branching at (t,u).
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Figure 2.
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