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E N V I R O N M E N TA L  S T U D I E S

Heat disproportionately kills young people: Evidence 
from wet-bulb temperature in Mexico
Andrew J. Wilson1,2,3†, R. Daniel Bressler4,5,3*†, Catherine Ivanovich5,6, Cascade Tuholske7,  
Colin Raymond8,9, Radley M. Horton5,6, Adam Sobel5,6,10, Patrick Kinney11,  
Tereza Cavazos12, Jeffrey G. Shrader4,5,3

Recent studies project that temperature-related mortality will be the largest source of damage from climate 
change, with particular concern for the elderly whom it is believed bear the largest heat-related mortality risk. We 
study heat and mortality in Mexico, a country that exhibits a unique combination of universal mortality microdata 
and among the most extreme levels of humid heat. Combining detailed measurements of wet-bulb temperature 
with age-specific mortality data, we find that younger people who are particularly vulnerable to heat: People un-
der 35 years old account for 75% of recent heat-related deaths and 87% of heat-related lost life years, while those 
50 and older account for 96% of cold-related deaths and 80% of cold-related lost life years. We develop high-
resolution projections of humid heat and associated mortality and find that under the end-of-century SSP 
3–7.0 emissions scenario, temperature-related deaths shift from older to younger people. Deaths among under-
35-year-olds increase 32% while decreasing by 33% among other age groups.

INTRODUCTION
Historically, temperature exposure has caused a large number of 
premature deaths (1–3). Heat-related mortality is expected to in-
crease under climate change (4–27). As the evidence base has grown, 
multiple studies have found that the elderly are especially vulnerable 
to heat (6, 11, 14, 17, 18, 28, 29). Furthermore, many other studies 
have expressed particular concern for joint heat and humidity ex-
tremes, given the importance of perspiration for human thermo-
regulation (30–36).

In this study, we explore the relationship between humid heat and 
mortality in Mexico, a country that exhibits a unique combination of 
rich, age-specific, universal mortality microdata and among the most 
extreme historical humid heat exposures. We find that historically, 
the majority of heat-related mortality in Mexico has been concen-
trated among younger people: 75% of heat-related deaths and 87% of 
heat-related lost life years occur among those under 35 years old. By 
contrast, the vast majority of cold-related mortality is concentrated 
among older people: 98% of cold-related deaths and 90% of cold-
related lost life years occur among those over 35, with the majority of 
cold-related deaths occurring among individuals older than 70 years. 
We then develop projections of humid heat and associated outcomes 
to assess the future implications of these findings. As in other studies, 
we find that climate change is expected to increase heat-related mortal-
ity while decreasing cold-related mortality. However, we uncover an im-
portant source of future climate-driven inequality: The disproportionate 

impact of heat and cold across age groups reallocates the temperature-
related mortality burden from the elderly (who are more affected by 
cold) to the young (who are more affected by heat). This has impor-
tant implications for understanding the distributional impacts of cli-
mate change and for developing effective policies to adapt to these 
impacts.

METHODS
Our insights into the effect of humid heat across the life span result 
from a combination of four elements: (i) station-level wet-bulb tem-
perature estimates; (ii) high-quality, age-specific, population-wide mor-
tality microdata; (iii) a statistical method that resolves age-specific 
heterogeneity in temperature vulnerability; and (iv) realistic, granular 
projections of humid heat under climate change across our study area.

First, we study the effect of wet-bulb temperature on mortality. 
While multiple metrics exist to measure humid heat stress (37), wet-
bulb temperature has been identified as an important metric for un-
derstanding the impact of heat on human health because it accounts 
for the critical role of sweat evaporation—the primary mechanism 
by which the human body cools itself—in maintaining homeostasis 
under heat exposure (36, 38). Under high humidity, sweating effi-
ciency decreases (37, 39, 40). When ambient wet-bulb temperature 
exceeds human skin temperature (at around 35◦C), humans can no 
longer dissipate heat into the environment and are thus physically 
incapable of survival when exposed for a sufficient length of time 
(30, 32, 33). In practice, experimental evidence has shown that heat 
stress can become uncompensable at wet-bulb temperatures of 31◦C 
or lower (34, 35). Under high-emissions scenarios, increasing hu-
mid heat stress is projected to cause some regions to become unin-
habitable for parts of the year without artificial cooling (33). Despite 
the importance of both heat and humidity for human thermoregula-
tion, most empirical studies on temperature-related mortality have 
focused on dry-bulb temperature, which does not account for hu-
midity. Hundreds of papers have been written on the mortality im-
pact associated with dry-bulb temperature (4, 8). One review found 
only nine papers that assessed the role of humid heat on mortality 
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(31), and there remain important gaps in our understanding of the 
population-wide health impacts of humid heat (36).

Second, our study leverages precise historical data on both mor-
tality and temperature exposure. Mexico’s high-quality vital statistics 
microdata includes a record of each death occurring in the country 
since 1998. Crucially, these microdata also contain information on 
age at death, allowing us to assess age-specific heterogeneity in the 
relationship of heat and mortality with more precision than prior 
literature, which has focused on broader age groups or on effects 
only among the elderly (6, 12, 36, 41, 42). The dataset spans the 
22 years from 1998 to 2019. We choose to end our study period in 
2019, before the COVID-19 pandemic. The data contain information 
on the day and municipality—Mexico’s second-order administrative 
unit, numbering around 2400 across the country—of occurrence of 
13.4 million deaths over more than 21 million municipality-days. We 
combine these records with station-level, subdaily measurements of 
dry-bulb temperature, humidity, and air pressure, which we use to 
develop estimates of local daily mean wet-bulb temperature (43). 
This is important because we find evidence that weather reanalysis 
data products such as ERA5-Land do not reproduce the most ex-
treme humid heat events observed by Mexico’s station network (see 
fig. S13). Mexico’s heterogeneous climate and rich public vital statis-
tics records make it an ideal setting for determining the impact of 
humid heat exposure on premature mortality. Mexico is one of the 
most climatically diverse countries in the world, with the fourth 
largest number of Köppen climate zones (see fig. S14). It is located in 
the subtropics and tropical regions, has a wide variety of elevations, 
is located between two oceans, and experiences substantial seasonal 
variation, including the North American monsoon. The low correla-
tion between air temperature and humidity observed throughout many 
areas of Mexico (36) allows extreme dry and humid heat events to 
take place on separate days within the same location, facilitating the 
investigation of the distinct impacts of these two extremes. Most ex-
isting studies have assessed temperature-mortality relationships in 
cooler, higher-income countries (30, 36) that have rarely if ever ex-
perienced humid heat extremes. Mexico, by contrast, has experi-
enced among the highest wet-bulb temperatures ever recorded, 
particularly in coastal regions (32). Substantial populations are also 
exposed to these diverse climates across the country (see fig. S14).

Third, we estimate an age-specific exposure relationship between 
excess mortality and daily average wet- and dry-bulb temperatures. 
Our empirical model leverages current best practices to isolate caus-
al impacts of temperature on excess mortality (1, 6). We investigate 
effects over a set of distributed lags to capture the dynamic effects of 
temperature on health, including harvesting—when “deaths are oc-
curring only a few days early among persons who were already 
dying” (44)—and delayed mortality responses. Our model flexibly 
captures differences in impacts from cold-, moderate-, and hot-
temperature exposures and includes control variables to account for 
potential confounders, including seasonality and time trends. We 
identify effects on the basis of otherwise random changes in weather 
across days within a given municipality, such that a municipality 
experiencing mild weather acts as the “control group” for itself dur-
ing more extreme weather, eliminating confounding spatial varia-
tion. Last, we flexibly adjust for daily precipitation to ensure that the 
effects of temperature are not operating via rainfall. Our statistical 
model allows the minimum mortality temperature to vary by age 
group. We find that different age groups experience minimum mor-
tality at substantially different temperatures: Individuals in their 70s 

experience minimum mortality at temperatures nearly 10◦C higher 
than individuals in their 20s for both dry-bulb and wet-bulb tem-
peratures (see fig. S11). See section A.2 for further details on the 
model and estimation procedure.

Last, we develop fine-scale projections of dry and humid heat 
through the end of the century to project changes in mortality across 
age groups as the climate warms. We retrieve statistically down-scaled 
temperature, humidity, and precipitation projections through the end 
of the century (45) across the greenhouse gas emissions associated 
with four Shared Socioeconomic Pathways (SSPs) (46); calculate wet-
bulb temperature; and bias correct the dry-bulb temperature, wet-
bulb temperature, and precipitation projections against historical 
station and reanalysis data (47, 48) using percentile mapping. This 
approach allows us to best match the spatial distribution of the avail-
able human health data, as well as to capture the variability in climate 
and terrain throughout Mexico, essential to reproducing dry and hu-
mid heat extremes (49). For additional details, see section A.1.2.

RESULTS
Figure 1 shows the effect of exposure to a single day at the indicated 
wet-bulb temperature on mortality risk for different age groups. For 
instance, the under-5 exposure-response function implies that when 
an individual under 5 years of age experiences 1 day with average 
wet-bulb temperature of 27◦C, their risk of mortality increases by 
45% relative to if they had experienced 1 day with an average wet-
bulb temperature of 13◦C. (For policy-makers, numerical values for 
the estimated additional number of deaths per person for different 
temperature exposures are shown in table S1.) Figure 2 (left) com-
bines the age-specific vulnerability to heat and cold (shown in Fig. 1, 
top) along with the frequency with which those temperatures occur 
(shown in Fig. 1, bottom) to quantify the total annual number of 
temperature-related deaths associated with exposure to temperature 
broken down into 1° temperature bins and broken out by age group 
during our historical data period. In Fig. 3, points labeled “Histori-
cal” aggregate these data to quantify the total annual number of 
heat- and cold-related deaths by age group. These values combine 
age-specific vulnerability to heat and cold (shown in the top panels 
of Fig. 1) with the frequency with which those temperatures occur 
(shown in the bottom row of Fig. 1).

Consistent with past literature on temperature-related mortality 
in Mexico (28, 50), we find that cold is historically associated with 
more deaths than heat across the whole population: Cold causes 14 
times more deaths than heat, as shown in Fig. 3. However, this masks 
important heterogeneity across age groups. While cold-related mor-
tality is concentrated among the old, heat-related mortality is con-
centrated among the young. For individuals under 35, heat causes 
2.6 times more deaths than cold (Fig. 3, top), whereas for individu-
als 35 and older, cold causes 56 times more deaths than heat (Fig. 3, 
bottom). Ninety-eight percent of cold-related deaths occurred among 
those 35 and older, with 28% of such deaths occurring among those 
50 to 70 and 68% occurring among those 70 and older. In contrast 
75% of heat-related deaths occurred among under-35-year-olds 
(the distributions of these proportions are shown in fig. S5). This 
contrasts with the previous literature, which has found that both 
cold- and heat-related mortality impacts are concentrated among elder-
ly people.

When considering lost life years, which accounts for the fact that 
younger individuals have on average more remaining life than older 
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individuals, the outsized impact of heat on younger age groups be-
comes even more pronounced (Fig. 4): Those under 35 years old 
account for 87% of life years lost because of recent heat exposure, 
whereas those 50 and older account for 80% of life years lost to re-
cent cold exposure.

We find that these results on the concentration of the heat-related 
mortality burden among the young and the cold-related mortality 

burden among the old are robust whether we use wet- or dry-bulb 
temperature as our metric of exposure (as shown in figs. S1 to S5). 
Though, nearly all historical exposures—even in our context—are 
below theoretically uncompensable humid heat levels (34, 51).

The right panel of Fig. 2 and the red points and whiskers in Fig. 3 
show our projections for the number of annual deaths at the end of 
the century broken down by age group. These projected deaths do 
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not account for potential future adaptation or population changes 
but rather describe the effect of projected future temperatures on 
mortality given historical socioeconomic, institutional, and adapta-
tion conditions. Climate change is projected to cause more heat-
related mortality and less cold-related mortality across all age groups. 
Cold-related mortality continues to be concentrated among indi-
viduals 35 and older—with the impact especially pronounced on 
individuals 70 or older—while heat-related mortality continues to 

be concentrated among individuals under 35 years old. However, as 
hot days become more frequent and cold days become less frequent, 
the overall temperature-related mortality burden shifts toward the 
young and away from the old. Older individuals continue to suffer 
disproportionately from cold-related mortality, but cold days are 
comparatively less frequent. Those under 35 suffer disproportionately 
from increasing heat, with premature mortality especially concen-
trated in the under-5 and 18 to 34 age groups.
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Fig. 2. Historical and projected annual temperature-related deaths in Mexico. The panels show average annual temperature-related deaths resulting from exposure 
to days with the average wet-bulb temperatures shown on the x axis during the historical period (left) and at the end of the century (2083–2099) under the SSP 3–7.0 GHG 
emissions scenario (right) across six age groups in Mexico. The figure shows mean projected deaths; see Fig. 3 for projections with uncertainty.
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Figure 3 and fig. S6 show the projected percent change in age group 
temperature-related deaths at the end of the century across four differ-
ent greenhouse gas emissions scenarios, ranging from a rapid decar-
bonization scenario (SSP 1–2.6) to a very high emissions scenario 
(SSP 5–8.5). All results are relative to historical temperature-related 
deaths. These figures show that the age structure of mortality burdens in 
Fig. 2 holds more generally across low-, medium-, and high-emissions 
scenarios. In all scenarios, climate change shifts the risk of temperature-
related mortality toward those under 35 and away from those 50 and 
older. Under the SSP 3–7.0 emissions scenario, we project a 32% in-
crease in temperature-related deaths among under-35-year-olds driv-
en by an increase in heat-related mortality and a 33% decrease among 
those 35 and older driven by a decrease in cold-related mortality (the 
distributions of these estimates of percent changes in overall temperature- 
related mortality are shown in figs. S6 and S7).

Previous research has shown that dry-bulb temperature-related 
mortality in Mexico is currently driven primarily by cold (50) and 
that under climate change, temperature-related mortality will fall in 
Mexico as the benefits from reduced cold outweigh the harms from 
increased heat (6). Our results present a more complicated picture: 
We find—consistent with prior literature—that temperature-related 
mortality as a whole will fall in Mexico under climate change, but 
when taking age-specific effects into account, we project that this 
will happen at the expense of younger individuals.

DISCUSSION
The unique combination of elements in this study—station-level 
wet-bulb temperature estimates, granular mortality data from across 

the entire age distribution in a country with a wide diversity of cli-
matic conditions, a statistical method that captures age-specific hetero-
geneity in temperature vulnerability, and high-resolution projections 
of humid heat—deepens our understanding of multiple aspects of 
the impact of temperature on mortality. By focusing on granular, 
age-specific temperature-mortality impacts, our study contributes 
to the existing literature that has usually focused on mortality irre-
spective of age (1, 8, 52), across broader age groups (6, 42), or on the 
elderly alone (12, 13). In particular, in our setting, we find that while 
individuals 35 and older suffer the vast majority of the cold-related 
mortality burden, those younger than 35 suffer most of the heat-
related mortality burden. In addition, we identify a source of climate- 
driven inequality that has not been identified in previous studies: 
Across all future emissions scenarios, we find that climate change 
causes the temperature-related mortality burden to shift away from 
the elderly toward the young. Given that temperature-related mor-
tality is projected to be the largest single source of climate damages 
(53, 54), the disproportionate burden of this impact on the young is 
likely an important source of future climate-driven inequality.

Prior research has discussed multiple reasons that older individu-
als are vulnerable to cold temperatures. These reasons are physiologi-
cal, behavioral, and social. First, the elderly exhibit lower shivering 
temperature thresholds (55) and have substantially lower levels of 
brown adipose tissue (key for nonshivering thermogenesis) (56). Sec-
ond, a relatively large proportion of elderly individuals have preexist-
ing medical conditions or attendant respiratory illnesses that can be 
contributing factors in cold-related mortality (57). Third, elderly indi-
viduals are increasingly living alone, making it more difficult for them 
to access public health resources during extreme weather events, and 
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they experience higher rates of loneliness, which is correlated with 
worse cardiovascular health (58). Fourth, energy poverty—spending 
a large fraction of income on energy—can be particularly acute for 
elderly individuals. Mexico has both a high rate of energy poverty and 
a high prevalence of credit constraints that might prevent adoption of 
protective but energy-intensive home heating (59). In this study, we 
indeed find that the elderly are, in terms of absolute mortality im-
pacts, far more vulnerable to cold than other age groups (fig. S1). We 
find that the vast majority of cold-related mortality is concentrated in 
those 50 and older, as shown in the top panels of Fig. 2.

However, we find that young people are particularly vulnerable to 
heat: The majority of heat-related deaths are concentrated in those 
under 35, and those under 35 are overrepresented in heat-related 
deaths relative to their fraction of the population despite their far 
lower background crude death rate (fig. S5). Our finding that chil-
dren younger than 5 years old are especially vulnerable to heat (Fig. 
1) is directionally consistent with some prior work, although we find 
particularly acute effects. Multiple potential mechanisms may con-
tribute to this result. First, infants have a higher body surface area-
to-body weight ratio than adults, which means that they gain heat 
more rapidly and are more susceptible to overheating; infants also 
have a less developed thermoregulatory system (exhibiting reduced 
sweating), which means that they are not as efficient at regulating 
their body temperature (60). Second, very young children have less 
well-developed immune systems, making them more vulnerable to 
climate-related infectious diseases including vector-borne diseases 
and diarrheal diseases that might be especially affected by humid 
heat (61, 62). Last, both infants and young children have less free-
dom of movement than adults and may not be able to express their 
discomfort or distress as easily as adults, making it more difficult for 
caregivers—the primary providers of child adaptation to heat expo-
sure—to recognize and respond to their heat stress (63).

We also find that heat disproportionately affects those 18 to 
34 years old. Younger adults are more physiologically robust to heat, 
but multiple behavioral, social, and economic factors can contribute 
to higher heat-related mortality among this age group (41). Younger 
individuals are exposed to ambient heat through sports and other 
recreational activities (41). Households with older household heads 
are more likely to have an air conditioner (64). One important chan-
nel may be occupational heat exposure: Young adults are more like-
ly than older adults to work in outdoor occupations with minimal 
flexibility for precautionary action (65). An analysis of death certifi-
cates in Mexico shows that men of working age are more likely to 
have extreme weather events listed as a cause of death (28), though 
we note that death certificates typically do not capture all deaths due 
to extreme weather (66). Relatedly, we find that individuals who live 
in regions with higher income (itself correlated with the amount of 
weather-exposed occupations) are less sensitive to heat (fig. S8). Occu-
pational exposure is likely to be an important mechanism in other 
countries as well given that Mexico is not out of the ordinary in terms 
of occupational exposure to heat. For example, during our sample pe-
riod, 15% of the workforce in Mexico was used in agriculture. This is 
lower than the rate for other middle-income countries (30% in 2018) 
and all countries globally (27% in 2018) (67). If occupational heat 
exposure is indeed a driver of mortality among younger individuals, 
then this highlights the importance of occupational heat exposure 
standards for workers (68).

Our finding that young people in Mexico are especially vulnerable 
to heat may have global implications because hotter and lower-income 

countries—which are expected to be the most adversely affected by 
climate change—have among the youngest populations in the world 
currently and over the coming century (69). Figure S12 shows the cur-
rent global pattern of age and wet-bulb temperature exposure. The map 
in the top panel breaks down countries by their most extreme wet-bulb 
temperatures and fraction of population younger than 35 years of age 
(70). The youngest and hottest locations in the world are concentrated 
in Africa, Central America, the Middle East, and portions of South 
and Southeast Asia. The bottom panel of fig. S12 situates Mexico in 
the context of the rest of the world. Mexico is near the middle of the 
global distribution of countries by share of population under 35, and 
its extreme wet-bulb temperatures are essentially only surpassed by 
countries in Asia. The figure also shows that historical exposure to hot 
wet-bulb temperature is positively correlated with the fraction of the 
population under 35. If our age-specific results in this study hold for 
other countries around the world that are younger and hotter, then 
existing estimates of temperature-related mortality impacts in these 
countries—which neither fully capture age-specific heterogeneity in 
the temperature-mortality relationship nor account for the impact of 
humid heat—may be incorrect. In past work, the lack of age-specific 
mortality data has been a limiting factor in exploring the age-specific 
temperature-mortality relationship across a large number of countries 
(6, 52), which underscores the need for improvements in vital statis-
tics systems, especially in the places most vulnerable to climate change.

We conclude by highlighting a few important caveats and also 
point to potential areas of focus for future work. Recent work has 
pioneered the use of both temperature and humidity for constrained 
joint projections (38, 71, 72). While regional and global climate mod-
els are our best tools for assessments of future heat stress risk, the 
relatively coarse time resolution of most model output limits the abil-
ity to project extreme values. The NASA Earth Exchange Global Dai-
ly Downscaled Projections (NEX-GDDP) dataset used in this study 
reports variables at a daily resolution, like many other climate model 
products. Given the misalignment of the diurnal cycles of tempera-
ture and humidity, using available daily mean values to calculate heat 
stress metrics such as wet-bulb temperature limits the accuracy of 
daily mean projections and is virtually impossible for daily maximum 
projections. These data challenges relating to the subdaily fluctuations 
in individual variables are even more pronounced for heat stress met-
rics such as wet-bulb globe temperature that incorporate additional 
variables relevant to the physiology of heat stress (e.g., solar insolation 
and wind speed) (73). These limitations underpin efforts to increase 
the temporal resolution of model data output available to end users to 
better represent the most extreme heat stress conditions of the future.

Our projections assume that our estimated temperature-mortality 
relationships will remain unchanged under future warming. There 
are opposing reasons why the wet-bulb temperature exposure-response 
functions may become either more or less severe in the future. Research 
on the US shows that mortality vulnerability to nonoptimal dry-bulb 
temperatures has decreased historically (74, 75). Recent work has shown 
that locations with different long-run climates show different patterns 
of consumption responses to weather shocks (76). Figure S8 shows that 
a similar pattern holds for mortality in Mexico. However, as wet-bulb 
temperatures approach uncompensable levels with substantially great-
er frequency (34, 51)—exposures of this degree are almost nonexistent 
in the historical record—we may learn that mortality associated with a 
given level of humid heat exposure is higher than existing estimates. Fur-
thermore, our projections hold socioeconomic conditions fixed. Recent-
ly published subnational population projections for Mexico would allow 
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future work to relax this assumption (77). These projections could yield 
higher estimates of mortality if population is trending younger in areas 
that are warming, or these projections could yield lower mortality esti-
mates if the population is becoming older over time. Further estima-
tion of the effect of income and occupational exposure could also enrich 
these projections and help shed light on the role of adaptation in medi-
ating temperature-related mortality. We leave the exploration of these 
questions to future work.

Last, our conclusions further underscore the importance of ethical 
choices around monetizing the cost of premature deaths. We find that 
climate change is expected to shift the mortality burden away from older 
individuals (more affected by cold) to younger individuals (more af-
fected by heat). Thus, the choice of whether to value life years—where 
premature deaths among younger individuals are considered more cost-
ly than premature deaths among old individuals—or to value all prema-
ture deaths the same becomes especially important. The US tends to value 
all premature deaths the same in its benefit-cost analysis (78), whereas UK 
guidance suggests that analysts can value either lives or life years (79). 
Although we do not take a stance on this difficult ethical choice, our find-
ings further emphasize the importance of this debate for evaluations 
of the impact of climate change, given that we are finding that climate 
change is expected to shift the temperature-related mortality burden to-
ward the young.
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