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Accurate and timely precipitation estimates are critical for many hydrological applications, 

including monitoring and forecasting natural disasters, developing water resources 

management and planning strategies, as well as conducting climatological studies. Despite 

having high-resolution satellite information, precipitation estimation from remotely sensed 

data still suffers from methodological limitations. State-of-the-art deep learning algorithms, 

renowned for their skill in learning accurate patterns within large and complex data sets, 

appear well-suited to the task of precipitation estimation. Contents of this dissertation are 

based on the collection of a number of reviewed journal articles which have been published 

over the course of my doctoral research.  

By leveraging the deep learning algorithms with an ample amount of high-resolution satellite 

datasets, I introduce one historical and one near-real time precipitation estimation dataset: 

1) The near-real time dataset called Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks-Convolutional Neural Networks (PERSIANN-
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CNN). This developed near- real time dataset provides precipitation estimates at 0.08-degree 

spatial and an hourly temporal resolution. 2) The historical precipitation estimation dataset 

named Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks-Cloud Classification System-Climate Data Record (PERSIANN-CCS-CDR). This 

dataset offers precipitation estimates at 0.04° spatial and 3-hourly temporal resolutions 

from 1983 to present over the globe. 

Chapter 2 and 3 investigate the application of two different deep neural networks 

algorithms for improving the near-real time precipitation estimation. Most near real-time 

precipitation retrieval algorithms utilize infrared (IR) information as their input due to its 

fine spatiotemporal resolution and near-instantaneous availability.  Their sole reliance on IR 

information is problematic. Indeed, it limits their ability to learn different mechanisms of 

precipitation during training, resulting in less accurate estimates. However, recent advances 

in the field of machine learning offer attractive opportunities to improve the precipitation 

retrieval algorithms.  Chapters 2 investigates the effectiveness of adding Water Vapor (WV) 

channels from geostationary satellites to IR information and the application of convolutional 

neural networks for improving the accuracy of near real-time precipitation 

algorithms. Chapter 3 further improves the model introduced in Chapter 2 by adding 

geographical information (i.e., latitude and longitude) to IR information and utilizing a U-

Net-based convolutional neural network. The developed dataset called PERSIANN-CNN, 

which provides near-real time precipitation estimates at the spatial resolution of 0.08-

degree and at an hourly time scale over the CONUS. Results demonstrate that the proposed 

model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the current 

operational near-real time precipitation datasets at various temporal and spatial scales. 

Chapter 4 and 5 introduce a new historical precipitation estimation dataset through 

introducing a new framework for bias correcting and downscaling the precipitation 

estimates. Accurate, long-term, global precipitation estimates, especially for heavy 

precipitation rates, at fine spatial and temporal resolutions is vital for a wide variety of 

climatological studies. Most of the available operational precipitation estimation datasets 

provide either high spatial resolution with short-term duration estimates or lower spatial 

resolution with long-term duration estimates. Furthermore, previous research has stressed 
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that the available satellite-based precipitation products show poor performance for 

capturing extreme events at high temporal resolution. Therefore, there is a need for a 

precipitation product that reliably detects heavy precipitation rates with fine spatiotemporal 

resolution and a longer period of record. Chapters 4 and 5 introducing a new historical 

dataset that address these limitations by introducing a bias correcting and a downscaling 

framework, respectively.  The developed dataset (called PERSIANN-CCS-CDR) provides 

precipitation estimates at 0.04° spatial and 3-hourly temporal resolutions from 1983 to 

present over the global domain of 60°S to 60°N. PERSIANN-CCS-CDR shows improved 

performance compared to PERSIANN-CDR in representing the spatiotemporal resolution, 

magnitude, and spatial distribution patterns of precipitation, especially for extreme events.  

In chapter 6, the applications of the developed datasets as well as PERSIANN family 

datasets are assessed to investigate the spatiotemporal variations in heavy precipitation 

events that occurred in early spring (March 21st to April 20th) over Iran. The Results show 

that PERSIANN family datasets are an attractive dataset for detecting the near-real time and 

historical precipitation estimates. 
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1.1. Overview of near-real time precipitation estimation algorithms  

Precipitation is the main driver of the hydrological cycle and it plays a key role in 

hydro‐meteorological and climate studies (Trenberth et al. 2003). Accurate and timely 

precipitation estimates are of paramount importance for water resources management, as 

well as many hydrological applications such as flood forecasting, drought modeling, and soil 

moisture monitoring (Beck et al. 2017, Miao et al. 2015). Rain gauges, weather radars, and 

earth-observing satellites are the most common instruments for estimating precipitation. 

Ground-based rain gauges provide direct rainfall measurement and are considered the most 

reliable method for rainfall estimation (Huffman et al. 1997). Yet, the inadequacy and the 

sparsity of gauge networks over remote and high elevation areas that receive large amounts 

of precipitation tend to undermine the applicability of gauge-based estimates (Gehne et al. 

2016, Huffman et al. 2001). Additionally, there are no gauge data over water bodies and 

oceans (Maggioni et al. 2016). Radar networks provide a continuous precipitation 

measurement with high temporal and spatial resolutions (Habib et al. 2012). However, radar 

networks do not cover many countries and remote regions around the world (Guo et al. 

2015, Yilmaz et al. 2005). Additionally, they suffer from beam overshooting and beam 

blockage by mountains, which makes them suitable mostly for flat regions (Germann et al. 

2006).  

Satellite-based quantitative precipitation estimation (QPE) is a promising alternative 

to ground-based rain gauge and radar measurements, offering global precipitation estimates 

with high spatial and temporal resolutions over land surfaces and oceans (Sun et al. 2018). 

Satellite-based QPEs can be derived from a range of observations with different types of 

sensors. The most commonly used satellite sensors are infrared (IR) from geosynchronous 

Earth orbiting (GEO) satellites and passive microwave (PMW) data from low-Earth orbiting 

(LEO) satellites (Michaelides et al. 2009, Sorooshian et al. 2002, Weng et al. 2003). PMW 

observations have the advantage of being directly retrieved by measuring microphysical 

information including both liquid and frozen hydrometeors within the clouds, while IR 

information is limited to cloud-top information  (Joyce et al. 2004). PMW sensors are only 

onboard LEO satellites which provide a relatively poor temporal and spatial sampling 

(Behrangi et al. 2009, Marzano et al. 2004). IR images are produced at least once per hour 
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and provide useful information regarding cloud-top texture (e.g. size and phase of cloud 

particles) (Grecu et al. 2004). In addition, the resolution of IR sensors is around 4 km, while 

the resolutions of LEO sensors are typically not better than 50 km over the oceans and 10 

km over land (Kidd and Levizzani 2011). Thus, the IR-based products have the advantage in 

terms of temporal and spatial resolutions among other satellite-based QPEs and better meet 

the requirements many near real-time applications(Sadeghi et al. 2021b). Such applications 

include monitoring the complete evolution of local precipitation events and flash floods, 

where the life cycle of most storms occurs within a short period of time and is confined to a 

small area (Arkin and Meisner 1987, Behrangi et al. 2009). 

Different methodologies have been proposed in order to establish the relationships 

between IR observations and precipitation rate (Ba and Gruber 2001, Behrangi et al. 2009, 

Bellerby et al. 2000, Hsu et al. 1997, Roebeling and Holleman 2009). One well-known 

algorithm and product is Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks (PERSIANN) which relates cloud top temperature data obtained 

from IR imagery to the precipitation rate (Hsu et al. 1997). PERSIANN is a near real-time data 

set with 0.25 degree (i.e. 25 km) spatial and hourly temporal resolutions (Sorooshian et al. 

2000). PERSIANN-Cloud Classification System (PERSIANN-CCS, Hong et al. 2004) is the next 

generation of PERSIANN, which improves the estimation algorithm by employing techniques 

to identify the cloud patch features. PERSIANN-CCS data is a product at 0.04 degree (i.e. 4 

km) spatial and half-hourly temporal resolutions. Both PERSIANN and PERSIANN-CCS 

extract information based on manually defined features including coldness, texture, and 

geometry, which limits the capability of these products for precipitation estimation (Hong et 

al. 2004, Shen 2018). Manual feature extraction is always limited due to the tendency of humans 

to select the most relevant and physically obvious features that have a direct impact on a 

phenomenon. However, due to the complexity and non-linear behavior of the precipitation 

phenomena, there may be some factors hidden to humans that play significant roles in increasing 

the accuracy of simulations. Additionally, in practice, human-based feature selection is biased 

toward the most obvious factors due to insufficient time to explore and test all related and co-

related factors. Therefore, applying more advanced data-driven methodologies for 

automatically extracting features from the input data will enhance precipitation estimation 

accuracy(Mosaffa et al. 2022).  
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Recent advances in the field of Machine Learning (ML) offer exciting opportunities to 

expand our knowledge about the Earth system (Lary et al. 2016). Among the different 

machine learning methods, the Deep Neural Network (DNN) method is a fast-growing 

branch characterized by its flexibility and capacity to deal with huge and complex data sets, 

especially extracting features from a large amount of image data (Bengio et al. 2007, Hinton 

et al. 2006). DNN’s ability to deal with huge amounts of data allows us to better exploit spatial 

and temporal structures in the data from multi-satellite imageries for precipitation 

estimation. Akbari Asanjan et al. (2018) employed a deep neural network framework and 

proposed a short‐term quantitative precipitation forecasting model. A more closely related 

work for applying DNNs for precipitation estimation is the research conducted by Tao et al. 

(2018) , who employed the stacked denoising auto-encoders technique. The proposed 

model, referred to as PERSIANN stacked denoising auto-encoders (PERSIANN-SDAE), 

utilizes infrared (IR) and water vapor (WV) channels to detect rain/no-rain and then 

estimate the precipitation. The results suggest that PERSIANN-SDAE can better capture both 

the spatial pattern and the peak precipitation compared to PERSIANN-CCS. Although 

PERSIANN-SDAE has the advantage of automatic feature extraction from the IR data, it 

cannot efficiently use the neighborhood information in retrieving the rain rate at each pixel 

due to an inefficient structure for learning from image data sets. In other words, for each output 

pixel estimated by SDAE and in general Fully-Connected (FC) neural networks, information from 

the corresponding pixel of the input data sets is utilized instead of using information from 

neighboring pixels in the same image. The inefficient structure of SDAE and FC networks leads 

to results focusing on the pixel-to-pixel relationship between cloud-top temperature and rainfall 

rate. However, in addition to the one-to-one relation of IR temperature and rain rate, local spatial 

variations in IR provide useful factors for accurate rainfall estimation. For example, frontal 

rainfalls can be well-described by spatial variations in IR. Frontal rainfalls happen when cold and 

warm regimes collide, and this is only captured by leveraging spatial patterns.  

 

1.2. PERSIANN-CNN dataset 

Convolution Neural Networks (CNNs) are one of the most popular and efficient types of DNN 

frameworks (Rezaee et al. 2018). CNNs rely on efficient structures for learning the essential 
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features without requiring prior feature extraction and thereby offer a greater 

generalization capability (Long et al. 2017). One of the main advantages of CNNs for image 

processing is that they can more efficiently use local neighborhood features via convolution 

transformation (Miao et al. 2015). In other words, CNNs use the n×n neighborhood pixels 

centered by the targeted pixel to estimate the rain rate at that pixel. This feature is due to the 

CNN structure, which allows sharing the same filter in a single layer. By offering this unique 

feature, the CNN can extract valuable features from the hidden layer without requiring large 

amounts of data. This greatly reduces the number of parameters in the network and allows 

the model to have more layers (deeper structure), which are good for capturing more 

complex patterns, and to be more efficient by reducing the number of parameters compared 

to FC models(Chen et al. 2016). 

Due to the rapid growth in the amount of annotated data and the uniqueness of CNN 

structures, remote sensing and hydrology communities have exploited CNN techniques for 

many applications. These include land cover and land use classification (Castelluccio et al. 

2015, Chen et al. 2014, Luus et al. 2015, Makantasis et al. 2015, Rezaee et al. 2018, Ševo and 

Avramović 2016), image segmentation (Basaeed et al. 2016, Längkvist et al. 2016), object 

localization(Long et al. 2017, Salberg 2015), extreme event detection(Liu et al. 2016), urban 

water flow and water level prediction (Assem et al. 2017), tropical cyclone intensity 

estimation(Pradhan et al. 2017), and extreme precipitation prediction (Zhuang and Ding 

2016).  The CNN structure can also be utilized to  address the drawback of PERSIANN-SDAE 

to efficiently utilize neighborhood pixel information for rain-rate estimation (Shen 2018). 

The CNN offers a viable tool for precipitation estimation problems since it can gain more 

abstract and more expressive information from multi-spectral channels. Recently, a CNN was 

implemented to estimate precipitation based on the dynamic and moisture fields from 

numerical weather model analysis (Pan et al. 2018). Pan et al. (2018) showed that the CNN 

technique can improve numerical precipitation estimation on the west and east coasts of 

United States. Miao et al. (2019) applied a combination of CNN and Long Short Term Memory 

(LSTM) to improve the resolution and accuracy of precipitation estimates based on 

dynamical simulations. Both of these studies employ predictions from the numerical model’s 

resolved dynamic and moisture fields. However, there is no remote sensing information 

being explicitly utilized in their models.   
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 In this study, we propose a framework for real-time precipitation estimation using the 

IR and WV information and applying a CNN model. The National Centers for Environmental 

Prediction (NCEP) Stage IV Quantitative Precipitation Estimation (QPE) have been utilized 

as the ground-truth observation for training the model. The proposed model will be called 

PERSIANN–Convolutional Neural Network (PERSIANN-CNN) hereafter. Then, the 

effectiveness of this model has been evaluated, and its performance is compared with two 

baseline models. The detailed objectives of chapters 2 and 3 are: 

1) Introduce a rainfall estimation model based on the bispectral satellite information (IR 

and Water Vapor (WV) channels) using convolutional neural networks. 

2) Evaluate the performance of the proposed model (PERSIANN-CNN) through various 

categorical and continuous verification indices. Contrasting the proposed model with 

PERSIANN-CCS and PERSIANN-SDAE at hourly and daily time scales. 

3) verify the performance of PERSIANN-CNN in capturing the characteristics of an 

extreme rainfall event throughout its evolution stages. 

4) investigate the effectiveness of adding geographical information (i.e. latitude and 

longitude) to IR information and the application of a U-Net-based convolutional neural 

network for improving the accuracy of retrieval algorithms. 

1.3. Overview of historical precipitation estimation datasets 

Precipitation is widely recognized as the main driving component for the global 

hydrological cycle and has an essential role for regulating the climate system (Trenberth et 

al. 2003; Wang et al. 2012). Providing reliable estimation of precipitation, especially heavy 

precipitation, at fine spatial and temporal resolutions is crucial for many hydrological 

applications, including the development of water resources management and planning 

strategies, the development of early warning systems, as well as climatological studies. (Hou 

et al. 2014; Nguyen et al. 2018b; Mehran and AghaKouchak 2014; Nguyen et al. 2015). Gauge, 

radar, and satellite instruments are considered primary sources for measuring precipitation 

(Tapiador et al. 2012). Ground-based rain gauges directly measure precipitation; however, 

their uneven and sparse distribution, especially over oceans and remote regions, limits their 

application for developing a global high spatial resolution precipitation dataset (Michaelides 

et al. 2009; Sun et al. 2018). Radar networks, which provide continuous precipitation 
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measurements with high spatiotemporal resolutions, are viable alternatives for ground-

based rain networks. However, the establishment of a global radar network is difficult due 

to high installation and maintenance costs (Maggioni et al. 2016; Habib et al. 2012).    

In recent decades, rapid advancement in remote sensing technologies has brought an 

unprecedented opportunity for offering homogenous precipitation estimation at fine spatial 

and temporal resolutions over the globe (Kidd and Levizzani 2011; He et al. 2018; 

Sorooshian et al. 2011; Sadeghi et al. 2019c). During the last three decades, a series of 

satellite-derived global precipitation datasets have been developed and made operational 

(Maggioni et al. 2016; Sun et al. 2018). Operational satellite-based precipitation products 

vary from 0.04 to 2.5 degrees in terms of spatial resolution, from 30 minutes to monthly in 

terms of temporal resolution and up to 40 years of temporal span. These datasets have been 

designed for different applications and their usability depends upon the type of application 

along with the accuracy, latency, and temporal and spatial resolutions of the estimates. 

Climate studies applications require long-term precipitation records (Wentz et al. 

2007); the World Meteorological Organization (WMO) reported that at least 30 years of 

weather information is needed for climatological studies (Sadeghi et al. 2020). Therefore, a 

reliable long-term global precipitation estimation product is crucial for climatological 

studies. On the other hand, several studies have shown that spatial–temporal variability of 

precipitation plays an important role in catchment response and performance 

of hydrological models (Lobligeois et al. 2014; Vieux and Imgarten 2012; Huang et al. 2019; 

Cristiano et al. 2017; Ficchì et al. 2016; Lee et al. 2019). For example, Das et al. (2008) 

explored the sensitivity of distributed, semi-distributed and semi-lumped models to the 

spatial and temporal resolution of the precipitation input. Their results indicated that low 

spatial and temporal resolutions of precipitation estimates are responsible for the low 

efficiency of distributed models compared to simpler model structures. Lobligeois et al. 

(2014) investigated the impact of the spatial resolution of precipitation inputs on the 

performance of semi-distributed hydrological models over 181 catchments with a variety of 

sizes and climate conditions. They concluded that semi-distributed models significantly 

outperform lumped models when precipitation inputs have higher spatial resolution, while 

they perform similarly when precipitation have low spatial resolution. Huang et al. (2019) 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/groundwater-model


 8  
 

explored the sensitivity of hydrological model performance to the temporal resolution of 

precipitation inputs using lumped and distributed models. They showed that providing sub 

daily precipitation estimates rather than daily inputs can significantly improve the 

performance of the hydrologic model. Ochoa-Rodriguez et al. (2015) investigated the impact 

of spatial and temporal resolution of rainfall inputs on hydrological modeling and urban 

hydrology. They showed that spatial and temporal variability of precipitation information 

translates into large variations in flows; as a result, developing a precipitation dataset with 

high spatial and temporal resolution is needed in order to represent urban runoff processes 

well.  

Nonetheless, most of the available operational precipitation products are either high 

resolution/short-duration estimates or low resolution with long-term estimates (Kidd and 

Levizzani 2011); therefore, there is a need for providing precipitation products with both 

fine spatial and temporal resolution and a long period of record(Sadeghi et al. 2021a). 

Precipitation products with such attributes would provide the opportunity for researchers 

to study the spatial details and complete evolutions of extreme events including hurricanes 

and convective storms in the context of historical events (Funk et al. 2015; Yoshimoto and 

Amarnath 2017). Most of the currently available satellite-based precipitation estimation 

products are not ideal for detecting extreme events at high temporal resolutions (3-hourly) 

(Mehran and AghaKouchak 2014; Anagnostou et al. 2009; Yong et al. 2015; AghaKouchak et 

al. 2011; Prakash et al. 2014; Liu and Zipser 2015). For example, Mehran et al. (2014) 

evaluated the performance of Tropical Rainfall Measuring Mission (TRMM) Multisatellite 

Precipitation Analysis (TMPA), Precipitation Estimation from Remotely Sensed Information 

Using Artificial Neural Networks (PERSIANN) and CPC MORPHing technique (CMORPH) for 

detecting heavy precipitation rates against Stage IV radar observations over the CONUS. 

They showed that all these precipitation datasets miss a significant volume of rainfall. They 

concluded that none of the 3-hourly estimates from these products are suitable for detecting 

extreme events and their detection skills decrease dramatically as the extreme threshold 

increases. Precipitation Estimation from Remotely Sensed Information using Artificial 

Neural Networks-Cloud Classification System-Climate Data Record (PERSIANN-CCS-CDR), 

which provides 0.04° spatial and 3-hourly temporal resolution estimates from 1983 to 

present, has been explicitly designed to address the need for having a long term dataset with 
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fine spatiotemporal resolution precipitation estimation which is reliable for extreme event 

detection. 

 PERSIANN-CCS-CDR is a new satellite-based precipitation product which was 

developed based on IR imagery. In general, satellite-based precipitation products have been 

developed based on utilizing passive microwave (PMW) sensors on low-Earth-orbiting 

(LEO) satellites and/or visible/IR (VIS/IR) sensors on geosynchronous Earth-orbiting (GEO) 

satellites (Behrangi et al. 2009; Michaelides et al. 2009; Sorooshian et al. 2000). GEO 

satellites provide IR imagery with a rapid temporal cycle (30 minutes or less) and high 

resolution (0.04° × 0.04°) continuously over the globe. Therefore, IR-based products have 

the advantage of offering precipitation estimates at fine temporal and spatial resolutions 

over the globe. VIS/IR precipitation estimation algorithms link the IR cloud-top temperature 

(brightness) to the probability and intensity of rainfall (Kummerow and Giglio 1995). The 

lower the cloud-top temperature (the brighter clouds), the higher the probability for and the 

amount of precipitation these algorithms expect (Arkin and Meisner 1987; Adler and Negri 

1988). This assumption results in poor performance of these algorithms since there is no 

direct relationship between rainfall rate and cloud-top temperature. On the other hand, 

passive microwave (PMW) radiometers offer more direct methods for precipitation 

estimation as they can probe through most of the clouds and measure precipitation-sized 

particles (Sun et al. 2018; Joyce et al. 2004). However, PMW sensors are only available from 

LEO satellites with relatively poor temporal resolution (two observations per day per 

satellite) (Marzano et al. 2004). In order to take advantage of the strengths that each sensor 

offers, most precipitation estimation algorithms combine high-frequency information from 

GEO satellites and sparsely sampled data from LEO satellites. These algorithms mostly serve 

VIS/IR information as fundamental sources for precipitation estimation and utilize PMW for 

post processing (Behrangi et al. 2009; Joyce et al. 2004; Nguyen et al. 2020). For example, 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks (PERSIANN) utilizes IR information as the primary input for the artificial neural 

network (ANN) model and then employs PMW information for continuously adapting the 

parameters of the model (Hsu et al. 1997; Sorooshian et al. 2000). PERSIANN provides 

hourly precipitation estimates at 0.25° spatial resolution from March 2000 to present and is 
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accessible at a time lag of 2 days at the Center for Hydrometeorology and Remote Sensing 

(CHRS) data portal (http://chrsdata.eng.uci.edu/) (Nguyen et al. 2018a, 2019). 

In order to increase the spatial resolution and decrease the lag time of PERSIANN, 

Hong et al. (2007) introduced a cloud-patch-based algorithm called PERSIANN-Cloud 

Classification System (PERSIANN-CCS). This algorithm extracts pre-defined local and 

regional features from IR satellite imagery under specified temperature thresholds in order 

to estimate rainfall in four steps. First, IR imagery is separated into distinctive cloud patches 

based on different temperature thresholds using an incremental temperature threshold 

algorithm. Then, cloud features including coldness, texture, and geometry are extracted from 

segmented images. In the third step, a self-organizing feature map (SOFM) approach is 

utilized in order to classify the cloud patches into well-organized categories. Finally, 

historical matching is employed to develop a relationship between rain rates and cloud-top 

temperature and then exponential regression is utilized for rain rate estimation in each pixel 

(Hong et al. 2007). The PERSIANN-CCS dataset at 0.04° spatial resolution with a lag time of 

around an hour has been available since January 2003 in hourly time steps at the CHRS data 

portal (http://chrsdata.eng.uci.edu/).  

PERSIANN-Climate Data Record (PERSIANN-CDR) is the next PERSIANN system 

product which was introduced to provide long-term precipitation records for climate studies 

(Ashouri et al. 2015). PERSIANN-CDR offers historical records of precipitation estimates 

dating back to 1983 with 0.25° spatial and daily temporal resolutions and is publicly 

available through the NOAA National Centers for Environmental Information (NCEI) 

(https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr) and the CHRS 

Data Portal (http://chrsdata.eng.uci.edu/). PERSIANN-CDR employs infrared imagery data 

from Gridded satellite infrared data (Gridsat-B1) merged IR and then utilizes the National 

Centers for Environmental Prediction (NCEP) Stage IV hourly precipitation for training the 

ANN model. Then, the Global Precipitation Climatology Project (GPCP) monthly 2.5° 

precipitation data is used for reducing the bias (Sadeghi et al. 2019a). A comprehensive 

description of the PERSIANN-CDR algorithm can be found in Ashouri et al. (2015). 

1.4. PERSIANN-CCS-CDR dataset 
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Improvement of the PERSIANN systems for precipitation estimation toward higher 

spatiotemporal resolutions with longer period of records is ongoing at CHRS at the 

University of California, Irvine. The development of the PERSIANN-CCS-CDR product, which 

provides precipitation estimates at 0.04° × 0.04° spatial and 3-hourly temporal resolution 

from 1983 to present, is presented in this paper. PERSIANN-CCS-CDR combines the 

algorithms that were used in developing the PERSIANN-CCS and PERSIANN-CDR and 

leverages information from GEO satellites as input data in order to provide a fine 

spatiotemporal precipitation dataset with a long period of record. In this process, the 

PERSIANN-CCS algorithm is applied to Gridded satellite (GridSat-B1) and NOAA Climate 

Prediction Center (CPC-4km) global merged infrared products. Then, the estimates are bias 

adjusted using the Global Precipitation Climatology Project (GPCP) dataset for the entire 

period of record. In this study, PERSIANN-CDR, Stage IV and CPC Global Unified Gauge-Based 

Analysis of Daily Precipitation are used as the reference data for comparison. 

1.5. Dissertation Outline  

This dissertation is organized as follow: Chapter 2  investigates the effectiveness of applying 

Convolutional Neural Networks (CNNs) together with the Infrared (IR) and Water Vapor 

(WV) channels from geostationary satellites for precipitation estimation. The proposed 

model (PERSIANN-CNN) performances are evaluated during summer 2012 and 2013 over 

central CONUS at the spatial resolution of 0.08-degree and at an hourly time scale.  Chapter 

3 explores the effectiveness of adding geographical information (i.e., latitude and longitude) 

to IR information and the application of a U-Net-based convolutional neural network for 

improving the accuracy of retrieval algorithms. In Chapter 2, both PERSIANN-SDAE and 

PERSIANN-CNN models were trained over the central United States and then compared with 

PERSIANN-CCS over that same region during the summer. However, it is unclear how the 

models would perform across other regions or seasons where the mechanisms of 

precipitation may vary. Therefore, the first question to address is: Can a CNN-based model 

outperform PERSIANN-CCS over the contiguous United States (CONUS)? Secondly, both 

proposed SDAE and CNN models leverage the water vapor (WV) information in conjunction 

with IR images; however, PERSIANN-CCS only estimates the rainfall based on IR information. 

The next question is: Can a CNN-based model outperform the current PERSIANN-CCS using 
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the same input (IR information)? The last question to investigate is: How can we improve 

the proposed CNN-based model in Chapter 2 based on the characteristics of rainfall and the 

features of the CNN architectures? In chapter 3, I answer these questions by exploring the 

performance of CNN-architectures by adding geographical information as inputs. Then, the 

performance of the PERSIANN-CNN dataset, which applies U-Net architecture on IR and 

geographical information (referred to as PERSIANN-CNN) is tested against PERSIANN-CCS 

at hourly and daily scales during summer and winter over the CONUS. In Chapter 4, a method 

for constructing PERSIANN-CDR with the new version of GPCP (V2.3) is explored. The newly 

constructed version of PERSIANN-CDR with GPCP V2.3, called PERSIANN-CDR V2.3, was 

compared and evaluated with the previous V2.2 version for the period of 2009 to 2013. For 

comparison, the differences between PERSIANN-CDR V2.3 and the previous version 

(PERSIANN-CDR V2.2) and also the two latest versions of GPCP (V2.2 and V2.3) at the 

monthly scale are investigated. The estimation accuracy of the two versions of PERSIANN-

CDR is evaluated over land and ocean surfaces using the CPC gauge-based precipitation 

dataset and the TRMM 3B42 V7 product. Chapter 5 presents the development of PERSIANN-

CCS-CDR, which provides accurate estimation of extreme precipitation with fine 

spatiotemporal resolution (0.04° spatial and 3-hourly temporal resolution) from 1983 to 

present over the global domain of 60°S to 60°N. Finally, chapter 6 illustrates the application 

of near-real time and historical precipitation to investigate spatiotemporal variations of 

heavy precipitation.  
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 CHAPTER TWO: 
 

PERSIANN-CNN: PRECIPITATION ESTIMATION FROM 

REMOTELY SENSED INFORMATION USING ARTIFICIAL 

NEURAL NETWORKS - CONVOLUTIONAL NEURAL 

NETWORKS 
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2.1. Abstract  

Accurate and timely precipitation estimates are critical for monitoring and forecasting 

natural disasters such as floods. Despite having high-resolution satellite information, 

precipitation estimation from remotely sensed data still suffers from methodological 

limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning 

accurate patterns within large and complex data sets, appear well-suited to the task of 

precipitation estimation, given the ample amount of high-resolution satellite data. In this 

study, the effectiveness of applying Convolutional Neural Networks (CNNs) together with 

the Infrared (IR) and Water Vapor (WV) channels from geostationary satellites for 

estimating precipitation rate is explored. The proposed model performances are evaluated 

during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08-degree 

and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Networks (PERSIANN) Cloud Classification System (CCS), which is an 

operational satellite-based product, and PERSIANN-Stacked Denoising Autoencoder 

(PERSIANN-SDAE), are employed as baseline models. Results demonstrate that the 

proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to 

the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN 

outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the Critical 

Success Index (CSI), demonstrating the detection skills of the model. Furthermore, the Root 

Mean Squared Error (RMSE) of the rainfall estimates with respect to the National Centers for 

Environmental Prediction (NCEP) Stage IV gauge-radar data, for PERSIANN-CNN was lower 

than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation 

accuracy of the proposed model. 

2.2. Data and Study Area 

2.2.1. Model Inputs and the Observational Data set 

NOAA GOES Imagery (IR & WV) 

The input data used in this study are IR and WV channels from Geostationary Operational 

Environmental Satellite (GOES) satellites with wavelengths of 10.7 µm and 6.7 µm, 

respectively. The WV channel is utilized as a supplementary input to the IR data since 

previous studies by (Behrangi et al. 2009) have shown the contribution the WV channel can 
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add for rainfall estimation.  Physically, the conversion of water vapor is necessary for 

precipitation formation (Stohl and James 2004). Previous studies have shown that the WV 

channel in conjunction with IR can recover a great amount of missing precipitation under 

warm clouds (Kurino 1997). In this study, both IR and WV channel data from the 

Geostationary Operational Environmental Satellite (GOES) are processed to an hourly scale 

with a 0.08-degree (8 km) spatial resolution. 

NCEP Stage IV QPE Product 

The National Centers for Environmental Prediction (NCEP) Stage IV Quantitative 

Precipitation Estimation (QPE) is often assumed to be the best long-term precipitation 

observation over the CONUS due to its extensive quality control procedures and uniform 

space-time grid (Smalley et al. 2014). This product, hereafter referred to Stage IV, combines 

the national Weather Surveillance Radar-1988 Doppler (WSR-88D) network of ground 

radars and surface gauges for precipitation estimation (Lin and Mitchell 2005). For this 

study, hourly NCEP Stage IV QPE precipitation accumulations at 0.04 degree (4 km) spatial 

resolution were obtained from the Stage IV QPE distribution website to serve as the ground-

truth observations1. The original 0.04-degree data set was resampled to 0.08-degree (8 km) 

spatial resolution to match the resolution of the IR and WV data.   

2.2.2. Baseline Models 

PERSIANN-CCS 

PERSIANN-CCS is a near real-time precipitation estimation at 0.04-degree spatial resolution 

and half-hourly temporal resolution and has become popular as an operational product. The 

PERSIANN-CCS algorithm employs IR satellite imagery to extract local and regional cloud 

features to estimate rainfall (Hong et al. 2004) in 4 steps: 1) cloud segmentation: Separates 

IR imagery into distinctive cloud patches using an incremental temperature threshold 

algorithm, 2) feature extraction: Extracts local and regional cloud patch features including 

coldness, texture, and geometry, 3) cloud classification: cluster cloud patches into well-

organized subgroups using self-organizing feature maps (SOFMS) based on cloud patch 

 

1 http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/ 
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features, 4) rainfall mapping: uses cloud-top temperature and rainfall relationships for each 

classified cloud cluster. In step 4, the relationship between the cloud-top temperature and 

the rain rate is obtained for every cluster by applying probability matching method (PMM) 

and an exponential curve fitting. One of the main advantages of this algorithm is its simplicity 

and its ability to capture extreme precipitation events. For this study, PERSIANN-CCS1 was 

resampled to a 0.08 degree spatial resolution and an hourly temporal resolution for the 

purpose of comparison. 

PERSIANN-SDAE 

Developed by Tao et al.  (2018) the PERSIANN-SDAE algorithm uses IR and WV data in a fully 

connected deep neural network model to detect and estimate the rainfall rate. The SDAE 

technique, introduced by (Modarres and da Silva 2007; Shay‐El et al. 1999; Sadeghi et al. 

2019b), is an unsupervised pre-training method to extract useful information from the input 

data and is particularly useful for image recognition tasks. The PERSIANN-SDAE algorithm 

applies a three layer fully connected neural network employing a greedy layer-wise pre-

training based on stacked denoising autoencoders utilizing IR and WV channels. Kullback-

Leibler (KL) divergence and Mean Square Error (MSE) were used as the loss functions in the 

PERSIANN-SDAE algorithm. These objective functions help decrease estimation error while 

preserving the distribution of the rainfall. Another advantage of the SDAE algorithm is that 

it can automatically extract useful features from the input data. This results in a complicated 

functional mapping between the raw input data and the observational data. On the other 

hand, traditional neural networks like PERSIANN-CCS use manually designed features for 

data extraction Tao et al. (2016), which does not efficiently utilize the neighborhood pixels’ 

information for precipitation estimation of each pixel .study, we utilize the same data set for 

PERSIANN-SDAE that Tao et al. (2016) presented. 

2.2.3. Study area 

The study area of this research is the central United States between the latitudes 30° - 45° N 

and longitudes 90° - 105°W (Fig 2.1). This region has been chosen primarily because of its 

predominant convective precipitation mechanism that leads to intense storms during 

 

1 https://chrsdata.eng.uci.edu/ 
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summer time. As a result, many satellite-based precipitation retrieval algorithms experience 

challenges in detection and estimation of rainfall in the region (Houze Jr 2012). Another 

reason for choosing this study area is the availability of high-quality radar data which allows 

for better training and more accurate verification of the models.   

 

Figure 2.1 Map of the study region in the central United States 

2.3. Methodology 

2.3.1.  CNN architecture 

The CNN is one of the most widely-used deep learning algorithms, having recently gained 

much  interest in the field of image processing (Zhu et al. 2017). The CNN is superior to other 

DNN algorithms due to its ability to preserve the spatial information by maintaining the 

interconnection between pixels (Rezaee et al. 2018). The CNN is one type of feed-forward 

neural network in which an input passes through one or multiple layers of “neurons”. Each 

neuron represents a linear combination of inputs that passes through a typically nonlinear 

function, called the activation layer, and then passes to the next layer. The model can then be 
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trained with a backpropagation algorithm. The goal of training is to update sets of weight 

matrices and bias vectors to minimize the loss function, i.e. the distance between the 

estimation and observation. A CNN network is typically constructed with one or more 

convolution layers and pooling layers (Krizhevsky et al. 2012; Shen 2018). In convolution 

layers, outputs (feature maps) of the previous layer are convolved by sliding convolution 

filters, which have learnable weights, to extract hidden features from the input. Fig 2.2a 

represents an example of applying a two-dimensional convolutional filter (Conv 2D) to an 

input matrix. Each element of the output is obtained from summing the element-wise 

product of the input matrix and the convolutional filter. The output of the convolution 

operator is added by a separately trained bias vector. The result is plugged into an activation 

function to construct the feature map of the next layer (Yang et al. 2015). A Convolution layer 

is often paired with a pooling layer (also called sub-sampling layer). In the pooling layer, the 

spatial resolution of feature maps is reduced to decrease the number of parameters; thus 

decreasing the computation cost and avoiding overfitting. There are many methods for 

subsampling, such as average-pooling and max-pooling. In an average-pooling layer, 

elements of the input are averaged within a window to form the output, while the maximum 

element of that window is obtained as the output in a max pooling layer (Fig 2.2b). For this 

study we utilized max pooling layers since they can further reduce the scale of the input and 

greatly decrease the model’s dimensionality to avoid overfitting.  

 

 

Figure 2.2 a) An Example of a 3*3 convolutional filter applied to a 4*4 matrix; b) An Example of 3*3 
max pooling / average pooling filter applied to a 4*4 matrix 
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2.3.2.  Model Setup 

Overview of the layers 

The architecture of the proposed CNN model with details of input shape, filter size, stride 

size and output is shown in Fig 2.3. The inputs are two 32×32 matrices containing the IR and 

WV channels of GOES-West satellite. The inputs are separately convolved in order to learn 

information from each channel individually. Then, we utilize a concatenation function to 

merge the two map features.  The output can be up-sampled from low resolution to high 

resolution in two steps using a two-dimensional convolutional transpose function (2D 

ConvTranspose). Then the final feature maps were derived after convolving the output of the 

previous layers for two times. The output of the model is the rain rate with the same spatial 

and temporal resolutions as the input data. Furthermore, in all steps we utilize a Rectified 

Linear Unit (ReLU) activation function for nonlinearity. The ReLU function is f(x)=max (0,x). 

This function can be quickly computed since it does not have any exponential or 

multiplication function and assigned zero for negative elements. Furthermore, computing 

the gradient of the ReLU function is simple and can be either 0 or 1 based on the sign of the 

element. 

Parameter Tuning 

The inputs (IR and WV) and target (Stage IV) data sets are divided into the training, 

validation, and test periods. Summer 2012 (June, July, and August) and the first month of 

summer 2013 (June) were used for training and July 2013 was used for validation. The 

training and validation data set are utilized to optimize the model parameters and also 

prevent overfitting.  August 2013 was kept unused during the training phase and was used 

for testing the developed model. Various combinations of the hyperparameters were tested 

during the training phase of the CNN model to optimize the 869,665 learnable parameters of 

the proposed model. Hyperparameters are the variables which determine the structure of a 

DNN (i.e. layer type, neuron size) and the variables which determine how the CNN network 

should be trained (i.e. learning rate) (Erhan et al. 2010). MSE was defined as the loss function 

to minimize during the training and validation phases.  The initial values of the parameters 

are randomly selected from a standard normal distribution. Then, the parameters are 

trained using the gradient descent method in order to minimize the errors at each epoch. 
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Also, an early stopping criterion was introduced which halted the training if the objective 

function value did not improve after 10 epochs. The lowest MSE in both training and 

validation periods are achieved by defining the model specific hyperparameters leading to 

the configuration shown in Fig 2.3. Furthermore, a learning rate of 0.01, a minibatch size of 

32, and an epoch size of 100 were determined through the minimizing processes.   

 

Figure 2.3 schematic of the proposed CNN model. 

 

2.3.3.  Performance Measurements  

Categorical Evaluation Statistics 

Categorical evaluation statistics are used to evaluate the abilities of the models in detecting 

rain/no-rain pixels. These statistical indices include the probability of detection (POD), false 

alarm ratio (FAR), and the critical success index (CSI). The mathematical formulations for 

each of these indices are given below: 

POD =  
TP

TP+MS
  (Range: from 0 to 1; desirable value: 1) 

FAR =  
FP

TP+MS
  (Range: from 0 to 1; desirable value: 0) 

CSI =  
TP

TP+FP+MS
  (Range: from 0 to 1; desirable value: 1) 

Where:  
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TP: Number of pixels correctly classified as rain (true positive events) 

FP: Number of pixels incorrectly classified as rain (false positive events) 

MS: Number of pixels incorrectly classified as no rain (missing events) 

 

Continuous Evaluation Statistics 

Continuous indices are employed to evaluate the skill of each algorithm in estimating rainfall 

intensity. Statistics in this category include: Root Mean Squared Error (RMSE), Correlation 

Coefficient (CC), and Mean Absolute Error (MAE), which are calculated by the following 

equations: 

 

RMSE =  
1

n
√∑(𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖)2

n

i=1

 

CC =  

1
𝑛 ∑ (𝑛

𝑖=1 𝑆𝑖𝑚𝑖 − 𝑆𝑖𝑚𝑖
̅̅ ̅̅ ̅̅ )(𝑂𝑏𝑠𝑖 − 𝑂𝑏𝑠𝑖

̅̅ ̅̅ ̅̅ )

𝜎𝑆𝑖𝑚 𝜎𝑜𝑏𝑠
 

 

MAE =  
1

n
∑|𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖|

n

i=1

 

Where:  

Sim: Simulation (PERSIANN-CCS, PERSIANN-SDAE, PERSIANN-CNN) 

Obs: Ground reference observation (Stage IV) 

 

2.4.  Results and Discussion 

2.4.1.  Performance Evaluation at Hourly Scale 
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An extreme storm that occurred on the 3rd of August 2013 over the study area is examined 

to compare the performance of PERSIANN-CNN against PERSIANN-CCS and PERSIANN-

SDAE. On Aug. 3rd, 2013 at 11:00 AM UTC, two separate cloud patches can be detected using 

the IR (Fig 2.4a) and WV channels (Fig 2.4b) which show intense rainfalls mostly near the 

central areas of the larger patch (Fig 2.4c). As shown in Fig 2.4e, PERSIANN-CNN provides a 

more realistic representation of the extent and the pattern of the rainfall patches (Fig 2.4c) 

as compared to PERSIANN-CCS (Fig 2.4f) and PERSIANN-SDAE (Fig 2.4d). Both PERSIANN-

SDAE and PERSIANN-CCS falsely detect precipitation occurrence over the majority of the 

larger cloud patch where the cloud temperature is relatively lower. Also, PERSIANN-CNN is 

more accurate than the other two models in identifying the location of the rainfall patches.  

This can be observed by looking at the location of the smaller rainfall patch, where the 

PERSIANN-SDAE estimates seems to have a northward shift. PERSIANN-CNN gives more 

accurate intensity estimates compared with PERSIANN-SDAE and PERSIANN-CCS (Fig 2.4d 

and Fig 2.4f), which underestimate and overestimate, respectively. Overall, Fig 2.4 

demonstrates that PERSIANN-CNN is capable of providing more accurate estimates of the 

shape, location, and intensity of precipitation in comparison to PERSIANN-CCS and 

PERSIANN-SDAE.  
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Figure 2.4 Case study I:  Maps of cloud-top temperature (in °K) from (a) IR imagery, (b) WV 
imagery, and precipitation rate (in mm/hr) from (c) Stage IV radar observation (d) PERSIANN-

SDAE, (e) PERSIANN-CNN, and (f) PERSIANN-CCS for Aug. 3, 2013 11:00 UTC. 

Similar maps for another case study (Aug. 16, 2013 9:00 UTC) also demonstrate the superior 

performance of PERSIANN-CNN in detecting the precipitation spatial pattern and the 

magnitude (Fig 2.5).These observations can be justified based on the models’ structures. 

PERSIANN-SDAE employs a pixel-based approach that does not leverage the neighborhood 

information efficiently. In specific, SDAE links all of the pixels of IR and WV to all of the 

hidden neurons in the autoencoder algorithm. This architecture known as a fully-connected 

network makes it hard to efficiently and effectively learn the structure of the rainy patches 

and thus estimate the correct shapes and rainfall rates. Due to the higher complexity level of 

fully-connected networks for learning spatially correlated data (i.e. images), they tend to 

restrict the learning to one-on-one pixels in most cases, meaning that they train the 

parameters of each pixel separately. In addition, in most cases due to the fuzzy and patchy 
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nature of rainfall spatial structure, the SDAE model cannot effectively link neighborhood 

information. Therefore, SDAE learns an indirect relationship between the cloud temperature 

and the rain-rate, resulting in colder clouds showing more intense precipitation and in larger 

patches of rainfall compared to ground-truth radar observations. On the other hand, 

PERSIANN-CCS is a patch-based approach which classifies each rainfall event based on its 

cold cloud patches and the patch features; however, in the last step of the algorithm which is 

the rainfall mapping step (i.e., nonlinear regression), a fully-connected layer is assigned to 

find the relationship of infrared brightness temperature and rainfall rates. The same 

deficiencies of the above-explained fully connected for SDAE apply to the rainfall mapping 

step of PERSIANN-CCS also resulting in estimating larger patches of rainfall compared to 

ground-truth radar observations. 

 

 

Figure 2.5 Case study II:  Maps of cloud-top temperature (in °K) from (a) IR imagery, (b) WV 
imagery, and precipitation rate (in mm/hr) from (c) Stage IV, (d) PERSIANN-SDAE, (e) PERSIANN-

CNN, and (f) PERSIANN-CCS snapshots for Aug. 16, 2013 9:00 UTC. 
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Table 1 summarizes the performance of each model in terms of categorical (POD, FAR, and 

CSI) and continuous (MAE, RMSE, and CC) metrics throughout the verification period of 

August 2013. All verification metrics were computed for each pixel and at hourly time scale 

over the study area for the entire verification period.  In addition, Figure 2.6 presents the 

spatial distribution of the mentioned metrics of the PERSIANN-CNN and the two baseline 

models for the verification period.   In general, PERSIANN-CNN shows substantial 

improvement compared to PERSIANN-CCS and PERSIANN-SDAE according to the 

performance metrics. Compared to the baseline models, PERSIANN-CNN shows a significant 

improvement in POD and CSI, especially in the central and western regions of the study area. 

For FAR, the performance of the PERSIANN-CNN and PERSIANN-SDAE are almost the same 

and obviously better than PERSIANN-CCS, which is also obvious from the FAR values 

presented in Table 2.1. Furthermore, PERSIANN-CNN calculates more accurate rainfall 

intensity estimates as evident by its lower MAE, RMSE, and higher CORR values during the 

verification period (Table 2.1 and Fig 2.6). As shown in the figures, PERSIANN-CNN 

performance metrics are more homogeneous compared to PERSIANN-CCS and PERSIANN-

SDAE across space over the whole study area. This spatial homogeneity is more noticeable 

in the spatial pattern of FAR where PERSIANN-CNN performs almost the same for the entire 

study area while PERSIANN-SDAE performs well in some areas and poor for other parts.  

This shows the capability of the PERSIANN-CNN to generalize features across spatial 

domains; conversely, PERSIANN-CCS and PERSIANN-SDAE show diverse performances 

metrics across the case-study area, showing their localized features. The localized 

performance of PERSIANN-SDAE is partially due to selecting a small and fixed portion of 

study area for the training samples of the model (Tao et al. 2018). 

 

Table 2.1 Summary of hourly precipitation estimation performance for discussed models over the 
CONUS 

 POD FAR CSI MAE (mm) RMSE 

(mm/hr) 

CC 

PERSIANN-CCS 0.39 0.66 0.24 0.19 1.40 0.22 
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PERSIANN-SDAE 0.45 0.52 0.30 0.14 1.02 0.28 

PERSIANN-CNN 0.67 0.56 0.37 0.12 0.88 0.41 
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Figure 2.6 categorical (POD, FAR, CSI) and continuous (MAE, RMSE, CORR) metrics of the 
PERSIANN-CCS, PERSIANN-SDAE, and PERSIANN-CNN over the entire verification period. 
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2.4.2.  Performance Evaluation at Daily Scale 

The proposed model, PERSIANN-CNN, was also evaluated and compared with the baseline 

models at a daily time scale. To do so, hourly estimates were accumulated to daily values for 

the extreme event that occurred from August 3 to 10, 2013. According to the National 

Weather Service, heavy rainfalls were observed in various locations across the Missouri, 

southeast Kansas, and Arkansas from August 3rd through August 10th, 20131. Rainfall rates 

of around 5 mm per hour are reported across these areas for several days, receiving between 

20 to 25 mm accumulated rain in a short window of time in some locations. This extreme 

amount of precipitation resulted in flash flooding causing 3 deaths with many water rescues 

and hundreds of flooded roadways in those areas. Specifically, on August 3rd, an extreme 

heavy rainfall occurred in Missouri, Kansas, and Arkansas with an intensity of approximately 

5 mm per hour, lasting almost 12 hours from 4:00 to 15:00 UTC2. Some areas received 

between 40-60 mm of precipitation in a short period of time. This considerable amount of 

rainfall triggered dangerous flash floods, with lots of property damages. 

Figures 2.7 and 2.8 present the daily values for the extreme precipitation event that occurred 

on Aug 3 and Aug 10, 2013, respectively.  In both cases PERSIANN-CNN provides a more 

accurate detection of the rainfall pattern compared to the baseline models. Furthermore, the 

spatial variation of the PERSIANN-CNN estimation for this day is more similar to that of the 

radar observations than the PERSIANN-CCS and PERSIANN-SDAE estimations. For the 

extreme event on August 3rd, both PERSIANN-CCS and PERSIANN-SDAE overestimate the 

rain rate and assign heavy rainfall to larger areas, while PERSIANN-CNN provides a more 

realistic representation of heavy rainfall areas (Fig 2.7). For the August 10th event, the peak 

of heavy extreme rainfall can be observed mostly at the northern part of Arkansas State (Fig 

2.8). PERSIANN-CCS captures both the spatial pattern and intensity of the rainfall fairly well. 

On the other hand, PERSIANN-CCS and PERSIANN-SDAE underestimate the rain rate. In 

addition, a northward shifting can be seen in PERSIANN-SDAE’s estimates.  

 

1 https://www.weather.gov/sgf/events_2013aug3 
2 https://www.weather.gov/ict/event_08042013 
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Figure 2.7 Comparison of daily rainfall from radar, PERSIANN-CNN, PERSIANN-SDAE, PERSIANN 
CCS estimates at 0.08° for  Aug 3, 2013. 
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Figure 2.8 Comparison of daily rainfall from radar, PERSIANN-CNN, PERSIANN-SDAE, PERSIANN 
CCS estimates at 0.08° for  Aug 10, 2013. 

These two daily case studies emphasize the superior of the CNN-based model compared to 

the baseline models in terms of accurately estimating the rainfall distribution. Similar to the 

hourly performance, PERSIANN-CNN estimates the spatial pattern and volumetric of the 

rainfall more accurately than the baseline models due to its efficient structure. In addition, 

although PERSIANN-SDAE uses KL divergence, which was utilized for preserving the rainfall 

distribution, along with MSE as the loss functions, PERSIANN-CNN can perform better only 
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by applying the MSE loss function in the training process. This indicates that CNN-based 

models can effectively learn features for preserving the spatial and volumetric distribution 

of precipitation during the training process without needing to add some other terms to the 

loss function.  

Figure 2.9 demonstrates how the proposed model and the baseline models perform in 

detecting and estimating the rainfall intensity throughout the different evolution stages of 

the intense storm that occurred over latitude 34 –38 N and longitude 90 –100W on August 

3rd, 2013. Time series plots for the hourly rainfall estimates by the radar observations, 

PERSIANN-CNN, PERSIANN-CCS, and PERSIANN-SDAE are shown in Fig 2.9a.  PERSIANN-

CCS and PERSIANN-SDAE overestimate the rainfall for the entire event. However, 

PERSIANN-CNN’s estimates correspond well with the radar observations although there is a 

slight overestimation and underestimation before and after 11:00 UTC, respectively. The 

time-series plot of the CC (Fig 2.9b) reveals that PERSIANN-CNN’s estimates have higher 

correlation with Stage IV radar observations during the event compared to PERSIANN-CCS 

and PERSIANN-SDAE. PERSIANN-CCS and PERSIANN-SDAE demonstrate positive bias ratios 

with maximums of approximately 10mm/hr and 4mm/hr, respectively (Fig 2.9c), However, 

the bias ratio for PERSIANN-CNN (approximately 1 mm/hr) is noticeably less than that of 

the baseline models. For detection skill (Fig 2.9d), all of the models perform more or less the 

same, each outperforming the other two models at some stages of the storm’s evolution.  
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Figure 2.9 Time series plots of (a) hourly rainfall estimates, (b) correlation coefficient, (c) bias 
(mm/hr), and (d) CSI derived from Stage IV radar observation, PERSIANN-CCS, PERSIANN-SDAE, 

and PERSIANN-CNN throughout the evolution of the storm event on Aug. 3rd 

To explore the daily performance of PERSIANN-CNN against PERSIANN-CCS and PERSIANN-

SDAE at various spatial resolutions, scatterplots of their daily precipitation estimation 

versus the radar observations for August 3rd, 2013 are presented (Figure 2.10). These 

figures demonstrate the pixel-by-pixel association between the satellite-based estimates and 

the radar observations for various spatial resolutions and at daily time scale. As shown, 

during the described extreme event on Aug 3rd, 2013, both PERSIANN-CNN and PERSIANN-

CCS show a high correlation (0.75) with the radar observations at 0.08-degree spatial 
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resolution. However, RMSE and MAE for PERSIANN-CCS are relatively higher than for 

PERSIANN-CNN and PERSIANN-SDAE. Furthermore, it can be seen that PERSIANN-CCS 

tends to overestimate intense precipitation in all spatial resolutions, while PERSIANN-SDAE 

and PERSIANN-CNN tend to underestimate rain rates at both 0.08 and 0.16-degree 

resolution, but underestimation of heavy precipitation is improved as the resolution 

decreases to 0.25 and 0.5 degrees.  

 

Figure 2.10 Scatterplots of radar measurements vs PERSIANN-CCS, PERSIANN-SDAE, and 
PERSIANN-CNN: daily rainfall estimation at four spatial scales for the study area on Aug. 3rd, 2013. 

 

2.5.  Conclusions 

In this study, the application of Convolutional Neural Networks (CNNs) in detecting and 

estimating precipitation from bispectral satellite imagery (Infrared (IR) and Water Vapor 

(WV) channels) was explored. A case study over the central United States was conducted to 
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assess the effectiveness of the presented model at 0.08-degree spatial for both hourly and 

daily temporal resolution. The proposed model was evaluated against Stage IV radar 

observations and two existing satellite data sets, PERSIANN-CCS and PERSIANN-SDAE.  

Model evaluation procedures at hourly and daily scales showed that PERSIANN-CNN 

outperforms PERSIANN-CCS and PERSIANN-SDAE in capturing the extent and shape of the 

rainfall patches by providing a more realistic representation of the precipitation pattern. 

Model evaluation during the verification period showed that the proposed model performs 

better than the baseline models in rainfall detection. In terms of POD and CSI, PERSIANN-

CNN outperformed PERSIANN-CCS (PERSIANN-SDAE) by 72% (49%) and 54% (23%), 

respectively. In terms of FAR, PERSIANN-CNN performed better than PERSIANN-SDAE by 

12%; however, it performed poorer than PERSIANN-CCS by 10 %. Despite the lower 

performance of PERSIANN-CNN for FAR compared to PERSIANN-SDAE, PERSIANN-CNN has 

a more homogeneous and consistent performance for the various evaluation metrics, 

especially FAR. Additionally, the proposed model had the best overall performance in 

estimation accuracy over the verification period. For RMSE and MAE, PERSIANN-CNN was 

more accurate than PERSIANN-CCS (PERSIANN-SDAE) by 37 % (14%) and 8 % (74 %) 

respectively.   

To assess the performance of the models in estimating extreme precipitation, a storm event 

that affected the central United States in August 2013 was selected. Results indicate that 

PERSIANN-CNN can capture the spatial shape and peak values of rainfalls more precisely 

than the baseline models according to the RMSE and MAE indices. Furthermore, rain rate 

time series demonstrated better overall performance by PERSIANN-CNN. Specifically, the 

proposed model gave the closest approximations to Stage IV radar for the hourly rainfall, as 

well as the lowest bias values across the hourly time steps. Finally, a pixel-by-pixel 

performance evaluation of the PERSIANN-CNN and baseline models with respect to the radar 

observations was implemented at various spatial resolutions (0.08, 0.16, 0.25, and 0.5 

degrees). Results of this analysis demonstrated that PERSIANN-CNN and PERSIANN-CCS 

show higher correlation (0.75) with the radar observations at 0.08-degree spatial resolution 

compared to PERSIANN-SDAE. However, RMSE and MAE of PERSIANN-CCS are relatively 

higher than PERSIANN-CNN and PERSIANN-SDAE. In addition, PERSIANN-CCS 
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overestimates the rain rate for all spatial resolutions, while PERSIANN-CNN and PERSIANN-

SDAE tended to underestimate very intense precipitation at a high spatial resolution; 

however, their underestimations of extreme precipitation were improved as the spatial 

resolution decreased. 

Expanding on the research presented here, researchers at CHRS will implement the 

framework to a larger spatial extent with longer verification periods to investigate the 

stability of the model. The presented model’s skill in capturing meaningful IR features can 

leverage PMW information to better describe the precipitation phenomenon. We are 

currently extending the proposed model to provide near real-time global precipitation 

estimation using PMW information as observation for training the model. In addition, 

NOAA’s latest GOES-R Series satellites will provide data at higher temporal and spatial 

resolutions for use in the model framework.  
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3.1.  Abstract  

Reliable near real-time precipitation estimates are essential for monitoring and managing of 

natural disasters such as floods. Quality of inputs and capability of the retrieval algorithm 

are two important aspects for developing satellite-based precipitation datasets. Most 

retrieval algorithms utilize infrared (IR) information as their input due to its fine 

spatiotemporal resolution and near-instantaneous availability. However, their sole reliance 

on IR information limits their capability to learn different mechanisms of precipitation 

during training, resulting in less accurate estimates. Moreover, recent advances in the field 

of machine learning offer attractive opportunities to improve the precipitation retrieval 

algorithms. This study investigates the effectiveness of adding geographical information (i.e. 

latitude and longitude) to IR information and the application of a U-Net-based convolutional 

neural network for improving the accuracy of retrieval algorithms. This research suggests 

that applying an appropriate CNN architecture on geographical and IR information provides 

an opportunity to improve the satellite-based precipitation products. 

3.2.  Data  

3.2.1.  Model Inputs  

NOAA GOES Infrared Imagery  

The NOAA Climate Prediction Center (CPC) globally merged IR product was developed to 

provide near-real time data for monitoring global precipitation (Janowiak et al. 2001). This 

dataset offers near-global (60°N-60°S) IR data with a 4-km spatial and an hourly temporal 

resolution from the international constellation of operational geostationary meteorological 

satellites for the period from 2000 to the present. The CPC-IR product comprises all channel 

observations from several international GEO satellites, including Meteosat-5 and Meteosat-

7 (half-hourly IR images), Himawari-8 (hourly IR images) (Bessho et al. 2016), and GOES (3-

hourly IR images). This dataset is accessible for public use through the Climate Prediction 

Center webpage1. 

Combined Passive Microwave Precipitation dataset (MWCOMB) 

 

1 https://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.full_res.html 
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Combined Passive Microwave Precipitation dataset (MWCOMB) was developed by the NOAA 

Climate Prediction Center. This product provides precipitation estimates with an 8-km 

spatial and 30-min temporal resolution by averaging the calibrated PMW rain rates from 

individual LEO satellites. MWCOMB combines precipitation information from multiple 

sensors, such as DMSP SSM/I, NOAA AMSU-B, and TRMM Microwave Imager (Weng et al. 

2003; Joyce et al. 2004; Joyce and Xie 2011). The MWCOMB dataset can be obtained from the 

Climate Prediction Center1. In this study, we use MWCOMP dataset for training the model 

due to the following reasons: First, we do not have well-distibuted gauge observations over 

some regions and oceans; however, the goal of the proposed model is to be implemented 

over both land and oceans in the future. Second, PMW observations have the advantage of 

being retrieved through measuring direct microphysical information including liquid and 

frozen hydrometeors within the clouds. However, IR information is limited to indirect cloud-

top information. Since the PMW sensors are direct means of measuring precipitation, 

utilizing less frequent PMW data to train model would help the retrieval algorithms to extend 

continuously over time. Third, MWCOMP is one of the most reliable satellite-based dataset, 

which have been used for training many real-time satellite precipitation estimation models 

(Sadeghi et al. 2021c). 

3.2.2.  Observation and Baseline Datasets 

NCEP Stage IV QPE Product 

National Centers for Environmental Prediction (NCEP) stage IV is a national multi-sensor 

(real-time gauge and WSR-88D radar) product covering the CONUS. This product merges 

data from 140 radars and around 5500 rain gauges over the CONUS (Lin and Mitchell 2005). 

Stage IV was produced as a 4 km x 4 km gridded product available over the Hydrologic 

Rainfall Analysis Project (HRAP) national grid system at hourly, 6-hourly, and 24-hourly 

intervals. Precipitation estimates derived from the a variety of sensors at the 12 regional 

National Weather Service (NWS) River Forecast Centers (RFCs) are subject to manual quality 

control and then mosaicked under the supervision of NCEP (Yilmaz et al. 2005). Continued 

efforts are made to investigate the development, processing, and improvement of stage IV 

 

1 ftp://ftp.cpc.ncep.noaa.gov/precip/global_MWCOMB/30min_8km/ 
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concerning moderate to heavy rainfall events (Prat and Nelson 2015). The NCEP Stage IV is 

widely considered as the best gridded precipitation dataset over the CONUS due to its 

extensive quality control procedures (Smalley et al. 2014; Mehran and AghaKouchak 2014). 

Due to its long history and consistency of data production over CONUS, stage IV has been 

widely used in many previous satellite QPE (Quantitative Precipitation Estimation) 

comparisons such as TRMM, CMORPH, and PERSIANN (Chen et al. 2013; Mehran and 

AghaKouchak 2014; Beck et al. 2019; AghaKouchak et al. 2011). Stage IV data is available at 

noaa.org1. In this study, the daily temporal resolution of NCEP Stage IV data are used as 

benchmarks for evaluating the performance of PERSIANN-CCS and CNN-based models. 

3.2.3. Baseline Model (PERSIANN-CCS) 

The PERSIANN-CCS product provides the near-real time global precipitation estimates at 

0.04° spatial resolution and half-hourly temporal resolution (Hong et al. 2004). This 

operational precipitation product has been developed at the CHRS  and implemented as a 

part of NASA global precipitation measurement (GPM) integrated multi-satellite retrievals 

for GPM (IMERG) (Huffman et al. 2015). The PERSIANN-CCS dataset is accessible through 

the CHRS data portal2.  

3.3.  Methodology 

3.3.1.  Convolutional Neural Network 

Building blocks of a CNN architecture 

A typical CNN network is generally comprised of three types of layers, namely the 

convolution layers, the pooling layers, and one or more fully connected layers at the end. The 

arrangement of CNN components plays a vital role in achieving the sustained high-

performance model:  

Convolutional layers: Convolution layers are the most important components of a CNN that 

extract features from input images (or feature maps from previous layers) through filters in 

the image domain. Filters are an array of numbers, which are called learnable weights, that 

 

1 https://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/ 
2 http://chrsdata.eng.uci.edu/ 
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determine the type of information to be extracted. Each of those filters is independently 

convolved followed by a nonlinear transformation (activation function) to generate the 

feature maps, which serve as inputs for the next layer.  

Pooling layers: A convolutional layer is mostly followed by a pooling layer (also called 

subsampling layer). The pooling layers reduce the dimensions of the input layer through 

some local non-linear operations, such as average pooling and max pooling which are the 

most common operations. The average pooling calculates the average of the elements within 

the window to form the feature maps, while max pooling uses the maximum element within 

the window to form the output layer. The pooling operations result in the resolution of the 

feature maps becoming coarser. This can help the next convolution layer to extract high-level 

representations of the input data in a CNN model. Furthermore, the pooling layers reduce 

the number of subsequent learnable parameters to decrease the computation time and to 

control the over-fitting in the network.   

Fully-connected layers: The fully-connected layers are typically used as the last few layers 

of a CNN model. These layers summarize the information from all hidden units in the 

previous layer to make the final decision.  

Training a CNN  

 Training a network is the process of finding learnable parameters (i.e., kernels and 

weights) by minimizing the difference between the model prediction and given a truth 

dataset. In the first step, the input data under initial kernels and weights are transformed 

into the final output through the discussed layers in a CNN architecture. Then the model is 

trained by updating the learnable parameters with a backpropagation algorithm where the 

loss function and gradient descent algorithm play vital roles. The loss function measures the 

differences between model output and truth observation, while a gradient descent 

optimization algorithm is used to iteratively update the learnable parameters to minimize 

the loss (Yamashita et al. 2018).  

3.3.2.  Four Different CNN architectures for Precipitation Estimation 

Overview of layers 
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Figure 3.1a depicts a convolutional encoder-decoder architecture that was used by Sadeghi 

et al. (2019b) for near-real time precipitation estimation over the central United States (30°–

45°N, 90°–105°W) using IR and water vapor images. This convolutional encoder-decoder 

architecture consists of an encoder (contracting) section on the left side, a bottleneck section 

in the middle and a decoder (expansive) section on the right side. The encoder section 

follows the typical architecture of a CNN network. It consists of applying two 5×5 padded 

convolutions with a rectified linear unit (ReLU), as activation function, and a 2×2 max 

pooling operation for downsampling. The number of feature maps doubles at each 

downsampling step so that the architecture can learn the complex structures effectively. The 

bottleneck section mediates between contraction and expansion sections and is made of two 

5×5 padded convolutions followed by a ReLU activation function. The decoder section 

consists of several expansion blocks for upsamling the feature maps. Each expansion block 

passes the feature maps to two 5×5 padded convolutions followed by a 2x2 convolution 

transpose function (“up-convolution”). In each block, the number of feature maps of the first 

convolution layer is reduced by half through the second convolution to maintain symmetry. 

At the final layer, a convolution is used to map each 32-component feature vector to the final 

output which is rainfall estimates with the same size as input(s).  

In this work, we train and test the proposed encoder-decoder architecture using IR images 

(model 1) as well as using IR and latitude and longitude information (model 2). The water 

vapor information that was used in Sadeghi et al. (2019c) model is not included in these 

models due to two reasons: First, the water vapor information, unlike IR information, is not 

available globally. Here, we want to investigate capabilities of a CNN-based model for reliably 

estimating the rain rate based on only IR images for its future global implementation. Second, 

the operational PERSIANN-CCS algorithm utilizes only IR information for its rain rate 

estimation. For a fair comparison, we train and test a CNN-based model that leverage only IR 

images as input.  In the second model, we input location information through adding latitude 

and longitude inputs to the same architecture used in model 1 to investigate whether it can 

improve the performance of the model’s estimations. The hypothesis is that importing 

location information as inputs can facilitate training a CNN-based model to learn the various 

mechanisms of precipitation over the study area.  
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Figure 3.1b illustrates a U-Net convolutional architecture similar to that proposed by 

Ronneberger et al. (2015) for biomedical image segmentation. The U-Net architecture that 

we use for training model 3 (with IR input) and model 4 (with IR, latitude and longitude 

inputs) has the same layers to the convolutional encoder-decoder architecture shown in Fig 

3.1a The only difference in these two architectures can be seen in the decoder section of U-

Net architecture where the outputs of the upsampling layer are appended by feature maps 

of the corresponding encoder layer (copy and concatenate). The neurons in the first two 

hidden layers view only a small image window to learn low-level (detailed) features. Then, 

the size of the input information is reduced gradually in the encoder side in order to help a 

CNN-based model to view a larger portion of the image to extract high-level features 

(context) and to efficiently leverage the neighborhood information. However, some of the 

information is lost during this process in an encoder-decoder architecture. The U-Net 

architecture overcomes this problem by transferring the information from each encoding 

layer and concatenating it to a corresponding decoding layer to recover the features that are 

lost in the encoder side. This action helps a U-Net model to learn more expressive features 

by combing the low-level and high-level features in an efficient manner. We explore the 

performance of a U-Net convolutional architecture against a convolutional encoder-decoder 

architecture that was used by Sadeghi et al. (2019c) for near-real time precipitation 

estimation.  

 



 43  
 

 

 

Figure 3.1 Overview of a) a convolutional encoder-decoder architecture for model 1 ( Input: IR ) 
and 2 (Inputs: IR and Latitude and longitude), b) a U-Net convolutional architecture (U-Net) for 

model 3 ( Input: IR ) and 4 (Inputs: IR and Latitude and longitude) for 

Parameter tuning 

The inputs and target datasets are divided into the training, validation, and test periods. The 

four proposed models are trained and validated separately for summer (June - August) of 

2013, 2014, and 2015 using the MWCOMB dataset as the target. During the training and 

validating procedures of the CNN models, we used 80% of the samples to learn the weights 
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and biases of neurons in each model (training procedure). The remaining 20% of the samples 

was used for validating procedure to find the hyperparameters and the proper architecture. 

The training and validating procedures are vital to optimize the model parameters and also 

prevent overfitting (Chen et al. 2016). Then, the summer of 2017 is used for testing the 

proposed models to choose the best model through comparing all the proposed models with 

the NCEP stage IV radar observation as a reference. Then, the performance of the best model, 

referred to as PERSIANN-CNN, is compared with PERSIANN-CCS against the NCEP stage IV 

radar dataset during both summer and winter (October- December) of 2017 and for an 

extreme event, Hurricane Harvey (2017). 

The proposed models were implemented in TensorFlow python platform (Abadi et al. 2016). 

To speed up the training process, the models were run on a graphics processing units (GPU) 

and a compute unified device architecture (CUDA). The training process starts with selecting 

initial parameter values, then applies the backpropagation algorithm to adjust the 

parameters in order to minimize the loss function using a gradient descent algorithm (Erhan 

et al. 2010). In the current study, the initial values were randomly chosen from a normal 

distribution. Then, the Adam gradient-based optimizer was utilized for minimizing the loss 

function, which was determined by calculating the mean square error (MSE) between the 

simulated and observed precipitation. Hyperparameters are the variables which determine 

the structure of a CNN model (e.g. number of hidden units, neuron size) and the variables 

which determine how the CNN network is trained (e.g. learning rate, batch size, epoch size).  

In the current study, we tested different combinations of the hyperparameters for each of 

the proposed models to optimize their learning parameters. Also, an early stopping criterion 

was implemented that halted the training if the MSE values did not improve after 10 epochs. 

In addition, to further reduce overfitting problems, the dropout method with varies ratio for 

different layers is adapted in this study. We found that the learning rate of 0.001, the 

minibatch size of 32, and epoch size of 75 leads the best performance for the proposed 

models. 

3.3.3.  Performance Measurements  

Categorical Evaluation Metrics 
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To evaluate the ability of PERSIANN-CCS and CNN-based models in detecting rain/no rain 

pixels, categorical evaluation metrics are utilized. Statistics metrics in this category include 

the probability of detection ( also called hit rate) (POD), false alarm ratio (FAR), and the 

critical success index (CSI), which are calculated by the following equations: 

POD =  
TP

TP+FN
  (Range: from 0 to 1; Perfect value: 1)   

FAR =  
FP

TP+FN
  (Range: from 0 to 1; Perfect value: 0)  

CSI =  
TP

TP+FP+FN
 (Range: from 0 to 1; Perfect value: 1)   

Where:  

TP: Number of true positive events (Number of pixels correctly classified as rain) FP: 

Number of false positive events (Number of pixels incorrectly classified as rain) 

FN: Number of false negative events (Number of pixels incorrectly classified as no rain) 

 Continuous Evaluation Metrics  

             To evaluate the performance of PERSIANN-CCS and CNN-based models against NCEP 

Stage IV in estimating the rainfall intensity, continuous evaluation metrics are calculated. 

These statistical metrics include Root Mean Square Error (RMSE), Correlation Coefficient 

(CC), and Mean Absolute Error (MAE), which are given below: 

RMSE =  
1

n
√∑ (𝑆𝑖𝑚𝑖 − 𝑅𝑒𝑓𝑖)2n

i=1   

CC =  
1

𝑛
 ∑ (𝑛

𝑖=1 𝑆𝑖𝑚𝑖−𝑆𝑖𝑚𝑖̅̅ ̅̅ ̅̅ ̅)(𝑅𝑒𝑓𝑖−𝑅𝑒𝑓𝑖̅̅ ̅̅ ̅̅ )

𝜎𝑆𝑖𝑚 𝜎𝑅𝑒𝑓
    

MAE =  
1

n
∑ |𝑆𝑖𝑚𝑖 − 𝑅𝑒𝑓𝑖|

n
i=1    

Where:  

Sim: Simulation (PERSIANN-CCS, CNN-based models) 

Ref: Reference observation (NCEP Stage IV) 

n: number of observations 
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σ: standard deviation 

3.4.  Results and Discussion 

3.4.1.  Evaluating the performance of the 4 designed models at an hourly scale   

In this section, the performance of the designed models described in the methodology 

section (Figure 3.1) is evaluated over the continental United States (CONUS). Figure 3.2 

indicates the spatial distribution of each model with reference to the NCEP stage IV radar 

observation, over summer 2017. In general, model 4, which applies the U-Net architecture 

on IR information along with latitude and longitude, has performed substantially better 

compared to other models according to all performance metrics. In addition, comparing 

model 1 (without leveraging latitude and longitude as inputs) and model 2 (with leveraging 

latitude and longitude as inputs), which both apply an identical CNN architecture indicates 

that adding geographical information can improve the performance of a CNN-based model 

for estimating the near-real time precipitation. In terms of POD and CSI, model 2 

outperformed model 1 by 25 % and 13%, respectively. However, model 2 performed poorer 

than model 1 by 38% in terms of FAR. Despite the lower performance of model 2 for FAR 

compared to model 1, model 2 has performed more homogeneously and consistently over 

the CONUS. This highlights that a CNN-based model can learn the different mechanisms of 

rainfall occurring in different regions over the CONUS by adding latitude and longitude as 

inputs. For RMSE, and MAE model 2 was more accurate than model 1 by 1%, and 19%, 

respectively. Comparing model 3 and 4 which both apply an identical U-Net architecture on 

different inputs also supports the previous finding that adding geographical inputs can 

improve the accuracy of a CNN- based model for precipitation estimation. Furthermore, 

model 4 outperformed in all representative evaluations including FAR.  

Comparing model 1 (architecture (a) in Fig. 3.1) with model 3 (architecture (b) in Fig. 3.1), 

which use different architectures on the same inputs, reveals that the U-Net architecture can 

significantly improve the performance of CNN models compared to the architecture 

employed by Sadeghi et al. (2019d). More Specifically, model 3 outperformed model 1 by 

16%, 12%, and 19% in terms of POD, FAR, and CSI, demonstrating the detection skill of the 

U-Net architecture. Furthermore, RMSE and MAE of model 3 were lower than model 1 by 8% 

and 10%, demonstrating the estimation accuracy of the U-Net model. Comparing model 2 
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and 4, which also utilize two different architectures discussed in Fig. 3.1, also supports the 

outperformance of the U-Net architecture for estimating precipitation. It could be concluded 

that adding bypass connections between encoding layer and decoder layers in U-Net can 

recover the lost information during the execution of the upsampling layers. This feature of 

U-Net makes it to more efficient and effective in both detecting the rain/no-rain pixels and 

estimating the rain rate. Figure 3.2 shows that all of the designed models have a similar 

performance pattern for evaluation metrics, but model 4 achieved better agreement with 

that of NCEP stage IV as the reference. Having the same CC for all models and the similarity 

in distribution pattern of evaluating metrics could be due to correlation between cloud-top 

temperature and rainfall in different regions over the CONUS.   

 

 

Figure 3.2 Categorical (POD, FAR, CSI) and continuous (MAE, RMSE, CC) of the four designed models 
at an hourly scale against NCEP stage IV radar observation during summer 2017. 
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3.4.2.  Performance Evaluation of PERSIANN-CNN and PERSIANN-CCS against NCEP 

stage IV at an Hourly Scale 

In this section, the performance of the best performing CNN model (model 4), PERSIANN-

CNN, and PERSIANN-CCS are evaluated against NCEP stage IV at an hourly scale. Figure 3.3 

shows the IR cloud-top temperature and the rainfall estimates from the PERSIANN-CNN and 

the PERSIANN-CCS models for the extreme rainfall occurred at 0700 UTC August 22, 2017. 

As shown in Fig. 3.3, PERSIANN-CNN provides a more accurate representation of the pattern 

and intensity of the rainfall as compared to PERSIANN-CCS. In addition, PERSIANN-CCS only 

captures a small portion of the extreme rain rate, where the IR cloud-top temperature was 

the lowest. Assigning more rain rates to clouds with lower temperature is considered as the 

main drawback of most IR-based precipitation retrieval algorithms such as PERSIANN-CCS. 

In the PERSIANN-CCS algorithm, the clouds are segmented based on IR cloud-top 

temperature into distinctive cloud patches with an incremental temperature threshold (ITT) 

method. Then, all segmented cloud patches are classified into 400-category clusters based 

on similarity of cloud features using self-organizing feature maps (SOFMS). Finally, a fully 

connected layer is utilized to find the relationship of IR cloud-top temperature and rainfall 

rates for each classified cloud cluster. The essence of the discussed shortcoming can be due 

to two reasons: First, using temperature thresholds for cloud segmentation in the 

PERSIANN-CCS algorithm can result in associating more rain rates to the clouds with lower 

temperature. Second, using a fully connected network in the PERSIANN-CCS algorithm 

makes it hard to efficiently and effectively learn the rain structure to estimate the correct 

pattern and intensity of the rainfall.  

Due to complexity level of fully connected networks and fuzzy nature of rainfall, a fully 

connected algorithm, ends up learning to one-on-one pixels in most cases, meaning that it 

trains the parameters of each pixel separately. This limits a fully connected model to 

efficiently use the neighborhood information in most cases resulting in colder clouds 

showing more intense precipitation. On the other hand, a CNN-based model, such as 

PERSIANN-CNN, can effectively leverage the local neighborhood information to estimate the 

rain rate for each pixel. This feature is mainly due to CNN structure which allows sharing the 

same filter in a single layer. 
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Figure 3.3 Maps of cloud-top temperature (K) from IR imagery and precipitation rate (mm/h) from 
NCEP stage IV radar observation (reference), PERSIANN-CCS (baseline), and PERSIANN-CNN 

(proposed model) for 0700 UTC 22 August 2017. 

 Figure 3.4 presents the spatial distribution of categorical (POD, FAR, and CSI) and 

continuous (MAE, RMSE, and CC) metrics of PERSIANN-CCS and PERSIANN-CNN against 

NCEP stage IV, at an hourly scale throughout the verification period including summer and 

winter 2017. The verification metrics were calculated for each pixel and at an hourly 

temporal scale over the CONUS for summer and winter, separately. In general, the results 

indicate that PERSIANN-CNN outperforms PERSIANN-CCS in terms of all categorical indices 

almost over all the CONUS during both summer and winter 2017. In terms of POD, FAR, and 

CSI, PERSIANN-CNN outperformed PERSIANN-CCS during summer (winter) by 16% (10%), 

48% (68%), and 73% (50%), respectively. Additionally, the PERSIANN-CNN model showed 

the best overall performance in estimation accuracy over the verification period. For RMSE 

and CC, PERSIANN-CNN was more accurate than PERSIANN-CCS during summer (winter) by 

21% (18%), and 85% (59%) respectively. In terms of MAE, PERSIANN-CNN performed 

better than PERSIANN-CCS by 47% during the summer; however, it performed poorer than 

PERSIANN-CCS by 32% during winter. Furthermore, Figure 3.4 suggests that the 
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performance metrics of PERSIANN-CNN are more homogeneous and consistent compared 

to PERSIANN-CCS across space over the CONUS. This spatial homogeneity, which is more 

noticeable in spatial patterns of POD and CSI, can be related to the use of geographical 

information in the CNN-based model. The use of latitude and longitude as inputs in 

PERSIANN-CNN enables the model to learn different mechanisms of precipitations occurring 

over the CONUS, resulting in showing more homogeneity and consistency in the performance 

metrics. 

 

 

Figure 3.4 Categorical (POD, FAR, CSI) and continuous (MAE, RMSE, CC) metrics of PERSIANN-CCS, 
and PERSIANN-CNN at an hourly scale over the verification period (summer and winter 2017). 

3.4.3.  Performance Evaluation of PERSIANN-CNN and PERSIANN-CCS against NCEP 

stage IV at Daily Scale 

To demonstrate how a CNN-based model can substantially improve the daily estimates of 

precipitation events, an intense event is randomly selected from noticeable precipitation 

events within the validation period. Figures 3.5 presents the daily estimates of PERSIANN-
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CCS and PERSIANN-CNN against NCEP stage IV for the extreme precipitation event that 

occurred on 25 September 2017. As observable from Fig. 3.5, PERSIANN-CNN provides more 

accurate estimates of the rainfall intensity, while PERSIANN-CCS underestimates the intense 

precipitation for this event.  

 

 

Figure 3.5 Comparison of daily rainfall from NCEP stage IV, PERSIANN-CNN, and PERSIANN CCS 
estimates for 25 Sep 2017. 

To evaluate the daily performance of PERSIANN-CNN and PERSIANN-CCS against NCEP 

Stage IV throughout summer and winter, the spatial distribution of categorical and 

continuous metrics is plotted in Figure 3.6. The POD of the PERSIANN-CNN showed 

distribution patterns similar to those of the PERSIANN-CCS, but the PERSIANN-CNN 

achieved better agreement with radar observations and with higher PODs almost over the 

whole CONUS for both summer and winter.  This can be related to the different correlations 

between cloud-top temperature and rainfall occurrence for different regions over the 

CONUS. In terms of FAR, PERSIANN-CNN estimated the rainfall with significantly lower FAR 

compared to PERSIANN-CCS. Specifically, the FAR decreased by 69% and 58% during the 
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summer and winter. The higher values of CSI also indicate that PERSIANN-CNN has a higher 

capability to detect rainfall compared to PERSIANN-CCS during both summer and winter. In 

term of continuous metrics, RMSE of the daily rainfall estimates for PERSIANN-CNN with 

respect to NCEP Stage IV were lower than that of PERSIANN-CCS by 20% and 15% during 

summer and winter, respectively. In terms of MAE, PERSIANN-CNN and PERSIANN-CCS 

estimates have similar distributions to RMSE index. Also, the CC of PERSIANN-CNN is 

significantly higher by 140% and 38% than that of PERSIANN-CCS over summer and winter, 

showing the higher estimation accuracy of PERSIANN-CNN compared to PERSIANN-CCS for 

daily precipitation estimation. 

 

Figure 3.6 Categorical (POD, FAR, CSI) and continuous (MAE, RMSE, CC) metrics of PERSIANN-CCS, 
and PERSIANN-CNN at a daily scale over the verification period (summer and winter 2017). 

3.4.4.  Case study: Hurricane Harvey  

To further evaluate the performance of PERSIANN-CNN and PERSIANN-CCS with respect to 

radar observationS in capturing extreme precipitation, Hurricane Harvey was studied.  In 

August 2017, Hurricane Harvey hit the Southeastern regions of the United States mostly 
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Southeast Texas, and Louisiana. Hurricane Harvey is classified as a Category 4 hurricane that 

caused catastrophic damages and is considered as one of the costliest extreme precipitation 

events that struck in the United States’ history. The total damage is estimated to be more 

than $125 billion and it is confirmed that there were more than 68 deaths (National weather 

service, www.weather.gov). The daily estimates of NCEP Stage IV, PERSIANN-CCS, and 

PERSIANN-CNN for the extreme precipitation that occurred between August 26 to 30, 2017 

are presented in Figure 3.7. As shown in Fig. 3.7, PERSIANN-CCS severely underestimated 

the rain rate, particularly during August 26-29. Specifically, PERSIANN-CCS failed to capture 

most of the intense rainfalls occurred over Louisiana that are observed in the reference 

product (NCEP Stage IV). In contrast, PERSIANN-CNN estimated both spatial patterns and 

amounts of rainfall with a great resemblance to NCEP Stage IV. 
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Figure 3.7 The spatial precipitation evolution of Hurricane Harvey for the period between August 
26 to 30 from (a) Stage IV, (b) PERSIANN-CCS, (c) PERSIANN-CNN 

To explore the daily performance of PERSIANN-CCS against PERSIANN-CNN at various 

spatial resolutions during Hurricane Harvey, scatterplots of their daily precipitation 

estimates versus the radar observations are presented (Fig. 3.8). These graphs demonstrate 

the pixel by pixel association between the simulated estimates (PERSIANN-CCS or 

PERSIANN-CNN) and the radar observations (NCEP Stage IV) for 0.04° (a, c) and 0.25° (b, d) 

spatial resolutions and at a daily time scale. One can see that PERSIANN-CCS severely 

underestimated heavier rainfalls as evidenced by the cluster of points located below the 45° 

perfect correlation line in both 0.04° and 0.25° spatial resolutions during this hurricane. 

During the described extreme event, PERSIANN-CNN showed higher correlations, and 
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relatively lower RMSE with respect to radar observations at both spatial resolutions. This 

finding also highlights the better performance of PERSIANN-CNN compared to PERSIANN-

CCS for accurately estimate the amount of intense extreme events.  

 

Figure 3.8 Scatterplots of radar measurements (observation) vs PERSIANN-CCS, and PERSIANN-
CNN (simulations): daily rainfall estimation at two spatial scales over the affected area during the 

Hurricane Harvey (Aug. 26 to 30, 2017) 

3.5.  Conclusions 

  This study explored the application of a CNN-based architecture, which utilizes 

geographical and IR information, for detecting and estimating near real-time precipitation. 
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Specifically, this study was designed to investigate whether adding latitude and longitude 

information to IR information can improve the near real-time precipitation estimates. Also, 

we explored two different CNN-based architectures to show the effectiveness of applying a 

U-Net architecture compared to the precipitation retrieval algorithm introduced by Sadeghi 

et al. (2019b). For this purpose, four different CNN-based models were trained at hourly 

temporal and 0.04° × 0.04° spatial resolution over the CONUS using a combined PMW 

precipitation dataset. Then, these models were evaluated against NCEP Stage IV radar 

observation to investigate the effectiveness of adding geographical information and using U-

Net architecture for precipitation estimation. The higher performance of models leveraging 

geographical information highlights that this additional information can help CNN-based 

models to learn the different mechanisms of rainfall occurring in different regions over the 

CONUS during the training process. In addition, a U-Net architecture can significantly 

improve the accuracy of estimates compared to the CNN-based model developed by Sadeghi 

et al.(2019b). In particular, we concluded that adding bypass connections between 

downscaling and upscaling layers in U-Net architecture helps to recover the lost information 

during upscaling parts of a CNN model lacking those connections.  

 The performance of the model which applies U-Net architecture on IR and geographical 

information (referred to as PERSIANN-CNN) was tested against PERSIANN-CCS at hourly 

and daily scales over summer and winter. Model evaluation procedures indicated that 

PERSIANN-CNN outperforms PERSIANN-CCS in capturing the pattern of precipitation, 

detecting rain/ no rain, and estimating the intensity of rainfall throughout the whole 

verification period. At an hourly scale, PERSIANN-CNN outperformed PERSIANN-CCS by 

73% (and 50%) in the CSI during summer (and winter), showing the detection skills of the 

proposed model. In addition, the RMSE of the rainfall estimates with respect to the NCEP 

Stage IV radar observation, for PERSIANN-CNN was lower than that of PERSIANN-CCS by 

21% (18%), demonstrating the estimation accuracy of the PERSIANN-CNN. Daily evaluations 

indicated that PERSIANN-CNN outperformed PERSIANN-CCS in terms of POD, FAR, and CSI, 

during summer (winter) by 23% (4%), 69% (58%), and 64% (11%), respectively. For RMSE, 

MAE and CC, PERSIANN-CNN was more accurate than PERSIANN-CCS during summer 

(winter) by 20% (10%), 21% (16%), and 140% (38%), respectively. The performance of 

PERSIANN-CNN and PERSIANN-CCS in estimating the extreme precipitation was assessed 
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for Hurricane Harvey (2017). The results showed that PERSIANN-CNN estimates rainfall 

intensity with a great resemblance to NCEP Stage IV, while PERSIANN-CCS underestimates 

the intensity occurred over the Louisiana State during the Hurricane. These results highlight 

that the proposed model has the potential to be used in early warning systems to mitigate 

natural disasters related to intense storm events such as hurricanes.  

 This study creates a promising opportunity for improving the near real-time satellite-

based precipitation estimation datasets. Furthermore, due to availability of global IR 

information back to approximately 1983, there is a great potential for developing a high 

spatial resolution climate data record using the proposed model. Expanding on the research 

presented here, researchers at the Center for Hydrometeorology and Remote Sensing 

(CHRS) are working on global implementation of the proposed model. One of the challenges 

for global implementing of the proposed model is training over the regions with little PMW 

information. Addressing this challenge requires further investigation.  
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 CHAPTER FOUR: 
 

EVALUATION OF PERSIANN-CDR CONSTRUCTED USING 

GPCP V2.2 & V2.3 AND A COMPARISON WITH TRMM 

3B42 V7 AND CPC UNIFIED GAUGE-BASED ANALYSIS IN 

GLOBAL SCALE 
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4.1.  Abstract 

 Providing reliable long-term global precipitation records at high spatial and temporal 

resolutions is crucial for climatological studies. Satellite-based precipitation estimations are 

a promising alternative to rain gauges for providing homogeneous precipitation information. 

Most satellite-based precipitation products suffer from short-term data records which make 

them unsuitable for various climatological and hydrological applications. However, 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks-Climate Data Record (PERSIANN-CDR) provides more than 35 years of 

precipitation record at 0.25° × 0.25° spatial and daily temporal resolutions. The PERSIANN-

CDR algorithm uses monthly Global Precipitation Climatology Project (GPCP) data, which has 

been recently updated to version 2.3, for reducing the biases in the output of the PERSIANN 

model. In this study, we constructed PERSIANN-CDR using the newest version of GPCP 

(V2.3). We compare the PERSIANN-CDR dataset that is constructed using GPCP V2.3 (from 

here on referred to as PERSIANN-CDR V2.3) with the PERSIANN-CDR constructed using 

GPCP V2.2 (from here on PERSIANN-CDR V2.2), at monthly and daily scales for the period 

from 2009 to 2013. First, we discuss the changes between PERSIANN-CDR V2.3 & V2.2 over 

the land and ocean. Second, we evaluate the improvements in PERSIANN-CDR V2.3 with 

respect to the Climate Prediction Center (CPC) unified gauge-based analysis, a gauged-based 

reference, and Tropical Rainfall Measuring Mission (TRMM 3B42 V7), a commonly-used 

satellite reference, at monthly and daily scales. The results show noticeable differences 

between PERSIANN-CDR V2.3 & V2.2 over oceans between 40° and 60° latitude in both 

Northern and Southern hemispheres. Monthly and daily scale comparisons of the two bias-

adjusted versions of PERSIANN-CDR with the above-mentioned references emphasize that 

PERSIANN-CDR V2.3 has improved mostly over the global land area, especially over the 

CONUS and Australia. The updated PERSIANN-CDR V2.3 data has replaced V2.2 data for the 

2009-2013 period on https://chrsdata.eng.uci.edu 

 

 

https://chrsdata.eng.uci.edu/
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4.2.  Materials:  

Global Precipitation Climatology Project (GPCP) Monthly product 

GPCP is part of the Global Energy and Water Cycle Exchanges (GEWEX) activity under the 

World Climate Research Program (WCRP). The GPCP monthly 2.5° x 2.5° precipitation 

product provides consistent global data by merging different satellite-based estimations 

(passive microwave/infrared) over the land and ocean along with precipitation gauge 

information from GPCC over the land. More detail on the input data and the merging process 

can be found in (Huffman et al. 1997; Xie et al. 2003). Recently, Version 2.3 of the GPCP 

product has been released which includes updates to the cross-calibration procedures of 

rainfall estimation and updates in the gauge analysis methods (Adler et al. 2018). The GPCP 

dataset is available via the Earth System Science Interdisciplinary Center (ESSIC) and 

Cooperative Institute for Climate and Satellites (CICS), University of Maryland College Park1. 

Additional information can be found in (Adler et al. 2018). 

CPC Global Unified Gauge-Based Analysis of Daily Precipitation  

The CPC Global Unified Gauge-Based Analysis of Daily Precipitation dataset is a National 

Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) product. 

Over the globe, the CPC unified gauge-based analysis product employs  more than 30,000 

stations from multiple sources, including Global Telecommunication System (GTS), 

Cooperative Observer Network (COOP), and other national and international agencies, 

providing a daily precipitation estimation at a 0.5° x 0.5° spatial resolution from 1979 to the 

present (Xie and Arkin 1997). Over the CONUS, the CPC unified gauge-based analysis product 

contains information from more than 8,000 stations in order to estimate precipitation with 

a spatial resolution of 0.25° x 0.25° at daily scale from 1948 to the present. One of the 

challenges in producing a gauged-based daily precipitation data set is to handle the reported 

data from different stations which use various methods of reporting time (Xie et al. 2007). 

The end of day (EOD) definition for accumulating 24-hourly precipitation may differ from 

one country to another. For example, over the CONUS the rain rate values are accumulated 

from 12Z of the day before to 12Z of that day. In this study, we use the finer resolution CPC 

 

1 http://gpcp.umd.edu 
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unified gauge-based analysis dataset for evaluations over the CONUS. In addition, as we 

discuss in the Methodology section, we use a custom variant of the PERSIANN-CDR with the 

same EOD definition as CPC unified gauge-based analysis for our comparisons over the 

CONUS. The CPC global unified gauge analysis is used for comparison at monthly scale over 

the globe. Both CPC datasets are available for public use (ftp://ftp.cdc.noaa.gov/Datasets). A 

comprehensive description of the CPC unified gauge-based analysis interpolation algorithm 

can be found in (Xie and Arkin 1997; Chen et al. 2008) 

The Tropical Rainfall Measuring Mission (TRMM 3B42 V7)  

The National Aeronautics and Space Administration (NASA) in cooperation with the Japan 

Aerospace Exploration Agency (JAXA) launched The Tropical Rainfall Measuring Mission 

(TRMM) in 1997 in order to measure rainfall information around tropical and subtropical 

areas. TRMM Multi-Satellite Precipitation Analysis (TMPA), one of the TRMM products, 

provides 3-hourly precipitation estimates at 0.25° x 0.25° for the latitude band of 50°N to 

50°S. In this study we utilize the daily temporal scale of TRMM 3B42 V71. This product 

derives precipitation by combining information from two different types of satellite sensors: 

PMW and geostationary-infrared (Geo-IR) sensors. More detailed information can be found 

in (Huffman et al. 2007). In this study, the TRMM 3B42 V7 estimates are utilized for 

evaluating the two versions of PERSIANN-CDR over the ocean and for daily global 

comparison over the land. We do not use CPC unified gauge-based analysis for daily 

comparison over the land due to its EOD definition which may vary from one country to 

another. 

PERSIANN-CDR 

The PERSIANN-CDR product was developed by the Center for Hydrometeorology and 

Remote Sensing (CHRS) at the University of California, Irvine (UCI). This dataset is available 

as an operational climate data record via the NOAA National Centers for Environmental 

Information (NCEI) Program2 and via the CHRS Data Portal3. This near-global (60°N-60°S), 

 

1 https://pmm.nasa.gov/data-access/downloads/trmm 
2 https://www.ncdc.noaa.gov/cdr 
3 http://chrsdata.eng.uci.edu/ 



 62  
 

high-resolution (0.25° x 0.25°), long-term record (from 1983 to present) precipitation 

product has a daily resolution on UTC days. The PERSIANN-CDR algorithm utilizes GridSat-

B1 infrared information (Knapp 2008; Rossow and Duenas 2004) as input and NCEP stage 

IV hourly precipitation data (Lin and Mitchell 2005; Westrick et al. 1999) to update the 

model parameters. In order to reduce the bias, this product is bias-adjusted with GPCP 

precipitation product at 2.5° x 2.5° and a monthly time scale. Additional details about 

PERSIANN-CDR algorithm can be found in (Ashouri et al. 2015; Sadeghi et al. 2019a). 

4.3.  Methodology: 

This study applies the same methodology used in the original PERSIANN-CDR algorithm 

introduced by (Ashouri et al. 2015). In the first step of the PERSIANN-CDR algorithm, the 

PERSIANN algorithm (Hsu et al. 1997) is applied to GridSat-B1 merged infrared data from 

GEO satellites. The outcome is called PERSIANN-B1 and it is a 3-hourly precipitation estimate 

dataset from 1983 to present at quarter degree resolution for the latitude band 60°N to 60°S. 

Then, in order to adjust the biases of this dataset, PERSIANN-B1 is temporally aggregated to 

obtain monthly scale PERSIANN-B1 dataset to match the GPCP data in temporal resolution. 

In the same manner, PERSIANN-B1 data with spatial resolution of 0.25° x 0.25° will be 

aggregated to match the 2.5° x 2.5° GPCP data. The temporal and spatial aggregations are 

computed using the following equation: 

RPERSIANN−B1(i′, j′) = ∑ ∑ (∑ ∑ [rPERSIANN−B1(i, j) ≥ thd])1010nhnd    (1) 

In equation (1) RPERSIANN−B1 and rPERSIANN−B1 are the aggregated monthly 2.5° PERSIANN-

B1 data and original 3-hourly 0.25° PERSIANN-B1 data, respectively. The i and j are the 

latitude and longitude of the PERSIANN-B1 at 0.25° resolution. Similarly, i′ and j’ are the 

latitude and longitude of the aggregated PERSIANN-B1 at 2.5° resolution. "thd" is a pre-

defined threshold to eliminate noisy low value pixels. As an artifact of PERSIANN estimation 

process, small fractions of non-raining pixels are falsely assigned with light rainfall rates. To 

minimize this effect, we applied a threshold of 0.1 mm/day which eliminates the falsely 

assigned light rainfall rates with no rainfall. The nd and nh are the number of days and 

number of 3-hourly samples in a day, respectively. In the next step, the bias-adjustment 

weights are calculated for each 2.5° grid cell of monthly data: 
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w(i′, j′) =  RGPCP(i′, j′)/  RPERSIANN−B1(i′, j′), 0 ≤ w ≤ 20  (2) 

Where RGPCP is the monthly rain rate of GPCP for a given cell. Due to the linearity of the bias-

adjusting technique, the bias-adjustment weights (w) at 2.5° spatial resolution and monthly 

temporal resolution can be linearly interpolated into its corresponding 10x10, 0.25°, 3-

hourly PERSIANN-B1 grid cell estimates. The interpolation of w will ensure a smooth and 

continuous transition of bias-adjustment factors at the 0.25° resolution. 

Adj_rPERSIANN−B1(i, j) =  w(i, j) ∗  rPERSIANN−B1(i, j)    (3) 

Adj_rPERSIANN−B1 is the GPCP-adjusted 3-hourly 0.25° PERSIANN-B1 precipitation data. In 

the final step of PERSIANN-CDR preparation, 3-hourly PERSIANN-B1 data are aggregated to 

daily scale to reduce the uncertainties: 

PERSIANN-CDR (i,j)= ∑ Adj − rPERSIANN−B1(i, j, n)N
n=1    (4) 

Where N is the number of 3-hourly Adj − rPERSIANN−B1 data for each day. Data for each 3hrly 

file are accumulated on a pixel by pixel basis and then converted to 24hr if N is more than 4 

out of 8 per day. 

It should be noted that we accumulate 3-hourly PERSIANN-B1 with two different EOD 

definitions in order for each to be consistent with TRMM 3b42 V7 or the CPC CONUS dataset.  

In the first part of this study, we determine the amount of change between the two bias-

adjusted versions of PERSIANN-CDR and two versions of GPCP (V2.2 & V2.3) at monthly 

scales from 2009 to 2013. Both versions of PERSIANN-CDR at daily scale are aggregated to 

monthly time scale. To determine the amount of change we use Mean Absolute Difference 

(MAD) (Equation 5). Relative Mean Absolute Difference (RMAD) is also computed to 

determine areas in which the percentage of change is more significant (Equation 6): 

 

MAD =  
1

n
 ∑ |V2.3 − V2.2|n

i=1   (5) 

RMAD =  
1

n
 ∑ |V2.3−V2.2|n

i=1
1

n
 ∑ V2.3n

i=1

  (6) 
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In the second part of the analysis, we evaluate the performance of both PERSIANN-CDR V2.2 

and V2.3 over global land areas with respect to CPC unified gauge-based analysis and over 

the ocean with respect to TRMM 3B42 V7 at monthly and daily scales. For evaluation over 

land, we re-project PERSIANN-CDR V2.2 and V2.3 to 0.5° × 0.5° resolution to be consistent 

with the CPC unified gauge-based analysis dataset. Two commonly used statistical matrices, 

Correlation Coefficient (CORR) and Root Mean Square Error (RMSE) (Equation 7 & 8), are 

used for the evaluations. CORR is employed to measure the agreement between PERSIANN-

CDR V2.3 & V2.2 with CPC unified gauge-based analysis and TRMM 3B42 V7. RMSE is widely 

used to measure the error in estimation of satellite-based datasets compared with observed 

datasets. 

 

RMSE =  
1

n
√∑ (Esti − Refi)2n

i=1   (7) 

CORR =  
1

n
 ∑ (n

i=1 Esti−Esti̅̅ ̅̅ ̅̅ )(Refi−Refi
̅̅ ̅̅ ̅̅ )

σEst σRef
  (8) 

 

Where:  

Est: Estimation (PERSIANN-CDR V2.2 & V2.3) 

Ref: Reference (CPC unified gauge-based analysis & TRMM 3B42 V7) 

4.4.  Results and Discussion: 

4.4.1.  Changes in the PERSIANN-CDR and GPCP Monthly Analysis from V2.2 to V2.3 

Comparison in spatial domain 

Figures 4.1a and 1b display the mean daily precipitation estimates of PERSIANN-CDR V2.3 

and GPCP V2.3 from 2009 to 2013. Both datasets show the same precipitation patterns in 

annual mean precipitation. This similarity is reasonable since PERSIANN-CDR is bias-

adjusted with the GPCP dataset at a monthly scale. Figures 4.1c and 1d present the spatial 

pattern between MAD of the two versions of PERSIANN-CDR and the two versions of GPCP 

for that period.  On average, MAD is approximately 0.07 mm/day for both versions of GPCP 
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and PERSIANN-CDR at a monthly scale in latitude bands of 60°N to 60°S.  The changes in the 

mean daily precipitation rate exceed 0.3 mm/day between two versions of PERSIANN-CDR 

and two versions of GPCP over the North Atlantic Ocean, the North Pacific Ocean, Northern 

South America, Central Africa, and Indonesia. Although the absolute difference in the mean 

daily precipitation pattern reveals the average changes between the two versions of the 

datasets, it cannot demonstrate the relative importance of these changes in various regions. 

The spatial pattern of relative differences between the two versions of GPCP and PERSIANN-

CDR is calculated to show the percentage of change in mean daily precipitation rain rate 

estimation for each pixel. Calculating the relative difference is important because even small 

differences are critical in arid regions.  Figures 4.1e and 1f present the RMAD between V2.2 

and V2.3 of PERSIANN-CDR and GPCP products. MAD is more significant over tropical 

regions and oceans between the latitudes 40°-60° in both Northern and Southern 

hemispheres, whereas RMAD between the two versions of PERSIANN-CDR is more 

noticeable over North Africa, Australia, north China, Mongolia, and southeastern Russia. 

These regions receive substantially less rainfall than other parts of globe; therefore, small 

changes in the new versions of GPCP and consequently PERSIANN-CDR V2.3 could create 

significant variations in RMAD. 
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Figure 4.1 (a) PERSIANN-CDR V2.3 (mm/day) (b) GPCP V2.3 annual mean precipitation (mm/day) 
(c) MAD (mm/day) between PERSIANN-CDR V2.3 & V2.2 at a monthly scale (d) MAD (mm/day) 
between GPCP V2.3 & V2.2 at a monthly scale  (e) RMAD between PERSIANN-CDR V2.3 & V2.2 

4.4.2. Comparison in Temporal domain 

Figure 4.2 shows the time series of differences between the mean monthly precipitation 

estimates for the two versions of PERSIANN-CDR (V2.2 & V2.3) and two versions of GPCP 

(V2.2 & V2.3) across three latitude bands. The analysis is done for tropical (20°S -20°N) and 

subtropical (60°S-20°S and 20°N-60°N) bands. As shown in Figure 4.2, changes between the 

two versions of PERSIANN-CDR (V2.2 & 2.3) and the two GPCP (V2.2 & 2.3) for tropical and 

subtropical zones over the land and ocean are the same, demonstrating that PERSIANN-CDR 

follows the GPCP in this regard . Over the ocean, the changes are more noticeable over 

subtropical regions, where the differences (V2.3 –V2.2) vary between 0.02 to 0.19 mm/day 

in Northern hemisphere, and -0.02 to 0.13 mm/day in Southern hemisphere. These findings 

are consistent with those in Adler et al. (2018)where they showed that corrections in the 

new version of GPCP result in higher rainfall accumulations over the oceans, especially in the 

higher latitudes and after 2003.  Over oceans, most of the changes are primarily due to the 

sensor shifting from TOVS to AIRS for GPCP estimates, which consequently affects the 

PERSIANN-CDR product. Whereas GPCP V2.2 employed TOVS data for precipitation 
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estimates, GPCP V2.3 uses TOVS estimates before 2003 and different versions of AIRS data 

(based on availability of sensors) thereafter. TOVS and AIRS data are utilized for 

precipitation estimation at high latitudes over both land and ocean; however, changes over 

the land are discounted after merging with the gauge information (Adler et al. 2018). Over 

land, the difference between the two versions of PERSIANN-CDR and the corresponding 

versions of GPCP are more detectable over tropical regions than over other land regions. The 

changes ranged between -0.01 to 0.11 mm/day but generally positive showing an increase 

in precipitation estimates over the land for both PERSIANN-CDR V2.3 and their 

corresponding versions of GPCP. These variations are mainly related to the change from the 

GPCC Monitoring product in GPCP V2.2 to the GPCC V7 Full analysis in GPCP V2.3 for the time 

period used (2009-2013). 

 

Figure 4.2 Time series of differences between precipitation estimates of PERSIANN-CDR V2.3 & 
V2.2 (a, b, c) and GPCP V2.3  & V2.2 (d, e, f) for three zones from 2009 to 2013. 

Monthly evaluation of the two versions of PERSIANN-CDR 
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In this section, the performance of the two versions of PERSIANN-CDR is evaluated against 

the CPC gauge-based observation dataset, over the CONUS, and against TRMM 3B42 V7 over 

water bodies and global land areas at monthly time scales. 

Evaluation over the CONUS 

Figure 4.3 presents the spatial correlation and root mean squared error (mm/day) of 

PERSIANN-CDR V2.3 & V2.2 with respect to CPC unified gauge-based analysis over CONUS 

from 2009 to 2013. As mentioned in the data section, we utilized CPC unified gauge-based 

analysis at 0.25° × 0.25° spatial resolution for evaluation over the CONUS. Locations with 

higher CORR values in Figure 4.3c show where PERSIANN-CDR V2.3 is improved in terms of 

its correlation with CPC unified gauge-based analysis. Locations with lower RMSE values in 

Figure 4.3f show where PERSIANN-CDR V2.3 has a lower RMSE compared with PERSIANN-

CDR V2.2. The performance of PERSIANN-CDR V2.3 is noticeably improved over the eastern 

and northeastern regions of United States. The highest improvement can be detected over 

the states of Virginia, New York, Pennsylvania, Wyoming, Idaho, and Oregon, where 

correlation improved by approximately 14% and RMSE decreased by 0.15 mm/day. Figure 

4.4 shows the time series of average RMSE and CORR for PERSIANN-CDR V2.3 (red) and V2.2 

(blue) against CPC unified gauge-based analysis over CONUS. As shown, PERSIANN-CDR V2.3 

outperforms the previous version in terms of the correlation coefficient and RMSE 

throughout the studied period. Furthermore, the highest correlation and the lowest RMSE 

values are observed in June and July, when lower amounts of rainfall are observed compared 

to the other months of the year for both versions of PERSIANN-CDR (not shown). 
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Figure 4.3 Monthly spatial CORR and RMSE (mm/day) maps for PERSIANN-CDR V2.3 (a, d) and 
PERSIANN-CDR V2.2 (b, e) against CPC unified gauge-based analysis and their difference (c, f) for 

the period of 2009 to 2013 over the CONUS. 
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Figure 4.4 Time series of RMSE and correlation coefficient for PERSIANN-CDR V2.3 (red) and V2.2 
(blue) against CPC unified gauge-based analysis for 2009-2013 over CONUS at a monthly scale. 

 

In order to investigate the statistical behavior of various performance evaluation metrics 

computed for both versions of PERSIANN-CDR, frequency distribution histograms for Bias, 

RMSE, R99p, and R95p are presented in Figure 4.5. As can be seen in each histogram, the 

distribution of PERSIANN-CDR V2.3 has mean values closer to optimal (zero). The mean 

values closer to zero suggest that the precipitation estimation accuracy of PERSIANN-CDR 

V2.3 has improved compared to PERSIANN-CDR V2.2. For extreme events, both versions of 

PERSIANN-CDR tend to underestimate the rain rate, as the 95th (R95p) and 99th (R99p) 

percentiles indicate. However, the error of PERSIANN-CDR V2.3 for extreme events is less 

than V2.2.   
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Figure 4.5 Histograms of various performance evaluation metrics, (a) Bias, (b) RMSE, (c) R99p and 
(d) R95p, of the two bias-adjusted versions of PERSIANN-CDR at a monthly scale over the CONUS 

for 2009-2013. 

Evaluation Over the Globe  

Figures 4.6 and 4.7 display the spatial distribution maps of CORR and RMSE for the two bias-

adjusted versions of PERSIANN-CDR versus CPC and TRMM 3B42 V7 at a monthly scale over 

the globe, respectively. The CPC dataset at 0.5° × 0.5° spatial resolution is utilized as a 

gauged-based reference for comparison over global land areas. The original 0.25°PERSIANN-

CDR datasets are resampled to 0.5°spatial resolution using bilinear interpolation method to 

match the spatial resolution of the CPC unified gauge-based analysis dataset.  Moreover, due 

to the unavailability of gauge data over water bodies and oceans, TRMM 3B42 V7 at 0.25° 

spatial resolution is employed primarily for the evaluation of the two versions of PERSIANN-

CDR over the ocean. As shown in Figure 4.6, the estimation accuracy of PERSIANN-CDR V2.3 

is improved mostly over CONUS and Australia marked by increases in the correlation and 
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decreases in the RMSE with respect to CPC unified gauge-based analysis. This figure also 

shows that PERSIANN-CDR V2.2 estimates have a higher correlation with CPC over Africa 

than V2.3. However, due to inadequate number of samples used for CPC precipitation 

estimates over tropical Africa (Chen et al. 2008), the higher correlation in this area does not 

necessarily mean that the previous version of PERSIANN-CDR works better in this region. 

Comparison with TRMM 3B42 V7 over the ocean indicates similar performances by both 

versions of PERSIANN-CDR at a monthly scale. Specifically, the overall spatial CORR and 

RMSE of both bias-adjusted versions of PERSIANN-CDR (V 2.2 and V2.3) with TRMM 3B42 

V7 is 0.78 and 1.34 mm/day, respectively. Table 4.1 summarizes the average value of the 

spatial maps of CORR (in black) and RMSE (in red) between the two versions of PERSIANN-

CDR against the reference datasets. The table also shows that the improvement in 

PERSIANN-CDR V2.3 at monthly scales is more noticeable over land areas, especially over 

the CONUS. The CORR and RMSE between PERSIANN-CDR V2.3 and CPC unified gauge-based 

analysis over the CONUS have been improved by 5.2% and 2.3%, respectively.  Over land 

globally, the CORR between PERSIANN-CDR V2.3 and CPC unified gauge-based analysis 

increased by 1.2%; while RMSE increased by 0.8% increases in RMSE. Evaluation over the 

oceans using TRMM 3B42 V7 as the reference shows that both CORR and RMSE increased by 

1.25% and 0.74%, respectively.   
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Figure 4.6 Monthly spatial CORR and RMSE (mm/day) maps over land for PERSIANN-CDR V2.3 (a, 
d) and PERSIANN-CDR V2.2 (b, e) against CPC unified gauge-based analysis and their differences (c, 

f) for the period of 2009 to 2013 over the globe. 

 

Figure 4.7 Monthly spatial CORR and RMSE (mm/day) maps for PERSIANN-CDR V2.3 (a, d) and 
PERSIANN-CDR V2.2 (b, e) against TRMM 3B42 V7 and their differences (c, f) for the period of 2009 

to 2013 over the globe. 



 74  
 

 

Table 4.1 Summary of CORR (in black) and RMSE (in red) for the two versions of PERSIANN-CDR 
against references (CPC unified gauge-based analysis over the CONUS and globe land & TRMM 3B42 

V7 over the ocean) at a monthly scale for the period of 2009 to 2013. 

 Data set CPC(CONUS) CPC (Globe land) TRMM(Ocean) 

PERSIANN-CDR V2.3 0.87 (0.87) 0.81 (1.25) 0.79 (1.34) 

PERSIANN-CDR V2.2 0.84 (0.89) 0.80 (1.24) 0.78 (1.33) 

Relative Difference 5.2% (-2.3%) 1.2 % (+0.8%) 1.2% (+0.74%) 

 

Daily evaluation of the two versions of PERSIANN-CDR 

Evaluation over the CONUS 

Figure 4.8 displays the maps of daily CORR and RMSE between PERSIANN-CDR V2.3 and 

PERSIANN-CDR V2.2 against CPC unified gauge-based analysis at a daily scale over the 

CONUS for the period of 2009 to 2013. Figure 4.8 indicates that the CORR between the two 

versions of PERSIANN-CDR and CPC unified gauge-based analysis varies geographically, with 

relatively higher values over the eastern states and lower values over the western states. 

However, RMSE shows better performance (lower values of RMSE) of PERSIANN-CDR over 

the western CONUS and poorer performance (higher values of RMSE) over the eastern states. 

This geographical pattern in CORR and RMSE is mainly due to differences in average 

precipitation intensity. On average, the western states receive less precipitation compared 

to the eastern part of the CONUS. Consequently, RMSE is affected by the amount of rain and 

often shows higher values over regions with higher rainfall. Note the results might have been 

affected by the lower number of rainfall gauges over the western CONUS that were used in 

the CPC unified gauge-based analysis  gridded product. Based on Figure 4.8c and Figure 4.8f, 

a small improvement in the new bias-adjusted version of PERSIANN-CDR (V2.3) can be 

detected over the central United States, where CORR increased and RMSE is constant.  
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Figure 4.8 Daily spatial CORR and RMSE (mm/day) maps for PERSIANN-CDR V2.3 (a, d) and 
PERSIANN-CDR V2.2 (b, e) against CPC and their differences (c, f) for the period of 2009 to 2013 

over the CONUS. 

 

Evaluation over the Globe 

We use TRMM 3B42 V7 for daily comparison of the two versions of PERSIANN-CDR over 

both land and oceans. PERSIANN-CDR and TRMM 3b42 v7 give the daily accumulated rainfall 

starting at 22:30Z of the previous day to 22:30Z of the day named. The reason that we do not 

use global CPC unified gauge-based analysis is that EOD definition varies from one country 

to another country. This can create inconsistency in daily evaluation since PERSIANN-CDR 

has a unique EOD definition but CPC unified gauge-based analysis does not.. Figure 4.9 

illustrates the CORR and RMSE between TRMM 3B42 V7 and the two versions of PERSIANN-

CDR over the land and oceans. The correlation between PERSIANN-CDR and TRMM 3B42 V7 

shows a strong correspondence between these two datasets in estimating the daily 

precipitation rate. This is reasonable since the information of IR imagery has been used in 

both TRMM 3B42 V7 and PERSIANN-CDR algorithms for estimating 3-hourly rain rates. That 
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said, PERSIANN-CDR relies mainly on IR data, whereas TRMM combines IR and  PMW data. 

Furthermore, PERSIANN-CDR is bias-adjusted with the GPCP dataset; and both GPCP and 

TRMM apply relatively similar procedures with different initial inputs for their precipitation 

estimates (Sadeghi 2018). Both the GPCP and TRMM algorithms utilize the more accurate 

rain rate estimates from passive microwave data captured by low-orbit satellites to adjust 

the more frequent geosynchronous-orbit satellite infrared information. TRMM 3B42 V7 

inserts the microwave estimates into the individual precipitation maps, while GPCP only 

uses microwave estimates in monthly calibrations. Then in both products, the combined 

satellite-based products are bias-adjusted with rain gauge analysis.  Particularly over low 

latitudes, one can see a higher correlation between both versions of PERSIANN-CDR against 

TRMM. This is mainly due to using SSMI microwave observations in both TRMM 3B42 V7 

and GPCP V2.2 algorithms for latitude between 40° and 40°N. The statistical indices 

including CORR and RMSE between the two versions of PERSIANN-CDR and references at 

daily scale over the CONUS and the globe are summarized in Table 4.2. The changes in both 

CORR and RMSE between PERSIANN-CDR V2.2 and V2.3 are modest.  A slight improvement 

can be seen in CORR between PERSIANN-CDR V2.3 as opposed to PERSIANN-CDR V2.2 

against TRMM 3B42 V7 over the ocean. However, the RMSE has increased for PERSIANN-

CDR V2.3 against TRMM 3B42 V7.  

 



 77  
 

 

Figure 4.9 Daily spatial CORR and RMSE (mm/day) maps for PERSIANN-CDR V2.3 (a, d) and 
PERSIANN-CDR V2.2 (b, e) against TRMM 3B42 V7 and their difference (c, f) for the period of 2009 

to 2013 over the globe. 

  

Table 4.2 Summary of CORR (in black) and RMSE (in red) for the two versions of PERSIANN-CDR 
against CPC unified gauge-based analysis over the CONUS (0.25° x 0.25° spatial resolution) and 

TRMM 3B42 V7 (0.25° x 0.25° spatial resolution) over the global land mass and 

  CPC(CONUS) TRMM (land) TRMM(Ocean) 

PERSIANN-CDR V2.3 0.57 (4.58) 0.56 (5.65) 0.63 (5.63) 

PERSIANN-CDR V2.2 0.56 (4.58) 0.55 (5.65) 0.62(5.60) 

Relative Difference 1% (0%) 1% (0%) 1.6% (0.5%) 

 

4.5. Conclusions 

Historical precipitation estimates from PERSIANN-CDR have been widely used for 

climatological studies over the globe. Accurate precipitation information from PERSIANN-

CDR could contribute to meteorological, hydrological, and water resources management 

applications. Recently, GPCP has been updated to version 2.3 by applying the adjustments in 

cross-calibration of satellite data inputs and updating the gauge analysis. In this study, we 

compared the PERSIANN-CDR product constructed with the GPCP V2.3 with the previous 
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version PERSIANN-CDR V2.2for the period between 2009 and 2013. First, the differences 

between the two versions of PERSIANN-CDR (V2.3 & V2.2) and GPCP (V2.3 & V2.2) were 

described. We utilized Mean Absolute Difference (MAD) and Relative Mean Absolute 

Difference (RMAD) for tracking the changes between the latest two versions of both 

PERSIANN-CDR and GPCP. Comparing PERSIANN-CDR V2.2 & V2.3 over ocean areas at a 

monthly scale indicates that the changes in MAD are more than 0.25 mm/day at latitude 

bands between 40° to 60° in northern and southern hemisphere after 2009. The increase in 

PERSIANN-CDR’s estimates over the oceans is mainly due to the adjustments implemented 

on the GPCP V2.3 dataset. These adjustments include improvement in cross-calibration of 

precipitation from TOVS to AIRS since January 2003 and from SSMI to SSMIS after 2009. Over 

land areas, changes in MAD were more significant over the tropical region, while the highest 

percentage of changes (RMAD) were detectable in other regions of the globe including North 

Africa, Australia, North China, Mongolia, and Southeastern Russia. The main reasons for 

changes in MAD and RMAD over the global land areas were: i) increasing the gauge samples 

over the entire period of the record, and ii) updating from the GPCC Monitoring product to 

the GPCC Full product. 

The two versions of PERSIANN-CDR were evaluated over CONUS and global land areas and 

oceans using the CPC unified gauge-based analysis and TRMM 3B42 V7. Over CONUS, results 

showed that on average the performance of PERSIANN-CDR V2.3 has improved in terms of 

RMSE and CORR in both daily and monthly scales. Between 2009 and 2013, RMSE at monthly 

(and daily) decreased by 2.3% (and 0%) and the CORR increased by 5.1 % (and 1%) 

compared to PERSIANN-CDR V2.2. Improvements in terms of RMSE and CORR were evident 

over various states (e.g., Virginia, New York, Pennsylvania, and Oregon). Over global land 

areas, results indicated that the performance of PERSIANN-CDR V2.3 at monthly and daily 

scale is better than the previous version, especially over CONUS and Australia. The 

performance evaluation of two versions of PERSIANN-CDR against TRMM 3B42 V7 over the 

oceans revealed a slight increase in both CORR and RMSE. CORR improved by 1.6 % (and 

1.2%) and RMSE has increased by 0.74 % (and 0.5%) in a monthly (and daily) scale.  

In summary, the analyses show that the corrections and adjustments in GPCP V2.3 were 

successfully translated onto PERSIANN-CDR V2.3. The results indicate that most of the 
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changes in amount of rainfall are detectable over tropical regions and oceans between the 

latitudes 40°-60° in both Northern and Southern hemispheres. The changes in amount of 

rainfall improve the accuracy of PERSIANN-CDR V2.3 over the most regions of the globe, 

especially over the CONUS and Australia. Although these corrections and adjustments are 

small, they are crucial when applied to large areas, particularly over oceans and arid regions. 

In addition, these improvements are important for investigating the changes in inter-annual 

rainfall variabilities (e.g. due to El Niño—Southern Oscillation (ENSO)). 
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5.1.  Abstract 

Accurate long-term global precipitation estimates, especially for heavy precipitation rates, 

at fine spatial and temporal resolutions is vital for a wide variety of climatological studies. 

Most of the available operational precipitation estimation datasets provide either high 

spatial resolution with short-term duration estimates or lower spatial resolution with long-

term duration estimates. Furthermore, previous research has stressed that most of the 

available satellite-based precipitation products show poor performance for capturing 

extreme events at high temporal resolution. Therefore, there is a need for a precipitation 

product that reliably detects heavy precipitation rates with fine spatiotemporal resolution 

and a longer period of record. Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Networks-Cloud Classification System-Climate Data Record 

(PERSIANN-CCS-CDR) is designed to address these limitations. This dataset provides 

precipitation estimates at 0.04° spatial and 3-hourly temporal resolutions from 1983 to 

present over the global domain of 60°S to 60°N. Evaluations of PERSIANN-CCS-CDR and 

PERSIANN-CDR against gauge and radar observations show the better performance of 

PERSIANN-CCS-CDR in representing the spatiotemporal resolution, magnitude, and spatial 

distribution patterns of precipitation, especially for extreme events.   

5.2.  Materials  

5.2.1. Input data 

Gridded satellite infrared data (GridSat-B1) 

In 1983, the National Oceanic and Atmospheric Administration (NOAA)/National Climatic 

Data Center (NCDC) began collecting meteorological geostationary satellite data through the 

International Satellite Cloud Climatology Project (ISCCP) (Knapp 2008). The ISCCP B1 

dataset provides global IR brightness temperature data with 10-km spatial and 3-hourly 

temporal resolution for the period from 1979 to present. The ISCCP B1 dataset consists of 

observations from different sensors launched by different countries, including United States 

[for the Geostationary Operational Environmental Satellite (GOES) series], Japan [for the 

Japanese Geostationary Meteorological Satellite (GMS) series and Multi-functional Transport 

Satellite (MTSAT)], Europe [for the European Meteorological satellite (Meteosat) series], and 

China [for the Chinese Fen-Yung 2 (FY2) series]. The gridded satellite (GridSat-B1) dataset 
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isderived from the ISCCP B1 dataset and provides near-global data with 0.07° spatial and 3-

hourly temporal resolution from 1980 to present. The GridSat-B1 dataset is available via 

noaa.gov1. More information can be found in Knapp et al. (2011). 

 NOAA Climate Prediction Center (CPC-4km) IR product 

The NOAA Climate Prediction Center (CPC) globally merged IR product, which is referred to 

as CPC-4km, was developed to provide near-real time data for monitoring global 

precipitation (Janowiak et al. 2001).This dataset offers near-global (60°N-60°S) IR data with 

4-km spatial and half-hourly temporal resolutions from the present international 

constellation of operational geostationary meteorological satellites for the period from 2000 

to present. The CPC-4km product is comprised of IR observations from several international 

GEO satellites, including Meteosat-5 and Meteosat-7, GMS, and GOES. CPC-4km data is 

publicly accessible through the Climate Prediction Center webpage2. 

Global Precipitation Climatology Project (GPCP V2.3) 

GPCP is part of the Global Energy and Water Cycle Exchanges (GEWEX) project under the 

World Climate Research Program (WCRP) (Huffman et al. 1997). This product provides 

monthly precipitation at a 2.5° x 2.5° spatial resolution by merging different satellite-based 

estimation information (passive microwave/infrared) along with precipitation gauge 

networks from GPCC. A comprehensive description of GPCP monthly v2.3 data inputs and 

the merging process can be found in (Adler et al. 2018). The GPCP dataset is available for 

public use through the Earth System Science Interdisciplinary Center (ESSIC) and 

Cooperative Institute for Climate and Satellites (CICS), University of Maryland College Park3.  

5.2.2. Reference Data  

CPC Global Unified Gauge-Based Analysis of Daily Precipitation 

The National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center 

(CPC) provides the CPC Global Unified Gauge-Based Analysis of Daily Precipitation dataset 

 

1 https://www.ncdc.noaa.gov/gridsat/gridsat-index.php 
2 https://www.cpc.ncep.noaa.gov/products/global_precip/html/web.shtml 
3 http://gpcp.umd.edu 
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(Chen et al. 2008). This dataset offers global precipitation estimates at 0.5° x 0.5° spatial and 

daily temporal resolutions from 1979 to present. The daily precipitation reports of roughly 

30,000 stations from different sources across global land areas have been collected and 

quality controlled by the NOAA Climate Prediction Center. The data sources include Global 

Telecommunication System (GTS), the CPC unified daily gauge datasets over the CONUS, 

Cooperative Observer Network (COOP), and other national and international agencies. A 

comprehensive description of this CPC dataset and the interpolation algorithm that is used 

can be found in Xie et al. (2007). The CPC Global Unified Gauge-Based Analysis of Daily 

Precipitation dataset is accessible to the public through (ftp://ftp.cdc.noaa.gov/Datasets).  

NCEP Stage IV QPE Data 

NCEP Stage IV QPE is widely considered as the best long-term gridded rain accumulation 

dataset over the CONUS due to its extensive quality control procedures (Smalley et al. 2014). 

This product merges the national Weather Surveillance Radar-1988 Doppler (WSR-88D) 

network of ground radars and ground-based rain gauge observations (Yilmaz et al. 2005; Lin 

and Mitchell 2005). NCEP Stage IV provides precipitation observations at 0.04° (4 km) 

spatial resolution and hourly, 6 hourly, and 24 hourly temporal resolution. For this study, 

daily NCEP Stage IV observations were obtained from the distribution website1 and used as 

the benchmark for evaluating the remotely sensed precipitation datasets over the CONUS.  

Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks–Climate Data Record (PERSIANN-CDR) 

PERSIANN-CDR is a satellite-based precipitation estimation product that provides more than 

three decades (from 1983 to present) of daily precipitation estimates at 0.25° × 0.25° spatial 

resolution for the 60°S–60°N latitude band(Ashouri et al. 2015). PERSIANN-CDR utilizes the 

archive of infrared brightness temperature from GridSat-B1 (Knapp et al. 2011; Rossow and 

Duenas 2004) as the input of the PERSIANN algorithm. Then the rainfall estimates of the 

PERSIANN algorithm are bias corrected using the monthly Global Precipitation Climatology 

Project (GPCP) version 2.3 product at 2.5° × 2.5° spatial resolution (Sadeghi 2018). This 

 

1 http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/ 



 84  
 

dataset is available for public access through the NOAA National Centers for Environmental 

Information (NCEI) Program1 and through the Center for Hydrometeorology and Remote 

Sensing (CHRS) Data Portal2. Additional details about the PERSIANN-CDR algorithm can be 

found in Ashouri et al. (2015) and Sadeghi et al.(2019a) 

5.3.  Methodology 

5.3.1. PERSIANN-CCS-CDR description  

PERSIANN-CCS-CDR is generated beginning with rain rate (RR) outputs from the PERSIANN-

CCS model. The IR inputs used by PERSIANN-CCS to generate RR outputs come from two 

distinct periods: From 1983 through February 2000 GridSat-B1 IR data are used but from 

March 2000 to the present CPC-4km IR data are available and those are used instead. All IR 

inputs are resampled to 0.04° resolution before input. The GridSat-B1 images are every 3 

hours and the output RR data are mm/hr rain rates every 3 hours. The input CPC-4km images 

are available every 30-minutes, so the output RR data are mm/hr rain rates every 30-

minutes.  

In the second stage of the PERSIANN-CCS-CDR model the 0.04° RR grids, after a threshold 

(thd) of 0.1 is applied, are aggregated to monthly temporal resolution for comparison to 

monthly GPCP v2.3 precipitation. The monthly PERSIANN-CCS RR accumulations 

(mm/month) at 0.04° spatial resolution must be aggregated then to 2.5° using the bilinear 

method to match GPCP v2.3.  

RCum−PERSIANN−CCS(i′, j′) = ∑ ∑ (∑ ∑ [rPERSIANN−CCS(i, j) ≥ thd])nhnd   (Eq.1) 

In this equation, 𝑅𝐶𝑢𝑚−𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁−𝐶𝐶𝑆 and 𝑟𝑃𝐸𝑅𝑆𝐼𝐴𝑁𝑁−𝐶𝐶𝑆 are the monthly 2.5° aggregated 

PERSIANN-CCS estimates and 30min/3-hourly PERSIANN-CCS estimates at 0.04° spatial 

resolution, respectively. The 𝑖 and 𝑗 represent the latitude and longitude of the 30min/3-

hourly PERSIANN-CCS at 0.04° × 0.04° spatial resolution. Similarly, 𝑖′ and j’ are the latitude 

and longitude of the aggregated PERSIANN-CCS at 2.5° × 2.5° resolution. The 𝑛𝑑 and 𝑛ℎ are 

the number of days and the number of 30min/3-hourly PERSIANN-CCS samples in each day, 

 

1 https://www.ncdc.noaa.gov/cdr 
2 http://chrsdata.eng.uci.edu/ 
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respectively. Due the nature of neural network algorithms, some fractions of non-raining 

pixels are falsely associated with light precipitation. As mentioned, we applied a threshold 

(thd) of 0.1 mm/day in order to eliminate the falsely assigned light rain rates with no rainfall.  

In the next stage, the bias-adjustment weights for each monthly 2.5° grid cell are calculated 

as follows: 

w(i′, j′) =  RGPCP(i′, j′)/  RCum−PERSIANN−CCS(i′, j′), 0 ≤ w ≤ 2.5, (Eq.2) 

where 𝑅𝐺𝑃𝐶𝑃 is the monthly rain rate of GPCP for a given pixel.  

The 2.5° weights grids must then be bilinearly interpolated back to 0.04° spatial resolution 

for the next stage. In the final 2 stages, the 0.04° monthly weights are applied to each original 

input RR grid available. Each RR grid, either every 3 hours RR or every 30-minute RR 

depending on the IR data source, is multiplied by the weight.  

PERSIANN − CCS − CDR (i, j) =  w(i, j) ∗  rPERSIANN−CCS(i, j)    (Eq. 3) 

Finally, the bias-adjusted RR files are aggregated to produce the final PERSIANN-CCS-CDR 

product, consisting of an accumulation at 3-hourly resolution and 0.04° spatial resolution. At 

this last stage the RR mm/hr are limited by a historical maximum rain rate for each 0.04° 

grid location and each calendar month for seasonal and geographical specificity.  

 

5.3.2. Performance Measurements  

To evaluate the performance of PERSIANN-CDR and PERSIANN-CCS-CDR against the 

Stage IV and CPC datasets, Root Mean Squared Error (RMSE), Correlation Coefficient (CC), 

and Mean Absolute Error (MAE), are calculated by the following equations (equations 4-5): 

 

RMSE =  
1

n
√∑ (𝑆𝑖𝑚𝑖 − 𝑅𝑒𝑓𝑖)2n

i=1  (Eq. 4) 

CC =  
1

𝑛
 ∑ (𝑛

𝑖=1 𝑆𝑖𝑚𝑖−𝑆𝑖𝑚𝑖̅̅ ̅̅ ̅̅ ̅)(𝑅𝑒𝑓𝑖−𝑅𝑒𝑓𝑖̅̅ ̅̅ ̅̅ )

𝜎𝑆𝑖𝑚 𝜎𝑅𝑒𝑓
   (Eq. 5) 

where:  
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Sim: Simulation (PERSIANN-CDR, PERSIANN-CCS-CDR) 

Ref: Reference observations (Stage IV and CPC) 

 

5.4.  Results and Discussion 

5.4.1.  Performance Evaluation for extreme events over the Globe and the CONUS 

Figure 1 presents the performance of PERSIANN-CDR and PERSIANN-CCS-CDR against CPC 

in detecting the 99th percentile indices (RR99p) of the daily precipitation on wet days (days 

with daily precipitation >=1 mm) for the period of 1983 to 2019 over global land areas. The 

CPC unified gauge-based analysis dataset at 0.5° × 0.5° spatial resolution is used as a gauged-

based reference for comparing and calculating the continuous evaluation indices including 

CC, RMSE, and MSE. The original 0.25° PERSIANN-CDR and 0.04° PERSIANN-CCS-CDR 

datasets are resampled to 0.5° spatial resolution using the bilinear interpolation method to 

match the spatial resolution of the CPC dataset. Then, the 99th percentile of daily 

precipitation of CPC, PERSIANN-CDR, and PERSIANN-CCS-CDR datasets were calculated for 

each pixel using the whole period of record (1983-2019). Clearly in Figure 5.1, PERSIANN-

CCS-CDR offers more accuracy for the intensity of rain rates in comparison to PERSIANN-

CDR in terms of estimating extreme events. PERSIANN-CDR tends to underestimate heavy 

precipitation over the globe, while PERSIANN-CCS-CDR provides a more realistic 

representation of heavy precipitation. Figure 5.1 also reveals that PERSIANN-CCS-CDR’s 

estimates have both higher correlation and lower RMSE with CPC observations compared to 

PERSIANN-CDR over the globe. The correlation between PERSIANN-CCS-CDR and CPC 

unified gauge-based analysis over land is increased by 15%, and the RMSE decreased by 

28%, respectively, versus PERSIANN-CDR.     



 87  
 

 

 

Figure 5.1 Evaluation of PERSIANN-CDR and PERSIANN-CCS-CDR against CPC for the 99th 
percentile of daily precipitation on wet days (days with daily precipitation >=1 mm) for the period 

of 1983-2019. 

 

Figure 5.2 shows the performance of PERSIANN-CDR and PERSIANN-CCS-CDR against Stage 

IV, as a reference, in capturing the RR99p of daily precipitation at 0.25° × 0.25° spatial 

resolution for the period of 2003 to 2019. The PERSIANN-CCS-CDR estimates were 

resampled to 0.25° spatial and daily temporal resolution using the bilinear method for the 

comparison. As shown in Figure 5.2, high values of RR99p appear in the southeastern part 

of the United States. In general, PERSIANN-CCS-CDR captures the magnitude and the pattern 

of RR99p better than PERSIANN-CDR compared to radar observations, especially over the 

southeastern part of the CONUS. Although PERSIANN-CDR shows similar patterns to Stage 

IV, it underestimates magnitudes of precipitation. On the other hand, PERSIANN-CCS-CDR 

captures the volume of the extreme events fairly well. The disagreement between 

PERSIANN-CCS-CDR and Stage IV radar observations is mainly over the northern part of the 

United States, including Minnesota, Iowa, and Michigan, where most values are 

overestimated. According to Figure 5.2, the spatial correlation, RMSE, and MSE of PERSIANN-

CDR and PERSIANN-CCS-CDR with respect to CPC unified gauge-based analysis indicate that 

PERSIANN-CCS-CDR has better performance than PERSIANN-CDR for extreme event 
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analyses in climatological applications. CC and RMSE of PERSIANN-CCS-CDR estimates with 

Stage IV are improved by 25% and 31%, in comparison to PERSIANN-CDR, respectively.  

  

Figure 5.2 Evaluation of PERSIANN-CDR and PERSIANN-CCS-CDR against Stage IV for the 99th 
percentile of daily precipitation on wet days (days with daily precipitation >=1 mm) for the period 

of 2003-2019. 

 

5.4.2. Case Studies 

To further investigate the performance of PERSIANN-CCS-CDR estimates with Stage IV as a 

reference, the following verification studies have been done at different temporal and spatial 

resolutions. The first case study targets Hurricane Harvey in 2017 and investigates the 

performance of the PERSIANN-CCS-CDR estimates over the Southeastern United States at 

daily temporal resolution. The second case study is related to the flood that occurred in 

Louisiana in 2016 and evaluates the performance of the developed product at the watershed 

scale for 3-hourly and daily temporal scales.   

Hurricane Harvey, August 2017 (Daily Assessment)   

During August 25-30, 2017, Hurricane Harvey hit the Southeastern regions of the United 

States, including Southeast Texas, and Louisiana. Hurricane Harvey is classified as a Category 

4 storm that caused catastrophic damages. This storm is referred as one of the costliest 
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extreme precipitation events that struck in the history of the United States (Amadeo 2018). 

According to the National Hurricane Center, the total damage is estimated to be more than 

$125 billion and it is confirmed that there were more than 80 fatalities (Van Oldenborgh et 

al. 2017). In this section, PERSIANN-CCS-CDR and PERSIANN-CDR are evaluated against 

Stage IV as the reference at 0.25° spatial resolution and daily temporal resolution. The 

original 0.04° × 0.04° spatial resolution of Stage IV and PERSIANN-CCS-CDR datasets were 

resampled to 0.25° × 0.25° spatial resolution using bilinear interpolation to match the spatial 

resolution of PERSIANN-CDR. Then the 3-hourly estimates of PERSIANN-CCS-CDR were 

aggregated to obtain daily scale to match the PERSIANN-CDR estimates in temporal 

resolution. Figure 5.3 presents daily values for extreme precipitation that occurred from 

August 27 to 30, 2017 using Stage IV data and PERSIANN-CDR and PERSIANN-CCS-CDR 

estimates. As shown in Figure 5.3, PERSIANN-CCS-CDR captures both the spatial pattern and 

the intensity of rainfall better than PERSIANN-CDR. For more exploration of the accuracy of 

estimation, the scatter plots for PERSIANN-CDR and PERSIANN-CCS-CDR versus Stage IV are 

presented and the relevant statistics are calculated in Figure 5.3. In general, PERSIANN-CCS-

CDR outperforms PERSIANN-CDR for CC and FAR. As shown in Figure 5.3, both PERSIANN-

CDR and PERSIANN-CCS-CDR show a high correlation with Stage IV radar. The correlation 

for PERSIANN-CDR and PERSIANN-CCS-CDR with Stage IV are 0.79 and 0.84, respectively. 

RMSE improves from 20 mm/day to 18.7 mm/day for PERSIANN-CCS-CDR estimates 

compared to PERSIANN-CDR. Furthermore, PERSIANN-CDR underestimates intense 

precipitation, while PERSIANN-CCS-CDR performs relatively well. As can be seen, both Stage 

IV and PERSIANN-CCS-CDR show rain rates with more than 500 mm/day that occurred over 

some pixels. However, PERSIANN-CDR does not show any value more than 195 mm/day and 

underestimates the rain rates. 
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Figure 5.3 The spatial precipitation evolution of Hurricane Harvey for the period from August 26-
30, 2017 from (a) Stage IV, (b) PERSIANN-CDR, and (c) PERSIANN-CCS-CDR 

 

Louisiana Flood, August 12, 2016 (3-hourly, and Daily Assessment)   

In August 2016, an intense rainfall event occurred over the state of Louisiana with more than 

30 inches (760 millimeters) of rainfall in some locations, resulting in a catastrophic flood1.  

This event led to more than a dozen deaths and more than $30 million in damages2. The 

performances of PERSIANN-CDR and PERSIANN-CCS-CDR for this flood are evaluated 

against Stage IV radar observations (Figure 5.4). Figure 5.4 b shows Stage IV rainfall 

 

1 https://www.usgs.gov/news/ 
2 https://www.cnn.com/ 
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estimates at 0.04° × 0.04° spatial resolution on August 12, 2016. Figure 5.4 c and figure 5.4 

d shows PERSIANN-CDR estimates (with a 0.25° × 0.25° spatial resolution) and PERSIANN-

CCS-CDR estimates (with a 0.04° × 0.04° spatial resolution), respectively. This figure 

demonstrates two attractive aspects of the PERSIANN-CCS-CDR dataset in comparison to the 

PERSIANN-CDR dataset for climatological studies: 1) PERSIANN-CCS-CDR performs better 

than PERSIANN-CDR for this extreme event by capturing the volume of heavy rain over the 

southwest area of the watershed as shown. 2) The high temporal resolution of PERSIANN-

CCS-CDR is another feature which is beneficial for studying the diurnal cycle and is essential 

for rainfall-runoff modeling studies. These two features of PERSIANN-CCS-CDR make this 

new dataset attractive for integrating its high spatiotemporal resolution estimates into 

hydrological and land-surface models for flood forecasting (or other applications that are 

sensitive to heavy precipitation rates).  
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Figure 5.4 Evaluation of daily PERSIANN-CDR and PERSIANN-CCS-CDR against Stage IV for the 
Louisiana flood of Aug. 12, 2016. 

Figure 5.5 illustrates the evolution of the precipitation that occurred on August 12, 2016 

based on Stage IV and PERSIANN-CCS-CDR estimates at 3-hourly temporal and 0.04° × 0.04° 
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spatial resolutions. The hourly estimates of Stage IV data are aggregated to a 3-hourly scale 

to match the PERSIANN-CCS-CDR data in temporal resolution. This figure demonstrates the 

superior performance of PERSIANN-CCS-CDR in detecting the magnitude of precipitation at 

the 3-hourly temporal scale. For the period between 6:00 to 9:00 UTC, PERSIANN-CCS-CDR 

estimates the rain rates fairly well compared to Stage IV radar data; however, a southward 

shifting can be seen in PERSIANN-CCS-CDR’s estimates. During 9:00 to 12:00 UTC, 12:00 to 

15:00 and 15:00 to 18:00 UTC, PERSIANN-CCS-CDR successfully detects the amount of 

intense precipitation over the eastern regions of the watershed, yet it misses some parts of 

the rainfall that occurred over the central parts of the region. During 18:00 to 21:00 UTC, the 

PERSIANN-CCS-CDR detects most of the intense rainfall. A northward shift can be seen in 

PERSIANN-CCS-CDR’s estimates for the period of 21:00 to 24:00 UTC. Table 5.1 summarizes 

PERSIANN-CCS-CDR performance in detecting (POD, FAR, CSI) and estimating (RMSE, MAE, 

Correlation) rainfall intensity at 3-hourly temporal and 0.04° × 0.04° spatial resolutions over 

the shown watershed on August 12, 2016. 

 

Table 5.1 Summary of 3-hourly precipitation estimation performance of PERSIANN-CCS-CDR for 
the Louisiana flood of Aug. 12, 2016 at 0.04° × 0.04° spatial resolution. 

Criteria PERSIANN-CCS-CDR 

POD 0.85 

FAR 0.24 

CSI 0.67 

RMSE (mm/3hr) 13.6 

MAE (mm/3hr) 6.12 

CC 0.64 
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Figure 5.5 Evaluation of 3-hourly PERSIANN-CCS-CDR against Stage IV for the Louisiana flood of 
Aug. 12, 2016. 

 

5.4.3.  Missing Data 

Figure 5.6 and Figure 5.7 show the temporal and spatial distributions of the 3-hourly missing 

data for the whole globe. Figure 5.7 shows the percentage of missing 3-hourly pixels in a 

month for the top zone (20°N to 60°N), middle zone (20°S to 20°N) and bottom zone (20°N 

to 60°N). According to Figure 5.6, most of the missing data is attributed to the GridSat-B1 

dataset (1983-2000) and less missing is observed for CPC-4km (2000-2020). However, the 

number of missing pixels for GridSat-B1dataset declines from 1983 to 2000. Considering the 
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2000 to 2020 period, October 2005 has the largest number of missing pixel data, especially 

in the bottom zone. These missing pixels are due to problems with the aging Japanese 

satellite for that period. The number of missing data pixels for the rest of the period is close 

to zero. Among the three presented zones, the middle zone has the least number of missing 

data as can be observed in both Figure 5.6 and Figure 5.7. According to Figure 5.7, most of 

the missing pixels are between 60°E to 90°E and between the 45° to 60° S and N. These 

patterns are due to the missing information from the satellite image retrieval. Similar 

patterns with fewer missing data counts can be observed between 135°W to 165°W. 

 

Figure 5.6 Percent of 3-hourly missing data in each month 
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Figure 5.7 Spatial distribution of the 3-hourly missing pixels 

5.5.  Conclusions 

Accurate long-term precipitation estimates with fine spatiotemporal resolution, especially 

accurate heavy precipitation rates, are crucial for a wide variety of applications, including 

rainfall frequency analysis, early warning system development, disaster management 

strategies, and water resource management. PERSIANN-CCS-CDR, which provides accurate 

estimation of extreme precipitation with fine spatiotemporal resolution (0.04° spatial and 3-

hourly temporal resolution) from 1983 to present over the global domain of 60°S to 60°N, 

has been developed and is presented in this manuscript. 

 One of the most attractive features of PERSIANN-CCS-CDR is its improved performance for 

detecting heavy precipitation. While current operational satellite-based precipitation 

datasets provide significant opportunities for providing precipitation estimates at high 

spatiotemporal resolution over the globe, numerous studies have argued that they have a 

weakness in detecting heavy precipitation that occurs at high temporal resolution (sub-daily 

or 3-hourly) (Mehran and AghaKouchak 2014; AghaKouchak et al. 2011). The current 

limitations for accurate estimation of extreme precipitation hinder the use of satellite-based 

precipitation datasets for applications that are sensitive to heavy rain rates such as designing 

warning systems, integrating precipitation data into hydrological models, etc. The 

performance of PERSIANN-CCS-CDR for heavy precipitation detection suggests that this 

dataset is an attractive dataset for the mentioned hydrological applications.  
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Another important feature of the PERSIANN-CCS-CDR dataset is the combination of high 

spatial and temporal resolution with a long period of record. A reliable long-term 

precipitation record with fine spatiotemporal resolution is essential for many applications 

including hydrological modelling, rainfall frequency analysis, and development of depth 

duration curves. However, the majority of current operational datasets are either high 

resolution with short-duration estimates or lower resolution with long-term estimates (Kidd 

and Levizzani 2011).  PERSIANN-CCS-CDR, which provides accurate estimations of extreme 

precipitation with fine spatiotemporal resolution (0.04° × 0.04° spatial and 3-hourly 

temporal resolution) from 1983 to present over the global domain of 60°S to 60°N, has been 

developed to address the lack of available datasets that meet both needs.  

To develop the PERSIANN-CCS-CDR dataset, archives of the historical GridSat-B1 IR and CPC-

4km IR datasets are used as input to the PERSIANN-CCS algorithm to produce historical 

precipitation estimates. PERSIANN-CCS-CDR then utilizes the resulting PERSIANN-CCS 

estimates as input. PERSIANN-CCS-CDR bias adjusts the PERSIANN-CCS estimates using 

monthly GPCP v2.3 at 2.5° spatial scale through probability density function (PDF) matching. 

The performance of both PERSIANN-CCS-CDR and PERSIANN-CDR for estimating extreme 

events was evaluated over the globe and the CONUS. The results highlight the superior 

performance of PERSIANN-CCS-CDR by 15% in correlation and 28% in RMSE compared to 

PERSIANN-CDR against the CPC rainfall dataset for extreme events over globe. The 

evaluation of extreme events over the CONUS revealed that PERSIANN-CCS-CDR compared 

to PERSIANN-CDR can estimate rain rates with a 25% higher correlation and a 31% lower 

RMSE. Further evaluation of PERSIANN-CCS-CDR performance was demonstrated using two 

case studies over the CONUS. The first case study for Hurricane Harvey, which occurred in 

2017, shows the capability of the newly developed dataset for capturing heavy rain rates at 

a larger spatial scale. The results indicate that PERSIANN-CCS-CDR can detect precipitation 

with lower RMSE and higher CC versus to PERSIANN-CDR against Stage IV radar 

observations. Additionally, PERSIANN-CCS-CDR outperformed PERSIANN-CDR for 

estimating heavy rain rates. The second case study evaluated the performance of PERSIANN-

CCS-CDR at a watershed scale for the flood event that occurred in Louisiana during August 

2016. The results at daily scale revealed again the superior performance of PERSIANN-CCS-

CDR compared to PERSIANN-CDR for detecting and estimating heavy rain rates. 
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Furthermore, PERSIANN-CCS-CDR provides precipitation at higher spatiotemporal 

resolutions (0.04° × 0.04° spatial and 3-hourly temporal) compared to PERSIANN-CDR 

(0.25° × 0.25° and daily) making this new dataset an attractive product for many 

hydrological applications. 

One of the few potential shortcomings of the PERSIANN-CCS-CDR dataset is that the available 

time scale of GridSat-B1 is 3-hourly, rather than hourly, for the period before 2000. This 

limits the capability of the dataset to that coarser temporal resolution for the period from 

1983 to 2000. Another limitation is the PERSIANN-CCS algorithm’s capability to capture the 

spatial patterns of rainfall. PERSIANN-CCS extracts cloud information based on manually 

defined features including coldness, texture, and geometry, which can limit its ability to 

accurately estimate rainfall because manual feature extraction is always biased toward the 

most relevant and physically obvious features that have direct impacts on precipitation 

occurrence. Due to the complexity of the precipitation phenomena, there may be some other 

factors as yet hidden to CHRS researchers that play crucial roles in the accuracy of the 

model’s simulations. CHRS researchers are currently working on the development of even 

more advanced satellite retrieval algorithms by applying new data-driven methodologies to 

automatically extract features from the input datasets. While more research needs to be 

done to verify the performance of the developed dataset, this paper presents promising 

validation results and demonstrates example applications for the PERSIANN-CCS-CDR 

dataset. This newly introduced dataset provides an opportunity for scientists and 

stakeholders to leverage the more accurate estimates of PERSIANN-CCS-CDR to improve 

disaster mitigation models and strategies.  
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6.1. Abstract 

In recent years, the number of floods following unprecedented rainfall events have increased 

in Iran during early spring (March 21st to April 20th, referred to in Iran as the month of 

“Farvadin”). While numerous studies have addressed changes in climate extremes and 

precipitation trends at different temporal scales from daily to annual across the country, 

analyses of short-duration and heavy precipitation, especially during recent years, are rarely 

considered. Furthermore, most studies investigate the variations in extremes and total 

precipitation using a limited number of synoptic weather stations across Iran. This study 

assesses the variations in heavy precipitation (precipitation with intensities greater than or 

equal to 3 mm/3 hours) at 0.04° spatial and 3-hourly temporal resolution during the month 

of Farvardin. In addition, the effect of atmospheric river conditions over Iran and their 

possible link to intensifying heavy precipitation is explored. For this purpose, the 

CONNected-objECT (CONNECT) algorithm is applied on a precipitation dataset, Precipitation 

Estimation from Remotely Sensed Information Using Artificial Neural Networks-Cloud 

Classification System (PERSIANN-CCS), and an Integrated Water Vapor Transport (IVT) 

dataset from the NASA Modern-Era Retrospective Analysis for Research and Applications 

Version-2 (MERRA-2). The results suggest that the increase in the number of floods in recent 

years is related to the increase in the intensity and volume of heavy precipitation events, 

although the frequency and duration of heavy precipitation events have not changed 

significantly. Furthermore, the results show that atmospheric river conditions over the 

country are present during the same window as each year’s most extreme events. It is found 

that 8 out of 13 of the largest ARs over Iran come from moisture plumes with pathways over 

the African and Red Sea. 

6.2.  Study area & Data  

6.2.1.  Study area 

Iran is in a semi‐arid and arid subtropical region of southwest Asia at longitude 25–40°N and 

latitude 44–65°E. The country is bounded by the Caspian Sea on the north and the Persian 

Gulf and Gulf of Oman in the south (Figure 6.1). The study area covers the extent of Iran’s 

borders, measuring at about 1.6 million km2. Iran is characterized by complex topography: 
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most of the central and southeastern parts of Iran are covered by barren/arid areas (Dashte-

e Kavir and Dashte-e Lut) and western and northern regions are covered by Zagros and 

Alborz main mountain ranges. Iran is the scene of various meteorological and climatological 

mechanisms (mostly induced by the subtropical high-pressure regimes) resulting in uneven 

spatial and temporal distribution of precipitation across the country. The southern part of 

Iran is affected by the anticyclonic circulation over the Arabian Sea (Raziei et al. 2012), the 

El Niño-Southern Oscillation (ENSO) (Saghafian et al. 2017; Nazemosadat and Ghasemi 

2004), and the Monsoon phenomenon(Zarrin et al. 2010; Yadav 2016) while mountainous 

regions in western Iran block moisture-loaded ARs from the tropical Atlantic Ocean and 

Europe driven by the Black Sea and Mediterranean cyclones(Azizi et al. 2013; Vaghefi et al. 

2019). 

In our study, to identify the spatial and temporal variations of heavy precipitation events 

during the month of Farvardin and examine the effect of ARs on these variations, we consider 

a large spatial domain from 10°W to 70°E and from 0° to 50°N, including some parts of North 

Atlantic Ocean, Europe, Middle East, and North Africa (Figure 6.1). 

 

 

Figure 6.1 a) The study area (green) and surrounding regions b) Selected provinces including Ilam 
(Ilm), Fars (Frs), Kermanshah (Krs), and Lorestan (Lor) and location of the five heaviest events in 

Farvardin in terms of volume (2003, 2012, 2017, 2018, and 2019) tha 

6.2.2.  Data sets 

PERSIANN-CCS  
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PERSIANN-CCS is a satellite-based operational product that consists of hourly rainfall 

estimates at 0.04°x0.04° (approximately 4 km) spatial resolution(Hong et al. 2007). It uses 

infrared (IR) imagery from geostationary satellites and extracts the cloud features such as 

temperature, geometry, and texture to estimate rainfall using a data-driven model. 

PERSIANN-CCS is a useful tool for monitoring and analyzing heavy precipitation events in 

near-real-time at a quasi-global scale (60°N to 60°S). This dataset is available as an 

operational climate data record via the CHRS Data Portal1. 

PERSIANN-CDR 

PERSIANN-Climate Data Record (CDR), like PERSIANN-CCS, is a rainfall product that is a 

quasi-global and satellite-based. PERSIANN-CDR differs from PERSIANN-CCS by its 

intention: while PERSIANN-CCS is primarily for real-time measurements, PERSIANN-CDR’s 

long duration (1983-present) makes it most useful for climate-scale studies (Ashouri et al. 

2015). As accuracy is a primary motivation for the development of PERSIANN-CDR data, 

daily passive microwave data and monthly GPCP v2.3 rain gauge values are used for bias 

correction. PERSIANN-CDR’s focus on accuracy means it’s not available at scales as fine as 

PERSIANN-CCS—PERSIANN-CDR’s spatiotemporal resolution is limited to daily and 

0.25°x0.25° pixels. In this study, PERSIANN-CDR is used to investigate the climatology of AR-

associated rainfall during Farvardin. Like PERSIANN-CCS, PERSIANN-CDR is available from 

the CHRS Data Portal (see above.) 

Integrated Water Vapor Transport from MERRA-2 

Integrated water Vapor Transport (IVT) is the amount of atmospheric moisture integrated 

across all levels of the atmosphere, calculated from the following formula: 

𝑰𝑽𝑻 =  
1

𝑔
∫ 𝑞𝑽 𝑑𝑝

𝑃200

𝑃𝑠𝑢𝑟𝑓

 

where p is pressure (hPa), p_200 is pressure at 200 hPa, assumed to be the top of the 

atmosphere, p_surf is the geopotential height at the Earth’s surface (1000 hPa), q is specific 

 

1 http://chrsdata.eng.uci.edu/ 
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humidity at pressure height p, V is the wind velocity (m/s) at p, and g is gravitational 

acceleration. IVT was calculated from the wind and pressure values retrieved from the 

National Aeronautical and Space Agency’s (NASA) Modern-Era Retrospective Analysis for 

Research and Applications-version 2 (MERRA-2) data (Gelaro et al. 2017). 

Gauge dataset  

To evaluate PERSIANN-CCS’s accuracy during Farvardin 2019, the PERSIANN-CCS estimates 

are compared with ground-based gauge observations from 70 synoptic meteorological 

stations from the Iran Meteorological Organization at the daily scale. These evaluations are 

performed over 4 provinces (Fars, Lorestan, Kermanshah, and Ilam) which were affected the 

most by the heavy precipitation events during Farvardin 2019. The comparison is conducted 

against PERSIANN-CCS pixels that contained at least one meteorological ground-based 

observation.  

6.3.  Methodology 

6.3.1. CONNECT Algorithm  

The CONNected-objECT (CONNECT) algorithm (Sellars et al., 2013; 2015; 2017) is a big data 

algorithm that uses connectivity (overlap) to segment, group, and track elevated or 

anomalous data signatures in large volumes of data. It was developed to study hydroclimate 

extremes, including, but not limited to, ARs (Shearer et al. 2020), tropical and extratropical 

cyclones, droughts, and more. The algorithm’s architecture is designed with object-oriented 

analysis in mind, where “objects” are identified items, events, etc. that can be represented by 

attributes and statistics and object-oriented analysis is the study of populations of “objects” 

from their attributes and statistics (Figure 6.2). Object-oriented analysis has noteworthy 

benefits for hydroclimate studies: events are discretely counted and recorded, meaning they 

can be examined individually, or their population considered statistically, from techniques 

as simple as calculating averages and percentiles to distribution building and cluster 

analysis.  

CONNECT uses three-dimensional (x,y-spatial and temporal) voxels of a target variable (e.g. 

rainfall) to construct objects where voxels with intensities above a user-defined threshold 

are contiguous over space and time, performed using a flood filling algorithm. As grouping 
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voxels across the time axis captures the evolution of an object from genesis to terminus, 

CONNECT performs well as a tracking algorithm, meaning objects segmented by CONNECT 

are the lifecycles of weather phenomena. CONNECT auto-calculates object characteristics, 

such as spatiotemporal properties like volume, speed, duration, etc. and outputs it into a 

table for statistical/object-oriented analysis.  

 

 

Figure 6.2 An object (“hydroclimate extreme”) described by its characteristics (“total volume of 
rainfall”, “duration”, etc.) 

For this study, 3-hourly precipitation data from PERSIANN-CCS during the month of 

Farvardin every year from 2003-2020 was used as input to CONNECT. As our interest for 

this study lies entirely within the boundaries of Iran, precipitation fields are clipped to the 

country’s borders. To capture longer-duration heavy events over the region, CONNECT was 

set up to only consider rainfall totals equal to or greater than 3 mm/3 hours and to filter 

objects with durations shorter than twelve hours. Selecting the threshold parameter for 

CONNECT is largely based on balancing between over-segmenting and under-segmenting. 

Over-segmented rainfall disrupts the tracking functionality of CONNECT: smaller objects 

moving at faster speeds will not overlap during subsequent timesteps and will not be 
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considered as the same object. At the same time, under-segmented rainfall will track multiple 

events as a singular “conglomerate” event. As an example, consider rainfall systems in the 

intertropical convergence zone. At very low thresholds, CONNECT will not differentiate 

between the light rainfall that constantly occurs in the region and the periodic heavy rainfall 

from transient mesoscale convective systems that also frequently form and dissipate over 

the course of a day. If a researcher’s goal is to study the lifecycles of the latter phenomena, a 

higher rainfall threshold rate is required for suitable results. We note similarities between 

the geography of Iran and California (further explained in the subsequent section) and 

therefore elect to use the 1 mm/hour (here, 3 mm/3-hour) threshold used in Sellars et al. 

(2013). At this value, rainfall is a less than half of the Glossary of Meteorology’s definition of 

moderate rainfall (2.5 mm/hour), but well above the rainfall rates of a drizzle (0.3 

mm/hour), meaning rainfall rates captured are impactful but not necessarily extreme. A 

higher threshold is undesirable as it omits important data and serves to underestimate storm 

total volume calculations. 

6.3.2. Defining the thresholds for detecting AR over Iran. 

An AR is a narrow, transient atmospheric pathway that transports a large amount of water 

vapor from distant water bodies. In dry countries like Iran, which is located in subtropical 

latitudes, ARs originating from water bodies located west of the country can be a significant 

source of precipitation. Furthermore, Guan and Waliser (2015) showed that ARs are 

contribute to orographic rainfall occurrences and can cause extreme precipitation events 

and flooding in Iran. Therefore, for hydrological purposes it would be useful to study extreme 

precipitation events 

and ARs particularly in mountainous region of Iran (e.g, Zagros Range). To investigate 

whether the most extreme CCS-CONNECT objects over Iran were related to AR activity, we 

utilized the methodology from Rutz et al. (2014, hereby referred to as “Rutz”). Rutz defines 

an AR as a region of IVT greater than 250 kgm^(-1) s^(-1)   that extends to a length greater 

than or equal to 2,000 km. The Rutz methodology is referred to as a “permissive” 

methodology (as opposed to a “restrictive” method), which means its requirements are laxer 

and generally tend to classify anomalous IVT regions as ARs more often than other 

methodologies. This methodology was selected because Iran has notable analogs to 
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California, where the methodology was developed, including its northwest-southeast 

trending Zagros Mountain range with peaks up to 4,400 meters, which has the same 

orientation and prominence as the Sierra Nevada Range, along with its location in the lower 

mid-latitudes. However, we acknowledge that Iran’s position east of the dry Saharan Desert 

is in stark contrast to California’s proximity west of the Pacific Ocean, a water body source 

which feeds Pacific ARs with their moisture, though a notable analog exists in the Red and 

Mediterranean Seas, along with the Persian Gulf (Dezfuli 2019). Furthermore, ARs over Iran 

have yet to be analyzed using an precipitation-linked IVT threshold which can be utilized in 

global studies, like that used in Rutz et al., (2014); the 85th percentile of IVT over Iran and 

the surrounding region was used as a threshold in Dezfuli (2019) and Esfandiari and 

Lashkari (2020) the values of which would be far too low of a threshold to be useful over 

North America, Europe, etc. It is important to note that we do not argue that using a 

regionally derived IVT threshold makes the ARs in these studies less deserving of the AR 

label. However, by proving that ARs exist at IVT levels that can be utilized globally and is tied 

to precipitation, we prove that Iran is a region where ARs of noteworthy strength frequently 

occur, at least in the month of Farvardin, making it comparable to the North American west 

coast, Europe, Chile, and other regions of the world. 

To robustly investigate the influence ARs have in the region during Farvardin, the 

climatology of ARs and AR precipitation over Iran during the month of Farvardin is 

investigated using the Rutz methodology and the multi-decade PERSIANN-CDR precipitation 

dataset over 1990-2019. The 30-year duration was chosen in compliance with the standards 

of the World Meteorological Organization (WMO). Figure 6.3 explores three metrics that 

seek to investigate how ARs impact Iran during Farvardin, specifically regarding frequency 

and its link to precipitation. In the Zagros mountains, precipitation and IVT are correlated to 

values as high as 55%, including the greater Tehran metropolis. Moreover, moderate 

correlations of 35%-45% exist across the entirely of north and central Iran. AR frequencies 

are greatest along the coast of the Persian Gulf and the Gulf of Oman up to the foot of the 

Zagros Mountains, where they occur on average 7-10% of the month, or up to 3 days a month. 

Thus, two similarities between the climatology of Iran and California are observed: the high 

correlation between IVT and rainfall, especially in topographically complex regions (Rutz et 

al., 2014) and the high frequency of elevated IVT fluxes that perpendicularly strike a 
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prominent mountain range. In addition, the fraction of AR rainfall is over 50% in the 

southern part of the country. Owing to these similarities, it can established that 1) 

atmospheric rivers at IVT fluxes required by the Rutz methodology (impact-linked) are non-

insignificant players in Iran’s Farvardin hydroclimate, meaning 2) The Rutz methodology 

and others that aren’t linked to climatological averages, like what is done in Defuzli (2019), 

are appropriate to use in the region for AR-related studies. In this study, we investigate the 

contribution of ARs on heavy precipitation using IVT and gauge information.  

Despite the breadth of analysis done in this study regarding ARs over Iran and their 

perceived link to heavy precipitation events, it is vital to note that establishing a concrete 

link between ARs and heavy precipitation requires numerical modeling simulation as 

described by Davolio et al. (2020) and such research should be conducted before solid 

conclusions can be made. Such numerical simulations are outside the scope of this study. 
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Figure 6.3 Climatology of ARs over Iran during Farvardin, using 1990-2019 baseline period. a) The 
correlation of 24-hr (00z-00z) IVT averages to 24-hr precipitation accumulations from PERSIANN-

CDR. b) Frequency of AR conditions. c) Fraction of precipitation.  

6.3.3.  Performance measurements 

Categorical evaluation statistics including Probability of Detection (POD), False Alarm Ratio 

(FAR), Critical Success Index (CSI) are utilized to evaluate the performance of the PERSIANN-

CCS dataset for detecting rain/no rain pixels. Continuous indices including Pearson’s 

correlation coefficient (CC), Root Mean Square Error (RMSE) and Bias (BIAS; 

BIAS=estimation-observation) are used to assess the accuracy performance of PERSIANN-
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CCS in estimating the rainfall intensity (Wilks, 2011). A value of 1 mm/day is utilized as a 

rain/no rain threshold in both PERSIANN-CCS estimates and ground-based gauge 

observations. 

6.4.  Results and Discussion 

Figure 6.4 displays the spatial map of the accumulated precipitation for the month of 

Farvardin during the period from 2003 to 2020 using PERSIANN-CCS data. The mean 

monthly precipitation during Farvardin for this period was 86 mm. For the most recent 

years, the average precipitation was 107 mm (in 2018), 178 mm (in 2019), and 100 mm (in 

2020), all of which were higher than the baseline mean precipitation from 2003 to 2020. 

Furthermore, the year 2019, when Iran experienced many floods, was the wettest year in the 

last two decades. In addition, Figure 6.4 reveals that the spatial pattern of accumulated 

precipitation varies among different years. The greatest concentration of rainfall occurred 

over northeastern Iran in 2003 while southwestern Iran experienced the bulk of 

precipitation in 2019.    
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Figure 6.4 Accumulated precipitation estimates for the month of Farvardin over Iran from 2003 to 
2020 using PERSIANN-CCS estimates. 

6.4.1.  Evaluation of PERSIANN-CCS for 2019 

As discussed in the introduction, Katiraie-Boroujerdy et al. (2020)and Mosaffa et al. (2020) 

evaluated the performance of the daily PERSIANN-CCS estimates over Iran for the period 
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prior to 2018. The intention of this study is not to evaluate the capability of PERSIANN-CCS 

for precipitation estimation, but rather evaluate rainfall totals during Farvardin 2019 against 

ground-based observations for the provinces that experienced floods. Table 6.1 presents 

spatial averages of categorical and continuous evaluation metrics over four selected 

provinces: Fars, Ilam, Kermanshah, and Lorestan. These are among the provinces that 

reported the greatest flooding damages during the Farvardin 2019 floods. In terms of 

categorical statistics, POD and FAR values are 0.78 and 0.28 over these provinces, 

respectively. PERSIANN-CCS with 0.65 (0.53) has the best (worst) performance in terms of 

CSI over Kermanshah (Ilam) province. According to continuous statistical metrics, the 

correction coefficient (CC) is approximately 0.55 in the selected provinces and the highest 

CC values appear over the Ilam province with the value of 0.75. Also, RMSE ranges from 16.55 

to 23.14 mm/day. In terms of bias, PERSIANN-CCS mainly overestimates (BIAS>0) 

precipitation intensity. When comparing our results to those of previous studies which 

evaluated different satellite precipitation products over Iran (Alijanian et al. 2017; Mahbod 

et al. 2019; Moazami et al. 2013; Mosaffa et al. 2020), it must be pointed out that PERSIANN-

CCS performs better than other near-real time products during Farvardin 2019. 

Table 6.1 Statistical evaluation of daily PERSIANN-CCS over selected provinces. 

 Average on 

selected 

Province 

Fars 

Province 

Ilam 

Province 

Kermanshah 

Province 

Lorestan 

Province 

POD 0.78 0.83 0.71 0.76 0.79 

FAR 0.28 0.37 0.32 0.18 0.21 

CSI 0.60 0.55 0.53 0.65 0.64 

CC 0.62 0.48 0.75 0.47 0.69 

RMSE 

(mm/day) 

19.97 20.10 21.95 16.55 23.14 

BIAS 

(mm/day) 

3.44 6.38 6.31 0.96 1.37 
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Figure 6.5 presents the spatial distribution of POD, FAR, CSI, CC, RMSE, and BIAS over the 

four selected provinces. This figure shows that POD values in all stations is above 0.75 except 

a station in the north of Fars province and a couple of stations in the middle of western 

provinces which have POD about 0.6. Western provinces including Kermanshah, Ilam, and 

Lorestan have lower FAR than the Fars province in the south of Iran. Except for a few stations 

with CSI below 0.5, mostly found in the Fars province, other stations have CSI greater than 

0.5. The spatial distribution of CC indicates that the PERSIANN-CCS algorithm has better 

performance over the western provinces than over Fars. According to Figure 6.5, CC in 

regions that experienced heavier precipitation is higher than in the other regions.  Stations 

in the Lorestan province have the highest RMSE compared with other stations. On the 

contrary, stations in the south of Fars and Kermanshah provinces have the lowest RMSE. 

Although precipitation is overestimated (BIAS>0) in most of the stations, results of BIAS in 

the north of the Kermanshah province and a couple of stations in the east of the Lorestan 

province shows an underestimation of precipitation. Comparing with the conducted 

evaluation studies for near-real time precipitation over Iran, PERSIANN-CCS has the 

potential to be used as a candidate for short-term duration precipitation studies.  

 

 

Figure 6.5 Spatial distribution of different statistical evaluation metric over the four selected 
provinces. 
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6.4.2.   Temporal variations of heavy precipitation events during the period 2003 to 

2020 using PERSIANN-CCS estimates   

To quantify how the number of floods has been increasing during the last three years, we 

plot the frequency, intensity, duration, and volume of precipitation for the period 2003 to 

2020 over the study area (Figure 6.6). For this purpose, we apply the CONNECT algorithm 

with a 3mm/3-hour threshold on the PERSIANN-CCS estimates for the period 2003 to 2020 

for the month of Farvardin across Iran. The frequency (Figure 6.6a) of heavy precipitation 

events—events with more than 3mm/3-hour rainfall—does not show a significant change 

across the country during the month of Farvardin. The average number of intense events is 

97; however, the highest number is 151 events occurring in 2019. The variations in intensity 

of heavy precipitation events (Figure 6.6b) demonstrate that the average magnitude of heavy 

rainfall has increased during the last three years. The average intensity of heavy 

precipitation events is 15.7 mm/3-hour for the whole period compared with 55.3 mm/3-

hour in 2018, 79.0 mm/3-hour in 2019, and 30.1 mm/3-hour in 2020. These results are 

consistent with the increase in the number of floods reported across Iran during the last 

three years. The average duration of heavy precipitation (Figure 6.6c) was 14.2 hours during 

the last two decades, while peaking to 23.8 hours in 2019. The average volume of heavy 

precipitation (Figure 6.6d) during the month of Farvardin for the whole study period is 0.7 

km3/event, while an average of 0.97 km3/event was recorded over the last three years of 

the study. The total volume of heavy precipitation per year (Figure 6.6e) was 77 km3 on 

average, compared with an average of 132 km3 of precipitation occurring during the last 

three years. Most notably, the total precipitation volume was 191 km3 in 2019.  Overall, we 

can conclude that the increase in intensity, average volume per event, and total volume of 

heavy precipitation are the main reasons for the increases in the number of floods during 

the last three years over Iran.  
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Figure 6.6 Temporal variations of heavy precipitation events during the period 2003 to 2020 using 
PERSIANN-CCS estimates. 

6.4.3.  Investigating atmospheric river presence during heavy precipitation events 
from 2003 to 2020 

 The Rutz et al. (2014) methodology was used to determine whether there was AR activity 

during the most extreme Farvardin rainfall events every year during 2003-2020, including 

extra significant events in 2019 and 2020. As Rutz is considered a permissive methodology, 

which implies an enhanced possibility of non-AR IVT features being classified as ARs, we 

further checked to see if AR activities existed over any area in Iran for at least 24 hours, 

thereby ensuring that an event satisfies the requirements of an “AR-1”, the weakest category 

for an AR from the scale introduced by Ralph et al. (2019).  

Over the study period, it was observed that AR conditions existed during every year’s most 

extreme events, along with the two extra extreme events in 2019 and 2020. Among them, 

only three years (2010, 2011, and 2013) had AR conditions for less than 24 hours, with the 
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shortest (2011) that lasted for 9 hours. Furthermore, some events, such as the extreme 

rainfall event of 2004, could be traced back to multiple AR events affecting different regions 

of Iran.  

Dezfuli (2019) observed that the sources of moisture for ARs that impact Iran come from the 

surrounding bodies of water, including the Mediterranean Sea, the Caspian Sea, the Persian 

Gulf, the Red Sea, and the Atlantic Ocean. From our analysis, we identify that the sources of 

moisture for ARs in the region are from the Atlantic Ocean via a northern Africa pathway and 

from the Red Sea via the Red Sea Strait (Bab-el-Mandeb). These pathways are also 

recognized in Esfandiari and Lashkari (2020). In Figure 6.7, we showcase the three most 

observed AR lifecycles in the region: 1) those that propagate from the Atlantic Ocean over 

northern Africa without significant influence from the Red Sea (Figure 6.7c, Figure 6.7d) 

driven by the Saharan anticyclone (Shay‐El et al. 1999), 2) those with moisture chiefly 

coming from the Red Sea (Figure 6.7b) via the Red Sea Strait driven by a moisture transport 

at the 850 hPa level following a favorable position of the Arabian cyclone and mid‐

tropospheric troughs (Raziei et al. 2012) and 3) those which are created by merging bodies 

of moisture from both the Red Sea and the Atlantic Ocean (Figure 6.7a, Figure 6.7e), though 

the timing between ARs can vary between being simultaneous (Red Sea and African moisture 

at the same time; 2003 and 2019) and being subsequent (one source of moisture followed 

by other). Of these two different timings, it is the former that produces the events of greater 

volume, with the precipitation events of 2003 and 2019 being 4th and 1st heaviest by rainfall 

volume.  

Table 6.2 showcases each AR with its pathway, determined by examining IVT objects at the 

200 and 250 kg m-1 s-1 levels. Of the AR examined, three were found to come from moisture 

via the African pathway, seven from the Red Sea Strait, ten from both sources, and two from 

other sources (Gulf of Aden and Arabian Sea). This means that out of the 22 observed ARs, 

17 were reliant on moisture fluxes from the Gulf of Aden while 13 could be linked to moisture 

transport over the African continent. Furthermore, each AR was ranked by the amount of 

precipitation it produced over Iran as calculated by CONNECT. The three highest ranking 

ARs all come from the three different AR classes, each occurring within the 2018-2019 

period. Afterwards, ARs with moisture from both sources make up 7 out of 10 of the ARs 
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ranked 4th to 13th, yet only 3 out of 9 of the ARs ranked 14th onwards are from both sources. 

In summary, ARs with moisture from both the African and Red Sea sources are the most 

frequently observed ARs that coincide with heavy precipitation over Iran. 

Table 6.2 The heaviest precipitation events during 2003 to 2020 and the presence of ARs bringing 
moisture over north Africa (“Af”) or the Red Sea (“RS”) during the event period. 

Date AR

? 

>24 

Hours 

Pathway Rainfall Volume 

(km3) 

Ran

k 

22 March - 26 March, 

2003 

Yes Yes Af & RS 34.22 4 

April 1 - April 6, 2004 Yes Yes Af & RS 12.49 13 

April 13 - April 19, 2005 Yes Yes RS 12.33 14 

27 March - 31 March, 

2006 

Yes Yes RS 11.71 15 

24 March - 27 March, 

2007 

Yes Yes Af & RS 17.09 10 

April 6 - April 10, 2008 Yes Yes Af & RS 11.25 16 

29 March - 2 April, 2009 Yes Yes Gulf of 

Aden 

9.48 20 

26 March - 29 March, 

2010 

Yes No RS 9.87 17 

3 April - 8 April, 2011 Yes No Af & RS 18.71 8 

26 March - 31 March, 

2012 

Yes Yes RS 13.48 11 

4 April - 8 April, 2013 Yes No Arabian 

Sea 

22.53 7 

1 April - 4 April, 2014 Yes Yes Af & RS 9.07 21 

28 March - 1 April, 2015 Yes Yes Af & RS 9.51 19 

11 April - 15 April, 2016 Yes Yes Af & RS 12.91 12 

23 March - 28 March, 

2016 

Yes Yes Af & RS 17.94 9 
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12 April - 16 April, 2017 Yes Yes Af 26.57 6 

21 March - 26 March, 

2018 

Yes Yes Af 54.29 2 

22 March - 27 March, 

2019 

Yes Yes Af & RS 78.99 1 

31 March - 6 April, 2019 Yes Yes RS 44.94 3 

20 March - 25 March, 

2020 

Yes Yes Af 8.17 22 

27 March - 1 April, 2020 Yes Yes RS 9.84 18 

11 April - 18 April, 2020 Yes Yes RS 29.92 5 

 

 

 

Figure 6.7 AR presence during the most severe heavy precipitation events during 2003 to 2020: a) 
2003 b) 2012 c) 2017 d) 2018 e) 2019. 
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Figure 6.8 PERSIANN-CCS estimates correspond to the heavy precipitation events shown in Figure 
7. 

 

Figure 6.8 shows the accumulated amount of precipitation occurring during the events 

shown in Figure 6.7. The most extreme event that occurred in Farvardin 2003, which was 

ranked the 4th greatest event by volume and propagated from the Red Sea and the Atlantic 

Ocean, mainly occurred in northeastern Iran. On the other hand, the heavy precipitation that 

occurred in Farvardin 2019 that involved the most extreme events in terms of volume during 

the last two decades and had similar pathway to that from 2003 mainly occurred over 

Southwestern Iran. This figure shows precipitation from the most extreme events in 2003, 

2012, 2017, 2018, and 2019 and highlights that extreme events in recent Farvardins (2018 

and 2019) are heavier than those of the past. 

6.5.  Conclusion  

Spring precipitation, especially during the month of Farvardin, is important for Iranian 

agriculture. Over the past few years, an increase in the number of floods occurring after 

unprecedented rainfall events during the month of Farvardin have affected millions of 

people across Iran, caused the loss of life, damaged infrastructure, and engendered 
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substantial economic losses in Iran’s agriculture sector. The apparent increase in the number 

of floods during the last three years (2018 to 2020) led us to investigate the variations in 

different aspects of heavy precipitation events like intensity and frequency, as well as their 

associated mechanisms during the month of Farvardin. To our knowledge, there is no study 

which explores the precipitation variations and mechanisms during this month.  

The previous studies over Iran mainly focused on analyzing heavy precipitation at daily 

scales over the whole year. However, there is a need to assess the flood-causing short-

duration heavy precipitation that occurs in early spring. In addition, using a limited number 

of synoptic gauge observations has hindered the ability to explore the variations in 

precipitation at a high spatial resolution. In this study, we applied the CONNECT algorithm 

with a 3mm/3-hour threshold on the PERSIANN-CCS estimates at 0.04° spatial resolution to 

explore the variations in frequency, intensity, duration, and volume of heavy precipitation 

during Farvardin for the period from 2003 to 2020. The results indicated that increases in 

intensity and volume of heavy precipitation are the main reasons for the rising number of 

floods during Farvardin over the years 2018-2020. However, a significant increase in 

frequency and duration of heavy precipitation are not observed. The results also show that 

the frequency, intensity, duration, and volume of heavy precipitation was the highest in 2019 

during the last two decades based on the PERSIANN-CCS estimates. This is also supported 

by the International Emergency Events database1 which ranked the floods in Farvardin 2019 

as the costliest economic loss in Iranian history during the last two decades. Spatial analyses 

revealed that heavy precipitation events occurred over almost the entire country in 

Farvardin during the period 2003 to 2020 with the heaviest volume of rainfall hitting 

southwestern Iran in 2019 and the second highest volume in northeastern Iran in 2018. In 

addition, we observe that the spatiotemporal distribution of heavy precipitation events 

extracted by the CONNECT algorithm are consistent with extreme events occurred over Iran. 

Investigating the presence of AR conditions on heavy precipitation events that occurred 

during the month of Farvardin revealed that ARs exist during every year’s most extreme 

events. In addition, we classify the AR pathways that occurred in the country during 

 

1 https://www.emdat.be/ 



 120  
 

Farvardin into three main categories. 1) ARs that propagated from the Atlantic Ocean via 

North Africa driven by the Saharan anticyclone, 2) ARs that propagated from the Red Sea via 

the Red Sea Strait and are influenced by the Arabian cyclone and mid‐tropospheric troughs, 

3) ARs created by merging bodies of moisture from both the Atlantic Ocean and the Red Sea. 

Our further investigations revealed that 8 out of 13 of the largest ARs over Iran come from 

moisture plumes with pathways over the African continent and the Red Sea. 

Although this study mainly explored the variations of short-term precipitation over Iran for 

a specific month, the same procedure can be followed for other regions. This study 

highlighted that the high spatial (0.04°) and temporal (3-hourly) resolution of PERSIANN-

CCS at a global scale is an attractive feature for analyzing precipitation variations, especially 

over the countries with limited rain gauge observations. In addition, the CONNECT 

algorithm, which is an object-oriented tracking algorithm, can be used for the investigation 

of natural hazards associated with AR events such as floods and mudslides over different 

regions. 
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