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Abstract 
Although a general sense of the magnitude, quantity, or 
numerosity is common both in untrained people and animals, 
the abilities to deal exactly with large quantities and to reason 
precisely in complex but well-specified situations—to behave 
formally, that is—are skills unique to people trained in 
symbolic notations. These symbolic notations employ 
typically complex, hierarchically embedded structures, which 
all extant analyses assume are the product of concatenative, 
rule-based processes. The primary goal of this article is to 
establish, using behavioral measures on naturalistic tasks, that 
the some of the same cognitive resources involved in 
representing spatial relations and proximities are also 
involved in representing symbolic notations.  In short, formal 
notations are used as a kind of diagram. We examine self-
generated productions in the domains of handwritten 
arithmetic expressions and typewritten statements in a formal 
logic. In both tasks, we find substantial evidence for spatial 
processes even in these highly symbolic domains.  

Keywords: symbolic processing, mathematics, embodied 
cognition, relational reasoning 

Introduction 
It is clear that mathematical equations written in modern 
notation are, in general, visual forms, and furthermore that 
they share some properties with diagrammatic or imagistic 
displays. Equations and mathematical expressions are often 
set off from main text, use non-standard characters and 
shapes, and deviate substantially from the linear placement 
of text. Furthermore, evidence indicates that at least some 
mathematical processing is sensitive to the particular visual 
form of its presentation notation (Campbell, 1999, McNeil 
& Alibali, 2004). Nevertheless, notational mathematical 
representation is typically considered ‘sentential,’ and 
placed in opposition with diagrammatic representations in 
fields as diverse as education (Zazkis et al, 1996; Stylianou, 
2002), philosophy of science (Galison, 1997), computer 
science (Iverson, 1980), and cognitive studies of problem-
solving (Anderson, 2005; Stenning, 2002).  

The standard conception of mathematical notation is best 
understood via Stephen Palmer’s (1978) classic distinction 
between intrinsic and extrinsic representational schemes. A 
representation is intrinsic “whenever a representing relation 
has the same inherent constraints as its represented relation” 
(p. 271). Line A being shorter than Line B can be 
intrinsically represented by the representational element that 
corresponds to A being shorter, taller, brighter, or larger 

than the element representing B – any relation that is 
inherently asymmetric and transitive. Representations are 
extrinsic when their inherent structure is arbitrary. They 
model the represented world by explicitly building the 
necessary structure so as to conform to the world. Palmer 
argues that analog representations are intrinsic; 
correspondences and inferences between represented and 
representing worlds come for free because of their shared 
intrinsic structure. Propositional representations, including 
language, logic, and mathematics, are extrinsic, and hence 
come to represent objects by explicitly establishing relations 
with whatever structure is needed. The only intrinsic 
relation necessary to propositions is the left-right 
concatenation of basic symbols. Although traditionally 
understood as extrinsic, it is possible that representations in 
mathematics and logics nonetheless possess intrinsic and 
analog properties, and it is this possibility that we 
empirically pursue here. 

Specifically, we propose that formal notations are 
diagrammatic as well as sentential and the property 
conventionally described as syntactic structure is 
cognitively mediated, in part, by spatial information. 
Elements of expressions are “bound” together through 
perceptual grouping—often induced by simple spatial 
proximity. Thus, our claim is that mathematical 
formalizations of syntax are not themselves the direct 
cognitive mechanisms typically employed in processing that 
structure. The former really are concatenative, but we 
propose that people use space and spatial relationships in 
representational schemas to facilitate the processing of 
syntax. To be clear: we are not claiming here that the 
execution of each individual step in a proof or computation 
is inherently spatial or processed exclusively using sensori-
motor mechanisms. We do suggest that spatial reasoning 
over the physical layout of notational forms is common in 
reasoning with formal languages, and that spacing practices 
play a significant role in human reasoning using notations. 

We have argued previously that a broadly similar 
interference of metric (non-order-related) spatial properties 
on syntactic judgments provides evidence that syntax 
processing typically involves spatial  and perceptual 
grouping processes (Landy & Goldstone, in press; Kirshner 
& Awtry, 2004). These works conclude that mathematical 
reasoners are sensitive to non-formal properties of presented 
equations, and in particular align close proximity with high 
operator precedence. For instance, in Landy & Goldstone 
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(in press), participants were much more likely to attribute 
equality to “n  +  w*y  +  b   =    y  +  b*n  +  w” than to the 
formally equivalent “m+p  *  e+g  =  e+g  *  m+p”.  

The fact that people are sensitive to small changes in the 
physical spacing of formal expressions suggests that 
symbolic interpretation is processed, in part, through spatial 
reasoning. If so, then people might also respond spatially to 
the syntax of internally represented expressions, leading 
symbolic productions to reflect syntactic structure, e.g., the 
more tightly two mental terms are bound syntactically, the 
closer they should be written physically. A relationship 
between spatial and syntactic proximity would be at best 
unexplained if space is not part of how we represent formal 
syntax.  Study 1 directly examines our proposal by 
measuring physical inter-operand spacing in handwritten 
equations constructed by participants from presented word 
equations.  

Study 1 
In this study, participants were asked to write out simple 

equations by hand.  If, as we propose, formal notations 
automatically encode spatial relations corresponding to 
structural relations, then spacing in handwritten equations 
should reflect the formal structure of the equation. In 
particular, equality spacing should be very large, since 
equality signs denote, in all cases, the broadest partition of 
the sentence. Within the 2-operator side of each equation, 
spacing should depend on the structure of the expression. In 
mixed expressions, the middle term is syntactically “bound” 
to the higher-order multiplication sign, and so the spacing 
around that sign should be compressed (or that around the 
lower-order addition sign expanded) relative to its unmixed 
spacing. Thus, we expect a dependency of operator spacing 
on the interaction between operator and context.  

Although traditional sentential accounts of notational 
reasoning provide no reason to expect operator spacing to 
ever be non-uniform, experience with typeset or handwritten 
equations might drive some kinds of spacing regularities. 
Typeset equations are generally not fixed-width, and 
multiplication symbols are generally narrower than addition 
signs. Experience with typeset equations could lead 
equation writers to generally space multiplicands more 
narrowly than addends. However, no prominent equation 
typesetter adjusts the spacing of terms based on syntax (and 
if one did, we would regard this as evidence favoring our 
view!): therefore, while either the spatial encoding or the 
amodal perspective might predict a main effect of operator, 
neither the width of the operators themselves nor experience 
with typeset equations could lead to the predicted 
interaction. Thus, the principle theoretical measure is the 
interaction between operator sign and mixed/unmixed 
structure. 

 

 

 

 

 
Figure 1: Sample responses in Study 1. 

Method 
24 Indiana University undergraduates participated in the 
experiment, which fulfilled a partial course requirement. 
This experiment lasted about 25 minutes. 

Word equations were presented one at a time on a 
computer; participants wrote out corresponding equations 
using standard mathematical symbols. Participants were 
instructed to use only standard Arabic numerals and formal 
operator symbols (‘+’, ‘x’, ‘=’), and were explicitly asked 
not to use any parentheses. Participants were not asked to 
solve or evaluate the correctness of any equation, nor were 
they reminded of the correct order of operations. 

For each participant, 10 triples of numbers between 2 and 
9 were randomly generated (because 1 is much narrower 
than other numbers, it was excluded from this experiment) 

Syntactic binding between terms was systematically 
manipulated by altering the operator of equations. Each 
triple appeared in 4 different equations, one with each of the 
operator structures plus-plus, plus-times, times-plus, and 
times-times, making 40 translations in all. The other side of 
the equation contained the same expression, but with the 
first operation completed. Thus, if the number triple was 
{2,4,9}, the equations would be 6 + 9 = 2 + 4 + 9, 2 + 36 = 
2 + 4 x 9, 8 + 9 = 2 x 4 + 9, and 8 x 9 = 2 x 4 x 9. The 
middle two equations are labeled mixed operator conditions, 
while the first and last are termed unmixed (since there is no 
particular hierarchical structure on either side of the 
equation). In 5 of the 10 equation sets, the triple appeared as 
the right-hand side of the equation; in the other 5, the triple 
appeared on the left.  This procedure eliminates any 
interference of particular number choices, since each 
production is compared to productions that are identical 
except for operator context.  

Each participant received a different, randomly generated 
stimulus set. Word equations were presented on a computer 
screen, one at a time, and remained on the screen while 
participants wrote the corresponding symbolic equation in a 
printed box (1.1cm high by 10.4cm wide, see Figure 1) on a 
piece of paper.  Word equations employed number words 
along with the words “times,” “plus,” and “equals”. For 
instance, if the word equation probe was “six plus five times 
four equals two plus nine times three,” participants would 
respond by writing “6 + 5 x 4 = 2 + 9 x 3”. Each participant 
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viewed 40 equations in total. Responses that were left blank, 
contained parentheses or other extraneous marks, or 
contained crossed out values or other errors were dropped 
from the analysis. The measure was the distance between 
the innermost points of each pair of adjacent operands. 

Results 
For each participant, spacing was averaged across the 
stimuli in each condition. The mean distances across 
participants for each context are shown in Table 1. These 
mean values were analyzed using a 2-way within-
participants ANOVA, using distance as a dependent 
measure, and operator and expression structure as 
independent categorical variables. As predicted by the 
typesetting hypothesis, the ANOVA revealed a main effect 
of operator type: multiplicands were spaced more closely 
than addends, (F(2, 46)=7.9, MSE=3.35, p<0.01), and 
equality signs were spaced substantially more widely than 
either (F(2,46)=105.7, MSE=249.2, p<0.001). The 
interaction between operator type and expression structure 
was also significant: participants’ compression of 
multiplicands relative to addends increased in the mixed 
condition (F(1,23)=4.726, MSE=1.28, p<0.05).  

 
Table 1: Mean spacing (with standard error) by 

measurement condition (mm). 

 Operator Unmixed Mixed Overall 
Addition 9.52±.48 9.77±.48 9.65±.48 
Multiplication 9.38±.50 9.16±.53 9.27±.51 

Equality 12.38±.59 12.13±.57 12.25±.58 
 

Discussion 
Study 1 indicates that syntax in arithmetic equations, at 
some level, is processed automatically. Although the simple 
transcription task requires no consideration of syntax at all, 
the results show a modulation of productions in virtue of 
syntactic structure. Moreover, writers are not swayed 
arbitrarily by syntax—they construct spatial properties that 
match their psychological groupings. Terms were spaced 
more narrowly when they were grouped more closely.  
Historical interactions with typeset equations do not predict 
these effects, nor do traditional symbolic accounts of 
mathematical competence.  So of the hypotheses considered 
earlier, this result is compatible only with the suggestion 
that participants systematically vary spacing according to 
the particular syntactic structure of the current equation. 
Because this behavior presumably generalizes to the 
population at large, including the teachers and parents of our 
particular participants, historical interactions with other 
hand-written equations could account for the results—
participants in our task might reasonably be sensitive to 
syntax because their teachers and parents were, and 
therefore sensitivity of spacing to syntax forms part of the 
participants’ training. That is, our participants may have 

received more training with mathematical expressions in 
which the spacing is consistent with the syntactic structure. 
However, this explanation does not provide any additional 
insight into why this spacing convention has been adopted 
in the first place.  For that, the most parsimonious account 
for the environmental regularity is, once again, that spatial 
processes are involved in the representation of mathematical 
syntax in the normal course of algebraic reasoning. 

There is a plausible alternative to the spatial information 
hypothesis: it might be that syntax processing (somehow) 
mediates access to the lexicographic forms for numbers and 
symbols. If syntactically bound items are chunked in 
memory, for instance, then access to terms within a chunk 
may be quicker than access to terms across chunks (Cheng 
& Rojas-Anaya, 2006). If so, and if horizontal pen 
movement between characters correlates with access time (if 
for instance the pen is moved at some more-or-less fixed 
velocity while the lexical form is being accessed), then a 
memory delay could produce increased spacing. Study 2 
addresses this possibility by exploring spacing behavior on a 
typed input task. 

Study 2 
A limitation with Study 1 is that the formal system used was 
a small (though important) one: pre-algebra using equality, 
addition and multiplication. While this system is convenient 
in that it is widely known and studied, nevertheless 
generalizing from such a small system is difficult. Study 2 
broadens the scope of our examinations by exploring a very 
different notational system: formal propositional (quantified 
and unquantified propositional) logic. Instead of asking 
participants to write unused and useless pseudo-equations in 
a laboratory setting, Study 2 involves a corpus analysis of 
self-generated expressions by participants interacting with a 
Web-based teaching tool designed and maintained by Colin 
Allen and Chris Menzel, and based on an accompanying 
textbook (Allen & Hand, 2001).  

Method 
The current analysis is based on the "Logic Daemon and 
Quizmaster" (Allen & Menzel, 2006, http://logic.tamu.edu/) 
which is an interactive Website designed for use with the 
Logic Primer textbook by Allen & Hand (2001). Although 
the site is publicly accessible, the primary users are 
probably students in introductory logic courses, who can use 
this Website to tackle exercises found in the textbook as 
well as additional problems of the same type (because the 
data we analyze was anonymous and already collected, 
informed consent was not obtained. This research was 
approved as exempt by Indiana University IRB (approval 
number 06-11025). For our analysis, we chose to focus on 
the 'translation' exercises which require students to render 
sentences of English into the formal system described in 
chapters one (propositional) and three (predicate logic) of 
Logic Primer. In these exercises, students are presented with 
up to five English sentences and under each sentence is a 
standard Web form single-line text input field. Students 
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freely type a response for one or more of the sentences and 
click a submit button. For instance, problem 9 from problem 
section 1.3 (in chapter 1) states that “If Mary dances 
although John is not happy, Bill will dance”. Instructions 
state that “Q”, “S”, and “R” are to be used to denote the 
atomic sentences “Mary dances”, “John is happy”, and “Bill 
dances”, respectively. Participants enter a formal sentence 
corresponding to this sentiment (one correct response would 
be “((Q & ~S) -> R)”). 

Each string of characters submitted in this way is checked 
first to see whether it represents a well-formed formula 
(wff) according to the specifications of the formal system. 
Although the textbook uses non-ASCII characters, these are 
mapped to ASCII strings for keyboard input; specifically, 
the single arrow is represented as '->' (dash-greater-than, 
double arrow with '<->' (less-than-dash-greater-than), the 
upside-down 'A' of universal quantification with '@', and the 
backwards 'E' of existential quantification with '$'. The wff 
formation rules specify the use of parentheses around binary 
sentential connectives: '&' (and), 'v' (or), '->' (if...then), and 
'<->' (if and only if). Some of these parentheses may also be 
omitted following a formal convention that is defined in 
chapter one of the text. The parenthesis-dropping 
conventions follow the specified order of operations: & and 
v precede ->, and -> precedes <->. Any string that passes 
the wff test is next checked for correctness with respect to 
the particular translation problem attempted (logical 
equivalency to a stored answer. Both the wff check and the 
correctness check is indifferent to any white space 
introduced by the student, and when problems are returned 
to students with feedback, any spaces are removed. 

It is worth noting that although interface, formal system, 
physical situation, and participant pool and motivation are 
different from Study 1, the task is quite similar: in both 
cases, participants are asked to take a natural language 
statement and translate it into a formal system. 

Analysis & Predictions 
129,526 submissions to the translation verification interface 
(exercises 1.3 and 3.2) submitted between May 5, 2005 and 
April 4, 2006 were collected and analyzed. Junk entries, 
entries which used incorrect symbols (e.g., “=>” instead of 
“->”), and repeated entries coming from a single IP address 
on a particular day were removed. After all of these 
reductions, 48,131 statements from 595 unique IP 
address/time stamp combinations remained. The same 
verification system used to provide submission feedback 
was used to categorize submissions for our analysis.  

We distinguish three physical spacing conditions: spacing 
consistent with the operator structure, spacing inconsistent 
with operator structure, and no spacing at all (unspaced). An 
expression is considered consistent when the space around 
every operator in the expression is appropriate: spaces 
around conjunction, disjunction, conditional, and bi-
conditional signs should be even, spaces should only be 
inserted to the left of negation signs and quantifiers. If any 

spacing violated these constraints, then the expression was 
flagged as inconsistent.  

Our predictions are as follows: first, we predict that 
because representations of space play a role in the way 
reasoners process syntax, participants using the site will at 
least occasionally insert spaces. Although random insertion 
of spaces would be far more likely to produce inconsistent 
than consistent spacings, we predict that .spacing will be 
primarily consistent, and that only consistent spacing will 
improve performance. 

Study 1 indicated that spacing is modulated in the 
presence of hierarchical syntax, participants should be more 
likely to produce spaces in responses containing more than 
one operator. Also, we predict that accuracy will be higher 
on consistently spaced statements than on other statements, 
whenever structure matters (i.e., whenever there are two or 
more operators).  

The problems studied came from two sections of the 
book; one on propositional logic (chapter 1), and one on 
predicate logic (chapter 3).  Because the latter is from a later 
section of the book, submissions on this section can be 
assumed to come from more advanced reasoners; one might 
wonder whether such reasoners will space more or less 
frequently and regularly than beginners.  Both possibilities 
are compatible with out hypothesis. One might think that 
advanced reasoners should have a better mastery of spatial 
systems of reasoning, and consequently space more.  On the 
other hand, one might think that advanced reasoners have 
internalized the appropriate perceptual structures, and do not 
need physical cues to indicate them. Because more 
experienced reasoners are less likely to be dependent on 
perceptual support (Chi, Feltovich & Glaser, 1981), we also 
predict that more advanced participants will be less likely to 
space expressions at all. Our prediction then is that spacing 
will be more common in the first, more elementary section, 
suggesting that advanced reasoners have internalized the 
appropriate perceptual segmentation.  

In analyzing these data, we do not attempt to evaluate the 
statistical significance of our results for two reasons: first, 
the breakdown of submissions by unique IP address/date 
does not adequately divide submission into independent 
samples. Since we have no way to determine unique 
individuals, and furthermore no way to determine the 
relationship between individuals, statistical tests based on 
the assumption of independent samples are inappropriate. 
Second, the large size of the sample guarantees that standard 
statistical measures will indicate significance (all of the 
contrasts considered here are highly significant by standard 
measures), regardless of the underlying mechanisms. For 
these reasons, we report frequencies without invalid 
statistical measures. 

Results 
Table 2 presents the frequencies of submission broken down 
by spacing, number of operators, and logic type. As 
expected, participants frequently spaced expressions. 10.8% 
of all expressions submitted contained some spacing. When 
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expressions were spaced, moreover, they were 
predominately consistently spaced: 82.6% of all spaced 
equations were consistent with operator syntax. Consistently 
spaced submissions were also more likely than either 
inconsistent or unspaced expressions to be correct; 53% of 
consistent equations were correct, compared with only 37% 
of inconsistently spaced and 50% of unspaced equations. 

In order to test the structure sensitivity of consistent 
spacing, we divided the dataset according to whether a 
problem required syntax resolution (that is, whether it had 
two or more connectives). Participants did indeed space 
more frequently on multi-operator problems (9.2% of multi-
operator problems were consistently spaced against 6.8% of 
few-operator problems). Furthermore, accuracy was highest 
(53%) when expressions were consistently spaced, and 
lowest on those inconsistently spaced (37%; 50.1% of all 
unspaced expressions were correct), principally on multi-
operator expressions. On few-operator problems, 52% of 
consistent, 42% of inconsistent, and 52% of unspaced 
submissions were correct. However, the number of 
problems of this type is very small (there were only 26 
inconsistently spaced few-operator submissions in all).  

We also tested the theory that more training would reduce 
the need for formally extraneous spacing. Translation 
problems appear in two sections of the textbook: Chapter 1 
(propositional logic) and Chapter 3 (predicate logic). We 
divided the full dataset into these two categories, and 
measured spacing frequency across these two categories; 
both consistent and inconsistent spacings were more 
frequent on propositional problems (13.1% and 2.4%, 
respectively) than on predicate logic problems (6.7% and 
1.6%).  

Discussion 
Despite being formally unnecessary and informally 
discouraged, spaces were frequently inserted into typed 
sentences of formal logic. These spacings were nearly 
always consistent with the operations they abutted; 
submissions with consistent spacing were also more likely 
to be correct than unspaced submissions. Together with 

Study 1, Study 2 establishes that people working in two 
very different domains systematically space formal systems 
that do not require differential spacing.  

Because the participants in this study were typing on a 
keyboard, a chunking account that predicts differential 
spacing on handwritten equations as a result of the time-
course of memory retrieval within and across chunks cannot 
account for spacing here. Other accounts of the results of 
Study 2 are possible, however. For instance, other formal 
systems, such as programming languages, are often taught 
with explicit instructions to space logical terms; participants 
might be transferring this practice from programming 
experience. This possibility cannot be definitively 
eliminated (though why spacing is common in programming 
is still mysterious), but the fact that more experienced 
reasoners space less, not more, seems incompatible with the 
idea that appropriately spacing is an acquired skill.  

General Discussion 
In both typed logic and handwritten arithmetic translation 
tasks, participants created formally irrelevant spatial 
relationships in stimuli. In both cases, these relationships 
aligned with the syntactic structure of the formal statement 
being expressed. The kinds of regularities produced in 
Study 1 have been shown to benefit correct syntactic 
interpretation (Landy & Goldstone, in press). People seem 
to spontaneously create alignments of space and syntax that 
help them reason formally.   

That spacing is connected to syntax is important for our 
understanding of mathematics and mathematical learning, 
but it is also important for education and cognitive 
psychology more generally. For education, our results 
suggest increased sensitivity to the physical features of how 
mathematics is presented to students and how they present 
mathematics to their teachers. Physical properties such as 
spacing may be used to give students a perceptual scaffold 
for the rules underlying algebra. Further research is 
necessary to know whether these scaffolds, when removed, 
help students to continue to obey the appropriate 
mathematical rules or if they act as crutches that thwart rule 

Table 2: The use of spacing in typed formal translations. 

  Logic Type  
Type Propositional  First Order 

 U C I  U C I 

Single Op        
  Correct 1,344 160 11  1,187 12 0 

  Incorrect 1,592 145 15  735 9 0 
        
Multiple Ops        
  Correct 6,175 1,058 159  12,899 1,044 165 

  Incorrect 5,182 844 213  13,817 1,011 339 
Results from Study 2.  Entries specify number of submissions of each category. U denotes unspaced submissions, C those in 

which spacing and operations were consistent, and I submissions with at least one inconsistently spaced operation. 

429



development. Reciprocally, by examining students’ spacings 
of their own productions, we may be able to diagnose their 
misunderstandings. In the same way that manual gestures 
are sensitive indicators of inchoate explicit mathematical 
understandings (Alibali & Goldin-Meadow, 1993; Goldin-
Meadow, Wein & Chang, 1992), production spacing may 
indicate the beginnings, or lack thereof, of knowledge for 
order of precedence. 

Most fundamentally, our results challenge conceptions 
of symbols as amodal and divorced from analog, spatial 
information.  In this respect, we offer a reinterpretation of 
Newell and Simon’s (1963, 1976) influential “Physical 
Symbol System Hypothesis.” Their hypothesis was that 
physical symbol systems had the necessary and sufficient 
means for producing intelligent action. A symbol system 
includes both physical symbols such as marks on paper or 
punches on a computer tape, and the explicit rules for 
manipulating these tokens. In action, all of their physical 
symbols were distantly related to their worldly referents, 
and were digital and discrete entities such as the strings “P 
⊃Q” and “GOAL 7 TRANSFORM L3 INTO LO.” The 
arbitrary nature of these entities was by design because they 
wanted symbols to be able to designate any expression 
whatsoever without any a priori prescriptions or limitations. 
We concur with Newell and Simon’s emphasis on physical 
symbols, and believe in paying even more attention to 
symbols’ physical attributes involving space, shape, and 
perceptual grouping. Accordingly, our revised physical 
symbol systems hypothesis is that symbols are not arbitrary, 
unconstrained tokens, but rather are represented and 
processed using space and perceptually organized groups. 
This conception of physical symbols makes them far more 
constrained than those underlying Newell and Simon’s 
General Problem Solver, but these constraints are not only 
limiters, but permitters as well.  For Specific Problem 
Solvers that are humans, it is good policy to design symbols 
that can be processed efficiently given what we know about 
perceptual and cognitive mechanisms. From this 
perspective, it is hardly surprising if the symbols we write 
look a lot like those that we are good at reading, and if the 
symbols we think with are a lot like those we are good at 
thinking. 
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