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Abstract

Flight Cancellation Behavior and Aviation System Performance

by

Michael Thomas Seelhorst

Doctor of Philosophy in Engineering — Civil and Environmental Engineering

University of California, Berkeley

Professor Mark Hansen, Chair

Flight cancellations are costly events for both airlines and passengers, yet are poorly
understood. This dissertation expands upon literature that has studied flight cancellations
by incorporating more variables and using advanced model specifications. In addition, it
is necessary to understand the drivers of flight cancellations to quantify the relationship
between flight cancellations and flight delay forecasts, which has been poorly documented in
the literature. This dissertation investigates the factors leading to flight cancellations and
quantifies the effect of flight cancellations on flight delay forecasts.

First, econometric choice models are applied to a large dataset of historical flight infor-
mation to determine the preferences and behaviors of airlines with respect to flight cancel-
lations. The binary logit estimation results show that flight characteristics, such as load
factor, distance, and flight frequency, are significant for determining the likelihood of flight
cancellations, even when accounting for adverse weather effects. Airline-specific logit models
indicate large heterogeneity with respect to flight cancellation tendencies across the industry.
Inter-flight heterogeneity is explored through the use of mixed logit and latent class mod-
els, but lack of significant heterogeneity and long computation times provide evidence that
a basic binary model can be sufficient for capturing the flight cancellation behavior of air-
lines. Cancellation predictions are made at an airport-level, but the distribution of predicted
cancellations does not match well with the actual distribution observed in the data.

Second, deterministic queueing methods are used to quantify the effect flight cancellations
have on queueing delay forecasts. The cancellation model estimates are used to predict flight
cancellations for a sample of all flights for 160 airport-days. The reductions in delay due
to cancellations are captured using Monte Carlo simulation and a first-order approximation.
The simulation results show that delays are reduced by 22% when considering the effect
of cancellations and the first-order approximation results are no more than 4% larger than
those from the Monte Carlo simulation.

Finally, a case study was performed based on the current operating environment at San
Francisco International Airport, where capacity reductions are expected during the summer
of 2014 due to runway construction. Moreover, airlines are proposing schedules with 5%
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more demand. The increased schedule combined with the capacity decrease leads to an large
increase in the queueing delay forecasts. A cancellation model is used to predict the changes
in delay that result from cancellations induced by the change in operating conditions. The
results from the cancellation model indicate that departure cancellations will increase at an
almost one-to-one ratio with the proposed demand increase, thus negating any benefit to
airlines from a denser schedule. The feedback of cancellations on queueing delay is further
explored with analytical models. As witnessed in the case study, queueing delay can reach a
theroetical maximum where any additions to the flight schedule results in higher queueing
delays and an associated increase in flight cancellations that compensate for the additional
flight and return the demand, and queueing delay, to its original level.
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Chapter 1

Introduction

1.1 Problem Statement

Flight delay is one of the primary performance metrics used in the aviation industry. Due to
the scheduled nature of air transportation, small delays in the system can propagate to many
other flights (Beatty, et. al., 1999), resulting in large delays for many passengers. On-time
performance is a key metric airlines use to create a competitive advantage in the industry.
In addition to being a slight on the reputation of airlines, flight delays are extremely costly,
to both the airlines and the passengers. A recent study estimated the total flight delays in
the year 2007 to be $32.9 billion (Ball, et.al. 2010).

Flight delays are a function of several factors, including the demand resulting from the
flight schedule, and the capacity of the various components in the aviation system. One
factor that greatly affects flight delays but is not entirely understood is flight cancellations.
Flight cancellations effectively cause a reduction in demand, which can in turn reduce delays
for other flights in a queued system. Xiong (2010) has investigated this process during GDPs
and found that airlines make tradeoffs between flight cancellations and flight delays.

To better be able to predict flight delays, we must also understand the factors leading
to flight cancellations. Extreme weather is one of the most commonly attributed reasons for
flight cancellations. Often, however, flights will be cancelled for strategic reasons. A flight
could be cancelled to reduce delays on other flights for the same airline under periods of
reduced capacity at a destination airport. Or a flight could be cancelled for reasons of safety,
such as mechanical problems, or purely economic ones, such as low ridership. The exact
factors that go into which flights are cancelled are not very well understood and likely vary
across airlines.

Moreover, flight cancellations in their own right are a major source of delay and inconve-
nience to passengers. Bratu and Barnhart (2005) suggest that a majority of passenger delay
was due to flight cancellations, despite cancellations making up a very small (2%) percentage
of flight operations. Flight cancellations are much more onerous for passengers than flight
delays for a number of reasons. First, rebooking the passengers requires finding empty seats
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on already crowded planes and can result in many hours or even days of delays for the pas-
sengers, particularly if the passengers have connecting flights. Second, flight operations are
severely impacted because airlines typically use the same aircraft for several flight segments
in a row. A flight cancellation will thus have an impact on downline segments ranging from
a new aircraft assignment to additional cancellations.

There exists little work on the effect of flight cancellations on delay forecasts. Most
of the work relating cancellations to delays is motivated by the goal of developing tactical
decision-support tools for airlines (Cao and Kanafani, 1997; Argello et. al. 1997; Yan and
Yang, 1996) or assessing demand uncertainty during Ground Delay Programs (Ball et. al.
2001; Willemain 2002).

In this dissertation, we will investigate the factors that contribute towards flight cancel-
lations through the use of discrete choice models applied to historical flight data. From these
models we can predict cancellation probabilities for each flight given certain characteristics
of the flight. We will then use these cancellation probabilities in a queueing model to es-
timate the effect cancellations have on flight delays. We will incorporate the probabilistic
cancellations into the queueing models using both Monte Carlo simulation and a first-order
approximation and evaluate the differences between the two.

1.2 Current Practices and Research Questions

Currently the Federal Aviation Administration (FAA), in collaboration with the Interna-
tional Air Transport Association (IATA), make monthly delay forecasts at the nations largest
airports. The delay forecasts are used to anticipate the effects of changes in demand, oper-
ations, and infrastructure. The delay forecasts can also be used to determine if an airport
needs to have its takeoff and landing slots regulated through the process of slot control.
Currently four major airports in the US are fully slot controlled, whereby all airlines recieve
specific slot allocations for each flight departure and arrival (DCA, JFK, LGA, and EWR).
Two other airports (ORD and SFO) have a lower level of slot control that requires air-
lines to make schedule adjustments in order to avoid exceeding certain levels of operational
performance (IATA, 2013).

The delay forecasts are created using queueing simulation based on inputs of airport
capacities and airline schedules. From the experience of the FAA, the queueing delays
forecasted by their model are larger than the realized delays on the day-of-operation. One
of the primary reasons expected is flight cancellations. In response to high delays, weather,
or a number of other phenomena, airlines will cancel some, albeit small, percentage of their
flights on average. This small reduction in demand lowers the realized flight delays to the
point where the delay forecasts are no longer an accurate representation of the operations.
Thus, any regulatory decisions made using the delay forecasts could be based on estimates
that are overly cautious with respect to the quantity of queueing delay expected at airports.
To properly predict queueing delays, we need to be able to quantify the effect of flight
cancellations on queueing delay.
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This leads to my two primary research questions that must be answered to achieve an
understanding of the relationship between flight cancellations and queueing delays.

1. What are the factors leading to flight cancellations?

2. How should flight cancellations be incorporated into delay forecasts?

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 uses discrete choice methods
applied to a large sample of flight on-time performance data to model the behavior of airlines
regarding flight cancellations. Chapter 3 addresses some extensions to the basic discrete
choice model that allow for heterogeneity in behavior across airlines, correlations between
flight cancellations decisions across time, and discrete classes of cancellation behavior based
on weather. Chapter 4 evaluates the effect of cancellation prediction estimates from the
choice models on flight delay forecasts using deterministic queueing models. Chapter 5
will provide a case study based on demand and capacity changes at the San Francisco
International Airport as well as an analysis of theoretical queueing delay limits. Chapter 6
includes conclusions and recommendations.
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Chapter 2

Cancellation Analysis

2.1 Cancellation Behavior

Flight cancellations are low probability events, and are inherently difficult to predict. How-
ever, when flight cancellations do occur, the impact is substantial. The passengers on the
cancelled flight must be rebooked on other flights, often hours later. On the other hand,
cancelled flights can reduce delays on later flights. Moreover, any delay that would be in-
curred by the cancelled flight will also be avoided. All of these effects must be considered
when airlines decide to cancel flights, and their relative importance depends on many factors.
Thus, when developing models to infer the preferences airlines have for deciding which flights
to cancel, one must take into consideration many different variables.

Previous work on airline cancellation behavior has shown that flight cancellations are
less likely on more competitive routes, flights into and out of hubs, and infrequently served
routes (Rupp and Holmes, 2006). Fuller flights have been found to be less likely to be
cancelled (Tien, et. al., 2009). During Ground Delay Programs (GDPs), airlines exhibit
tradeoff behavior between flight cancellations and delays (GAO, 2011). This is partially due
to the nature of GDPs, where airlines can keep ownership of the slots for flights they cancel.
Such tradeoff behavior may be present to some degree even in flights not involved in GDPs,
though. Distance and departure time heterogeneity has also been investigated (Xiong, 2009).

The exact factors that determine which flights are cancelled are not very well understood
and likely vary across airlines. This chapter addresses this issue by using discrete choice
models to infer airline preferences regarding flight cancellations. This analysis will allow
airline cancellations to be predicted and incorporated into delay prediction models. The
flight cancellation models presented here relate certain aircraft, flight, route, and airport
characteristics to the probability of a flight being cancelled. The results from this chapter
will be included in the queueing models shown in later chapters to quantify the effect of
flight cancellations on delay forecasts.
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2.2 Econometric Model

For this analysis, airlines are viewed as decision makers that face an option to cancel or not
cancel each flight in their schedule. For the purposes of this research, airlines are assumed to
be utility maximizers. That is, airlines derive a certain amount of utility from each possible
option for a flight (cancel or not cancel), and each choice is made because it maximizes the
airline’s utility for that possible choice situation. A set of observable factors that affect the
airlines cancellation utility for a given flight are identified. These factors will enter into a
random utility model in a linear fashion as follows:

Un,cancel = Vn,cancel + εn,cancel =
∑
j

βjxn,cancel,j + εn,cancel (2.1)

where Ucancel is the utility derived by the airlines for cancelling a particular flight, n,
xn,cancel,j is the observable factor, j, corresponding to flight n, βj are the coefficients cor-
responding to the observable factors, and εn,cancel represents the unobserved factors that
influence the utility for the cancellation choice. Vcancel is called the deterministic utility
because it contains the factors that are observable to the researcher, and εcancel is the ran-
dom utility which contains factors that may be known to the choice maker, but cannot be
observed by the researcher. Since we do not observe all the factors that influence the utility
of cancellation, the remaining influences that are unobservable to us appear random for each
choice situation, hence the name and notation.

The type of discrete choice model used depends on the choice of distribution of the ran-
dom utility, εn,cancel. One of the most popular models, which is used here for the initial
model, is the logit model. This model assumes the random utilities, εn,cancel, are identi-
cally and independently distributed extreme value. The logit model is popular primarily
because it results in a convenient, closed-form expression for the choice probabilities. The
choice probabilities are estimated using maximum likelihood and the closed-form expression
is shown below:

Pn,cancel =
eVn,cancel

1 + eVn,cancel
=

e
∑
jβjxn,cancel,j

1 + e
∑
jβjxn,cancel,j

(2.2)

where Pn,cancel represents probability flight n is cancelled. We estimated the logit models
using the Matlab software package, based on code provided by Professor Kenneth Train from
UC Berkeley (Train, 2003).

2.3 Data

Historical airline on-time performance data will be used for this research. The primary reason
for this is the abundant amount of on-time flight performance data available online. Survey
data, while easily able to capture the exact tradeoffs of interest, would likely be very difficult
to get. Airlines might not be interested in sharing their preferences for cancellations due
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to competitive advantages over other airlines, and in any case the information they provide
may not be as reliable as their observed behavior. Historical flight data provides a large pool
of cancellation decisions across many different airlines.

The flight cancellation data is taken from the on-time performance database obtained
by the Bureau of Transportation Statistics (BTS) for all dates from 2010 to 2011, resulting
in almost 12 million domestic flights. The data set includes on-time performance metrics
for every flight scheduled by all airlines that have at least a 1% market share. Fare in-
formation is obtained from the BTS Airline Origin & Destination (O&D) survey that is
a 10% sample of airline tickets from reporting carriers and includes quarterly average fare
data for every major airport market pair. The aircraft information was obtained from the
FAA Aircraft Registry database and paired with tail numbers from the on-time performance
data. Finally, segment traffic information was obtained from the BTS T-100 database, and
includes monthly averages for specific non-stop flight segments for each airline and aircraft
type. Finally, hourly airport weather information was determined from the FAA Aviation
System Performance Metrics (ASPM) database and the National Oceanic and Atmospheric
Administration (NOAA).

After combining the data sources, the number of flights was reduced to about 8 million
due to missing observations and differences in level of detail for each dataset. For example,
some of the datasets only have information for flights corresponding to the ASPM77 airports.
SAS software was used to aggregate and match the data from the different sources together.
The data sources are shown below in Table 2.1.

Table 2.1: Data Sources

Data Type
Aggregation
Level

Source

Cancellations / delays Flight-by-flight BTS Airline On-Time Performance

Market fares Quarterly averages BTS Airline O&D Survey

Aircraft information Flight-by-flight FAA Aircraft Registry

Market ridership Monthly averages BTS T-100 Database

Weather information Hourly ASPM and NOAA Databases

2.4 Model Specification

The explanatory variables used in the initial binary logit model are divided into several
categories. The first group is flight characteristics, which include the average fare, number
of seats, average load factor, and the flight frequency offered by the airline. The average
fare is taken from the DB1B database and is aggregated over all flights in a quarter for the
same airline, and non-stop segment. The number of seats is specific to the aircraft type and
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varies over each flight. The average load factor is aggregated over all flights in a month for
the same airline, route, and aircraft type. Flight frequency is the average daily frequency of
flight operations for an airline for a single route, averaged over a month.

The next category is airport congestion, which we capture by calculating queueing delay
using the scheduled demand and realized capacities at the origin and destination airports. A
deterministic queueing algorithm is used to simulate departures and arrivals at each airport
separately (see Chapter 4.2). The queueing delay is defined as the difference between the time
when a flight can actually depart (or arrive) and the time that the flight was scheduled to
depart (or arrive), assuming a first scheduled, first served queueing discipline. The queueing
delay calculated in this way represents the level of congestion at an airport at the scheduled
time of departure (departure delay) or the scheduled time of arrival (arrival delay).

We were also interested in capturing the effect of hub airports on an airlines cancellation
behavior. Thus we included two dummy variables that are equal to one if the origin is a
hub airport for the airline operating the flight (Hub Origin) and if the destination is a hub
airport for the airline operating the flight (Hub Dest). We defined a hub airport to be one
of the primary one of the hub airports listed by airline on their own website. If an airline
did not list hubs online then we used the airports operated by that airline with at least 5%
of their total operations. In general these airports corresponded to the ones that were listed
internally as well. The hub airports used in our analysis are shown below in Table 2.2.

Table 2.2: Hub Airports

Airline Hub Airports

AA (American) DFW, ORD, MIA, JFK, LAX

AS (Alaska) SEA, ANC, LAX, PDX

B6 (JetBlue) JFK, BOS*

CO (Continental) IAH, EWR, CLE

DL (Delta) ATL, SLC, CVG, JFK, MSP, DTW, MEM

F9 (Frontier) DEN

FL (AirTran) ATL, MKE, MCO

UA (United) ORD, SFO, IAD, DEN, LAX

US (US Airways) PHX, CLT, PHL

WN (Southwest) MDW*, LAS*, BWI*

∗ Airport not listed as hub, but with > 5% of total operations

In addition to airport congestion, we wanted to capture the effect of Ground Delay Pro-
grams (GDPs) on flight cancellation behavior. GDPs provide greater flexibility for airlines
to change operations during a period of high delay, so we use a dummy variable to capture
this. The GDP dummy variable is equal to one if the destination airport is involved in a
GDP at the scheduled time of departure of a given flight. From the ASPM database, we
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have information regarding the number of Expected Departure Clearance Time (EDCT)
flights that are scheduled to arrive at a destination airport for a particular quarter-hour
time window. For a particular flight, we set the GDP variable equal to one if the destination
airport has a non-zero number of EDCT flights scheduled for arrival during the quarter hour
that corresponds to the flights scheduled departure time. We use the departure time here
rather than arrival time because we are trying to capture the conditions at the destination
airport at the scheduled departure time. This time does not necessarily correspond to the
time that the cancellation decision is made or the time in which the EDCT flight information
is available to the airline (which is often much earlier), but since we do not know specific
information about each EDCT flight we use this time in our analysis as a proxy for the
cancellation decision time.

We are also interested in time-of-day effects. At the beginning of the day, airlines have
more resources available to handle flight disruptions. Cancellations affect flight operations
later in the day, since aircraft, passengers, and crew need to be changed from their original
schedule and flight delays build up throughout the day as small disturbances are propagated
throughout the network. In addition, later flights have less flexibility for rescheduling pas-
sengers than earlier flights, while cancelling them has less impact on flight legs downstream.

We used a simple four level categorical variable based on the local departure time for a
given flight. We divided the day into the following categories: (0300-0900, 0900-1500, 1500-
2100, and 2100-0300). A dummy variable for each period was defined, with the 0300-0900
category set to zero as a base for comparison.

Distance effects are likely important as well. Longer flights must be cancelled well in
advance of arrival time, so airlines do not have as much information about conditions at the
destination for longer flights compared to shorter flights. Longer flights are also less frequent
and larger, but since we are already capturing those effects explicitly using other variables,
we will capture any distance effects that are independent of these other effects. We use
five categories for distance, with the following ranges: 0-500 mi, 500-750 mi, 750-1000 mi,
1000-1500 mi, and 1500 mi or greater). A dummy variable is used for each category with
the exception of the 500-750 mi category, which is set to zero as a base for comparison.

As mentioned earlier, one of the primary drivers of cancellations is weather. Thus, we
capture weather at both the origin and destination through several different variables. The
weather effects we measure are visibility, temperature, and wind speed, as well as indicators
for the presence of Instrument Meteorological Conditions (IMC), Rain, Thunderstorms, and
Snow. We record the weather at the origin airport at the scheduled time of departure and
at the destination airport at the scheduled time of arrival.

Lastly, we wanted to capture airline heterogeneity through fixed effects for each airline.
Thus, we have 11 dummy variables in total, with Mesa Airlines low-cost Hawaiian carrier,
go!Airlines arbitrarily chosen as the base. We also combined the regional affiliate flights with
the mainline carrier and designated a dummy variable that is equal to one if the flight is
not a mainline flight. For instance, if the flight is listed as a United flight, but operated by
any of the regional affiliates under the United Express designation, then our regional carrier
dummy will be set to 1 and the airline dummy for United will be set to 1 as well. A list of
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explanatory variables used in our analysis is shown below in Table 2.3.

Table 2.3: Explanatory Variable Description

Category
Explanatory
Variable

Variable Description

Flight
Characteristics

Fare ($100) Aveage quarterly fare for OD & equip

Number of Seats (100s) Aircraft size

Load Factor
Average monthly load factor for OD &
equip

Flight Frequency
(Daily)

Number of daily flights for OD & equip

Airport
Congestion

Dep. Queueing Delay
(10s min.)

Dep. queueing delay at origin (10s min.)

Arr. Queueing Delay
(10s min.)

Arr. queueing delay at dest (10s min.)

Hub Airport
Effects

Airport Hub @ Origin Hub airport at origin

Airport Hub @ Dest Hub airport at destination

Ground
Delay

GDP (0 or 1) Ground Delay Program in effect at dest

Time and
Dist. Fixed
Effects

Dep. Time Categories Four categories for time of day departure

Distance Categories Five categories for flight distance

Day of Week Dummy variable for each day

Weather
Effects

Weather at Origin and
Dest

IMC, Visibility, Wind Speed, Ceiling,
Rain, Snow, Thundesrstorms

Airline
Effects

Airline fixed effects Dummy variables for 11 airlines

2.5 Summary Statistics

After combining all of our data sources, accounting for missing observations, missing data
fields, and data matching issues, our full data set includes 8,857,952 flight observations over
a two year period. Within this period there were 129,415 cancellations, or approximately
1.5% of all flights. The mean and standard deviation of some of the explanatory variables
used in our model are shown below in Table 2.4. For the flight frequency, we calculated the
mean value across all unique origin, destination, airline, and month combinations, so that
the mean does not capture repeat observations that inherently have higher flight frequencies.
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Table 2.4: Variable Summary Statistics

Variable Mean Std. Dev.

Avg. Fare ($) 183.69 63.62

Number of Seats 129.37 40.6

Load Factor 0.8 0.1

Daily Flights 3.06 2.73

Dep. Queueing Delay (min.) 2.99 1.89

Arr. Queueing Delay (min.) 2.43 1.96

Hub Origin 0.31 0.46

Hub Destination 0.31 0.46

Ground Delay Program 0.04 0.2

Distance (<500 mi) 0.32 0.47

Distance (750-1000 mi) 0.17 0.38

Distance (1000-1500 mi) 0.16 0.37

Distance (>1500 mi) 0.15 0.35

Dep. Time (9:00-15:00) 0.05 0.09

Dep. Time (15:00-21:00) 0.38 0.48

Dep. Time (21:00-3:00) 0.21 0.41

Regional Carrier 0.19 0.39

Some things to note are the average queueing delay of around 3 minutes for departures
and 2.4 minutes for arrivals, and the 4% of flights that are involved in a GDP. The average
number of flights per day between a given origin and destination for a given airline is 3.1.
31% of flights are departing from a hub, and 31% are arriving at a hub and almost 20% of all
flights are operated by a regional carrier. The summary statistics (mean and std. deviation)
for the weather effects used in our model are shown below in Table 2.5.

The mean value and standard deviation is shown for each variable. For the indicator
variables (with a 0 or 1 value), the mean is simply the percentage of flights with that weather
condition. For instance, 14% of flights faced IMC conditions at the destination, and 1% of
flights had snow at the destination at the time of scheduled departure. The average visibility
was 9 miles, with a significant standard deviation (1.9 mi.), and the average wind speed was
8.8 mph. Visibility ranged from 0 to 10 miles, with 84% of the observations having a visibility
of 10 miles. Wind speed ranged from 0 to 47 mph, with 90% of observations having a wind
speed of less than 12 mph.

The percentage of flights cancelled for each airline in our sample is shown in Table 2.6,
along with the percentage of flights from our sample operated by each airline and the total
number of cancellations during our sample period.
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Table 2.5: Weather Summary Statistics

Variable Mean Std. Dev.

IMC Dest (0 or 1) 0.14 0.35

Temp Dest (deg F) 63.24 19.04

Vis Dest (mi) 9.33 1.9

WindSpd Dest (mph) 8.85 5.57

IMC Origin (0 or 1) 0.14 0.35

Temp Origin (deg F) 63.23 19.06

Vis Origin (mi.) 9.31 1.92

WindSpd Origin (mph) 8.82 5.55

Dest Rain (0 or 1) 0.06 0.23

Dest Snow (0 or 1) 0.01 0.12

Dest TStorm (0 or 1) 0.01 0.08

Origin Rain (0 or 1) 0.06 0.23

Origin Snow (0 or 1) 0.01 0.12

Origin TStorm (0 or 1) 0.01 0.08

There is large variation in cancellation percentages across airlines in our sample, ranging
from Alaska Airlines that only cancelled 0.3% of its flights during the two-year period of
interest, to American Airlines, which cancelled 2.4% of its flights. We have clear hypotheses
about how many of the flight characteristics in the model should affect the likelihood of
cancellation. Larger and fuller flights should be less likely to be cancelled in order to minimize
the cost due to rescheduling passengers. Higher fare routes should be cancelled less frequently
than lower fare routes because the airlines are seeking to maximize profits. Routes with
higher fares are associated with the presence of high-value customers that represent a major
source of revenue for the airline. Based on our discussions with airline employees, the airlines
try to minimize the inconvenience of these passengers by cancelling their flights less than
other flights with lower-value customers. High flight frequency between two airports allows
for easier rebooking of passengers, so these flights should be more likely to be cancelled
than flights with low frequency. It is hypothesized that airlines seek to minimize their own
network disruption through propagated delays, and thus flights into and out of hubs should
be less likely to be cancelled than other flights. Poor weather makes cancellations more
likely than fair weather. Airport capacities are reduced in times of poor weather, which can
lead to large delays and cancellations. Lastly, congestion in the form of flight delays should
make cancellations more likely. These hypotheses, summarized below in Table 2.7, will be
referenced when discussing the results from the initial model.
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Table 2.6: Airline Summary Statistics

Airline Cancellation % % of Flights Cancellations

DL (Delta) 1.80% 20% 31,889

UA (United) 1.50% 10% 13,287

US (US Airways) 1.40% 10% 12,401

AA (American) 2.40% 15% 31,889

CO (Continental) 1.40% 9% 11,161

WN (Southwest) 0.90% 22% 17,539

B6 (JetBlue) 1.50% 4% 5,315

F9 (Frontier) 0.40% 2% 709

FL (Air Tran) 1.00% 5% 4,429

AS (Alaska) 0.30% 3% 797

Overall 1.48% 100% 129,416

2.6 Estimation Results

The large amount of data in our sample prohibited us from estimating a single model for
all flights across the two year time span. Thus, we created a simple random sample that is
approximately 33% of the size of the full sample by selecting each flight for inclusion in the
sub-sample with equal probability. The resulting subsample accounted for 3 million flights.
The model estimates are shown below in Table 2.8 and Table 2.9.

As shown in Table 2.9, above, the vast majority of the variables are significant. With one
exception, results match our expectations. Fare appears to have a positive and significant
effect, which is contrary to our hypothesis. The estimated coefficients on other flight charac-
teristic variables are consistent with our expectations. Load factor has a negative and large
sign. Higher load factors make a flight much less likely to be cancelled. Similarly, aircraft
size has a negative effect as well. Departure time of day shows an increasing likelihood of
cancellation as the day progresses. The baseline departure time category is 3:00 9:00, so the
signs of the coefficients of the other categories are measured relative to the baseline category.
There is a small negative sign for 9:00 15:00 and a small positive sign for 15:00 21:00.
The coefficient for the last group, 21:00 3:00 is much larger than the other coefficients and
positive. This indicates that late night flights are more likely to be cancelled than earlier
flights. We expect later flights to be cancelled more than earlier flights at least partially
due to higher delays that build up over the course of the day. Although we are capturing
queueing delays explicitly, these do not reflect the cumulative effect of earlier delays on a
flight.

The distance effects generally match our expectations. The baseline category is the
500-750 mile group, so the coefficients are interpreted with respect to that category. The
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Table 2.7: Cancellation Hypotheses

Flight Cancellation Hypotheses

Flight Characteristic Trend
Impact on Cancellation
Likelihood

Larger aircraft (vs smaller aircraft) Less likely

High load factor (vs low load factor) Less likely

Route with higher average fare (vs lower average fare) Less Likely

Route with high flight frequency (vs low frequency) More likely

Flight is into or out of airline hub Less likely

Flights with poor weather at origin or destination More likely

Flights with more queueing delay at origin or destination More likely

Flight with GDP at destination More likely

Flight operated by regional carrier More likely

Longer flights (vs shorter flights) Less likely

Evening departure times (vs morning departure times) More likely

distance effect decreases roughly monotonically with distance. Thus we see that, in general,
longer flights are less likely to be cancelled than shorter flights, even when accounting for
the effects of aircraft size, load factor, and frequency separately. This is consistent with
our expectations and conversations with flight dispatchers. Airlines can wait longer to make
cancellation decisions for shorter flights so that they have better information about conditions
at the destination. Thus they tend to allow longer flights to proceed on the assumption that
conditions at the destination at the time of arrival will be fairly normal. This behavior
is further encouraged under GDPs when longer flights are often exempted from ground
delays. Flight frequency is positive and significant, which also matches our expectations.
We would think that the more flights that are offered by an airline on a particular route
makes accommodating passenger routing changes easier when a cancellation is necessary.
Thus, a flight on a route with higher frequency is most likely to be cancelled than a flight
on a route with lower frequency, all else equal. These effects together illustrate the tradeoffs
made by airlines to minimize the disruption of passengers.

Both of the queueing delay variables, which represent the level of congestion at the origin
and destination airport, are statistically significant and positive, with similar magnitudes.
This indicates that larger queueing delays, caused by an imbalance between demand and
capacity, highly influence cancellations. We suspected that there was a non-linear effect of
queueing delay on cancellation utility, so we included the square of departure and arrival
delay as well. These two coefficients are both negative and significant, which suggests that
there is a diminishing marginal effect on cancellation utility as the queueing delays become
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Table 2.8: Logit Estimation Results 1

Variable Est.
Std.
Err.

Variable Est.
Std.
Err.

ASC(Cancel) -2.422 ** 0.118 IMCDest -0.025 0.016

Fare($100) 0.071 ** 0.011 TempDest (10s deg F) -0.012 ** 0.004

DepTime(9:00-15:00) -0.064 ** 0.014 VisDest (mi.) -0.073 ** 0.003

DepTime(15:00-21:00) 0.041 ** 0.014 WindDest (mph) 0.019 ** 0.001

DepTime(21:00-3:00) 0.159 ** 0.041 IMCOrigin 0.031 0.016

Miles<500 -0.004 0.014 TempOrigin (10s deg F) -0.029 ** 0.004

Miles750-1000 -0.137 ** 0.018 VisOrigin (mi.) -0.097 ** 0.003

Miles1000-1500 -0.105 ** 0.02 WindOrigin (mph) 0.03 ** 0.001

Miles1500more -0.303 ** 0.026 Hub Origin -0.245 ** 0.017

Num.Seats(100) -0.276 ** 0.037 Hub Dest -0.086 ** 0.017

LoadFactor -2.142 ** 0.051 GDP 0.359 ** 0.022

Flight Frequency
(flight/day)

0.039 ** 0.002 Dest Rain 0.047 * 0.019

Dep. Delay (10s min) 0.302 ** 0.009 Dest Snow 0.93 ** 0.024

Arr. Delay (10s min) 0.319 ** 0.01 Dest TStorm 0.867 ** 0.039

Dep. Delay Squared
(100s min2)

-0.014 ** 0.001 Origin Rain 0.2 ** 0.019

Arr. Delay Squared
(100s min2)

-0.014 ** 0.001 Origin Snow 0.982 ** 0.024

Sunday -0.149 ** 0.019 Origin TStorm 0.949 ** 0.039

Monday -0.218 ** 0.019 Regional Carrier 0.124 ** 0.036

Tuesday -0.068 ** 0.018

Thursday -0.08 ** 0.018

Friday -0.149 ** 0.018 ** Significant at 1% level

Saturday -0.26 ** 0.021 * Significant at 5% level

very large.
Next, we consider the day-of-week effects. Wednesday is set to zero as a baseline for

comparison. The results suggest that flights on weekend days are less likely to be cancelled
than flights in the middle of the week. Based on conversations with flight dispatchers, aircraft
maintenance is often scheduled for the middle of the week, which makes aircraft substitutions
more difficult in the event of a mechanical issue. This could be one reason for this trend in
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Table 2.9: Logit Estimation Results 2

Variable Estimate
Std.
Err.

DL (Delta) 1.132 ** 0.096

UA (United) 1.156 ** 0.097

US (US Airways) 0.914 ** 0.096

AA (American) 1.423 ** 0.096

CO (Continental) 0.764 ** 0.098

WN (Southwest) 0.82 ** 0.095

B6 (JetBlue) 1.199 ** 0.098

F9 (Frontier) 0.262 * 0.117

FL (Air Tran) 0.625 ** 0.1

AS (Alaska) -0.01 0.115

cancellations throughout the week.
The weather effects are mostly significant and consistent with our expectations. The

only non-significant weather variables are the IMC variables, which indicate that we are
explicitly capturing all of the factors contributing to IMC conditions directly in the other
weather variables. Higher temperatures are generally an indication of better weather, and
these result in flights being less likely to be cancelled. High winds and low visibility increase
the chances of a flight being cancelled. We see a similar effect of weather at both the origin
and destination. Recall that we measured the weather for the origin at the scheduled time of
departure and for the destination at the scheduled time of arrival. The cancellation decision
has be made prior to departure, so there is inherently less certainty associated with the
weather conditions at the destination. It appears that forecasts are reliable enough at the
time of these decisions to overcome this.

The other weather variables were entered as indicators, taking a value of one if the
condition was present. The conditions we measured were rain, snow, and thunderstorms at
the origin and destination. Not surprisingly, the presence of snow and thunderstorms increase
the chance of cancellation more than rain. To gauge the magnitude of the effect of snow
and thunderstorms on the cancellation likelihood, note that the presence of thunderstorms
at the origin is equivalent to almost 30 mph winds, while the presence of snow has an even
stronger effect. Snow and thunderstorm have impacts of roughly equal magnitude whether
they are at the origin or destination, similar to what we saw for visibility and wind.

Next we look at the hub variables. These are indicator variables that are equal to one if
the flight departs from a hub airport of the airline operating the flight (HubOrigin) or arrives
at a hub airport of the airline operating the flight (HubDest). Both of these coefficients are
negative and significant, with the origin variable having a larger magnitude. These results
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Figure 2.1: Airline Fixed Effects and Average Cancellation Pct.

suggest that airlines do not like to cancel flights into or out of their hub airports. These
flights are important to airlines due to the large number of connecting passengers at hub
airports, so this result is not surprising. This also may explain why the HubOrigin effect
is the stronger one, since a cancellation of a flight from a hub strands passengers at the
connecting hub, rather than their origin or destination.

Now we will consider the airline fixed effects, including the dummy variable for regional
carriers. We see that the regional carrier dummy is positive and significant. Regional carrier
flights are more likely to be cancelled than mainline flights operated by the same airline,
all else equal. This is consistent with what weve seen in practice. Regional carrier flights
typically have other characteristics that are favorable for flight cancellations (i.e. short flight
distance, smaller planes, operating out of hubs), so the cancellation effect for these flights is
even stronger than what are suggested by the coefficient for the regional carriers. The airline
dummy variables (2.9) are all positive and significant, with the lone exception of Alaska
Airlines. Recall that the airline used as the base is the low-cost carrier of Mesa Airlines, go!
Airlines. All the coefficients can be interpreted relative to this base carrier. To better infer
the meaning of the coefficients, we present a scatter plot of the overall cancellation percentage
for the airline on the x-axis and the coefficient fixed effect for the airline on the y-axis. This
allows us to observe airlines proclivity to cancel relative to others when controlling for the
properties of the flights the airline operates, as compared to the raw cancellation percentages.
This plot is shown below in 2.1.

From Figure 2.1, we can see that the fixed effect coefficients and cancellation percentage
are highly correlated. We can conclude from this that there are large differences in the
cancellation rates across airlines and the differences are not caused by differences in the
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characteristics of the flights, airports, and operating conditions. Some airlines just cancel
more than others. The former group consists largely of network, legacy carriers and the
latter of low cost carriers. The one exception to this pattern is Jet Blue (B6), which has
about the same cancellation proclivity as United, Delta, and US Airways.

We tried various model specifications, including one with airport fixed effects. Specifically,
we used dummy variables for flights with an origin or destination at the 16 largest airports.
The improvement in model fit was very small compared to the improvement gained by the
airline fixed effects. Thus, for our final model we use only airline fixed effects and leave out
any airport fixed effects.

We can quantify the effects for each variable by calculating the odds ratio for a given
change in a parameter. We define the odds of cancellation as the ratio of the probability of
cancelling a flight and the probability of not cancelling a flight:

Odds =
p̂cancel

1− p̂cancel
(2.3)

The cancellation probabilities have a closed form solution, as shown in Equation 2.2. We
can use the analytical expression from that equation to re-write the odds ratio as follows:

Odds =

eV̂cancel

1−eV̂cancel

1− eV̂cancel

1−eV̂cancel

=

eV̂cancel

1−eV̂cancel
1

1+eV̂cancel

= eV̂cancel = e
∑
j β̂jxcancel,j (2.4)

The odds ratio is simply the ratio of the odds for two different sets of explanatory
variables. For example, we can increase the value of one explanatory variable by 1 unit
and calculate the odds ratio based on the increase. For this example, we will assume that
xcancel,j is increased by 1 unit:

OR1 =
e
∑
j β̂jxcancel,j+β̂1

e
∑
j β̂jxcancel,j

=
e
∑
j β̂jxcancel,je

β̂1

e
∑
j β̂jxcancel,j

= eβ̂1 (2.5)

The odds ratio for a one unit change in an explanatory variable is simply the exponential
function of the coefficient for that explanatory variable. We can re-write the results of Table
2.8 and Table 2.9 in terms of odds ratios for a unit change in the explanatory variables. For
some of the explanatory variables, we present the odds ratio for a smaller than unit change
in the variable, since a unit change would not represent changes that appear in our dataset.
For example, a 1 unit change in load factor is the entire range for that variable. The odds
ratios are presented below in Table 2.10.

The odds ratios presented in Table can give us a better sense for the magnitude of the
impact each explanatory variable has on the relative likelihood of cancelling a flight. For
example, the odds of cancelling a given flight is only 76% that of cancelling a flight with 100
fewer seats. Conversely, the odds of cancelling a flight are 1.32 times greater than those for
an otherwise identical flight with 100 more seats (1/0.76 = 1.32). The magnitudes of the
odds ratios for flight characteristics are much smaller than the magnitude for the odds ratios
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for weather effects. Consider the odds ratio for the GDP variable, which indicates that the
odds of cancelling a flight with a GDP at the destination airport are 1.43 times greater than
the odds of cancelling an identical flight without a GDP at the destination airport. Clearly
the weather effects are very strong, especially considering many of them could happen at
the same times. For example, consider a flight with a GDP at the destination, and snow at
both the origin and destination. The combined odds ratio for these three conditions is the
product of the three individual odds ratios, or 9.69. The odds of cancelling such a flight are
nearly 10 times those of cancelling a similar flight without the presence of snow and a GDP.

2.7 Cancellation Predictions

We can use the results from the above cancellation model to predict cancellations. We use
the cancellation probability formula shown in Equation 2-2, and using our estimates from
Table 2.8 and Table 2.9, we can generate a cancellation probability for each flight based
on the observable characteristics. Flights that have characteristics favorable for increased
chances of cancellations, such as low load factor, small aircraft, short flights in bad weather,
will have higher cancellation probabilities than flights with characteristics not favorable
for cancellation, such as large aircraft, high load factor, hub-to-hub flights in the morning
hours on a good weather day. The coefficients above give us a qualitative sense for which
characteristics will lead to a higher or lower cancellation probability, but do not give us
a sense for the magnitude of those cancellation probabilities. To illustrate the magnitude
that we are talking about here, we calculated the predicted cancellation probability for the
sample of flights used in our analysis and plotted the cumulative probability distribution of
the predicted cancellation probabilities. This plot is shown below in Figure 2.2.

The curve in Figure 2.2 represents the cumulative probability of the cancellation proba-
bility defined by the x-axis. For example, the median cancellation probability for our sample
is just below 1%. The mean cancellation probability for our sample is 1.5%. The 90th per-
centile of cancellation probabilities is less than 3%. The flights with a predicted cancellation
probability higher than this typically have a combination of favorable flight characteristics
for cancellations and poor weather. We almost never see cancellation probabilities above
20%, even when considering all of these effects.

2.8 Model Fit

So far we have interpreted the cancellation model coefficients in terms of their effect on a
predicted cancellation probability, but we have not addressed how well the predicted cancel-
lation probabilities match the cancellations that actually happened. We investigate this by
predicting the cancellation probabilities for all flights in our sample and aggregating them
over a single day for a single airport. This will give us a total number of predicted flight
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Table 2.10: Logit Model Odds Ratios

Variable
Unit
Increase

Odds
Ratio

Variable
Unit
Increase

Odds
Ratio

Fare($100) $100 1.07 IMCDest 1 0.97

DepTime(9:00-15:00) 1 0.94 TempDest 10 deg 0.99

DepTime(15:00-21:00) 1 1.04 VisDest 1 mi 0.93

DepTime(21:00-3:00) 1 1.17 WindDest 10 mph 1.21

Miles¡500 1 1 IMCOrigin 1 1.03

Miles750-1000 1 0.87 TempOrigin 10 deg 0.97

Miles1000-1500 1 0.9 VisOrigin 1 mi 0.91

Miles1500more 1 0.74 WindOrigin 10 mph 1.35

Num.Seats (100) 100 0.76 Hub Origin 1 0.78

LoadFactor 10% 0.81 Hub Dest 1 0.92

Flight Frequency
(flight/day)

1 1.04 GDP 1 1.43

Departure Delay (min) 10 min 1.35 Dest Rain 1 1.05

Arrival Delay (min) 10 min 1.38 Dest Snow 1 2.54

Dep. Delay Squared
(min2)

100 min2 0.986 Dest TStorm 1 2.38

Arr. Delay Squared
(min2)

100 min2 0.986 Origin Rain 1 1.22

Sunday 1 0.86 Origin Snow 1 2.67

Monday 1 0.8 Origin TStorm 1 2.58

Tuesday 1 0.93 Regional Carrier 1 1.13

Thursday 1 0.92

Friday 1 0.86

Saturday 1 0.77

cancellations for a particular airport and a particular day. We can then compare this number
to the total actual number of cancellations on that same day.

Across all airports and all days, our model should give the exact number of cancelled
flights. This is a result of us including an alternative-specific constant in the model specifi-
cation. Doing this forces the actual percentage of flight cancellations to equal the predicted
percentage of flight cancellations. This does not have to be true across any subset of our
sample, however, so we can use the comparison described above to determine how robust
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Figure 2.2: CDF of Cancellation Probability for One Month Sample

the model is for cancellation predictions at a smaller level.
The method of sample enumeration is used for predicting flights for a single day. The

following formula illustrates the technique:

Ĉi,t =
n∑
j=1

pjdt,i

The predicted number of cancellations on day t at airport i is given by Ĉi,t. The total
number of flights in our sample is given by n, each flight j of which has a predicted cancel-
lation probability by pj. dt,i is a dummy variable, equal to 1 when the flight is on day t with
destination airport i, and 0 otherwise.

We will compare the predicted number of cancellations based on our model, Ĉi,t, with
the actual number of cancellations, Ci,t. For a destination airport i, each day t will be

represented by two numbers, (Ĉi,t, Ci,t). We can plot these points to compare the predicted
number to the actual number. If the model perfectly predicts the number of cancellations
for a given destination airport-day, then all points will lie on the 45 degree line.

Consider an example of flights into ATL from our sample, shown below in Figure 2.3.
On the x-axis we have the predicted number of cancellations and the y-axis the actual
number of cancellations. The line shown is the 45 degree line, where the actual number of
cancellations equals the predicted number of cancellation. Each point shown is a day from
our sample. Points above this line represent cases of under-prediction, where the actual
number of cancellations was more than the predicted number of cancellations. Points below
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Figure 2.3: Actual vs Predicted Daily Cancellations at ATL

Figure 2.4: Actual vs Predicted Daily Cancellations at ATL (Zoomed In)

the line represent over-prediction. We have investigated departure flights and see the same
trend as arrival flights, so we will use only arrival flights for the following analysis.

We see a spread of points on both sides of the line. Our model tends to under-predict
cancellations on some days while over-predicting on others. We do see many points not far
from the 45 degree line, however. Consider the same plot with a different scale, shown below
in Figure 2.4.
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Figure 2.5: Actual vs Predicted Daily Cancellations at BOS

Now we can clearly see a large cluster of days when both the actual and predicted
number of cancellations is less than 5. Beyond this some spread exists in both directions.
These prediction results are similar at other airports. Consider the sample plot for BOS,
shown in Figure 2.5, below.

Again, we can see there is a large cluster of flights around less than 5 cancellations,
with some spread in both directions from the 45-degree line. From inspection it is hard to
distinguish these results from those at ATL, however. At first glance, it might appear that
our model is not doing a good job predicting cancellations, since not many of the points
lie exactly along the 45 degree line. Some discrepancy is to be expected, however, since
cancellations are low probability events. Thus we need a more formal way of evaluating the
model fit than the naked eye.

As another form of model fit, we can compare the number of predicted cancellations
aggregated across all days for a given airport with the total number of actual cancellations
aggregated across all days for the same airport. A plot with many days of over-prediction
and many days of under-prediction can cancel out and result in a total number of predicted
cancellations similar to that which was observed. The number of predicted and actual
cancellations for each airport is shown below in Table 2.11.

The airports with the closest number of predicted and actual cancellations are ATL, BOS,
DFW, LGA, PHL, and SFO, each with less than 8% difference between the predicted and
actual. The airports with the largest discrepancy between the actual number of cancellations
and the predicted number were EWR, IAD, IAH, JFK, and MSP, each with over 25%
difference in the number of cancellations. Also since cancellations are rare events, one would
expect the standard errors of the predicted numbers to be approximately the square root of
the predicted number generally between 25 and 50 for the airports listed. Clearly, in many
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Table 2.11: Total Predicted and Actual Cancellations by Airport

Airport Actual Pred. % Diff. Airport Actual Pred. % Diff.

ATL 3032 2885 -4.80% LAS 585 711 21.60%

BOS 1988 1931 -2.90% LAX 1293 1411 9.20%

BWI 851 677 -20.50% LGA 2464 2507 1.80%

CLT 1167 983 -15.80% MCO 574 637 10.90%

DCA 1487 1211 -18.50% MDW 522 565 8.20%

DEN 878 1082 23.30% MIA 727 583 -19.90%

DFW 2092 2098 0.30% MSP 807 1022 26.60%

DTW 1063 1206 13.50% ORD 3629 3943 8.70%

EWR 1930 1445 -25.10% PHL 1123 1086 -3.30%

IAD 830 608 -26.70% PHX 1076 885 -17.80%

IAH 645 859 33.20% SAN 511 627 22.70%

JFK 1581 1183 -25.20% SFO 1128 1039 -7.90%

cases, the difference between predicted and observed cancellation numbers is well outside
the ±2σ 95% confidence bounds derived from these standard errors.

To further investigate the distribution of daily cancellations, we can think of the number
of cancellations predicted by our model as the expected number for a given day. Even if the
predicted number, on average, matches the actual number, any number of realizations will
show a discrepancy between the two numbers. In particular, think about the days of very
high under-prediction shown in the plot for ATL in Figure 2-4. Considering that we are
looking at 730 airport-days, we might expect one or two of them to be very far away from
the mean values predicted by our model, simply due to statistical fluctuations. We need to
do something more than just inspect the plots of actual versus predicted cancellations in
order to tell how well the model predicts cancellations for single airport-days.

We can use a statistical test to determine how well the predicted distribution of cancel-
lations matches the actual distribution of cancellations. We will assume that the number of
cancellations for a given day follows a Poisson distribution with a mean value equal to the
number predicted by our model. Therefore, for a single day, we can define the probability of
observing a specific number of cancellations by the following equation:

P (Ci,t = k) =
e−λi,tλki,t

k!
(2.6)

where: Ci,t = number of cancellations at airport i on day t and

λi = predicted number of cancellations at airport i on day t, equal to Ĉi,t
Similarly, the probability of observing less than or equal to some specific number of

cancellations is shown in the following formula:



CHAPTER 2. CANCELLATION ANALYSIS 24

Figure 2.6: Empirical CDF of Cumulative Cancellation Probabilities at ATL

P (Ci,t ≤ K) =
K∑
k=0

eλi,tλki,t
k!

(2.7)

We will calculate, for each airport-day, the probability of observing less than or equal to
the number of cancellations actually observed for that airport-day, using the formula above.
If the model correctly predicts the distribution of the number of cancellations, then we would
expect the calculated probability to be approximately equal to the empirical probability
based on the number of days in the data set. For example, we expect roughly 50% of the
days to have a probability of less than or equal to 50% based on equation –. We can compare
these two distributions for a given airport by plotting the empirical CDF of the cumulative
probabilities calculated using equation –, for all days in our sample. The result for Atlanta
is shown below in Figure 2.6.

The empirical CDF of cumulative probability calculated from equation – is shown in the
blue curve. The red line is the 45-degree line represents the empirical CDF of the observed
cancellations for each day. The probability calculated for each airport-day using equation –
is sorted in ascending order, then each day is assigned a cumulative probability defined as
follows:

Pn =
N∑
n=1

n

N
(2.8)

Where n is the number of the day in the ordered sample, and N is the total number of
days. Thus, the empirical CDF of these probabilities is simply the 45 degree line. We use
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Figure 2.7: Empirical CDF of Cumulative Cancellation Probabilities at BOS

this as a basis of comparison for the empirical CDF of the cumulative probabilities calculated
using equation –. The closer the blue curve is to the red line, the better the model does in
predicting the distribution of the number of cancellations for individual airport-days.

As seen in Figure 2.6, the blue curve oscillates around the red line, being above the line
for probabilities below 0.7 and below the line for higher probabilities. In the former case,
a larger fraction of days has a calculated probability below a certain value than the model
predicts. For example, about 60% of days have a probability below 50%. Put another way,
for 60% of days, the number of cancellations, based on the cancellation model and equation
–, is on the low side of what might be expected. In contrast, only about 84% of days have
a calculated probability below 90%. Conversely 16% of days have numbers of cancellations
that, according to the model, should be exceeded 10% of the time. Similarly, on roughly 4%
of days, the number of cancellations is almost impossibly large according to the model, since
the calculated cumulative probability is well above 99%. These days are represented by the
nearly vertical part of the curve on the right of Figure 2.6.

Another way to interpret Figure 2-6 2.6 is to compare the slopes of the blue and red
curves. When the slope of the blue curve over some region of the CDF is steeper than
45 degrees, there are more observed days in this region than the probability model would
suggest, and vice versa. It is evident that there are more days with cancellations in the 0-0.2
range of the predicted distribution than expected, fewer days in the 0.4-0.9 range, and then
many more days on the far right tail of the distribution.

A similar plot for BOS appears in Figure 2.7. The blue curve tracks the red curve
more closely in this case, although even here we see a vertical segment of the blue curve
on the right, indicating days in which cancellations on the far right tail of the distribution
are overrepresented. Consider IAD, shown below in Figure 2.8. In this case there are many
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Figure 2.8: Empirical CDF of Cumulative Cancellation Probabilities at IAD

fewer days with realized cancellations on the left tails of the distributions up to a cumulative
probability of about 0.4, more days in the range between 0.4 and 0.6, and again more days
on the right tail starting at about 0.85.

Some variation between the modeled and observed distributions for the number of can-
cellations will result from random fluctuations. It is therefore of interest to formally test
the statistical significance of the observed differences. The Kolmogorov-Smirnov Test (KS
Test) is a well-known statistical test that is used for comparing whether two datasets come
from the same distribution. In our case, we are comparing the blue curve and the red curve.
Conceptually, the KS Test is very easy to perform. The test statistic is simply the largest
vertical difference between the two curves at a single x value. The test statistic is then used
to calculate a p-value, by which the null hypothesis (the two datasets come from the same
distribution) is either reject or not rejected. Mathematically, the test statistic is calculated
as follows:

Dn = sup
x
|Fn(x)− F (x)| (2.9)

where supx is the supremum set of distances between the two curves, Fn(x) is the empirical
cumulative distribution function of the data, and F (x) is the cumulative distribution function
of the red curve, which follows a uniform distribution between 0 and 1. The test statistic,
Dn follows the Kolmogorov distribution and from this we can calculate a p-value, which
represents the probability of observing the distributions we saw given the assumption that
they both come from the same underlying distribution. Thus, for the statistical test to
suggest that the distributions are the same, it would yield a high p-value, indicating that
we cannot reject the null hypothesis that the two distributions are the same. The p-values
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calculated for the largest airports in our sample are shown below in Table 2.12. Along with
the p-values, we report the test statistic calculated using Equation 2.9.

Table 2.12: KS Test P-Values for Logit Model

Airport P-val Dn Airport P-val Dn

ATL 0.00053 0.1 LAS 0 0.25

BOS 0.0405* 0.07 LAX 0.0114* 0.08

BWI 0 0.26 LGA 0.0015 0.1

CLT 0 0.19 MCO 0 0.28

DCA 0 0.17 MDW 0 0.32

DEN 0 0.12 MIA 0 0.34

DFW 0 0.13 MSP 0 0.17

DTW 0.00053 0.1 ORD 0 0.12

EWR 0 0.14 PHL 0 0.23

IAD 0 0.33 PHX 0 0.25

IAH 0 0.16 SAN 0 0.28

JFK 0 0.13 SFO 0 0.2

* Not significant at 1% level

We can see from Table 2.12 that the p-values are very small for the most part. The p-
values that were written with no significant digits (as 0) were so small that we can consider
them to be zero. There are only two airports where we cannot reject the null hypothesis at
a 1% level of significance: BOS and LAX. The rest of the airports result in a distribution
that is different enough from what we would expect that we can reject the null hypothesis
with a very high level of confidence. BOS and LAX both had a small percentage difference
between the total predicted and total actual cancellations (see Table 2.11), but were not the
two best airports for this metric.

These results are not surprising, since they are testing a hypothesis that is very strong:
that cancellations are independent events whose probabilities can be predicted by a model
that applies to all airports in all situations. Our results show that this is clearly not the
case. Beyond this, we can consider the test statistic shown as Dn in Table 2.12, above, to be
a metric for how well the model does at predicting cancellations for each airport. Although
we may not be able to statistically validate the predictions for most of these airports, we
can distinguish between them in terms of model fit. For instance, ATL and LGA have
a much better fit than PHL, although the total number of cancellations predicted at the
three airports is roughly the same compared to the actual number, from Table2.11. These
results help identify the airports where the hypothesis is closer to and further from the truth,
although it is not completely valid for any airport.
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In a similar vein, hypothesis tests aside, our cancellation model is fairly good at predict-
ing the number of cancellations by airport. In many cases it predicts the distribution of
cancellations by airport-day reasonably well. The airport-day results show that the hypoth-
esis that cancellations are independent events whose probabilities can be calculated from the
estimated model must be rejected, but they also show that the model predictions, for most
airports and most days, are reasonably accurate.
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Chapter 3

Cancellation Model Extensions

This chapter explores additional models that expand upon the work shown in Chapter 2.
We will assume the airlines are the decision-makers regarding flight cancellations, so we
first investigate airline-specific choice models of the same form used in Chapter 2. We
also suspect the assumption of iid error terms in the multinomial logit model is a bit too
restrictive. Thus, we relax this assumption and estimate a mixed logit model with a random
error term. Finally, we anticipate different cancellation behavior during times of adverse
weather, so we estimate a latent class model with two classes that capture the effect of flight
characteristics on cancellation likelihood during times of calm and inclement weather.

3.1 Airline-Specific Models

Given the large amount of heterogeneity observed due to the airline fixed effects in the binary
logit model presented in Table 2.9 , we estimated separate models for each airline. In addition
to the cancellation rates being different across airlines, we suspect that the coefficients for
the flight characteristics differ across airlines as well. We used the same sample as before
and estimated a binary logit model with the same specification as that for the aggregate
model. The results are presented below in Table 3.1 and Table 3.2. Due to the quantity
of estimation results, we only present the estimate values themselves, and note statistical
significance at the 5% level with a bolded estimate. Table 3.3 and Table 3.4 present the
airline-specific results in the form of odds ratios for each coefficient.

Some variables have large differences across airlines, such as the hub fixed effects. United
has positive coefficients for both origin and destination, while the rest of the airlines ei-
ther have either negative coefficients for both or a mixture of not significant and negative
coefficients. Fare, departure time, and day of week are also quite varied across airlines.

There is generally more consistency across coefficients for the legacy carriers than the low
cost carriers. For instance, the distance effects are roughly constant for all legacy carriers
longer flights are less likely to be cancelled. We see that for the low cost carriers, there are
few airlines with a clear trend at all for the distance effects. Load factor is negative and
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significant for all legacy carriers, but positive for JetBlue and not significant for Frontier.
The most consistent variables across all airlines are queueing delay, snow, visibility, and
winds.

The regional carrier dummy variable is positive and significant for United, Continental,
and American, not significant for US Airways and Alaska, and negative and significant for
Delta and AirTran. Although we saw this variable enter as positive and significant in the
aggregate model, we see different effects for each airline individually. We would suspect
the regional carrier effect to be positive and significant, so it is interesting that we find a
negative and significant estimate for Delta and AirTran. Based on the odds ratios, Delta is
almost twice as likely to cancel a mainline flight as a regional carrier flight, while American
and Continental are almost twice and three times as likely, respectively, to cancel a regional
carrier flight.

Overall we see some consistent effects across all airlines, but in general there is significant
heterogeneity with respect to many of the explanatory variables.
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3.2 Random Effects Model

Next, we used a model specification that allows us to capture unobserved random effects that
are correlated across time. We attempt to capture the heterogeneity in unobserved variables
through the use of a random effects term in a mixed logit model. The random effect enters
the utility as follows:

Un,cancel = β′xn,cancel + µ′nzn,cancel + εn,cancel (3.1)

where β is a vector of fixed coefficients,xn,cancel and zn,cancel are vectors of observed vari-
ables, µn is a vector of random terms with zero mean, and εn,cancel is iid extreme value.
For our random effects model, the terms zn,cancel are a constant value of 1, similar to an
alternative-constant. Together with εn,cancel, the term µ′n defines the stochastic portion of
utility:

ηn,cancel = µ′nzn,cancel + εn,cancel (3.2)

The subscript n, in the above equation represents a set of flights that are treated as
sharing similar unobserved characteristics. This is analogous to the case of repeated choices
for an individual. This technique is commonly used in panel data, where individuals make
repeated choices over time (Revelt and Train, 1998 and Johannesson and Lundin, 2000).
The sequential choices made by the same person are correlated due to the unobserved tastes,
attitudes, or preferences specific to each individual that is constant for them across all choices
they make:

Cov(η1
n,cancel, η

2
n,cancel) = E(µ′nz

1
n,cancel + ε1n,cancel, µ

′
nz

2
n,cancel + ε2n,cancel) (3.3)

Cov(η1
n,cancel, η

2
n,cancel) =′ z1

n,cancelWz2
n,cancel (3.4)

Where W is the covariance of µn. We can think of flight cancellations as having a similar
behavior as panel data. While we do not have the structure of individuals making repeated
decisions, we do have specific agents (i.e. airlines) making sequential choices across a given
day (flight cancellations). In a way, the airlines can act as individuals with a constant set
of attitudes and preferences, since flight dispatchers work in shifts from day-to-day. The
morning flights might have physically the same person making the cancellation decisions
from day-to-day.

Moreover, the set of unobservable effects that we will be capturing are likely constant
for all flights within some time interval that is much shorter than a complete day. In other
words, some time intervals are more cancellation prone than others, even accounting for all
the various factors included in the previous models. The problem we have is how to define the
sets of flights for which this random time interval effect is assumed constant. We estimated
several models and the one that provided the best fit was one that grouped the flights for a
given airline into four-hour intervals based on scheduled departure time (GMT).
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We choose µn to have a normal distribution with zero mean: µn N(0, σ2). Our estimation
procedure estimates the value of σ, which is the standard deviation of the distribution.

The model specification for the other variables was identical to that of the first binary logit
model estimated earlier. For the estimation we use a maximum simulated likelihood routine
coded in Matlab. We select a small sample of 100,000 flights from the larger sample, using
simple random sampling, to perform this estimation. The reason for the smaller sample is
the long simulation time associated with mixed logit estimation. The final model estimation
results are shown below in Table 3.5 and Table 3.6.

We can see in Table 3.5 that the random effect coefficient has a positive and significant
sign, indicating that some level of unobserved heterogeneity does exist during the time
windows we defined. The magnitude of this effect appears to be small, however. This is an
indication that some amount of unobserved heterogeneity does exist across groups of flights
for the same airline within four hour buckets.

The random effects model was estimated on a reduced dataset, so we estimated the same
MNL specification as before on the same reduced dataset. We can thus compare the coeffi-
cient estimates between the two models directly. These estimates are shown below in Table
3.7 and Table 3.8. The estimates from the random effects model are mostly consistent with
the MNL estimates, both in magnitudes and significance. We would expect the random
effects coefficients to have a larger magnitude than the MNL coefficients, as has been doc-
umented extensively in the literature (Revelt and Train, 1998), but we do not see a clear
trend here.

We would expect the random effects term to have a large magnitude if there exist similar
characteristics between flights within a given time window that substantially affect the can-
cellation utility that are otherwise not explicitly captured in our specification. We have a
fairly comprehensive list of variables, however, which include flight characteristics, queueing
delay, and weather effects. For the time windows we have considered, these effects appear
to capture most of the similarity between flights that are affecting the cancellation utility.
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Table 3.5: Random Effects Model Estimates 1

Variable
Esti-
mate

Std.
Err.

Variable
Esti-
mate

Std.
Err.

ASC(Cancel) -2.049 ** 0.032 IMCDest -0.088 ** 0.034

Fare($100) 0.012 0.032 TempDest 0.001 0.024

DepTime(9:00-15:00) -0.098 ** 0.022 VisDest -0.089 ** 0.01

DepTime(15:00-21:00) 0.071 * 0.036 WindDest 0.016 ** 0.005

DepTime(21:00-3:00) 0.004 0.033 IMCOrigin 0.001 0.025

Miles¡500 -0.046 0.026 TempOrigin -0.051 ** 0.019

Miles750-1000 -0.305 ** 0.019 VisOrigin -0.102 ** 0.01

Miles1000-1500 -0.169 ** 0.034 WindOrigin 0.036 ** 0.005

Miles1500more -0.348 ** 0.027 Hub Origin -0.38 ** 0.031

Num.Seats(100) -0.361 ** 0.063 Hub Dest -0.158 ** 0.022

LoadFactor -2.018 ** 0.082 GDP 0.446 ** 0.075

FlightFre-
quency(flight/day)

0.036 ** 0.008 Dest Rain 0.002 0.077

Dep. Delay (10s min) 0.261 ** 0.059 Dest Snow 0.977 ** 0.029

Arr. Delay (10s min) 0.289 ** 0.046 Dest TStorm 0.73 ** 0.071

Dep. Delay Squared
(100s min2)

-0.011 * 0.007 Origin Rain 0.152 ** 0.026

Arr. Delay Squared
(100s min2)

-0.01 0.005 Origin Snow 1.115 ** 0.061

Sunday -0.134 ** 0.023 Origin TStorm 0.98 ** 0.039

Monday -0.209 ** 0.042 Regional Carrier -0.037 0.027

Tuesday -0.046 0.039 ** Significant at 1% level

Thursday -0.007 0.036 * Significant at 5% level

Friday -0.183 ** 0.037

Saturday -0.306 ** 0.059

Random Effect: σ 0.057 ** 0.018
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Table 3.6: Random Effects Model Estimates 2

Variable Estimate Std. Err.

DL (Delta) 1.231 ** 0.047

UA (United) 1.38 ** 0.02

US (US Airways) 0.952 ** 0.08

AA (American) 1.689 ** 0.049

CO (Continental) 1.029 ** 0.047

WN (Southwest) 0.859 ** 0.029

B6 (JetBlue) 1.39 ** 0.021

F9 (Frontier) 0.292 ** 0.047

FL (Air Tran) 0.671 ** 0.029

AS (Alaska) 0.134 ** 0.032

** Significant at 1% level
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Table 3.7: MNL Estimates for Reduced Dataset 1

Variable
Esti-
mate

Std.
Err.

Variable
Esti-
mate

Std.
Err.

ASC(Cancel) -2.153 ** 0.046 IMCDest -0.042 0.027

Fare($100) 0.045 * 0.02 TempDest -0.025 0.018

DepTime(9:00-15:00) -0.147 ** 0.043 VisDest -0.086 ** 0.01

DepTime(15:00-21:00) 0.006 0.03 WindDest 0.014 ** 0.005

DepTime(21:00-3:00) 0.003 0.059 IMCOrigin 0.084 0.047

Miles¡500 0.047 * 0.023 TempOrigin -0.035 * 0.016

Miles750-1000 -0.079 * 0.035 VisOrigin -0.096 ** 0.011

Miles1000-1500 -0.037 0.041 WindOrigin 0.033 ** 0.005

Miles1500more -0.359 ** 0.072 Hub Origin -0.319 ** 0.079

Num.Seats(100) -0.425 ** 0.049 Hub Dest -0.071 0.041

LoadFactor -2.074 ** 0.028 GDP 0.556 ** 0.097

FlightFre-
quency(flight/day)

0.036 ** 0.007 Dest Rain 0.126 ** 0.049

Dep. Delay (10s min) 0.314 ** 0.043 Dest Snow 0.762 ** 0.03

Arr. Delay (10s min) 0.25 ** 0.019 Dest TStorm 0.973 ** 0.043

Dep. Delay Squared
(100s min2)

-0.017 ** 0.006 Origin Rain 0.251 ** 0.034

Arr. Delay Squared
(100s min2)

-0.008 ** 0.003 Origin Snow 1.152 ** 0.051

Sunday 0.065 * 0.027 Origin TStorm 0.894 ** 0.072

Monday -0.16 ** 0.058 Regional Carrier 0.027 0.029

Tuesday -0.004 0.04 ** Significant at 1% level

Thursday 0.053 ** 0.02 * Significant at 5% level

Friday -0.073 * 0.034

Saturday -0.197 ** 0.033
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Table 3.8: MNL Estimates for Reduced Dataset 2

Variable Estimate Std. Err.

DL (Delta) 1.224 ** 0.035

UA (United) 1.293 ** 0.028

US (US Airways) 0.934 ** 0.054

AA (American) 1.592 ** 0.04

CO (Continental) 0.851 ** 0.068

WN (Southwest) 0.814 ** 0.03

B6 (JetBlue) 1.336 ** 0.063

F9 (Frontier) 0.133 ** 0.033

FL (Air Tran) 0.886 ** 0.052

AS (Alaska) -0.232 ** 0.06

** Significant at 1% level
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3.3 Model Fit

The different estimates we found in each airline-specific suggest different cancellation behav-
ior for different airlines. Thus, we would think that splitting up the analysis into airline-
specific models would prove to be beneficial. One way we can evaluate this is to perform the
same aggregation techniques used in section 2.8 to assess the ability of the models to predict
cancellations at specific airport-days. We used the results from each airline-specific choice
model and calculated the predicted cancellation probability for each flight in our sample.
As a first measure of comparison with the aggregate model, consider the total number of
cancellations predicted at each airport, shown below in Table 3.9.

Table 3.9: Total Predicted and Actual Cancellations by Airport: Airline-Specific Models

Airport Actual Pred. % Diff. Airport Actual Pred. % Diff.

ATL 3032 2798 -7.70% LAS 585 368 -37.00%

BOS 1988 1807 -9.10% LAX 1293 1145 -11.40%

BWI 851 402 -52.70% LGA 2464 2390 -3.00%

CLT 1167 1142 -2.10% MCO 574 520 -9.40%

DCA 1487 1162 -21.80% MDW 522 135 -74.20%

DEN 878 845 -3.80% MIA 727 692 -4.80%

DFW 2092 2104 0.60% MSP 807 953 18.10%

DTW 1063 1121 5.50% ORD 3629 3834 5.60%

EWR 1930 1507 -21.90% PHL 1123 998 -11.10%

IAD 830 636 -23.40% PHX 1076 626 -41.80%

IAH 645 760 17.80% SAN 511 377 -26.10%

JFK 1581 1247 -21.10% SFO 1127 953 -15.40%

The airports with the closest number of total of predicted and actual cancellations are
CLT, DEN, DEN, LGA, and MIA, each with less than a 5% difference. The worst airports
are BWI, LAS, and PHX, each with over a 35% difference between actual and predicted
cancellations. There is not strong evidence from these numbers that airline-specific models
improve the cancellation prediction at an airport level.

In the same way as before, we performed sample enumeration to aggregate the cancella-
tions across airport-days. We then calculated the empirical CDF of the Poisson probabilities
using equation –. For each airport we calculated the KS test statistic and the associated
p-value. The p-values and the max vertical difference between the two curves (Equation –)
for each airport are shown below in Table 3.10.

We find that none of the airports have a p-value less than 0.01, compared to two airports
for the aggregate model. The best airports in terms of p-value are ATL, LGA, ORD, and
BOS. It appears that although the airline-specific choice models do a better job of capturing



CHAPTER 3. CANCELLATION MODEL EXTENSIONS 42

the heterogeneity in cancellation decisions across airlines, they do not perform better than
the aggregate model for predicting cancellations for specific airport-days.

Table 3.10: KS Test P-Values for Airline-Specific Models

Airport P-val Dn Airport P-val Dn

ATL 0.0057 0.09 LAS 0 0.49

BOS 0.00014 0.11 LAX 0 0.19

BWI 0 0.49 LGA 0.00053 0.11

CLT 0 0.14 MCO 0 0.35

DCA 0 0.19 MDW 0 0.75

DEN 0 0.23 MIA 0 0.27

DFW 0 0.13 MSP 0 0.19

DTW 0 0.15 ORD 0.00035 0.11

EWR 0 0.16 PHL 0 0.29

IAD 0 0.32 PHX 0 0.39

IAH 0 0.2 SAN 0 0.47

JFK 0 0.12 SFO 0 0.22

* Not significant at 1% level

The random effects term for the mixed logit model is very small in magnitude compared
to the other coefficient estimates, suggesting that only a small amount of heterogeneity
exists across 4-hour time intervals. Moreover, at the daily level for a given airport it is very
unlikely that the net effect of the random effects term, draws from which are independent
for different airlines and from one four-hour period to the next for a given airline, result in
a major difference in total cancellations. Thus, we do not perform the KS test for model fit
using the mixed logit results.
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3.4 Latent Class Model

In this section we further explore cancellation heterogeneity, but this time through the
use of latent class models. Latent class models allow estimation of different sets of model
coeffiicients for a single sample. Each set of model estimates represent distinct classes of
behavior that are present in the data. The model used for these sets of estimates is called
the class-specific model. We can simultaneously estimate a class-membership model that
assigns, for each observation in our data, a probability of being a member of each class.
We will assume a logit specification for the class-membership model, giving us the familiar
closed-form expression for class-membership probability:

P (s|xn) =
e
∑
j βs,jxn,j∑

s∈S e
∑
j βs,jxn,j

(3.5)

where xn is a set of characteristics for flight n and S is the set of all latent classes, with
the number of classes chosen by the researcher. We are interested in the effects of weather
on cancellation behavior, so these variables will be included in the class-membership model.
The set of preferences defined in this model vary across each class. We again choose a logit
form for the class-specific model. Conditional on class membership, the choice probability
for the class-specific model is shown below:

P (Cancel|yn, s) =
e
∑
k βkyn,k∑

s∈S e
∑
k βkxn,k

(3.6)

where yn,k is the kth explanatory variable for flight n, βk is the coefficient for variable k,
and s is the class. We will use flight characteristics as explanatory variables in this model.
The choice probabilities of each model must be estimated simultaneously, using a latent class
choice model. We will use the EM algorithm coded in Matlab for simultaneous estimation
of the two models. The final choice probability is a combination of the class-specific and
class-membership probabilities:

P (i|xn, yn) =
S∑
s=1

P (Cancel|yn, s)P (s|xn) (3.7)

Estimation of latent class models is computationally demanding. Also, we are primarily
interested in these models from a behavioral standpoint rather than a prediction standpoint.
As such, we will only estimate latent class models on two subset of 100,000 flights, one in
the winter months of 2010-2011 (December, January, and February) and one in the summer
months of 2011 (June, July, and August). The samples were made using simple random
sampling from the months shown for the full dataset.

To get a sense for the weather variables that most affect cancellations for each subsample,
we performed Principal Component Analysis (PCA) on the flight observations for only the
cancelled flights within each seasonal subsample. We used the weather effects from the logit
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model in Chapter 2, but converted the ordinal variables to binary for simplicity. For wind
speeds higher than 15 mph (HighWind) or visibility lower than 3 mi. (LowVis), each respec-
tive variable would be encoded as 1. For each sample, a total of eight principal components
were identified, but since we are interested in the combination of weather variables that
explain the highest percentage of total variance, we only present the five largest components
here.

Table 3.11: Summer PCA Results

Component
PCA1 PCA2 PCA3 PCA4 PCA5

Dest Rain 0.038 0.050 0.054 -0.957 -0.081

Dest TStorm 0.004 0.016 0.030 0.271 0.087

Dest ReducedVis 0.022 -0.003 -0.002 0.030 -0.006

Dest HighWind 0.948 -0.317 -0.021 -0.020 -0.014

Origin Rain 0.015 -0.007 0.984 -0.068 -0.156

Origin TStorm 0.024 0.010 0.159 0.044 0.980

Origin ReducedVis 0.000 0.014 0.043 0.007 -0.023

Origin HighWind 0.315 0.947 -0.005 -0.062 -0.014

Cumulative %
Variance Explained

0.300 0.534 0.673 0.802 0.883

The PCA results for summer are presented below in Table 3.11. The first principal
component has the highest correlation with the destination high wind and origin high wind
variables. The second principal component is correlated with the origin high wind variable.
Clearly wind is an important variable to consider for cancellations in the summer. The third
principal component has the highest correlation with origin rain and origin thunderstorms.
The fourth principal component has the highest correlation with destination thunderstorms
and a negative correlation with destination rain. The fifth principal component has the
highest correlation with origin thundestorms. The five princpial components presented here
explain over 88% of the total variance. Due to the small contribution of reduced visibility
for both the origin and destination these variables will be left out of the class-membership
model.

The PCA results for winter are presented below in Table 3.12. The first component has
the highest correlation with the origin and destination high wind variables. The next highest
correlation is for the origin and destination reduced visibility variables, followed by the snow
variables. The large contribution of many variables in this principal component suggests
that a large percentage of cancellations in winter have many of these adverse weather effects
occuring together. The second principal component has the largest correlation with the origin
high wind variable, with negative correlation with the origin rain and origin reduced visibility
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Table 3.12: Winter PCA Results

Component
PCA1 PCA2 PCA3 PCA4 PCA5

Dest Rain 0.178 -0.092 -0.240 0.411 -0.509

Dest Snow 0.286 -0.156 0.196 0.261 0.610

Dest ReducedVis 0.304 -0.216 -0.288 0.651 0.045

Dest HighWind 0.486 0.056 0.798 0.052 -0.219

Origin Rain 0.222 -0.405 -0.056 -0.303 -0.332

Origin Snow 0.300 0.129 -0.231 -0.154 0.433

Origin ReducedVis 0.398 -0.508 -0.213 -0.442 0.053

Origin HighWind 0.509 0.692 -0.288 -0.160 -0.134

Cumulative %
Variance Explanined

0.284 0.461 0.617 0.742 0.829

variables. The third principal component is correlated primarily with the destination high
wind variable. The fourth and fifth principal components have largest correlations with
destination reduced visibility and destination snow, respectively. Together the five largest
components explain over 82% of the total variance.

Latent Class Model Results

Our hypothesis is that cancellations made during adverse weather conditions are made differ-
ently than those during good weather conditions. Specifically, we expect the flight character-
istics to have less of an effect on cancellation decisions for flights that have adverse weather.
Based on the PCA results, we chose the following variables for the class-membership model
for winter: Snow, Reduced Visibility, and High Winds, for both the origin and destination.
The class-membership variables for the summer model include thunderstorms, rain, and high
wind at both the origin and destination. The class-specific variables include number of seats,
load factor, flight frequency, and dummy variables for a hub at the origin and destination.
A summary of the explanatory variables used for each model is shown below in Table 3.13.

The final model specification for both summer and winter consisted of two classes. Two
classes was chosen due to convergence issues with the three-class models. For purposes of
exploring cancellation behavior heterogeneity with respect to weather, two classes should
be sufficient. The class-membership model estimates for summer are shown below in Table
3.14.

The class membership variables for class 1 are arbitrarily set as the base. The summer
class-membership estimates show significant effects for origin and destination thunderstorms,
origin rain, and origin high winds. The largest effect on class-membership is from the thun-
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Table 3.13: Latent Class Model Variables

Class-Membership Model Variables

Variable Description

Reduced Visibility (Winter
Only)

Visibility less than 3 mi. (0 or 1)

High Winds Wind Speed > 15 mph (0 or 1)

Rain (Summer only) Rain present (0 or 1)

Thunderstorms (Summer only) Thunderstorm present (0 or 1)

Snow (Winter only) Snow present (0 or 1)

Class-Specific Model Variables

Number of Seats Number of seats on the flight (100s)

Load Factor Average load factor (%)

Flight Frequency (flight/day) Daily flight frequency for airline, OD pair

Hub Origin Hub airport at origin

Hub Destination Hub airport at destination

Table 3.14: Class-Membership Model Estimates: Summer

Variable Estimate Std. Err

CSC (Class2) 3.124 ** 0.115

Origin TStorm (Class2) -2.182 ** 0.268

Dest TStorm (Class2) -2.186 ** 0.260

Origin Rain (Class2) -0.870 ** 0.168

Dest Rain (Class2) -1.060 ** 0.244

Origin Wind (Class2) -1.083 ** 0.246

Dest Wind (Class2) -0.287 0.184

** Significant at 1% level

derstorm variables. Although they did not appear in the PCA analysis until the fourth and
fifth principal components, their effect on class-membership is larger than the other vari-
ables. All weather effects have a negative sign, indicating flights with those weather effects
are less likely to be in class 2. The large positive class-specific constant indicates that flights
without adverse weather have a high probability of being in class 2. Thus, we can think of
class 2 as our good weather class and class 1 as our bad weather class. The class-specific
estimates for summer are shown below in Table 3.15.

Class 1 represents the flights which have adverse weather conditions. We see that all of
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Table 3.15: Class 1 Model Estimates: Summer

Variable Estimate Std. Err

ASC(Cancel) 8.121 ** 1.300

Num.Seats(100) -3.470 ** 0.483

LoadFactor -7.324 ** 1.048

FlightFrequency(flight/day) 0.112 ** 0.027

Hub Origin 0.872 ** 0.139

Hub Dest 0.908 ** 0.147

** Significant at 1% level

the flight characteristic variables are significant, with the expected signs, contrary to our
hypothesis. These estimates very closely resemble those from the logit model in Chapter
2. This class has a very large alternative-specific constant, indicating a high probability of
cancellation, all else equal. For example, consider a flight with flight characteristics equal to
the mean values in the overall sample, listed in Table 2.4. For class 1, the flight cancellation
probability would be 0.21, while the cancellation probability for the same flight in class 2,
shown below, is only 0.0011. These results indicate that flight characteristics are considered
for the flights affected by adverse weather and that the adverse weather flights are cancelled
at a much higher rate overall than the good weather flights. The class 2 model estiamtes for
the summer model are presented below in 3.16.

Table 3.16: Class 2 Model Estimates: Summer

Variable Estimate Std. Err

ASC(Cancel) -14.702 ** 4.017

Num.Seats(100) 0.624 ** 0.246

LoadFactor 7.947 * 3.732

FlightFrequency(flight/day) -0.003 0.023

Hub Origin 0.981 ** 0.186

Hub Dest 1.393 ** 0.286

** Significant at 1% level

* Significant at 5% level

Class 2 represents our good weather class. All of the estimates from this class, with the
exception of flight frequency, are significant. The sign of the number of seats and load factor
variables are the opposite of what we would expect, however. Large aircraft and higher
average load factor appear to increase the probability of cancellation for flights within this
class. From the latent class model estimates for the summer sample, we cannot confirm our
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hypothesis that flight characteristics are not important for flights facing adverse weather,
but heterogeneity in behavior can be expected for these two types of flights. Now we will
consider the winter latent class model. The class-membership model estimates are shown
below in table 3.17.

Table 3.17: Class-Membership Model Estimates: Winter

Variable Estimate Std. Err

CSC (Class2) 3.671 ** 0.045

Origin Snow (Class2) -3.796 ** 0.109

Dest Snow (Class2) -3.857 ** 0.108

Origin Vis (Class2) -3.576 ** 0.094

Dest Vis (Class2) -3.146 ** 0.093

Origin Wind (Class2) -1.396 ** 0.070

Dest Wind (Class2) -1.239 ** 0.071

** Significant at 1% level

All of the variables in the class-membership model for winter are significant. Class 1 is
again set as the base. The weather variables are all negative, indicating flights with adverse
weather are more likely to be in class 1 than those without adverse weather. The largest
effect on class-membership probability are the snow and visibility variables. Although wind
appeared as the primary factors in the first principal component in table 3.12, their effect
on class-membership is not as strong as the other variables. We can think of class 1 being
the bad weather class and class 2 being the good weather class, just like the resluts for the
summer model. The class 1 estimates for winter are shown below in table 3.18.

Table 3.18: Class 1 Model Estimates: Winter

Variable Estimate Std. Err

ASC(Cancel) 2.602 ** 0.259

Num.Seats(100) -0.167 0.108

LoadFactor -3.320 ** 0.281

FlightFrequency(flight/day) 0.122 ** 0.014

Hub Origin -0.057 0.079

Hub Dest -0.207 * 0.089

** Significant at 1% level

* Significant at 5% level

Most of the estimates from the class 1 model are significant. The exceptions are the
number of seats variable and the hub origin variables. Of the significant variables, however,
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the signs match our expectations. Low load factors and high frequency of flights increase the
likelihood of cancellation. This class has a positive alternative-specific constant, indicating
that the flights in this class have a high probability of cancellation, all else equal. A positive
class-specific constant for class 2 suggests that flights without adverse weather have a high
probability of being in class 2. Consider a fligth with characteristics equal to the mean
values in the population. The probability of cancellation in class 1 would be 0.50, while
the probability of cancellation in class 2 would be only 0.0031. The cancellation probability
for the adverse weather class is much higher for the winter model (0.50) than the summer
model (0.21). This large difference is somewhat suprising considering the results from the
logit model in Chapter 2. The snow and thunderstorm variables in table 2.8 were similar in
magnitude and were the largest weather effects in the logit model. Again our hypothesis is
not confirmed regarding the effect of flight characteristics during adverse weather. Flights
with and without adverse weather weather both have significant flight characteristic effects.
The winter class 2 estimates are shown below in table 3.19.

Table 3.19: Class 2 Model Estimates: Winter

Variable Estimate Std. Err

ASC(Cancel) -0.523 0.282

Num.Seats(100) -4.157 ** 0.356

LoadFactor -0.228 0.336

FlightFrequency(flight/day) -0.177 ** 0.024

Hub Origin 0.998 ** 0.182

Hub Dest 1.731 ** 0.259

** Significant at 1% level

All of the variables for the winter class 2 model, with the exception of load factor, are
significant. Aircraft size appears to have a very strong effect compared to other models,
frequency is negative, and both hub effects are large and positive. These estimates suggest
that flight characteristics are important for cancellations in the summer for both flights with
and without adverse weather effects. Thus, our hypothesis is not confirmed. The latent
class model estimates indicate that heterogeneity with respect to fligth characteristics is not
strongly releated to adverse weather.

We explored heterogeneity of cancellation behavior with respect to weather for two sam-
ples of flights in the winter and summer seasons of 2011. We hypothesized that the effect
of flight characteristics on cancellations during times of adverse weather is diminished, but
the model results indicate flight characteristics are considered when airlines cancel flights
in both good and bad weather. The relative effect of flight characteristics on cancellations
is not identical for both good and bad weather flights, however. We see differences in the
signs and significance of some of the flight characteristic variables. The differences in flight
characteristics, however, is dominated by a large alternative-specific constant for the bad
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weather models. The cancellation probabilities for flights with bad weather is much higher
overall compared to a similar flight with good weather. This effect is captured in our original
logit model with the use of weather fixed effects. The results from the latent class model in-
dicate preference heterogeneity across weather conditions does exist, but is largely exceeded
by the effects of the weather effects themselves. These results verify the original logit model
specification from Chapter 2.
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Chapter 4

Delay Analysis

We will now implement the results from our cancellation models into delay simulation mod-
els to evaluate the impact of flight cancellations on delay forecasts. First we will dicsuss our
queueing algorithm and how it compares with the algorithm used by the FAA, ACASAT.
Then we will incorporate flight cancellations into the queueing model in two ways. We
will use Monte Carlo simulation to evaluate the probabilistic flight cancellations as draws
of realized flight demand from a distribution, and then we will illustrate a first-order ap-
proximation to Monte Carlo simulation that does not require any simulation. Finally we
conduct a simulation experiment on a large number of airport-days to illustrate the effect
flight cancellations have on delay forecasts as well as the differences between the first-order
approximation and Monte Carlo simulation.

4.1 Delay Simulation

We will estimate the impacts of flight cancellations on delay using a deterministic queue-
ing model. The model is a simplified representation of the queueing model that is used
in ACASAT that we use to calculate delays given a flight schedule and capacities. The
framework for our cancellation models and the delay forecasts is shown below in Figure 4.1.

As seen in the top of Figure 4.1, the cancellation model inputs consist of various ex-
planatory variables, such as fixed effects for airlines, flight characteristics, and weather. The
outputs from our cancellation model, as described previously, are in the form of cancellation
probabilities for each flight. The queueing delay framework used by the FAA is shown in
the bottom of Figure 4.1. Schedules and capacities for specific airports are the inputs to
a queueing model which outputs delay forecasts. We will incorporate flight cancellations
into the queueing models in the form of cancellation probabilities, and evaluate the effect of
cancellations on the delay forecast output from the queueing models.
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Figure 4.1: Cancellation and Delay Model Framework

4.2 Queueing Model

Queueing Algorithm

We will use an iterative queueing model that models the demand, capacity, throughput, and
queue length on a minute-by-minute basis. We choose one minute as our time step since
that is the smallest level of granularity of flight schedules. The capacities, which are given
from historical data as constant hourly rates for each 15 minute interval, are converted to
minute-by-minute capacities in a continuous fashion. That is, we take the capacity for a
given 15 minute interval, measured in flights/hour and divide it by 60 to get a flight/min
capacity. Consider an example of a set of departures, shown below in Table 4.1.

Table 4.1: Sample Set of Departures

Departure Time

8:00

8:00

8:00

8:01

8:03

8:03

8:05

We can then create the demand and capacity for each minute in the time interval, shown
in Table 4.2. For illustrative purposes we assume a constant capacity of 75 departures / hr,



CHAPTER 4. DELAY ANALYSIS 53

which translates to 75/60 = 1.25 departures / min.

Table 4.2: Sample Demand and Capacity

Time Period, i Demand, Di Capacity, Ci

8:00 3 1.25

8:01 1 1.25

8:02 0 1.25

8:03 2 1.25

8:04 0 1.25

8:05 1 1.25

The demand column is generated by aggregating the flight schedule for each minute from
8:00 to 8:05. We assume at the first time step that there is no existing queue from prior time
periods. The queueing algorithm begins with the first time step:

Q1 = min(D1, C1) (4.1)

Where Q1, D1, and C1 are the throughput, demand, and capacity at time period 1,
respectively. The throughput is equal to the demand unless the demand exceeds capacity.
In that case, the throughput is equal to the capacity. The excess demand beyond the
throughput is the amount in queue at the end of time period 1, N1:

N1 = D1 −Q1 (4.2)

In the second time step, the throughput is now the minimum of the demand in the current
time period plus the queue from the previous time period and the capacity in the current
period:

Q2 = min(D2 +N1, C2) (4.3)

The amount in queue is the difference between the demand at this time period (plus the
queue from the previous time period) and the throughput at this time period:

N2 = D2 +N1 −Q2 (4.4)

The following time steps follow the same form as that of time period 2. The general
formula can be written as follows:

Qi =

{
min(Di, Ci) i = 1

min(Di +Ni−1, Ci) i > 1
(4.5)
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Ni =

{
Di −Qi i = 1

Di +Ni−1 −Qi i > 1
(4.6)

This process is continued until the end of the queue has cleared or the end of the flight
schedule, whichever is later. The total delay is the sum of the amount in queue at each time
period times the time step used. In our case, we use one minute time steps, so the delay is
simply the sum of the queues at each time period:

Delay =
∑
i

Ni∆t =
∑
i

Ni (4.7)

This procedure was applied to the schedule presented earlier and the resulting throughput
and queue for each time step are shown below in Table 4.3.

Table 4.3: Sample Demand, Capacity, and Throughput

Time Period, i Demand, Di Capacity, Ci Throughput, Qi Queue, Ni

8:00 3 1.25 1.25 1.75

8:01 1 1.25 1.25 1.5

8:02 0 1.25 1.25 0.25

8:03 2 1.25 1.25 1

8:04 0 1.25 1 0

8:05 1 1.25 1 0

The total delay for this example is simply the sum of the queue for each time period. In
this case we have 4.5 aircraft-minutes of delay.

ACASAT Algorithm

We are going to use our queueing model to illustrate the effects of flight cancellations on flight
delays. Due to the techniques we will be using and the large number of flight schedules we will
be performing calculations on, we have chosen to use our own queueing algorithm (shown
above) implemented in Matlab. We need to verify that the queueing model is producing
delay calculates similar to those from ACASAT. We verify this so that we can infer that
the results shown here would be reproducible if the cancellations were properly incorporated
into ACASAT.

The ACASAT queueing algorithm is different from the one described above. The al-
gorithm is continuous in time and discrete in the number of services. Instead of iterating
through a discrete time step as our algorithm does, the ACASAT algorithm iterates through
discrete flight operations. Take for example the same flight schedule from before, shown here
in Table 4.4.
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Table 4.4: Sample Set of Departures

Departure Time

8:00

8:00

8:00

8:01

8:03

8:03

8:05

The capacity of 75 / hr that we used earlier is now incorporated into the algorithm
as a minimum inter-departure time. In this case we have 60 / 75 = 0.8 minutes. The
algorithm starts with the first scheduled departure time, 8:00 and services one flight. The
next departure time is the previous departure time plus the maximum of two quantities,
the minimum inter-departure time (determined by capacity) and the time until the next
scheduled departure.

T2 = max(H,S2 − S1) + T1 (4.8)

Where Ti is the actual departure time of flight i, Si is the scheduled departure time of
flight i and H is the current minimum inter-departure time, determined by the capacity.
The only time this algorithm deviates from this formula is when the time between actual
departures crosses a boundary of the 15 minute intervals within which capacity is constant.
For example, assume capacity is constant between 8:00 and 8:15, and there is an actual
departure at 8:14. If the next departure is supposed to occur at 8:16 based on the above
formula, the algorithm is interrupted.

In this case, the minimum inter-departure time (and thus the capacity) is no longer
constant between two flight operations. The algorithm uses linear interpolation to determine
the time of the next operation. The original inter-departure time is treated as the time
required to service another flight. The time between the capacity change and the previous
flight relative to this time is effectively the proportion of the time that has elapsed until the
flight is allowed to be served.

This is illustrated below in Figure 4.2. Consider two periods of constant capacity, divided
at time T . For flights served prior to time T , the inter-departure time is ∆t1 and for flights
served after time T , the inter-departure time is ∆t2. The last flight served in the first period
is served x time units prior to T , where x < ∆t1. That is, the time until the capacity change
is less than the inter-departure time for the current capacity. After T , the time until the
next flight is served will be denoted by y. The sum of x and y, which we will denote ∆t̃, is
the inter-departure time between the last flight served prior to T and the first flight served
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Figure 4.2: Linear Interpolation for ACASAT Queueing Model

after T .
The ACASAT algorithm uses linear interpolation to calculate the inter-departure time

that spans across periods of two different capacities. We can think of the percentage of
a flight serve that was completed prior to T as being the ratio between x and ∆t1. The
remaining portion of the flight that must be served must be equal to the portion of the flight
served after time T :

1− x

∆t1
=

y

∆t2
(4.9)

Consider a numerical example, where we assume the following values for inter-departure
times, in minutes:

∆t1 = 2

∆t2 = 3

Also, assume that the last flight prior to T is served 1 minute before T . The portion of
the current flight service that is served before T is the ratio between x and ∆t1, or 1/2 =
0.5. Thus, the remaining portion of the flight to be served is 0.5. We can calculate y using
the following equation:

y = ∆t2

(
1− x

∆t1

)
(4.10)

In this case, y = 1.5 minutes. Thus, the inter-departure time that spans across the
capacity change is given by the sum of x and y, 2.5 minutes. Once the actual service
times are established using the queueing algorithm, the total delay is simply the sum of the
difference between the scheduled service time and the actual service time for each flight:

Delay =
∑
i

Ti − Si (4.11)
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Figure 4.3: ACASAT vs Queueing Model Comparison

Queueing Algorithm Comparison

We implemented both algorithms in Matlab and used a large sample of airport-days to evalu-
ate the difference between our minute-by-minute queueing algorithm and the true ACASAT
algorithm. We use a sample of eight airports that represent some of the most congested
airports in the country, and thus are of great interest to the FAA regarding the prediction
of flight delays. The airports are SFO, ORD, ATL, JFK, EWR, LGA, PHL, and BOS. The
days are sampled from months ranging from October 2010 to December 2011.

The two algorithms above were used to calculate the total departure delay due to queue-
ing for each day at the various airports. A total of 65 airport-days were used in our analysis,
each with no queue at the beginning and end of the time period used for simulation. The
percentage difference between the total daily delay from each queueing method was calcu-
lated. The difference between the delay from the ACASAT algorithm and the delay using
our approximation is shown below in Figure 4.3.

The mean difference between our queueing model and the ACASAT queueing model
is -1.91%. That is, the ACASAT model on average produced estimates 1.91% below our
model estimates. However, since our model did not produce results strictly above or below
the estimates from the ACASAT model, we can take the absolute value of each percentage
difference and use these as another basis for comparison. The distribution of the absolute
value percentage differences between the two algorithms is presented below in Figure 4.4.

The average absolute value of percentage difference between the two models is 3.6%,
with a couple high outliers. For the most part, the absolute value of delays differences are
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Figure 4.4: ACASAT vs Queueing Model Comparison (Absolute Value)

below 5%. While small in magnitude, however, we would expect the differences between
these two models to be zero, since they are both measuring the same quantity. we explored
the alrogithms more thoroughly and found a couple discrepancies that might be causing the
differences we see here.

While the algorithms are measuring the same quantity (delay), they are measuring it in
different ways. The ACASAT algorithm iterates through flights, with the inter-departure
time a function of the capacity and schedule. The difference between the scheduled departure
time and actual departure time for each flight is used as the measure of delay. Our algorithm,
on the other hand, iterates through time in 1 minute intervals. The cumulative departures
is a function of the scheduled flights and the capacity for that time interval. The difference
between the cumulative number of scheduled depratures and the cumulative number of actual
departures each minute is the delay quantity for each minute.

We found two discrepancies between the two algorithms that likely give rise to the dif-
ferences in delay. First, our algorithm assumes no additional delay is assigned for all flights
that are served in a given minute interval. In other words, we assume that the flights are
served all at the very beginning of the interval. For example, consider the case where we have
no existing queue and 5 scheduled departures during a 1 minute time interval with capacity
4 / min. According to our algorithm, the first 4 flights will experience no delay at all, since
they are served in the first minute. In reality (and consistent with the ACASAT algorithm),
the second, third, and fourth flight will depart at even intervals within the minute (0.25, 0.5,
and 0.75 minutes, respectively), leading to a total delay of 1.5 minutes for the first 4 flights.
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Our algorithm will tend to underestimate delay in these cases.
Second, when the capacity is less than 1 / min, our alrogithm does not properly consider

the delay for the first flight after a period with no queue. Consider the case where there is
no existing queue, one scheduled departure, and capacity of 0.8 / min. This is equivalent
to a minimum headway of 1.25 min. According to our algorithm, 0.8 flights will be served
in the first minute, with 0.2 flights having a delay of one minute. The remaining 0.2 flights
are served in the second minute. In reality, the first flight is served at the start of the first
minute, experiencing no delay. Subsequent flights are spaced out in 1.25 minute intervals
from the first flight. Our algorithm will tend to overestimate delay in these cases.

These two discrepancies cannot be easily accounted for by changing our algorithm. This
reason combined with the already small differences leads us to conclude that the two algo-
rithms are close enough to be sufficient for our analysis. We consider the results in Figure
4.4 to be an acceptable difference to consider an analysis using our queueing model to be
equivalent to the results that would be found with the queueing model from ACASAT.

4.3 Incorporating Flight Cancellations into Queueing

Models

A probabilistic approach is required to introduce cancellations into a queueing model. As
shown previously, the outputs of the cancellations models are cancellation probabilities for
each flight. Therefore, we can no longer assume a deterministic demand for each minute
according to the flight schedules. We can think of demand, and thus delay, as being a random
variable, taking on different values for different sets of flight cancellations, the likelihood of
which depend on the cancellation probabilities. The exact relationship between delay and
cancellation probabilities would be very difficult to derive analytically. Thus, we will estimate
the expected value of delay using Monte Carlo simulation. We will compare the results from
the Monte Carlo simulation, which we can assume (for a sufficient number of simulation runs)
yields a consistent and very accurate estimate for the true expected delay, with a first-order
approximation of the effect of flight cancellations.

Monte Carlo Simulation

We use Monte Carlo simulation to estimate the expected queueing delay when there are
probabilistic flight cancellations. From a given binary logit model, each flight is assigned a
cancellation probability. For each run in the Monte Carlo simulation, a realized set of flight
cancellations is drawn from the set of cancellation probabilities for each flight.

We can think of demand as being the sum of the number of flights in the schedule for
each minute, where each flight is a Bernoulli random variable with cancellation probability
pj. We will denote Xj as an indicator for the status of each flight, where 1 means the flight is
not cancelled. Therefore, we use a Bernoulli random variable with 1 minus the cancellation
probability as the probability of a successful draw:



CHAPTER 4. DELAY ANALYSIS 60

Di =
∑
j∈i

Xj (4.12)

Xj ∼ Bernoulli (1− pj) (4.13)

Where Di is the demand in time period i, and Xj is an indicator variable for the demand
for flight j within time period i. Xj is equal to 1 with probability 1−pj and 0 with probability
pj. We assume that the cancellations are made independently and thus we use successive
draws for each flight in our dataset. We then use the deterministic queueing model described
above to calculate the queueing delay for that particular realization of flight cancellations.
Successive draws are made, the delays are calculated for each set, and then finally averaged
together to get an unbiased estimated of the delay due to flight cancellations. The sampling
error is calculated as the standard deviation of the set of realized delays divided by the
square root of the number of simulation draws made. We use 1000 draws and thus get a
fairly small sample error.

The Monte Carlo simulation steps are performed as follows:

1. For each flight, Xj, take a draw from a Uniform distribution between 0 and 1.

2. If the draw is less than the cancellation probability for that flight, set Xj = 0,
otherwise, set Xj = 1.

3. For each minute in the schedule, add up the total flights, Di =
∑

j Xj

4. Use the queueing algorithm to calculate the queueing delay, Delay, for this draw.

5. Perform steps 1 to 4 R times, obtaining Delayr for r = 1,R.

6. Average the R draws, Delay =
∑
r Delayr

R
.

To illustrate the Monte Carlo simulation technique, consider the flight schedule from
earlier, but now assume that each flight has an associated cancellation probability, shown
below in Table 4.5.

We can translate the flight schedule and cancellation probabilities into many different
realized demands. Each demand set is created by taking random draws for each flight from
a Bernoulli distribution with mean equal to the cancellation probability for a particular
flight. An example of a few possible realized demand sets are shown below in Table 4.6. For
illustration purposes, the demand sets feature more cancellations than would normally be
expected given the cancellation probabilities in Table 4.5.

The highlighted cells represent time periods where a cancellation took place. The ex-
pected value of delay is calculated by averaging together the delay calculations for each
realized demand set. As the number of realized demand sets grows large, the average delay
value converges on the true value of expected delay due to cancellations.
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Table 4.5: Sample Set of Departures with Cancellation Probabilities

Departure Time Cancellation Prob.

8:00 0.02

8:00 0.01

8:00 0.03

8:01 0.03

8:03 0.04

8:03 0.03

8:05 0.02

Table 4.6: Sample of Four Realized Demand Scenarios

Time Period, i D1
i D2

i D3
i D4

i

8:00 3 2 3 3

8:01 1 1 0 1

8:02 0 0 0 0

8:03 2 1 2 2

8:04 0 0 0 0

8:05 1 1 1 0

First-Order Approximation

Monte Carlo simulation, while accurate, is quite computationally cumbersome due to the
large number of simulation runs required to get an accurate estimate. Thus, we developed an
approximation that we can perform once, rather than having to take successive draws from
a distribution for each flight and performing the queueing algorithm calculations repeatedly.
The queueing delay from our model is deterministic, conditional on a realized set of flights.
This was seen in each draw of the Monte Carlo simulation shown above in Table 4.5. If we
can develop an approximation that reduces the realized set of demand to a single set, we
can speed up the algorithm tremendously.

With the introduction of the cancellation probabilities, the delay for each time period
is now a random variable, which is itself a function of another random variable, demand.
Well call the demand vector random variable D̄ and the function of demand that represents
delay, f(D̄). We express demand as a vector to account for each time period separately.
We will use a first-order approximation for the expected value of delay using a Taylor series
expansion:

E
[
f(D̄)

]
' f(E

[
D̄
]
) (4.14)
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Since the expectation function is linear, we consider the demand at each time period
independently. The demand random variable for each time period, as shown earlier, is
simply the sum of independent Bernoulli random variables for each flight within a given
time period. The demand within a single time period is given by Equation 4.14, above.
We will test this approximation with simulation later in this chapter. Now we can take the
expected value of the demand random variable. Since demand for a given time period is the
sum of independent Bernoulli random variables, we can take the expected value operation
inside the summation:

E [Di] = E

[∑
j∈i

Xj

]
=
∑
j∈i

E [Xj] (4.15)

The expected value for each Bernoulli random variable is simply the probability that
the Bernoulli random variable is equal to 1, which is our case is 1 minus the cancellation
probability, pj. Thus, we can write the expected value of demand, for a given time period,
as the following:

E [Di] =
∑
j∈i

(1− pj) (4.16)

We can illustrate this through the same sample schedule we used earlier, shown below in
Table 4.7.

Table 4.7: Sample Set of Departures with Cancellation Probabilities

Departure Time Cancellation Prob.

8:00 0.02

8:00 0.01

8:00 0.03

8:01 0.03

8:03 0.04

8:03 0.03

8:05 0.02

For each minute, we calculate the expected value of demand using Equation 4.16. The
results are shown in Table 4.8, below.

We then calculate the queueing delay once, using E[Di]as an estimate for the expected
demand. We will compare the results from this first-order approximation to the results from
Monte Carlo simulation to determine the amount of bias caused by such an approximation.
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Table 4.8: First-Order Approximation of Demand

Time Period, i E [Di]

8:00 2.94

8:01 0.97

8:02 0

8:03 1.93

8:04 0

8:05 0.98

Simulation Experiment

To compare the results of Monte Carlo simulation and a first-order approximation, we will
estimate the queueing delay for 150 airport-days of flight departures. The following airports
are used: ORD, JFK, LGA, EWR, ATL, PHL, BOS, and SFO. The days are chosen uniformly
from months ranging from October 1st, 2010 to December 31st, 2011.

Wed also like to compare the effects of different cancellation model specifications on the
final delay estimates. Thus, we will be calculating the cancellation probabilities for each
flight from six different cancellation specifications. The specifications are shown below in
Table 4.9, where an X indicates the variable is included in the specification shown.

Each model is successively built from the previous one by adding more and more variables.
The first model is a very nave specification, using a constant cancellation probability for each
flight. The first model uses variables for time of departure and flight distance, with no flight-
specific variables used. Model 5 is used as a proxy for our perfect information case, since
it includes some variables can only be known after the day-of-operation. Thus, this model
represents the theoretical limit for being able to predict cancellations using a binary logit
model specification given the information we are observing. In practice, however, predictions
cannot be made on these variables, so a model specification such as Model 2 or Model 3 would
more likely be used. Model 4 could also be used for prediction assuming specific capacity
scenarios that can be inferred from historical data and the presence (or lack) of GDPs.

We use the average delay for each flight across all 150 airport-days, without considering
cancellations, as a baseline. The delays due to cancellations were calculated using the prob-
abilities predicted from each cancellation model and then were compared with the baseline
delay in terms of how much the baseline delay was reduced. The reduction in delay reflects
the changes to the flight schedule that are captured in our cancellation model and predicted
in the form of cancellation probabilities.

The baseline delay was 9 minutes / flight for our entire sample. The delay reduction
estimates range from 0.74 minutes / flight, or 8.02% of the baseline delay, to 2.11 minutes
/ flight, or 22.87% of baseline delay. A summary of the results for both queuing algorithms
and all cancellation model specifications is shown below in Table 4.10.
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Table 4.9: Cancellation Model Specifications for Delay Analysis

Cancellation Model Specifications

Explanatory
Variables

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

Constant X X X X X X

Time X X X X X

Distance X X X X X

Hub Origin X X X X

Hub Destination X X X X

Airline Effects X X X X

Number of Seats X X X

Load Factor X X X

Fare X X X

Frequency X X X

Queueing Delay X X

GDP X X

Weather X X

As the cancellation model specification becomes more sophisticated, the percentage re-
duction in delay increases. The largest jump between model specifications is between Model
3 and Model 4, with an increase in delay reduction of over 8 percentage points. The only
variables different between these two models are the queueing delay at the origin and des-
tination and the presence of a GDP. Model 5, which incorporates weather at the origin
and destination, only increases the delay reduction by approximately 4 percentage points.
Although the weather variables have large and significant coefficient estimates in the logit
model, their incremental impact on predicting delay reductions due to cancellations is not
very large compared to the marginal impact of the queueing delays and GDPs. Queueing
delays are a function of the realized capacity, which itself a function of the weather and op-
erating conditions. These results indicate that using queueing delay in our model captures
a very large portion of these effects.

The most nave models can capture around a third of the delay reduction that is found
from using the most sophisticated models. The marginal impacts of adding fixed effects for
time, distance, day of week, airline, and hubs as well as flight characteristics are relatively
small compared to the incremental effect of accounting for operating conditions through the
use of queueing delay variables.

The other important result from this analysis is the small difference between the esti-
mates for each model using the first-order approximation, as compared to the Monte Carlo
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Table 4.10: Delay Reduction Comparison

Delay reduction due to cancellations
First-Order

Approx.
Monte Carlo

Baseline delay (no cancellations) =
9 min. / flight

Min /
flight

% of
delay

Min /
flight

% of
delay

Model 0: Constant -0.77 8.33% -0.74 8.02%

Model 1: Time, Distance, Day of week -0.77 8.30% -0.74 8.00%

Model 2: Model 1 + Hubs, Airlines -0.86 9.30% -0.83 8.94%

Model 3: Model 2 + Fare, LF, Seats, Freq. -0.95 10.25% -0.91 9.85%

Model 4: Model 3 + Queueing Delay, GDP -1.72 18.59% -1.67 18.03%

Model 5: Model 4 + Weather -2.11 22.87% -2.05 22.24%

Figure 4.5: Empirical CDF of Delay Reduction

simulation estimates. In general, the predicted delay reduction resulting from cancellations
estimated from the first-order approximation is about 3% more than the prediction based
on the Monte Carlo simulation. The magnitudes of delay reduction that come from improv-
ing the model specification are much larger than the magnitude of the differences between
the two techniques. Thus, we conclude that the first-order approximation is sufficient for
predicting the delay results using the estimates from our cancellation models.

As a further exploration of the differences between the model results, consider the empir-
ical CDF of the daily percentage delay reduction, across all 150 airport days, for each model
specification using the first-order approximation method, shown below in Figure 4.5.

There are a few interesting results from this plot. First, the difference in the percentiles
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for each model is relatively small up until the 80th percentile. The primary difference between
the mean values reported in Table 4.10 result from the difference in the size of the upper
tails for each model. To illustrate the difference between the curves, consider the difference
in delay reduction for the 70th percentile for each model. From the figure, this looks to be
no more than 2 or 3 percentage points. Looking at the 90th percentile, however, we can
see a much larger difference of at least 20 percentage points between Model 1 and Model 5.
Thus, the primary driver behind the differences in the mean delay reduction in Table 4.10
are the small number of days with a large number of cancellations, and thus, a large delay
reduction. From investigating the specific data points in this range, the days in the upper
tails are typically associated with winter and airports in the northeast, such as LGA, EWR,
JFK, PHL, and BOS.

Second, the weather, queueing delay, and GDP variables capture days with very large
delay reductions that are not found in the other models. For purposes of predicting can-
cellations and their effect on delay reduction for days that do not have many cancellations,
the difference between the model specifications becomes less important. Using a completely
nave model will produce a similar delay reduction for most days as the most sophisticated
model. Third, notice the variation in skewness between the different models. The most nave
models are the most symmetric, and the most sophisticated models are more skewed to the
right. For airport-days below the median, Model 5 has a much smaller delay reduction than
the other models. This makes sense because the more sophisticated models are better able
to distinguish between days with many cancellations and days with fewer cancellations since
we are using more information about the operating conditions on any particular day Model
5 (and 4 as well) better captures the tendency of airlines to cancel flights in circumstances
where the delay impact of the cancellations is large.

The median value of delay reduction is stable across all model specifications, having a
value of approximately 6-7%. The median value is much lower than the mean value for each
model, as a result of the long tails of the delay reduction distributions.
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Chapter 5

SFO Case Study

In this chapter, we present an application of our cancellation models in a case study at the San
Francisco International Airport (SFO). We will use the cancellation models presented in this
dissertation to predict flight cancellations that are caused by changes in operating conditions
at the airport. Specifically, we will be looking at changes in capacity, which are manifested
in terms of changes in queueing delay. The results presented here are applicable for any
changes in capacity or demand and can be used to predict the change in cancellations under
a number of different operating conditions. Lastly, we present an analytical explanation of
the queueing delay limit found in the case study.

5.1 Background

SFO operates four runways, arranged in two crossing sets of two parallel runways (see Figure
5.1 below). Under typical operating conditions, one pair of runways (1L & 1R) is used for de-
partures and the other pair (28L and 28R) is used for arrivals. When weather conditions are
favorable, simultaneous departures and arrivals are permitted. However, when weather con-
ditions deteriorate, simultaneous departures and arrivals are not allowed, effectively cutting
the airports operational capacity in half.

Two of the runways, 1L/19R and 1R/19L, are scheduled to be closed during the summer
of 2014 due to construction. All operations will take place on the remaining two runways for
the duration of the construction period. Thus, delays are expected to rise during this time.
To add to the congestion that is likely to result from the reduction in capacity, airlines have
planned flight schedules for summer 2014 with 5% more demand on average than previous
summers. The new flight schedule added to an already capacity-constrained airport will
result in even higher delays. We expect, however, that the high delays will result in an
increase in flight cancellations. The goal of this analysis is to determine to what extent the
increase in demand will affect the number of flight cancellations during the construction time
period during summer 2014 at SFO.
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Figure 5.1: SFO Runway Layout

5.2 FAA Simulation

The FAA has modeled the effect of capacity restrictions and schedule increases through use
of their airport delay simulation tool, ACASAT. Two demand scenarios were used for the
analysis, one flight schedule from summer 2013 and a proposed schedule for summer 2014
with approximately 5% more flights. These demand scenarios were used along with 90 days
of capacity profiles, where the capacities were modified to account for the runway closures.
The resulting delay profiles were averaged together to get a representative profile for each
demand scenario for summer 2014. The delay profiles for arrivals and departures, generated
by the FAA, are shown below in Figure 5.2 and Figure 5.3.

As seen in Figure 5.2, the average arrival delays increase to 60 minutes by early afternoon
and reach just above 70 minutes in the late evening. The difference between the two curves
represents the increase in queueing delay caused by the increase in demand. Arrival delay
increases by around 15 minutes for most of the day due to the proposed schedule.
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Figure 5.2: SFO Arrival Queueing Delay

Figure 5.3: SFO Departure Queueing Delay
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Figure 5.4: Cancellation Model Structure

Shown in Figure 5.3, departure delays are not as high as the arrival delays, with a peak of
45 minutes in the late afternoon. The increase in departure delays due to the new schedule is
quite significant, however. The baseline schedule only generates between 15 and 20 minutes
of delay in the busy period between 1000 and 1700, but the new schedule will increase these
numbers by 20-25 minutes.

These delays seem to very high and are not representative of the numbers typically seen
for actual flight delays at SFO. These high delays are unlikely to be realized on the day-of-
operation, because airlines will likely respond to high delays with flight cancellations, which
effectively reduce the demand, and thus the queueing delay. To what extent the delays will
be reduced due to flight cancellations is not obvious, however. We will develop a model that
will allow us to predict flight cancellations as a function of queueing delay and apply the
results to the two demand scenarios shown above. We can predict how airlines will respond
given the increase in schedule, and thus, delay.

5.3 Cancellation Model

We will use a similar cancellation model specification as before, from Chapter 2. Since we
will be predicting cancellations for flights that have yet to be operated, we do not have access
to information such as weather and GDPs. Therefore, we will remove those variables from
our model, as shown in Figure 5-4, below. In our aggregate MNL model, we used queueing
delay that was a function of scheduled demand and realized capacity. In this case, we will
use queueing delay forecasts that were created using historical capacity profiles by the FAA
to predict the delay for the time period of interest. The arrival and departure queueing delay
forecasts shown in Figure 5.2 and Figure 5.3 will provide the values of queueing delay that
we will use in our cancellation model.

We are primarily interested in SFO and our queueing delay forecast is limited to that
airport, so we will develop a cancellation model only for flights into or out of SFO during
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our two-year time span (2010-2011). We estimate two different models, one for departures
and one for arrivals. The model will be the same structure as the model used in Chapter 2,
with the exception of the weather and GDP variables. The estimation results for the arrival
model are shown below in Table 5.1.

Table 5.1: SFO Arrival Cancellation Model Results

Variable
Esti-
mate

Std.
Err.

Variable
Esti-
mate

Std.
Err.

ASC(Cancel) -2.614 ** 0.593 DL (Delta) 0.085 0.528

Fare($100) 0.001 0.033 UA (United) 0.321 0.526

ArrTime(9:00-15:00) -0.115 ** 0.054 US (US Airways) -0.408 0.541

ArrTime(15:00-21:00) -0.016 0.053 AA (American) 0.958 0.526

ArrTime(21:00-3:00) -0.321 ** 0.082 CO (Continental) -0.334 0.539

Miles<500 0.453 ** 0.072 WN (Southwest) 0.458 0.53

Miles750-1000 -0.128 0.117 B6 (JetBlue) -0.23 0.543

Miles1000-1500 -0.009 0.113 F9 (Frontier) -0.245 0.609

Miles1500more 0.387 ** 0.089 FL (Air Tran) -1.987 ** 0.785

Num.Seats(100) -0.244 ** 0.093 AS (Alaska) -0.945 0.566

LoadFactor -2.902 ** 0.232 Regional Carrier 0.616 ** 0.101

FlightFrequency 0.049 ** 0.007 Arrival Delay (min) 0.033 ** 0.002

Sunday -0.467 ** 0.068
Arrival Delay
Squared (100s min2)

-0.012 ** 0.002

Monday -0.204 ** 0.061 ** Significant at 1% level

Tuesday 0.091 0.058 * Significant at 5% level

Thursday -0.191 ** 0.062

Friday -0.203 ** 0.062

Saturday -0.518 ** 0.074

Some of the coefficients are similar to those found in the model from Chapter 2, such
as number of seats, load factor, frequency, and day-of-week. Others show different trends,
such as the positive coefficient and significant for the longest flight distance category and
the negative sign for the latest arrival time category. The airline fixed effects are not very
large and generally not significant, in contrast to the strong inter-airline differences found in
the aggregate model. The regional carrier coefficient is positive and significant, indicating a
higher propensity of cancellations for regional carrier flights.

The queueing delay variable estimates are both significant. The negative sign of the
quadratic term indicates a decreasing effect on the cancellation utility as the queueing delay
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Figure 5.5: Cancellation Utility vs Arrival Delay

increases. This is consistent with what we have seen in the aggregate model from section
2. To illustrate this effect, consider a graph of cancellation utility versus arrival queueing
delay, shown below in Figure 5.5. In this graph we show two curves, one corresponding to
the results from the linear + quadratic model specification above and another corresponding
to just a linear specification. The graph illustrates the way the models are capturing any
non-linear effects of queueing delay.

The two curves tend to track each other very closely, indicating that the effect of the
quadratic term does not largely change the behavior of cancellation utility with respect to
queueing delay. The model fit, however, is greatly improved by using a linear + quadratic
specification, so we will use this as our final choice. The estimation results for the departure
model are shown below in Table 5.2.

We see similar coefficient estimates as the arrival model, such as a negative sign for the
latest departure time category and a large positive sign for the longest distance category.
The flight characteristic coefficients, day-of-week, airlines, and regional carrier are all similar
to those found in the arrival model. The delay coefficients are slightly larger in magnitude
than those in the arrival model, but follow the same trend with a positive linear term and a
negative quadratic term.

Similarly, a graphical depiction of the differences between the linear + quadratic spec-
ification and a linear specification is shown below, in Figure 5.6. We plot the utility vs
departure queueing delay for each of the two specifications. The graph illustrates the way
the models are capturing any non-linear effects of queueing delay.

The linear + quadratic model does not track the linear model as closely as the figure
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Table 5.2: SFO Departure Cancellation Model Results

Variable
Esti-
mate

Std.
Err.

Variable
Esti-
mate

Std.
Err.

ASC(Cancel) -1.759 ** 0.601 DL (Delta) -0.241 0.536

Fare($100) 0.093 ** 0.029 UA (United) -0.225 0.535

ArrTime(9:00-15:00) 0.136 ** 0.044 US (US Airways) -0.2 0.543

ArrTime(15:00-21:00) 0.114 * 0.049 AA (American) 0.724 0.534

ArrTime(21:00-3:00) -0.179 * 0.08 CO (Continental) -0.665 0.546

Miles<500 0.501 ** 0.074 WN (Southwest) 0.211 0.538

Miles750-1000 -0.277 * 0.134 B6 (JetBlue) -0.161 0.547

Miles1000-1500 0.144 0.116 F9 (Frontier) -0.112 0.61

Miles1500more 0.733 ** 0.09 FL (Air Tran) -0.294 0.592

Num.Seats(100) -0.544 ** 0.099 AS (Alaska) -0.485 0.557

LoadFactor -3.606 ** 0.227 Regional Carrier 0.671 ** 0.109

FlightFrequency 0.072 ** 0.007 Departure Delay (min) 0.056 ** 0.006

Sunday -0.433 ** 0.07
Departure Delay
Squared (100s min2)

-0.033 ** 0.009

Monday -0.084 0.062 ** Significant at 1% level

Tuesday 0.217 ** 0.059 * Significant at 5% level

Thursday -0.195 ** 0.064

Friday -0.167 ** 0.064

Saturday -0.529 ** 0.075

corresponding to the arrival delays. We see that the quadratic effect is much stronger in this
case, which eventually causes the cancellation utility for the linear + quadratic model to be
lower than that for a linear model once the queueing delay is higher than approximately 70
minutes. However, we do not see queueing delays for our prediction time period higher than
50 minutes (see Figure 5.3). The linear + quadratic specification has a much better model
fit, so we will use this as our final specification.

5.4 Prediction Results

We now use the estimation results to calculate cancellation probabilities for new flight sched-
ules and delay estimates for summer 2014. Airlines are proposing a 5% increase in the number
of flights next summer, when the capacity of the airport will be greatly reduced due to run-
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Figure 5.6: Cancellation Utility vs Arrival Delay

way closures. The FAA has shown that delays will be higher for the new schedule compared
to a baseline schedule from summer 2013. We will evaluate the impact the new delay values
will have on flight cancellations.

Since we are predicting cancellation probabilities on future flights, we do not know the
values of some of our explanatory variables, such as load factor or average fare. We are
limited to a flight schedule that contains the airline, origin, destination, and aircraft type.
We used our historical data to estimate these values based on similar flights in our dataset.
We calculated the average values for each explanatory variable over the summer months of
June, July, and August for the year 2011. The averages were calculated across airline, origin,
destination, and aircraft type. We then matched these values to the new flight schedule for
summer 2014 to be used in our cancellation prediction.

We use the two flight schedules and their respective delay profiles to predict cancellation
probabilities for each flight across the day. The cancellation probabilities are aggregated over
30 minute windows and plotted against the queueing delay for each flight operation, shown
below in Figure 5.7 and Figure 5.8.

As seen in Figure 5.7, the arrival cancellation probability profile for the new schedule
is similar to that of the baseline schedule. The delay increase due to the new schedule is
not very large, and thus the increase in cancellation probabilities is not larger either. An
increase in about 1% of flight cancellations during the busy period can be expected.

The results when considering departures, however, are quite different. From Figure 5.8,
the difference in delay profiles is quite large for the two schedules, and thus the cancellation
probability profiles are very different as well. The cancellation probability during the busy
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Figure 5.7: Arrival Queueing Delay and Cancellation Probability

Figure 5.8: Departure Queueing Delay and Cancellation Probability
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period in the middle of the day roughly doubles, from 5% to 10%. The percentage point
increase in cancellation probability is roughly the same magnitude as the increase in demand
for the same time period. A summary of the changes in demand and cancellation probabilities
for arrivals and departures is shown below in Table 5.3. An increase in flight cancellations of
0.8% can be expected for arrivals during the busy period, while the increase for departures
is 4%.

The new schedule has about 4% more flights during the peak period (1100-1800) for
both arrivals and departures. However, the increase in arrival cancellation probability is
much larger for departures (+4%) than arrivals (+0.8%). Therefore, we estimate that the
increase in scheduled flights, particularly for departures, will not be fully realized. Due to
the large increase in delay, flight cancellations will increase due to the increase in queueing
delay that will result from the reduction in capacity. The departure delay will increase to
the point where the number of cancelled departures increases by roughly the same amount
as the departure demand. It seems obvious that increasing a planned flight schedule in
a manner such that increased flight cancellation returns flight volume to its original level
benefits neither airlines nor passengers.

Table 5.3: SFO Cancellation Prediction Summary

Demand Avg. Cancellation Prob.

Baseline
New
Sched.

Diff. Baseline
New
Sched.

Diff.

Arr.
All Day (0000-2300) 636 675 +6.1% 2.4% 2.8% +0.5%

Peak Period (1100-1800) 283 295 +4.2% 3.3% 4.1% +0.8%

Dep.
All Day (0000-2300) 635 663 +4.4% 2.5% 3.9% +1.4%

Peak Period (1100-1800) 281 293 +4.3% 4.0% 8.0% +4.0%

5.5 Theretical Queueing Delay Limit

We will now analytically explore the feedback that occurs between queueing delay and flight
cancellations, as illustrated in the SFO case study. When predicting the effects of changes in
demand or capacity on queueing delay, one must consider the changes in demand that result
from cancellations that are induced by the higher queueing delays. In Chapter 2 we included
queueing delay as an explanatory variable in our cancellation model and showed that as
queueing delay for a particular flight increased, so did its probability of being cancelled.
Thus for exogenous increases in queueing delay, possibly due to changes in flight schedules
or capacity, we must consider the reduction in demand caused by the increase in flight
cancellations, and the subsequent decrease in queueing delay that accompanies it. The
predicted changes in queueing delay will not be fully realized when considering cancellations.
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We can imagine a case where the decrease in queueing delay due to cancellations is larger
even than the increase in predicted queueing delay. We can think of the cancellation feedback
as damping the effect of queueing delay, in some cases to the extent that increases in realized
queueing delay no longer occur.

For the case of changes in flight schedule, we can think of the feedback in terms of
changes in demand. Consider a case where a single flight is added to a flight schedule. The
queueing delay to all flights increases by some amount due to the more dense schedule. The
cancellation probabilities of all flights increase due to the queueing delay increase. If the
queueing delay effect is large enough, the number of expected cancellations could increase by
one or more, thus negating the effect of adding the flight to the schedule in the first place.

We can think about this mathematically by considering a cancellation utility function
with queueing delay entering linearly:

Ucancel = Vcancel + εcancel =
∑
j

βjxcancel,j + βqxq + εcancel (5.1)

where xq is the queueing delay for a given flight and βq is the coefficient representing
the marginal utility with respect to queueing delay. We will assume εcancel is distributed
iid extreme value, giving us the logit model and its closed-form solution for the choice
probabilities. The derivative of the flight cancellation probability, pi, for flight i, with respect
to the queueing delay is given by the following:

∂pi
∂xq

= βqpi (1− pi) (5.2)

This represents the change in cancellation probabilty for flight i caused by a one unit
increase in queueing delay. The derivative is a function of the queueing delay coefficient, βq,
as well as the cancellation probability of flight i itself, pi. For a set of N flights, the sum of
all these derivatives represents the change in number of expected cancellations due to a one
unit increase in queueing delay for all flights in the set:

N∑
i=1

∂pi
∂xq

=
N∑
i=1

βqpi (1− pi) (5.3)

Assuming each flight has a different realized change in queueing delay, ∆xq,i, we can
rewrite the above expression as follows:

N∑
i=1

∂pi
∂xq

∆xq,i =
N∑
i=1

βqpi (1− pi) ∆xq,i (5.4)

This expression represents the change in the number of cancelled flights that are caused
by changes in queueing delay to a set of N flights. This expression is not valid for large values
of ∆xq,i, but we will assume for now we are dealing with small changes in queueing delay. If
we consider the case mentioned earlier in this section, where a single flight is added to a flight
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Figure 5.9: CDF of Cancellation Probability for SFO Peak Departures

schedule, then the numerical evaluation of Equation 5.4 represents the increase in the number
of flight cancellations due to the one additional flight in the schedule. If the number of new
cancellations is larger than 1, then the average realized demand will remain unchanged, even
though the schedule has an additional flight. The original queueing delay for the set of
flights will remain unchanged as well, since it is a function of the realized demand. For this
situation, the queueing delay itself has a maximum limit. Any changes in flight schedule
will not affect the realized queueing delay since cancellations will rise proportionally to the
increase in demand.

Consider the set of departures at SFO prior to changes in schedule and demand. From
table 5.3, we will focus on the peak period, which was shown to be saturated with queueing
delay to the point where additional flights will increase the expected number of cancellations
more than the increase in realized demand. We will illustrate this using the equations above.
Consider the distribution of cancellation probabilities for the departure flights during the
peak period under the new schedule, shown below in Figure 5.9.

The average cancellation probability is 0.049 with a standard deviation of 0.048. The
cancellation probability is much higher than the baseline case because of the large increase
in queueing delay due to the new schedule. The model specification includes a linear and a
quadratic term. Thus, we need to rederive the equations for the derivative of the cancellation
probability with respect to the queueing delay:

∂pi
∂xq,i

=
∂Vi
∂xq,i

pi (1− pi) (5.5)

Now Vi consists of the sum of a linear and a quadratic term for queueing delay, as shown
below:
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∂pi
∂xq,i

=
∂
(
βq1xq,i + βq2

x2q,i
100

)
∂xq,i

pi (1− pi) =
(
βq1 + 2βq2

xq,i
100

)
pi (1− pi) (5.6)

The derivative of cancellation probability for a paricular flight is now a function of the
queueing delay for that flight, xq,i. The two coefficients, βq1and βq2, are the estimates from
our model in Table 5.2. We have the cancellation probability for each flight, as well as the
queueing delay. The sum of each derivative times an incremental queueing delay change
represents the total change in cancellations:

N∑
i=1

∂pi
∂xq

∆xq,i =
N∑
i=1

(
βq1 + 2βq2

xq,i
100

)
pi (1− pi) ∆xq,i (5.7)

The incremental queueing delay increase caused by a change in the flight schedule, ∆xq,i,
needs to be estimated. Using linear interpolation from the queueing delay before and after
the schedule change results in an average of 2.65 minutes / flight of queueing delay increase.
To put this number in context, we can think of an idealized case where flights are being
served with headways of h minutes, which is larger than the scheduled time between flights,
resulting in a queue. An additional flight placed at the start of the queue will increase the
queueing delay of all flights in the queue by the length of the the headway, h. At SFO,
the departure runway capacity can range from 60 departures / hr to 30 departures / hr or
less during inclement weather. 30 departures / hr is an equivalent of 2 minute headways
between departures, so the number found from our estimates does not seem far off from what
we would expect. If we apply ∆xq,i = 2.65 to equation 5.7, we will calculate the expected
increase in cancellations due to an increase of one flight in the flight schedule. This sum
is equal to 1.74. Since this number is larger than 1, we can conclude that the theroetical
queueing delay limit does exist for the departure flights during the peak period.



80

Chapter 6

Conclusions

In this dissertation I have investigated the factors influencing flight cancellations, including
operational conditions, flight characteristics, weather, and airline-specific effects. Discrete
choice models were applied to a set of historical domestic flights over two years to determine
the preferences and behaviors of airlines with respect to flight cancellation decisions.

The cancellation behavioral analysis results indicate that, as expected, adverse weather is
a major contributor to flight cancellations. In addition, the resluts indicate that flight char-
acteristics are also important factors for determining cancellation likelihood. Particularly,
average load factor plays a large role in driving flight cancellation decisions. We found large
differences in the cancellation behavior across airlines, as measured through fixed effects
and airline-specific cancellation models. The trends in behavior are somewhat consistent for
the legacy carriers, but less so for the low cost carriers. We also developed a random effects
model to capture correlation between unobserved variables across multiple flight cancellation
decisions. Flight cancellation decisions were grouped into time windows of four hours and
treated the sequential decisions in the same vein as panel data for repeated choices for an
individual. A significant, albeit small, random effect term was found, which indicates that
the proclivity to cancel fluctuates from one four-hour period to the next. Latent class mod-
els were used to explore the heterogeneity of cancellation behavior with respect to adverse
weather. Two samples were used from the winter months and summer months for 2011. Two
classes of coefficients were estimated for each sample, with one class for each clearly indicat-
ing flights with adverse weather. The flight characteristics used in the models appeared to
be significant in both classes, thus indicating that flight characteristics are important factors
in determining flight cancellations, for flights with and without adverse weather effects.

The model fit for all of our cancellation models was evaluated by using sample enu-
meration to aggregate the predicted cancellations across airport-days. Evidence of under-
prediction and over-prediction were both seen, and the results vary across airports. We used
the assumption that the number of flight cancellations for a particular airport-day are in-
dependent events and follow the Poisson distribution to develop a formal statistical test for
the fit of our models. Through these statistical tests we did not find evidence that the more
detailed model specifications, (i.e. airline-specific models and the random effects model),
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resulted in a better model fit than the aggregate cancellation model. However, these models
are useful for distinguishing cancellation behavior across airlines and across time. A queueing
algorithm was used to evaluate the effect of cancellations on delay forecasts. The queueing
model results were compared to the queueing algorithm used by the FAA through their
ACASAT simulation and small differences were found in the overall delay estimates. Monte
Carlo simulation and first-order approximation were used for modeling the demand as a ran-
dom variable, as derived from the cancellation probabilities for each flight. We performed
a simulation experiment to compare the effects of different cancellation model specifications
and the two queueing algorithm techniques. The simulation results indicate that a nave
cancellation model can accurately predict a third of the overall delay reduction found from
a sophisticated cancellation model (8% vs 23%, respectively). Beyond a nave cancellation
model, the largest increase in delay prediction comes from adding the queueing variables to
the cancellation model sophistication (8 percentage point increase in delay reduction). The
results also show that the differences between the Monte Carlo technique and the first-order
approximation were very small compared to the differences in delay prediction caused by
changes in the cancellation model specification.

Finally, a case study at San Francisco International Airport was presented, along with
a theoretical analysis on the feedback between queueing delay and the cancellation model
results. In the summer of 2014, runway construction will result in reduced capacity at SFO
and airlines are proposing more aggressive schedules with approximately 5% more flights
than in 2013. A cancellation model with queueing delay as an explanatory variable was used
to predict the increase in cancellation that will be caused by the increase in flight schedules.
We see evidence that the departures will be affected more than arrivals, with an increase in
departure cancellations almost one-to-one with the increase in demand. The benefits of an
increased schedule are likely to not be realized by airlines or air travelers, given the large
number of cancellations that we anticipate based on our model. This topic was further
explored through an analysis of the feedback of queueing delay on cancellation probability.
Queueing delay increases due to increases in demand can trigger such a large increase in
flight cancellation probability that the changes in demand and the associated queueing delay
increases will not be realized. Thus when considering the queueing delay effects of changes
in flight schedules or airport infrastructure, one must consider the impact of cancellations.
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