
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Neural networks for word recognition: Is a hidden layer necessary?

Permalink
https://escholarship.org/uc/item/3051q9xv

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 32(32)

ISSN
1069-7977

Authors
Dandurand, Frederic
Hannagan, Thomas
Grainger, Jonathan

Publication Date
2010

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3051q9xv
https://escholarship.org
http://www.cdlib.org/

Neural networks for word recognition: Is a hidden layer necessary?

Frédéric Dandurand (Frederic.Dandurand@univ-provence.fr)
Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University

3, place Victor Hugo, 13331 Marseille, France

Thomas Hannagan (thom.hannagan@gmail.com)
Laboratoire de Sciences Cognitives et Psycholinguistique, EHESS/CNRS/DEC-ENS, École Normale Supérieure

29 rue d’Ulm, 75005 Paris

Jonathan Grainger (jonathan.grainger@univ-provence.fr)
Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University

3, place Victor Hugo, 13331 Marseille, France

Abstract
We study neural network models that learn location invariant
orthographic representations for printed words. We compare
two model architectures: with and without a hidden layer. We
find that both architectures succeed in learning the training
data and in capturing benchmark phenomena of skilled
reading – transposed-letter and relative-position priming.
Networks without a hidden layer use a strategy for identifying
target words based on the presence of letters in the target
word, but where letter contributions are modulated using the
interaction between within-word position and within-slot
location. This modulation allows networks to factor in some
information about letter position, which is sufficient to
segregate most anagrams. The hidden layer appears critical
for success in a lexical decision task, i.e., sorting words from
non-words. Networks with a hidden layer better succeed at
correctly rejecting non-words than networks without a hidden
layer. The latter tend to over-generalize and confuse non-
words for words that share letters.

Keywords: Computational modeling, word recognition,
neural networks, reading, priming effects.

Introduction
An important cognitive activity involved in skilled reading
is the mapping of retinal images of letters onto abstract
word representations. Skilled readers can identify words
relatively easily (although not perfectly, see e.g., Rayner,
White, Johnson, Liversedge, 2006) even when letter order is
jumbled, except for the first and last letters. This suggests
that at least one intermediate level of coding exists that
abstracts away from absolute letter position and instead
codes some information about relative letter order. Such an
intermediate level of representation has been studied using a
number of techniques including masked priming (see
Grainger, 2008 for a review). Robust priming effects found
include the transposed-letter effect and the relative-position
effect. The transposed-letter effect describes the superior
priming observed from primes formed by transposing two of
the target’s letters (e.g., gadren-garden) compared with
primes formed by substituting two of the target’s letters
(e.g., galsen-garden). The relative-position priming effect
describes a processing advantage for targets preceded by

primes formed of a subset of the target’s letters (e.g., grdn-
garden) compared with a prime formed of the same subset
of letters in the wrong order (e.g., gdrn-garden).

A number of models have been proposed for an
intermediate level of coding that can account for these
priming effects (see Grainger, 2008 for a review). Notably,
the Grainger and Van Heuven (2003) model of orthographic
processing was the inspiration for a computational model
that learned to map location-specific letter identities (letters
coded as a function of their position in a horizontal array)
onto location-invariant lexical representations (Dandurand,
Grainger, & Dufau, 2010). Because parsimony dictates to
assume a single intermediate level of representation, we
considered a neural network architecture with a single
hidden layer.

This network architecture with a hidden layer successfully
captured transposed-letter and relative-position priming
effects (Dandurand et al., 2010). Intermediate
representations were explicitly probed and analyzed as
patterns of activation at the hidden layer (Hannagan,
Dandurand, & Grainger, submitted; see also Plaut,
McClelland, Seidenberg, & Patterson 1996 for a discussion
of internal representations in neural networks). These
patterns were found to have two important characteristics.
First, letters seemed to be represented in a semi-location-
invariant fashion at the hidden layer. Second,
representations at the hidden layer were well-characterized
as a holographic overlap coding in which small changes of
the inputs resulted in small differences in hidden layer
representations. More specifically, differences in patterns of
hidden layer activations were monotonically related to
differences in identity and position of input letters. For
example, patterns of activity at the hidden layer were more
different for a two-letter substitution at the input (POLL vs.
BULL) than a single letter substitution (PULL vs. BULL)
when position in the horizontal array was kept constant.
Furthermore, differences in patterns of activity were also
larger when the input word was moved by two positions in
the alphabetic array (#THAT##### vs. ###THAT###) than
moved by a single position (#THAT##### vs.
##THAT####). Holographic overlap coding explains the
observed transposed-letter and relative-position priming and

688

makes a number of predictions which are tested in this
article; see (Hannagan et al., submitted) for details.

As they map letters onto words, skilled readers can also
perform lexical decision, that is, deciding if a string of
letters is a word or a non-word (Meyer & Schvaneveldt,
1971). Lexical decision has been extensively studied, and a
number of models exist to account for human performance
(e.g., Ratcliff, McKoon, & Gomez, 2004). In the current
work, we test our models on a simple lexical decision task,
assuming a minimal lexical read-out mechanism, namely
that words would activate output units more than non-
words. We are not, however, claiming that this ability
should be interpreted as a full-blown or realistic model of
lexical decision. Note that performing lexical decision is not
trivial for networks because non-words are never seen in
training as negative evidence, and thus networks may be
expected to over-generalize what they consider as words.

In the current study, we revisit the assumption previously
made for the need of a hidden layer. We ask if such a hidden
layer is required for networks to learn location invariant
orthographic representations for printed words. To this
effect, we contrast two model architectures: (1) the previous
model with a hidden layer and (2) a simpler model without a
hidden layer. In this alternative model, letters are mapped to
words directly using a layer of connection weights. We
compare the two architectures on a number of criteria: (1)
their ability to learn the training set, including the anagrams
present in the training data, (2) their size and complexity,
(3) their capacity to simulate key priming effects, and (4)
their capacity to perform a simple lexical decision task.
Finally, we investigate how processing and representations
differ, how networks without a hidden layer manage to
segregate anagrams, and how well these networks conform
with the predictions made by holographic overlap coding.

Our goal is to gain insights into the role that the hidden
layer plays in performing a word recognition task. Without a
hidden layer, networks are computationally limited to taking
decisions based on weighted combinations of input letters. It
is unclear how, and even if, such model could handle
anagrams where the identity of input letters is insufficient to
discriminate words, and where position of letters has to be
taken into account.

Methods
We compare two architectures of standard multilayer
perceptron neural networks. The first one includes a single
hidden layer of 91 hidden units with logistic activation
functions, identical to (Dandurand et al., 2010). The second
one has no hidden layer (inputs are directly connected to
outputs). In the two architectures, adjacent layers are fully
connected, and are trained using standard backpropagation
(learning rate = 0.1, momentum = 0.9) until an SSE of 30.
Training material consists of 1179 real words of four letters
(same as the one used by McClelland, & Rumelhart, 1988)
presented in all 7 possible positions of an alphabetic array
(e.g., #ABLE#####, ######ABLE where # are empty,
blank slots). Local (sparse) coding is used for input letters

(one out of 26 possible letters, for each slot) and output
units (one out of 1179 words, also with logistic activation
functions). Networks learn to associate letter strings
presented at the input with the corresponding output unit
coding for some word. For further details, see (Dandurand et
al., 2010).

We trained and tested samples of 10 networks for each
condition (with and without a hidden layer). Networks
varied in the random initial values of their connection
weights.

In tests that involve lexical decision, we present some
pattern at the input and compute activations of all output
units. Output units activated above a threshold value of 0.9
are considered as active, and thus the word associated with
the unit as having been detected. For tests that involve
priming, a measure dubbed “target supremum measure”
(Dandurand et al., 2010) quantifies the ability of some
prime to activate the output unit associated with the target
word more than any other active output unit1

Results

.

Learning the training set
The training set comprises 1179 words, 24.0% (N = 283) of
which are anagrams. Anagrams come in pairs (111 pairs x 2
= 222 words), triplets (15 triplets x 3 = 45 words) and
quadruplets (4 quadruplets x 4 = 16 words). These
quadruplets (1. live – evil – veil – vile; 2. team – meat –
mate – tame; 3. tied – diet – tide – edit; 4. pear – rape – reap
– pare) should be especially difficult to discriminate because
the same four letters activate four different target word
units.

Networks with a hidden layer achieve perfect
performance (100%) on the target supremacy measure for
the training set. In contrast, networks without a hidden layer
reach 98.6%, and more than 95% of anagrams were
successfully segregated. In the 1.4% of errors, activations of
output units (including the target) fail to reach the threshold
of 0.9. These failure-to-recognize errors involved pairs of
anagrams (bear – bare, and read – dear) or sets of words
from an orthographic neighborhood sharing three letters
(bare – mare – pare, seep – seed – deep, and pull – burl –
bull).

Model size and complexity
From a size and complexity perspective, the hidden layer
adds 91 extra units, and an additional layer of processing.
However, in terms of size, networks with a hidden layer
actually have fewer connection weights (132 219, i.e., 1179

1 Models allow for multiple outputs to be activated, but some

competitive, winner-takes-all mechanism could be used to select
the most active one. Item-level target supremum value was set to 1
when the prime activated the output unit associated with the target
lexical item more than any other unit; it was set to 0 otherwise. The
target supremum measure of a set of primes was computed as the
mean of item-level values for the primes in the set.

689

outputs x (91 hidden + 1 bias) + 91 hidden x (260 inputs + 1
bias)) than networks without a hidden layer (307 719
connection weights (1179 outputs x (260 inputs + 1 bias)),
despite having two layers of weights. We can think of the
hidden layer as enforcing data compression from 260 inputs
to 91 hidden units, which reduces the number of
connections required.

Priming effects
Networks are tested using the relative-position priming and
transposed-letter priming manipulations described in
(Dandurand et al., 2010). Examples of primes for word
ABLE are overlapped on the graphs below, see (Dandurand
et al., 2010) for details of the content of testing sets. Primes
(e.g., ###ABE####) are expected to activate the target word
(e.g., ABLE) more so than any other word, especially when
prime letters are in the correct, forward order (ABE) and not
the reserved, backward (EBA) order.

Figure 1 – Target supremum results for the relative-position

priming test. Example primes provided for target word ABLE.

Figure 2 – Target supremum results for the transposed-letter

priming test. Example primes provided for target word ABLE.

As we can see, patterns of results are very similar for
networks with (see Figures 5 and 6 in Dandurand et al.,
2010) and without a hidden layer. More specifically,
relative-position primes formed of forward letter subsets
yield a higher target supremum measure than backward
primes (see Figure 1); and transposed-letter primes
containing central letters from the target word yield a larger
supremum measure than primes with central letters from a
different word (see Figure 2).

Lexical Decision
To test for lexical decision, we assess performance (target
supremum measure) on three simple testing conditions: (1)
words: all words seen in training in all positions (for a total
of 1179x7 patterns); (2) non-words: a sample of 100
patterns made of four random letters presented at a random
position in the alphabetic array (e.g. #JKTS#####,
######HIQL, ###BXGA###); (3) letters: a sample of 100
patterns, each made of a randomly selected letter repeated to
match word length presented at a random position in the
alphabetic array (e.g., ##AAAA####, #####HHHH#).
Word patterns are expected to activate, and only activate,
their target word unit. We also expect no output word unit to
be activated above threshold for patterns in the non-words
and in the letters conditions.

Results are shown in Figure 3. As we can see, network
with a hidden layer perform much better than networks
without one. Networks without a hidden layer are especially
poor at correctly rejecting letter patterns, activating several
of the words that contain the letter. For example, input
pattern ###PPPP### activates 85 word units above
threshold including part, open, help, kept, step, post and
ship. Similarly, for non-words, errors involve incorrectly
activating words that share some letters with the target. For
example, input pattern ####KNKR## activates the
following word units above threshold: kind, dark, park,
mark, link, monk, fork, tank, pork, cork, knot, and trek.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Words Non-words Letters

Pr
op

or
ti

on
 co

rr
ec

t (
A

cc
ur

ac
y)

With a hidden layer Without a hidden layer

Figure 3 - Accuracy of networks at accepting words, and

rejecting non-words and repeated letters.

690

Discussion
To sum up our results, both networks with and without a

hidden layer correctly recognized words at rates reaching
98.6% to 100%. Performance was high even on anagrams
(95% to 100%). Both types of networks showed relative-
position (see Figure 1) and transposed-letter priming effects
(see Figure 2). Networks with a hidden layer are more
complex due to the additional hidden units, but contain
fewer connection weights. The critical benefit of the hidden
layer appears to be in the ability of networks to correctly
reject non-words and strings of repeated letters (see Figure
3).

Segregating anagrams
One of the most difficult aspects of the task is arguably that
of segregating anagrams. While regular words can be
discriminated on the basis of differences of at least one
letter, anagram identification must rely solely on the relative
position of letters within word. The task appears especially
difficult for the network without a hidden layer which is
limited to computing linear combinations of independent
inputs.

Networks with a hidden layer

In networks with a hidden layer, holographic overlap
coding (Hannagan et al., submitted) can explain both
transposed-letter priming and the ability of networks to
segregate anagrams. During learning, networks form semi-
location specific representations for individual letters -
assigning similar representations to the same letter input
seen at different positions - that is, networks combine letters
in a continuous manner to build a string code. Displacing
letters (whether in primes or in anagrams) results in small,
but measurable differences in patterns of activation at the
hidden layer. In the case of transposed-letter priming, most
words have no orthographic neighbor, and therefore the
target word is still the most activated (e.g., WTIH activates
word WITH), and so will be recognized according to the
target supremum measure. Networks can capitalize on this
small difference in hidden pattern activation to segregate
words. It is plausible that this small difference gets
enhanced or amplified by the processing of the second layer
of weights (hidden to output weights) to generate the correct
classification of anagram patterns (e.g., ABLE and BALE as
distinct).

Networks without a hidden layer

To gain insights into how networks without a hidden layer
can segregate anagrams, we study the connection weights
between inputs and outputs after training. The first thing we
notice is that connection weights strongly code for the mere
presence of letters. Typically, connection weights are small
for letters not present in the target word, and large for letters
that are present, irrespective of position. For instance,
connections weights from input units that code letters A, B,
L, and E (in all slots where they have been seen during
training) are large to output unit coding for word ABLE.

This simple scheme makes each letter vote for the target
word, and a word must get 4 votes to be fully activated. This
may explain why letters activate very strongly a number of
targets, as AAAA also counts as 4 letters of evidence for
ABLE. However this does not explain how the network can
distinguish between anagrams.

Figure 4 illustrates how networks might manage to
segregate anagram patterns. Boxes in the plot show the
average magnitude of connection weights between within-
word position on the Y axis and within-alphabetic-array
(within-slot) location on the X axis for letters relevant to the
identification of the target word. For example, for pattern
ABLE###### connection weights would be found at boxes
(X,Y): A(1,1), B(2,2), L(3,3) and E(4,4); whereas for
pattern ###ABLE### relevant boxes would be A(4,1),
B(5,2), L(6,3) and E(7,4).

As we can see, there is a negative correlation (r = -0.73, p
< 0.01) in the first within-word position (P) between the
average magnitude of connection weights (C) and location
(L), while the correlation is positive in the last position (r =
0.67, p < 0.01). Namely, for the first letter of the word, the
connection weight is largest for smaller locations in the slot,
and decrease as location in slot increases. This makes
intuitive sense, as A######### is better evidence for word
ABLE (or any word that begins with letter A) than
######A###, which could be evidence for ######ABLE,
but also for ####THAT## or any word having an A in any
position. The correlation is reversed for the last slot where
say letter E provides more evidence for ABLE if it appears
later in the word. The direction reversal suggests an
interaction between location (L) and within-word position
(P).

Figure 4 - Average magnitude of weights connecting input units

relevant to identifying an output word, by location in the
alphabetic array (X axis) and by position with target word (Y axis).
Black boxes correspond to positions where letters were never seen
in training (e.g., letter A was never seen in slots 8 to 10 for word

ABLE, and similarly letter E was never seen in slots 1 to 3).

691

To test for this interaction, we performed a linear
regression with the following model (including LxP to test
for interaction effects):

C = b0 + b1L+b2P+b3LxP (1)
In the fitted model, we get b0 = 31.0 (p < 0.001), b1 = -4.0

(p < 0.001), b2 = -8.9 (p < 0.001) and b3 = 62.9 (p < 0.001).
This confirms the significant interaction. Redoing the
analysis with central locations only (4 to 7), we also get
significant coefficients, b0 = 22.6 (p < 0.001), b1 = -1.8 (p <
0.001), b2 = -4.6 (p < 0.001) and b3 = 30.4 (p < 0.001).

To sum up, the processing strategy or coding scheme that
networks without a hidden layer develop can be described as
follows: most important is the number of letters shared
between inputs and targets independently of position – we
can think of this as input letters providing independent votes
for the target words that contain them. The presence of
letters is then modulated by the interaction between location
and position. This scheme is sufficient to explain how
networks can discriminate between anagrams. For instance
in strings ABLE and BALE, an equal number of four letter
votes go to each word, and connection weights between
small slot positions and target word ABLE are slightly
larger for letter A than letter B. In contrast, for target word
BALE, the connection weight is slightly larger for letter B
than letter A. This difference enables the correct target to be
activated.

This coding scheme also accounts for the priming effects:
larger priming as the number of letters shared between
primes and targets increase, and larger priming as the
agreement increases between the order of letters in the
prime and in the target.

Comparison with holographic overlap coding

How does this processing strategy in networks without a
hidden layer compare to holographic overlap coding used by
networks with a hidden layer? As mentioned in the
introduction, holographic overlap coding makes two
important predictions about similarity of activation patterns:
a proximity effect and a disruption of activation when
replacing letters with other letters of the word (e.g., AAAA
for word ABLE). The normalized Euclidian distance
between two activation vectors Act(V1) and Act(V2) is
computed as follows:

dist = √(Σ Σ (Act(V1ij) – Act(V2ij))2) / (Npattern x Nactivation)
Activations are taken at the hidden layer, or at the output

layer for networks without a hidden layer. The two Σ
indicate summing over all patterns and all activation values.

The proximity effect predicts that the Euclidian distance
between activation vectors V1 and V2 should increase
monotonically with the magnitude of displacement of the
vectors (i.e., distances). As shown in Table 1, a proximity
effect is observed indeed, when vectors V1 are in the central
position (###XXXX###) and vectors V2 vary in position.
Distances presented in the table are normalized using a
displacement of 1 as a reference (that is, V2 ##XXXX####
and ####XXXX##). Vectors V2 for displacement 2 are
#XXXX##### and #####XXXX#; and for displacement 3:

XXXX#### and ######XXXX. As we can see, distances
increase with displacement, in accordance with the
proximity effect.

Table 1: Normalized Euclidian distance for networks with and

without a hidden layer, as a function of displacement of letters in
the input vector

 Euclidian distance
Displacement With hidden Without hidden

2 1.3 1.5
3 2.2 1.7

Holographic overlap coding also makes a prediction about

the effect of letter substitutions: the more letters are
replaced, the larger the difference in activation should get.
We empirically test this hypothesis by generating samples
of 100 test items for which the target word and the location
of letters in the input slot is randomly chosen. We compute
the Euclidian distance between patterns of activation
generated in one of three conditions: (1) transposition –
transpose two letters, randomly chosen (e.g., V1 = ABLE 
V2 = ABEL), (2) one letter substitution with a random letter
(e.g., V1 = ABLE  V2 = ABWE), (3) one letter
substitution with another letter of the target – that is, a letter
repetition (e.g., V1 = ABLE  V2 = BBLE).

0

0,5

1

1,5

2

2,5

3

Repetition Substitution Transposition

N
or

m
al

iz
ed

 d
is

ta
nc

e
in

de
x Without hidden layer

With hidden layer

Figure 5: Normalized Euclidian distance index as a function of

transformation and architecture type

Holographic overlap coding predicts similar distances for
letter repetitions and substitutions, and a lower distance for
transpositions. As we see in Figure 5, this is precisely the
pattern of distances measured for networks with a hidden
layer. However, these predictions are not verified for
networks without a hidden layer, namely because distances
are too large for the letter repetition set. This somewhat
counter-intuitive result can be explained by the fact that
repeating a letter means, on average, replacing a letter with
a rather frequent letter compared to substituting with a
randomly chosen one (as in the substitution case). And thus,
many output words activate in the repetition case, which
increases the distance due to the higher activation of the
non-target words. In sum, we fail to find evidence that
networks without a hidden layer implement a holographic
overlap coding scheme.

692

Lexical decision, over-generalization and their
theoretical implications

In the lexical decision task, correct rejection of non-words
and letters can be interpreted as a test of generalization,
which probes the network’s ability to correctly set the
boundary of word acceptance. Based on a poverty of
stimulus argument, we may expect networks to over-
generalize, that is being overly liberal in accepting strings as
words, because networks see positive evidence for words
but never see any negative evidence, i.e., they are never
trained to reject non-words. These over-generalization errors
are much more common in the network without a hidden
layer. This has interesting theoretical implications for the
functional role of the hidden layer where independent letters
are combined. Given that each letter/position has a uniquely
defined code, the network just has to find a way to integrate
them so as to ensure that each combination is unique. For
instance, using a simple averaging approach, the resulting
code for AAAA will be very close to A, in effect providing
only evidence for one letter. Without combinations,
networks have to base their decisions on some position-
weighted voting scheme relating to the presence of letters.
This scheme fails to reject non-words cases that consist of 4
repetitions of a letter from the target word.

Beyond simply removing letter duplicates, the hidden
layer may well be coding for some letter combination, or
sub-lexical units, as postulated in the Grainger and Van
Heuven’s (2003) model and other models. A simple
approach to lexical decision could thus be seen as follows:
letters provide evidence for activating sub-lexical units.
These sub-lexical units would in turn be combined to
activate target words. For non-words, activation of sub-
lexical units would be small, and result in activation of
output units that fall below threshold.

Conclusion
To summarize, the hidden layer developed a holographic

overlap coding scheme which explains priming effects and
segregation of anagrams. Because it is sensitive to letter
substitutions, this scheme also allows networks with a
hidden layer to correctly reject most non-words.

In contrast, networks without a hidden layer have
developed a strategy for identifying target words largely
based on presence of letters but where letter contributions
are modulated using the interaction between within-word
position and within-slot location. This modulation allows
networks to factor in some information about letter position,
which is sufficient to segregate most anagrams, and
replicate the previously observed priming effects. On the
other hand, these networks are poor at the lexical decision
task, as they tend to over-generalize and confuse non-word
strings as words. As long as the number of letters is the
same and that all input letters exist in the target word,
networks do not require that all letters in the target word are
present to activate it.

The hidden layer also implements some data compression,
by forcing 260 input units to be represented onto 91 hidden

units. As a result, networks with a hidden layer have fewer
than half the number of connection weights of networks
without a hidden layer.

Computational models of word identification are expected
to perform well at lexical decision, as humans do. The
model with the hidden layer suggests a parsimonious
account of lexical decision as an emergent property of the
word recognition task (although, again, the setup is highly
simplified, and further work would be necessary to fully
assess how good of a lexical decision model this is). An
alternative explanation consists in using an additional
module (performed before, or in parallel with, word
identification). For the latter, a network without a hidden
layer is sufficient to simply recognize words.

Acknowledgments
This project was supported by the Agence Nationale de la
Recherche (grant no. ANR-06-BLAN-0337) and the
Europrean Research Council (ERC-230313).

References
Dandurand, F., Grainger, J., & Dufau, S. (2010). Learning

location invariant orthographic representations for
printed words. Connection Science, 22(1), 25-42.
doi:10.1080/09540090903085768

Grainger, J. (2008). Cracking the orthographic code: An
introduction. Language and Cognitive Processes,
23(1), 1-35.

Grainger, J., & van Heuven, W. J. B. (2003). Modeling
letter position coding in printed word perception.
In The Mental lexicon (pp. 1-23). New York: Nova
Science Publishers.

Hannagan, T., Dandurand, F., & Grainger, J. (submitted).
Broken symmetries in a location invariant word
recognition network, Neural Computation.

McClelland, J. L., & Rumelhart, D. E. (1988). Explorations
in parallel distributed processing. Boston, MA:
MIT Press.

Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in
recognizing pairs of words: Evidence of a
dependence between retrieval operations. Journal
of Experimental Psychology, 90(2), 227-234.

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., &
Patterson, K. (1996). Understanding Normal and
Impaired Word Reading: Computational Principles
in Quasi-Regular Domains. Psychological Review,
103(1), 56-115.

Ratcliff, R., McKoon, G., & Gomez, P. (2004). A Diffusion
Model Account of the Lexical Decision Task.
Psychological Review, 111(1), 159-182.

Rayner, K., White, S., Johnson, R., Liversedge, S. (2006).
Raeding Wrods With Jubmled Lettres; There Is a
Cost. Psychological Science, 17(3), 192-193

693

	Neural networks for word recognition: Is a hidden layer necessary?
	Frédéric Dandurand (Frederic.Dandurand@univ-provence.fr)
	Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University
	3, place Victor Hugo, 13331 Marseille, France
	Thomas Hannagan (thom.hannagan@gmail.com)
	Laboratoire de Sciences Cognitives et Psycholinguistique, EHESS/CNRS/DEC-ENS, École Normale Supérieure
	29 rue d’Ulm, 75005 Paris
	Jonathan Grainger (jonathan.grainger@univ-provence.fr)
	Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University
	3, place Victor Hugo, 13331 Marseille, France
	Abstract
	Introduction
	Methods
	Results
	Learning the training set
	Model size and complexity
	Priming effects
	Lexical Decision

	Discussion
	Segregating anagrams
	Networks with a hidden layer
	Networks without a hidden layer
	Comparison with holographic overlap coding

	Lexical decision, over-generalization and their theoretical implications

	Conclusion
	Acknowledgments
	References

