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Abstract 
 
 
 

Advanced Control Algorithms for Discrete Linear Repetitive Processes in  
Self-servowriting of Hard Disk Drives 

 
by 

 
Feng Dan Dong 

 
Doctor of Philosophy in Engineering – Mechanical Engineering 

 
University of California, Berkeley 

 
Professor Masayoshi Tomizuka, Chair 

 
 
 

This dissertation presents advanced control algorithms for discrete linear repetitive 
processes in hard disk drives. Repetitive processes are characterized by a series of 
iterations or tracks, through a set of dynamics which has finite duration or length. On 
each iteration, a profile is produced, which in turn acts as a forcing function and 
contributes to the dynamics of the next iteration. As a result, it is inevitable that errors are 
propagated from iteration to iteration. In addition, the error propagation within each 
individual iteration along the time direction and the presence of repeatable error are two 
other common but significant problems in discrete linear repetitive processes, which 
aggravate the iteration-to-iteration error propagation. Such outcomes are clearly not 
desirable and hence appropriate control actions are needed to correct them.  
      This dissertation first introduces the unique features and control problems in discrete 
linear repetitive processes. In illustration, two physical processes are studied: concentric 
self-servowriting process and spiral based self-servowriting process. These two repetitive 
processes are representative servowriting techniques used in the current hard disk drive 
manufacturing industry. They have the same servo system consisting of two control loops: 
position control loop and timing control loop, but each has its own distinct control 
problems and objectives. Different control algorithms have been designed in this 
dissertation to deal with their respective control problems and improve the control system 
performance. 
      To contain the iteration-to-iteration error propagation in discrete linear repetitive 
processes, an iterative learning control scheme is proposed and applied in concentric self-
servowriting position control loop. This is an optimization-based method which mitigates 
the system error by minimizing the maximum magnitude of the position deviation profile. 
An alternative approach, two-dimensional control scheme, is also developed for the ease 
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of analysis. By applying the two-dimensional systems theory, the convergence problems 
in the iterative learning control system are translated to the stability problems in a two-
dimensional system. 
      To take a step further, this dissertation also proposes a novel adaptive feedforward 
control scheme to deal with the error propagation along both the time direction and the 
iteration direction, which is often the case for the timing control loop in concentric self-
servowriting process. The control objective in this repetitive process is to attenuate the 
closure error within each individual track and contain the timing error propagation from 
track to track. To achieve this objective, the adaptive filter is designed by applying the 
filtered-x least mean square algorithm and the filter coefficients are adaptively updated 
for every servo sector by minimizing both the radial timing error energy and 
circumferential timing error energy.  
      The timing control loop in spiral based self-servowriting process is a typical example 
of discrete linear repetitive process whose dynamics is dominated by the repeatable 
timing error coming from the prewritten spiral tracks. Analyzing this problem from two 
different perspectives, two control algorithms are derived for this repetitive process. 
Using the classical control theory, a recursive least square based parameter adaptation 
algorithm is proposed to estimate and cancel the repeatable timing error. Examined from 
the computer system perspective, however, this repetitive process is a real-time or event-
driven control system since the write head clock is updated only at the time instants when 
the read head detects the sync marks from the spiral tracks, i.e. the system sampling is 
triggered by the read head signal. From this perspective, the repeatable timing error is 
interpreted as the sampling jitter in the system, which causes the sampling period to be 
non-uniform. To tackle with the non-uniform sampling issue in this real-time control 
system, a novel control scheme based on Kalman filter theory is presented.  
      The effectiveness of the control algorithms proposed in this dissertation is verified 
through simulation studies using the real disk drive models and disturbance/noise data 
from the industry.   
 
 
 
 
 
                                                                                          Professor Masayoshi Tomizuka 
                                                                                             Dissertation Committee Chair 
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Chapter 1  

Introduction 
 

1.1 Background 

Hard disk drives (HDDs) use the embedded servo systems in which the position 
information (i.e. the servo bursts) and timing information (i.e. the synchronization marks) 
are written onto the disk surface at discrete locations (i.e. the servo sectors) along the 
circular servo data tracks. The position and timing information are demodulated to 
determine the position error and timing error signals, which are used by the servo system 
and control the heads to accurately track-follow on or seek to a target track.  
      In conventional servowriting process, the position information and timing information 
are written by writing the servo tracks individually using the external servo writers in the 
clean room environment. Therefore, such process is time-consuming and expensive. Self-
servowriting (SSW) technique has been attractive because of the potential savings in the 
cost of servowriting drive as well as reduced capital expenditure on external servo writers 
and in the amount of clean room floor space required.  
      In the current HDD manufacturing industry, two leading SSW techniques are widely 
employed: concentric SSW and spiral based SSW. From the viewpoint of a control 
system, both of these two processes are discrete linear repetitive process, which are 
characterized by hundreds of thousand data tracks through the same dynamics (i.e. the 
feedback control loop) defined over a fixed length (i.e. the number of servo sectors in one 
data track).  
      In concentric SSW process, the current track profile is generated by referring to the 
previously written track profile. A fundamental obstacle in this repetitive process is the 
propagation of the written-in errors as successive tracks are written, which is known as 
the radial error propagation (REP). In the worst scenario, within a few iterations, the 
written-in errors rapidly build up, causing the deviation from circularity and variable 
track-to-track spacing. As a result, the quality of the written servo patterns degrades. 
Since the objective of SSW process is to write the servo sectors uniformly in all tracks 
along perfectly concentric circles with the required constant track-to-track spacing, good 
position control loop and good timing control loop are required in this repetitive process. 
Respectively, good position control loop should be able to contain the REP from track to 
track and improve the quality of the written tracks, which ensure the servo sectors are 
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written in perfectly circular tracks. While good timing control loop aims to contain the 
timing error propagation from track to track (along the track direction) and attenuate the 
closure error within each individual track (along the time direction), which ensure the 
servo sectors are uniformly and accurately aligned along the circular track. 
      In spiral based SSW process, one set of spiral tracks are prewritten onto the disk and 
used as the reference for writing the product servo patterns in the circular tracks. The 
main problem in this repetitive process is the amplification of the repeatable timing error 
which is caused by the disk eccentricity and written-in timing errors in the prewritten 
spiral tracks. This results in unevenly spaced servo sectors along the circular tracks. 
Hence, in spiral based SSW servo system, the timing control loop is more significant and 
an effective control algorithm is highly desired to reduce the dominance of the repeatable 
timing error and write the product servo patterns uniformly along the circular tracks.  
      In this dissertation, a few effective control algorithms are proposed for these discrete 
linear repetitive processes to deal with their respective control problems, in an effort to 
enhance the control system performance and improve the quality of self-servowriting 
process.  
      The remainder of this chapter is organized as follows. Section 1.2 summaries some 
existing control approaches for discrete linear repetitive processes. Section 1.3 states the 
motivations and contributions of the dissertation, and Section 1.4 gives the outline of the 
dissertation.  

1.2 Control of Repetitive Process 

Repetitive processes are characterized by a series of iterations (or tracks in this 
dissertation) of the same dynamics with finite duration or length. Many manufacturing 
processes fall into this general class, such as metal rolling, rapid thermal processing, 
industrial robotics assembly, wafer scanning, and, for this dissertation, self-servowriting 
process in hard disk drives. The repetitiveness of the process can be exploited in several 
ways to enhance the system performance. Some of these methods are described below: 

1. Repetitive Control (RC). Repetitive control uses a periodic signal generator in 
the feedback control loop in order to remove periodic (or repeating) disturbances. 
It is usually used in the processes that do not have specified start and finish times; 
instead they run continuously. Typical applications of repetitive control can be 
found in the control of hard disk drives, computer-numerically controlled (CNC) 
machines, and industrial robotics. There are several repetitive control design 
techniques based on the internal model principle [25], Fourier series expansion, 
external model control, etc. A comprehensive discussion and comparison of these 
are presented in [48]. 

2. Iterative Learning Control (ILC). ILC is a feedforward signal design technique 
that iteratively fine-tunes and adjusts the feedforward signal by considering the 
error from the previous iterations (or tracks) of the repetitive process. In other 
words, we iteratively reshape the input signals to the closed-loop system from one 
iteration to the next in order to reduce the tracking error. This method requires 
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that the repetitive process has specified the start and finish states (and times). 
Typical applications of ILC include industrial robotics, rapid thermal processing, 
metal rolling, wafer stages, and self-servowriting process in hard disk drives.  

3. Iterative Feedback Tuning (IFT). IFT is similar to ILC, but iteratively fine-
tunes and adjusts the feedback as well as the feedforward controller parameters by 
using the error from the previous iterations (or tracks) of the repetitive process. 
The controller parameters are tuned iteratively so as to minimize a certain cost 
function [37, 38, 39]. Normally, such optimization would require a complete 
model of the plant and may result in a high order controller. In IFT, the 
optimization is performed iteratively by using an estimate of the gradient of the 
cost function with respect to the tunable controller parameters that are calculated 
based on the data collected from the experiment iterations, thereby avoiding the 
need for complete plant model knowledge.  

4. Two-Dimensional (2D) Control. 2D control is a controller design technique 
using the 2D systems theory to fulfill the performance requirements in both the 
time and iteration directions. A repetitive process is a 2D system in nature, where 
the dynamical behavior over the time is mainly determined by the feedback 
control loop, while the iterative process introduces the dynamics along the 
iteration direction. In this design technique, the repetitive process is equivalently 
represented by a 2D model. As a result, the convergence problems in the 
repetitive process can be translated to the stability problems in the 2D system. 2D 
systems theory provides a powerful tool to model, analyze, and design controllers 
for repetitive processes [52, 30, 66].  

      The focus of this dissertation is the design of various effective control algorithms for 
discrete linear repetitive processes. 

1.3 Motivations and Contributions 

There are five main contributions in this dissertation, outlined as below: 

1.3.1 Iterative Learning Control Design  

In this dissertation, an iterative learning control scheme is proposed to deal with the error 
propagation from iteration to iteration in discrete linear repetitive processes, particularly 
in the position control loop of HDD concentric self-servowriting (SSW) process.  
      Concentric SSW process in HDD manufacturing is a typical discrete linear repetitive 
process, which consists of two independent control loops: position control loop and 
timing control loop. In this repetitive process, the current track profile is generated by 
amplifying the previous-track profile through the closed-loop dynamics. As a result, the 
position error is propagated from track to track (known as the radial error propagation) 
and the minimum spacing between two adjacent tracks (known as the AC track squeeze) 
is getting smaller, which deteriorates the quality of the written servo patterns, or even 
causes the self-servowriting process to fail. Hence, the control objective in its position 



 

 

4

control loop is to contain the radial error propagation from track to track and improve the 
quality of the written tracks.   
      In the proposed control design, the previous-track position error information is 
utilized for deriving the learning filter which is constructed as a finite impulse response 
(FIR) filter consisting of both causal and non-causal terms. An 1L  optimal control 
problem is formulated in the sense of minimizing the maximum magnitude of the 
position deviation in one track, which is stronger than the method used in [82]. In [82], 
the learning filter was designed by using H  method in the sense of minimizing the 
energy of the position deviation in one track. However, the monotonic convergence of 
this repetitive process requires that the peak value of the position deviation decreases 
successively as the track number increases. Hence, 1L  optimal control method is more 
effective for this repetitive process, as agreed by the simulation study. 

1.3.2 Two-Dimensional Control Design 

A 2D control scheme is presented as an alternative approach for the iteration-to-iteration 
error propagation problem in discrete linear repetitive processes.  
      Since concentric self-servowriting process has dynamical behavior along two 
directions: the track (i.e. radial) direction and the time (i.e. circumferential) direction, it 
can be considered as a 2D discrete linear system, which is mathematically described by a 
2D Roesser state-space model. The convergence problems in this repetitive process are 
then translated to the stability problems in a 2D system. By applying the 2D systems 
theory, a 2D state feedback controller is designed to achieve asymptotic stability along 
both the time and the track directions. To take a step further, an error learning filter is 
added by utilizing the previous-track position error information. As a result, the 
monotonic convergence along both the time and the track directions is guaranteed and the 
radial error propagation from track to track is contained. Since the 2D control scheme is 
able to guarantee the feedback control loop performance and the feedforward control loop 
performance simultaneously, it results in even better performance than the iterative 
learning control scheme. The performance of the proposed 2D control scheme is verified 
through the computer simulation. 

1.3.3 Adaptive Feedforward Control Design 

In this dissertation, a novel adaptive feedforward control (AFC) scheme is proposed to 
deal with the error propagation along both the time direction and the iteration direction, 
which is often the case for the timing control loop in concentric SSW process. 
      In concentric self-servowriting process, although the block diagrams of its timing 
control loop and position control loop are the same, the control problems and objectives 
are different. As stated in Section 1.3.1, the problems in the position control loop are the 
radial error propagation (along the track direction) and AC track squeeze (also along the 
track direction). However, in the timing control loop, the main issues are the closure error 
within each individual track (along the time direction) and timing error propagation 
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(along the track direction). Therefore the control objective in concentric SSW timing 
control loop is not only to contain the timing error propagation from track to track, but 
also to attenuate the closure error within each individual track. In other words, the 
iterative learning control and 2D control schemes proposed for the position control loop 
are not suitable for the timing control loop. 
      In the proposed AFC scheme, the adaptive filter is designed by applying the filtered-x 
least mean square (FXLMS) algorithm to attenuate the closure error within each 
individual track and contain the timing error propagation from track to track. Firstly, the 
filter coefficients of the current track are iteratively updated from sector to sector (before 
moving to the next track) by minimizing the circumferential timing error energy. And 
then they are used to derive the filter coefficients of the next whole track by minimizing 
the radial timing error energy. These two LMS based update algorithms repeat 
alternatively until all the tracks are written. The performance of the proposed AFC 
scheme is better than that of the conventional AFC schemes since the conventional AFC 
schemes update the adaptive filter coefficients track by track only, i.e. they are merely 
able to contain the error propagation from track to track. Moreover, the simulation results 
show that the timing control loop has much better performance by applying the proposed 
AFC scheme than by applying the ILC scheme which is proposed for concentric self-
servowriting position control loop.    

1.3.4 Recursive Least Square based Parameter Adaptation Algorithm Design 

To tackle with another significant problem in discrete linear repetitive processes, the 
domination of repeatable error, a recursive least square (RLS) based parameter adaptation 
algorithm (PAA) is proposed in this dissertation. The other equally important servo-
writing technique in the current HDD manufacturing industry - spiral based SSW process 
- is an example of discrete linear repetitive process whose dynamics is dominated by the 
repeatable error present in the process. In this repetitive process, the written timing 
profile (i.e. the write head clock) is generated through the closed-loop dynamics, by 
amplifying the repeatable timing error which is caused by the disk eccentricity and 
written-in timing errors in the prewritten spiral tracks. Similar to concentric SSW process, 
in spiral based SSW process, the system error is the only measurable signal and the 
control objective is to achieve uniform timing patterns in the write head, i.e. the write 
head phase signal should ideally converge to zero. In this feedback control system, 
however, the reference signal is the repeatable timing error which is read from the spiral 
tracks and not directly measurable. Hence, it is intuitive and necessary to design a 
correction signal for estimating and cancelling the repeatable timing error.  
      In the proposed control algorithm, the PAA is designed to estimate the repeatable 
timing error and cancel it by adding the negative value of the estimated signal. The 
estimated parameters are derived by using the recursive least square (RLS) algorithm. 
The simulation study shows the repeatable timing error is cancelled up to 90% by 
applying the proposed control algorithm.  
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1.3.5 Real-time Control Design 

A real-time control scheme is analyzed and proposed as an alternative approach to deal 
with the repeatable timing error in spiral based SSW timing control loop.   
      When the product servo patterns are written based on the prewritten spiral tracks, the 
shifts of spiral locations and sync marks’ position error appear as the repeatable timing 
error. Analyzed from the computer system perspective, this repetitive process is a real-
time or event-driven control system because the write head signal is updated only at the 
time instants when the read head detects the reference information from the spiral tracks. 
However, the time instants of the read head operation are shifted due to the repeatable 
timing error. From this perspective, the repeatable timing error is interpreted as the 
sampling jitter in the system, which causes the sampling period of the servo system to be 
non-uniform. The feedback controller, however, is classically designed. In other words, it 
is designed by assuming the sampling period is strictly constant. When such feedback 
controller is implemented in a non-uniform sampling system, the control input to the 
plant is inaccurate, and therefore causes the controlled system response to degrade or 
even become unstable.  
      The real-time control scheme is designed based on Kalman filter theory to deal with 
the non-uniform sampling issue in this repetitive process. The proposed scheme resolves 
this issue and is implementable as simply as the current algorithm in the industry. 

1.4 Overview of Dissertation 

The dissertation outline is best described by Figure 1.1. This figure also represents the 
control algorithms which are proposed for their corresponding problems in discrete linear 
repetitive processes.  
      The remainder of this dissertation is organized as follows: 
Chapter 2: A general abstract model for discrete linear repetitive processes is given. The 

unique characteristics of discrete linear repetitive processes are presented by 
studying two physical examples – concentric self-servowriting process and 
spiral based self-servowriting process, which are representative servowriting 
techniques in the current HDD manufacturing industry.  

Chapter 3: An iterative learning control scheme is proposed to prevent the iteration-to-
iteration error propagation. It is applied in concentric self-servowriting 
position control loop. The conditions of asymptotic convergence and 
monotonic convergence are derived and formulated into an 1L  optimal 
control problem for designing the error learning filter. 

Chapter 4: Presents an alternative design for iterative learning control scheme based on 
two-dimensional (2D) systems theory. The discrete linear repetitive process 
is mathematically described by a 2D Roesser state-space model. A 2D state 
feedback controller and an error learning filter are designed together by 
employing the 2D systems theory, so as to guarantee asymptotic stability 
and monotonic convergence of the repetitive process.  
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Figure 1.1: Schematic overview of the dissertation 

Chapter 5: Proposes a novel adaptive feedforward control scheme to deal with the error 
propagation along both the time and the iteration directions in discrete linear 
repetitive process. In the design example, the adaptive filter is designed by 
applying the filtered-x least mean square algorithms to minimize both the 
circumferential timing error energy and the radial timing error energy.  

Chapter 6: Discusses the compensation algorithms for reducing the dominance of the 
repeatable error present in the repetitive process. Taking the timing control 
loop in spiral based self-servowriting process as the design example, a 
recursive least square based parameter adaptation algorithm is proposed to 
estimate and cancel the repeatable timing error. To improve its estimation 
accuracy and reduce the effect of non-repeatable timing error, a comb filter 
is designed as the error shaping filter.  

Chapter 7: Analyzes the timing control loop in spiral based self-servowriting process 
from the computer system perspective. The repeatable timing error is 
interpreted as the sampling jitter which causes non-uniform sampling period 
in the system. A real-time control scheme based on Kalman filter theory is 
proposed as an alternative approach to deal with the non-uniform sampling 
issue in this discrete linear repetitive process.  

Chapter 8: Concludes the dissertation and summarizes the various control schemes in 
terms of performance and applicability.    
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Chapter 2  

Discrete Linear Repetitive Processes 
 

2.1 Introduction 

Repetitive processes, also termed as multipass processes in the early literature, are 
characterized by a series of iterations, or passes, or tracks in this dissertation, through a 
set of dynamics with finite duration or length. On each iteration, an output – termed as 
the iteration profile – is produced, which in turn acts as a forcing input and contributes to 
the dynamics of the next iteration.  
      The concept of the repetitive process was first introduced in the early 1970’s by the 
University of Sheffield, UK, on the modeling and control of long-wall coat cutting and 
metal rolling operations [23], [63], [67], [68]. In this chapter, the unique features and 
control problems of discrete linear repetitive processes are examined through two 
physical examples – concentric self-servowriting (SSW) process and spiral based SSW 
process, which are widely used in the current hard disk drive (HDD) manufacturing 
industry. There are two distinguishing features in these applications: (1) The productive 
work is undertaken by hundreds of thousand servo tracks through a set of dynamics (i.e. 
the feedback control loop) which is defined over a fixed finite duration known as the 
track length (i.e. the number of servo sectors in one data track). (2) The process evolves 
from the given initial conditions, and the performance deteriorates after the first track due 
to the effect of the previous track profile on the dynamics of the current track. Thus, it is 
inevitable to generate the errors which propagate from track to track and increase in 
amplitude. Such behavior is clearly not desirable and requires appropriate control actions 
to correct it.  
      The remainder of this chapter is organized as follows. Section 2.2 presents the 
definition of discrete repetitive processes. Two examples of such processes, concentric 
SSW process and spiral based SSW process, are introduced in Section 2.3. Finally the 
chapter summary is given in Section 2.4. 

2.2 Discrete Repetitive Processes 

The discrete repetitive process is an iterative process, and there involves identical signals 
in each iteration, i.e.  
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  1 ( )( )  ( )    0 -1 and 0, 1, 2,i iy k y k k N i     

  
(2.1) 

where the index i  denotes the ith iteration, k  is the time index in each iteration, and N  
is the time length for the signal. 
      In a control system, when the controlled plant subjects to a repetitive process, the 
control problem is often called a repetitive control problem. The controlled plant may or 
may not have the same initial conditions when a new repetitive iteration begins. Robots 
performing repeating the same task repeatedly may begin each task from the same or 
approximately same initial state. If the end of one iteration of the repetitive process 
becomes the beginning of the next iteration of the repetitive process, the plant state at the 
beginning of each iteration may be different from one iteration to another, in particular, 
during transient before the system has reached the steady state where all the signals are 
periodic. The track following problem in hard disk drives (HDDs) servo system is such a 
problem. 

2.3 Discrete Linear Repetitive Processes Examples and System 
Descriptions 

Many industrial processes are discrete linear repetitive process. In the HDD industry, two 
popular ones are concentric SSW process and spiral based SSW process.  

2.3.1 Servowriting Process in Hard Disk Drives 

Hard disk drives use the embedded servo systems, where the data tracks and servo burst 
information (i.e. the servo sectors) are defined onto the disk surface as shown in Figure 
2.1 by a process known as servo track-writing (or servowriting for short). The embedded 
servo sectors comprise the coarse positioning information (e.g. the data track number) 
and the fine positioning information (e.g. the servo bursts) for tracking the centerline of 
the data track while writing data to the disk and reading data from the disk. A typical disk 
drive consists of one or more circular platters on which the data is stored magnetically in 
tracks or cylinders.  
      There are several conventional methods used for writing the servo patterns. The 
common one is to write the position information (i.e. the servo burst) and the timing 
information (i.e. the synchronization marks) onto the disk surface by using an external 
servo writer machine which processes the disk drives in assembly line fashion during 
manufacturing. The external servo writer employs precise head positioning mechanics, 
such as a laser interferometer, for positioning the head at precise radial locations with 
respect to the previously servo-written tracks so as to achieve high track densities. In 
addition, the head disk assembly (HDA) within the disk drive is typically exposed to the 
environment through apertures which allow access to the disk drive’s actuator arm and 
the insertion of a clock head. This requires the servowriting process to take place in a 
clean room environment free of contaminant particles. Further, the manufacturing 
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throughput is limited by the number of servo writers available as well as the cost of each 
servo writer and clean room space.   

 

Figure 2.1: Data tracks and servo sectors on a disk platter 

      Self-servowriting a disk is a technique that uses the internal components of the drive 
and obviates the need for external servo writers, thereby decreasing the manufacturing 
cost and increasing the manufacturing throughput. In the current HDD industry, there are 
two widely used SSW techniques: concentric SSW and spiral based SSW, which are 
described in Section 2.3.2 and Section 2.3.3, respectively. Both of them are discrete 
linear repetitive process and they have the same servo system consisting of two basic 
control loops: position control loop and timing control loop as shown in Figure 2.2. In the 
position control loop, a voice coil motor (VCM) is controlled to maintain the read/write 
heads over the centerline of the target track during reading and writing operations. And in 
the timing control loop, a phase lock loop (PLL) circuit is generally used to generate the 
servowriting clock signal for the write head to write the product servo patterns along the 
circular data tracks.   
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Figure 2.2: Block diagram of SSW servo control system 

2.3.2 Concentric Self-Servowriting Process 

Concentric SSW is also known as the seeded SSW, where the position information (in the 
radial direction) and the timing information (in the circumferential direction) are 
generated by referring to the information in the seeded track(s) or the previously written 
track. The process of concentric SSW is illustrated in Figure 2.3, where    0, 1, 2,i    
denotes the track number index and    0, 1, 2,k    denotes the servo sector number index 
in the track. It generally involves the following steps: 
(1) A seed track profile 0 ( )y k  written by the external servo writer is available on the 

disk. The position error signal (PES) and timing error signal (TES) are obtained 
when the read head is track-following on the seed track. 

(2) Assume the offset between the read head and the write head is one track width. 
Make the read head to track-follow on the seed track in the usual track-following 
mode while the write head writes the product servo patterns in the next track and 
generates the track profile 1( ) y k . 

(3) The read head uses the newly written track profile ( ) iy k as the track-following 
reference while the write head writes on the next track and generates the track 
profile 1( ) iy k . 

(4) Repeats step (3) until all the servo tracks are written.  
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Figure 2.3: Illustration of concentric SSW process 

      To describe the control system in concentric SSW process, we take its position 
control loop as an example. Its block diagram is shown in Figure 2.4, which consists of a 
typical track-following control loop with the plant, i.e. the voice coil motor (VCM) ( )zG  
and a feedback controller ( )zC . The read head track-follows on the track i  with profile 

( )iy k , while the write head writes on the track 1i   to generate the profile 1( )iy k . This is 
possible because of the offset in the radial direction between the read head and the write 
head. 

1( )iy k( )iy k ( )ie k ( )zG( )C z

 

Figure 2.4: Block diagram of concentric SSW position control loop 

      From Figure 2.4, we have the following equation to describe the controlled process 
dynamics over 0 1k N    and 1, 2,0,i      

 1( )  ( ) ( )i iy k T z y k    (2.2) 

where   1
( ) ( ) ( ) 1 ( ) ( )T z G z C z G z C z

   is the complimentary sensitivity function and N  

denotes the number of servo sectors in one track.  
      Notice that Equation (2.2) is the evolution of the track profile, i.e. ( )T z  is the 
response from the current track profile ( )iy k  to the next track profile 1( )iy k .  Therefore 
the track profile may grow and increase in amplitude, severely from track to track (i.e. in 
the i  direction). The performance must deteriorate after the seed track due to the effect of 
the previous track profile. In other words, the output dynamics in any track acts as a 
forcing function (or disturbance) and therefore contributes to the dynamics of the next 
track. This interaction between the successive tracks is a unique characteristic of all 
discrete linear repetitive processes. Consequently, should there be any error, it would 
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propagate and grow from track to track along the radial direction. Such outcome is 
clearly not desirable and requires appropriate control actions to correct it.    
      Following the above analysis, it can be concluded that the repetitive process in Figure 
2.4 is a typical case of discrete linear repetitive process, with the following characteristics: 

 The system error ( )ie k  is the only measurable signal during the process. In other 
words, the read head signal ( )iy k  or the write head signal 1( )iy k  is not directly 
measurable.  

 The control objective is to minimize the write head profile. Ideally, its magnitude 
( )iy   should converge to 0, i.e. ( ) 0lim ii

y


 . 

      Chapter 3 and Chapter 4 present detailed descriptions on the control motivations and 
control algorithms design for this discrete linear repetitive process. 

2.3.3 Spiral based Self-Servowriting Process 

Spiral based SSW is an alternate self-servowriting technique in HDD industry. Unlike 
concentric SSW, it is widely used to write the product servo sectors 0, 1, , 1N      along 
the circular tracks (as illustrated by the dashed lines in Figure 2.5) by referring to the 
spiral tracks (as illustrated by the solid lines in Figure 2.5) which are prewritten on the 
disk by using an external spiral writer. 
      The steps in spiral based SSW process are described as follows: 

(1) A set of spiral tracks 0, 1, , 1N      are prewritten on the disk by using the external 
spiral writer, where N  represents the number of spiral tracks, which is the same 
as the number of servo sectors in one circular track.  

(2) The read head in HDD unit reads these spiral tracks and generates a spiral wedge 
crossing signal which is processed by a demodulation circuit for recovering the 
position information and timing information from the spiral tracks. 

(3) The demodulated position and timing information are respectively used by the 
position control loop and timing control loop to generate the position error signal 
(PES) and servo write clock [74] for the write head. 

(4) The write head writes the concentric product servo patterns along the circular data 
tracks.  

(5) Repeat (2) – (4) until all the circular tracks are written.  
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Figure 2.5: Illustration of spiral based SSW process 

      For spiral based SSW process, we take its timing control loop as the example to 
describe the control system in this repetitive process, wherein the PLL circuit is nonlinear 
and its basic operations are presented in Section 5.2. The general linearized block 
diagram of spiral based SSW timing control loop is shown in Figure 2.6. 

( )ie k  ( )i k_ ( )R i k

 

Figure 2.6: Linearized block diagram of timing control loop in spiral based SSW 

      The signals and blocks in Figure 2.6 are defined as follows: 
 _ ( )R i k : the reference phase signal at the sector  k in the track  i , which is read 

from the spiral tracks and appears as the repeatable timing error during SSW 
process (see Section 6.2 or [20] for details), i.e. 

 _ 1 _( ) ( )  R i R ik k     (2.3) 

  ( )i k : the write head phase signal at the sector  k in the track i , which is the 

timing deviation written in the concentric product servo patterns. 
 ( )i ke : the system phase error at the sector  k in the track i . 

 ( )C z : the loop filter in the PLL circuit. 
 ( )G z : the controlled plant, i.e. the numerically controlled oscillator (NCO) in the 

PLL circuit. 
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      From the block diagram in Figure 2.6 and Equation (2.3), we have the process 
dynamics over 0 1, 1,2,  k N i     

  
1( )  ( )i ik k     (2.4) 

      Equation (2.4) shows that all the track profiles are the same in this repetitive process, 
because they simply copy from the previous-track profile. Moreover, they can also be 
expressed as 

 


_

_

( ) ( )
( )   ( )

1 ( ) ( )

          ( ) ( )

i R i

R i

G z C z
k k

G z C z

T z k

 







  (2.5) 

      From Equation (2.5), we know that the write head phase profile  ( )i k  is amplified 
through the closed-loop dynamics ( )T z  from the reference profile _ ( )R i k . 
      Same as concentric SSW process, spiral based SSW process is also a typical case of 
discrete linear repetitive process, with the following characteristics: 

 The system phase error ( )i ke is the only measurable signal. In other words, neither 
the reference signal from the spiral tracks _ ( )R i k  nor the write head signal  ( )i k  is 
directly measurable.  

 The control objective is to minimize the write head phase profile. Ideally, its 
magnitude  ( )i   should converge to 0, i.e.  0lim ( )i i  . 

      Chapter 6 and Chapter 7 present detailed descriptions on the control motivations and 
control algorithms design for this discrete linear repetitive process. 

Remark 2.2.1 

Throughout the dissertation, we assume the track length is fixed for all the servo tracks in 
self-servowriting process. 

2.4 Chapter Summary 

In this chapter, a general abstract model for discrete linear repetitive processes was 
introduced.  
      The unique characteristics of discrete linear repetitive processes were presented by 
studying two physical examples – concentric SSW process and spiral based SSW process, 
which are representative servowriting techniques in the current HDD manufacturing 
industry. The control loops in these two repetitive processes have some similarity in that 
only the system error signal is measurable and the control objective is to minimize the 
system output (i.e. the written position/timing deviation) profile. But the control problems 
encountered in the two processes are different, ranging from the error propagation in the 
iteration direction, the error propagation over the time, to the repeatable error dominating 
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the system’s dynamics. Therefore, various control methods are required to handle these 
problems.   
      From next chapter onwards, we examine these control problems in discrete linear 
repetitive processes one by one and focus on the development of analysis framework and 
the design of new control algorithms to resolve them accordingly.  
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Chapter 3  

Iterative Learning Control Design  
 

3.1 Introduction 

Iterative learning control (ILC), as the name suggests, is based on the paradigm of human 
learning. In a repetitive process, the information from earlier iteration(s) of the process 
can be used to improve the performance in the current iteration. The key motivation 
behind the design of novel ILC schemes is the efficient use of the information from the 
previous iterations to maximize the performance, minimize the tracking error, improve 
the robustness, and accelerate the convergence rate. The early rigorous formulations of 
ILC were developed by Arimoto [8] and Uchiyama [77]. Since then, ILC has been 
implemented in many industrial processes because of its simplicity in design, analysis, 
and implementation. In particular, it has been successfully implemented in industrial 
robotics [60, 76], computer-numerical control tools [50], injection molding systems [40], 
rapid thermal process [15], micro-scale robotic deposition [9], and self-servowriting 
process in hard disk drives [22, 61, 62]. 
      Along with the applications, many ILC algorithms that guarantee better robustness, 
tracking performance, and faster rates of convergence have been developed. The 
proportional (P) -type and proportional – derivative (PD) -type ILC schemes developed 
by Arimoto were designed primarily based on the stability constraints and were tuned for 
linear systems. Similar schemes for nonlinear systems were also designed based on the 
stability of ILC loop [2]. For guaranteeing the robustness and performance, the design 
based on stability was found to be insufficient. Alleyne et al. [10] proposed a frequency 
domain based ILC design using the time-varying filters for improving the robustness and 
performance. ILC design based on optimization of a cost function was introduced by 
Yamakita et al. [27]. Phan et al. [26] used the term linear quadratic optimal learning 
control (LQL) to describe the ILC counterpart of optimal linear quadratic regulator (LQR) 
problems in the standard control system design. Amann et al. [6] proposed an ILC design 
strategy based on optimization of a quadratic performance index with a forgetting factor. 
More recently, wavelet transform based ILC control strategies have been developed [81]. 
Significant research has also been done on the design and analysis of monotonically 
convergent ILC algorithms [10, 54]. 
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      For analysis and design, three alternative formulations of ILC systems have been 
proposed in literature. The first formulation is based on the frequency response of the 
plant and the error learning filter. This formulation, although restricted only to linear time 
invariant (LTI) plant and error learning filter design, is attractive because of its simplicity. 
The second approach uses a lifted domain representation [16] of the repetitive process to 
formulate the ILC design problem. Using the lifted formulation, it is possible to analyze 
and design ILC algorithms for linear time-varying (LTV) plants. However, as the 
iteration length becomes larger, the design and analysis complexity increases 
dramatically. An alternative approach towards ILC stability and design, based on two-
dimensional (2D) systems theory, has also been developed in [7]. This approach is 
especially well suited for higher order ILC design for linear time invariant ILC analysis. 
Analysis and control design based on 2D systems theory for discrete linear repetitive 
processes are presented in Chapter 4.   
      Considering the repetitive nature of concentric SSW process in hard disk drives, an 
optimization-based ILC scheme is proposed in this chapter to mitigate the track-to-track 
radial error propagation (REP) and improve the quality of the written servo tracks in its 
position control loop. The conditions for asymptotic convergence and monotonic 
convergence are derived, which are stronger than what have been discussed by Wu et al. 
[83]. Based on these conditions, the ILC design is formulated into an 1L  optimal control 
problem, which can be easily solved by the optimization programming.  
       This chapter is organized as follows. Section 3.2 formulates the control problems in 
concentric SSW position control loop. The design of an iterative learning controller based 
on 1 L  optimal control theory is presented in Section 3.3. Section 3.4 discusses the 
consideration of disturbance and noise in practical SSW process. The effectiveness of the 
iterative learning controller is demonstrated by simulation results in Section 3.5. Finally, 
Section 3.6 summaries the chapter.  

3.2 Control Problem Formulation 

3.2.1 Radial Error Propagation 

From Section 2.3.2, we know that during concentric SSW process, each servowriting step 
writes a ‘memory’ of all preceding track errors. These written-in errors propagate along 
the radial direction (i.e. from track to track), which is the so-called radial error 
propagation (REP). REP is the main issue in concentric SSW position control loop and 
the servowriting process may be caused to fail without significantly controlling such error 
propagation.  
      The evolution of the track profile is written in Equation (2.2). In a general system, the 
gain of the complimentary sensitivity function T z( ) , as shown in Figure 3.1, is larger than 
1 in some range of frequencies, which amplifies the frequency components of the track 
profile ( )iy k  and causes the written-in errors to build up in the radial direction across the 
disk, as shown in Figure 3.2. So in order to contain the REP, we need to control the 
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magnitude of ( )iy k . Ideally, it is desired to design a correction signal to ensure 
0( )lim ii

y


 , as illustrated in Figure 3.3. 
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Figure 3.1: Frequency response of general complementary sensitivity function 
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Figure 3.2: Actual written track profile due to REP  

3.2.2 AC Track Squeeze 

In addition to containing the REP, another significant control objective in concentric 
SSW position control loop is to assure good servowriting quality. An important quantity 
in this regard is the AC track squeeze, which is defined as the minimum spacing between 
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two adjacent tracks as shown in Figure 3.4. The AC track squeeze for the track i , 
denoted by ( )sqT i , can be written as 

  1
[0, 1]

( )  min 1 ( ) ( ) 100%sq i i
k N

T i y k y k  
      (3.1) 
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Figure 3.3: Ideal written track profile 

 track i

1track i  
 

Figure 3.4: Illustration of AC track squeeze 

Remark 3.2.1 

 ( ) iy k represents the written track profile at the sector k  in the track i . Its value 
denotes the deviation of the written track center from the ideal circular track 
center.  

 ( ) iy k is positive (or negative) when the written track profile deviates outwards (or 
inwards) as illustrated by the arrow in Figure 3.4.  

 The magnitude of ( ) iy k is normalized to the percentage of one track width.  
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      From Equation (3.1), we can see that the ideal ( )sqT i  should satisfy: lim ( ) 100%i sqT i  , 

as shown in Figure 3.5. If the AC track squeeze is too small, two adjacent tracks with 
narrow spacing may interfere with each other and cause data corruption. 

10 20 30 40 50 60 70 80 90 100
80

85

90

95

100

Track number

A
C

 t
ra

ck
 s

q
u

ee
ze

 (
%

 t
ra

ck
)

 

Figure 3.5: Ideal AC track squeeze profile 

      Notice that Equation (3.1) can be further written as 

 

  
 
 

1[0, 1]

1
[0, 1]

1

( )  1+ min ( ) ( ) 100%

  1 max ( ) ( ) 100%

  1 ( ) ( ) 100%

sq i ik N

i i
k N

i i

T i y k y k

y k y k

y y

 

 

 

  

    

     

  (3.2) 

where ( )iy


  represents the maximum magnitude of the head position deviation profile 
along the track  i , i.e.  

0 1

,0,1 ...( ) max ( ) )( i i
k N

iky y


  
 .  

      Equation (3.2) shows that the AC track squeeze ( )sqT i  is determined by ( )iy


  and 

1( )iy  
 . Therefore, it is intuitive to control ( )iy


  in order to improve the AC track 

squeeze.  

3.3 Iterative Learning Control Design using 1  L Optimal Control 

3.3.1 Analysis in Lifted Domain 

In this section, a feedforward correction signal ( ) iu k is designed and plugged into 
concentric SSW position control loop as shown in Figure 3.6.  
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1( )iy k( )iy k

( )ie k( )iu k

( )G z( )C z

 

Figure 3.6: Block diagram of concentric SSW position control loop with ILC 

      Notice that in concentric SSW process, the read head or write head position signal 
( )iy k  is not measurable. However, the position error signal (PES) ( )ie k  and its previous-

track values 1( )ie k  are available. Hence, it is feasible to use 1( )ie k  to generate the 
correction signal ( )iu k , i.e. 

 1i iu k F z e k ( )  ( ) ( )   (3.3) 

where ( )F z  is the learning filter to be designed.  
      In general, ( )F z  has both causal and non-causal terms, as written in the following 
equation 

 2 1 2
2 1 0 1 2
N N C C CF z f z f z f f z f z       ( )      

where  1N
nf n    represents the coefficient of non-causal term and  0C

nf n   represents 
the coefficient of causal term.  

Remark 3.3.1 

According to Equation (3.3), the error signal from the previous track has been recorded 
when writing the current track. That means  1( ) : 0 1  ie k k N    is available for control 
computation from the beginning of the current track i . Therefore, a non-causal ( )F z  is 
realizable with any non-zero coefficient  1N

nf n  .  
      From the block diagram in Figure 3.6, we obtain the evolution of the track profile 
with the correction signal ( )iu k , i.e. the relationship between the read head profile ( )iy k  
and the write head profile 1( )iy k ,  

 

 

 
 

1
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1

i i i

i i

i i

i

y k T z y k u k

T z y k T z F z e k

T z y k T z F z G z C z y k

T z S z F z y k






 

 

 

 

( )  ( ) ( ) ( )

             ( ) ( ) ( ) ( ) ( )

             ( ) ( ) ( ) ( ) ( ) ( ) ( )

             ( ) ( ) ( ) ( )

  (3.4) 

where 1 1S z z C zG ( ) /( ( ) ( ))  is the sensitivity function and 1( ) ( )T z S z   is the 
complementary sensitivity function. 

      Notice that the position error signal (PES) profile ( )i ke  has the same evolution, i.e. 
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( ) ( ) ( )          ( ) ( ) ( )

          ( ) ( ) ( ) ( )
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  (3.5) 

      Now, we define the following super-vectors: 
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y y e e u u
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       
            
          
     
          
            

  

  

then the track profile evolution in Equation (3.4) can be written in the lifted domain 

 

 

1

1

1

i i i
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i i
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Ty TFe

Ty TF GC y

T SF y







 

 

 
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        ( )   

        

  (3.6) 

where  S ,  T , G ,  C , and   F are Markov matrices of ( )S z , ( )T z , ( )zG , ( )C z , and ( ) F z .  
      Analogously, the lifted-domain representation of the PES profile evolution in 
Equation (3.5) is 

  
 

1

1

1

i i i i

i i

i

e y y u

S y Fe

T SF e







  

 

 

  

     

     

  (3.7) 

      Notice that the impulse response of ( )  S z is represented as 

 1 2 1
0 1 2 1

N
NS z s s z s z s z   
     ( )      

where    0 1 1, , , Ns s s   are Markov parameters of ( )S z . 
      By using the Markov parameters, we construct the Markov matrix   S as an N N  
matrix 
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 
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


   
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      Matrices  T  and  F are constructed analogously and written as 
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where    0 1 1, , , Nt t t   are Markov parameters of ( )T z . 

Remark 3.3.2 

Equation (3.6) (or Equation (3.7)) implies that the matrix    T SF is essential in relating 

the current track profile vector  iy  and the next track profile vector 1iy   (or the current-
track PES profile vector ie  and the next-track PES profile vector 1ie  ). 

3.3.2 Asymptotic Convergence Analysis 

Definition 3.3.1 Concentric SSW position control loop is said to be asymptotically 
convergent if the head position deviation profile ( ) iy  converges to zero, i.e. 

0( )lim ii
y


 .  

      It is easy to see that the condition for asymptotic convergence of the system in 
Equation (3.6) is 

   1T SF      (3.8) 

where  T SF   denotes the eigenvalue of the matrix  T SF . 

3.3.3 Monotonic Convergence Analysis 

To improve the AC track squeeze, asymptotic convergence is insufficient and a stronger 
condition is required.  
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Definition 3.3.2 Concentric SSW position control loop is said to be monotonically 
convergent if the maximum magnitude of the head position deviation profile, i.e. iy


 ( ) , 

decreases successively, as the track number i  increases.    
      Notice that the above definition of monotonic convergence can be equivalently 
expressed as 

 1 0 1i iy y for i  
 ( )   ( )     (   , , )     (3.9) 

      For the frequency-domain representation in Equation (3.4), the condition for fulfilling 
Equation (3.9) is 

 
1

1T z S z F z ( ) ( ) ( )     (3.10) 

where 1
    denotes the 1L  norm. 

      For the lifted-domain representation in Equation (3.6), the condition for fulfilling 
Equation (3.9) is 

 1T SF


     (3.11) 

where   


  denotes the infinity norm. 

Analysis 

 Equation (3.10) or Equation (3.11) is an 1L  optimal control problem. 
 Since the PES profile has the evolution as written in Equation (3.5) or Equation 

(3.7), so Equation (3.10) or Equation (3.11) also implies that 

 1 0 1i ie e for i  
 ( )   ( )     (   , , )     

That means under the condition of monotonic convergence in Equation (3.9), the 
peak value of the PES decreases monotonically as well as the peak value of write 
head position deviation. As a result, the quality of self-servowriting (i.e. the AC 
track squeeze) is improved. 

 1i iy y  
( ) ( )   is stronger than what has been discussed by Wu et al. [85]: 

1 2 2i iy y  ( ) ( ) , which indicates monotonic decrease of the energy. It requires 
1T z S z F z


 ( ) ( ) ( ) , which is an H  control problem. In the lifted-domain 

representation, it requires 2
1T SF  .  

 Let ( )t k  be the impulse response of T z S z F z( ) ( ) ( ) . Then T z S z F z


( ) ( ) ( )  can be 
computed as 

 max ( )
k

t k     

 and 1
T z S z F z( ) ( ) ( )  can be computed as  
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 ( )
k

t k     

Hence, 1
1T z S z F z ( ) ( ) ( )  is more conservative than 1T z S z F z


 ( ) ( ) ( ) . Equivale-

ntly to say, 1i iy y  
 ( ) ( )  is the sufficient condition of 1 2 2i iy y  ( ) ( ) .  

1L  optimal control 

In [80], Vidyasagar first formulated the 1L  optimal control problem. Similar to the H  
optimal control problem, it seeks to minimize the influence of additive disturbances on 
the system outputs. In the  H  control problem, this influence is measured in terms of the 
amplification of the disturbance input energy. In the 1L  control problem, this influence is 
measured in terms of the maximal possible amplification of the disturbance input 
magnitude. A complete solution to the 1L  optimal control problem was given in [65]. 
Through the use of a parameterization of all stabilizing controllers, an optimal, possibly 
dynamic, linear controller is obtained by solving appropriate linear programming.  

3.3.4 1L  Optimal Control Formulation 

As a design example, the learning filter ( ) F z is considered as a finite impulse response 
(FIR) filter with three causal terms and two non-causal terms, i.e. 

 2 1 2
2 1 0 1 2
N N C C CF z f z f z f f z f z     ( )    (3.12) 

      Now we define the following new transfer functions and their corresponding Markov 
matrices: 
(a) 1( )S z  is defined as one-step advance of ( ) S z , i.e. 1( ) ( )S z z S z   and 1  S is its Markov 

matrix. 2  S is defined as Markov matrix of 2 ( ) S z , which is two-step advance of ( ) S z , i.e. 
2

2 ( ) ( )S z z S z  . Matrices 1  S and 2  S are written as 
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



   


  (3.13) 

 (b) Similarly, 3( )  S z and 4 ( )  S z are defined as one-step delay and two-step delay of ( ) S z , i.e.  
1

3( ) ( )S z z S z   and 2
4( ) ( )S z z S z  ; their corresponding Markov matrices are 3

S  and 

4S , which are written as 
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  (3.14) 

Consequently, the matrix   SF is expressed as 

 
0 0 1 1 2 2 1 3 2 4
C N N C C

k k

SF f S f S f S f S f S

S f




         

 

  

       
  (3.15) 

where 

 0 0 0 1 1 2 2 3 1 4 2
C N N C CS S f f f f f f f f f f            ,  , ,    , ,    

      Using the definition of the matrix infinity norm, the following holds 

 

1

k k

N

ij k ij k
i

j

T SF T S f

T S f




 



 

  

 
  

 



  _

  

                  max

  (3.16) 

where _ k ijS  is the element  ( , ) i j of matrix 0 1 4k kS ( ), , ,  ; and 
ijT  is the element i j( , )  of 

matrix T . 
      By introducing Equation (3.16), Equation (3.11) can be expressed as 

 
1

1
N

ij k ij k
i

j

T S f


 

 
  

 
  _max     (3.17) 

      Notice that Equation (3.17) is an optimization control problem. 

3.4 Consideration of Disturbance and Noise 

During practical concentric SSW process, the spindle/disks disturbance and the sensor 
noise always exist. They inevitably deviate the read/write heads from the desired track 
center and deteriorate the quality of the written servo tracks. Hence, the spindle/disks 
disturbance ( )id k  and the sensor noise ( )i kn are taken into consideration in the simulation 
study, as shown in Figure 3.7. 
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Figure 3.7: Concentric SSW position control loop with disturbance and noise 

      By considering ( )id k  and ( )i kn , the written tracks and PES have new profile evolution. 
For example, the track profile evolution in Equation (3.6) is rewritten as 

 

 
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   

   

    
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        ( ) ( )

        

  (3.18) 

      From Equation (3.18), it can be seen that the next-track profile 1iy   is affected not 
only by the current-track disturbance  in and id , but also by the previous-track 
disturbance 1id  . Since the response from ( ) in k to 1iy k ( )  is T z( ) , and the response 
from  ( ) id k to 1i

y k ( )  is ( ) S z , so the rejection performance on in  and id  is determined by 
T z( )  and S z( ) , which are fixed by the feedback controller ( )C z . On the other hand, from 
Equation (3.18), it can be seen that the rejection performance on 1id   is determined 
by S z F z( ) ( ) . Thus, in order to effectively attenuate 1id  , the learning filter ( ) F z  should be 
designed such that  SF S

 
 , or equivalently 

 1F


    (3.19) 

      Notice that matrix   F has the following structure 
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  (3.20) 

      From Equation (3.20), we further conclude that 1 F

 can be rewritten as 



 

 

29

  2 1 0 1 2 1C C C N Nf f f f f         (3.21) 

      Now the design problems in equations (3.17) and (3.21) are formulated into one 
optimization problem to obtain the feasible filter coefficients. This optimization problem 
can be solved by using the semidefinite programming (SDP) in Yalmip package [87]. 

3.5 Simulation Study 

In this section, the proposed ILC scheme is applied to a benchmark hard disk drive (HDD) 
developed by IEEJapan technical committee on nano-scale servo (NSS) system [88]. The 
simulated HDD has 220 servo sectors per track, i.e. 220N  . The spindle rotation speed is 
7200 rpm . Thus, the sampling frequency is 220 (7200 / 60) 26, 400  Hz . The bode plot of 
VCM in the position control loop is shown in Figure 3.8. 
      The performance of the learning filter ( ) F z is firstly examined. Using the SDP in 
Yalmip package obtains F z( )  as 

 
2 1 2

2 1 0 1 2

2 1 20 2872 0 0095 0 3094 0 1482 0 0876

N N C C CF z f z f z f f z f z

z z z z

 

 

    

     

( )  

          . . . . .
  (3.22) 

      From Equation (3.22), we can verify that 

  2 1 0 1 2 0 842 1C C C N Nf f f f f        .     

i.e. Equation (3.21) is fulfilled.  
      Figure 3.9 shows the frequency response of ( )F z . It is clearly seen that the magnitude 
of F z( ) is below 0 db at all frequencies, which is consistent with Equation (3.19). The 
frequency responses of  ( ) S z and ( ) ( ) S z F z are shown in Figure 3.10. The dashed line 
represents the response of S z( )  and the solid line represents the response of S z F z ( ) ( ) . It is 
observed that  ( ) ( ) S z F z not only preserves the disturbance attenuation property of  ( ) S z at 
low frequencies, but also has much lower values than ( )S z  at high frequencies. In other 
words, ( ) ( ) S z F z has better rejection performance on 1id   than ( )S z . 
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Figure 3.8: Bode plot of VCM in SSW position control loop 
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Figure 3.9: Frequency response of ( )F z  
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Figure 3.10: Frequency responses of  ( )S z and ( ) ( ) S z F z  

      Figure 3.11 and Figure 3.12 show the closed-loop responses before and after applying 
the proposed ILC algorithm, respectively. From Equation (3.22), we obtain 

0 9963T SF   . , which satisfies the condition of monotonic convergence in Equation 

(3.11). As a result, it can be seen that after applying the proposed ILC scheme as shown 
in Figure 3.12, the closed-loop response, i.e. T z S z F z( ) ( ) ( ) , has the maximum gain of less 
than 1, which ensures that the effect of non-circular tracks is diminishing as the track 
number   i increases. 
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Figure 3.11: Closed-loop response before applying ILC 
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Figure 3.12: Closed-loop response after applying ILC 

      In the simulation study, the modeled sensor noise  ( )  in k is white noise with average 
  1.5%  in  track width as shown in Figure 3.13; and the disk/spindle disturbance  ( )id k  

is modeled as white noise with average   1. %7in   track width as shown in Figure 3.14. 
The seed track profile 0 ( ) y k (as shown in Figure 3.15) is assumed to be given with the 
average  0 11.0%y   track width. In the simulation, 1000 servo tracks were written by 
applying the proposed ILC algorithm.  
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Figure 3.13: Sensor noise in SSW position control loop 
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Figure 3.14: Disk/spindle disturbance in SSW position control loop 
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Figure 3.15: Seed track profile 

      Figure 3.16 shows the track profile with the effect of disturbance and sensor noise. 
The resulting average    iy is 2.41% track width, which is much smaller than that of the 

seed track 0 y . It is also observed that the written track profile iy  is convergent. In order to 
verify the effectiveness of the proposed ILC algorithm, we compare the result in Figure 
3.16 with the result in the original system, i.e. before applying the proposed ILC scheme. 
The comparison is shown in Figure 3.17. The solid line shows the written track profile 
with the ILC algorithm, and the dotted line shows the written track profile without the 
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ILC algorithm. It is learnt that in the original system, the resulting written track profile is 
much worse, with a high average   30.1%iy   track width. Hence, we can conclude that 
the REP is contained well in the system with the proposed ILC scheme. 
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Figure 3.16: Written track profile 
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Figure 3.17: Comparison of written track profile with and without ILC scheme 

      Another important performance metrics is the AC track squeeze. From Equation (3.1), 
we know that the ideal AC track squeeze is one track width. If the AC track squeeze is 
too small, two adjacent tracks with narrow spacing may cause some data corruption. 
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Figure 3.18 and 3.19 show the AC track squeeze profile and its histogram, respectively. 
The resulting average AC track squeeze is 92.1% track width, which is within the 
acceptable limit and better than the result in [83]. Figure 3.20 shows the comparison of 
this result with the result in the original system. The solid line shows the AC track 
squeeze with the proposed ILC scheme, i.e. the result in Figure 3.18. The dotted line 
shows the AC track squeeze in the original system, i.e. without the ILC algorithm. From 
Figure 3.20, we can clearly see that with the proposed ILC scheme, the AC track squeeze 
is greatly improved and its average value is much higher than the result (-61.9% track 
width) in the original system.   
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Figure 3.18: AC track squeeze profile 
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Figure 3.19: Histogram of AC track squeeze 



 

 

36

0 100 200 300 400 500 600 700 800 900 1000
-400

-300

-200

-100

0

100

Track number

A
C

 t
ra

ck
 s

q
u

ee
ze

 (
%

 t
ra

ck
)

 

 

without ILC

with ILC

 

Figure 3.20: Comparison of AC track squeeze with and without ILC scheme 

      Figure 3.21 shows the comparison of the position error ( )ie k  in the systems with and 
without the proposed ILC scheme. By applying the ILC scheme as shown in the solid line, 
the resulting average   3.27%ie   track width, which is much smaller than the result 
(52.4% track width) in the system without the ILC scheme as shown in the dotted line. 
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Figure 3.21: Comparison of position error with and without ILC scheme 

3.6 Chapter Summary 

In this chapter, an iterative learning control scheme was proposed to deal with the 
iteration-to-iteration error propagation issue in discrete linear repetitive processes.  
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      The position control loop in HDD concentric SSW process was taken as an example. 
In this repetitive process, the current-track profile is used as the reference and amplified 
through the closed-loop dynamics to generate the next-track profile. As a result, the 
current-track error is also propagated to the next track and amplified. An optimization-
based iterative learning control scheme was proposed to contain such error propagation. 
The previous-track error information was recorded and utilized for constructing the 
learning control law. The conditions of asymptotic convergence and monotonic 
convergence were derived and used for designing the learning filter. An 1L  optimal 
control problem was formulated by sense of minimizing the maximum magnitude of the 
written position deviation profile.  
      The effectiveness of the proposed control scheme was verified through the simulation 
study. The proposed learning controller shows good convergence property and the radial 
error propagation was contained well, which resulted in good-quality written tracks with 
small track distortion.  
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Chapter 4  

Two-Dimensional Representations and 
Control Design 
 

4.1 Introduction  

Repetitive processes have dynamic behavior along two directions, i.e. the time and the 
iteration directions. This type of processes can be considered as two-dimensional (2D) 
systems in which the inputs, outputs, and internal states are all defined as functions of 
two independent variables. In other words, the dynamics of a 2D system is propagated 
along two independent directions.  
      In comparison to one-dimensional (1D) model, 2D model can describe a complex 
process such as repetitive process better. Another driving force for 2D systems theory 
development comes from the iterative learning control (ILC) design, which is undergoing 
rapid development with many successful applications for solving practical control 
engineering problems. An ILC system can be considered as a special 2D system with 
dynamic evolution along both the time and the iteration directions. The key difference 
from a general 2D system is that an ILC system has dynamic evolution repeated along the 
time over a finite duration. In [52], Roesser has developed a well-known state-space 
model for 2D discrete systems. Geng et al. [36] first pointed out the relationship between 
an ILC system and a linear 2D system in Roesser model and conducted the design and 
analysis of an ILC system from a 2D system viewpoint. A direct ILC synthesis based on 
2D systems theory was proposed by Kurek and Zaremba [51]. On the basis of robust 
control theory developed for 2D system in Roesser model, the authors in [72] extended 
this idea by proposing an integrated design method for an ILC system. This design allows 
investigation of robust convergence along both the time and the iteration directions in an 
ILC design sense.  
      There are three benefits of treating a repetitive process from a 2D system viewpoint: 

 In a 2D sense, the properties of a repetitive process along the time and the 
iteration directions can be investigated in both controller design and stability 
analysis.  

 The convergence problems in a repetitive process can be translated to the stability 
problems in a 2D system.  
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 Designing the control scheme for a repetitive process in a 2D system frame can 
result in an iteration-wise error learning algorithm combined with a time-wise 
feedback control algorithm to ensure the control performance not only along the 
iterations but also over the time. 

      Over the past decades, 2D systems have received considerable attention in both 
theoretical and practical research.  

 On the theoretical side, the early works [43, 55, 47, 44] mainly focused on the 
stability issues of 2D linear systems. Recently, a number of results on the robust 
control of 2D systems have been reported. On the basis of linear matrix inequality 
(LMI), Du and Xie [19] conducted a robust stability analysis and synthesized a 
robust controller for the 2D system in Fornasini-Marchesini (FM) model with 
norm-bounded parameter uncertainties. Guan et al. [35] and Xie et al. [86] 
extended the robust guaranteed cost control and robust H  control of 1D systems 
to FM-type 2D discrete systems. For a 2D system in Roesser model, Du et al. [18] 
proposed a robust H  control scheme and Lam et al. [53] synthesized a robust 
output feedback control design. Galkowski et al. [31, 32, 33, 34] have conducted a 
comprehensive analysis and control synthesis in both discrete and continuous 
context, for a class of repetitive processes described by the 2D Roesser model. All 
of the above works, however, were conducted based on the system stabilization, 
leading to conservative linear time invariant (LTI) 2D state feedback control. 
Different from the above stability based methods, Sebek and Kraus [75] 
investigated a 2D stochastic linear quadratic control (LQC) scheme via 2D 
polynomial technique.  

 On the practical side, 2D modeling and system theories have been successfully 
applied in 2D digital signal processing [56], image processing [45], and mining 
processing [69].  

      There are two independent dynamic processes in a 2D system, in the context of HDD 
concentric SSW position control system. We use one of them to reflect the dynamics in 
the time domain and the other to reflect the dynamics in the iteration/ track domain. 
There are several motivations and significances of employing 2D systems theory to 
analyze and design controller for concentric SSW position control loop: 

(a) Concentric SSW process is a 2D system in nature. The 2D Roesser model is able 
to reveal the 2D characteristics of this repetitive process, i.e. its dynamic 
propagation along the time (i.e. circumferential) and the iteration/track (i.e. radial) 
directions.  

(b) By using the 2D Roesser model, the convergence problems in concentric SSW 
system can be solved by using the 2D systems theory, which provides a powerful 
approach to guarantee the stability and convergence of concentric SSW process in 
both the time and the iteration domains simultaneously. 

      This chapter presents an alternative control algorithm for concentric SSW position 
control loop. The remainder of this chapter is organized as follows. Section 4.2 reviews 
some useful definitions and theorems in 2D discrete linear systems. Section 4.3 describes 
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the concentric SSW position control loop by a 2D Roesser state-space model. A 2D 
control scheme is proposed in Section 4.4. Using the 2D systems theory, the 2D state 
feedback controller is designed together with an error learning filter to guarantee 
asymptotic stability and monotonic convergence of concentric SSW position control loop 
along both the time and the track directions. A design example is provided in Section 4.5. 
The effectiveness and feasibility of the proposed 2D control scheme are verified through 
the simulation study in Section 4.6. Finally, Section 4.7 gives the chapter summary. 

4.2 2D Systems Theory Review 

In this section, some useful definitions and theorems in 2D discrete linear systems are 
briefly reviewed.  

4.2.1 2D Discrete Systems in Roesser Model 

In a 2D Roesser state-space model [52], the local state of the system is decomposed into 
two components, namely the horizontal state hx  and the vertical state vx , i.e. 

( , ) ( , ) ( , )
Th vx k i x k i x k i    , where the  indexes k  and i  are non-negative integer-valued 

horizontal and vertical coordinates.  1nhx   and 2nvx   are the state components which 
are propagated horizontally and vertically. The compact matrix form of 2D Roesser state-
space model is written as 
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  (4.1) 

where ru  is the input vector and my  is the output vector of the 2D system. The 

boundary conditions of the system in Equation (4.1) are ( , )0hx i  and ( , 0)vx k , for 
0,1, 2i   and 0,1, 2k  . 

4.2.2 Bounded-Input Bounded-Output Stability of 2D Discrete Systems in Roesser 
Model 

Stability is the most significant issue in 2D systems.  

Definition 4.2.1 [52] The 2D discrete linear system in Equation (4.1) is said to be 
bounded-input bounded-output (BIBO) stable if and only if for every 0M  , there 
exists an 0N   such that, if ( , )u k i M  for all ( , )k i , then ( , )y h j N for all ( , )h j , 

where   v  denotes a norm of v .   
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Theorem 4.2.1 [52] The following three statements are necessary conditions for the 2D 
Roesser model system in Equation (4.1) to be BIBO stable: 

(1) 11A  is stable;  
(2) 22A  is stable;  

(3) 11 12

21 22

A A

A A

 
  

 is stable. 

Remark 4.2.1 

 A square matrix is said to be stable if all of its eigenvalues lie in the interior of the 
unit circle in the complex plane. 

 Theorem 4.2.1 is useful for checking the instability of the 2D system in Equation 
(4.1). However, it is not sufficient in general case.  

      The followings show how far Theorem 4.2.1 is from implying BIBO stability of the 
2D system in Roesser model. 
      Now consider a nonsingular transformation for the state variable in Equation (4.1) 

 1

2

    0( , ) ( , ) ( , )
    

0    ( , ) ( , ) ( , )

h h h

v v v

Tx k i x k i x k i
T

Tx k i x k i x k i

      
      

      
    (4.2) 

which brings Equation (4.1) to 

 

 

11 12 1

21 22 2

1 2

( 1, ) ( , )
( , )

( , 1) ( , )

( , )
( , )

( , )

( , ) (
( , )

( , )

h h

v v

h

v

h h

v

x k i A A x k i B
u k i

A A Bx k i x k i

x k i
A B u k i

x k i

x k i x
y k i C C C

x k i

       
                

 
  

  
 

   
  

  

                       

               
, )

( , )v

k i

x k i

 
 
  

  (4.3) 

where  

  11 12 11 1
1 2

21 22 2

,    ,    
A A B

A T T B T C C C T
A A B

    
         

  

Theorem 4.2.2 [57] The following three statements are sufficient conditions for the 2D 
Roesser model in Equation (4.1) to be BIBO stable 

(1) 11A  and 22A  are stable; 
(2) 11A  and 22A  are diagonalizable and the transformation in Equation (4.2) is 

chosen such that 11A  and 22A  in Equation (4.3) are diagonal; 

(3) 12 21 11 22(1 )(1 )A A     . 
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where 
1

1111 1
max ( )i

i n
A

 
  , 

2
2222 1

max ( )i
i n

A
 

 , ( )i   denotes the eigenvalues of a matrix, and 

A  is the induced norm of matrix A  and defined as 

 
1
max ( )T

ii n
A A A

 
   

where n  is the dimension of matrix A . 

4.2.3 Asymptotic Stability of 2D Discrete Systems in Roesser Model 

Definition 4.2.2 [52] The 2D Roesser model in Equation (4.1) is said to be 
asymptotically stable if and only if for zero-input (i.e. ( , ) 0u k i  ) and any finite 
boundary conditions (0, )hx i  and ( ,0)vx k , 

,
sup ( , )

k i
x k i  is finite and the following equation 

holds 

 
/ /

( , )
lim ( , ) lim 0

( , )

h

vk and or k and or
i i

x k i
x k i

x k i 
   

 
  

  
     (4.4) 

4.2.4 2D Transfer Function and Related Representations 

By denoting 1z  and 2z  as the shift operators along the horizontal direction (described by 

the index k ) and the vertical direction (described by the index i ), we define the 2D z-
transformation as 

 
 1 2

1 2
0 0

( , ) ( , )

( , ) k i

k i

Y z z y k i

y k i z z
 

 

 

 

 

   

                
  (4.5) 

      Applying the above z-transformation definition to the 2D Roesser model in Equation 
(4.1) yields the 2-D transfer function matrix 

 

 

1 2
1 2

1 2

1

1 11 12 1
1 2

21 2 22 2

( , )
( , )

( , )

Y z z
G z z

U z z

z I A A B
C C

A z I A B





    
          

   

                

  (4.6) 

      The characteristic polynomial of the 2D Roesser model in Equation (4.1) is defined as 

 1 11 12
1 2

21 2 22

( , ) det
z I A A

d z z
A z I A

  
     
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Theorem 4.2.3 [52] The 2D Roesser model in Equation (4.1) is asymptotically stable if 
and only if 

 1

2

1 12

1 2 1 2
21 2 22

( , ) det 0 ( 1 1)
n

n

z I A
d z z z or z

A z I A

    
        

     
      (4.7) 

      Applying matrix manipulations on Equation (4.7) yields 

  
 

1 2 1

2 1 2

1 2

1
1 11 2 22 21 1 11 12 1 2

1
2 22 1 11 12 2 22 21

( , )

det( ) det ( ) 0 ( 1 1)

det( ) det ( )

n n n

n n n

d z z

z I A z I A A z I A A z or z

z I A z I A A z I A A







              

        

     

   

 

 (4.8) 

      Notice that the asymptotic stability condition in Equation (4.8) can be reduced to the 
following two equivalent conditions: 

 
 

1

2 1

1 11 1

1
2 22 21 1 11 12 1 2

det( ) 0, 1

det ( ) 0 1 1)

n

n n

z I A z

z I A A z I A A z and z

    


         

  

    
  (4.9a) 

or 

 
 

2

1 2

2 22 2

1
1 11 12 2 22 21 2 1

det( ) 0, 1

det ( ) 0 1 1)

n

n n

z I A z

z I A A z I A A z and z

    


         

  

        
  (4.9b) 

      Theorem 4.2.2 and Theorem 4.2.3 are useful for deriving the following significant 
theorem. 

Theorem 4.2.4 [52] The 2D Roesser model in Equation (4.1) is asymptotically/BIBO 
stable if  

 
 

11

1

22 21 11 12

  1

1   1

A

A A A A


 


  
  (4.10a) 

or 

 
 

22

1

11 12 22 21

  1

1   1

A

A A A A


 


  
  (4.10b) 

4.3 2D Representation of Concentric SSW Position Control System 

From the block diagram of concentric SSW position control system in Figure 2.4, the 
state-space description of the controlled plant voice coil motor (VCM) can be written as 
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1

( 1)  ( ) ( )

   ( )  ( )

i p i p i

i p i

x k A x k B u k

y k C x k

  


  (4.11) 

where ( , , , 0)p p pA B C    is the state-space realization of the plant VCM, and ( )iu k  represents 

its control input. 
      It can be seen that the dynamics in Equation (4.11) contains two independent 
components as shown in Figure 4.1. One is propagated in the time domain (i.e. along the 
circumferential direction) which is described by the index k ; the other is propagated in 
the track domain (i.e. along the radial direction) which is described by the index i . From 
this point of view, the 2D Roesser model introduced in Section 4.2 is an appropriate 
mathematical model to describe the entire dynamics in concentric SSW position control 
system. 

 track direction i

  time direction k

 

Figure 4.1: Illustration of 2D domains on the disk 

      Firstly, we define 1z  and 2z  as the shift operators along the time domain described 
by k  and the track domain described by i , respectively, i.e.  

 1

2

( 1, )  ( , )

( , 1)  ( , )

y k i z y k i

y k i z y k i

  
  

  (4.12) 

      We also define ( , )x k i  and ( , )y k i  as the horizontal state and vertical state, respectively. 
Then the plant VCM in Equation (4.11) can be rewritten as the following 2D state-space 
equation 

 
0( 1, ) ( , )

    ( , )
( , 1) 0 ( , ) 0

p p

p

A Bx k i x k i
u k i

y k i C y k i

      
                

  (4.13) 

      The position error signal (PES) ( )ie k  in Figure 2.4 can be equivalently expressed as 
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( , )  ( , ) ( , 1) 

           ( , ) ( , ) 

( , )
           [ 1]

( , )

p

p

e k i y k i y k i

y k i C x k i

x k i
C

y k i

  
 

 
    

 

  (4.14) 

      Notice that Equation (4.13) and Equation (4.14) are state-space representation of a 2D 
Roesser model. In other words, these two equations form a 2D Roesser model 1 2( , )G z z  

with the state-space realization 
  0

,  ,    1 ,  0
  0  0

p p

p
p

A B
C

C

    
             

, where ( , )u k i  is the control 

input signal and ( , )e k i  is the output signal. 
      Using the definition in Equation (4.12) and the 2D Roesser model 1 2( , )G z z  in 
equations (4.13) – (4.14), the block diagram of concentric SSW position control loop in 
Figure 2.4 is reformulated into Figure 4.2. 

0 ( , )e k i( , )u k i
1 2( , )C z z 1 2( , )G z z

 

Figure 4.2: Block diagram of concentric SSW position control loop in 2D representation 

      In Figure 4.2 and equations (4.13)-(4.14), the signals and variables are defined as 
follows 

 k : the servo sector index, i.e. 0, 1, , 1k N    ; 
 N : the number of servo sectors in one track; 
 i : the data track index, i.e. 0, 1, 2i     ; 

 ( , )y k i : the read head position signal at the sector k  in the track i ; 

 ( , 1)y k i  : the write head position signal at the sector k  in the track ( 1)i  ; 
 ( , )e k i : the position error signal (PES) at the sector k  in the track i ; 

 ( , )u k i : the control input at the sector k  in the track i ; 

  1 2,z zC : the 2D controller to be designed; 

  1 2,z zG : the 2D plant described by the 2D Roesser model in equations (4.13) - 
(4.14). 

4.4 2D Controller Design for Concentric SSW Position Control Loop 

4.4.1 Proposed Control Scheme 

The control algorithm for the 2D Roesser model  1 2,z zG  in Figure 4.2 is proposed as 
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  1 2
0

( , )
( , ) ( , 1)

( , )

l

d
d

x k i
u k i K K F e k d i

y k i
    



      
 
 
 

   (4.15) 

Remark 4.4.1 

 1K  is the constant feedback gain for the horizontal state ( , )x k i . 

 2K  is the constant feedback gain for the vertical state ( , )y k i . 

  0, 1, 2, ,    dF d l   is constant weight for the error signal ( , 1)e k d i   and 1l   is 

the error learning step. 
 In Equation (4.15), the previous-track error  ( , 1) 0, 1, , 1   e k i  k N    is utilized 

because all of ( , 1)e k i   for  0, 1k N   are available when self-servowriting is 
conducted in the current track i . However, the current-track error ( , )e k d i is not 
available when 1d  .  

      It is known that only the error signal ( , )e k i  is measurable in concentric SSW position 

control system, i.e. the 2D state vector 
( , )

( , )

x k i

y k i

 
 
 

 is not available for designing the 

controller. Hence, the control algorithm in Equation (4.15) is not implementable and it is 

necessary to design an observer and estimate the 2D state vector ( , )

( , )

x k i

y k i

 
 
 

 first. 

      The 2D state observer can be designed as 

 
   
   

1

2

( 1, )  ( , ) ( , ) ( , ) ( , )

( , 1)  ( , ) ( , ) ( , )

p p

p

x k i A x k i B u k i L e k i e k i

y k i C x k i L e k i e k i

    

   




  (4.16) 

where ( , )x k i  and ( , )y k i  are the estimates of ( , )x k i  and ( , )y k i , respectively; 1L  and 2L  
are constant observer gains.  
      The estimated error signal is written as 

 



( , )

( , ) 1
( , )

p

x k i
e k i C

y k i

 
         

     (4.17) 

      Thus, by introducing Equation (4.16) and Equation (4.17), the control algorithm in 
Equation (4.15) is modified as 
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 

 

1 2
0

1 2 0 1

11 2 0 1

( , )
( , ) ( , 1)

( , )

( , ) ( , ) ( , 1) ( 1, 1) ...

( , 1)

( , ) ( , )

l

d
d

l

x k i
u k i K K F e k d i

y k i

K x k i K y k i F e k i F e k i

                F e k l i

z

      

          

 K x k i K y k i F F F



 

      





 
     

  

       

  

       






 

 
1 2 1

2
2 1 1

( , ) ( , ) ( ) ( , 1)

... ( , 1)l
lz z

K x k i K y k i F z e k i

F e k i

       

   

    

  (4.18) 

      By applying the proposed control algorithm in Equation (4.18), the 2D system in 
Figure 4.2 can be illustrated by Figure 4.3. 

( , )e k i

( , )u k i

1 2( , )G z z

 1 2   K K 

1
2z1( )F z

( , 1)e k i 

1

1

2

      0

        

p

p

z I A

C Z I

 
 
  

 1pC  
( , )e k i

1

2

L

L

 
 
 


( , )

( , )

x k i

y k i

 
 
  

0

pB 
 
 

 

Figure 4.3: Block diagram of concentric SSW position control loop in 2D Roesser model 
with control algorithm (4.18) 

Analysis 

 In Equation (4.18), 1( )F z  is a non-causal error learning filter to be designed, 
which serves the same purpose as the error learning filter ( )F z  in Equation (3.3). 

Notice that 1( )F z  in Equation (4.18) is in terms of only 1z ; that means it is single-
track error learning.  

 Comparing Figure 4.3 with Figure 3.6, the gain 1K  for the horizontal state ( , )x k i  
functions as the feedback compensation in Figure 3.6 and 2K  for the vertical state 

( , )y k i  can be regarded as the feedforward compensation in Figure 3.6. 
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 Since the gain 1K  is designed together with 2K  (see the details in Section 4.5.2), 
the performance of the feedback control and feedforward control in the system is 
guaranteed simultaneously. 

4.4.2 Design Example 

In this subsection, a design example is provided. The control algorithm is designed with 
two-step error learning, i.e. 

  


1 2 0 1

( , )
( , ) ( , 1) ( 1, 1)

( , )

x k i
u k i K K F e k i F e k i

y k i

 
          

  
    (4.19) 

where 0F  and 1F  are constant filter coefficients to be designed. 

      By combining and reforming equations (4.13), (4.14), (4.16), (4.17), and (4.19), we 
obtain the closed-loop system equation as 

 





1 2

1 1 1 1 1 2

( 1, )

( 1, )

( 1, ) 0 0

( 1, )

p p p

p p p p p

x k i A B K B K

x k i L C A B K L C L L B K

y k i

y k i

    
 

              
  

  




0 0

0

( , )

( , )

( , )0

0 0 0 ( , )

0 0p p p

p p

x k i

x k i

y k i

y k i

B F C B F

B F C

  
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        
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p p p

p

p p p

B FC B F x k i

B FC B F x k

C

L C C L C L L

     
 
       
       







1, 1)

( 1, 1)

( 1, 1)

( , )

( , ) ( , )
( , ) 1 0 1 0

( , ) ( , )

( , )

p p

i

y k i

y k i

x k i

x k i x k i
e k i C C

y k i y k i

y k i

 
 

  
  
 
   

 
 

                  
  

                    (4.20) 

      Notice that Equation (4.20) can be simplified to 

 1 2 3( 1, ) ( , ) ( , 1) ( 1, 1)

( , ) ( , )

k i A k i A k i A k i

e k i C k i

          

 

  

        
  (4.21) 
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where  

   ( , ) ( , ) ( , ) ( , ) ( , ) ,
T

k i x k i x k i y k i y k i         
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  

      


  
     
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 
 
 
 
 

  
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 
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  
 
   
    
       

 

 0 1 0pC C               

      Equation (4.21) can be further written as 

 

 

2 31

0 00( , ) ( 1, ) ( , 1)

0( 1, ) ( , ) ( 1, 1)

( 1, )
( , ) 0

( , )

Ik i k i k i

A AAk i k i k i

k i
e k i C

k i

           
                      

  
   

               
    

          

                
  

  

      Defining the augmented state vector 
( 1, )

( , )
( , )

k i
w k i

k i

  
     

, we have 

 1 2

3

( 1, ) ( , ) ( 1, 1)

( , ) ( , )

w k i W w k i W w k i

e k i W w k i

    


    

        
  (4.22) 

where, 

  1 2 3
2 31

0 00
, , 0

0

I
W W W C

A AA

  
    
   

           
     

         

      By defining the new state vectors 

 2

2

( , )  ( , ) ( , 1)

( , )  ( , 1)

k i w k i W w k i

k i W w k i




   
 

   

we can recast Equation (4.22) into 
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 

1 1

2 2

3 3

( 1, ) ( , )
  

( , 1) ( , )

( , )
         ( , )      

( , )

W Wk i k i

k i W W k i

k i
e k i W W

k i

 
 




     
           

 
  

 

  (4.23) 

      Notice that the system in Equation (4.23) is a 2D Roesser state-space model, where 
( , )k i  is the horizontal state vector and ( , )k i  is the vertical state vector. In other words, 

the closed-loop system in Figure 4.3 can be described by the 2D Roesser model (4.23) 

with the 2D state vector  ( , ) ( , )   
Tk i k i   and output ( , )e k i . 

4.5 Controller Parameters Design 

4.5.1 Observer Gains Design 

The observer gains 1L  and 2L  are designed first. 

      By defining the 2D error state vectors as 

 
 

 
( , ) ( , ) ( , )

( , ) ( , ) ( , )

x k i x k i x k i

y k i y k i y k i

 

 

  

  
  

we obtain the error dynamics from equations (4.13) – (4.14) and (4.16) – (4.19) 

 







1 1

2 2

( 1, ) ( , )

( , 1) ( , )

p p

p p

A L C Lx k i x k i

C L C Ly k i y k i

     
    

          
    

      Notice that the above equation is a 2D Roesser model. In order to make sure that the 
error dynamics is asymptotically/BIBO stable, we apply Theorem 4.2.4 and the following 
conditions are obtained: 

(a) 1 1  p pA L C                                                                                                   (4.24a) 

(b)   1

2 12 1
11   p p p pL C A L CL C L


                                                             (4.24b) 

Analysis 

 Equation (4.24a) implies that 
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 
  
  

 
 

1

1

1 1max

1 1

1

1

1            

1    

    1

     0

                
     0

        

p p

p p

T

p p p p

T

p p p pnp np

p pnp np

T

p p np np

A L C

A L C

A L C A L C

A L C A L CI

A L CI

A L C I











 

 

  

  

 
 
  





  (4.24c) 

where pn  is the dimension of pA . 

As a result, the design of 1L  satisfying Equation (4.24a) is equivalent to solving 
the linear matrix inequality (LMI) feasibility problem in Equation (4.24c), which 
can be solved by a standard LMI solver [73] or semidefinite programming (SDP) 
solver in Yalmip package.  

 2L  is designed through solving Equation (4.24b), which is also a feasibility 
problem and can be solved easily by the optimization programming. 

4.5.2 State Feedback Gains Design 

When designing the 2D state feedback gains 1K  and 2K , we assume that the control 
algorithm only contains the state feedback term, i.e.  

  


1 2

( , )
( , )

( , )

x k i
u k i K K

y k i

 
    

  
    (4.25) 

      Applying the 2D state feedback control algorithm in Equation (4.25) to the 2D plant 

1 2( , )G z z  in equations (4.13) – (4.14) yields the closed-loop system equation 

 



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1 1 1 1 2 1

0( 1, )

( 1, )
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( , 1)

p p p

p p p p p

p

A B K B Kx k i

L C A B K L C L B K Lx k i

y k i C

y k i

    
              
 
  

  



2 2 2 2

( , )

( , )

0 0 ( , )

( , )p p p

x k i

x k i

y k i

L C C L C L L y k i

   
   
   
       
          

  (4.26) 

      By defining 
( , )

( , )
( , )

x k i
x k i

x k i

 
  
 

 as the horizontal state vector and 
( , )

( , )
( , )

y k i
y k i

y k i

 
  
 

 as the 

vertical state vector, we rewrite Equation (4.26) as 

 11 12

21 22

( 1, ) ( , )

( , 1) ( , )

A Ax k i x k i

A Ay k i y k i

     
           

    (4.27) 
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where   

 1 2

11 12
1 1 1 1 2 1

0
, ,

p p p

p p p p p

A B K B K
A A

L C A B K L C L B K L

       
    

           
    

 
21 22

2 22 2
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,

p

p p p

C
A A

L LL C C L C

      
           

     

      Notice that the system in Equation (4.27) is a 2D Roesser model. Hence, in order to 
fulfill Theorem 4.2.4, the gains 1K  and 2K  must meet the following conditions: 

(a) 1

11
1 1 1

    1
p p

p p p p

A B K
A

L C A B K L C

  
  

     
                                                      (4.28a) 

(b)  22 21 11 12  A A A A
                                                                          (4.28b) 

Analysis 

 Since 
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       

 satisfies the separation principle, i.e. the 2 np  

eigenvalues of 11A  consist of np  eigenvalues of 1( )p pA B K  and np  eigenvalues of 

1( )p pA L C . Therefore, Equation (4.28a) implies that 
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  (4.28c) 

     Thus, similar to designing 1L , the state feedback gain 1K  is designed by solving the 

LMI feasibility problem 
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 A feasible 2K  can be derived by solving the feasibility problem in Equation (4.28b) 
using the optimization programming. 

4.5.3 Error Learning Filter Design 

After the observer gains 1L , 2L  and the state feedback gains 1K , 2K  are obtained, the error 
learning filter coefficients 0F  and 1F  are found to satisfy the stability condition and reduce 
the track-to-track error propagation. 
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      By using Theorem 4.2.4 again, the following conditions are derived to guarantee 
asymptotic/BIBO stability of the 2D Roesser system in Equation (4.23): 

(a) 1 1  W                                                                                                            (4.29a) 

(b)   1

2 2 1 1 11   W W W W
                                                                            (4.29b) 

Analysis  

 Using the gains 1L , 2L , 1K , and 2K  obtained in sections 4.5.1 and 4.5.2, it must be 

verified that 1 1W   is satisfied. If it is not satisfied, a new 2K  should be obtained 

by solving both (4.28b) and (4.29b), while using the same 1L , 2L  and 1K . 

 The feasible values of 0F  and 1F  are derived by solving the feasibility problem in 

Equation (4.29b). 

4.6 Simulation Study 

In the simulation study, the disk disturbance and sensor noise are considered as shown in 
Figure 4.4, which are the same as that used in Section 3.4. In the figure, ( , )n k i  represents 
the sensor noise and ( , )d k i  represents the disk/spindle disturbance. 

0 ( , )e k i( , )u k i
1 2( , )C z z 1 2( , )G z z

( , )n k i ( , )d k i

 

Figure 4.4: Block diagram of 2D concentric SSW position control loop with disk 
disturbance and sensor noise 

      The HDD model used for the simulation study is the same as that used in Chapter 3, 
which is shown in Figure 3.8. The 2D controller parameters 1 2 1 2 0 1     ( , , , , ),K K L L F F  are 
listed in Table 4.1. They satisfy the conditions (4.24a-c), (4.28a-c), and (4.29a-b) as 
stated in the previous section.  
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Table 4.1: Controller parameters 1 2 1 2 0 1     ( , , , , ),K K L L F F  

1K  [ 0.806  0.916  0.027  0.142  0.023  0.298 0.117 0.140 0.147 0.051 0.047  0.158]          

2K  32.208 10  

1L  [0.228  0.231  0.005  0.024  0.004  -0.051  0.019  0.023  0.023  0.008  0.006  0.022]      

2L  0.468  

0F  0.662  

1F  34.048 10   

 
      The seed track ( ,0)y k  is also the same as that used in the ILC design (as shown in 
Figure 3.13). In the simulation study, 1000 servo tracks are written.  
      Figure 4.5 shows the written track profiles in 2D domain (i.e. on the entire disk 
surface). It is obvious that the position deviation from the write head ( , )y k i  greatly 
reduces and converges after the seed track. 
      In order to show the feasibility of the proposed 2D control scheme, the following 
simulation study compares its results with the ILC scheme, which were presented in 
Section 3.4. 
      Figure 4.6 shows the comparison of the written track profile for 1000 tracks. The 
solid line represents the write head profile in the system using the proposed 2D scheme, 
and the dotted line represents the profile in the system using the ILC scheme. It can be 
seen that the write head position deviation in 2D scheme has an average [ ]iy  of 1.73% 
track, which is smaller than the result in the system using the ILC scheme (with average  

[ ] 2.41%iy   track). 
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Figure 4.5: Written track profile in 2D domain 
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Figure 4.6: Comparison of written track profile 

      The comparison of the AC track squeeze ( sqT ) is shown in Figure 4.7. In the system 
using the proposed 2D control scheme, the average AC track squeeze is 93.30% track 
width as shown in the solid line, which is slightly higher than that in the system using the 
ILC scheme with the average sqT  of 92.10% track width, as shown by the dotted line. The 
smaller write head position deviation and higher AC track squeeze proves good 
performance of the proposed 2D control scheme. 
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Figure 4.7: Comparison of AC track squeeze 
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      Figure 4.8 shows the PES comparison in the systems using the proposed 2D scheme 
and the ILC scheme. From the figure, we can clearly see that the PES in the proposed 2D 
control scheme (as shown in the solid line) is smoother and has a smaller average [ ]ie  of 
2.33% track width than that in the ILC scheme (as shown in the dotted line) with average 

[ ] 3.27%ie   track.  
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Figure 4.8: Comparison of PES profile 

4.7 Chapter Summary 

In this chapter, an alternative control approach was presented to deal with the iteration-to-
iteration error propagation in discrete linear repetitive processes. The analysis and design 
were conducted on the position control loop in HDD concentric SSW process, which is 
the same system used in Chapter 3.  
      Firstly, this repetitive process was equivalently described by a 2D Roesser state-space 
model. By applying the 2D systems theory, the convergence problems in this repetitive 
process were translated to the stability problems in a 2D system. 
      Then, a 2D state feedback controller was designed to guarantee asymptotic stability in 
both the time and the iteration domains. An error learning filter was also added later for 
the purpose of containing the radial error propagation from track to track, which learns 
the previous-track error information and guarantees the convergence along the iteration 
direction.  
      The effectiveness of the proposed 2D control scheme was verified by comparing with 
the iterative leaning control scheme which was presented in Chapter 3. It was shown that 
the performance in the system using the proposed 2D control scheme is comparable to 
that in the system using the iterative learning control scheme. Both control schemes 
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provide much improvement with small write head position deviation and good quality of 
the written servo tracks. 
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Chapter 5 

A Novel Adaptive Feedforward 
Control Scheme Design using Filtered-
X Least Mean Square Algorithm  
 

5.1 Introduction 

In this chapter, a novel control scheme based on adaptive feedforward control (AFC) is 
proposed for the timing control loop in concentric SSW process, which is a good example 
of discrete linear repetitive process with error propagation along both the time and the 
iteration directions. In Section 2.3.2, we learned that in concentric SSW servo system, the 
timing control loop has the same block diagram (as shown in Figure 5.11) as the position 
control loop (as shown in Figure 2.4). However, each of these two repetitive systems has 
its own control issues and objectives. In the timing control loop, there are two main 
issues: one is the timing error propagation from track to track (which is analogous to the 
radial error propagation in the position control loop); the other is the closure error within 
each individual track (the details are presented in Section 5.3). The iterative learning 
control scheme presented in Chapter 3 and the 2D control scheme presented in Chapter 4 
are not suitable for the timing control loop because these two methods can deal with the 
track-to-track timing error propagation well but have poor ability of containing the 
closure error within each individual track. Therefore, we need to design a control scheme 
which is able to effectively deal with both of the two issues in timing control loop. 
      The timing control problem in concentric SSW process is analogous to a typical 
problem in manufacturing. Most manufacturing processes, including machining, are 
subject to one or more sources of disturbance and process noise that lead to inaccuracy in 
manufactured parts. Disturbance can be somewhat rejected by making the process less 
sensitive to it using the passive means. Such treatments include, but not limited to, the 
use of precise components and massive machine tool structures. Another way of rejecting 
disturbance is the use of active techniques. This is based on the premise of generating 
some control action(s) leading to elimination or reduction on the effects of disturbances. 
If the disturbance, or some attributes of it, is measurable, the feedforward controllers 
could be used very effectively, knowing the mathematical model of the process. When 
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the process model is unknown or it has some time-varying parameters, the adaptive 
feedforward techniques are well suited. The adaptive control problem can be stated as 
follows: 

Take as given a plant whose parameters are unknown or time-varying. Then construct 
an finite impulse response (FIR) filter such that the output of a reference model ( )S z , 

( )z k , will  adaptively follow (in the mean square error (MSE) sense) the output of the 
plant, ( )r k . The timing index is k . The basic scheme of constructing an adaptive 
filter is shown in Figure 5.1 [28, 13, 42], which uses the standard least mean square 
(LMS) algorithm.    

unknown 
system

W(z) S(z)

LMS

+

-( )z k

( )r k

( )e k

( )x k

 

Figure 5.1: Basic block diagram of adaptive filter system using LMS algorithm 

      Notice that in Figure 5.1, the introduction of the secondary-path transfer function 
( )S z  generally causes instability [24]. This is because the error signal ( )e k  is not 

correctly aligned in time with the reference signal ( )x k , due to the presence of ( )S z . 
There are a number of possible schemes that can be used to compensate for the effect of 

( )S z . Morgan [59] suggested two approaches to solve this problem. The first solution is 
to place an inverse filter, 1/ ( )S z , in series with ( )S z  to remove its effect. The second 
solution is to place an identical filter in the reference signal path to the weight update of 
the LMS algorithm, which realizes the so-called filtered-x least mean square (FXLMS) 
algorithm [80], as shown in Figure 5.2. Since an inverse does not necessarily exist for 

( )S z , the FXLMS algorithm is more effective. The FXLMS algorithm was independently 
developed by Widrow [81] in the context of adaptive control and Burgess [11] for active 
noise control (ANC) applications.  
      In this chapter, a novel control scheme based on AFC is proposed for concentric SSW 
timing control loop to minimize the closure error within each individual track and contain 
the track-to-track timing error propagation. The adaptive filter is designed by applying 
the filtered-x least mean square (FXLMS) algorithm. 
      The remainder of this chapter is organized as follows. Section 5.2 presents the basic 
operations of phase locked loop (PLL) circuit in the timing control loop. The control 
problems are described in Section 5.3. The proposed adaptive feedforward control 
scheme using FXLMS algorithm is presented in Section 5.4. In Section 5.5, the 
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simulation results show the effectiveness of the proposed control scheme. Finally, the 
chapter summary is given in Section 5.6.  

( )z k

( )r k

( )e k

( )x k

 

Figure 5.2: Black diagram of adaptive filter using FXLMS algorithm 

5.2 Timing Control Loop in Concentric Self-Servowriting Process 

In concentric SSW process, in order to ensure proper alignment of the servo patterns, the 
propagation of servo sectors should be synchronized to the timing marks in the seed clock 
track or the previously written track. In general, the seed clock track is prewritten at the 
outer diameter (OD) of the disk by a separated clock head before the SSW process. In 
SSW timing control loop, a phase locked loop (PLL) circuit (as shown in Figure 5.3) is 
generally employed to generate a stable and accurate clock signal in the presence of 
media defects and disk/spindle disturbances. 

Basic operations of phase locked loop [1] 

The PLL is a circuit which is used for tracking a particular signal. More precisely to say, 
PLL is a feedback system which is used for locking the reference signal in phase as well 
as in frequency. It is like the cruise control system for the motor vehicles. PLL has been 
widely used in our daily life, such as radio, telecommunications, and data storage systems. 
For example, when we turn on a TV set, one PLL will keep the human heads at the top of 
the screen while the feet at the bottom of screen. Another PLL makes sure that the green 
color remains green and red color remains red. The most basic block diagram of a PLL 
circuit in HDD is shown in Figure 5.3, which shows the components that every PLL must 
have, namely: 

 A phase detector (PD) (or phase comparator). This is a nonlinear device whose 
output contains the phase difference between the oscillator output signal and the 
reference signal.  

 A voltage controlled oscillator (VCO). This is another nonlinear device which 
generates the write clock signal used for propagating the servo sectors across the 
disk during SSW process. 
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 A loop filter (LF). This is generally designed as a low pass filter and filters the 
phase error from the PD to generate the voltage control signal for the VCO. 

VCM
VCM
VCM

 

Figure 5.3: PLL circuit in SSW timing control loop 

      As shown in Figure 5.4, the basic idea of a PLL is that if one injects a sinusoidal 
signal into the reference input, the internal oscillator in the loop will lock to the reference 
sinusoid in such a way that the frequency and phase differences between the reference 
sinusoid and the internal sinusoid will be driven to zero or some constant value 
(depending on the system type). The internal sinusoid then represents a smoothed version 
of the reference sinusoid, which is filtered by the low pass filter ( )C s .  

( )iv t ( )dv t ( )ov t( )fv t
( )C s

 

Figure 5.4: A classic mixing PLL 

      A general sinusoidal signal at the reference input of a PLL as shown in Figure 5.4 can 
be written as 

 ( ) sin(  )i i iv t A t     (5.1) 



 

 

62

where i  and i  are frequency and phase of the input signal; A  is its amplitude.  

      Without loss of generality, we can assume that the output signal from the VCO into 
the mixer is given by 

 ( ) cos(  )o o ov t t     (5.2) 

where o  and o  are the frequency and phase of the output signal. 

      The output of the mixer (multiplier PD) in Figure 5.4 is then given by 

 ( ) sin( ) cos ) ( d m i i o ov t AK t t        (5.3) 

where mK  is the gain of the mixer. 

      Typically, analysis of such a PLL is done by taking several simplifying steps. Using 
the familiar trigonometric identity in terms of the PLL 

 
   

    2sin( ) cos( )

sin ( ) ( ) sin ( ) ) (
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   

       

 

         
  (5.4) 

and then making two fundamental assumptions leads to the commonly used model of the 
analog PLL. Let d i o    , then these assumptions are 

(1) The first term in Equation (5.4) is attenuated by the loop filter ( which is a low 
pass filter) in Figure 5.4. 

(2) oi  , so that the difference can be incorporated into d . This means that the 
VCO can be mathematically modeled as an integrator. 

      Making these assumptions leads to the PLL model shown in Figure 5.5, where 
/ 2d mK AK .  

i ( )C ssin(...)dK od dv

 

Figure 5.5: Conceptual block diagram of PLL with sine detector 

      Now the problem is that this is still a nonlinear system, and as such is in general 
difficult to analyze. The typical method of analysis is linearization. For d  small and 
slowing varying, the following holds 

 d dsin( )    

while this is useful for studying loops that are near locked, it does not help for analyzing 
the loop when d  is large.  
      The linearized model is shown in Figure 5.6. This is what is used for most analysis 
and measurements of PLL circuits.  
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i ( )C sdK od

 

Figure 5.6: Block diagram of linearized PLL circuit 

      In SSW timing control loop as shown in Figure 5.3, the input of PLL circuit is the 
phase of read head signal and the output is the phase of write head signal. In industry, a 
good PLL circuit is required to synchronize the write head signal with the read head 
signal.  

5.3 Control Problem Formulation  

5.3.1 Phase and Timing Jitter Definitions 

Without loss of generality, we assume that there are  N servo sectors in one data track, 
and their timing marks on the disk are denoted by (0)t , (1)t ,…, ( 1)t N   as shown in the 
solid lines in Figure 5.7. The timing marks are desired to be uniformly and accurately 
written along the circular track. But in practical manufacturing process, the spacing 
between the adjacent timing marks is not uniform due to the timing jitters. Let 

(0)'t , (1) 't ,…, ( 1) 't N   denote the actual timing marks as shown in the dotted lines in 
Figure 5.7. 
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Figure 5.7: Illustration of ideal and actual timing marks of servo sectors 
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Definition 5.3.1 The difference between the ideal timing mark ( )t k  and the actual timing 
mark ( )'t k  is called the timing jitter at the servo sector k , i.e. 

 t k t k t k  ,( )  ( ) ( )   (5.5) 

Definition 5.3.2 The phase at the servo sector k  is defined as 

 
  2

c

t k t k
k

T




 


, ( ) ( )
( )     (5.6) 

where cT  denotes the nominal sampling period. 
      Notice that Equation (5.6) implies that the phase is the normalized timing jitter.  

5.3.2 Control Issues and Control Objectives  

In order to write the servo sectors uniformly and accurately along the circular track, it is 
desired to eliminate the timing jitters. For this purpose, an effective control scheme is 
necessary to resolve the issues in concentric SSW timing control loop. There are two 
main issues in this repetitive control system:  
(1) The first and most important issue is the closure error within each individual track, 

which refers to the timing error propagation along the circumferential direction. As 
shown in Figure 5.8, kd  denotes the angular distance between two adjacent timing 
marks  ( 1) 't k   and ( )'t k . Wherein Nd , the angular distance between the first timing 
mark  (0) 't and the last timing mark ( 1) 't N  , is named the timing closure. From 
Figure 5.8, we know that the ideal angular distance between two adjacent timing 
marks is 2 N . The closure error denoted by d  is defined as 

 2Nd d N     

In SSW process, the closure error d  is generated if the servo sectors are not 
uniformly and accurately written along the circular tracks. It is unwanted because it 
adversely disturbs the PLL circuit operation and affects the propagation of the servo 
patterns. 

Remark 5.3.1 

(a) In a circular track, if 0d  , i.e. 2Nd N , such a track is said to be “unclosed”. 

(b) In a circular track, if 0d  , i.e. 2Nd N ,  the pattern of the last servo sector 
may be incomplete or squeezed.  

(c) Both of the above cases are caused by the timing error propagation within one 
track along the circumferential (i.e. time) direction. 
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Figure 5.8: Illustration of angular distance between adjacent sectors 

(2) The other significant issue in the timing control loop is track-to-track timing error 
propagation which is also known as the phase propagation along the radial direction. 
In the PLL circuit, when the write head is synchronized with the read head to 
propagate the servo sectors, the disk flutter and spindle speed varaition are amplified 
by the loop dynamics. These components of timing jitters will propagate from track to 
track and grow unboundedly, resulting in ‘wandering’ or ‘warping’ servo sectors 
across the disk surface, as shown in Figure 5.9.  This deteriorates the quality of the 
written servo patterns. Figure 5.10 shows an example of timing error propagation. It 
shows that the written timing deviation grows rapidly if this issue is not well handled. 

 

Figure 5.9: Warping of servo sectors on the disk 
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      Therefore, in order to deal with the above two issues and improve the quality of the 
written servo patterns, an effective control scheme is required to attenuate the closure 
error within each individual track (along the time direction) as well as the timing error 
propagation from track to track (along the track direction). 
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Figure 5.10: Write head timing error propagation without proper control action 

5.4 Adaptive Feedforward Control (AFC) Algorithm Design 

5.4.1 Modeling of Timing Control Loop 

The digital PLL circuit used in concentric SSW timing control loop is modeled as shown 
in Figure 5.11. The signals and components of interest in the PLL circuit are defined as 
follows. 

 i k ( ) : the read head phase signal at the sector  k in the track i . 

 1i k ( ) : the write head phase signal at the sector  k in the track 1i . 

 
ie k( ) : the phase error generated by the phase detector (PD). 

 pk : the gain of PD. 

 ( )C z : the loop filter (LF), which is generally designed as a low pass filter.  

 1
1z  : the transfer function of numerically controlled oscillator (NCO), which is 

the digital counterpart of the voltage controlled oscillator (VCO). 

 ( )
( )

1
p C zk

P z
z


 
: the PLL open-loop transfer function.  
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1( )i k( )i k ( )ie k 1

1z 

 

Figure 5.11: Block diagram of linearized digital PLL circuit in concentric SSW timing 
control loop 

      Notice that the closed-loop block diagram in Figure 5.11 can be equivalently 
represented by an open loop block diagram as shown in Figure 5.12, where  ( ) S z is the 
sensitivity function, i.e. 

 1( )  
1 ( )

S z
P z




  (5.7) 

( )i k ( )S z ( )ie k

 

Figure 5.12: Open loop representation of Figure 5.11 

      Before introducing the proposed control algorithm, the following two definitions are 
given.  

Definition 5.4.1 The timing error between two adjacent tracks with the same sector index 
is defined as the radial timing error. Notice that ( ) ie k in Figure 5.11 and Figure 5.12 is 
the radial timing error at the sector  k in the track i , i.e. 

 1i i ie k k k   ( ) ( ) ( )    (5.8) 

Definition 5.4.2 The timing error between two adjacent servo sectors in the same track is 
defined as the circumferential timing error. Let ( ) i k denote the circumferential timing 
error at the sector   k in the track  i , i.e. 

 1i i ik k k    ( )  ( ) ( )   (5.9) 

5.4.2 Proposed AFC Design for Timing Control Loop 

In this subsection, a novel adaptive feedforward control (AFC) scheme using the filtered-
x least mean square (FXLMS) algorithm is proposed for the timing control loop in 
concentric SSW process as shown in Figure 5.12. 

Design Motivations 
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From Equation (5.6), we know that the ideal value of read head phase i k ( )  should be 
zero. Therefore, it is desired to estimate i k ( )  and subtract the estimate from it, as shown 
in Figure 5.13. 

1( )i k( )i k ( )P z

( )ie k ( )i k

 

Figure 5.13: Timing control loop with feedforward correction signal  ( )i k  

General AFC structure for the system in Figure 5.12 

The timing control loop in Figure 5.13 can be drawn as an AFC system if we generate 
 ( )i k  as shown in Figure 5.14, which is equivalent to Figure 5.2. The AFC aims to 

generate the input of the dynamic system ( )S z , i.e.  ( )i k , so that its output  ( ) iz k follows 
the desired output  ( )ir k  best. The scheme consists of two main elements: an adaptive filter 

( )W z  and a LMS algorithm block. The LMS algorithm adaptively adjusts the coefficients 
of ( )W z  in order to minimize the performance index. In Figure 5.14, the reference 
signal  ( )  ix k is filtered by the dynamic system ( )S z  before it is utilized by the LMS 
algorithm for adjusting the filter coefficients. Because of this filtering notion, the 
adaptive LMS algorithm is called filtered-x LMS algorithm.  

Proposed control scheme based on AFC 

Notice that the radial timing error ( ) ie k in Figure 5.11 and Figure 5.12 is the only 
measurable signal in the timing control system. In other words, the head phase signal 

i k ( )  is not directly measurable and the circumferential timing error ( )i k  is not available 
for designing the control scheme. However, if ( )i k  is utilized as well as the radial timing 
error ( )  ie k to design the adaptive filter, not only the closure error within each individual 
track, but also the track-to-track timing error propagation will be attenuated. Hence, it is 
intuitive and necessary to estimate ( )i k  in order to design the filter ( )W z . 
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Figure 5.14: Block diagram of general FXLMS based AFC for the system in Figure 5.12 

Analysis 

(1) In Figure 5.14,  ( ) i k is the estimated head phase signal which can be regarded as 
the feedforward correction signal in the system, as shown in Figure 5.13.  

(2) In Figure 5.13, the closer  ( )i k to i k ( ) , the smaller the radial timing error ( )  ie k is. 
In the meanwhile, the closure error within each individual track will also be 
contained if both the radial timing error ( ) ie k and the circumferential timing error 

( )i k  contribute to designing the adaptive filter ( )W z . The details are presented in 
Section 5.4.3. 

      The proposed adaptive feedforward control scheme using FXLMS algorithm is shown 
in Figure 5.15, where  ( )W z  is the adaptive filter to be designed for generating the 
estimated head phase signal  ( )i k . A popular choice of ( )W z  is the digital finite impulse 
response (FIR) filter.  

Remark 5.4.1 

(1) The FIR filter is always stable since all of its poles are located at the origin of the 
z-plane.  

(2) The class of FIR adaptive filter using FXLMS algorithm is well known for its 
convergence conditions and steady state performance.  

      Assume that the FIR filter  ( )W z  has the same length as the number of servo sectors in 
one data track, i.e. 

 1 2 10 1 2 1 N
i i i iW z w w z w z w N z        ( )  ( ) ( ) ( ) ( )   (5.10) 

where iw k ( ) denotes the filter coefficient at the servo sector k  in the track  i .  
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Figure 5.15: The proposed control scheme for concentric SSW timing control loop 

      In Figure 5.15, the adaptive filter ( ) W z receives the reference input  ( )  ix k and 

generates the estimated head phase signal  ( )i k  and the estimated circumferential timing 
error signal  ( )i k . To simplify the design, the reference signal ( )  ix k is chosen as an 
impulse train, i.e. 

 
 1       0;   1, 2,

( )  
0      otherwisei

k i
x k

 
 




  (5.11) 

      Notice that the sensitivity function ( ) S z in Equation (5.7) can be written as 

 1 2 10 1 2 1 NS z s s z s z s N z         ( )  ( ) ( ) ( ) ( )    (5.12) 

where   ( )( ) 0, 1,s kk    is Markov coefficients of ( )S z . 

      Introducing the estimated head phase signal  ( )i k  in Figure 5.15, the radial timing 
error ( )  ie k in Equation (5.8) is rewritten as 

 
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        ( ) ( ) ( )
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  (5.13) 

      The estimated circumferential timing error  ( )i k  is represented as 
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  (5.14) 

5.4.3 Adaptive Filter Design  

This subsection presents the procedure of designing the adaptive filter ( ) W z by using the 

estimated head phase signal  ( )i k  and estimated circumferential timing error  ( )i k . First, 
the following two definitions are introduced. 

Definition 5.4.3 The circumferential timing error energy of the servo sector   k is 
defined as 
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  (5.15) 

Definition 5.4.4 The radial timing error energy along the track  i is defined as 
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      The proposed FXLMS algorithm aims to minimize both
2

ii k k  ( ) ( )  and 
1

2

0

N

i i
k

e k




  ( )  across the entire disk surface by adjusting the filter coefficient ( )iw k  

adaptively. Hence, the design problem is equivalent to the following two minimization 
problems. 

(1) Minimization of the circumferential timing error energy at the servo sector  k , i.e.  

  2

i

ii
w k

k k  
( )

( ) ( )min   

It is considered that the filter coefficient ( ) iw k is updated from sector to sector in order to 

minimize the squared error
2

ii k k   ( ) ( ) . By doing the partial differentiation on both 
sides of Equation (5.15) with respect to the filter coefficient ( ) iw k  at the servo sector k , 
we have 
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  (5.17) 

      Applying the LMS algorithm yields the update equation for the filter coefficient at the 
servo sector  k  in the track i : 

 1
1 0

ll l
iii iw k w k k x    ( )  ( ) ( ) ( )   (5.18) 

where 1  is the step size parameter;   1, 2, ,l L   denotes the update iteration for the 
filter coefficient ( ) iw k  and L  is the constant update iteration number to be decided by the 

designer. 0ix ( )  is the initial value of ix k( ) , which is the filtered i
x k( ) . From Equation 

(5.11) and Equation (5.12), we know that 

    ( )( )  ( )     0, 1, , 1ix k s k k N     

      The update equation in (5.18) implies that the filter coefficient ( )iw k  is updated 
from 0k   till 1k N   in the track  i for L times before moving to the next track 1i  . 

(2) Minimization of the radial timing error energy along the track i , i.e.  
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of squared error
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Equation (5.16) with respect to  ( ) iw n  ( 0,1, , 1n N  ), we have 
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      Applying the LMS algorithm yields the update equation for the filter coefficient 
vector  (0)  (1)    ( 1) ( 1, 2, )

T

i i i iw w w w N i     
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i i i i
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w k w k e n x n k





 
    

 
( )  ( ) ( ) ( - )   (5.20) 

where 2  is the step size parameter.  

Remark 5.4.2 

(1) The filter coefficient vector 1iw   in the track 1i   is obtained by using the update 
algorithm in Equation (5.20). Then the filter coefficient at the servo sector k , i.e. 

1( )iw k , is updated from 0k   till 1k N   for L times by using the update 
algorithm in Equation (5.18) before moving to the track 2i  . In the Lth  update 
iteration, the write head starts to write the timing marks on the track 1i  . 

(2) Minimizing the circumferential timing error energy at the servo sector  k  (i.e. 
2

ii k k  ( ) ( ) ) ensures that the closure error within the track i is contained; and 

minimizing the radial timing error energy along track i (i.e. 
1

2

0

N

i i
k

e k




  ( ) ) ensures 

that the timing error propagation from track i  to track 1i   is attenuated.  
(3) From Equation (5.18) and Equation (5.20), we have the filter coefficient at every 

servo sector, which is optimally and adaptively updated to ensure minimum 
closure error within each individual track and minimum timing error propagation 
from track to track.  

      Combining Equation (5.18) and Equation (5.20), the proposed FXLMS-based AFC 
algorithm for the filter coefficients on the entire disk surface can be described as 
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where        and;  1, 2,1, 2, , ;   0, 1, , 1   il L k N      . 

5.5 Simulation Study 

In the simulation study, we consider the mechanical jitter ( ) id k and noise jitter  ( )in k , as 
shown in Figure 5.16. In HDD manufacturing process, the mechanical jitter is caused by 
the disk flutter and the spindle speed fluctuation due to mechanical vibrations such as 
ball-bearing vibration. The noise jitter is mainly caused by the head noise and electronics 
noise in the read-back process. 
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Figure 5.16: Concentric SSW timing control loop with jitters 

      Figure 5.17 and Figure 5.18 show the mechanical jitter and noise jitter injected into 
the system for the simulation study, which are collected from the real disk drive. 
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Figure 5.17: Mechanical jitter in concentric SSW process 
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Figure 5.18: Noise jitter in concentric SSW process 
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Remark 5.5.1 

In simulations, the timing signals and timing jitters are normalized to 4sT ns .       
      Figure 5.19 shows the frequency response of the PLL open loop system used in the 
simulation study.  
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Figure 5.19: Frequency response of PLL open loop transfer function 

      An example of the adaptive filter ( ) zW is shown in Figure 5.20, which is the 
frequency response of ( ) zW in the 800th track.  
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Figure 5.20: Frequency response of adaptive filter ( ) W z in the 800th track 

      Figure 5.21 shows the seed clock track profile, i.e. 0 ( )k , which has a sigma value of 
 12.6 sT . 

      In order to show the feasibility of the proposed control algorithm, the iterative 
learning control (ILC) scheme presented in Chapter 3 was also designed for this control 
system and its results are used to compare with that of the proposed AFC method. Figure 
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5.22 shows the comparison of the write head phase profile for 1000 tracks. The dotted 
line represents the profile in the system using the ILC scheme, and the solid line 
represents the profile in the system using the proposed AFC scheme. From this figure, we 
can see that in both control schemes, the write head timing distortion converges. 
However, the system with the proposed AFC scheme has a better written timing pattern 
with the average   0.79i sT    , which is much smaller than the system with the ILC 

scheme (   3.42i sT    ). 
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Figure 5.21: Seed clock track profile 0 ( )k  
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Figure 5.22: Comparison of write head phase profile 
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      The comparison of the radial timing error profile  ie for 1000 tracks is shown in 
Figure 5.23. It can be seen that the system using the proposed AFC scheme deals with the 
radial timing error better (with the resulting average   0.57i s

e T    as shown in the solid 

line)  than the system using the ILC scheme, which has the average   .2 24i s
e T    as 

shown in the dotted line.  
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Figure 5.23: Comparison of radial timing error profile 

      Figure 5.24 shows the circumferential timing error profile in the systems using the 
ILC scheme and the proposed AFC scheme. We learn that the resulting average  i   is 

 0.28 sT  in the system with the proposed AFC scheme (as shown in the solid line), which is 
within the accepted limit. While in the system with the ILC scheme as shown in the 
dotted line, the resulting average  i   is  0.93 sT  and the maximum  i   is  .2 13 sT , 

which may cause the servowriting process to fail.  
      Figure 5.23 and Figure 5.24 show that both the circumferential timing error and the 
radial timing error are smaller and smoother in the system using the proposed control 
scheme than that in the system using the ILC scheme. This ensures better alignment of 
the written servo patterns on the disk surface and improves the quality of self-
servowriting process. 
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Figure 5.24: Comparison of circumferential timing error profile 

5.6 Chapter Summary 

In this chapter, a novel adaptive feedforward control algorithm for discrete linear 
repetitive process was presented, which aimed at containing the error propagation along 
the time direction as well as the iteration direction.  
      The timing control loop in HDD concentric SSW process is a good example of such 
repetitive process, where the error propagation along the time direction is as significant as 
the error propagation along the iteration direction. An adaptive feedforward control based 
algorithm was proposed for this repetitive process. The adaptive filter was designed to 
estimate the circumferential timing error which was utilized together with the radial 
timing error to contain the closure error within each individual track and attenuate the 
timing error propagation from track to track. The filter coefficients were derived by 
applying the filtered-x least mean square algorithm, which minimizes both the 
circumferential timing error energy and the radial timing error energy. Therefore, the 
filter coefficient at every servo sector is optimal for minimum closure error and minimum 
timing error propagation. To verify the effectiveness of the proposed control algorithm, 
simulation was conducted and the results are compared to the iterative learning control 
design from Chapter 3. The comparison showed that the written servo patterns in the 
system using the proposed adaptive feedforward control scheme had higher quality with 
smaller and smoother closure error and timing error propagation.  
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Chapter 6 

Recursive Least Square based 
Parameter Adaptation Algorithm 
Design 
 

6.1 Introduction 

It is often the case that repeatable error is present in discrete linear repetitive processes, 
such as the timing control loop in HDD spiral based SSW process. In this repetitive 
process, the system dynamics is dominated by the repeatable timing error (RTE) which is 
read from the prewritten spiral tracks and used as the reference. The RTE consequently 
results in non-uniform distribution of the written product servo sectors (the details are 
presented in Section 6.2.2). Hence, in order to write the product servo patterns uniformly 
and accurately along the circular tracks, it is desired to design an effective control scheme 
for compensating the RTE.  
      A lot of research work has been done on the repeatable runout (RRO) compensation 
for the position control loop in SSW process. In [83, 64, 84, 70], various adaptive filters 
were designed to compensate the RRO and improve the track-following performance in 
HDD servo system. Their control objective is to minimize the off-track (i.e. the deviation 
of the read/write heads from the center of circular tracks) and the filter coefficients are 
updated from track to track. These methods are not suitable for the timing control loop in 
spiral based SSW process because they can not guarantee that the servo sectors are 
uniformly and accurately written along the circular tracks. The uniform and accurate 
distribution of servo sectors requires that the timing error is adaptively corrected from 
sector to sector. 
      Little research effort has been devoted to the study of RTE compensation for spiral 
based SSW process in HDD manufacturing. In [58], a feedforward compensation method 
was proposed. This method measures and records the RTE at all the servo sectors in one 
track; then the mean value is calculated and used for generating the feedforward 
compensation signal. Thus, it spends much time to compute the feedforwad 
compensation value before writing the product servo patterns on the track. In Chapter 5 
or [21], a novel adaptive feedforward control (AFC) scheme was designed to contain the 
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closure error within each individual track and attenuate the track-to-track timing error 
propagation in HDD concentric SSW process. However, this approach is not suitable for 
spiral based SSW process since it doesn’t deal with the repeatable timing error (in the 
reference signal) appropriately.  
      In spiral based SSW process, except for the RTE, there exists some non-repeatable 
timing error (NRTE) induced by the spindle speed variation and sensor noise. NRTE 
causes the phase incoherency at the servo sectors between adjacent tracks (the details are 
presented in Section 6.2.2). Hence, in order to generate an accurate servowriting clock 
signal in spiral based SSW timing control loop, both RTE and NRTE need to be properly 
handled. In this chapter, a recursive least square (RLS) based parameter adaptation 
algorithm (PAA) is proposed to estimate and cancel the RTE from the reference signal in 
the read head. A comb filter is further designed as the error shaping filter to improve the 
PAA estimation performance and reduce the contamination of non-repeatable timing 
distortion in SSW process. 
      The remainder of this chapter is organized as follows. In Section 6.2, the timing 
errors in spiral based SSW process are introduced and the control problem is formulated. 
Section 6.3 presents two existing control methods used for rejecting the periodic 
disturbances. In Section 6.4, a RLS based PAA is proposed to estimate and cancel the 
RTE. For further enhancement of the RTE cancellation and NRTE reduction, an error 
shaping filter is designed. Section 6.5 provides the simulation study using the industry 
supplied data and finally the chapter summary is given in Section 6.6. 

6.2 Control Problem Formulation 

6.2.1 Challenges in Spiral based SSW Process 

In spiral based SSW process, the concentric product servo patterns are written by 
referring to the prewritten spiral tracks (see Section 2.3.3 for details). Hence, the quality 
of the product servo patterns is closely affected by that of the spiral tracks. In other words, 
any imperfection of spiral tracks damages the quality of SSW. There are two main 
obstacles impacting the quality of SSW in the current HDD manufacturing.  

Drifts of spiral locations 

The first and most significant obstacle in spiral based SSW process is known as the drifts 
of spiral locations; that means the spiral tracks are shifted away from their ideal locations 
due to disk eccentricity and/or thermal expansion (as shown in Figure 6.1). The disk 
eccentricity is common in spiral based SSW process since the spiral tracks are written by 
an external spiral writer, while the SSW is performed using the internal heads. It occurs if 
the center of seeding spirals is different from the center of servowriting, as shown in 
Figure 6.2. 
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Figure 6.1: Drifts of spiral locations 
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Figure 6.2: Illustration of disk eccentricity 

Position error in sync marks 
The second obstacle in spiral based SSW process is the position error of sync marks, 
which means the circumferential position of sync marks within a spiral track, relative to 
the ideal circumferential position, is shifted as shown in Figure 6.3. The sync mark 
position error is mainly caused by the mechanical jitter and/or thermal expansion.  
      During the manufacturing process, when the spiral tracks are written on the disk by 
the external spiral writer, the spiral shifts due to the thermal expansion and sync marks’ 
position error are also written together with the spiral tracks and introduce the written-in 
timing error, which are periodic and synchronized to the disk rotation.  

Remark 6.2.1 

Each spiral track, as shown in Figure 6.3, comprises a high frequency signal which is 
interrupted at a predetermined constant interval by the sync marks. 
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Figure 6.3: Position error in sync marks 

6.2.2 Timing Errors in Spiral based SSW Process 

Repeatable timing error 

With the continuously increasing data density, HDD manufacturers write data to the disks 
such that the data density is substantially uniform throughout the disk. Uniform density 
(as shown in Figure 6.4(a)) requires an accurate clock during writing the spiral tracks. 
After the spiral tracks are written, the disk drive is operated to self-write the product 
servo patterns, wherein the drifts of spiral tracks and sync marks’ position error appear as 
repeatable timing error (RTE), which is read by the read head and used as the reference 
signal. The RTE shifts the demodulation windows in the demodulation circuit, as shown 
in Figure 6.5. The shifts of demodulation windows directly and adversely affect the 
performance of both position control loop and timing control loop in SSW servo system. 
Consequently, the product servo patterns are also shifted from sector to sector, resulting 
in non-uniform alignment, as shown in Figure 6.4(b). However, we desire to write the 
product servo patterns uniformly along the circular tracks.  

( )a ( )b

 track i track i

 

Figure 6.4(a): Servo sectors with ideally even spacing (b): Servo sectors with uneven 
spacing due to RTE 
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Figure 6.5: Shifts of timing windows in demodulation circuit 

Non-repeatable timing error 

The non-repeatable timing error (NRTE) in spiral based SSW process is mainly induced 
by the spindle speed variation and sensor noise, and it causes the phase incoherency at the 
servo sectors between adjacent tracks, as shown in Figure 6.6(b).  
      Therefore, in order to improve the quality of product servo patterns, it is necessary to 
compensate the RTE and reduce NRTE when the product servo patterns are written by 
referring to the prewritten spiral tracks. 

( )a ( )b

Track i

1Track i 

 Track i

1Track i 

 

Figure 6.6(a): Coherent phase at the sectors between adjacent tracks (b): Incoherent phase 
at the sectors between adjacent tracks due to NRTE 

6.2.3 Control Objectives 

In spiral based SSW process, the quality of the written servo patterns must be degraded 
due to the timing distortion in the spiral tracks since the product servo patterns are written 
based on the prewritten spirals. Therefore, by referring to the block diagram of spiral 
based SSW timing control loop in Figure 2.7, the first and foremost significant control 
objective is to reduce the repeatable timing error _ ( )R i k  which is the major portion of 
timing distortion in spiral based SSW process. In order to effectively compensate the 
RTE, it is necessary to estimate it first because it is not directly measurable during SSW 
process. The details are presented in Section 6.4.1. 
      The other equally important goal is to ensure a good quality of the product servo 
patterns even in the presence of non-repeatable timing error (NRTE) _ ( )NR i k  (as shown in 
Figure 6.10). Namely, the timing signal from the write head is desired to be evenly 
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distributed along the circular tracks, i.e. the written timing deviation is as minimum as 
possible. By using the write head phase signal  ( )i k  in Figure 2.7, the performance index 
can be written as 

    
1 2

1 1 0

1
  ( )          1

m m N

i i
i i k

k m
N

  


  

         

      Ideally,  ( ) 0i k   for all k . In Section 6.4.2, it is shown that in order to achieve this 
target, the NRTE should be appropriately dealt with as well as the RTE. 

6.3 Rejection of Periodic Disturbance  

This section reviews two existing control methods used for rejecting the periodic 
disturbances.  
      Consider the setup in Figure 6.7, which shows a linear time invariant (LTI) plant 

( )G s  perturbed by a periodic disturbance ( )d t  represented as follows 

 0

0 0

( ) sin( )

sin( ) cos( )

d t D t

a t b t

 
 

 
 

   

         
  (6.1) 

where 2 2D a b  ,  1tan /b a  , a  and b  are the Fourier coefficients of ( )d t  at the 
frequency 0 . The feedback controller ( )C s  is assumed to be designed to stabilize the 
system.  

( )r t

( )d t

( )y t( )e t

 

Figure 6.7: Block diagram of feedback control system with periodic disturbance 

      Several methods have been used to design the control scheme for eliminating the 
adverse effects of periodic disturbances. The most common approach is based on the use 
of a notch filter [12, 49] as shown in Figure 6.8. A second order notch filter ( )N s  is 
given as an example: 

 
2 2

0
2 2

0 0

( )
( / )

s
N s

s Q s


 




 
    (6.2) 
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( )r t

( )d t

( )y t( )e t

 

Figure 6.8: Block diagram of feedback control system using notch filter to reject periodic 
disturbance 

      Notice that the notch filter in Equation (6.2) has an infinite notch depth corresponding 
to the disturbance frequency 0  and the steepness of the notch is determined by the 
parameter Q  (i.e. the larger Q  makes the notch steeper). However, removing all signals 
at the synchronous frequency (i.e. the rotational speed) may result in closed-loop 
instability, limiting the usefulness of this approach.  
      Another method is based on the adaptive feedforward control (AFC) scheme [72, 71, 
41] as shown in Figure 6.9. The periodic disturbance is cancelled by adding the negative 
of its estimated value, i.e. ( )v k , which is written as 

 
0 0( ) ( )sin( ) ( ) cos( )v k a k k b k k       

where ( )a k  and ( )b k  are the parameters to be estimated by using the adaptive algorithm. 

( )r k

( )d k

( )y k( )e k

( )v k

( )cu k

 

Figure 6.9: Block diagram of AFC scheme for rejecting periodic disturbance 

      The conventional adaptive law governing ( )a k  and ( )b k  is given by the least mean 
square (LMS) algorithm and written as follows [81]: 

 
 

0

0

( 1) ( ) 2 ( )sin( )

( 1) ( ) 2 ( )cos( )

c

c

a k a k u k k

b k b k u k k

 

 

  

  

  

   
  

where   is the step size parameter that regulates the speed and stability of the adaptation 
and ( )cu k  is the control input for the plant. 
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      A linear transfer function of the AFC scheme in Figure 6.9 can be obtained by 
analyzing the signal propagation from the system error ( )e k  to the feedback error 

( ) ( )r k y k  to the AFC output ( )v k , by ignoring the time-varying component in the z-
transform of the AFC output ( )v k . It is written as follows [81, 29]: 

 
2

0
2

0

2 cos( ) 1( )

( ) ( ) 2(1 ) cos( ) 1 2

z zE z

R z Y z z z


  
 


    

    (6.3) 

where ( ) ( ) ( ) ( )E z R z Y z V z   . Equation (6.3) is the transfer function of a second order 
digital notch filter with a notch at the disturbance frequency 0 . The sharpness of the 
notch is determined by the parameter  . Therefore, a strong similarity between the notch 
filter and the conventional AFC exists and it may lead to instability for both of the above 
cases.  
      The following section proposes a recursive least square based parameter adaptation 
algorithm to compensate the repeatable timing error in spiral based SSW timing control 
loop. This approach is able to easily guarantee the stability of the system. 
 

6.4 Timing Error Compensator Design 

The proposed control scheme is shown in Figure 6.10, where _ ( )NR i k  represents the 
NRTE. The design includes two steps. First, a recursive least square (RLS) based 
parameter adaptation algorithm (PAA) is proposed to estimate the RTE and the output 

( )iv k  is then used to cancel it. Secondly, an error shaping filter ( )zW  is added to enhance 
the performance of PAA and reduce the effect of NRTE in the system. 

6.4.1 Recursive Least Square based Parameter Adaption Algorithm  

PAA refers to a problem of identifying or estimating unknown parameters of a system, 
the structure of which is assumed known and identical to that of the system. And we can 
use a mathematical model and adjust the model parameters so that the input-output 
behavior of the model and that of the system become close to each other.  
      The RTE _ ( )R i k in Figure 2.6 and Figure 6.10 can be written as a sum of   n sinusoids 
of known frequencies since it is periodic and synchronized to the disk rotation: 

 

n

_
1

   

( )  sin(2 / ) cos(2 / )  

           ( )                (   )0, 1, , 1 and / 2

R i ij ij
j

T
i

k a kj N b kj N

k k N n N

  

 


   

   





  (6.4) 

where
           ( ) sin 2 / sin 4 / sin 2 /  cos 2 /  cos 4 /  cos 2 /, , ,  , , , ,T k k N k N kn N k N k N kn N           , 
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 1 2 1 2
  , , , , , , ,T

i i i in i i ina a a b b b    , and the Fourier coefficients ija and ijb are not dependent 

on  k , i.e. they are constants. 

 ( )i k
( )ie k

( )iv k

( )iu k
_ ( )NR i k

1

1z 
_ ( )R i k

 

Figure 6.10: Proposed control scheme with PAA and error shaping filter 

      In Figure 6.10, the PAA output ( ) iv k is the estimated RTE and written as 

 



1

( ) ( 1)sin(2 / ) ( 1)cos(2 / )  

( ) ( )1          

n

ij iji
j

T
i

v k a k kj N b k kj N

k k

 

 



     

 

 
  (6.5) 

where    
1 2 1 2  ( ) ( ),  ( ), ,  ( ), ( ),  ( ), ,  ( )T

i i in i i ini k a k a k a k b k b k b k    
    . 

Remark 6.4.1 

 ( )k  in equations (6.4) and (6.5) is known for all of k .  
 i  in Equation (6.4) is the parameter vector to be estimated; and  ( )i k  in Equation 

(6.5) is the estimated parameter vector. 
 If  ( 1) ii k   , then ( )iv k  will completely cancel _ ( )R i k  from the reference. 

      Now we assume that the following ( )1k   sets of data are known 

 _ _ _(0),   (1),   ,   ( )

(0),   (1),   ,   ( )

R i R i R i k

k

  

  







  

      The design problem is to find the parameter vector  ( )i k  to minimize the following 
cost function 

    2

_
0

1
 G ( )   ( ) ( ) ( )

2

k
T

i iR i
j

k j j k  


      (6.6) 
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      Then  ( )i k  is obtained by solving 
 


( )dG
0

( )

i

i

k

kd




  and the RLS based PAA can be 

described by the following equations  

 

 



0

0
_

( ) ( 1) ( ) ( ) ( )  
( ) ( ) ( ) ( )1  

( 1) ( ) ( ) ( 1)
( ) ( 1)  1 ( ) ( 1) ( )

i i i

T
i R i i

T
i i

i i T
i

k k F k k e k

e k k k k

F k k k F k
F k F k

k F k k

 

  

 
 

  

  

 
  

 

  (6.7) 

where ( )  iF k is the RLS gain for the sector k  in the track i .  
      We note that in spiral based SSW timing control loop, only the system error ( )ie k is 

measurable, i.e. _ ( )R i k  is not directly measurable and the a-priori prediction error 0( )ie k  
cannot be used in the PAA. However, in Figure 6.10, before adding the error shaping 
filter ( )zW  and assuming the system is not contaminated by NRTE _ ( )NR i k , the system 
error ( )ie k  is represented as 

 





_

_

_

_

0

( )  ( ) ( ) ( ) 

          ( ) ( ) ( ) ( )

          ( ) ( ) ( )  

          ( ) ( ) ( ) ( 1)

          ( ) ( )

ii R i i

R i i i

R i i

T
R i i

i

e k k v k k

k v k P z e k

S z k v k

S z k k k

S z e k

 





  

  

  

   
    



  (6.8) 

where 1( )
1 ( )

S z
P z

 
 is the sensitivity function; ( )( )

1
C zP z
z




 is the open loop transfer 

function of the digital PLL circuit. 
      Hence, 0( )ie k  can be obtained from the measurable quantity ( )ie k  if   1

( )S z


 exists and 
is implementable, i.e. 

 
  10 ( )  ( ) ( )  

           ( )  ( )

i i

i

e k S z e k

s k e k



 
  (6.9) 

where ( )s k  is the impulse response of   1
( )S z


. 

      The PAA in Equation (6.7) can be modified in various ways. For example, it is 
possible to introduce a forgetting factor 0 1  . In such case, the updating equation for 

( )iF k  becomes 

 
( 1) ( ) ( ) ( 1)1

( ) ( 1)  ( ) ( 1) ( )

T
i i

i i T
i

F k k k F k
F k F k

k F k k

 
   
  

     
  (6.10) 
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      Notice that Equation (6.7) is a standard least square algorithm. Hence, 0 ( ) 0lim ik
e k


  

and  ( )lim ik i
k 
  can be easily proved, which guarantee asymptotic stability of the 

feedback control system. 

6.4.2 Effect of Non-repeatable Timing Error (NRTE) on the Performance of PAA 

If NRTE _ ( )NR i k  is present in the system, Equation (6.8) can be rewritten as  

 



 

_

_ _

_ _

_

( )  ( ) ( ) ( ) 

          ( ) ( ) ( ) ( ) ( )

          ( ) ( ) ( ) ( )

          ( ) ( ) ( 1) ( )

ii R i i

R i i i NR i

R i i NR i

T
ii NR i

e k k v k k

k v k P z e k k

S z k v k k

S z k k k

 

 

 

  

  

   

    
     

  (6.11) 

      Equation (6.11) shows that the performance of PAA is affected by the presence of 
NRTE _ ( )NR i k  since ( )  ie k is used in PAA updating equation. Hence the estimation 

accuracy of  ( ) iv k is degraded because of _ ( )NR i k . 

      Moreover, from Figure 6.10, the write head phase signal  ( )i k is written as 

 
_( )  ( ) ( ) ( )i NR i ik k P z e k     

which shows the quality of the written servo patterns is adversely affected due to the 
contamination of NRTE _ ( )NR i k . 

6.4.3 Error Shaping Filter Design  

In this subsection, an error shaping filter ( )zW  (as shown in Figure 6.10) is designed to 
enhance the estimation performance of PAA and reduce the effect of NRTE in the system. 
The error shaping filter is designed by introducing the new correction signal 

 ( )  ( ) ( ) ( )i i iu k v k W z e k    (6.12) 

      Introducing Equation (6.12) and adding the filter ( )zW , the system error ( )ie k  in 
Equation (6.11) is rewritten as 

 
_ _

_ _

( )  ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( ) ( )

i R i i NR i

R i i NR i i

e k S z k u k k

S z k v k k W z e k

 

 

    
     

  (6.13) 

Analysis 

 In Equation (6.13), the term  _ ( ) ( )R i ik v k   is repeatable residual error which is 

determined by the PAA in Equation (6.7).  
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 The term  _ ( ) ( ) ( )NR i i
k W z e k   is non-repeatable residual error. It can be seen that if 

the magnitude of  _ ( )NR i k  is reduced by ( ) ( )iz e kW , then the magnitude of the 

system error ( )ie k  will also be reduced.  
      Therefore, it is desired to design ( )zW  to reduce the NRTE _ ( )NR i k . For this purpose, 

( )zW  can be designed to extract the non-repeatable components from ( )ie k , i.e. to remove 
its repeatable components out. 
      The filter ( )zW  is considered as a comb filter 

 1 1
( )  

2 1

N N

N N

z
W z

z








  
   

  (6.14) 

where    is the scaling factor. 

Analysis  

 The filter ( )zW  is stable if and only if 1  . Its zeros are 2 /k j N
kZ e   and poles 

are 2 /k j N
kP e    for    0, 1, , 1k N  . 

 The frequency response of ( )zW  consists of a series of evenly-spaced notches 
with appearance of a comb. Figure 6.11 shows an example of the comb filter with 
delay length 50N   and factor coefficient 0.69  . 
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Figure 6.11: Frequency response of a comb filter in Equation (6.14) ( 50N   and 0.69  ) 

 In Equation (6.14), the factor 1 2N  is designed for setting the filter gain to 

unity in the passband (i.e. between the notches). Figure 6.12 shows the closed-
loop responses (i.e. from _ ( )R i k  to  ( )i k ) before and after adding the filter ( )zW , 
which have the same bandwidth except that the system with ( )zW  has the notches 
that are useful for reducing the NRTE in the system. 

 The repeatable components of the system error ( )ie k  are eliminated by ( )zW . In 
other words, its non-repeatable components are isolated to reduce the NRTE 

_ ( )NR i k . 
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Figure 6.12: Closed-loop response of the systems with and without the comb filter 

6.5 Simulation Study 

In the simulation study, 19 tracks of RTE _R i  (as shown in Figure 6.13) and NRTE _NR i  
(as shown in Figure 6.14) are collected from a real disk drive. The spindle speed is 7200 
rpm and the number of servo sector in one track is 208N  . The low pass filter in the 
PLL circuit is chosen as 

 
2

0.477 0.4725
( )  

z
C z

z z





  (6.15) 

The sampling period is 54.63 10T    sec. 

Remark 6.5.1  

 In practical SSW process, the spindle speed is generally slower than the nominal 
value. Hence the sampling period in the simulation is chosen as 54.63 10T sec   

which is larger than 560
4 10

208 7200
sec 


. 

 The RTE profile looks like sinusoidal because it is mainly contributed by the disk 
eccentricity and written-in timing error, which are periodic and synchronized to 
the disk rotation.   

 The NRTE profile is continuous since it is mainly caused by the spindle speed 
variation. 

 In the simulations, all the signals are normalized to 4 sT ns . 
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Figure 6.13: RTE profile (19 tracks) 
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Figure 6.14: NRTE profile (19 tracks) 

6.5.1 PAA with and without NRTE  

In order to show the effectiveness of the proposed PAA, RTE _R i
 and NRTE _NR i are 

injected to SSW system for 19 revolutions. Two cases are firstly studied and compared: 
without PAA (i.e. the original system in Figure 2.7) and with PAA (i.e. the system in 
Figure 6.10 but without the filter ( )W z ). In the simulation study, the forgetting factor was 
chosen as 0.86 and  n in Equation (6.4) was 1.  
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      Figure 6.15 shows the write head performance ( 
i  

  ) for 19 tracks. The solid line 

represents the case with PAA, which achieves a much better timing pattern with 77.7% 
smaller average timing variation than the original system as shown in the dotted line. 
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Figure 6.15: Written timing deviation for 19 tracks with PAA (    2.36i savg T    ) and 

without PAA (   10.56 siavg T     ) 

      In the second study, the estimation performance of PAA is compared between the 
systems with and without NRTE _ NR i

 . The estimation performance in the track i  is 
defined as 

 _

_

 100%
i R i

i

R i

v
P





   
  

  (6.16) 

      In Figure 6.16, the solid line represents the injected RTE source. The dashed line 
represents the estimated RTE in ideal case, i.e. NRTE _ NR i  does not exist in the system. 
However, when _ NR i

  is present, the estimation performance is clearly degraded as shown 
in the dotted line. This implies that the presence of _ NR i

  adversely affects PAA 
estimation performance. The average iP  is compared in Figure 6.17. It can be seen that 
the estimation performance is degraded from 18.0% to 28.8% if the system is 
contaminated by NRTE _ NR i

 . 
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Figure 6.16: RTE and estimated RTE profiles for 19 tracks 
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Figure 6.17: Comparison of PAA performance with _NR i
 (   .28 8%iavg P  ) and without 

_NR i
  (   %18.0iavg P  ) 

      Figure 6.18 shows the average 
i  

   in the systems with and without NRTE _NR i
 . 

From the figure, we learn that the quality of the written timing pattern is 62.7% better if 
the system is not contaminated by NRTE _NR i

 . 
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Figure 6.18: Written timing deviation using PAA with _NR i
  (     2.36i savg T     ) and 

without _NR i
  (   0.88i savg T     ) 

6.5.2 PAA with Error Shaping Filter 

      An error shaping filter ( )zW  in Equation (6.14) is designed to reduce the effect of 
NRTE _NR i

  in the system and improve the servowriting quality. The scaling factor in 
Equation (6.14) is 0.69  . Figure 6.19 – Figure 6.21 show the performance of ( )zW . 
Figure 6.19 and Figure 6.20 compare the performance of the feedforward signal iu  for 19 
tracks using PAA with and without the filter ( )zW . The performance of iu  is defined in 
Equation (6.17), which is similar to Equation (6.16), 

 _

_

 100%
i R i

i

R i

u
P

 

 

   
  

  (6.17) 

      It is shown that the system with PAA and ( )zW  achieves 26.8% more accurate RTE 
estimation than the system with the PAA only. 
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Figure 6.19: Performance of   iu using PAA with ( )zW  (   %9.67iavg P  ) and without 

( )zW  (   %28.8iavg P  ) 
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Figure 6.20: RTE and feedforward signal iu profile for 19 tracks 

      In order to further verify the performance of the error shaping filter ( )W z , Figure 6.21 

shows 
i  

   in the systems with and without ( )W z . The solid line represents the system 

using PAA and the comb filter ( )W z  and it is much smoother since the effect of NRTE 

_NR i
  has been reduced by ( )W z . The resulting average 

i  
   is reduced from 2.36 sT  

(using the PAA only as shown in the dashed line) to 0.93 sT . 
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Figure 6.21: Written timing variation using PAA with ( )zW  (    0.93i savg T    ) and 

without ( )zW  (   2.36i savg T    ) 

6.6 Chapter Summary 

This chapter presented a control algorithm to tackle with the repeatable error in discrete 
linear repetitive processes, which dominates the system dynamics. In the timing control 
loop of HDD spiral based SSW process, the repeatable timing error is present in the 
reference and therefore it is amplified through the closed-loop dynamics to generate the 
written timing patterns. Using this system as the test bed, a recursive least square based 
parameter adaptive algorithm was proposed to estimate and cancel the repeatable timing 
error. In the simulation result, the repeatable timing error was cancelled up to 90%. An 
error shaping filter was further designed to improve the estimation accuracy of repeatable 
timing error and to reduce the effect of non-repeatable timing error in the process. The 
resulting quality of the written timing patterns was improved by as much as 91% over the 
original system. 
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Chapter 7 

A Real-time Control Scheme Design 
 

7.1 Introduction 

In Chapter 6, we learned that in spiral based SSW process, the drifts of spiral locations 
(due to the disk eccentricity and thermal expansion) and sync marks’ position error (due 
to the mechanical jitter and thermal expansion) cause the repeatable timing error. The 
repeatable timing error consequently leads to the shifts of timing windows in the 
demodulation circuit. As a result, the written product servo sectors are shifted from sector 
to sector, resulting in non-uniform alignment. In other words, the servo write clock (i.e. 
the sampling period of the servo system) is non-uniform or irregular. Analyzed from the 
computer system perspective, such system is also referred to as the real-time or event-
driven control system (the write head clock is updated only when a sync mark is detected 
in the demodulation window by the read head, i.e. the system sampling is triggered by the 
read head signal). In this real-time control system, the sampling period is time-varying 
due to the repeatable timing error.  
      The feedback controllers in SSW servo system (including the position control loop 
and timing control loop), however, are classically designed. In other words, they are 
designed by assuming the sampling period is strictly constant. Generally, there are two 
ways to design the feedback controllers. One is to use the discrete-time control theory; 
the other is to discretize a continuous-time design. Both of these methods assume a 
constant sampling period to calculate the controller parameters. When such feedback 
controller is implemented in a non-uniform sampling system, the control input to the 
plant is inaccurate. As a result, the controlled system response degrades or even causes 
instability and sample data loss.  
      In this chapter, a novel scheme to determine the control parameters in the phase-
locked loop based on Kalman filter theory is proposed to deal with the non-uniform 
sampling issue in this repetitive process and improve the quality of self-servowriting. The 
remainder of this chapter is organized as follows. Section 7.2 presents the effect of 
sampling jitter in the real-time control system through two examples. The effect of 
repeatable timing error in spiral based SSW servo system is analyzed in Section 7.3. In 
Section 7.4, the proposed control scheme based on Kalman filter theory is presented. 
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Section 7.5 verifies the effectiveness of the proposed control algorithm through the 
computer simulations. Finally, Section 7.6 gives the chapter summary.   

7.2 Real-time Control System of Spiral based SSW Process 

7.2.1 Timing in Real-time Control Loop  

In classical digital control system design, all the sampled data signals are assumed to be 
regularly, synchronously, and equally time spaced, being cT  the constant sampling period 
[3]. As shown in Figure 7.1, a digital control loop consists of three main operations: 
sampling (i.e. data collection), control algorithm computation, and actuation (i.e. output 
transmission). In ideal case, the control algorithm is executed periodically with a constant 
sampling period determined by the process dynamics and the requirements on the closed 
loop performance.  

Controller Actuator Plant

Sampler

Reference

 

Figure 7.1: Digital control loop 

      The two basic timing constraints of a digital control loop are shown in Figure 7.2. 
The first is the period which should be constant, i.e. the sampling should be performed at 
the sampling instants in every period. The second constraint involves the input-output 
latency, also known as the control delay. This should be as small as possible, i.e. the 
control computation should start and finish quickly after the sample is available and 
actuation should occur immediately after the control computation, or at a fixed instant 
after the sampling. However, this is not the case in most industrial applications given that 
the computations take time and may have to contend with other computations for 
processing and other resources.  

 

Figure 7.2: Basic timing constraints in a digital control loop 
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      When a control algorithm is executed by a task (i.e. performing the three actions 
sequentially) or by a set of subtasks (where each task performs one or more parts of a 
control loop) in a multitasking real-time system, the assumptions of constant sampling 
period or zero control latency are often not met and various forms of jitters are introduced. 
These jitters can be classified into two categories: 

(1) Sampling jitter: the time intervals between consecutive sampling points are not 
constant, which is also referred to as non-uniform or irregular sampling.  

(2) Sampling-to-actuation delays: even if the sampling occurs at regular intervals, there 
is a delay between when the sampling arrives and when the actuation response occurs 
after the control computation.  

      The above two jitters cause control performance degradation, instability, or even 
sample data loss [3]. From the perspective of a control system, the sampling jitter and 
delay jitter can be interpreted as disturbances acting on the control system. In Chapter 6, 
the sampling jitter in spiral based SSW process was interpreted as the repeatable timing 
error in the system. In this chapter, we are analyzing from the perspective of a computer 
system to deal with the non-uniform sampling period issue caused by the sampling jitter. 
We are only interested in the sampling jitter since it is the main issue in spiral based SSW 
process.  

7.2.2 Effect of Sampling Jitter and Compensation Methods  

Generally speaking, computer-based control systems can be designed by two methods: 
discretization of a continuous-time design or discrete-time design. In both cases, the final 
controller obtained by using a suitable control design strategy must meet the specified 
closed-loop system performance requirements taking into account the dynamics of the 
controlled process. Such controller is characterized by the design parameters that are 
highly dependent on the nominal sampling period cT  used in the design procedure. The 
control computation, however, is executed at the actual sampling periods which may not 
be of the constant value cT . Therefore, the control performance degrades.   
      In many cases, however, better control performance can be achieved if the controller 
is allowed to actively compensate for the variations from sample to sample by 
recalculating or redesigning the controller parameters. This requires that the necessary 
sampling period measurements are available.  
      In the following subsection, two examples are provided to show how these two 
compensation methods reduce the effect of the sampling jitter, respectively.  

Example 1 – DC servo motor 

Consider proportional-derivative (PD) control of a DC motor, as shown in Figure 7.3. 
The goal of the control algorithm is to make the servo position ( )y t  follow the reference 
position ( )r t  as closely as possible. The servo motor is mathematically described by a 
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continuous-time transfer function 1000( )
( 1)

G s
s s

  . A good implementation of the PD 

controller, which includes filtering the derivative part, is given as 

 

 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
d c d c

P t K r t y t

aD t D t T b y t T y t

u t P t D t

 

    

 

  

  

  

  (7.1) 

where K  is the proportional gain, cT  is the nominal sampling period, dT  is the derivative 

time constant, M  is typically in the range of 3 30 , d
d

c d

T
a

MT T
  , and c

d
c d

MKT
b MT T

  .  

( )G su y
r

y

,  r y

u

( )C s

 

Figure 7.3: Block diagram of PD controlled DC servo motor 

      A nominal sampling period of 10cT ms  is chosen, and the PD controller is tuned to 
give a fast and well-damped response to set-point changes. The resulting parameters are 

1K  , 0.04dT  , and 30M  . The parameters da  and db  are precalculated, assuming that the 
sampling interval takes the nominal value, i.e. 10ms . Three simulation cases are studied.  
(1) The first simulation of the closed-loop system, where there is no jitter in the sampling 

intervals, is shown in Figure 7.4. It shows that the controller behaves as expected and 
the system performance is satisfactory.    

(2) The second simulation study, where the actual sampling interval denoted by kT  varies 
randomly between min 2T ms  and max 18T ms , is shown in Figure 7.5. In this case, the 
control signal ( )u t  is calculated by using the output signal measured at the time 
instants with the actual sampling interval kT  instead of the nominal sampling interval 

cT , i.e. 

 
   

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )d k d k

u t P t D t

K r t y t a D t T b y t T y t

 

      

  

        
  

While the parameters da  and db  have been fixed by cT . It can be seen that the 
sampling jitter causes the controller to repeatedly take either too small or too large 
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actions. The resulting performance is quite poor. This is especially visible in the 
control signal. 
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Figure 7.4: Good control performance without sampling jitter 
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Figure 7.5: Degraded control performance due to sampling jitter 

(3) Finally, in the third study case, the compensation for sampling jitter is considered. 
This is done by measuring the actual sampling intervals kT  and using them to 
recalculate the controller parameters da  and db  at each sample instant, i.e. 
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d
k d

T
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

   
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MT T
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   

Figure 7.6 shows that this version of controller handles the sampling jitter well.  
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Figure 7.6: Good control performance after compensating the sampling jitter 

Example 2 – PLL circuit in spiral based SSW system 

In this example, the controlled process ( )G s  in Figure 7.3 is the voltage controlled 
oscillator (VCO) in the PLL circuit used for spiral based SSW timing control system. It is 

mathematically modeled as an integrator (
42 10( )G s s

 ) and the feedback controller ( )C s  

is chosen as a low pass filter (LPF), which is designed by using a nominal sampling 
period of 510 sec4.63cT   . Compared to Example 1, four simulation cases are studied.  
(1) In the first simulation, the nominal sampling period 510 sec4.63cT    is assumed, i.e. 

there is no sampling jitter in the system. The result is represented by the line with the 
circles (○) in Figure 7.7. It is obvious that the controller performs well. 

(2) In the second simulation, the sampling period is randomly varied between 
5

min 3 10 secT    and 5
max 10 sec8T   . The simulation result is illustrated by the line with 

the squares (□) in Figure 7.7. It shows that the controller performance deteriorates 
substantially due to the sampling jitter.  

(3) In the third study, the compensation method used in Example 1 is considered, i.e. the 
parameters of the LPF are recalculated by using the actual sampling intervals. This 
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compensation method, however, does not work well for the spiral based SSW timing 
control loop (as shown in the line with the triangles ( ) in Figure 7.7).  
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Figure 7.7: Control performance comparison in real-time spiral based SSW process 

(4) Therefore, the forth simulation case is conducted, where the LPF is redesigned by 
tuning the gain. In the same figure, the resulting response is shown in the line with the 
dots (•). It is observed that the redesign of LPF parameter compensates the sampling 
jitter very well and the control performance is as good as that of the system without 
the sampling jitter, i.e. the system in the first simulation study.  

      Notice that in the above two examples, both of the sampling jitter compensation 
methods (recalculation and redesign) are applied assuming the actual sampling intervals 
are measurable. However, in practical spiral based SSW process, the actual sampling 
intervals are not directly measurable, i.e. the above two compensation methods are not 
applicable. Hence, it is necessary to design a novel approach to compensate for the 
control degradation due to the sampling jitter and guarantee the system stability in real-
time spiral based SSW process.  
      Before presenting the proposed control algorithm, the effect of repeatable timing error 
is analyzed from the real-time control system perspective in the following section, 
assuming there is no sampling-actuation delay or sample data loss.  
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7.3 Effect of Repeatable Timing Error in Spiral based SSW Servo 
System 

7.3.1 Non-uniform sampling due to Repeatable Timing Error  

During spiral based SSW process, the read head reads the prewritten spiral tracks and 
generates a spiral wedge crossing signal, which is then processed by the demodulation 
circuit for recovering the spiral position and timing information in the spiral tracks. 
Figure 7.8 shows the control block diagram of spiral based SSW servo system, which 
includes two control loops: position control loop and timing control loop. These two 
control loops use the demodulated spiral position information and timing information to 
generate the position error signal (PES) and servo write clock for the write head. In the 
position control loop, the voice coil motor (VCM) is controlled to maintain the head over 
the target track centerline; and in the timing control loop, a phase locked loop (PLL) is 
used and controls the numerically controlled oscillator (NCO) to update the servo write 
clock ( )wT k , where k  denotes the index of servo sectors, i.e. the index of sampling 
instants in the servo system.  
      Notice that these two control loops are sampled with the same sampling period ( )wT k , 
which is time-varying and non-uniform due to the repeatable timing error caused by the 
drifts of spiral locations and sync marks’ position error. However, the feedback 
controllers in these two control loops, ( )pC z  and ( )C z , are designed by using the nominal 
constant sampling period cT . Therefore, the control inputs, ( )pu k  for the VCM and ( )u k  

for the NCO, are inaccurate. Moreover, it is desired to write the product servo patterns 
uniformly along the circular tracks. In other words, the actual servo write clock ( )wT k  
should ideally and quickly converges to cT . So ( )wT k  is the key for improving the quality 
of product servo patterns and the timing control loop in spiral based SSW servo system is 
critical.  

( )sr t 1
1z 

( )k ( )k( )e k ( )u k

( )wT k

( )G z( )sy k ( )wy k( )pe k ( )pu k( )pC z

 

Figure 7.8: Control block diagram of spiral based SSW servo system 
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7.3.2 Digital Phase Locked Loop in Timing Control loop 

In HDD read/write channel, the second order digital phase locked loop (PLL) as shown in 
Figure 7.9 is widely used for synchronizing the read head clock with the write head clock. 
Its loop filter is generally a proportional integral (PI) controller and written as 

 
1 2 1

1
( )

1
C z C C

z
 


  (7.2) 

where 1C  is the parameter of the proportional term and 2C  is the parameter of the integral 
term. Notice that the PLL circuit in Figure 7.9 is equivalent to the Figure 2.6, except that 
the track index i  is ignored in the signals for the convenience of analysis.   
      The PLL is known as a clock tracking control system, wherein the phase and 
frequency of its output signal follow the phase and frequency of its input signal. So in 
spiral based SSW timing control loop, the write head phase and frequency follow the read 
head phase and frequency. The read head frequency means the frequency of detected 
sync marks in the read head signal.  
      Notice that the read head frequency is non-uniform because of the repeatable timing 
error, so the write head clock ( )wT k  is also non-uniform. However, the PI loop filter is 
designed based on the nominal constant sampling period. In other words, the PI constant 
parameters 1C  and 2C  are designed for uniform sampling system. Hence, the non-uniform 
sampling period ( )wT k  damages the quality of the product servo patterns and causes two 
problems in the timing control loop: (1) the control input ( )u k  for the NCO is inaccurate; 
(2) the written product servo patterns are not uniformly aligned in the circular tracks. In 
the following section, the proposed compensation scheme is proposed to deal with these 
two issues. 

Write 
head 
phase-
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head 
phase
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Loop filter
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Figure 7.9: Phase locked loop in spiral based SSW timing control loop 

7.4 Proposed Compensation Scheme based on Kalman Filter  

7.4.1 Noisy Timing System Modeling 

Before designing the compensation scheme, it is important to analyze the timing system 
in the prewritten spiral tracks. Refer to Figure 7.10, where ( ) ( 0,1, 1) t k k N   denotes 
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the ideal uniform timing mark locations with constant interval cT . In conventional PLL 
circuit, ( )t k  is used as the reference timing location. In the figure, ( )st k  denotes the 
timing location of spiral track k  as shown in the dashed lines. And ( )wT k  represents the 
timing location of the write head, as shown in the dotted lines.  

( )st k

( )t k
cT

( )wt k

( )k

( )k

 

Figure 7.10: Illustration of read/write head timing locations in conventional PLL circuit 

      Using the above notations, the read head phase (expressed in radians), ( )k  in Figure 
7.9, can be written as 

   2
( ) ( ) ( )s

c

k t k t k
NT

      (7.3) 

where N  denotes the number of servo sectors in one circular data track, and cT  is the 
nominal sampling period of the servo system.  
      The corresponding angular frequency error (expressed in radians per sample) is 
denoted by ( )f k . It can be written as 

  1 1 2
( ) ( 1) ( )

( 1) ( ) s s
c s s

f k t k t k
T t k t k N

 
       

  (7.4) 

      Then we have the mathematical model of the noisy timing system in the spiral tracks, 
which is written as  

 ( 1) ( ) ( )

( 1) ( ) ( )

k k f k

f k f k w k

   
  

  (7.4) 

where ( )w k  is the mechanical jitter (i.e. process noise) related to the angular frequency 
error. The mechanical jitter includes the disk disturbance and noise in the spiral writer. 
Here we assume the read head phase ( )k  is indirectly affected by ( )w k .  
      The read head noisy signal is expressed as 

 ( )  ( ) ( )r k k v k    (7.5) 

where ( )v k  is the measurement jitter (i.e. observation noise) including the preamplifier 
noise and the A/D converter noise.  
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      Defining the augmented state vector ( )
( )

( )

k
x k

f k

 
  
 

, Equation (7.4) and Equation (7.5) 

can be rewritten as  

 

 

1      1 0
( 1)  ( ) ( ) 

0     1 1

              ( ) ( )

     ( )  1      0 ( ) ( ) 

              ( ) ( )

c c

c

x k x k w k

A x k B w k

r k x k v k

C x k v k

   
     

   
 

 

 

  (7.6) 

      The noisy timing system in Equation (7.6) can be illustrated by Figure 7.11.  

1z

cA

cC
cB

( )v k

( )r k( )w k ( 1)x k  ( )x k

 

Figure 7.11: Noisy timing system in the spiral tracks 

      Since the physical sources of mechanical jitter ( )w k  and measurement jitter ( )v k  are 
independent, hence it is reasonable to assume that they are independent. It is also 
assumed that both of them are white and Gaussian with zero mean and covariance W  and 
V , respectively, i.e. 
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      The initial state vector (0)x  is also assumed to be Gaussian and independent with 
( )w k  and ( )v k , i.e. 
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         


  

      It should be noted that the sampling jitter has be represented by two additive noise 
terms ( )w k  and ( )v k  in the discrete time Kalman filter formulation.  
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7.4.2 Proposed Control Scheme Design 

Notice that the digital oscillator NCO in Figure 7.9 is an integrator and it has the exact 
same mathematical model as the timing system in Equation (7.6). Hence, it can be said 
that the NCO is the estimate of the noisy timing system in the prewritten spiral tracks. In 
other words, the digital PLL circuit in Figure 7.9 is a state estimator, wherein the loop 
filter controls the NCO to estimate and follow the phase and frequency of the read head 
signal. 
      In this section, we propose to redesign the digital PLL circuit by using the Kalman 
filter theory since Kalman filter has been well known as optimal state estimator. By using 
the noisy timing system in Equation (7.6), the discrete-time Kalman filter equations can 
be easily obtained as 

 

  

 

 

1

( ) ( 1) ( ) ( ) ( 1)

( 1) ( 1 1)

( ) ( 1) ( 1)

( ) ( ) ( 1)

( 1) ( 1 1)

c

c

T T
c c c

c

T T
c c c c

x k k x k k F k r k C x k k

x k k A x k k

F k M k k C C M k k C V

M k k I F k C M k k

M k k A M k k A B WB



      

   

     
  

    

  (7.7) 

where 



( )

( )
( )

k k
x k k

f k k

 
 
  

 is the a-posteriori state estimate including the phase estimate 

( )k k  and angular frequency error estimate ( )f k k ; ( 1)x k k   is the a-priori state 

estimate; 1

2

( )
( )

( )

F k
F k

F k

 
  
 

 is the Kalman filter gain; matrix ( )M k k  is the a-posteriori state 

estimation error covariance; and ( 1)M k k   is the a-priori state estimation error 
covariance.  
      The Kalman filter in Equation (7.7) can be equivalently represented as 
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








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( 1 ) ( 1) ( 1)( )1     1
( ) [1    0]

0     1 ( )( 1 ) ( 1) ( 1)

k k k k k kF k
r k

F kf k k f k k f k k

                                        
  (7.8) 

      Equation (7.8) can be illustrated by the following figure. 
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Figure 7.12: Illustration of Kalman filter in Equation (7.7) 

      From Figure 7.12, we can see that the proposed Kalman filter in Equation (7.7) has 
the same structure as the second order digital PLL circuit in Figure 7.9, where the upper 
part is a loop filter with the filter gain 1( )F k  and 2 ( )F k ;and the lower part is the estimated 
timing system and it is equivalent to the digital oscillator NCO in the PLL circuit. The 
only difference between them is that: in PLL, the estimated timing system is the NCO, 
which is a digital circuit in the actual implementation; while in Kalman filter, the 
estimated timing system is involved and calculated in the Kalman filter equations. Hence, 
the proposed Kalman filter can be implemented as simply as the conventional PLL circuit 
in industry. Namely, the proposed method is a tuning method for the PLL parameters 1C  
and 2C  based on the Kalman filtering theory. Comparing the PLL circuit in Figure 7.9 
with the Kalman filter block diagram in Figure 7.11, it can be done by simply replacing  

1C  with 1( )F k  and replacing 2C  with 2 ( )F k .  

7.4.3 Analysis of Kalman Filter Design 

Figure 7.13 shows the overall picture of the proposed timing control loop for spiral based 
SSW process. By using the noisy timing system model (Equation (7.6)) of the prewritten 
spiral tracks, it is easy to design a Kalman filter to optimally estimate the read head phase 
and frequency by minimizing the estimation error covariance, i.e. 

  2 2
min ( ) ( )E k f k   

  (7.9) 

where  ( ) ( ) ( 1)k k k k     and  ( ) ( ) ( 1)f k f k f k k    represent the state estimation error; 

 E  represents the expectation value. 
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Figure 7.13: Proposed timing control loop based on Kalman filter 

      Equation (7.9) implies minimizing the phase error between the read head and write 
head subject to the non-uniform spiral location ( )st k  which is caused by the repeatable 
timing error. Therefore, using the Kalman filter design, the write head clock is updated 
accurately. This is the advantage of the Kalman filter over the conventional PLL circuit. 
In conventional PLL circuit as shown in Figure 7.9, the PI loop filter is designed for 
uniform sampling system, so the control input ( )u k  for NCO is inaccurate and the write 
head clock ( )wT k  is not the correct value.   

Changing the reference clock  

After the Kalman filter is designed, it is simple to deal with the other issue in the timing 
control loop: non-uniform sampling caused by the repeatable timing error. We propose to 
fix it by changing the reference clock in the system. In conventional PLL circuit as shown 
in Figure 7.9, the reference clock is ( )t k , which is the ideal uniform timing mark 
locations with constant interval cT . The read head phase ( )k  is defined in Equation (7.3) 

and the write head phase ( )k  is defined as 

    2
( ) ( ) ( )w

c

k t k t k
NT

      (7.9) 

      Since the PLL is a tracking control system, so the write head phase ( )k  will follow 
the read head phase ( )k , i.e. the write head timing location ( )wt k  will approach to the 
spiral location ( )st k , which is not desirable because the spiral location ( )st k  is non-
uniform due to the repeatable timing error caused by the drifts of spirals and sync marks’ 
position error.  
      In our proposed compensation algorithm, we choose the spiral location ( )st k  as the 
reference clock, as shown in Figure 7.14.  
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Figure 7.14: Timing locations of read/write heads with proposed reference clock 

      So now the phase ( )k  in the reference signal is rewritten as 

   2
( ) ( ) ( )s

c

k t k t k
NT

      (7.10) 

      And the write head phase ( )k  is rewritten as 

    2
( ) ( ) ( )w s

c

k t k t k
NT

      (7.11) 

      Since the Kalman filter is an optimal estimator, hence it will achieve that: the write 
head phase ( )k  optimally follows the reference phase ( )k , i.e. the write head timing 
location ( )wt k  approaches to the spiral location ( )st k . As a result, the servo write clock in 
the servo system ( )wt k  converges to the nominal constant sampling period cT . This 

achieves our objective: the product servo sectors are uniformly and accurately written in 
the circular data tracks.   

Implementation of the proposed algorithm 

From Figure 7.12, we know that the write head phase ( )k  can be calculated when 
( 1)e k   is measured. But the actual spiral location ( )st k  in equations (7.10)-(7.11) is not 

measurable. In other words, the servo write clock ( )wt k  is not available even ( )k  is 

known. However, ( )k  is required to be known at least one step advance for sampling the 
servo system at the sampling instant k . Notice that ( )k  is generated by the NCO and it 
can be rewritten as the following equation based on the principle of its operation.  

    2
( ) ( ) ( )w cen

c

k t k t k
NT

      (7.12) 

where ( )cent k  is the center frequency of the NCO.  
      In order to generate the servo write clock ( )wt k , ( )cent k  must be known. For implemen-
tation, we propose to calculate ( )cent k  as 

  2
( ) ( ) ( )cen

c

t k t k k
NT

    (7.13) 
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where ( )t k  is the ideal timing mark location and is known for all k .  
      From Equation (7.12) and Equation (7.13), we have ( ) ( )wt k t k  for all k , i.e. the 
NCO generates the uniform sampling period ( ) ( 1)cT t k t k    for the servo system.  
      In a summary, the proposed Kalman filter with changing the reference clock is able to 
deal with the non-uniform sampling issue in timing control loop and make sure the 
written product servo patterns are uniformly and accurately aligned in the circular tracks. 
In the following section, the proposed compensation algorithm is verified by the 
simulation studies.  

7.5 Simulation Study 

In this simulation study, the plant NCO model, PI loop filter, and nominal sampling 
period cT  are chosen the same ones as that used in Section 6.5. The same 19 tracks of 

repeatable timing error _ ( )R i k  (as shown in Figure 6.13) and non-repeatable timing error 
_ ( )NR i k  (as shown in Figure 6.14) are injected in the system. They are collected from a 

real disk drive and used for calculating the jitter covariance W  and V , i.e. _ ( )R i   is used 
to calculate the covariance W  in the track i  and _ ( )NR i   is used to calculate the covariance 
V  in the track i . Hence, in different tracks, the Kalman filter gains 1( )F k  and 2 ( )F k  have 
different steady-state values, as shown in Figure 7.15 and Figure 7.16.  In the figures, 
each line represents the Kalman filter gains in one servo track, where the circles (‘ ’) 
and asterisks (‘  ’) represent the gain at the servo sector k , i.e. 1( )F k  and 2 ( )F k , 
respectively.  
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Figure 7.15: Kalman filter gain 1( )F k  
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Figure 7.16: Kalman filter gain 2 ( )F k  

      From Figure 7.15 and Figure 7.16, we know that 1( )F k  and 2 ( )F k  are time-varying in 
each track but they quickly converge to constants within several sectors when the system 
is in steady state. We also note that in this design example, 1( )F k  and 2 ( )F k  have small 
variations between different tracks, so it is feasible to use the steady-state Kalman filter 
gains instead of the time-varying Kalman filter gains. 
      Figure 7.17 shows the phase error comparison between the original PLL circuit and 
the system using the proposed Kalman filter design. From the figure, we can see that 
using the Kalman filter design, the phase error in the system (as shown in the solid line 
with the average   .0 30i se T  ) is reduced about 90% from the original PLL circuit (as 
shown in the dashed line with the average   .2 90i se T  ). The performance of steady-state 
Kalman filter is also remarkable, as shown in the dotted line. This can be proved by the 
results in every single track.  
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Figure 7.17: Phase error comparison between the original PLL circuit ( ( [ ]) 0.30i savg e T  ), 
time-varying Kalman filter ( ( [ ]) 2.90i savg e T  ), and steady-state Kalman filter 

      For example, Figure 7.18 shows the phase error comparison in the first track. Clearly, 
the phase error in both time-varying Kalman filter (as shown in the solid line) and steady-
state Kalman filter (as shown in the dotted line) is much smaller than that in the original 
PLL circuit (as shown in the dashed line). However, we notice that the performance of 
the steady-state Kalman filter is poorer than the time-varying Kalman filter, as shown in 
Figure 7.19. The reason is that the steady-state Kalman filter gains are not close enough 
to the time-varying Kalman filter gains in this track. Let's see the results in another track. 
Figure 7.20 shows the results comparison in the 18th track. Similarly, the phase error in 
both time-varying (as shown in the solid line) and steady-state (as shown in the dotted 
line) Kalman filters is greatly reduced from the original PLL circuit (as shown in the 
dashed line). Moreover, the performance of these two Kalman filters is almost the same, 
as shown in Figure 7.21. It’s because their filter gains are close to each other in this track. 
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Figure 7.18: Phase error comparison in the 1st track 
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Figure 7.19: Phase error comparison in the 1st track 
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Figure 7.20: Phase error comparison in the 18th track 
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Figure 7.21: Phase error comparison in the 18th track 

      In order to further verify the effectiveness of the proposed compensation algorithm, 
the simulation studies are conducted by changing the system initial uncertainty and 
mechanical jitter. Table 7.1 shows the comparison between the results in Figure 7.17 and 
the results in the system with larger system initial uncertainty. It shows that the proposed 
Kalman filter is less sensitive to the system initial uncertainty.  
      Table 7.2 shows the comparison of the results between the systems with different 
mechanical jitter. From the results, it can be seen that the original PLL circuit is more 
sensitive to the mechanical jitter than the Kalman filter. Since the mechanical jitter is the 
main contributor of the repeatable timing error and it is more significant than the 
measurement jitter, hence it can be concluded that the proposed Kalman filter is more 
effective in dealing with the repeatable timing error than the conventional PLL circuit.  
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Table 7.1: Comparison of  ie  with different system initial uncertainty 

 Original PLL Time-varying KF 
System with normal 
initial uncertainty 

2.90 sT  0.31 sT  

System with larger 
initial uncertainty 

6.10 sT  0.41 sT  

       

Table 7.2: Comparison of  ie  with different mechanical jitter 

 Original PLL Time-varying KF 
System with normal 

mechanical jitter 
2.90 sT  0.31 sT  

System with smaller 
mechanical jitter 

2.90 sT  0.20 sT  

 
      Notice that in Table 7.1 and Table 7.2, we choose the time-varying Kalman filter to 
conduct the comparisons in order to show the potential improvement of the proposed 
Kalman filter design. From the figures 7.17 – 7.21, we know that the performance of the 
steady-state Kalman filter is close to that of the time-varying Kalman filter. Moreover, 
using the constant Kalman filter gains to tune the PLL parameters is more practical and 
more easily implemented.         

7.6 Chapter Summary 

This chapter presented an alternative compensation algorithm for HDD spiral based SSW 
timing control loop, wherein the repeatable timing error dominates the system dynamics.  
      Analyzing the repeatable timing error from the computer system perspective, this 
repetitive process was viewed as a real-time or event-driven control system since the 
write head clock is updated only at the time instants when the sync mark is detected 
within the demodulation window by the read head. From this perspective, the repeatable 
timing error was interpreted as non-uniform sampling period of the servo system. To 
tackle with the non-uniform sampling issue, a novel control scheme based on Kalman 
filter theory was proposed to redesign the PLL circuit in the timing control loop. The 
proposed compensation algorithm is not only able to resolve the non-uniform sampling 
issue, but also can be implemented as simply as the conventional PLL circuit in the 
industry. By using the proposed scheme, the quality of the product servo patterns is 
improved up to 90%. 
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Chapter 8 

Conclusion 
 
This dissertation presented advanced control algorithms to deal with three main problems 
observed in discrete linear repetitive processes, and particularly in hard disk drive self-
servowriting process.  

Error propagation along the iteration direction 

In a repetitive process, the iteration profile acts as a forcing function and contributes to 
the dynamics of the next iteration. As a result, the system error is propagated from 
iteration to iteration, which may cause the industrial process to fail without appropriate 
control actions.  
      Chapter 3 presented an iterative learning control scheme to deal with this problem 
and implemented it in the position control loop of HDD concentric SSW process. In this 
repetitive process, the system error is the only measurable signal. Hence, the recorded 
previous-track error information was intuitively utilized to construct the learning control 
law. The conditions of asymptotic convergence and monotonic convergence were derived 
and used to design the error learning filter. An 1L  optimal control problem was 
formulated in the sense of minimizing the maximum magnitude of the position deviation 
profile in each track. The proposed control scheme contained the track-to-track radial 
error propagation well and assured a good quality of the servowriting process.  
      An alternative control approach was proposed for this repetitive process in Chapter 4. 
Firstly, the system was equivalently represented by a 2D Roesser state-space model. The 
convergence problems in the iterative learning control system were then translated to the 
stability problems in a 2D control system. By using the 2D systems theory, a 2D state 
feedback controller was designed to guarantee asymptotic stability in both the time 
domain and the iteration domain. An error learning filter was further added later to 
mitigate the radial error propagation from track to track. The 2D control scheme was 
proved to have comparable performance to the iterative learning control scheme since it 
was able to guarantee the feedback control performance and the feedforward control 
performance simultaneously.  

Error propagation along both the iteration and the time directions 
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In some discrete linear repetitive processes such as the timing control loop in HDD 
concentric SSW process, the error propagation occurs not only along the iteration 
direction but also over the time. This problem requires more advanced control method.  
      In Chapter 5, a novel adaptive feedforward control scheme was proposed to deal with 
the error propagation along both the iteration and the time directions. In this design, an 
adaptive filter was designed to estimate the circumferential timing error which, together 
with the radial timing error, was utilized to contain the closure error within each 
individual track and attenuate the timing error propagation from track to track. The filter 
coefficients were derived by using the filtered-x least mean square algorithms, which 
minimizes both the circumferential timing error energy and the radial timing error energy. 
Therefore, the filter coefficient at every servo sector is optimal with minimum closure 
error and minimum timing error propagation. 

Repeatable error domination on the process dynamics 

Another major contribution this dissertation made is the development of a framework for 
analyzing the repeatable error in discrete linear repetitive process, and the design of 
effective control algorithms to reduce its dominance on the system dynamics. A typical 
example of dominant repeatable error can be found in the timing control loop of HDD 
spiral based SSW process, where the repeatable timing error is amplified through the 
closed-loop response to generate the written timing profile.  
      Analyzing the problem from two different perspectives, two control schemes were 
derived for this repetitive process in Chapter 6 and Chapter 7, respectively. Using the 
classical control theory, Chapter 6 proposed a recursive least square based parameter 
adaptation algorithm to estimate and cancel the repeatable timing error. Examined from 
the computer system perspective in Chapter 7, however, this repetitive process is a real-
time or event-driven control system and the repeatable timing error was interpreted as the 
sampling jitter in the system, which causes the sampling period of the servo system to be 
non-uniform. Furthermore, such sampling jitter is represented by two additive noise 
terms: mechanical jitter and noise jitter. The covariance of the jitter terms were provided 
to apply the Kalman filter theory and determine the PLL parameters 1C  and 2C  as the 
Kalman filter gains 1F  and 2F . The statistical properties of jitters can be estimated if the 
spiral tracks are written by the same spiral writer and the SSW is conducted in the same 
tester.  
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