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A FAST MOM SOLVER (GIFFT) FOR LARGE ARRAYS OF
MICROSTRIP AND CAVITY-BACKED ANTENNAS

B. J. Fasenfest*', F. Capolino2, D. R. Wilton3

1) Lawrence Livermore National Laboratory, Livermore, CA, USA.
2) Dept. of Information Engineering, University of Siena, 53100 Siena, Italy.
3) ECE Dept., University of Houston, Houston, TX 77204-4005, USA.

INTRODUCTION AND SUMMARY OF THE GIFFT METHOD
A straightforward numerical analysis of large arrays of arbitnary contour (and possibly missing
elements) requires large memory storage and long computation times. Several techniques are
currently under development to reduce this cost. One such technique is the GIFFT (Green's
function interpolation and FFT) method discussed here that belongs to the class of fast solvers for
large structures. This method uses a modification of the standard AIM approach [1] that takes into
account the reusability properties of matrices that arise from identical array elements. If the armay
consists of planar conducting bodies, the array elements are meshed using standard subdomain
basis functions, such as the RWG basis. The Green's function is then projected onto a sparse
regular grid of separable interpolating polynomials. This grid can then be used in a 2D or 3D FFT
to accelerate the matrix-vector product used in an iterative solver [2]. The method has been
proven to greatly reduce solve time by speeding up the matrix-vector product computation. The
GIFFT approach also reduces fill time and memory requirements, since only the near element
interactions need to be calculated exactly. The present work extends GIFFT to layered material
Green's functions and multiregion interactions via slots in ground planes. In addition, a
preconditioner is implemented to greatly reduce the number of iterations required for a solution.
The general scheme of the GIFFT method is reported in [2]; this contribution is limited to
presenting new results for array antennas made of slot-excited patches and cavity-backed patch
antennas.

FEED REGION AND RADIATION REGION: DEFINITION OF
INTERPOLATION DOMAIN

The antenna structure is shown in Fig. 1. In particular, the region above the ground plane may
include a multilayered substrate withN conducting patches fed by a slot. Below the slot, the feed
of each antenna is assumed not to interfere with the feed networks of other antennas. Mutual
coupling between the patches and the slots is considered in the region above the ground plane.
Therefore, the only approximation used in this approach is to neglect coupling between the
microstrips and slots in the region below the lower ground plane. The multiport analysis obtained
from this approach may be subsequently used as a multiport equivalent network for designing (or
refmiing) the actual feeding network. Array scan blindness, grating lobe, and array edge effects are
correctly taken into account since they are produced by the mutual coupling above the ground
plane. Voltage generators VP, with p = (pi Ip2)a generic double index, are defined on the
microstrips below every slot (see Fig. la). The array is decomposed into blocks of elements with
each element denoted by the two-component multi-index p; a prime is added to distinguish
source from observation element locations (p' = (p, p)). Within each block representing an
element, the electric and magnetic currents are expressed in terms of the usual basis functions. For
example, for the patch antennas in Fig. I (a,b) the vanishing of the tangential electric field (EFIE)
is imposed on every patch element and on the microstrip lines, while on the slots we impose
continuity of both the electric and the magnetic field (MFIE). Electric current unknowns are
defined on the conducting patches [Iln] and microstrip ([I,,P]) while magnetic current

unknowns [tVP.] are placed on the slots, resulting in the system equation
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(An analogous equation holds for the array of cavity-backed antennas.) The + or - superscripts
denote operators for regions above or below the ground plane. The matrixZPP is the EFIE
operator conncting blocks p and p', and Y"'is its dual, representing the magnetic field due to

magnetic current sources; 8i is the corresponding MFIE operator. Subscripts m and n denote
unknowns within the p and p' cells, respectively. The corresponding matrices ZL, YL,, and fl n
that appear on the diagonal blocks represent the coupling below the ground plane on?? each
element; they affect only the p = p' self blocks because the Kronecker delta 9P = I for p = p',
and gp,,. =0 for p * p'. Note that the number of subblocks in the first matrix in (1) grows as the
square of the number of array elements while the second matrix is the same for all the array
elements. In standard MoM, for large arrays the first matrix requires huge resources of memory,
fll time, and solution time. The computational difficulty aises from the upper region because of
the coupling between all the array elements. The numerical burden is reduced by applying the
GIFFT method to this region.

The GIFFT method begins by setting out a regular gnd of Green's function interpolation points
across the entire array. The points are typically chosen so there are five or six points per half-
wavelength array cell. The points are used as equi-spaced interpolation nodes for Lagrange
interpolating polynomials that approximate the Green's function as

G(r - r') L, (r) G,,. L, (r')

where ii, are double indices representing interpolation point locations overlaying the observation
and source cells, respectively. Every necessary component of the various scalar and dyadic
Green's functions required for the problem is sampled for every separation of source and
observation interpolation point. It can be seen from the above that the Green's function
approximation is of convolutional form, and a matrix-vector product involving it may utilize an
FFT. After the Green's function is sampled, the basis functions in the upper region (where
coupling between array elements is assumed) are projected onto the interpolating polynomials. A
correction is performed for neighboring elements by computing the nine interactions of a cell with
its neighbors exactly. An iterative solver is then used that employs the FFT to perform the
discrete convolution associated with the computation of matrix/vector products. Because there
exist several non-zero components of the Green's function dyads for both electric and magnetic
vector potentials, several multiplications must be carried out in the FFT domain, combining each
vector component of the tansformed currents with associated components of the dyadic Green's
functions.
For the cavity-backed antenna the unknowns are placed on the various slots of the cavity (and thus
not on the patch itself), and on the feeding microstrip below the slot (see Fig.l). A cavity Green's
function is used, accelerated with the Ewald method.

When using an iterative solver such as BiCGStab on a very large matrix system, the solution may
converge vexy slowly if conditioning is poor. For this reason, a block diagonal preconditioner is
implemented to improve the sohition time. The preconditioner used here simply inverts the self-
matrix block and uses this as a preconditioner. Physically, this is equivalent to using the no-
coupling solution for a single array cell as the preconditioner, and has been found to be highly
effective in practice.
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RESULTS
Two test arrays are simulated with different structures and the results of the GFFT1 method both
with and without preconditioning are compared to an "exact" MoM solution of these arrays. The
"exact" solution does not use interpolation or fast multiplication, but utilizes an iterative solution
(without preconditioning) and the Toeplitz nature of the matrices to speed fill time and storage.

The first case considered is an array of 25 x 25 square patches as shown in Fig. 1, arranged on a
rectangular lattice with periods 30[mmJ, and placed on a grounded dielectric substrate. The feed
slot has dimensions 1O[mm]xl[mmJ and is located 7[mml off the center of the patch. The
microstrip under the ground plane has width of 1.6[mmJ, and a length of 11.92[mmJ that includes
an open stub of length 11.67[mmJ. Each patch, slot and microstrip is meshed using quadrilaterals,
creating 128 unknowns per array element. The GIFFT method uses fifth-order interpolating
polynomials in both planar directions. Table 1 shows the run times for the standard MoM and
GIFFT solutions of the two arrays. It can be clearly seen that the GIFFT method offers a dramatic
savings in both setup and solve times. It can also be seen that use of the preconditioner drastically
reduces the number of BiCGstab iterations needed for a solution, fusther reducing solution time.

Table 1: Matrix setup (fill) and solve times for GIFFT and standard MoM
Setup
lime Solve Time Number Iterations

25x25 array of patches
MoM w/ Toeplitz fill 9 hr 11 min >100

per single BiCGstab Program stopped earlier
iteration

FAIM w/ preconditioner x 25 min a 2 min (all 8
iterations)

4x4 array of cavity-backed
antennas
MoM w/ Toeplitz fill 43min z 9hr 13000 (BiCGstab err =5%)
GIFF w/ preconditioner z 13 min 20 s 24

1Oxl0 array of cavity-backed
antennas
GIFFTw/preconditioner 16min x 3 min 34 (BiCGstaberr =I%)

The GIFFT method also drastically reduces memory storage requirements. For example, for the
625 = 25 x 25 square patch array, each element is discretized using n = 128 basis functions on the
patch and the 38 on the slot and microstrip, requiring storage of 16,384 complex numbers for each
p,p' block [z] of the impedance matrix. Instead, using GIFFT with a fifth-order interpolation
scheme, only 25 Green's function samples per cell are stored. For layered media, this number
must be multiplied by the number of unmque dyadic and scalar potential terms used in the mixed-
potential formulation. The GIFFT storage advantage is further amplified by the fact that if there
are M = 625 array elements in the square array, there are Ae = 390,625 matrix blocks in the
complete matrix, which is why Toeplitz storage is used. For the 25 x 25 array, this means that the
system matrix for a standard solution would contain about

117x117xA 2 +16 x 16xM = 5.3 x 109 complex entries (a Toeplitz implementation would
reduce the number to 1.7x107), while there are only 25x4x6xM =3.7xIO' entries in the
sampled Green's function array (the factor 4 accounting for padding to make the Green's function
sampling matrix circulant) in addition to near-interaction blocks [2].
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The second example consists of an array of cavity-backed patch antennmas, as shown in Fig. 1.
Each patch antenna is suspended on a thin dielectric substrate layered on top of a cavity, which is
in turn fed by a slot excited by a microstrip line with stubs. For each array element there are 276
unknowns for a total of 27,600 unknowns. As can be seen in table, the GIFFT set up and solution
times are reduced, even for this small 4 x 4 array antenna. After 13,000 BiCGstab iterations, the
relative error of the MoM solution, without preconditioner, was still of the order of 1%-5%, while
the GIFFT solution reached the target 104 relative error. The average error between the MoM and
the GIFFT solutions, counting all the unknowns, is 3.8%, with the high error likely due to
comparison with the non-converged MoM results.
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Fig. 1. Two types of array elements: patch antennas, and cavity backed patch antennas.
Lateral views (a), (c). Top views (b), (d). In both cases GIFFT may take into account a

multilayer environment. Each array element p is fed by an independent microstrip hne
excited by a V: voltage generator (here p=(p1, p2) denotes a double index). The array

elements are coupled via the radiation region, i.e., the region above the lower ground plane.
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