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ABSTRACT 

r 

\ ON THE EQUIVALENCE OF ANNNI MODEL POLYTYPES 

FORMED BY SQUARE WAVE MODULATION AND BRANCHING MECHANISMS* 

by 

D. de Fontaine 

University of California 
Department of Materials Science and Minerals EngineerIng 

Berkeley. CA 94720 

It 1S proved that long-period structures formed by a square wave modulation 

of a lattice are 1dentical to those of stable phases found in the ANNNI 

model. The proof IS based on a continued fraction expansion of the 

modulatIon half-perIod. producing structural formulae shown to be 

equ1valent to those obtained by a structure-combination branchinq process. 

The same structures have been observed experimentally by hiqh-resolution 

transmISSIon electron microscopy In certaIn ordered alloys. 

*This work was supported by the Director, Office of Energy Research, Office 
of Basic Energy Sciences, Materials Sciences Division of the U. S. Depart­
ment of Energy under Contract No. DE-AC03-76SF00098. 
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In order to interpret certain x-ray diffraction patterns of 

ordered alloys featuring satellite reflections, Fujiwarl'la <1957> proposed 

that the crystal structure was'l!loduiated by a periodic function f(x), in 

which the coordinate x represented a continuous variable in the 

(crystallographic) direction of the observed long-wavelength modulation. In 

particular, Fujiwara showed that a square wave modulation could account 

quite well for both the positions and relative intensities of the satellite 

reflections. The modulati.on wavelength was written as A = 2Ma o ' the number 

M thus. representing the half-wavelength expessed in units of the lattice 

parameter a 0 i n the d i recti on of the mod u 1 a ti on • Actually. i tis not 

n e c e s s a r v for the f (x ) pro f i 1 e t.o be ash a r p 5 qua rewa v e : its u ff ice s f 0 t 

the zeroes of the modulating function to be equidistant on the x axis. a 

property which Fujiwara described as that of unifor. lixing, as explained 

elsel~here (de Fontaine and Kulik, 1984; henceforeth to be referred to as 

FK. for short). A more proper condition on f(x) is that it posess a Fourier 

spectrum containing only odd harmonics. For simplicity, hOI~ever, we shall 

continue to refer to that class of modulatiorts as "square wave"; the set of 

all such modulations of half-period M=P/Q (where P and Q are relative 

primes) will be denoted by the symbol Sq. The numerator P, or 

cOllensuration nuaber (FlO. is seen to be equal to the number of lattice 

planes between two successive cOllensurations, where the lattice and the 

modulation are in step; the denominator Q is then equal to the number of 

half-periods of the modulation within an interval of P planes. 

Figure 1 (a) illustrates the effect of a square wave modulation of 

half-period M = 8/5 on a lattice. The open and closed symbols may 

represent. respectively, (predominantly) positive (spin up) and negative 
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!Sp1n down) lattice plane maqnetisation, or A-rich and B-rich planes in .3. 

binary AS alloy. or positive and negative antiphase shifts it the lattice 

planes have two-dimensional order CFK), etc .. It is seen that the 

modulation creates a polytype of the original structure, with new unit cell 

of lattice parameter Pa o if Q is even and twice that if Q is odd. The 

commensuration number P is here equal to 8. The structural for~ula for this 

polytype is indicated just above the modulation profile in Fig. 1 Ca), and 

written in shorthand notation as (2 2 121>, a notation pioneered by Fisher 

and Selke (19811. 

Polytypes resulting from the set of Sq modulations were called 

FujlNara phases (FW) in FK. In that paper, it was shown that the 

coresponding structural formulas could be derived by a cOTIUnued fractio1'l 

algorlth., proposed independently by Hubbard (1978) and by Pokrovskyand 

Uimin (19781 in a quite different conte:<t. The algorithm, in the notation 

of FK, 1S as follows: one first expands the half-period M in a continued 

fraction 

P 
11 = Q = "0 + "'0 (1) 

nt + 
')' j 

Since M can be approximated as closely as desired by the rational fraction 

P/Q, the continued fraction expansion must terminate at some level, say k. 

At any intermediate level i, the integers ni are determined uniquely by the 

remainder (r) at level i-1 : 
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(3 ) 

so that 
~. 

(4 ) 

\ti 
Now define the sequences {X} and {V} by the recursion formulas 

(5ai 

Yo = no + "0 (5b) 

(5c) 

'( i = (X i _ 1) n i +., i - 1 
(i = 1.2 .... k-1) • 

f5d) 

The formula for polytype of half-period M is then 

(6) 

At any level O<i<k. Xi and Yi will be called partlal domains; x~ and Yo will 

be called lajority and Ilnority dOlains. respectively. The set of polytypes 

whose structural formulas result from the appplication of the above 

algori thm wi 11 be desi gnated as the Cf set. 8i nce the sets Sq and Cf have 

been shown elsewhere (FK) to be identical. ~oth SQ and Cf polytypes may be 

called FW phases. 

Thus far. the description of FW phases has been purely 

geometrical. However, in a remarkable paper. Fisher and Selke (1981> showed 

that such structures could well result from a statistical mechanical model. 

the so-called Axi~l Hext-Nearest Heiqhbor 1siTlq (ANNN I) Hode 1. In 

particular. these authors showed that a low-temperature expansion of the 

exact free energy yielded (r'{gorously) stable phases of structural formulae 

(2 j 3>. provided that the ra~io of ne~t-neareSt (J 2 (OI to nearest (J 1 >O) 

nelghbor interactions in the axial direction were qreater than 112 in 

magnitude. A change of siqn of J 1 (antiferromaqnetic) produced structures 



10.; 

, 
\. 

-5-

of the type (2 J l), stable at low temperatures IFK). More generally, it 

appears (FK) that a scheme of interactions J can always be ~ound which will 

yield stable low-temperature polytypes of structural formulae {Xojyo}' 

where Xo and Yo are, respectively, the "majority" and "minority" domains 

defined above. These phases have been called FS phases, for short (FKI; 

they are FW phases resulting from a continued fraction expansion 

terminating at level one. 

Fisher and Selke (1981) also mentioned that, at higher 

temperatures, the common boundary between two successive FS phases, say 

may become unstable and split to produce the 

intermedIate phase <2 j 32 j +( 3). In later papers, Duxbury and Selke (1984) 

and S elk.e and Dux bur y ( 1 98 4 ) s how ed, b y mea n - fie 1 d cal cui a t ion s , t hat 

higher-temperature stable phases could indeed result from, as they put it, 

a structure-co.bination branching process. The set of structures derived in 

this manner will be denoted as the Br set, for short. The purpose of this 

communication is to prove the equivalence of Cf and Br mechanisms: 

(71 

In each direction, the proof will be carried out by induction. 

First note that the branching process in question can be 

represented by a graph, in fact by a (roote;j) tree (Fiq. 2). A particular 

structural formula, say <X> = Xk' must be found at some branching point, or 

Do;je of the tree, from which the path to the "root" is unIque. That path may 

be regarded as the "trunk" of the tree, with "branches" sprinqinq "right" 

and "left". Any two successive branches may lie either on the same side of 

the trunk (parallel configuration), or on opposite sides (anti-parallel 

configuration), as illustrated by branches at points t and u in Fig. 2 (b) 
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and (a), respect i vel y. Assi gnment of domai n symbol s X and Y to i nterbranch 

regions of the graph will turn out to depend on the nature of the branching, 

parallel br ~ntiparallel. 

Let us prove that any. Cf structure can be obtained by a Br 

process. Assume that partial domalns Xi-1 and Yi-1 have been obtained 

correctly by the appropriate branching tree. For arbitrary integer £ (1), 

it is clearly possible to produce the formula Xi-1£-1Yi-1 by successive 

parallel branchings, as shown in Fig.2, nodes p to s. The next two domains 

beyond points sand t, which we wish to relabel Xi and Yi' must result from 

anti parallel branching (otherwise we would simply go on raising the "power" 

7i=-1 in Eq. (5d), is then obtained by branching at point u in antiparallel 

fashion (Fig. 2a) ,the opposite alternative, corresponding to 7i =+1, is 

graphed by branching at u in parallel fashion (Fig. 2b). Arbitrarily high 

"powers" of X· 1 can then be obtai ned by successi ve parall el branchings 

beyond node u, to reach, at w, the desired structural formula for level i: 

XimYi- Assignment of symbols Xi+1 or Yi+1 to that domain proceeds in a like 

manner. Since the procedure is obviously valid for transition from level 0 

to (producing FS phase <Xojyo», the Cf -+ Br part of the proof is 

completed. 

We now prove the converse: that any Hstructure-combination 

branching process u gives rise to structural formulas conforming to the 

continued fraction algorithm. Assume that interbranch regions of the 

representative graph have been correctly labeled by X and Y symbols up to 

level i-1. Bevond that level. arbitrary branching processes can be 

represented in all generality by a succession of sub-trees of the types 

illustrated in Fig. 2. Parallel branching from point p to s unambiguouslY 

" \ 

) 
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leads to structural formula Xi_lt-1Yi_l at s. Since antiparallel branching 

occurs at (s,t), resulting domains must be relabeled. the choice of symbols 

X 1 or Y 1 depending on the type of br anch i ng at (t. u) • the latter 

branching is antiparallel. Yi must be located at s, and Xi at t, from which 

it is concluded that 7i=-1 (Fig. 2a). Conversely. if the branching is 

parallel, labeling of domains must be inverted, and 7i=+1 (Fig. 2b). Thus, 

it is seen that str~ctural formulae of the Cf set can be assigned 

unambiguously to interbranch regions of an arbitrary sub-tree from level 

i-l to i. The ambiguity which may result from consecutive atiparallel 

branching, yielding formula Xi'fi. can be lifted by adopting the convention 

embodied in inequalities (3). Since the process just described is obviously 

valid in going from level 0 to 1, the Br ~ Cf part of the proposition is 

proved. Hence. the complete bijection (7) is proved. As an example, 

consider the FW polytype <2 2121>, pictured as a square wave modulation in 

Fig. 1 (a). Its continued fraction expansion is 

M = 8/5 = 2 - 1/(2 + 1/2l 

with partial domains Xi' Vi (i = O,l,2l shown in the eQuivalent graph of 

Fig. 1 (b), in complete agreement with the results of the continued 

fraction algorithm. 

By this proof, and the one given in Appendix I of FK. it is thus 

established that polytypes resulting from (a) the square wave modulation 

mechanism Sq. (b) the continued fraction algorithm Cf. and (c) the 

structure-combination branching process Br are identical. The practical 

significance of this result is that structural formulae which were 

introduced for the purpose of explaining certain diffraction patterns from 

long-period superstructures in ordered alloys are precisely the ones which 

also minimize the fee energy of the ANNNI model. Added confirmation is 
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provided b~ high-resolution transmission electron microscopy on. for 

instance. Ag 3Mg alloys with periodic antiphase boundaries (Portier et al •• 

1980). In these alloys. polytype structures can be analyzed directly in 

real space: FS phases (2 j 1) are clearly seen. possibly also more general FW 

phases. Furthermore. since the low-temperature expansion of Fisher and 

Selke (1981) can be extended to the face-centered cubic lattice. a very 

good case indeed can be made for direct application of the ANNNI model to 

certain classes of long-period superstructures in ordered alloys: 

diffraction evidence. direct structure analysis, and statistical mechanics 

all cOnverge to produce the same set of structural formul as. that of the 

FujiNara phases (FW). 
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Figure Captions 

F i Q u r e 1. Fuji war a ph a s e < 22 121 :> : ( a i s qua r e wa v e. mod u 1 at ion f (:<) 0 f per i 0 d 

2Ma o • with polytype period 2Pa o ' where a o is the (unmodulated) lattice 

parameter; (b) equivalent graph of corresponding structure-combination 

branching process, with partial domains Xi' Vi determined by continue.d 

fraction expansion algorithm. 

FiQure 2. Sub-trees used in proof of equivalence of Cf and Br processes: 

(a) antiparallel branching at (t,u); (b) parallel branching at (t,u). 
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