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Abstract8

Rapidly growing numerical instabilities routinely occur in multidimensional
particle-in-cell computer simulations of plasma-based particle accelerators,
astrophysical phenomena, and relativistic charged particle beams. Reduc-
ing instability growth to acceptable levels has necessitated higher resolution
grids, high-order field solvers, current filtering, etc. except for certain ratios
of the time step to the axial cell size, for which numerical growth rates and
saturation levels are reduced substantially. This paper derives and solves the
cold beam dispersion relation for numerical instabilities in multidimensional,
relativistic, electromagnetic particle-in-cell programs employing either the
standard or the Cole-Karkkainnen finite difference field solver on a staggered
mesh and the common Esirkepov current-gathering algorithm. Good overall
agreement is achieved with previously reported results of the WARP code.
In particular, the existence of select time steps for which instabilities are
minimized is explained. Additionally, an alternative field interpolation algo-
rithm is proposed for which instabilities are almost completely eliminated for
a particular time step in ultra-relativistic simulations.
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1. Introduction11

In a laser plasma accelerator (LPA), a laser pulse is propagated through12

a plasma, creating a wake of very strong electric fields of alternating polarity13

[1]. An electron beam injected with the appropriate phase can thus be accel-14

erated to high energy in a distance much shorter than those for conventional15

acceleration techniques [2]. Simulation of a LPA stage from first principles16

using the Particle-In-Cell (PIC) technique in the laboratory frame is very de-17

manding computationally, as the evolution of micron-scale laser oscillations18

needs to be followed over millions of time steps as the laser pulse propagates19

through a meter-long plasma for a 10 GeV stage [3].20

A method recently was demonstrated to speed up full PIC simulations21

of a certain class of relativistic interactions by performing the calculation22

in a Lorentz boosted frame [4], taking advantage of the properties of space-23

time contraction and dilation in special relativity to render space and time24

scales (which are separated by orders of magnitude in the laboratory frame)25

comparable in a Lorentz boosted frame, resulting in far fewer computer op-26

erations. In the laboratory frame the laser pulse is much shorter than the27

wake, whose wavelength is also much shorter than the acceleration distance28

(λlaser � λwake � λacceleration). In a Lorentz boosted frame co-propagating29

with the laser at a speed near the speed of light, the laser is Lorentz ex-30

panded (by a factor (1 + vf ) γf , where γf =
(
1− v2

f

)−1/2
, vf is the velocity31

of the frame, normalized to the speed of light). The plasma (now moving32

opposite to the incoming laser at velocity −vf ) is Lorentz contracted by a33

factor γf . In a boosted frame moving with the wake (i.e., γf ≈ γwake),34

the laser wavelength, the wake, and the acceleration length are comparable35

(λlaser < λwake ≈ λacceleration), leading to far fewer time steps by a factor36

(1 + vf )
2 γ2

f , hence far fewer computer operations [4, 5].37

A violent numerical instability, associated with the plasma back-streaming38

at relativistic velocity −vf in the computational frame, limited early at-39

tempts to apply this method to speedups ranging between two and three40

orders of magnitude [3, 6, 7]. Control of the instability was obtained via41

the combination of: (i) the use of a tunable electromagnetic solver and an42

efficient wide-band digital filtering method [8], (ii) observation of the ben-43

efits of hyperbolic rotation of space-time on the laser spectrum in boosted44

frame simulations [9], and (iii) identification of a special time step at which45

the growth rate of the instability is greatly reduced [8]. The combination of46

these methods enabled the demonstration of speedups of over a million times47
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[9]. The instability is described in some detail in [8].48

In this paper, the analysis first reported in [10], which introduced the49

concept of numerical Cherenkov instabilities, is generalized and extended50

to two dimensions. (Extension to three dimensions follows readily from the51

analysis presented below, and the same conclusions apply.) The new analysis52

recovers the salient features of the instability described in [8], including the53

existence of the special time step. Growth rates are calculated for various54

cases of ultra-relativistic drifting plasmas and shown to match closely the55

growth rates obtained using the PIC code WARP [11]. Additionally, an56

alternative field interpolation algorithm is proposed for which instabilities57

are almost completely eliminated for a particular time step. A similar type58

of instability was reported in the calculation of astrophysical shocks [12], and59

the conclusions from this paper should apply readily.60

A general derivation of the numerical instability dispersion relation for61

multidimensional PIC codes employing the Esirkepov algorithm is outlined62

in Sec. 2. The dispersion relation is specialized in Sec. 3 to a cold, relativis-63

tic beam in two dimensions for comparison with WARP simulations. Sec.64

4 provides a simple yet reasonably accurate analytical expression for max-65

imum numerical instability growth rates and, thereby, identifies time steps66

for which growth rates are significantly reduced, or even eliminated under67

some conditions. Then, the dispersion relation is solved numerically for a68

range of parameters and compared with WARP results in Sec. 5. (Most69

of these analytical and numerical calculations were performed using Math-70

ematica [13]). Finally, Sec. 6 presents WARP simulations, demonstrating71

the near absence of numerical instabilities for an appropriately chosen field72

interpolation scheme and time step in two and three dimensions.73

2. Numerical instability dispersion relation74

The derivation here follows closely that of the general numerical insta-75

bility dispersion relation in [14], and only those steps that differ will be76

presented . To start, the present derivation is based on the electromagnetic77

fields themselves rather than on the potentials.78

∂E

∂t
= ∇×B− J, (1)

79

∂B

∂t
= −∇× E. (2)
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Units are chosen such that, without loss of generality, the speed of light and80

other constants are unity. If the differential equations are replaced by cor-81

responding finite difference equations, and the difference equations Fourier-82

transformed in space and time, we obtain expressions of the form,83

[ω]E = −[k]×B + iJ, (3)

[ω]B = [k]× E. (4)

Brackets around quantities designate their finite difference representations.84

The Esirkepov algorithm determines not the current itself but its first85

derivative; see Eq. (19) of [15]. The Fourier transform of this equation can86

be written as,87 
Wx

Wy

Wz

 = −i∆t


[kx]Jx
[ky]Jy
[kz]Jz

 , (5)

with J the current contribution of an individual particle, and ∆t the simu-88

lation time step. W is further defined in terms of the current interpolation89

function SJ by Eq. (23) of [15], which when Fourier-transformed becomes,90


Wx

Wy

Wz

 = −2iSJ


sin
(
k′xvx

∆t
2

) [
cos
(
k′yvy

∆t
2

)
cos
(
k′zvz

∆t
2

)
− 1

3
sin
(
k′yvy

∆t
2

)
sin
(
k′zvz

∆t
2

)]
sin
(
k′yvy

∆t
2

) [
cos
(
k′zvz

∆t
2

)
cos
(
k′xvx

∆t
2

)
− 1

3
sin
(
k′zvz

∆t
2

)
sin
(
k′xvx

∆t
2

)]
sin
(
k′zvz

∆t
2

) [
cos
(
k′xxy

∆t
2

)
cos
(
k′yvy

∆t
2

)
− 1

3
sin
(
k′xvx

∆t
2

)
sin
(
k′yvy

∆t
2

)]
 ,

(6)
with v the particle velocity. Combining Eqs. (5) and (6) provides the desired91

expression for the particle current,92


Jx
Jy
Jz

 = SJ
2

∆t


sin
(
k′xvx

∆t
2

) [
cos
(
k′yvy

∆t
2

)
cos
(
k′zvz

∆t
2

)
− 1

3
sin
(
k′yvy

∆t
2

)
sin
(
k′zvz

∆t
2

)]
/[kx]

sin
(
k′yvy

∆t
2

) [
cos
(
k′zvz

∆t
2

)
cos
(
k′xvx

∆t
2

)
− 1

3
sin
(
k′zvz

∆t
2

)
sin
(
k′xvx

∆t
2

)]
/[ky]

sin
(
k′zvz

∆t
2

) [
cos
(
k′xxy

∆t
2

)
cos
(
k′yvy

∆t
2

)
− 1

3
sin
(
k′xvx

∆t
2

)
sin
(
k′yvy

∆t
2

)]
/[kz]

 .

(7)
This expression must, of course, be integrated over the linearized particle93

distribution function to obtain the total current. Note that Eq. (7) reduces94

to J = v in the limit of vanishing time step and cell size, as it should.95
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Modeling relativistic simulations requires replacing dv/dt by dp/dt, with96

p = γv the relativistic momentum and γ the relativistic energy, in Eq. (16)97

of [14]. This change flows through to Eqs. (17) and (18), in which98

∂

∂p
=

1

γ

∂

∂v
− p

γ3
p · ∂

∂v
(8)

replaces ∂/∂v. The force in Eqs. (17) - (19) of [14] applied to the particles99

is E + v×B, with the components of E and B multiplied by the Fourier100

transforms of their respective interpolations functions:101 
Fx
Fy
Fz

 =


SExEx + vyS

BzBz − vzSByBy

SEyEy + vzS
BxBx − vxSBzBz

SEzEz + vxS
ByBy − vySBxBx

 . (9)

In contrast to [14], the Fourier-transformed field interpolation functions are102

not assumed to be identical.103

Replacing appropriate parts of Eqs. (18) and (23) of [14] by the corre-104

sponding terms from Eqs. (7) - (9) yields105

J =
∑
m

ˆ
F · ∂

∂p
J csc

[
(ω − k′ · v)

∆t

2

]
∆t

2
f d3v (10)

summed over spatial aliases mz and mx, as defined in [14]. The determinant106

of the 6x6 matrix comprised of Eqs. (3), (4), and (10) is the desired dispersion107

relation. A striking difference between this and the general dispersion relation108

in [14] is that the present dispersion relation contains trigonometric functions109

involving particle velocities.110

3. WARP 2-d dispersion relation111

For comparison with WARP two-dimensional, cold beam simulation re-112

sults [8], we reduce Eqs. (3) and (4) to a 3x3 system in {Ez, Ex, By} and113

perform the integral in Eq(10) for a cold beam propagating at velocity v in114

the z -direction. The resulting matrix equation is115  ξz,z + [ω] ξz,x ξz,y + [kx]
0 ξx,x + [ω] ξx,y − [kz]

D∗x[kx] −D∗z [kz] [ω]

 Ez
Ex
By

 = 0. (11)
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D∗z andD∗x are introduced at this point to accommodate the Cole-Karkkainnen116

field solver, sometimes used in WARP; it is discussed near the end of this117

section. The quantities ξ are employed purely for notational simplicity.118

ξz,z ≡ −nγ−2
∑
m

SJSEz csc2

[
(ω − k′zv)

∆t

2

]
∆t

2
sin

(
ω

∆t

2

)
k′z/[kz], (12)

119

ξz,x ≡ −n
∑
m

SJSEx csc

[
(ω − k′zv)

∆t

2

]
cot

[
(ω − k′zv)

∆t

2

]
∆t

2
sin

(
k′zv

∆t

2

)
k′x/[kz],

(13)120

ξz,y ≡ nv
∑
m

SJSBy csc

[
(ω − k′zv)

∆t

2

]
cot

[
(ω − k′zv)

∆t

2

]
∆t

2
sin

(
k′zv

∆t

2

)
k′x/[kz],

(14)121

ξx,x ≡ −n
∑
m

SJSEx csc

[
(ω − k′zv)

∆t

2

]
∆t

2
cos

(
k′zv

∆t

2

)
k′x/[kx], (15)

122

ξx,y ≡ nv
∑
m

SJSBy csc

[
(ω − k′zv)

∆t

2

]
∆t

2
cos

(
k′zv

∆t

2

)
k′x/[kx]. (16)

summed over spatial aliases, k′z = kz +mz 2π/∆z and k′x = kx +mx 2π/∆x,123

with mz and mx integers. The resonances, ω − k′zv, introduce an infinity of124

spurious beam modes with effective charge densities proportional to SJSEz ,125

etc. n is the beam charge density divided by γ, which can be normalized to126

unity. However, explicitly retaining it in the dispersion relation sometimes127

is informative.128

WARP employs the usual staggered spatial mesh and E-B leapfrog in129

time [16]. Hence,130

[ω] = sin

(
ω

∆t

2

)
/

(
∆t

2

)
, (17)

131

[kz] = sin

(
kz

∆z

2

)
/

(
∆z

2

)
, (18)

132

[kx] = sin

(
kx

∆x

2

)
/

(
∆x

2

)
. (19)

Also as usual, WARP employs splines for current and field interpolation. The133

Fourier transform of the current interpolation function is134

SJ =

[
sin

(
k′z

∆z

2

)
/

(
k′z

∆z

2

)]`z+1 [
sin

(
k′x

∆x

2

)
/

(
k′x

∆x

2

)]`x+1

, (20)
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`z and `x are the orders of the current interpolation splines in the z - and135

x -directions. So, for instance, an exponent of 2 in Eq. (20) corresponds to136

linear interpolation, and of 4 to cubic interpolation. Analogous definitions137

apply to the three field interpolation functions, but the spline orders need138

not be the same. WARP typically employs field interpolation splines like139

those of the currents but with the Ez splines one order lower in z, the Ex140

splines one order lower in x, and the By splines one order lower in both. (This141

particular choice of spline orders is derivable by Galerkin’s method [17] and142

has superior energy conservation properties [18, 19, 20]. It will be referred143

to subsequently as “Galerkin field interpolation”.)144

SEz =

[
sin

(
k′z

∆z

2

)
/

(
k′z

∆z

2

)]`z [
sin

(
k′x

∆x

2

)
/

(
k′x

∆x

2

)]`x+1

(−1)mz ,

(21)145

SEx =

[
sin

(
k′z

∆z

2

)
/

(
k′z

∆z

2

)]`z+1 [
sin

(
k′x

∆x

2

)
/

(
k′x

∆x

2

)]`x
(−1)mx ,

(22)146

SBy = cos

(
ω

∆t

2

)[
sin

(
k′z

∆z

2

)
/

(
k′z

∆z

2

)]`z [
sin

(
k′x

∆x

2

)
/

(
k′x

∆x

2

)]`x
(−1)mz+mx .

(23)
The alias phase factors appearing at the ends of Eqs. (21) - (23) arise from147

the half-cell offsets from the current interpolation mesh of the corresponding148

fields. Averaging By in time before applying it to particles causes the factor149

cos
(
ω∆t

2

)
in Eq.(23).150

Another credible choice of field interpolation functions is splines of the151

same order as those for the current interpolation function, in which case152

Eqs. (21) - (23) contain only powers of `x + 1 and `z + 1. The powers of153

-1 are unchanged. This seemingly minor change has a significant impact on154

numerical stability for some choices of ∆t. (It will be referred to subsequently155

as “uniform field interpolation”.)156

The Cole-Karkkainnen field solver [21, 22, 23], mentioned above, increases157

the Courant limit on the simulation time step and in some cases reduces158

numerical dispersion in the electromagnetic fields. It is discussed in some159

detail in Sec. 2.2 of [8]. For our purposes,160

D∗z = 1− 4βx sin2

(
kx

∆x

2

)
, (24)
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161

D∗x = 1− 4βz sin2

(
kz

∆z

2

)
. (25)

For ∆x = ∆z, the choice βx = βz = 1/8 relaxes the Courant limit to ∆t <162

∆z, while minimizing numerical dispersion in the vacuum fields along major163

axes.164

Finally, we note that mx alias terms in the dispersion relation can be165

summed explicitly by means of Eqs. (1.421.3) and (1.422.3) of [24] or deriva-166

tives thereof, once choices have been made for the interpolation functions.167

For example, the k′x-dependent terms in ξz,z sum to168

∑
mx

[
sin

(
k′x

∆x

2

)
/

(
k′x

∆x

2

)]4

=

[
2 cos

(
kx

∆x

2

)
+ 1

]
/3 (26)

for `x = 1. Note that the mx = 0 term alone has the value (2/π)4 for kx169

near its maximum value, π/∆x. In contrast, the sum has the value 1/3 there.170

(Most of the difference is due to the mx = −1 alias, which is typical.) Since,171

as we shall see, peak growth rates typically scale as the cube root of such172

sums, the difference in predicted peak growth rates is of order 20%.173

4. Approximate peak growth rates174

ξz,z, defined in Eq. (12), scales as γ−2 (with n held constant) and can175

be ignored for highly relativistic calculations, on which this paper focuses.176

Likewise, 1− v ' γ−2/2, and can be set to zero. Additionally,177

ξz,xξx,y − ξz,yξz,y = 0 (27)

is satisfied for individual modes and is satisfied approximately for cross-178

products between modes. With these assumptions the dispersion relation179

(the determinant of Eq. (11)) has the form180

C0 + n
∑
mz

C1 csc

[
(ω − k′z)

∆t

2

]
+ n

∑
mz

C2 csc2

[
(ω − k′z)

∆t

2

]
= 0. (28)

with C0 the vacuum dispersion function,181

C0 = [ω]2 −D∗z [kx]
2 −D∗x [kz]

2 , (29)
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and182

C1 = −C0

[ω]

∆t

2

∑
mx

k′x
[kx]

SJSEx cos

(
k′z

∆t

2

)
−D∗z

[kz]
2

[kx]

∆t

2

∑
mx

k′xS
J

(
SEx

[ω]
− SBy

[kz]

)
cos

(
k′z

∆t

2

)
,

(30)183

C2 = D∗x[kx]
∆t

2

∑
mx

k′xS
J

(
SEx

[ω]
− SBy

[kz]

)
cos

[
(ω − k′z)

∆t

2

]
sin

(
k′z

∆t

2

)
.

(31)
Eq.(28) reduces, of course, to C0 + n = 0 in the limit of vanishing time step184

and cell size. All the beam modes in Eq.(28) are numerical artifacts, even185

the mz = 0 mode.186

Coupling between these beam numerical modes and electromagnetic modes187

(the roots of C0 = 0) gives rise to what has become known as the numerical188

Cherenkov instability [10, 25], which can be quite virulent. Fig. 1 is a typi-189

cal normal mode diagram, showing the two electromagnetic modes and beam190

aliases mz = [-3, 3] for ∆t = 0.7∆z, βx = βz = 0, and kx = 1/2
π

∆x
. (Unless191

otherwise noted, other parameters for this and other figures are n = 1 and192

∆x = ∆z = 0.3868.) Fig. 2 depicts the locations in k -space of normal mode193

intersections, such as those in Fig. 1, as kx is varied.194

Comparing Fig. 2 with corresponding WARP results in Fig. 3 indicates195

that the strongest instabilities lie along the mz= -1 and 0 resonance curves at196

larger kx. (The WARP simulations were performed on a 128×128 square grid197

with periodic boundary conditions and a uniformly distributed plasma mov-198

ing axially at an energy of γ = 130, seeded with a small random transverse199

velocity. Plots similar to Fig. 3 appear in [26, 27].) Also visible, although200

just barely, are much more slowly growing instabilities along the mz= +1201

and mz= -2 resonance curves. We now proceed to estimate these instability202

growth rates.203

Resonance curves, such as those in Fig. 2, are given by Eq. (29) with ω204

replaced by k′z , solved for kx as a function of k′z. (Recall that sin2
(
k′z

∆z
2

)
=205

sin2
(
kz

∆z
2

)
.)206

krx =
2

∆x
arcsin


√√√√√(∆t

∆z

)2
sin2

(
k′z

∆t
2

)
−
(

∆x
∆z

)2
sin2

(
k′z

∆z
2

)
1− 4 sin2

(
k′z

∆z
2

) (
βx + βz

(
∆x
∆z

)2
)
 (32)

To obtain an estimate of the numerical instability growth rate along a res-207

onance curve, we expand C0 and the cosecants in Eq. (28) to first order in208

9



(ω − k′z), set C1 = 0, and set ω = k′z in C2. The resulting cubic equation has209

one unstable root,210

Im (ω) '
√

3

2
3

√√√√n

2
D∗x[kx]

∑
mx

k′xS
J

∣∣∣∣∣ ∆t
2
SEx

sin
(
k′z

∆t
2

) − ∆z
2
SBy

sin
(
k′z

∆z
2

)∣∣∣∣∣ csc

(
k′z

∆t

2

)
,

(33)
evaluated at kx = krx. Although it may appear that Eq. (33) becomes singular211

when k′z approaches zero, krx approaches zero there also, as k′z
2. Consequently,212

the growth rate vanishes in that limit.213

For completeness, we note that instability also occurs off-resonance when214

C0C2 > C 2
1 /4, evaluated at ω ' k′z and arbitrary kx. The resulting growth215

rate is216

Im (ω) '
√
C 2

1 /4− C0C2

C0

. (34)

Although off-resonance growth is weaker than on-resonance, it often occurs at217

smaller kz, where it may be more difficult to filter. (The residual instabilities218

after digital filtering discussed in the fourth paragraph of Sec. 5 are, for219

instance, of this sort.)220

Fig. 4 displays maximum instability growth rates for the Galerkin field221

interpolation algorithm as ∆t/∆z varies over its range of allowed values for222

βz = βx (collectively, β) = 0 and 1/8. (Intermediate values of β produce curves223

intermediate in shape.) The pronounced dip in both curves, at ∆t/∆z≈ 0.66224

for β = 0 and 0.69 for β = 1/8, previously has been observed in simulations225

[8]. It occurs because Im (ω) vanishes for some value of kz, which occurs226

when227

∆t

∆z
sin2

(
k′z

∆z

2

)
= k′z

∆z

4
sin (k′z∆t) . (35)

Eq. (35) has solutions for the mz= -1 and 0 resonances only over a narrow228

range of time steps,
√

2/2 ≥ ∆t/∆z & 0.65. Precisely where the minimum229

falls within this range depends on algorithmic details.230

Similarly, Fig. 5 displays maximum instability growth rates for the uni-231

form field interpolation algorithm as ∆t/∆z varies over its range of allowed232

values for β = 0 and 1/8. For all values of β, the growth rate vanishes at233

∆t/∆z = 1/2. Why this should be so is evident from234

∆t

∆z
sin

(
k′z

∆z

2

)
=

1

2
sin (k′z∆t) , (36)

10



which differs from its Galerkin counterpart, Eq. (35), by a factor of sin
(
k′z

∆z
2

)
/
(
k′z

∆z
2

)
.235

Eq. (36) is satisfied for all k′z at ∆t/∆z = 1/2, and for no values (apart from236

0) of k′z otherwise.237

Eq. (33) also provides a simple means for estimating the effect of current238

filtering on numerical Cherenkov instabilities, because the Fourier transform239

of the digital filtering function appears simply as a factor multiplying n.240

Given the substantial growth rates of this instability, filtering must reduce241

currents in regions of k -space where the instability is strong by some three242

orders of magnitude. Of course, any physical phenomena occurring in those243

same regions also will be suppressed. Using higher order interpolation (i.e.,244

larger `’s in Eqs. (20) - (23)) also reduces numerical instability growth,245

especially for higher order aliases. However, for typical simulation parameters246

it reduces the mz= -1 and 0 instability growth rates by comparable, modest247

factors. Employing cubic rather than linear splines, for instance, would be248

expected to reduce maximum growth rates by of order (2/π)
4/3. On this249

basis current digital filtering usually is more cost effective than higher order250

interpolation for suppressing numerical Cherenkov instabilities.251

5. Numerical solutions252

Reliably finding the roots of Eq. (11) can be accomplished as follows.253

Given how strongly even linear interpolation suppresses all but the first few254

aliases, we safely can truncate the infinite series in mz to a range of, say, [-3,255

3]. (Indeed, the smaller range [-1, 0] works fairly well in most cases.) Then, if256

the aliases are well separated in ω−k space (as they are in, for instance, Fig.257

1), the growth rates for any particular alias can be evaluated with reasonable258

accuracy by expanding the dispersion relation as a fourth-order power series259

in (ω − k′zv) for the k′z in question and calculating all roots with a polynomial260

root finder. On the other hand, if aliases are separated in frequency by only261

a few times the typical growth rates, the expansion converges slowly, and262

an iterative solution is required. The Mathematica [13] FindRoot routine263

was used for the results that follow in this section, with three real roots or264

one real root and one conjugate pair of roots found per alias. Evaluations265

were performed on a 65x65 array in k -space, consistent with the 128x128266

spacial grid used in WARP for comparable simulations. Obtaining results267

for a typical set of parameters required about 15 minutes on a 2.8 GHz, 2268

processor desktop computer.269
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Fig. 6 presents numerical growth rate predictions corresponding to the270

WARP results in Fig. 3. The mz= -1 alias dominates the growth spectrum271

with a maximum growth rate of 0.56 at short wavelengths in x. (The ap-272

proximate growth rate based on the analysis in the previous section is 0.48.)273

Also visible is the fast growing mz= 0 alias. The much weaker mz= -2 and274

+1 aliases are evident at smaller kz. As noted in the previous section, the275

mz= -1, 0, and +1 aliases all can be seen in Fig. 3, although the last of these276

aliases is faint, consistent with its relatively slow growth. Fig. 7 depicts grow277

rates measured in this WARP simulation (actually the average of one hun-278

dred such simulations). The agreement between Figs. 6 and 7 is very good,279

especially when one considers the difficulty in measuring smaller growth rates280

in simulations, where nonlinear mode coupling and thermal noise can be sig-281

nificant. Thus, the method used to determine automatically the growth rates282

in WARP works well for the largest growth rates, which are of most interest283

in any particular simulation, but not so well for the smallest growth rates.284

Maximum numerical growth rates observed in WARP for the Galerkin285

and uniform current interpolation algorithms with β=0 and 1/8 are com-286

pared with the predictions of linear theory in Figs. 8 and 9. Agreement287

between theory and simulation is very good. Qualitative agreement with the288

analytical estimates of the previous section is quite acceptable. The sudden289

rise of growth when ∆t/∆z nears unity for β = 1/8 comes from an instability290

of the field solver algorithm at the Nyquist limit and is mitigated by using291

one or more passes of bilinear filtering of the current density, as explained in292

Appendix A of [8] and shown below.293

Fig. 10 illustrates the effects of digital filtering and of higher order inter-294

polation, in this case ten passes of the bilinear filter (including two compen-295

sation steps) described in [8], cubic or linear interpolation in z with Galerkin296

field gathering, and β = 1/8. The digital filter has the effect of multiplying n297

in the dispersion relation by298

cos16

(
kz

∆z

2

)(
5− 4 cos2

(
kz

∆z

2

))2

cos16

(
kx

∆x

2

)(
5− 4 cos2

(
kx

∆x

2

))2

.

(37)
It effectively eliminates numerical instabilities for kz∆z/π & 0.2 or kx∆x/π &299

0.2. With linear interpolation the mz = 0 alias dominates the numerical300

instabilty growth rate except in the vicinity of ∆t/∆z ≈ 0.69, where the301

mz = +1 alias dominates. Growth rates are reduced by roughly a factor302

of four compared to those in Fig. 8. Cubic interpolation has negligible303
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effect on the mz = 0 alias but almost completely suppresses the mz = +1304

alias. The minimum growth rate, now at ∆t/∆z ≈ 0.70, drops by a further305

factor of three. (Measuring the WARP instability growth rates for Fig. 10306

was particularly challenging due to competition between the weak numerical307

instabilities, and thermal and nonlinear effects.)308

As a further comparison between linear theory, Fig. 11, and WARP re-309

sults, Fig.12 (also averaged over 100 simulations), we present growth rates310

for Galerkin current interpolation with ∆t
∆z

= 0.69, and β = 1/8. The dom-311

inant alias is mz = +1, occurring at the rather small axial wave numbers,312

1.5 < kz < 3.5, and at most kx values away from the kz-axis. Modestly to313

the right is the mz = −2 alias, occurring at 3 < kz < 4 for large values of kx.314

Generally, we expect the mz = +1 and -2 aliases to have comparable growth315

rates, just as the mz = 0 and -1 aliases typically do. Finally, the mz = −3316

alias is modestly above background on the far right. For all these modes,317

theory and simulation growth rates agree to within about 15%. However, a318

region of reduced growth rate in the band 5 < kz < 6 occurs only in Fig.319

12, although it can be produced in Fig. 11 by artificially removing the off-320

resonance mz = −1 contribution. This minor discrepancy is apparent only321

for parameters very near those listed in this paragraph.322

6. Application to the modeling of laser plasma acceleration323

As a verification that the theory that has been developed in this pa-324

per applies to the modeling of LPAs, series of two and three dimensional325

simulations of a 100 MeV class LPA stage were performed, focusing on the326

plasma wake formation, using the parameters given in table 1. The velocity327

of the wake in the plasma corresponds to γ ' 13.2, and the simulations were328

performed in a boosted frame of γf = 13.329

Reference simulations were run in two and three dimensions for condi-330

tions where no instability developed, and the final total field energy Wf0 was331

recorded as a reference value in each case. Runs then were conducted for332

the Yee (β = 0) and Cole-Karkkainnen (β = 1/8) solvers, with Galerkin and333

uniform field interpolations. The final energy Wf was recorded and divided334

by the reference energy Wf0. The ratio Wf/Wf0 is plotted versus time step335

from two dimensional simulations in Fig. 13 and from three dimensional336

simulations in Fig. 14, using linear current deposition and no smoothing of337

current and fields. Following the theoretical predictions, for the Galerkin338

interpolation scheme the instability is minimal around 4t/4z ≈ 0.65 when339
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β = 0 and around 4t/4z ≈ 0.69 when β = 1/8, while for the uniform340

interpolation scheme the instability is minimal around 4t/4z ≈ 0.5. The341

ratio Wf/Wf0 also is plotted versus time step from two dimensional simula-342

tions in Fig. 15 and from three dimensional simulations in Fig. 16, using,343

as is common practice in the modeling of laser plasma stages, cubic current344

deposition and 1 pass of bilinear smoothing plus compensation of current345

and fields gathered onto macroparticles. The beneficial impact on stability346

of smoothing and high order deposition is evident from the relatively wide347

band of stability that is available around 4t/4z ≈ 0.5 with uniform gather,348

and the narrower band of stability that is available around 4t/4z ≈ 0.7349

with Galerkin gather. This verifies that the theoretical results apply to real350

case simulations in two and three dimensions.351

Table 1: List of parameters for a LPA stage simulation at 100 MeV

plasma density on axis ne 1019 cm−3

plasma longitudinal profile flat
plasma length Lp 1.5 mm
plasma entrance ramp profile half sine
plasma entrance ramp length 20 µm
laser profile a0 exp (−r2/2σ2) sin (πz/3L)
normalized vector potential a0 1
laser wavelength λ 0.8 µm
laser spot size (RMS) σ 8.91 µm
laser length (HWHM) L 3.36 µm
normalized laser spot size kpσ 5.3
normalized laser length kpL 2
cell size in x ∆x λ/32
cell size in y (3D only) ∆y λ/32
cell size in z ∆z λ/32
# of plasma particles/cell 1 macro-e−+1 macro-p+

7. Conclusion352

The numerical stability properties of multidimensional PIC codes employ-353

ing the Esirkepov current algorithm have been derived. Just as in PIC codes354

employing earlier current algorithms, here also fast-growing numerical insta-355

bilities are predicted for relativistic beam simulations. These instabilities356
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can, of course, be reduced significantly by short wavelength digital filter-357

ing. However, time steps have been identified at which instability growth358

is reduced even without filtering. Particularly noteworthy is uniform field359

interpolation with ∆t/∆z = 1/2 and any value of β, for which simulations are360

numerically stable in the large γ limit. These results have been confirmed361

with the WARP simulation code.362

Additionally, WARP LPA simulations performed using uniform field in-363

terpolation with ∆t/∆z = 1/2 have demonstrated the practical value of this364

choice of parameters in two and three dimensions. The uniform field inter-365

polation offers much reduced growth rates, enabling faster simulations with366

fewer grid cells, lower order interpolation, and reduced digital filtering. In367

three dimensions, it enables existing PIC codes that incorporate the Yee368

solver, but not the CK solver, to benefit from the reduced growth rates at369

the special time steps over a wider range of cell aspect ratios (for cubic cells370

for example, the special time step is accessible only to the CK solver for371

Galerkin gather, while it is accessible to both the Yee and the CK solvers372

for uniform gather). The results that were obtained here also should apply373

readily to more efficient modeling of astrophysical shocks that use the same374

algorithms.375

Finally, the salutary effect of trigonometric functions involving particle376

velocities in the dispersion relation of the Esirkepov algorithm suggest that377

further improvements in PIC code stability can be achieved by developing378

field interpolation algorithms that introduce similar trigonometric functions,379

perhaps along the lines of Sec. 4 in [14].380
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Figure 1: Normal mode diagram for ∆t
∆z = 0.7, β = 0, and kx = 1/2 π

∆x , showing numerically
distorted electromagnetic modes and spurious beam modes, mz = [−3, 3]. Numerical
Cherenkov instabilities occur near mode intersections.
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Figure 2: Locations in k -space of resonances between electromagnetic modes and beam
modes, mz = [−3, 3] for ∆t

∆z = 0.7 and β = 0. Intersecting resonance curves occur at
different frequencies and, therefore, do not interact.
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Figure 3: Fourier-transformed Ez (log scale) at t = 16 from a WARP simulation with
Galerkin field interpolation, ∆t

∆z = 0.7, and β = 0.
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Figure 4: Approximate peak growth rate vs ∆t/∆z for Galerkin field interpolation with
β = 0, 1/8.
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Figure 5: Approximate peak growth rate vs ∆t/∆z for uniform field interpolation with
β = 0, 1/8. The growth rate vanishes at ∆t = ∆z/2 for all values of β.
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Figure 6: Instability growth rates calculated from the numerical dispersion relation for
Galerkin field interpolation, ∆t

∆z = 0.7, and β = 0. Fig. 3 shows corresponding WARP
results. Resonance curves are as in Fig. 2.
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Figure 7: Instability growth rates for Galerkin field interpolation, ∆t
∆z = 0.7, and β = 0,

computed from WARP simulations characterized by Fig. 3
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Figure 8: Maximum numerical instability growth rates observed in WARP and calculated
from the numerical dispersion relation for Galerkin field interpolation with β = 0, 1/8.
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Figure 9: Maximum numerical instability growth rates observed in WARP and calculated
from the numerical dispersion relation for uniform field interpolation with β = 0, 1/8.
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Figure 10: Maximum numerical instability growth rates observed in WARP and calculated
from the numerical dispersion relation for digital filtering as described in Sec. 5, overall
linear or cubic interpolation in z, and Galerkin field interpolation with β = 1/8.
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Figure 11: Instability growth rates calculated from the numerical dispersion relation with
Galerkin field interpolation, ∆t

∆z = 0.69, and β = 1/8.
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Figure 12: Instability growth rates observed in WARP simulations with Galerkin field
interpolation, ∆t

∆z = 0.69, and β = 1/8.
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Figure 13: Field energy relative to stable reference level vs ∆t/∆z from two dimensional
WARP LPA simulations at γ = 13, using Galerkin and uniform field interpolation with
β = 0, 1/8, no filtering, and linear interpolation.
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Figure 14: Field energy relative to stable reference level vs ∆t/∆z from three dimensional
WARP LPA simulations at γ = 13, using Galerkin and uniform field interpolation with
β = 0, 1/8.
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Figure 15: Field energy relative to stable reference level vs ∆t/∆z from three dimensional
WARP LPA simulations at γ = 13, using Galerkin and uniform field interpolation with
β = 0, 1/8.
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Figure 16: Field energy relative to stable reference level vs ∆t/∆z from three dimensional
WARP LPA simulations at γ = 13, using Galerkin and uniform field interpolation with
β = 0, 1/8.
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