
UC Irvine
UC Irvine Previously Published Works

Title
Seven Obstacles in the Way of Standard-Compliant Parallel SystemC Simulation

Permalink
https://escholarship.org/uc/item/3038n2cp

Journal
IEEE Embedded Systems Letters, 8(4)

ISSN
1943-0663

Author
Dömer, Rainer

Publication Date
2016-12-01

DOI
10.1109/les.2016.2617284

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3038n2cp
https://escholarship.org
http://www.cdlib.org/

IEEE EMBEDDED SYSTEMS LETTERS, > IEEE-ESL-May-16-0072.R1 <

1

Abstract— The IEEE 1666-2011 standard defines SystemC

based on traditional discrete event simulation and sequential co-
routine semantics, despite explicit parallelism in the model and
ample parallel processor cores available in today’s host
computers. In order to evolve the SystemC standard towards
faster parallel discrete event simulation, substantial hurdles must
be overcome. This letter identifies seven obstacles in the standard
that stand in the way of efficient parallel SystemC simulation,
namely the co-routine semantics, simulator state, lack of thread
safety, the role of channels, TLM-2.0, sequential mindset, and
temporal decoupling. For each obstacle, we discuss the problem
and propose a potential solution toward truly parallel SystemC.
This letter to the editor is meant to identify difficulties with IEEE
SystemC and stimulate fruitful discussion in the community.

Index Terms—Discrete event simulation, multithreading,
parallel discrete event simulation, parallel processing, simulation,
SystemC, system level description language, system level design.

I. INTRODUCTION

HE SystemC language [1] defines its execution semantics
based on traditional discrete event simulation (DES)

where a central scheduler manages a set of concurrent threads
driven by events and simulation time advances. As a
consequence, SystemC simulation is generally subject to
partial temporal ordering of the threads with barriers (delta
and time cycles). Specifically, the SystemC standard IEEE
1666-2011 [2] requires cooperative multi-tasking semantics
where only a single thread is active at any time. Following
this, most simulators, including the open source proof-of-
concept library [3], implement fully sequential execution
which cannot exploit the parallelism exhibited by the model.
Since highest simulation speed is critical due to the rising
system complexity, parallel discrete event simulation (PDES)
[4] is very desirable as it maintains the level of abstraction and
executes threads at the same simulation time in parallel and
thus can utilize multiple processor cores available on the host
computer and speed up the simulation nearly linearly [7][12],
or even super-linearly [6]. In other words, hours of simulator
runtime can be reduced to minutes.

Manuscript received May 19, revised August 15, accepted October 10,
2016. Date of publication TBD. This work was supported in part by Intel
Corporation for the project “Out-of-Order Parallel Simulation of SystemC
Virtual Platforms on Many-Core Architectures”.

Rainer Dömer is a Senior Visiting Fellow at the University of New South
Wales, Sydney 2052, Australia, and an Associate Professor at the Center for
Embedded and Cyber-Physical Systems at the University of California, Irvine,
CA 92697, USA (e-mail: doemer@uci.edu).

Unfortunately, the current IEEE 1666-2011 standard imposes
significant restrictions on PDES for SystemC. Whereas
proposed parallel SystemC approaches largely ignore the strict
rules of the standard, e.g. [5-7], this letter analyzes the
problem of standard-compliant parallel SystemC simulation,
identifies seven obstacles1 in the standard language reference
manual (LRM), and outlines possible solutions including
changes to the standard for the next generation of SystemC.
As such, this letter (and its controversial content) is intended
to start a discussion towards a major revision of the SystemC
standard suitable for PDES. To this end, we contribute a
technical review and evaluation of the SystemC LRM [2] and
corresponding proof-of-concept library version 2.3.1 [3].

II. OBSTACLE 1: CO-ROUTINE SEMANTICS

The first obstacle in the way of truly parallel simulation is the
fact that the standard LRM explicitly specifies “co-routine
semantics” also known as “co-operative multitasking”. LRM
Section 4.2.1.2 requires that during the evaluation phase “only
a single process instance can be running at any one time” and
the “scheduler is not pre-emptive” ([2], pp. 17, 18).

A. Problem: Uninterrupted execution guarantee

The SystemC LRM explicitly outlines the restriction to non-
preemption as it applies to multi-core parallel execution: “An
implementation running on a machine that provides hardware
support for concurrent processes may permit two or more
processes to run concurrently, provided that the behavior
appears identical to the co-routine semantics”. The problem
here is illustrated in Fig. 1 where two threads access a shared
variable x. The required non-preemptive execution guarantees
that thread1 and thread2 safely output 1 and 42,
respectively. However, parallel execution with possible
preemption of the two threads is not safe due to the race
condition around variable x. Here, the LRM requires that such
conflicting parallel accesses to shared variables are prevented
by the simulator. This is automatic (comes for free) in a
sequential implementation, but is difficult to achieve in a
parallel approach. To be standard-compliant, a PDES
simulator must “analyze any dependencies” among all threads
and “constrain their execution to match the co-routine
semantics” ([2], p. 18). Whereas this is feasible, for example
by use of advanced static compiler analysis [8,9], it places an
undue burden on the simulator which then requires the use of a

1 The seven obstacles are not independent and listed in no particular order.

We also make no claim of completeness of the identified problems.

Seven Obstacles in the Way of Standard-
Compliant Parallel SystemC Simulation

Rainer Dömer, Member, IEEE

T

IEEE EMBEDDED SYSTEMS LETTERS, > IEEE-ESL-May-16-0072.R1 <

2

dedicated SystemC-aware compiler (instead of GNU C++).

B. Proposal: Assume parallel execution (with preemption)

To avoid such unnecessary complexity, we propose to
explicitly specify parallel execution semantics for SystemC,
including the implication of possible preemption. If the LRM
states from the beginning (i.e. in Section 4 on simulation
semantics) that process instances may execute in parallel when
they are at the same simulation time (same delta and time
cycle), then we can model naturally parallel designs with truly
parallel semantics and simulate them with faster parallel
execution. The only caveat is then that the model designer
must pay attention to parallel programming and write thread
safe code without race conditions, as shown in Fig. 2.

III. OBSTACLE 2: SIMULATOR STATE

The second obstacle in the SystemC LRM is the fact that DES
is presumed in the simulator application programming
interface (API). As an example, Fig. 3 shows four functions
that expose the internal state of the simulator to the user.

A. Problem: PDES is different from sequential DES

The problem here is that the desired PDES is inherently
different from the presumed DES. For instance, after
elaboration there may be multiple threads running in parallel
and scheduling may occur while other threads are still active.

B. Proposal: Revise simulator state API for PDES

To address this mismatch, we propose to carefully review the
simulator state primitives and the associated semantics, and
revise both appropriately for PDES. Specifically, the functions
shown in Fig. 3 (and other similar APIs) need to be adapted
for a parallel scheduler. As an example, one could add a new
sc_parallel_activity() indicating concurrent activity.
Note that the general notion of shared state requires careful
consideration when moving from DES to PDES. Whereas the
simulator state is visible to the user (Fig. 3), other shared state

is hidden in the SystemC library, as the next obstacle shows.

IV. OBSTACLE 3: LACK OF THREAD SAFETY

Generally, SystemC primitives are not multi-thread safe. In
fact, the LRM requires thread safety only for a single function,
namely async_request_update ([2], p. 121) and the proof-
of-concept library [3] implements many SystemC primitives
with shared state which is safe only under sequential DES.
Fig. 4 shows a suspicious2 example fragment where variables
are defined based on a prior established context (line 2). If
another thread creates a different context in parallel, then it is
undefined which context is applied at the time of the variable
definition (line 3).

A. Problem: Parallel execution may lead to race conditions

This problem is again well-known as a race condition which
must be prevented because it otherwise results in undefined
behavior. Here parallel updates to the shared context need to
be properly synchronized, for example, by atomic operations
or explicit locks (binary semaphores). However, identifying
such critical regions in the code is difficult for the user who is
unaware of the actual implementation in the SystemC library.

B. Proposal: Require all primitives to be multi-thread safe

To resolve this problem, we propose for the LRM to require
that all SystemC primitives shall be implemented in a multi-
thread safe manner (i.e. add this requirement to Section 3.3
next to the discussion on side-effects). Following this, the
proof-of-concept library must be carefully reviewed and
revised accordingly (which arguably is significant work).

V. OBSTACLE 4: CLASS SC_CHANNEL

The fourth obstacle in the way of standard-compliant parallel
SystemC appears at first sight only as a small technicality, but
that has significant impact on safe communication under

2 In the proof-of-concept library [3], the class sc_context is commented

as “co-routine safe” only. To make this example multithread safe, thread local
storage would be needed in the implementation.

1 int x; // shared global variable
2
3 void thread1() void thread2()
4 { x = 0; { x = 7;
5 x = x + 1; x = x * 6;
6 std::cout << x; std::cout << x;
7 } }

Fig. 1. Example of two conflicting SystemC threads: Current co-routine
semantics guarantee safe output of 1 by thread1 and 42 by thread2.
In contrast, a parallel execution results in a race condition around the shared
variable x with undefined behavior.

1 void thread1() void thread2()
2 { int x = 0; { int x = 7;
3 x = x + 1; x = x * 6;
4 std::cout << x; std::cout << x;
5 } }

Fig. 2. Example of two conflict-free SystemC threads: Local variables result
in thread safe execution under both the current co-routine semantics as well
as the proposed parallel execution semantics.

1 bool sc_pending_activity_at_current_time();
2 bool sc_pending_activity_at_future_time();
3 bool sc_pending_activity();
4 sc_time sc_time_to_pending_activity();

Fig. 3. Example of SystemC API functions presuming DES state ([2], p. 31).

1 sc_length_param length10(10);
2 sc_length_context cntxt10(length10);
3 sc_int_base int_array[2];

Fig. 4. Example of SystemC sequential shared state ([2], p. 194): a length-10
parameter is constructed, then a context with this parameter is created, and
finally an array of 10-bit integers is defined using the current context.

1 template <class T> inline
2 void sc_fifo<T>::write(const T& val_)
3 { sc_stacked_lock l(m_mutex); // new channel lock
4 while(num_free() == 0) {
5 sc_core::wait(m_data_read_event);
6 }
7 m_num_written ++;
8 buf_write(val_);
9 request_update();
10 }

Fig. 5. Example of thread safe communication: The blocking write method
in the primitive channel sc_fifo ([3], header file sc_fifo.h) is protected by a
proposed sc_stacked_lock (line 3) which automatically locks the channel
instance on entry (by acquiring a mutex provided in the channel base class)
and unlocks the channel instance on exit (by releasing the mutex again).
Note that without the added sc_stacked_lock (line 3), there would be a race
condition between the shared variables m_num_written and num_free.

IEEE EMBEDDED SYSTEMS LETTERS, > IEEE-ESL-May-16-0072.R1 <

3

PDES. The LRM specifies that “typedefs sc_behavior and
sc_channel are provided for users to express their intent” ([2]
p. 56) and the proof-of-concept library [3] accordingly
implements a typedef sc_module sc_channel in the
header file sc_module.h. Thus, sc_channel is in fact only an
alias type for sc_module.

A. Problem: sc_channel appears identical to sc_module

In the C++ language, which SystemC is based on, a typedef is
only another name, not a new type. Thus, sc_module and
sc_channel are the same for any compiler or synthesis tool and
cannot be distinguished. In other words, there is no
sc_channel. This breaks a key system design principle, namely
the clear separation of computation and communication [10]
also known as the orthogonalization of concerns [11].
The separation of communication and computation is critical
in PDES because computation code stays clear of shared
variables (to allow fast and safe parallel execution), but
sharing cannot be avoided in communication between threads.
Communication methods naturally rely on shared variables
and events, and parallel accesses to those must be properly
synchronized.
Fig. 5 lists the blocking write method of the primitive channel
sc_fifo as an example, where a race condition is prevented by
a newly introduced channel lock (line 3). Note that this
synchronization is necessary for safe communication, but
unwanted for computation. Thus, we need to separate the two
by clearly distinguishing channels from modules.

B. Proposal: Class sc_channel derived from sc_module

We propose to resolve this obstacle by replacing the type alias
with a uniquely identifiable type, specifically by a proper class
sc_channel that is derived from sc_module. While this creates
distinguishable types for channels and modules, it allows at
the same time the sharing of common features (e.g. object
name). Then the channel base class can also provide the
sc_stacked_lock member suggested in Fig. 5 which is not
needed in modules.
Most importantly, this change reinstates the system design
principle of separation of concerns for SystemC. The modules
encapsulate the computation (host active threads/processes)
and the channels encapsulate the communication (implement
the interface methods) in a truly parallel design model.

VI. OBSTACLE 5: TLM-2.0

The proposal of using the channel as a monitor with access
synchronization cleanly resolves Obstacle 4 and reestablishes
thread safe communication, but leaves open the next obstacle,
namely TLM-2.0 [2]. As shown in Fig. 6, communication
between initiator and target modules follows well-defined
interfaces in TLM-2.0 (ensuring the interoperability of
components from different sources), but there is no channel to
encapsulate the communication methods.

A. Problem: Channel concept has disappeared

In contrast to TLM-1.0 where a channel wraps the message
passing communication, TLM-2.0 uses references and pointers

for direct memory access into other modules, including a
direct memory interface (DMI). The interface methods are
implemented directly in the modules without containment
constructs that could offer multithread access synchronization.

B. Proposal: Encapsulate communication in channels

While further and thorough study of possible protection
schemes is needed here, we propose the conceptual solution of
wrapping the TLM-2.0 communication methods into actual
channels (similar to TLM-1.0) so that the same protection with
locks as proposed for Obstacle 4 can be applied here as well.
For safe DMI access, atomic type operations may prove useful
as well, since this could result in lock-less synchronization.

VII. OBSTACLE 6: SEQUENTIAL MINDSET

Probably the biggest obstacle in the quest towards truly
parallel SystemC is the sequential modeling mindset that
SystemC designers are used to. A good example is the fact
that SC_METHOD is preferred over SC_THREAD because
thread context switches are considered overhead: “context
switching between thread processes may impose a simulation
overhead when compared with method processes” ([2], p. 44).

A. Problem: Sequential modeling is encouraged

The difficult challenge is the heavy bias towards sequential
SC_METHODs, where true threads with parallel context (own
execution stack) are avoided for the sake of saving a few
cycles in sequential DES. Avoiding context switches is the
wrong optimization criterion. Simulation speed will be much
more improved by parallel execution. Thus, the designer’s
efforts should be focused on exposing parallelism in the model
as much as possible so that that can be exploited in both
simulation and model implementation.

B. Proposal: Encourage parallel modeling with true threads

The targeted systems are parallel by nature, so should be their
models. We propose to strongly promote a parallel modeling
mindset toward true thread-level parallelism (which arguably
requires rethinking and retraining). In PDES, there is no need
for SC_METHOD anymore (since context switches are of a
different kind), so SC_METHOD can actually be eliminated
(which also avoids complexity of next_trigger() vs. wait()).
True threads should reflect the naturally parallel system’s

Fig. 6. TLM-2.0 communication between initiators and targets ([2], p. 421):
A transaction object is passed by reference through sockets and interconnect
components along forward and backward paths. Whereas interface methods
are well-defined, there is no channel to encapsulate the communication.

IEEE EMBEDDED SYSTEMS LETTERS, > IEEE-ESL-May-16-0072.R1 <

4

behavior and the observed task relations should be explicitly
expressed using synchronization primitives (event.notify,
wait(event)) and communication (channel) constructs.

VIII. OBSTACLE 7: TEMPORAL DECOUPLING

As defined in the LRM ([2], p. 453), temporal decoupling
(TD) allows SystemC threads to “run ahead of the simulation
time for an amount of time known as the time quantum” in
order to improve the simulation speed “by reducing the
number of context switches and events”. Again, context
switches are identified as a main impediment to simulation
speed. Whereas the trade-off of accuracy for speed fits the
well-known mechanism of abstraction in system level design,
SystemC TD and its “global quantum” ([2], p. 453) are
designed specifically for sequential DES.

A. Problem: PDES is a different foundation than DES

There are two problems with this TD when moving to PDES.
First, the global time quantum (a singleton) is a technical
obstacle, because it directly leads to a race condition for
parallel threads which would need to be prevented by
synchronization, defeating its very purpose.
Second, sequential and parallel DES are very different
foundations. The sequential assumptions SystemC TD was
designed for, do not hold true anymore under PDES. Context
switches in PDES are of a different nature and therefore the
current TD is incompatible with parallel simulation.

B. Proposal: Reevaluate temporal decoupling for PDES

To overcome this obstacle, we propose to redesign and
reevaluate the idea of TD for PDES (despite the cost of
repeating some of the valuable TD research to date).
Conceptually, TD and parallel execution should be orthogonal,
both independently providing higher execution speed.
Specifically, we advocate for a true wait(time) handled by
the parallel SystemC kernel, instead of the global quantum
managed by the user (agnostic to the kernel). Here, the use of
modern compiler techniques may prove useful to
automatically optimize timing and parallel scheduling [8].

IX. CONCLUSION

Moving up from DES to PDES semantics will allow improved
simulation speed on multi and many core hosts by an order of
magnitude. For SystemC, however, significant difficulties are
imposed by the current IEEE 1666-2011 standard.
In this letter, we have identified seven obstacles in the way of
standard-compliant parallel SystemC simulation. In order to
overcome these identified obstacles, we need to adopt a
parallel modeling mindset so that the natural parallelism in the
target system is exposed in the model and can be efficiently
exploited. We must apply the system design principle of
separation of concerns and clearly encapsulate communication
in channels and computation in modules. Consequently, the
IEEE SystemC language standard must evolve in a major
revision (similar to C++11 which recently has accomplished
built-in support for multithreading).
We advocate for the next generation of the SystemC standard

to embrace true parallel simulation and offer the analysis
provided in this letter as a starting point for discussion.

ACKNOWLEDGMENT

For helpful input, fruitful discussions, and honest feedback,
the author would like to thank A. Davare, A. Dingankar, P.
Hartmann, D. Kirkpatrick, G. Liu, and T. Schmidt, as well as
the anonymous reviewers and all participants in the SystemC
Evolution Day 2016 in Munich, Germany.
This work has been supported in part by funding from Intel
Corporation. The author thanks Intel Corporation for the
valuable support.

REFERENCES
[1] T. Grötker, S. Liao, G. Martin, S. Swan. System Design with SystemC.

Kluwer Academic Publishers, 2002.
[2] IEEE Computer Society. IEEE Standard 1666-2011 for Standard

SystemC Language Reference Manual, IEEE, New York, USA, 2011.
[3] SystemC Language Working Group. SystemC 2.3.1, Core SystemC

Language and Examples, Accellera Systems Initiative, USA, 2014.
http://accellera.org/downloads/standards/systemc

[4] R. Fujimoto. Parallel Discrete Event Simulation. Communications of the
ACM, 33(10):30–53, Oct 1990.

[5] P. Ezudheen, P. Chandran, J. Chandra, B. Simon, D. Ravi. “Parallelizing
SystemC Kernel for Fast Hardware Simulation on SMP Machines”. In
Proc. PADS, pp. 80–87, 2009.

[6] C. Schumacher, R. Leupers, D. Petras, A. Hoffmann. „parSC:
Synchronous Parallel SystemC Simulation on Multi-Core Host
Architectures”. In Proc. CODES+ISSS, pp. 241–246, 2010.

[7] R. Sinha, A. Prakash, H. Patel. Parallel simulation of mixed-abstraction
SystemC models on GPUs and multicore CPUs. In Proc. ASPDAC,
Sydney, Australia, 2012.

[8] W. Chen, X. Han, C. Chang, G. Liu, R. Dömer. Out-of-Order Parallel
Discrete Event Simulation for Transaction Level Models. IEEE TCAD,
33(12):1859–1872, Dec. 2014.

[9] G. Liu, T. Schmidt, R. Dömer. RISC Compiler and Simulator, Alpha
Release V0.2.1: Out-of-Order Parallel Simulatable SystemC Subset, TR
CECS 15-02, CECS, UC Irvine, USA, 2015.

[10] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao. SpecC:
Specification Language and Design Methodology. Kluwer Academic
Publishers, 2000.

[11] K. Keutzer, A. Newton, J. Rabaey, A. Sangiovanni-Vincentelli. System-
Level Design: Orthogonalization of Concerns and Platform-based
Design. IEEE TCAD, 19(12):1523-1543, Dec. 2000.

[12] W. Chen, X. Han, C. W. Chang, R. Dömer, Advances in Parallel
Discrete Event Simulation for Electronic System-Level Design. IEEE
Design & Test, vol. 30, no. 1, pp. 45-54, Feb. 2013.

Rainer Dömer (S’96–M’00) received the
Ph.D. degree in information and computer
science from the University of Dortmund,
Dortmund, Germany, in 2000.
He is currently a Senior Visiting Fellow at
the University of New South Wales,
Sydney 2052, Australia, and an Associate
Professor with the Electrical Engineering
and Computer Science Department at the

University of California, Irvine, CA, USA, where he is a
faculty member of the Center for Embedded and Cyber-
Physical Computer Systems.
Prof. Dömer’s research interests include system-level design
and methodologies, embedded and cyber-physical computer
systems, specification and modeling languages, and advanced
parallel discrete event simulation.

