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Abstract

The paper describes results of numerical evaluation of CASP12 models submitted on targets for 

which structural templates could be identified and for which servers produced models of relatively 

high accuracy. The emphasis is on analysis of details of models, and how well the models compete 

with experimental structures. Performance of contributing research groups is measured in terms of 

backbone accuracy, all-atom local geometry, and the ability to estimate local errors in models. 

Separate analyses for all participating groups and automatic servers were carried out.

Compared with the last CASP, two years ago, there have been significant improvements in a 

number of areas, particularly the accuracy of protein backbone atoms, accuracy of sequence 

alignment between models and available structures, increased accuracy over that which can be 

obtained from simple copying of a closest template, and accuracy of modeling of sub-structures 

not present in the closest template. These advancements are likely associated with more effective 

strategies to build non-template regions of the targets ab initio, better algorithms to combine 

information from multiple templates, enhanced refinement methods, and better methods for 

estimating model accuracy.

Keywords

CASP; protein structure prediction; high accuracy models; template-based protein modeling; 
numerical evaluation measures

1 Introduction

Template-based modeling is currently the most reliable type of protein structure prediction. 

A typical template-based modeling procedure involves, among others, two major steps: 

finding proteins with sequences similar to known structure(s) and building 3D models using 

the detected homologues as structural templates. Since the number of different protein folds 
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is estimated to be limited and fold coverage increases with the growth of protein structure 

database1, the applicability of template-based modeling is ever growing.

Accuracy of protein models has increased dramatically from the early CASPs (mid- 1990s) 

to the present day. Now it is routinely expected that a good structural model can be built for 

a target sharing more than 20% of sequence with at least one known protein structure, while 

cases where good models are built at a lower sequence similarity are not unusual any more. 

In the latest three CASPs, almost all targets (96%) with homology over 20% were modeled 

to GDT_TS2>50 (usually implying a topologically correct structure3,4), and around half of 

the targets (51%) were modeled to a high accuracy of GDT_TS>80. For low homology 

targets (seq. id. <20%), contemporary modeling methods (CASP10-12) still generate models 

of good overall fold accuracy (GDT_TS>50) for more than half of the targets (56%), 

including 8% cases (16 targets) of high accuracy modeling (GDT_TS>80); while back in 

1990s (CASP1-4), only 15% of such targets could be modeled to GDT_TS>50, and none to 

GDT_TS>80.

Typically, submitted models are automatically evaluated at the Prediction Center5-9 and then 

the results are interpreted by independent assessors. In recent CASPs, there has been only 

incremental progress in the template modeling category, and so no assessor was appointed in 

CASP12 and the analysis has been performed by Prediction Center staff and the CASP 

organizing committee. In the event, it turned out that there were interesting improvements in 

CASP12 and these are discussed below.

2 Materials and methods

2.1 | Evaluation measures

A wide suite of numerical measures has been used in CASP to assess accuracy of tertiary 

structures (see Measures paper, this issue). In this evaluation we chose to use (1) the rigid-

body structure superposition measure GDT_HA10,11, (2) three all-atom local structure-based 

measures – LDDT12, CADaa13 and SphereGrinder (SG)6, and (3) a measure of the accuracy 

of local error estimates ASE14. The GDT_HA measure and local measures have been 

already used in previous TBM assessments15,16 and have proved useful. The GDT_HA 

scores are highly correlated with the widely used in CASP GDT_TS scores2 and are usually 

10-20 points lower for the same models. The ASE measure was previously used to score 

model accuracy estimates14, and is used here to emphasize the importance of predicting 

atomic level errors. The CASP tertiary structure prediction format (http://

predictioncenter.org/casp12/index.cgi?page=format#TS) requires predictors to provide the 

atomic error estimates in the temperature factor column of the PDB file. The ‘ground truth’ 

deviations of atoms in models from their experimental counterparts are calculated from the 

optimal model-target superposition established by the LGA program17. The aforementioned 

measures (1)-(3) highlight different aspects of model utility (global fit, all-atom local 

accuracy, and correctness of local error estimates) and are given equal weight in evaluating 

an overall relative model quality score (see below). For ranking purposes, we first calculate 

z-scores (a.k.a. standard scores) for each of the measures according to the following 

procedure. First, z-scores are calculated from the distribution of raw scores for all models 

submitted on a target. Then, apparent outliers (i.e., models that scored two standard 
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deviations or more below the average) are excluded, and the standard scores are re-

calculated based on the mean and standard deviation of the outlier-free model set. All 

models that scored below the average (i.e. those with negative z-scores) are assigned z-score 

of 0 in order not to over-penalize the groups attempting novel strategies. If a group did not 

submit a prediction on a target or it was impossible to calculate an evaluation score (e.g., 

ASE score for predictions without self-estimates of accuracy), z-scores were also assigned 

zero value. The target-based z-scores are then summed for each group (separately for every 

measure) and combined in the final ranking with the following weights:

Ranking_score = 1/3 ∗ z_GDT_HA + 1/9 ∗ z_LDDT + z_CADaa + z_SG + 1/3 ∗ z_ASE .

Since the measures in the final ranking formula were developed only after CASP7, for 

evaluation of progress and comparison of CASP12 results with those from previous CASPs 

we also use the GDT_TS measure (see Measures paper, this issue), which was in use in 

CASP since CASP42.

2.2 | Targets

Based on the performance of the best CASP servers and template availability, CASP12 

targets were separated into three difficulty categories: easy (a.k.a. template-based modeling 

or TBM), hard (a.k.a. free modeling or FM), and borderline easy/hard (a.k.a. TBM/FM) (see 

Domain definition paper, this issue). A target was defined as easy (TBM) if the average 

GDT_TS score of top 20 server models was 50 or higher and there were clearly identifiable 

templates. Targets with insignificant homology to known structures and the average 

GDT_TS score of top 20 server models below 50 were defined as hard (FM). The remaining 

cases were designated as TBM/FM. This paper provides an assessment of models submitted 

on TBM and TBM/FM targets. The assessed target set includes 38 TBM evaluation units 

(EUs) and 19 borderline TBM/FM EUs. CASP targets were released for prediction in two 

prediction tracts: those lacking strong sequence similarity were released to all prediction 

groups and those with apparent sequence similarity were for servers only. Twelve targets out 

of 38 TBM EUs and 17 out of 19 TBM/FM EUs came from the all-group targets; the 

remaining from the server-only targets.

2.3 | Predictions

In CASP, predictors are allowed to submit five models per target. In the TBM assessment, 

the assessors usually limit themselves to assessing only the models assigned by predictors as 

model number 110,11,15,16,18-21 (supposedly the best models), and for ranking purposes we 

followed this practice. For establishing the progress between different CASPs, we took into 

account all submitted models.

3 | Results

3.1 | Any progress? Yes, finally

Two of the main CASP goals are to provide an objective assessment of current abilities and 

inabilities in the area of protein structure modeling and to establish if there has been 

progress from earlier CASPs. The last few CASPs have shown very limited progress in the 
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template-based modeling, with the overall accuracy of models largely unchanged since 

CASP5. This CASP we saw signs of measurable progress in at least four areas of TBM: 1) 

Overall backbone accuracy, 2) Overall accuracy as measured by improvement over the best 

template, 3) Accuracy of regions structurally divergent from a principal template, and 4) 

Overall alignment accuracy. We discuss each of these aspects below and present graphical 

summaries of the results in Figures 1-4.

To measure improvement in the overall backbone accuracy of the TBM models, we 

compared GDT_TS scores of the best models (and median models) submitted on targets of 

similar prediction difficulty in different CASPs. Target difficulty is defined as a linear 

combination of best structural template coverage and sequence identity of the target to the 

best template. The procedure used was similar to that reported in CASP papers describing 

overall progress in tertiary structure modeling22-24. Figure 1 shows the backbone accuracy 

of template-based models for the latest two CASPs, 11 and 12, and for CASP5 (at which 

time progress from earlier CASPs had plateaued). Trend lines in CASP12 (for both the best 

and median models) run noticeably higher than the corresponding trend lines for CASP11, 

indicating improved performance in CASP12. Backbone accuracy of the best CASP12 

models is about 10 GDT_TS units better than that of CASP11 models in the medium range 

of target difficulty and more than 15 GDT_TS units higher for the most difficult template-

based modeling targets. If judged by the accuracy of median models, CASP12 methods are 

about 10 GDT_TS units better than CASP11 methods across the full range of target 

difficulty. Comparing individual data points it is apparent that only one CASP12 template-

based modeling target had no models scoring above GDT_TS=50 and only six targets had 

no models scoring above GDT_TS=60, while in CASP11 these numbers were significantly 

worse (11 and 16, respectively). As one can see, there are several outliers at both ends of the 

accuracy spectrum. We discuss aspects of specific targets in a later section of the paper and 

discuss possible reasons for the improved performance in Conclusions.

The higher accuracy of the main chain prediction in CASP12 models is also supported by 

comparison of the best models with naïve models built by copying the coordinates of the 

aligned residues from the best available structural template. Figure 2 shows the difference in 

GDT_TS scores between such models. In CASP12, for the first time all the best template-

based models were better than the naïve models built for the same target (all data points 

being above the ΔGDT_TS=0 line). The improvement in backbone accuracy exceeded 10 

GDT_TS units for 12 CASP12 domains, while in CASP11 there were only 5 such domains. 

The CASP12 trend line is markedly above those from other CASPs, clearly indicating better 

performance.

Modeling of the non-principal template covered regions is often key to correctly 

characterizing functional differences between the template protein and the target. Figure 3A 

shows the percentage of non-template residues that are correctly predicted (C-alpha atom 

error less than 3.8 Angstroms) in the best model, while figure 3B shows difference between 

the % of such residues (i.e., the data for Fig. 3A) and % of incorrectly predicted residues for 

those that align with the best template). Both panels indicate big improvement from CASP5 

to CASP11 and further progress from CASP11 to CASP12, over the whole target difficulty 

range. Especially impressive is the CASP11-CASP12 progress in the net gain (panel B). The 
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average structural coverage histograms (insets) show a CASP11 to CASP12 improvement of 

about 7%, from -3% to 4%, in the net modeling gain and about 3%, from 30 to 33, in 

modeling of the non-template residues. Thus, about half of the improvement is in the 

alignable regions, and half in the non-alinable regions. It is also worth mentioning that 

CASP12 was the first CASP where the average net modeling gain was positive (i.e., more 

non-template residues were correctly modeled than template residues misplaced).

It is a well-known fact and a long-standing problem in the template-based modeling that 

model accuracy is dominated by alignment accuracy, together with the fraction of residues 

that can be aligned to the available template. To measure alignment accuracy, we compute 

the AL0 score2,25, representing the number of correctly aligned residues in the LGA 4Å 

superposition of the modeled and experimental structures. Figure 4 shows that alignment in 

CASP12 is significantly better than in previous CASPs, with the average accuracy around 

70% for the targets from the middle range of difficulty, compared to around 60% in CASP11 

and 50% in CASP5. Note that these numbers are the percentage of all residues, not the 

percentage of alignable residues. The maximum alignability line for CASP12 shows that the 

maximum possible values are not much larger and the alignment errors are quite small - 

about 5% over the whole range of target difficulty. The trend lines in figures 4 and 1 are 

similar, confirming the dependence of overall model accuracy on the alignment accuracy.

3.2 | Targets with unusually high or low accuracy for their difficulty range

T0868 (Figure 5A) is the target representing unusually high modeling performance in 

Figures 1-4. This target is a bacterial CdiA tRNase toxin in complex with its immunity 

protein CdiI26 (PDB ID - 5j4a). The success in modeling of this target results from the 

ability of the best server, Baker-Rosettaserver, to 1) recognize the best evolutionary related 

template, 4g6u (Figure 5D), which is not the highest-scoring sequence template (Figure 5E) 

or the highest-scoring structural template (Figure 5F); 2) accurately model structure 

fragments not present in the templates, especially the second part of helix α1 together with 

the loop and the first part of strand β1 (residues 55-65), α2a helix with the leader (residues 

90-106), and α4 helix (residues 150-156) – see Figure 5G; and 3) successfully refine the 

composed model to GDT_TS=76.5 (Figure 5B). The successful modeling of the missing 

structure bits was achieved through an ab-initio-style iterative refinement procedure (see the 

paper from the Baker group elsewhere in this issue), which performs an iterative insertion 

and refinement of fragments missing in the templates. With this technique, the improvement 

in model accuracy may arise from either ab initio modeling, combining templates, or both. 

Further improvement in model accuracy was achieved by the refinement dedicated 

approaches (the top 6 models on this target all come from the groups focused on the 

development of the refinement techniques), the best of which, Laufer_seed, used the 

Rosettaserver model in their molecular dynamics refinement, and was able to correct the 

alignment error in the β3 - α2a connector (residues 90-96, Figure 5H) and bring the model 

closer to the native structure in several other regions (Figure 5G). The final Laufer_seed 

model appeared to be a high-accuracy model scoring GDT_TS=86.6 (Figure 5C).

Target T0892-D1 represents the N-terminal domain of the uridine diphosphate glucose 

glycoprotein (PDB ID – 5nv4). It is another example of combining multiple templates and 
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successful ab initio modeling. The best server model on this target came from the Baker-

Rosettaserver (GDT_TS=81.1), which combined fragments from multiple templates (3bci, 

3bck, 3bd2, 3dvx, 3eu3, 3gha, 3gmf, 3hz8, 4z7x, 5c00) in their modeling. The success of 

this procedure provides more evidence of the effectiveness of current template hybridization 

approaches. The second-best server model was only 1.4 GDT_TS units behind the best and 

came from the Zhang-server. The good accuracy of this model is mainly due to the QUARK 

ab initio simulations (personal communication). The additional factor that likely contributed 

to the success was alpha-helical nature of the protein, for which QUARK usually has a better 

efficiency to fold.

Success in modeling domain T0898-D2 is likely associated with the successful combination 

of templates covering different parts of the target. Figure 6A shows alignment of the top four 

templates. It can be seen that the first two templates cover the target deeper into the C-

terminal region, while the third and fourth templates are better in the N-terminal region 

(regions with mostly yellow and orange colors). Combining templates that cover different 

regions appears to have helped building more accurate models for this target. As it can be 

inferred from Figure 6B, the best submitted model (TS126_4_2 from the EdaRose group, 

blue) seems to be built on two different templates, as it closely follows the 3k7a template in 

the first part of the sequence, and the 2lg1 template in the last part. Conversely, the second-

best model (TS287_5 from the Multicom-cluster group, green) closely follows a single 

template (3k7a) along the whole domain sequence. As a result, model TS287_5 is less 

accurate in the C-terminal region and loses 5.5 GDT_TS points in the overall model 

accuracy, compared to the best model.

The best server model for target T0882 (Figure 7A), a hypothetical domain from the serine/

threonine-protein kinase WNK1 (PDB ID – 5g3q), was built by the Baker_Rosettaserver 

(TS005_2, Figure 7B) using the structure of protein 2v3s as a main template (Figure 7C). As 

it can be seen from the alignment plot (Figure 7F), the model (blue line) closely follows this 

template (red) except for the first approximately 15 residues, where the template misses a β-

strand. However, the missing strand is present in other high-scoring templates - 2lru (Figure 

7D) and 2kt9 (Figure 7E), and the Rosetta combined the N-terminal strand from these 

templates with the rest of the structure from 2v3s (Figure 7F) to build a complete model 

(personal communication), which was subsequently refined to GDT_TS=90.8 (Figure 7B).

Besides the targets with unusually high scores for their difficulty range, Figure 1 shows a 

couple of targets - T0874 and T0875, with unusually low scores. T0875 (LV2A2) is a 

protein from Ljungan virus and T0874 (HPeV1) from Human Parechovirus A. The two 

proteins are related to each other at around 50% sequence identity. Even though the best 

structural templates (4dot, 4dpz) were found by the servers, the templates appeared to be 

hard to improve on. The best models scored only 54 and 45 LGA_S points on targets T0874 

and T0875, respectively, and these scores are just slightly better than the scores of the best 

templates (46/42 LGA_S, respectively). Closer inspection reveals that the best templates 

cover only the N-terminal parts of the proteins, and while there were also templates covering 

the C-terminal parts of the proteins, no group managed to combine information from 

multiple templates to more accurately model the whole protein. It should be mentioned that 

both proteins contain flexible loops (excluded from the evaluation) and the segments that are 
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covered in complementary templates are located at different sides of the loops. This may 

have caused an additional complication in modeling these targets.

3.3 | Group rankings

In this CASP we ranked participating TBM groups based on the accuracy of model 

backbone, the similarity of local model features to those of the target (contact patterns, 

distance maps and local substructures) and the accuracy of per residue error estimates. All 

these model attributes are combined in the final ranking formula provided in Methods. All 

participating groups are compared on the subset of all-group TBM and TBM/FM targets (see 

domain classification paper, this issue); servers are also separately ranked on all TBM and 

TBM/FM targets (Figure 8). The ranks are based on the cumulative Z-scores with negative 

per-target values set to 0 (as described in Methods), but the rankings do not change much for 

different Z-score calculation approaches (please see the Prediction Center website http://

predictioncenter.org/casp12/zscores_final.cgi?formula=assessors). Figure 8A identifies four 

groups – McGuffin, VoroMQA-select, Zhang and ProQ2, which show better results than the 

rest of predictors. The methodologies of the first, second and fourth groups are largely based 

on the meta-predictor approach, and use accuracy assessment methods to pick the best 

models from the available set of CASP server models, followed by subsequent model 

refinement. The methodology of the Zhang human-expert group is based on the I-TASSER 

prediction pipeline27, which uses all CASP server models as an input. Among servers, two 

servers from the Zhang group, Zhang-server and QUARK, are at the top of the ranking chart 

(Figure 8B). Brief descriptions of the best-performing TBM groups can be found in the 

online CASP12 Abstract Book (http://predictioncenter.org/casp12/doc/

CASP12_Abstracts.pdf).

To establish the statistical significance of differences in group performance, we applied t-

tests (requiring normal distribution of the data) and the Wilcoxon tests (not requiring normal 

distribution of the data) to each pair of top performing groups and carried out a head to head 

comparison of the results on the common sets of predicted targets. Outcomes of t-tests and 

Wilcoxon tests are very similar. Since the majority of CASP12 per-target results are non-

normally distributed, we report here only the results of the Wilcoxon tests. Table 1 shows the 

data for the best 20 ranked groups among (A) all groups and (B) server-only groups. Panel 

(A) demonstrates that the top ranked group, McGuffin, is statistically indistinguishable from 

the following eight groups, including three groups - VoroMQA_select, Zhang and ProQ2 

that show very similar results to those of the McGuffin group (pairwise p-values ≥0.8). For 

the top nine predictors (also including the Wallner, MULTICOM, wfRos-ProQ-ModF6, 

Seok-refine and Zhang-Server groups), 31 out of 36 pair-wise statistical tests could not 

reject the null hypothesis of the similarity of these groups at the 95% confidence level. The 

head to head comparison of the top performing groups (Table 2A) shows that top nine 

groups have also comparable percentage of wins and losses (with small exceptions). The 

VoroMQA_select group outperforms all groups on more than half of the targets with a win 

margin of over 25% for all but 5 groups. In general, the results of the head to head tests are 

in agreement with the results of the Wilcoxon tests: in 88% of cases the groups that have 

similar/different head-to-head results are correspondingly statistically indistinguishable/

different according to the Wilcoxon tests (i.e., shading of cells in (A)-panels of Tables 1 and 
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2 coincide). This tendency holds true for server-only results, with shading of corresponding 

cells in (B)-panels of Tables 1 and 2 coinciding in 95% of cases. Results of two server 

methods - Zhang-server and QUARK, both from Yang Zhang’s group - are indistinguishable 

between themselves and better than those from all other groups. These servers are also better 

than all the others in head-to-head comparisons.

New in this CASP was inclusion of the ASE measure, reflecting ability to estimate residue-

level errors, in determining rankings. One factor in this was that some groups mistakenly 

provided estimated crystallographic temperature factors instead of the requested error values 

and this did have a significant effect on their results. To illustrate this, we selected four 

groups - Zhang, McGuffin, Lee and Baker – who demonstrate comparable GDT_TS 

performance, but different ASE performance. Figure 9 shows that all the selected groups 

have GDT_TS scores around 75 for the easiest targets and around 50 for the most difficult. 

At the same time, these groups differ significantly according to the ASE measure: average 

scores for the Zhang and McGuffin groups are above 80, while for the Baker and Lee groups 

are only around 35 and 55, respectively. If judged on the backbone accuracy only (GDT_HA 

scores), or on the CASP11 assessors’ formula that includes global and local accuracy scores 

and does not take into account the ASE score, two J. Lee’s groups (LEE and LEEab) lead 

the all-group rankings (see Figure S1 in the Supplementary); however, they drop to #10 and 

#11 in the cumulative ranking (see Figure 8) because of the low ASE scores1. Similarly, the 

Baker group is positioned 6th in the GDT_HA only ranking and 4th in the ranking according 

to the CASP11 assessors’ formula, but drops to #15 in the cumulative ranking. Conversely, 

the McGuffin group is ranked 8th in the GDT_HA only ranking and 7th in the CASP11-style 

ranking, but climbs to the top of the cumulative ranking due to the relatively higher ASE 

scores. Ranking of the groups that show similar performance across the different measures 

remains quite stable. For example, the Zhang and VoroMQA_select groups occupy positions 

#3 and #4 in the GDT_HA based ranking and #2 and #3 in the cumulative ranking, 

correspondingly. On a separate note, Figure 9 also shows that all four of these groups 

improved accuracy of their backbone modeling in CASP12, if compared to CASP11 (i.e., 

achieved higher GDT_TS scores).

Since the ASE measure was used for the first time in the assessment of template-based 

models, we wanted to check if selection of a different measure for quantifying differences 

between the predicted and observed error distances would have changed the cumulative 

rankings. As an alternative local accuracy measure, we selected the log-linear correlation 

between the predicted and observed distances between the corresponding residues in a 

model and the target. The results of the analysis showed that the correlation between the 

ranking of groups according to the CASP12 formula and the ranking where ASE score in the 

CASP12 formula was substituted by the log-linear correlation is very high (Spearman 

CC=0.9). This shows that selection of the specific local accuracy measure (e.g., ASE vs the 

correlation) introduces only minimal disturbance into the final rankings in general. Since 

sometimes the presence of apparently poor results in the datasets tends to overinflate 

correlation, we also checked the agreement between the rankings only for the better 

1It was brought to our attention that the LEE and LEEab groups provided estimates of the crystallographic temperature factors in 
place of the required distance error estimates.
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performing groups. The top portions of the ranking tables according to the two ranking 

schemes are very similar, with the same group being recognized as best (McGuffin) and only 

one group from the top 12 in the ranking that includes ASE score being not included in the 

top 12 list of the ranking that includes correlation instead of ASE.

4 | Discussion

The analysis of the template based modeling results in the 12th round of CASP demonstrated 

measurable progress in template-based modeling from CASP11 to CASP12. The 

improvement in model accuracy is shown by all four analyses carried out in this paper: the 

accuracy of backbone modeling, alignment accuracy, accuracy of models versus the single 

best template, and accuracy of the non-template region modeling. Progress is evident both at 

the community-wide scale (comparing best models submitted on targets of similar accuracy 

in CASP12 and CASP11) and at the individual group scale (comparing results of the same 

groups in CASP12 and CASP11). It is always hard to dissect which part of the CASP-to-

CASP progress comes from methodological advances and which from the change in the 

databases and difference in target sets. The data show, though, that the difficulties of 

CASP12 and CASP11 TBM targets (including TBM/FM) are very similar if judged by the 

average sequence identity (17% in both CASPs) and coverage (72% and 76%, 

correspondingly) of the targets by the best templates, and therefore non-methodological 

effects likely had a small impact.

To obtain insight into the methodological advances of the best methods, we checked the 

CASP12 Methods Abstracts (http://predictioncenter.org/casp12/doc/CASP12_Abstracts.pdf) 

and also got in touch with the authors. While every group had their own recipe for success2, 

we can summarize that much of the CASP12 progress in TBM comes from 1) more effective 

strategies to combine multiple templates or build missing parts in the templates regions ab 
initio, 2) enhanced refinement methods and 3) better methods for estimating model accuracy 

(EMA). The first two points in the list are discussed in the examples provided above. Better 

EMA methods enabled picking more accurate models from decoy sets for all top-performing 

groups, and in some cases helped identifying low reliability regions as candidates for 

refolding or refinement (see Yang Zhang’s paper, this issue). While using contact 

information in free modeling was a story of success in the recent two CASPs28 (see the Free 

Modeling assessment paper, this issue), the CASP12 TBM data showed that there is no trend 

for better performance of template-based methods on targets with deeper alignments. This 

general conclusion is confirmed in Yang Zhang’s paper (this issue), which shows that results 

of the Zhang-server on TBM targets with or without using contacts are essentially the same.

Performance of individual groups in CASP12 was ranked based on five measures belonging 

to three conceptually distinct classes. The first class of measures captures accuracy of 

modeling of the protein backbone, and is represented by the GDT_HA score. The second 

class of measures reports on the all-atom accuracy of modeling at the local scale, and 

includes three scores – LDDT (distance-based), CAD (contact-based) and SphereGrinder 

(local structure based). The third class gives credit to methods capable of providing accurate 

2The detailed account of the better performing TBM methods can be found elsewhere in this issue.
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estimates of distance errors in the submitted models, and is represented by the ASE score. 

Combining all these scores in the final ranking gave benefit to groups with well-rounded 

results. Among completely automated methods, two servers from the Zhang group, Zhang-

server and QUARK, outperform the rest of the servers in a statistically significant manner. 

They also win all head-to-head comparisons on common sets of predicted targets. Among all 

predictors, McGuffin, VoroMQA-select, Zhang and ProQ2 groups, in that order, are the top 

performers. The head-to-head comparisons and statistical tests on a wider cluster of nine top 

performing groups (also including Wallner, MULTICOM, wfRos-ProQ-ModF6, Seok-refine 

and Zhang-Server groups) could not establish statistically significant difference in their 

results (with small exception).

Inclusion of the ASE accuracy estimate measure in this evaluation was somewhat 

controversial and down-ranked some groups (e.g., Lee and Baker) that were good 

performers according to the previous CASP ranking schemes. We strongly encourage the 

prediction community to take advantage of the FORCASP forum (http://

predictioncenter.org/forcasp/) to discuss approaches for evaluation of the TBM category 

before the next experiment starts, and so ensure that the community’s views are fully 

considered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
GDT_TS scores of the best and median models submitted on the template-based modeling 

targets (including TBM and TBM/FM domains) in CASP5 and CASPs11-12. Points 

represent best models for each target in CASP11 and CASP12. Data are for the all-group 

targets in the CASPs 11 and 12 CASPs and for all targets in CASP5. Apparently, the high 

outlier for target T0868 is pulling the CASP12 trend line (solid black line) up at the hard 

difficulty end, but even without this outstanding target, the CASP12 trend line (dotted and 

dashed black line) stays above the CASP5 and CASP11 lines. Specifics of the labeled in the 

graph targets are discussed in a separate section below.
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Figure 2. 
Difference in GDT_TS score between the best submitted model for each target and the 

corresponding naïve model built by simple copying of the backbone atoms for the aligned 

residues of the best single template. Values greater than zero indicate added value in the best 

model. In contrast to CASP11, value was added for every target in CASP12, and in general 

the increase is greater than in CASP11. Targets T0868 and T0892-D1 are examples, where 

the best models were significantly better than the models built on a single best template, due 

to combining of multiple templates.
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Figure 3. 
(A) Percentage of correctly predicted non-template residues, and (B) difference between the 

percentages of correctly predicted non-template residues and incorrectly predicted template 

residues. The data are provided for targets with at least 15 residues missing in the best 

template. A residue is considered as correctly aligned/predicted in the template/model if its 

Cα error is less than 3.8Å in the optimal LGA superposition. Values greater than zero in 

panel (B) indicate net gain in the modeling (i.e., more correctly predicted residues from 

those missing in the template than incorrectly predicted residues from those available in the 

template). The best model for target T0868 (the highest positive outlier marked in panel B) 

includes substantial portion of the structure that was not available from the best templates 

and was modeled ab initio.
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Figure 4. 
Percentage of correctly aligned residues (AL0) for the best models submitted on the 

template-based modeling targets (including TBM and TBM/FM domains) in CASP5 and 

CASPs11-12, and the maximum percentage of residues that could be aligned using the 

single best template (i.e., maximum alignability) on CASP12 targets as functions of target 

difficulty. A model residue is considered correctly aligned if the Cα atom falls within 3.8Å 

of the corresponding atom in an optimal model-target superposition, and there is no other 

experimental structure Cα atom nearer. A template residue is considered alignable if there is 

at least one experimental residue that is within 3.8Å (in terms of the Cα-Cα distance) in an 

optimal template-target superposition. The maximum alignability is the percentage of 

aligned residues in the longest alignment between the best template and the experimental 

structure built with the dynamic programming procedure in such a way that no alignable 

residue is taken twice and all residues in the alignment are in the order of the sequence. The 

data in the graph are provided for the all-group targets in the latest two CASPs and for all 

targets in CASP5. The maximum alignability line (dotted black line) shows that CASP12 
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predictions (solid black line) on harder template-based targets exceeded the alignability limit 

for single templates. The detailed analysis shows that such result is a consequence of 

presence of extraordinary well modeled target T0868 in the dataset. While this target has 

maximum alignability of only 63% (marked on the graph), 90% of its residues were 

correctly aligned in the best model due to ab initio modeling of non-template regions and 

successful refinement (as discussed below). Removing T0868 from the target set brings the 

alignment line for CASP12 models (dotted and dashed black line) about 5% below the 

maximum single-template alignability line in the whole range of target difficulty.
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Figure 5. 
Target T0868 (panel A) with its models (panels B,C), templates (panels D-F), and alignment 

plots (panels G,H). (A) The native structure of target T0868 rainbow-colored from N-

terminal (blue) to C-terminal (red). (B-F) Structural alignment of the target (cyan, Cα trace) 

and: (B) the best server model TS005_1 (Baker-Rosettaserver, green cartoon); (C) the best 

overall model TS330_2 (Laufer-seed, blue); (D) the most often used by the CASP12 

predictors evolutionary related template (4g6u, red); (E) the highest scoring HHsearch 

sequence template (2ghz, magenta); (F) the highest scoring LGA structural template (2cw6, 
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yellow). (G) Cα-Cα distances between the target residues and the aligned residues in the 

best evolutionary related template (red dotted line), best server model (green), and the 

overall best model (blue). Lower values indicate closer residues, and thus better modeling. 

The secondary structure diagram of the target is provided at the bottom of the panel, with the 

regions shown in panel A marked on the sequence. (H) Position-specific alignment of the 

best models to the target structure. The models are sorted according to the number of 

correctly aligned residues. Green color shows regions of perfect alignment in the optimal 

sequence-independent LGA superposition, yellow – residues misaligned by no more than 4 

positions along the sequence, red – misaligned by 5 or more residues, and white - not 

aligned. Three regions of the target: 1) the second part of helix α1 together with the loop and 

strand β1, 2) the first part of the second helix before the kink, α2a, and 3) the small C-

terminal helix α4 are missing in the templates (D-F), but included in the models (panels B, 

C). Two other structural fragments - the β2-loop-β3 and the α3 helix - have different 

orientation in the best templates, but are well placed in the models (green and blue lines run 

noticeably lower than the red dotted line in panel G). The best model from an expert group 

(C) shows overall improvement over the best server model (B) due to the successful 

refinement (blue line runs generally lower than the green line in panel G). In particular, the 

best expert model (T0868TS330_2, boxed in the top part of panel H) was able to fix the 

alignment error in the best server model (T0868TS005_1, boxed at the bottom) in the 

connector (residues 90-96) between the β3 strand (84-89) and the α2a helix (residues 

97-106); and move the regions α1-β1 and α2b towards native structure.
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Figure 6. 
(A) The template - target Cα-Cα deviation for the top four templates (sorted according to 

the LGA_S score) of T0898-D2. Yellow color marks regions with the distance <0.5 Å, 

orange 0.5-2 Å, light red 2-5 Å and dark red >5 Å. (B) Proximity of the target residues to the 

aligned residues in the best model (TS126_4_2, EdaRose, blue line), second-best model 

(TS287_5, Multicom-cluster, green line), top template (2lg1A, red dotted line) and the 

fourth template (3k7aI, magenta dotted line). The green line closely follows the magenta 

line, indicating that the second-best model was built on template 3k7aI.
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Figure 7. 
Target T0882 (panel A) with its best server model (panel B), templates (panels C-E), and the 

alignment plot (panel F). (A) The native structure of target T0882 rainbow-colored from N-

terminal (blue) to C-terminal (red). (B-E) Structural alignment of the target (cyan, Cα trace) 

and (B) the best server model TS005_1 (Baker-Rosettaserver, blue cartoon); (C) the main 

template used in the Rosetta modeling (2v3s, red); and auxiliary templates (D) 2lru, 

magenta; and (E) 2kt9, yellow. (F) Cα-Cα distances between the target residues and the 

aligned residues in the main template 2v3s (red dotted line), auxiliary template 2lru 
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(magenta dotted line), and the best server model (blue). The main template (C) misses 

target’s (A) first strand, which is successfully modeled from auxiliary templates (D) and (E).
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Figure 8. 
Performance of (A) all CASP12 groups on a subset of all-group (a.k.a. human) TBM + 

TBM/FM targets and (B) server groups on a complete set of TBM + TBM/FM targets. 

Human methods are in blue, servers in red. The data for all groups (panel A) are provided 

for the top 50 methods only (tables including all groups are available online). Groups are 

ranked based on the sum of per-target Z-scores calculated from the distribution of first 

model scores; negative Z-scores are set to 0 before the summation. Z-scores from different 

measures are combined in the formula Total_z = 1/3*z_GDT_HA + 1/9*(z_LDDT
+z_CADaa+z_SG) + 1/3*z_ASE.
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Figure 9. 
GDT_TS (black lines) and ASE (red lines) scores of four selected groups as a function of 

target difficulty. All four groups attain high average GDT_TS scores, but only two of them 

(Zhang and McGuffin) score well on ASE scores, while the remaining two score poorly. For 

all four groups, GDT_TS trend lines run higher for CASP12 (solid line) than for CASP11 

(dashed line), indicating accuracy improvement.
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Table 2

Results of the head-to-head comparisons of the bottom 20 groups on commonly predicted targets: (A) all 

groups on ‘human’ targets and (B) server-only groups on all targets. The table shows the percentage of targets 

Pij where the combined z-score of the group listed in the row i was higher than z-score of the group listed in 

the column j. Values Pij and Pji may not sum up to 100% as ties are omitted. Shaded cells highlight pairs of 

groups for which difference between the percentages of wins and losses is comparable (less than 25%). Server 

groups are in italics.

(A)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

McGuffin 1 - 45 48 48 62 59 54 59 66 90 90 69 74 75 100 62 78 93 90 100

VoroMQA-select 2 55 - 55 62 69 79 57 62 69 93 97 66 78 82 93 72 81 97 90 97

Zhang 3 52 45 - 55 69 72 50 69 69 93 97 72 70 75 97 66 89 93 86 97

ProQ2 4 52 38 45 - 69 62 57 66 55 83 83 59 70 68 93 72 70 93 90 93

Wallner 5 38 31 31 31 - 45 46 52 48 93 93 55 67 68 93 62 67 93 86 100

MULTICOM 6 41 21 28 38 55 - 50 45 41 83 83 45 67 68 93 55 63 93 83 100

wfRos-ProQ-ModF6 7 43 43 50 43 54 50 - 57 61 75 82 71 62 68 82 64 69 82 82 86

Seok-refine 8 41 38 31 34 48 55 43 - 52 76 76 48 59 61 90 59 70 86 83 90

Zhang-Server 9 34 31 31 45 52 59 39 48 - 90 93 66 56 50 90 59 70 97 79 97

LEEab 10 10 7 7 17 7 17 25 24 10 - 55 21 15 36 83 45 48 86 55 97

LEE 11 10 3 3 17 7 17 18 24 7 45 - 10 15 36 76 34 52 83 52 90

QUARK 12 31 34 28 41 45 55 29 52 34 79 90 - 48 46 86 52 48 93 76 93

wfAll-Cheng 13 26 22 30 30 33 33 38 41 44 85 85 52 - 58 93 59 68 93 78 93

raghavagps 14 25 18 25 32 32 32 32 39 21 64 64 43 42 - 82 54 69 79 61 89

BAKER 15 0 7 3 7 7 7 18 10 10 17 24 14 7 18 - 31 33 41 14 62

Jones-UCL 16 38 28 34 28 38 45 36 41 41 55 66 48 41 46 69 - 59 76 66 90

Chicken_George 17 22 19 11 30 33 37 31 30 11 52 48 30 32 12 63 41 - 63 48 74

MUFOLD 18 7 3 7 7 7 7 18 14 3 14 17 7 7 21 59 24 37 - 24 79

wfMESHI-Seok 19 10 10 14 10 14 17 18 17 21 45 48 24 22 39 86 34 52 76 - 86

Pcomb-domain 20 0 3 3 7 0 0 14 10 3 3 10 7 7 11 38 10 26 21 14 -

(B)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Zhang-Server 1 - 60 89 61 70 93 70 72 84 100 91 98 93 96 100 80 100 98 96 98

QUARK 2 40 - 88 56 67 84 68 72 86 95 93 96 95 93 100 79 100 100 98 98

BAKER-Rosettaserv 3 11 12 - 35 28 53 40 39 46 81 60 74 65 65 94 64 93 86 75 84

Seok-server 4 39 44 65 - 61 72 67 63 74 82 81 86 81 84 92 77 91 88 88 88

IntFOLD4 5 30 33 72 39 - 72 56 56 72 93 82 96 95 91 96 75 96 96 86 95

GOAL 6 7 16 47 28 28 - 30 33 40 93 67 91 72 79 100 63 96 100 81 100

MULTICOM-cluster 7 30 32 60 33 44 70 - 49 74 86 81 86 81 82 100 75 100 91 86 91

MULTICOM-constr 8 28 28 61 37 44 67 51 - 77 88 79 88 79 81 98 77 96 93 88 93

MULTICOM-novel 9 16 14 54 26 28 60 26 23 - 86 70 86 72 74 94 70 96 93 86 95
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(B)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RaptorX 10 0 5 19 18 7 7 14 12 14 - 42 53 37 35 96 54 95 72 74 72

myprotein-me 11 9 7 40 19 18 33 19 21 30 58 - 61 53 53 87 54 75 67 72 65

HHGG 12 2 4 26 14 4 9 14 12 14 47 39 - 26 23 94 52 89 68 74 75

HHPred0 13 7 5 35 19 5 28 19 21 28 63 47 74 - 56 96 48 91 82 77 82

HHPred1 14 4 7 35 16 9 21 18 19 26 65 47 77 44 - 96 48 91 77 77 81

ACOMPMOD 15 0 0 6 8 4 0 0 2 6 4 13 6 4 4 - 33 51 4 43 4

YASARA 16 20 21 36 23 25 38 25 23 30 46 46 48 52 52 67 - 68 46 61 48

MULTICOM-refine 17 0 0 7 9 4 4 0 4 4 5 25 11 9 9 49 32 - 18 44 12

FALCON_TOPO 18 2 0 14 12 4 0 9 7 7 28 33 32 18 23 96 54 82 - 70 51

RBO_Aleph 19 4 2 25 12 14 19 14 12 14 26 28 26 23 23 57 39 56 30 - 30

FALCON_TOPOX 20 2 2 16 12 5 0 9 7 5 28 35 25 18 19 96 52 88 46 70 -

Proteins. Author manuscript; available in PMC 2019 March 01.


	Abstract
	1 Introduction
	2 Materials and methods
	2.1 | Evaluation measures
	2.2 | Targets
	2.3 | Predictions

	3 | Results
	3.1 | Any progress? Yes, finally
	3.2 | Targets with unusually high or low accuracy for their difficulty range
	3.3 | Group rankings

	4 | Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Table 1
	Table 2



