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I. INTRODUCTION 

· iA. Phenomenological .Approaches 

Much progress baa been made in Wlderatanding the molecular 

origins of the mechanical behavior of gases and liquids. In contrast 

the equivalent description of the plastic behavior of crystalline solids 

in terms of atomic mechanisms of deformation has only recently been 

initiated and progress has been slow. The reason tor this fact ca.nno~ 

be attributed to a lack of interest, the failure to pursue the problem, 

a deficiency of highly qualified scientific talent, or any one of a number 

of similar possibilities. Rather it is intimately associated with the 

complexity of the problem. The relaxation times for molecular proc­

esses in gases and most liquids are usually so short that they are almost 

always in a well-defined state of complete equiUbrium. Consequently 

the molecular structure o( gases and liquids are not dependent on thei-r 

past histories. In contrast the relaxation times for some signiflcant 

atomic processes in crystals, as we shall see later, are so long that 

complete equilibrium is seldom if ever achieved. It is for this reaz;,on 

th~t metals el,hibit the desirable feature of strrun hardening, as Bllo'l.vn 

in Fig. 1.1. (1) For 1l the relaxation tim~s for all processes were Ghorts 

the structure would recover almost immediately to its equHibrium con ... 

dition and a constant stress for plastic flow would result regardless of. 

the extent of the deformation. 

If the reln.xation times for all snb~3tructural modtflcnUc,ns that 

are induced as a result of straining were infinitely long, howmrer, o. 

mechanical equaUon of state 

(1.1) 
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might be expected to be valid.' Accordingly the flow stress, cf , would 

then be a \mique function of the instantaneous values of the strain, E . , 
the strain rate~ .{ · , and the test temperature, T. regardless of the . . 

previous strain history. But it is well known that tension tests conducted 

at high temperatures, B of Fig. 1.1, begin to give stress•stra.in curves 

that approximate C of Fig. 1. 1. Consequently at high temperatures, ·. 

at least, the relaxation times for some substructural modif1catlons 

become significantly short. Under these circumstances recovery of 

the substructure ~Ul continue, even during interruption of the test, so 
• 

that, if the test were subsequently ·restarted, the substructure would no 
•,. 

longer be a unique function of the strain alone end Eq. 1.1 would be 

invalid. 

As shown 1n Flg. 1 • .;a<a) Eq. 1,1 is also invali,d tor tests con-

. ducted at low temperatures. Whereas the stress-strain curve AED•'.~, 

was obtained exclusively at ?a•K, ABCF was obtained by straining to B 

at 292°K whereupon the test was contin::ecj at 78°1{. If Eq. 1. 1 were 

valid, point C would have coi~c:ided with D, whereas segment CF actually 

coincides much better with ED. Even this comparison is. approximate 
' 

since CF has a slightly greater slope thon ED. Obviously less drastic 
.. , ' ' ' ' . 

substructural changes are introduced at the same strains for the higher 

temperature test. This suggests that higher rates of recovery accompany 
; 

the higher temperature teat. But, when a specimen prestrained from A 

to B is unloaded end held at 29.2°1~ even for very long times, it will, 

upon reloading, ac,;air;a give the stress-strain curve BH showing that no 

:recovery took place. Therefore the recovery that took place durin.g 

'tetlGile testing muGt hnve occurred as a result of the effect of stress on 
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to cross slip of dislocations. Dislocation climb, usually only observed 

above one•half of the melting temperature, represents another dynamic 

recovery process •. 

We now see that the mechanical equation of state, as expressed 

by Eq. l.lis seldom valid. In fact there is only one known example of 

the valldit,y of Eq. 1. 1 and this concerns the plastic behavior of single 

crystals of FCC metals at very low temperatures and then only over 

Stages I and n of easy gllde and Unear hardening. In these regions the 

deformation mechanism has been ascribed to the thermally activated 

intersection of dislocations(3•9) as will be discussed in d~teJ.llater .• 
Once the stress becomes high enough to induce parabolic strain harden­

ing. dynamic recovery due to cross slip takes place.· and Eq. 1. 1 is no 

longer applicable. Of course the Peierls(ll, 12) process at low tem· 

peratures, which will be discussed later, may also obey Eq. 1.1, but 

there is aa yet no definitive experimental evidence for the operation of 

the Peierls mechanism • 

Although Eq. 1.1 is usually invalid, each thermally activated 

deformation mechanism can always be described in terms of the general 

phenomenological expression 

where / refers to the l th kind of mechanism and 

'ft the shear strain rate 

u. a) 
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{) ,., {l {·T. T srr} • a frequency factor that equals the straln 
' ~ I ) 

per activation per second 

4' U;. { ~ r> $<'""} • the energy or s.cttvauon per untt l th 

process 

~a the Boltzmann constant 

.. Ta the absolute temperature 

r II the applied Shear, StreSS 

sh·. the significant substructural details • 

. ~: As shown by Eq. 1. 2, the substructure rather than the strain is the 

significant variable that determines the plastic behavior of crystalline 

materials. Consequently • only for those processes for which str. is a 

unique single-valued function of the strain, does the universally valid 

expression for thermally activated flow, given by Eq. 1. 2, reduce to 

Eq. 1. 1. In general several differEmt processes may be operative at 

one time. If they are sequential, such that C follows B which follows 

A, the strain rate that is observed will refer, under steady state con• 

ditions, exclusively to the· slowest process. But when the mechanisms 

are independent the total strain rate will be given by · 1 ~ L t . · 
Appropriately high thermai tluctuaUons, needed to activate high activa• 

tlon energy processes, wlll be too infrequent to contribute much to the 

strain rate at low temperatures. Consequently only the .more easily. . . 
activated processes having low activation energies can contribute to the 

strain rate at low temperatures. At higher temperatures, however, the 

lower activation processes will occur almost instantly and further 

deformation will therefore depend on activation of the more difficult, 

higher activo.tion energy, processes. Consequently, in general, the 

activation energy for ·deformation, will increase with increasing temperature. 

• 
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V/l-wn only orv:" nt•'}dw.niFJ.m predorninntes, the activ~.tion cncr~:,y can he.~ 

vc:ry clo;.•r::ly ~~~-Jtirn<:ttr.~d by the effect of an abrupt change in ternperature with 
' 

""""' -
(1. 3) 

as shown by differentinting T~q. 1.2 and neglecting the truly negli~;ihle chnnge 

in ·r1 1NHh T. 

The nppUcntion of the m~pe:dmen.tal proc0dure for obtaining the ~pparent 

, a.ctivr;.tion eneq;y for creep of .Al io shown in Fig. 1.3. (1S) Over region A to B 

the creep rate decreases with strain in spite of the fact that all of the exte1·nal 

'irar.iableG of stress and temperature were held constant. Consequently this 

reductinn in Uv~ creep rate mu1~t be ascr-ibed to the subr:Jtructural ehangea tald.ng 
'-

place during creep. V/hen the tcmp1:~rature is d'~Cr<~ased at B the creep rnte 

decreanes as demnndecl for tbcrmally activated proceaseB, and when the orit~inaf 

temperature is again re£:Jtorcd creep again proceeds at the faster r.at'e., In this 
I ~ ' ' 

.. example, the segment CD is rherely a contirmation or" AB suggesting that the 
·' . 

substructural changes taldn~ place from. B' to C' were the same as those which 

would have occurt .. cd from B to C had the original temperature been b;eld ~onsta,nt.rc; 

. 1'his observation holds quite frequently, especially at high temperatures and for 

small changes in temperature.. The apparent activation energy obtained by 

applying Eq. 1.3 to these data is shown in F.ig. 1.3. 

When the apparent activation energy for creep is determined( over 

the entire rau;-~e of intersecting temperatures, results such as those 
. (lit) 

· shown m. l!ig. 1.4 ·· for Al are obtained. The expected 'trc~ld of 
-

incrcaoing apparent activntion ener;::;ies with increasing temperatures 

is obtained. It is significant however, that these testa were conducted 

-5 for ci'eGp rates of D.bout 10 per second. f-\s will. be shown later, for such 

conotant strain rate conditions certain processes (e. g., interGection and 

the th2rrnnlly nctiv:1tcd motion of jog screw dislocations) wherein 
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the activation energy is a function of the stress, will give activation 

energies that increase linearly with the absolute temperature. There 

can be rto doubt that various mechanisms of deformation are operative 

over the various temperature regions. We might tentatively suggest ' 

· the following: 

·A. Intersection of dislocations 

· B. Transition from intersection to cross sUp 

c. Cross slip .' ' 

D. Principally motion of jogged screw dislocations with some 

cross slip and some cllmb 

E. Climb of dislocations 

Only those mechanisms for which the ac·uvation energy is less 

than about 50kT con occur frequently enough to contribute effectively to 
I 

the strain rate. There are a number of important processes that have 
I 

much greater activation energies; and such processes muat be induced 

to operate almost exclusively mechanically by applying sufficiently high 

stresses. Among these are the following: 

A. Generation of dislocations either at a Frank-Read source or 

at points of high stress concen.tration 

B. Separation of recombined dislocations 

c. Motion ot dislocations through 1ong•range stress fields 

induced by other dislocations 

D. Motion ot dislocations through short-range ordered alloys 

E. Activation of Suzuki-locked dislocations 

An example of the effects ot long-range back stresses and 

possibly a small amount of effects of short-range order are illustrated, 

. -
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for a dilute alpha solid solution alloy of 0. 554 at. % Mg in Al. in 

Fig. 1. 5. (lS) Over region AB the flow stress decreases with 1ncreaa• 

1ng temperature as required by thermally activated processes, the 

. mechanism in this case being intersection. But over region BC the 

flow stress is almost independent of the temperature; as required when 

the proces.s is not stimulated by thermal fluctuations. In this region 

intersection is so facile because of its low activation energy, that it 

occurs without delay. And the stress must, without the aid of thermal 

, ,
1 

; .. fluctuations, force dislocations through the ehort·rtmge ordered alloy 

and over the long-range stress fields. Over the higher temperature 

range, deformation again is controlled by the more difficult thermally 

activated mechanisms of cross slip, motion of jogged screw dislocations 

and, over the highest temperature range, cUmb of dislocations. 

Another example of an e.thermal process is shown by the single 

crystal data given in Fig. l. 6. (lG) The critical resolved shear stress 

for slip is practically independent of temperature up to about halt of the 

melting temperature and it increases slightly with an increase in tem­

perature as the melting temperature ls approached. FUrthermore the 

critical resolved shear stress for slip increased only slightly when the 
. . 8 . 

strain rate was increased about 10. times. This insensitivity ot the 

yield stress to the strain rate is onother characteristic of athermal · 

mechanisms. As will be shown later, these results are ascribable to 

the activation of Suzuki-locked dislocations. 

It is also desirable to point out at this time that there are 

several thermally activated mechanisms of deformation in polycrystal• 

lin-., aggregates that are not directly ascribable to dislocation processes. 
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At very hit~;h tmnpe1·aturcs and low values of the applied stresa, creep 

can occur by the Na.barro(l?) mechanism of generation ot vacnnciae at 

·· grnin boundaries normal to the o.ppllad tensile stress, followed by 

volume diffusion to sinks 1n the grain boWldariea parallel to the direc .. 

tion of tensile stressing. Atoms, ot course, migrate in the counter"' 
I 

current direction resulting, therefore, 1n creep. This process, howevert 

only becomes significant within about 60°C or less of the melting tern"' 

perature. During creep at high temperatures, high angle grain bound .. 

aries do migrate. Such migrations might be equivalent to ~ recovery 

process because the newly formed volumes of grains over which the 

boundaries have migrated are probably rather free of dislocations. The 

migration of such high angle boundaries does not require dislocation 

mechanisms tor its operation. Grain boundary shearing also occurs 

during high temperature creep. But since its activation enorgy appears 

to agree with that for climb and because the amount of grain boundary 

shearing is linear~ related to the tot::-1 strain, it is now generally 

believed that such grain boundary shearing may be controlled by inter• 

actions with dislocation mechanisms. 

Although dislocations play a sfgniticant role in many different 

types of solid state phenomena, the major objective of dislocation theory 

is the rationo.Uzation of the plasUc behavior of crystatline materials 'in 

terms of atomistic mechanisms of deformation. The concept of dis· 

locations w.as first announced by Prandtl(lB) and DehUnger(lO) and 

subsequently the first detailed theoretical discussions were given by 
(20) (21) . . 

Orowan and T93lor. Over about the first twenty years many 

false ideas were promulgated, primarily because of the versatility of 
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the theory,. and dislocation concepts were frequently diocredited. But 

substantial progress has been made over the pt.uilt fifteen years, and 

" the theory now rests on a aowld ioundt:~.tion. However, many phenomena 

dependent upon dislocations yet resist clear interpretation. .And 

several prevtousl3 held .concepts concerning dislocations have had to 

·· be abandoned as a result of. recant direct observ:ationa of dislocations, 

·especially by transmission electron microscopy. Jt can ba expected 

that mos. ot the remaining general concepts ot dislocation theory will 

be fairly complet.el;y explored and characterized within the llll:mt fifteen 

years. 

lB. The Need for Dislocations 

When metal single crystals e.re stressed, they deform pla;Jtically 

by glide on prescribed cryatnllogrsphic planes and in prescribed crystal-
:. 

to graphic directions of shear as ehown in Fig. 1. 7. Entire blocks of 
! 

the crystal shear relative to other bloc!cs, the operative slip system 
' 

being that on which the resolved shear stress,· 7,. • on the slip plane 
$ 

' . in the sUp direction(s) is a maximum. A a deformation p:roceeda higher 

stresses must be applied and intervening sUp planes begin to opernte. 
. ' 

Each sUp band, which consists of a seriea of closel)t spaced slip Unca~ 

may also continue to add more lines to the band aa detormatiotl continues. 

A typical resolved shear stress versus resolved shear strain curve is 
(22) . shown in Fig. 1. a. Stage I, known aa_ easy glide, elchibita only a 

minor amount of strain hardening; Stage II, called linear hardening, 

exhipits a great lf.nenr increase in flow stress with strain; whereas in 

Stage Ul, parabolic hardening, a smaller rate of strain hardening 

applies. _ At higher test temperatures, the stratn range ot ensy glide 

'. ~ 
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I 

decreases.. and the flow stress also decreases as expected tor A , 

thermal~ activated mechanism. The slope of the l.f.nerir. hardening 
I 

range, however, is almost independent of the temperature. , But para•, · 
I 

bolic hardening begins at lower values ot the flow stress in the higher 

temperature tests, Ulustrat1ng that the mechanism op~raUve here also 

depends on thermal etctivation. As th• original crystal orientation e.p~ 

proaches more close~ those tor duplex sUp, the strain 'range ot easy 

slide decreases. the rate ol linear hardening increases, and parabolic 

hardening occurs at smaller strains. Face centered . cubic crystals , 

oriented so that the tension axes coincide with the ll11l direction, 

siJ.p sunultaneousJ¥ On Six systemSJ they dO not exhibit easy glide, they 

undergo high rates of Unear h~dening, and proce~d almost directly to 

~araboUa hardening.siving stress•st.r.ain curves,stmUar to those tor 

polycrystalllne metals. 
I 

1 
I l 

. I . 

'fhe commonJr observed sUp 1yst~ma 1D metals are as follows: 

, Crystal SUp DirecU9n Slip Plan,~ 

Face Cente~ed Cubic , llOTl (111) 

,, Hexagonal Close Packed lltlol . (0001) 

, Body I Centered Cubic !lUI . (110) 
I ), 

111) 
~ :•. L ' ' . (112). 

; 1111 (123) 
\ . I 

Under special conditions, :however, other sUp systems become oper.ative. 
. . . 

E~aluding r~re, e~ceptlons, s~p ln metals alway,a takes place in, the 

direction of great~st atomic pQ(;ldng and u~ually, bu~ not alweys, on 

the planes most widely separated from their nearest parallel neighbors. 
. ' ' 

Any acceptable theory of plas~ic deformation of crystalline materials · 

must s,atisfactorily, account not on~ for all of these facts but must 
\ • I ' • ' 

·' 
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equally permit Eq. 1. 2 to be explicitly expressed in terms of the 

appropriate mechanistic details for all conditions of deformation for 

all crystalllne materials under all possible states ot aggregation. 

Neglecting their thermal vibration, the atoms of an ideal crystal 

are arranged in a regular three•dimenaional array, as shown in 

Fig. 1. 9A, It a shear stress were applied to the single crystal, as 

shown in Fig. 1. 9B, a shear displacement, X , of the upper plane 

relative to the lower plane would occur. As a result ot the pel'"iodicity 

of the lattice, ·however, 

(1. 4) 

where 1;. refers to the critical shear stress required to cause perma­

nent plastic straining. For small strains the sine· term reduces to its 

argument and Hooke 1s law applies, so that 

(1. 5) 

where G is the shear modulus of elasticity. Consequently the shear 

stress required to cause plastic deformation is about 

(1. 6) 

Whereas this value is somewhat above 106 psi, the value observed in 
a real crystals is only about 10 psi aa shown in Fig. 1. a. Some 1m:.. 

provement in the estimate given by Eq. 1. 6 is possible by taking the 



-20- UCRL-10!cS5 

r 
--> 

<-
~.-

(a) (b) 

I. 9. ID:::AL CRYSTAL UNDER SHEAR. . 



., 

UCRL-10455 

compressibility of the atoms into consideration. But even when this is 

done, the theoretical value of 1';. for moat ideal metal crystals remains 

above 1 o6 psi. Since the theoretical calculation, although crude,. gives 

the correct order ot magnitude of 1~ tor ideal crystals, it must be 

evident that the single crystals, as usually prepared, are highly non .. 

ideal •. On the other hand, many metal whiskers do not deform plasti· 

cally until the theoretical value of 1; tor ideal crystals is approached, 

illustrating that they are at least nearly ideal. Attempts to grow large 

crystals having the strength of whiskers are intriguing but thus far have 

failed. Except perhaps for special applications, the possible utility of 

such high strength ideal crystalline materials is questionable because 

they could not be machined or formed into shape without making them 

non .. ideal and soft. We shall see, however, the versatility of disloca .. 

tlon theory which will show that those imperfections which in modest 

concentratio~ permit a metal to be easily deformed, will, 1n sufficiently 

high concentration, lead to strengthening which in special cases and under 

special conditions begins to approach within about one•halt of the theoretl• 

cal strength. 

Since imperfections are responsible for the observed plastic 

behavior ot most real crystalline materials, we need to determine what. 

kind of imperfections could possibly be responsible tor the observations. 

And since crystals are geometric: objects, the possible types of imper• 

tections are limited to point imperfections, line imperfections, and 

surface imperfections. Point imperfections appear either at lattice 

sites which are supposedly occupied by the atoms ot the crystal or at 

1nterst1U~ sites that are supposedly unoccupied. Random mixing of 
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·various atomic species in solid solution alloys does not constitute point 

bnperfectiona. 'l'ypical examples ot.point imperfections, vacancies, 

and 1nterst1Ua.ls, are shown in Fig. 1.10. 'l'h.ere are two major reasons 

' why such imperfections cannot be responsible for the plastic shear 

deformatl~n of crystals. First, they cannot undertake extensive mass 

· migration as a result ot a shear stress. Secondly, even 11 they did 

move large distances, they could not aceount for slip on a slip plane in 

·'a slip. direction. Furthermore, as we. shr.Ul see later. the various 

: ' surface imperfections that arise tn real ceystals can 8:11 be ascribed to 

.~. Une imperfections. And therefore line imperfections· must be thought 

to be the primary factors responsible tor the plastic deformation of 

ceystals. Such line imperfections are called dislocations. 

U. THE STRUCTURE AND NATURE OF DISLOCATIONS 
• ' ' 0 ., ' ' • j • I I 

2A. , The Vie!Point to be Adopted 

From a detailed analytical ifiewpolnt. dislocation theory appears 

to be a rather formidable subject, having many complex lacets and 

.. presenting many compllcated mathematical problems. .It is not the 

objective here to elaborate on such features of the subject.· Rather. I 
' 

propose to discuss dislocation theoey, not ·tn the full rigor of high sophie• 

Ucation, but with vigor and clarUy to provide the neophyte with a lucid 

picture of some of the major issues. Several factors permit such an 

elementary approach. Firat, dislocations are simple geometr~c 1mper .. 

fections and second, the major phenomena can often be described in 

terms of a few interacting dislocations without requiring • complete 

statistical formulation of the problem. 
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2B. 'I'he Edge ot :raylor f)islocation 

· Consider the ideal single crystal shown in Fig. 14 .1A and let a 

dislocation be produced .. by shearing the upper left-hand section of.the 

· crystal one atomic spacing, 1. e.,· one ,Burgers vector, '6, along a 

slip plane. Since slip will not, in this visualization, be permitted to 

proceed over the entire slip plane, the atomic configuration that is ob .. 

ta.ined for a simple cubic lattice ta as shown in Fig~ 2.1B. The plane 

ABCD represents the extra hall plone of atoms (associated with the 

·: .. · edge dislocation) that was crowded into the lattice.. The edge dislocation 

itself ls given by the line AB. To determine the Burgers vector, o; . . . 

·· we look along the dislocation from A to B and formulate the circuit 

cdefg in the clockwise direction malting equal numbers of lattice spacu~g 

steps downward (c to d~ to the left (d to e) 11 upward (e to t), and to the 

right (t to g). Where the crystal is ideal, or contains f?nly interatiUo.ls 

and vacancies, this Burgers circuit will close. But when the circuit is· 

made aroUnd a dislocation~ such as AB, it fails to close by g to c. The 

Burgers vector. I), of the dislocation gives the failure to close tD terms 

' of the lattice spacing 1n the ideal crystal. The same failure to close, 

.. I),· is obtained for circuits anywhere along the length of AB. When the 

Burgers circuit does not hlclude the dislocation J.i.qe but does extend 

across the extra half plene, it nevertheless clOses. Consequc.mt~, 
' 

. excepting tor elastfc lattice distortions; the crystal is ideal in this 

region and no special signlficance, excepting that of geo.metric conven• 

ienoe. can be ascrib~d to the e~tra half plane. T'he only imperfection 

present is the dislocation line AB. 
' ' 
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As we can readily see, the characteristic of an edge dislocation 

Une ~esides iri the fact that it is perpendicular to its Burgers vector •. 

Since the edge dislocation and ita Burgers vector are perp(mdicular to 

each other, they define a plane. The plane so defined is the slip plane 

on which the edge dislocation is constrained to move when diffusion is 

p~ohibited. Since sUp has taken plnce over the area ·A•AB 'B of the slip 

plane,· the dislocation is the line separating the slipped from the unsUpped 

portion of the sUp plane. Since this is gcneratzy tt-ue for all dislocations, 

a dislo.cation line cannot end in the center of a <:rystal; it must either end 

on the aurtace, as shown at points A and D, or it must form a closed 
' ' 

loop in the crystal. 

' When an appropriate shear stress is applied to the crystal, the 

dislocation will moye as shown in Fig. 2. 2. As the dislo~atlon moves · 

forward one Burgers vector only a small. atomic adjustment is required 
I 

in the vicinity of the dislocation core. .Along the entire dislocation line 

atoms "C" which are shown below "B" in Fig. a. a"A move one Burgers 

vector so that they are below "A" as shown 1n Fig. a. 2B •. Proceeding 

step by step, the dialocation can leave the crystal as shown in Fig. 2. 2C 

resulting in a shear displacement of the upper section of the dislocation 

one Burgers vector relative to the lower section •. 

The motion of a dislocation through the lattice, as shown in 

Fig. a. 2, 1a quite different lrom the W'l1torm shear displacement required 

to cause plastic deformation of an lde!U crystal, shown in Fig. 1. 9. In 

the ideal crystal high stresses were required to cQuse a shear displace .. 

mont because the entire slip plane was sheared as a unit. But in the 

dislocation process only arnall atomic adjustments are required neaJ.• 
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the core of the moving disloca~ion and consequently the stress required 

to induce flow is small. 

Vlhen the disloc atlon moves forward one Burgers vector the 

bond angles of the atoms in the vicinity of the core must change. The 

bond energy of covalently bonded atoms changes appteciably with the . 

bond angle. Consequently high stresses are required to rrtove disloca• 

tiona in such crystals as diamond. In contrast ionic cryst3:ls are bonded 

prinCipally by radial forces and therefore dislocations are somewhat. 
i. 

more readily moved in these materials. But metals, being bbnded by 

the Fermi energy of the electron gas; have bond strengths that are 

practically indepe11dent of the bond angle. Consequently dislo~ations 

begin to move at extremely low stresses in met:als• Disl~cations not 

only account for the low shear stresses for slip but also for the fact 
' 

that slip ocpurs on a slip ,plane and in a slip direction. 

2C. · The Screw or Burgers Dislocation 

If a stress is appl1ed to induce the deformation shown 1n Fig. 2. 3A 
~ \ I 

a screw dislocation is produced. Slip was permitted to take place by a 

shear deformation of, .. '6 ~ .one Burgers vector, over only apart of the 

slip plane, namely A 'B 'AB. The. line AB tluit dem~rks the slipped from 
. . ' \ 

the unslipped region is, in this case, a screw dislocation. 
\ 

The characteristics of a screw dislocation are t-evealed by making 
' . ' ,. 

a Burgers circuit about the dislocation line. Using ~ig. a. 3D as a guide 

we proceed as follows in a clockwise direction:· starting above the sUp . 

plane at atom "au we go down two atoms, to the left from "a" to "b'.' to 

"c" and up two atoms at "c" to '.'du and then to "e". The circuit does 

not close by "e" to "a" which is the Burgers vector o. Whereas in the 

:· 

• 
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edge dislocation, the dislocation line was perpendicular to the Burgers 

vector, in the screw dislocation the clialocation line 1s parallel to the 

Burgers vector. And wbereaa the edge dislocation, being perpendicular 

to its Burgers vector, defines a unique slip plane, no such unique slip 

plane ls defined by a screw dislocation since the Une and Burgers vector 

of the dislocation are parallel. Thus, edge dislocations are confined 

to slip on their Wlique slip planes, whereas screw dialoco.tions may 

eross•sllp on any facile slip plane in which the Burgers vector, or dis• 

location line, lies .• 

2D. Dislocations 1n General 

A general dislocation is shown 1n Fig. 2. 4. Slip was induced to 

take place on a slip plane over the crosshatched region only up to line 

ABCD. This Une, wh~ch demarks the slipped from the unsUpped region 

is a single dislocation line. To reveal this we may take a Burgers 

circuit around the line, looking along the line from A to B to C to D. 

No matter where the circuit is taken tbe Burgers vector, E', is always 

the same, as identified 1n the figure. The dislocation line sea:mcnt AD 

is perpendicular to the Burgers vector, E', and 1t is therd'ot~c nn edge 

segment of the dislocation line. The segment CD, however, is pnrnllcl 

to the Durgers vector and 1t is, therefore, a screw segment. Between 

~ and C, the dislocation line ·has both screw and edge components, as 

shown by the broken lines in Fig. 2.4B. 

As shown 1n Fig. 2. 5 there are two kinds ot dislocations, called 

positive and negative dislocations. Under the applied stress shown, the 
' 

positive dislocation moves to the right whereas the negative dislocation 

moves to the lett. If the dislocations of oppc)site sign were on the same 

.-
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slip pl~ne the elastic strain energy of the crystal would be lowered if 

they cotnbined nnd ru:mU1Untcd each other~· 'l'herefore dislocations 

having 1..u11ike ait,1lls attract each other. As two dislocations having the 

same signs are brought together, the elastic strain energy increases. 

Thus dislocations of the same sign repel each other • 
~ 

If Fig. 2. 5 is turned upside down the signs of the dislocations 

·will change. Thus dislocation signs havo unique values only relntivo 

to fixed orientations. Suppose we introduce the square dislocation loop 

shown in Fig. .:a. 6 by shearing the prism above th$ loop one Burgers 

vector in the slip direction. The positive direction of the dislocation 

line will be taken from A to B to C to D to A. 'l'he entire line hns tho 

single Burgers vector, li. But the signs of the Uno must then be tnken 

as shown in Fig. 2. 6. By this convention the Burgers vector. of a dis• 

location is constant all alobg the dislocation line. 
' 

In general dislocations 1n real cryotnls form a three-dimensional 

network. On occasions they form two-dimensional arrays of tilt or twist 

boundaries. There are many rQported examples of networks in the 
. . 

literature. The point of junction of dislocation segments of the networks 
r 

as shown in Fig. 2. 7 are known as nodes. 'l'he Burgers vectors were 
. . 

obtaJ.ned by looking along AN, NC, and NB. The vector, o1 , refers to 

the difference in slip betwee.-1 regions "au and "c". But t>2 + o3 also 

refers to this difference. Therefore o1 • o2 + '63• If, however, 
(23) . . . . . . 

Frank •s convention is adopted, all Burgers vectors are ddermined 

by looking toward the node. Here the signs of E'.a and '63 will be negative. 

'l'hen looking into the node [ £.· = 0 • 



-34-

c . D 

A r"'\ 
. - POSITIVE EDG~-" ,-, 

·~ 
,_ 

B ("' -'v NEGAT'IVE cr::-:H:::w ..:Jv1 \,_ 

c D - NEGATIVE r-nGr:: !,... ,_ 1.-

D A - POSiTIVE: SCREVJ 

FIGURE 2.6 POSITIVE AND f\lEGATIVE 
DISLOCATIONS IN A SQUP.~RE LOOP. 

. .... 



.. -35- UCRL-10<55 

FIGURE 2.7. DiSLOCATiOf\lS /:'IT A NODE. 
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aE. Force on a Disloca~ 

The principle of virtual work will be invoked to. calculo.ta the 

force, F, per unit length of a dislocation as a result of a shear stres£~, 

T, acting in the direction of the Burgers vector. As shown in 

~"'ig. 2.1 the dislocation moves in the direction of w under the action 

of the stress, Although it moves in the dt:rection of the stress v.nd the 

Burgers vector, it 1a more aignlficant to note that it moves on tho sHp 

plane 1n a direction normal to its length. Since the force per unit lenHth 

is F, the length Land the distance moved to traverse the crystal W, tha 

work done is FLW •. This work is done by the stress, I • acting over 

area, LW, and the force, 7' LW, acts through a· distance, b, as the 

dislocation traverses the ~rystal. Therefore, FLW • r WLb or 

.·F a T b (2.1) 

acthlg normal to the dislocation line. 

The force acting on a screw dislocation can be determined by 

. the same procedure. Again only the component of the shear stress, 

r I in the direction of th~ Burgers vector causes deformation· as 

shown in Fig. 2. 3. The sc:rew dislocation, however, moves at :right 

angles to the B\U'gcrs vector, that is no:rmai to itself. Again Eq. 2.1 

is obtained. Consequently Eq. 2.1 gives, 1n general. the force acting 

norinal to a dislocation and forcing it to move in its sUp pblne. ·And 

therefore, in general, dislocation segments that are acted upon by 

shear stresses on the sllp plane in the direction of the Burgers vec~or, 

move in their slip planes in a direction that is normal to the dislocation 

line. 

.. 

.. 
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.aF. Stress Fields Around Disloca.tio,ns 

.Dislocations are lines representing the cores .of internal strain 

discontinuiUes 1rt crystals.· Th~se strain th~lds end their associated 

'·.stress fields move with the dislocations. In this sens~ dislocation 

theory describes the plastic behavior ot crysta.llh1e materials in tcrmtJ 

ot the theory ot elasticity as appUed to static and moving internal strain 

and stress fields. Although the lull treatment' ot this subject can becomr:! 

very mathemntical, . lt 'is possible to obtain a· lucid physical insight into 

tlui salient features from very simple approaches.·· · ' 

· · · ·· As illustrated in Fig~· 2. 3 a screw dislocation consists of a 

spiral ramp ot atoms that· advances one Burgers vector per cb"cuit about 

the dislocation• This is also shown ln Fig. a. 8 tor a screw dislocation 

~ing $long the z axis. Us~"lg cylindrical coordinates, it ls immedi,at<~ly 

seen that a11 strains are z~ro excepting E ez which ts 

. h 
E e z ;: m·~r-.. (2. 2) 

For '( ~ b • Hooke ts law applies and 

(2. 3) 

where 0 is the shear modulus of elasticity • and for th~ sake of simplicity, 

elastic isotropy is assumed. Thus the shear stresses around a screw 

dislocation are inversely proportional to the distance from the core of . . 

the dislocatic:'n· For ~ ~ b • however. Hooke's law no longer applies 

·and special difficult analyses are required tn order to define th~ details 
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· nt the core. Such detailed knowledge, however, is only required tor 

certain special problems and need not be considered here. For future 

J"eference we wi11 refer the stress field aroWld a screw dislocation to . l . 

the Cartesian .coordinate system. Using the Mohr circle analysis. or 

applying the tensor transformation 

cru = f4·t ~·.~ OAt 
where the ,f•s are direction cosines. we find that . 

(f'XIC~o;y :~% =cfx~::: 0 , · · · (;'/; . ' 

c ""O.ZX"' lzl!l t'xz. 08z + J.zz ,1)/9 C!is = ~ b ;2.JTr s /It e 
•.. ~J = Jze 1yz dez+ ~1. -46' ~61 :::: ..?;r C cS e . 

Therefore, the stresses for a screw dlalocatlon lying along the Z axis 

are: 

GhX .. . 4y -.·.- 2TT( z . !l) . I X. +Y 

ca. 4) 

(2. 5) 

The stress field around an edge dislocation ls slightly more. 

difficult to .determine. For an edge dislocation qing along the z rude 

the str.esaea are given in polar coordinates by 

rl a - (;bsln (J 
Vrr- = Ds -- 211(r- J.l.) F 

a: GlJ ~as 8 
r e = 21T (I - Jl) r 

ca. a> 

(2. 7) 
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where )J.. is Poisson •a ratio, and by I 

I 

(2. 8) 

(2. 9) 

(2 .1 0) 

(2.11) 

in Cartesian coordirlates. 1Eqs, 2. 6 and 2. 7 reveal that the stress field 
I 
! 
I . . 

around an edge dislocation' also varies with the reciprocal of the distance 

from the dislocation core. But as shown by Eqa, 2. 8 to 2.1 0, dilatational 

stresses are present around an edge dislocation. Therefore edge dis• 

locations will interact with centers of volumetric straining as· well as 

shear straining whereas screw dislocations react only with centers of 

shear straining. 

ao. Energy of Dislocations 

The strain energy of the lattice due to the presence or a dislo~ation 

'is known as the energy ot the dislocation. We will consider the geometry 

1n Fig. a. 8 to calculate the energy of a screw dislocation that is 1 em 
'. 

long. Since the shear strain and shear stress are given by Eqs. a. 2 

and 2. 3, the strain energy per Wlit volume at a distance r- from the 

... 
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dislocation co1~e is: , ; 

(2. 12) 

where .. fZ ia the total energy per unit length of the sere~; dinlocntion. 
', ' 

As seen by F'lg. 2. a, the elc.1ment ot volume is dV • 2.1Trdr; and there-

fore 

(2. 13) 

Since Eq. 2.13 is based on Hooke's law which is invalid for r < b, the 

integral ia written aa 

(2.14) 

where 'fc.. is the radius of the crystal. and f;<t la the energy per unlt 

length of the core from 'f :::: 0 to '( ::. b . Consequently the lin a energy 

does not have a uru.que value since it depends on the radius of the c:rystc1l) 

Y'c. • . But since the radius of the crystal enters the eneray expression 

in a logarithmic term.. large increases in rc produce only modest 

changes in G' • l1'urthermore in a reat crystal. dislocations of opposite 

sign result in cancellation of stress fields at large distances from the 

dislocation cores. In this event \"'c;;. can be approdmatcd- by about the 

mt;;}ru'l r:;pncing between dislocations, soy fc:::.:. /OS/;, • 

No accur~te calculation of the core en erg? f';c_, of a dislocation 

in metals has yet been made. Since the core representa a region of . 
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severe disordering of the atoms, Bragg suggested that the core energy 

might be estimated by the p1-oduct of the number of atoms per unit lcn{Jth 

in the core and tho latent heat of fusion. Slightly more sophisticated 

estimates based on extensions of elastic behavior to large strains sug• 
. /} 
geat that C :::t· G: · ... · 2. • Consequently, sc ~..; rr . 

(2,15) 

and therefore 

(2.16) 

By an analogous technique. involving a slightly more complicated analysis, 
I 

the energy of an edge dislocation can be shown to be sligt1tly greater than 
! 

I 
that for a screw dislocation, namely, 

(2.17) 

The contributions ot a dislocation line to the configurational and 

thermal entropy are small, as shown by }l"'riedel. Consequently the free 

energy of a dislocation line Jiffers rather insensibly from the energy of 

the Une. The probability of forming a disloc:t~l Una of length· J .": 
a result of thermal fluctuations is given bye liT. I wherer.P1.):. f?j-../. 
Taking the values of 0:::: 4x1o11 dynes/cm2, b~ 3xlo·8 em and f. a 1, 

6 xtO" 
the probability of forming a centimeter long dislocation ise- -T- , 
where k, the Boltzmann constant, is 1. 4x1o·lG ergs/deg. Thus 

.. 

.. 
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cUslocations crJ.nnot be produced as a result of thermal fluctuations. 

Th,ey are formed either in the crystal during ita preparation, or they 

are produced ns a result of shear stressing. Since the shear stress 

necessary to produce a dislocation begins to approximate the theoretical 

she~r streaa tor slip in an ~deal crystal, a8 given by Eq. 1. 6, disloca• 
. . 

. . ' 

tiona can only be formed at points of high stress concentrations, at 
•' . ~ . 

,. surt~cea, grain boundaries, precipitates or various other discontinuities. 

Although the energy ot a long, not too rnpidly curving dislocation 

line can usually be approximated by the value given 1n Eq. 2.15, the 

dislocation can occasionally have e!lergies less than thiS value dependent 

on its surroundings, lts length and radius of curvature. ·As· a dislocation 

approaches the surface of a crystal, lta energy obviously decreases, and 

therefore dislocations near a surface are a.ttractecl to it, A continuous 

dislocation loop of radius, r, has a stress field that becomes negligible 

at distances greater than about. 2r from the line due to the mutual can· 

cellation of the stresses arising from the positive nnd negative dislocntion 

segments. Consequently its energy is about 

(2.18) 

which is appreciably leas than that given by Eq. 2.15 for a straight .. ~ 

dislOcation line when r << r • Sharp kinks and jogs shown in Fig. 2. 9 c . 

have only o.bout the core energy, since their stress fields c'ctend only 

to r
0 

• b. 

Although the energy of a clislocati(:m l.lne is not uniquely dcfiJ;led, 

and the currently used energi.es are approximations, good px>Q.g,;r(~13S has 
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A. BURGERS VECTOR LONG KIN!<: 

THE KI.NI< SHOWN HERE AS A SHARP KINK 
WILL STRAIGHT.EN .OUT UNDER THE LINE 
TENSION. VvHEREAS THE LINE IS AN EDGE 
DISLOCATION, THE KINI< IS IN SCREV1/ ORIENTATION. 

B. A UNIT JOG WHICH EXTENDS FROM . 01\!E 
SLIP. PLANE TO THE NEXT PARALLEL 
SLIP PLANE: 

THE JOG IN THIS CASE IS AN EDGE JOG. 

F I G U R E 2 . 9. K I N 1\ S AND J 0 G S . 
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nevertheless been made in characterizing, In fair quantitative detail, 

various interesting c:llalocatlon reactions. · 

2H. Dislocation Line Tension 

The ener81 of a dislocation of length 12 :::is given by 

u =rl (3.19) 

whoro r la the energy per unit length. Therefore, there iD Q Uno 

tension equal to 

= -r (3. 20) 

acttns alons the dislocation ltna and a«empttns to shorten it. ConsequentJ.y, 

n dislocaUon line ls liken stretched string having a constant internal 

force actina so as to shorten the string. Therefore, disloeaUons that 

are free to move always have straight sesmenta between pinned points 

when under r.ero stress. 

Jl r to not too small, n dleloc'-~lon loop, ne shown in Fig. 2.10, 

baa the energy 

u =27Tr r (3. 21) 

when we neglect the small differences in enorsteo of ~dge and screw 

dialocatlo.ns. Jn the absence of a stress the ener&Y, f..1. -, would decrease 

to zero and the dislocation would vanish. This is the result of the mutual 

attractions of the positive and negative odgo (E) and screw (S) dislocations 

eomprlslng the loop. .~ order to maintain the loop~l n stress must be 

applied. We let the local shear stress on the sUp plane 1n the direction 

of the Burgers vector be .. f- ~whero r 18 the externally applied stress 
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and. r: ls a local back stress. to be described in more detail later,' 

due to stress fields arising from other nearby dislocations. To deter• 

mine the equilibrium radius of curvature ot the loop under the local 

otresa we wUl invoke the principle of virtual work. The change in the 

Uno energy obtained b;y increasing the radius of curvature from its· 

oquUibrium value of r to n value r + dr is 

c.a. aa) 

The work done b;y tho local stress, as shown in Section 2E, on lncreastns 

tho radius .dr 18 ( r- r*)b times the area swept out b;y the dislocation or' 

d W = lr:~ r*)h2Ttrdr 

Since all of this work 1a converted into ~e energy dW o dU, and, 
! • ~· , • • ·. - ' I ' 

the.,.efore. at equilibrium, . 

(r -tt)= -b-·~- ; 
3 

ca. aa) 

Therefore, under zero local stress, the dislocations will have infinite 

radU of curvature and will, therefore, be straight Unes. The higher tho 

locAl stress, the smaller will be the radius of curvature. 

21. :Dislocations Im2eded at Points 

A 'free dislocation moves normal to itselt Wlder the action of a , 

local stress rr- -!*', acting on the slip plane in the direction ot the 

Burgers vector. If the motion of the dislocation is arrested at points 

along its length, it will bow out, aa shown in Fig. a.11, between the 

points at which it is arrested. These points might be nodal points, jogs 

in screw dislocations, points where forest dislocations thread the sUp 
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(i-T*)bds 
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plane, fine precipitates, etc. It is easy to reaffirm that the radius of 

curvature of each arc is the same as that given by Eq. 3. 24 regardless 

of the distance between points • 

. The two sources of forces acting on the arc segment extending 

from -e; 2 to + rf/2 are the line tensions, r ' and the forces 

acting on the dislocation segment. The component 1n the X direction 

from the Une tension ia1 

t::::: -2 r sin e/2 
IX 

And the component of the force due to the local stress acting on segment 

ds in the X direction is (1"-Ttt)b cos 8 ds. Therefore, the total force 

1n the X directiol},arising from the local stress tsa / · · f 6/2 · · . · fG/2 . &I(= , .(r-r")bcos()ds~<t-t")br ,coseda 
. - B/ 2 · , . . -B/2 

, ' 
the radius of curvature being constant over the small range -!J/Z s S '!!$J2. 
Therefore, under equillbrium conditions (F lx + Fax .a 0) Eq. 2. 24 is 

again obtained. 

The formation of a large number of dislocations over a narrow 

range of sUp planes may be achieved by successive generation of dis• 

locations at points of stress concentration, the multlpllcation of dis• 

locations by cross-slip or by the operation of a Frank-Rend source, 

The Frank•Rend<24) source mechanism, depicted 1n Fig. 2.12, will 

operate only if the dislocation segments are not locked by precipitates 

or otherwise immobilized. 
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The dislocation segment A between the nodal points P l and P a 
of a dislocation network is a straight line under zero local stress. As 

the stress is increased the radius of curvature decreases as shown by 

Eq. a. 24. At stnge D the radius of curvature is L/2 and 

r 
lr- 11 .. b L./2 (2. 25) 

Any infinitesimal increase 1n stress will induce a further displacement 

of the dislocation arc. But as a result ot the geometry induced by having 

the dislocation pinned at the n~dal points P 1 and P 2, the .arc now acquires 

successively greater radii of curvature.. The maximum stress required 

to operate the Frank•Read source is, therefore, given by Eq. a.25 .. The 

... dislocation, therefore, continues to move normal to itaelt giving stage F. 

As motion continues the +:F and •1? dislocation segments of opposite , 

sign annihilate each other by pinching.together. If the dislocation seg• 

menta are on different slip planes due to the presence of jogs, however, 

they will not be able to annihilate each other; unless ~ey are in screw 

orientation and can cross slip. Thus, dislocations o1 and 0 3 are formed. 

Whereas G1 is now free to sweep through the crystal, G2 can repeat the 

process. Therefore, a single active source can produce innumerable 
-~ 

dislocations. at least until the back stress r becomes so large as to . 

prevent further operation of the source. Those sources for which 

( t-1~L is the greatest will operate first. Thus, the number of sources 

operating at a given stress level will dftpend on the distribution of source 

sizes (L) and the local back. stresses ( T1). 
Orowan<25) applied the concepts of the Frank-Read source, with 

».pp~priate modilicatlon, to the theory of dispersion strengthening of 
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~lloys. The solid points of Fig. 2.13 represent hard incoherent pre-. 

cipitates, through which, of course; the dislocations cannot pass. · If, 
i 

as is the usual case in a dispersion hardened alloy, the moduli of 
! 

elasticity of the precipitate is higher than that of the in.atrix, the dislocatidn 

energy will increase as the dislocation approaches each particle. There­

fore, it will not enter the surface of the precipitate. As the local stress 

( r -'(t> is increased, the first dislocation will bow out between the 

particles as shown in (b). And when 

r 
(2.26) 

the positive and negative segments of adjacent loops will coalesce per­

mitting the dislocation to move forward. Eq. 2. 26, therefore, reveals 

that the yield strength of a dispersion hardened alloy increases with 

decreasing distances between the dispersed particles, that is for finer 

dispersions. The closed 1 dislocation loops left behind provid~; higher 

back stresses,~~ for the next dislocation and were thus assumed to 

be responsible for the higher rates of strain hardening observed in the 

initial stages of cold working dispersion hardened alloys. Recent. 
(26) . . . 

investigations have shown; however, that the greater rates of strain 

hardening are P.robably attributable to the very high density of the dis­

locations in entanglements that occur about the particles, the theory· 

being mor·e complicated than so naively depicted in Fig. 2. 13. Further­

more, the ·slower rates of strain hardening of dispersion strengthened 

alloys in the high strain range is not due to fracturing of the dispersed 

particles, as suggested by Fisher, Hart and Pry. (2?) Electron micro­

scopic observations have revealed that the leveling off of: the flow stress 
\. . . 

·' 

... 

., 

.. 
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frequently occurs before any fract~lng can be detected, Mofri likely 

this ,leveling off ot the tlqw ,stress can be attribu~ed to rellef ot the back 

stresses by cross sUp. . 

, , .When the local fillress is less thaD the critical value; (~0 ~ 
the dislocation segments will bow out between any &U"restlng points as 

shown tor a symmetrical case in Fti. a.la. The force in the X direction 

nt P 1 due to the line tensions ls 

.. ' . . F = 2 r cos ( o/- 8/,_? )=2/)'c-~s ~ c~s 8/z +..siP\?( StnEj/1 
I : ' . )( ' , . 

Therefore, the maximum force is 3(1 , whereas the mlntmum force is 

zero. By application of Eq. :a. 241 

. . e £ (l<-t~) Li:J ~n· '.I· ... 
S t n - .::: - = ----:--- ~ •· • 
. 2. ,2r 21' 

. ·~ r' -l' -<rlf (r/-2r 
. ' ' ' . .. . :· I . . ' 

c o.s ~= ['r-
2

- ( L.jz Yl 'lz- ~. 1~(_!:_V?7 ~11_ /{t-~r")~~ 
Therefore, 
.. · . ' ' . ·.. . . ' f:. . . . . 
· { =((2r(-~-t1LI{} :'f.,sq t(C-Z1J.t.s;,.r c·a.a?l 

Actually the force will be somewhat higher than this vatue, since the 

near segments have ~pposite signs and ~Ul attract each other, As 

o< ~ 0 the force increases.'· In general for randOm positioning of the 
' 
points and assuming i. to be the average distance between points; the 

av~rag~ value ot Fa is usualtY estimated to be about · 

. (2. 28) 
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This force aide the thermally activated process of intersection and 

motion of jogged screw dislocations to be dhJcussed la.~cr. l1 the 

thermally nctivnted procesro;es at P 2 or P 3 o.re ea~:der than at P 1; the 

dislocation will move forward at these points causing •rX. to decrease, 

thus introducing higher forces to activate the sUp process at P 1• This 

somewhat justifies the use of Eq. 2. 28 as the average value of the force. 

Jf the proccws at P 1 cannot be activated, even at the hf.!,1hest 

.stresses one of two possible mechanisms con occur. U the two bowed 

segments of tile dinlocation are on.the same slip plane, they will join, 

as previouBly deocribed in the Orowan theory for dispersion harde11ing, 

leaving a dislocation ring at P 1• But if the two bowed dislocation segments 

lie on d:liferent parnllel slip planes, aa is obtained when P 1 is the point 

of a jog in a screw dislocation, branches of the two bowed segments will 

attract each other and forxn a dipole, as shown in Fig. 2,14. Such 
l 

di'polea, usually initinted rit superjogs, are often observed in electron 

micrographs of cold worked metals. 

;If the superjogs at P 
1 

end P 1 t nre very far apart, they may play 

a very small role in strain hardening, since the stress fields from super-

jogs only a few slip plaues in height are quite small and locnl and since 

the two arms are composed of dislocations of opposite sign. 

2J. :Elastic Intcr8.ctions :Pet ween Dislocation Pairs 

As described in Section 2E, when they are long distances apart, 

disl~cations of the same sign repel and dislocations of opposite sign 

attract each other with forces that depend on the reciprocal of the distance 

between the dislocations. \~~1en the two dislocations are nearby, however, 

the result is slightly more complicated, especially for edge dislocations. 
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We will consider the two dislocations of the same sign ~lng on 

two allp planes separated by a distnnce Y
0

, as shown in Fig. 2.15, and 

we will calculate the force due to the dislocation at the origin on a Wlit 

length of the other dislocation, Since the dislocations have edge com-·. 

ponents, they are confined to move on their slip planes. 

The stresses due to the screw component of. the dislocation zying 

at the origin are given by Eqs. 2. 4 and a. 5, and those due to the edge 

component are given by Eqs. a. 8 to 2.11. Since the force per tmlt 

length of the dislocation is given by the resolved shear stress on the slip 

plane in the direction of the Bw-gers vector times the .Burgers vector• 

, 

f; = U2 y bs + OX~ bt (2. 29) 

where the stresst3s refer to those due to the stress field of the dislocation 
i. ' . ' . . . . 

at the origin acting on the .second dislocation. Since the Burgers vectors 

ot the two dislocations are identical, in this case, thei"e is no interaction 

between the screw and edge components of the two dislocations.· Con-
. . 

sequentzy, the effects. of the screw and edge. components can be treated 

separately. 

The fore~ acting in the x direction of· the second dislocation due 

to tbe screw components is~ therefore, 

X 
t2. 30) 

arid is shown by the solid curve of Fig. 2.16 in terms of units ot 

~_bj j_ • lt ha$ extreme values at ~ ~ (:niving a maximum 
27 ~ . (I~ . 

and a nlfinimum. value at x o ~ 0 and .X tt" -7f01 respective)¥. The maxi·· · 

mum force, given by iht~oducirig x •?J
0 

into Eq. 2. 30; is 
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r:- Gb~2 'sx max==' ~ (2. 31) . ' 
t/71 y~ 

U the second dislocntion had a neaative sign, the signs of Eqs. 2. 30 
; l 

and a. 31 would have been negative end the result shown by the broken 
I ' 

curve in Fig. 2,16 would have been obtained. Thus, for dlalocations,.·of · 

· the same signl the second dislocation will be acted upon by a positive 

force when x is positive and a negative force when x is negative, whereas 
' ., 

it the second dhdoca.tion has a negative sign it will be attracted so aa to 
.. 
come to res~ directly above the first dislocation. 

' .. 

W11en a sh,ear stress S z is nppliod to a crystal co11talning two 
" ' ' ' y ' •' . 

screw dislocationa, as d~p!cted. 1n ~"'ig. 2. 5J3, th~ posltlvo dislocation 
I ' ' ' , f ,'• !. 

will move to the right and the neaative dislocation will move to the left 

u,n~cr the force Syzbs•. Ap shown by the ~ro~en curve ln Fig. 

they wlll not pass each otl~er until 
'' ' 2 

'b > G6s. 
S;g ~ - ttllJ!• 

2.1G,. 

(2. 32) 

·This requtreme11t leh.ds to strdn hardening o.s ·Y 
0 

decreases with strain. 

On ·the other h@ln.d, other screw dislocations, as we shall see later, can· 

·pile up ngainst the leading one to introduce a sufficiently high stress 

concentration to-foree the passage, Furthermore,. pure screw disloca­

tions,· 1f undiseociated n;tight cross slip and annihilate eaeh other. 

As shown by Eq. ~. 2.9, the force due to. one edge dialocdtio.n on 

a parallel dislocation on a parallel slip plane, Y 
0 

above the first is 

given b7 . 

. l ... ' 
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(2. 33) 

is a continuous .fw1ct1on of x, it must bave four extreme values. 'l'he 

extreme values found by the usual procedure of placing d fi'~,K = 0 

are given by x2 •l/ 
0 

2 ( 3 .. :.t: 2 Vi). .hod F )(s has its mwdmu~ value, 

.uatn, the positive slgnpt 

B~( 1-P)!Ja 
' (2. 34) 

which is Ju.st slightly ·1 e s s .· than the value given tn Eq. a. 31 for screw 

dislocations. The force, given by Eq. 2. 33• ls shown in F'ige 2. 17 • 

.. When the second dislocation lies in the rMge •Y0 <x< Y0 lt ls attracted 

to the first and, in the absence of any other local stress, will come to 

a-est at x a 0. This ls the basts for the formation of tilt boundaries. 

But it the second dialocation is In the range .. aJ<x< ·Y
0 

or Y
0 

<x< CO 

two edge dislocations of the same sign wlll repel each othere One edge 

dislocation wlU paas another only U an auxiliary shear stress Sxy ls 

imposed on the pBlr when 

· :> G6.e:~ 
Sxdbt -Bli'(I-P)J. 

{2o 35) 

The force betwe~m edge dl.alocations having opposite signs !a shown by 

the broken eurve of Fig. a. 1 '1. Such ill.slocat!ons will come to rest at 

x • :t Y
0 

tn the absence of' nn applied stress. Jf en applied stress Sxy 

leas than that given by the condition of Eq. 2. 35 is applied. the equilibrium 
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value of x wlll be given by 

Gl:;Fz 
- ----=--=----

?77(1-P) 
(2. 36) sx~bE 

whore u is positive. 

2K. J?islocation ~rrays on SUe Planes 

When disJocatWna from o. common source are subjected to on 

appUed shear stress, they m~ plle up against barrie a-s. Such pl1o ups 
' 

o.ro frequentq observed 1n crystals with low stacldns fault eneraiea. 

Tbo barriers may be .precipitates, srain boundaries, low angle bounda• 

riGs, sessile dlslocaUona, locked dislocations, or Lomer•Cottre11(2S) 

·1 clislocations. A typical example of o pUed .. up arr~ is illustrated in · 

Fig. a. 18 where the X•Z plama is the allp plane and the barrior ls pau-allel 

to thG Z axis. Under the applied shear stress in the direction of tho 

Burgers vecC or 

(2. 3'1) 

the cUalocaUons pllo up over a distance L, as shown, parallel to tho bar• 

rler. The forces acting on each dislocation of the array, excepting the 

last, artse trom .three factors, (1) the applied stress, (3) the 1nteraoUon 

ol the screw componentB, and (3) the interaction of the e~ge components. 

Tho nth c:Uslocation is acted upon by the forces duG to the applied stress 

and the sums ot the effects ot aU other dislocations 1n the array, ita ' 

motion being arrested by the barrier which is here assum.ec! to have a 
short-range stress field interaction onq with the leading dislocation ot 

tho array • 

The total torc::o, therefore, acting on a Wlit length ot then tb 

dlslocat1on ( 1 ~ n) is as follows' 
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(a) From the appUed stress, and long-range stress fields 

(t- r) b 
(b) From the screw components ot tho remaining dislocations of 

the arr~ ·· f. (;4·i$ ' 
.J ~ 1 2ll(xt' ~x .. ) 
Jy!t.' -..1 

(o) From the edge c:omponents of the disloc:at1ons ln the arrq 

. . ~ ·~ . . t· •/ I . 

· · . r•l ...<?T(t-.a)(><r~J) ·· . . · 
Under equ1Ubr1um i;tn'diuons, the aum ot tho forces acting on each dis• 

location is zero• henco · 
11 

. 

. (t-r)h+ j#c.f~s21Nr.1S:.j/J;; .. : ·)=tJ(a.aa) . ( \-· ~fi~ \t£ kJ 
J~' 

J'or convenlenco we let 

x. =X~ 
. (., 

, ca. a9) 

nnd rewrite the equilibrium equation for each dislocation of the array as 

T = 217 tt-!+~)6 L = ~ I (2.40) 

Gi,2{ras 2{}1 5 '"~s] fJ. (l<.j -><z) 
. , , (I - ;lJ) .J ~ t.' 

Aft exact solution of Eqs. a. 40 has been given by Eschelby, Frank, and 

Nabarro. (a9) Inasmuch as this solution is lengthy and involves rather 

sophisticated mathematics, we will be content here to undertake an 

approximate solution that reveals the physical content of the problem, 

Equations a.~O apply to each dislocation. For the ft,.e~t ~:.,i ~&don, 

l o 1, and 

•• . 

• 

··· .... 
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I I I I T == - + - -t- • • . • . .;. + -·· 
X.z J<J Xn .. 1 X,., 

(2. 41a) 

Since the Xja are fractions, aa given by thd definition of Eq. 2. 39, T 

S.s equal to a sum of reciprocals of trnctions, and, therefore, 

T= (11-t)(-. ll • = 
·. >< la~J 

fl- I 
'o( 

or ) 
. (tJ-t)=- P<T= .<JTP<t. (C-t~ .. 

' G iJ f"c cs~~ + Slit, 2 It_/ 
' ' l " (1-l-l)7 

(2. 42) 

which domands that the nunlb~r Qf ~,;;locations in the e.rrcy increases· 

~'ltlarl,Y with the length of the array, L, and the average appllod shear 

stress, C -l*. A little reflection will reveal that 1/2 < P( < l. The 

more sophisticated Malyais shows that o( depends on the numbPr ~! 

clislocations .:ln the array where o{ :::::= 3/4 is, generally; o. L,'OOd 

approximation. 

To complete the analysis we now write Eqs. 2. 40 tor all e:tcept1ng 

the last dislocation aa tollowss 

(2. 41a) 

I + / +" -x 'X - )< ca.41b) ~-1 :.<! 11 z 

• 
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It is an easy · matter to see that 'when the n- 1 Eqs. 2. 41 are added~ 

terms cancel so that 

(n-1) T = 
I I 

I ' I • ' • 

(2. 4 3) 

The total local stress acting on the nth dislocation is~ of 

course, zero. Thus, the barrier reaction stress equals the applied 

stress plus the sums of the stresses due to all the remaining disloca­

.tions in the array.· The local stress on the nth dislocation; due exclu­

sively to the remaining dislocation of the array~ is 

t;= /.G;_[CM~P+ ;~it~f7'f_!_ + I. + .. ,._L1· 
("'~ ,I ,ttfJ~ x~ x -x x-~ 

as suggested previously, or . "" .Z.. h h-I (2. 44) 

I {G /_ (C . :; 1101 I . / } t = ~ .Cif''Le-/- Silt (; ..;._ + - ~I I ~~ ---
'../. ~TTL. tt-P.J x,_ . )" .... x:z. . . >< ..... -~._,., 

Introducing Eq. 2. 40 for the first bracketed term and Eq. 2. 43 for the 

second. bracketed term~ reveals that 

.. 
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t' 1--J.. ~* l . 
,,,:~-( ~j;;:..J(rHJl=(n-l){l--l*) , ca. 4&) 

I I 

Adding the 11pplled shear .~t.~·:e~c:~ (C-- t~) - to ~ rev~e.ls that the local 

shear stress, due to ti.1m ~wc::•y .rtM.l \h~ a.ppliiid ~hear utrc(:i:.;;, cctllief "'" 

the nth dislocation of tho tu·r~ is · 

(3.46) 

Consequently, piled-up arrays generate a streoa concentration factor 

proportional to the number of dislocations ln the arra)'. _On ooea~lons 

this factor might exceed 100 or so, producing very great local stresses. 

When Eq. a, 42 ta introduced into Eq. a. 48, the local stress is 

given by 

tion of the square of the applied stress. 

When the_graln boundary constitutes the principal barrier, L can· 

be associated with.the srain diameter, D. Then, the applied stress · 

.becomes<so) . 

ca • .faa) 

wherca 

ca.4B) 
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I . 

If Z1 is associated with the local stress necessary to induce slip on 

five slip systems in the adjacent grain, a requirement suggested by 

von Mises (31 ) in order to preserve continuity at the grain boundary, the 
. . ~1/2 

applied shear stress for deformation should increase linearly with D . 

There is extensive correlation with this suggestion, a typical example 

of which is given in Fig. 2.'19. (30) 

The preceding analysis describes the state of stress at the nth 

dislocation of the array. For distances greater than L away from the 

array, the stress field is equal to that of a single dislocation at xZ3/4 

having a Burgers vector nb. Over intervening ranges, as shown by 

Stroh (32 ) the stress field is approximately given by 

5=~~ s; f(e) 
(2.50) 

. th 
where r is the distance from the n dislocation, and 81' is the 

applied shear stress. 

2L. Superdislocations 

For the superlattice AB shown in Fig. 2.20A the Burgers vector 

is 2b, that is twice the usual Burgers vector appropriate for a random 

solid solution of the alloy AB for the same crystal structure. But the 

superdislocation will dissociate into two unit dislocations as shown in 

Fig. 2. 20B. This dissociation must occur because the energy decreases 

as it takes place. Considering only the interaction energy between the 

dislocations, the change in energy when the superdislocation dissociates 

completely (i.e. , when the two dislocations are separated an infinite 

distance) is 
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(2. Sl) 

since the energy of a disloce.t~on is about one•halt of :!the shear modulus 

times the square of its Burgers vector. Because the energy decreases, 

the reaction will take place; b:ut it cannot go to completion yielding 
/ 

infinltel)' separated dislocations, because. as the dislocations move apart 

they increase the antiphase boundary, shown in Fig. a. 20B. Therefore, 
' . 

the two dislocations will remain somewhat ;associated at an equilibrium . . . 

distance of separation equal to d. 

· ln order to determine the separation distance, d, · eonsider the 

\mit•long dislocations shown in Fig. 2.-21 where the dislocation line · 

makes an angle 0 wlth the Burgers vector. The force·. due to the first 

dislocation. on the second will be 

. Fx= (f:J2 h.s -f a-;'4 b£ (2. &3) 

where Q~ Z e.nd Cfx . are the stresses at the sec6nd d!slocation due . 

to the first dislocation~ Introducing Eqs. 2. 6 and 2.11 (for)' a 0) . · 

-----..... 
::2 lT(I-f')X 

(3. 53) 

--

It \~is the surface energy per cm2 ot antiphase boundary, the total 

surface energy is Lls = -~~ ?( • Therefore, the force due to the 

·,"' 
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antiphase boundar)' acting on the second dislocation. is 

c- __ ciu~ _ y 
t;x .. - -d -- "" j( . X 
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ca. &4) 

I 

Consequently, equilibrium is obtaiiled when F 1x + F2~ a 0 at x a d or 

·ca. ss) 

3M. .f!!:!ial Dislocations and Stacking ~"'aults. 

The normal stacking of atoms in the hexagonal close•packed system 

is shown in Fig. a~ 32A where the atoms in the third basal plane are d1· 

rectly above those in the first and those in the fourth direct~ above those 

in the second, etc. · The s~acking sequence ls described as ABAB • • ..... 

The stacking sequence for ;the (111) planes. of the face-centered cubic 

system as shown in Fig. 2. 22B, however, is ABCABC • • • • • · These 

two stacking· sequences differ· ·in onq a minor wa:r from each other: The 

basal (0001) plane of the close-packed hexagonal (HCP) crystal is made 

up of an hexagonal array of atoms, which can be represented u spheres 

that touch each other like cued-up billiard balls. Precisely the same geo· 

metry applies to the atomic arrangement on the (11 U plane of the face• 

centered cubic (FCC) crystal. Whereas the B layers of·atoms are over 

the same altemate depressions 1n the first layer In both the HCP and FCC 

crystals, the third layer of atoms 1n the HCP is over the A layer but the 

third layer of atoms in the FCC system is over the alternate positions 

known as C; and the fourtb layer in the FCC is directly above the first or 

A layering. True HCP crystals, namely those having the ideal axial 
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' ratio of c/a • 1. 633, differ relative to second nearest neighbors tx:o~ 

· F'CC crystals. Consequently, the free energies for HCP and FCC crys­

tals cannot be greatly different since most o·r the bo~dirig energy arises 

from nearest-neighbor effects and these are identical for the two types: of 

crystals. 

Slip occurs between the B and A layers ot ato.l'l?-s on the .(111) plane 
' ..... · . 

of the FCC lattice iJi the direction o£ the Burgers vector b a a/2 lil'OJ as 

shown in F'ig. z. 23. But when such a slip is propagated,- .• the B ato:ms 

must pass near the A atoms, the resulting distortion belng severe~ It 
.. ; . : . ' ! . 

appears that slip would be easier by the path 61 ~ 62 o 6 because by this 

path the atoms would pass over the saddle points between the A atoms. 

In order to ascertain whether this conjecture is correct, we will deter• 

mine whether the dislocation ·ha.;lng the Burgers vector 6 can dissociate 

1nt~ ~e two partials, often called Shockley dislocatlons, S1 and 62 • 
I ' . ! ' ; 

In Fig. 2. 24, the various significant vectors are identified. The 

vector equation for the proposed dissociation is, therefore, ' 
I : 

a.;'z[ilo]~ a./to[211]+ a/0[T2T) (2. 67) 
, ~ ·, l , .\ 1 ; ' ' · ·' : .1, ... , 

Since the .vector components of the products. equal the vect9r, components 

of th~ reactant, .the.· dislocation equation ia b$.lanced yectorlally •. T~~ 

change in energy for;the reaction of, Eq. 2. 67 pe~ ~it length of disloc~-

tiona. is ; . ! •• ' 
I '· . .' ~ 

' I 

(2. 58) 

Executing the dot vector p:roducte gives 
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E = o;2 [T1o] 

bl = o;3 [1 112 1/2] = 0/s [211] 
.. 

[ i;2 I i/2] = 0/s [i 2i] b2 = o;3 

FIGURE 2.24. BURGERS VECTOR FOR 

SHOCKLY PARTIALS. 
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(2. 69) 

-
Since the dislocation energy decreases when dissociation into partials 

takes place, the suggested reaction will occur. 

It no other factor were involved the partials would separate com· 

pletely. But aa 1n the case of the dissociation of a superdislocation, a 

surface energy again intrudes into the analysis tor the dissociation re­

action of Eq. 2. 57. A plan view of the (111) slip plane showing the two 

· partial dislocations E1 and '6~ is illustrated 1n Fig. ~. 25. To the left of 

the first, and to the right of the second partial, the stacking of atoma 

is that appropriate to an ideal FCC structure. But between the two 

partials a different sequence is obtained. Whereas the first layering is 

A, the second layering of atoms is in the C position. In the third layer, 

not shown in Fig. 2. 25, the displncemen.t of the atoms is the same as in 

the second layer. Therefore, as e. result of the Burgers vector 511 the 

atoms of tho third layer have moved frorn C to A positions. And the 

atoms of the fourth layer which were originally in A positions have 

moved to B posi.tiona. Therefore,. 9JJ a result <>f tht~ spllttin.g of a total 

dislocation. into the two pA~.rtials, the stackhlfJ sequence between the 

pt:~ .. rti n.le h~,r~) ,J.:;;;:'.ng~:~d OJJ fo U: ... )WS: 

... 
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For.nier New Frank's 
Layer '~ 11 .) ac.<: nz: Stackinr! Index Structure 

below the Firat no change 1 no change no ~.ln.nge FCC 

F 0 c c ·v 
1 .A A ~' HCP 
2 B c .,\J 
3 c .A 'V 
4 .A B v FCC 

5 B c 
above the Fifth c.;imilarly no change 

Frank's index can be used to designate the etacl.dng order. If the 

order is the usual ABC.A. the symbol \J will be used. But if the 1:.1tack'in.:J 

ls AC or another inverted order, .the symbol f:l appllea. l\!!.1 shown 

above. there are two investions of stacldng order betv'11ecn the partials. 

Each investion represents a stacldng fault. And the stncldng !atilt 

between the partials consists of a planar region that is two atomic 

layers higtl, which has the stacking appropriate to the HCI? phase. 

Since the FCC phase is stable. it has the lower free energy. Therefore, 

the free energy of the system increases as the partial dislocations move 

apart. vVhen the increase in stack~ng .fault energy equals the decrenf3e 

in the interaction energy of the two partials, equilibrium in eotriblished . 

and the two partials remain, it othenvise unclistl1 ubed. the equUibriucn. 

· distance, d. apart. A similar analysis ~r-tllies to the basal plane 

stacking for the HCP system. In this event the stacking fault consif:lts 

of two layers that have the sequence of otncidng appropriate for the F'CC 

structure. Pislocations lying on other planes than the bagvJ plane ca1mot 

dh':lr:::ociate. 

In FCC metals the nbc1dn:J fault energy f.El ab~ut twice the twin 

boundary energy. This aricJ09 fr.orn the b.ct that, in FCC rn.etal.s. twin.­

nin.::r takerJ place by th~ twin di8:')lace~n.~mt vector of '11.-:::.a/G [Ii2J on _ 

•' 
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the (111) plane, the shear displacement being proportional to the distance 

of the atomic plane from the twln plane• The twln vector and the twin 
~ I 

plane are shown ln. Flg. 2.26. .Assuming that the first layer and all below 
't: '.i' .· .. '! ' L ~ I ' 

tt remain unch~nged, the second layer shlft3 nn amotint '1\.1 fr_om B to 

c. The third atoni. layer shltta 2 "rt, from C to B 
1

and the fourth atom 

layer shlf~s 3 '1\1 from A to A. ·Therefore·, the stacking sequence for· 

a '71, e a /6 [li 2] twtn 0\'l the (111) plane _la a's follow a: ,. 

Former N~w 
Layer stac~\'.i{lu· Stacking 

below the First ' no cb,ange no chant(e 
0 C· .. c 
1 A A 

2 B c I • 

.s c : .. B 

4 A A 
above the fourth simllarl~ no c·hang~ 

! ' •• 

Franlt1s 
: ·Itt de,«: · · · · ! : Sti"ucti.u•e 

no chat'lge FCC 

J v·._ .. 
HCP 

~ ..... ---........... 
~ . f 
A._· ,. , FCC 
u . ~ 

' 

C~nsequ.ently a twln bountlary exhlblts a single i~verslon ln Frank's index 

iirtd lt is repres~t)ted by ~ alngl~ layer of atoms· bavt~g the he~~:ag~nal 
-, :.l J 

stacking. Therefore, the stacking fault energy is appro;dmately twice the 

:twin boundary energy. Alloys that twin readily, ~uch as Co-Nl oomposlttona · 

near the transtt_ion from FCC to HCP structures~ 'have eXtremely low twin 

boundary energies. As the electron:/atom ratio of Cu alloys d~creaees, the 

twin boundary energy increasea and twlntllng is less prevalent. ·iu·aud its 

alloys have high twln boundary energies and rarely e'thlbit twins. · Stac!dng 

. fault energies follow the same sequence. 
' 

2N. Separa:tton 52f 'Parti.als and Hecornblna.tlon Energies 

The problem of det~rmininrt the eqailibriu.m oeparation clirJtance 

between two partial dialocatlons is analogous to that, \vhich has already 
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TWIN PLANE (Ill) 
ii, = 0;6 [i12] 

FIGURE 2.2S. T\tVIN PLANE AND VECTOR. 
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A. MOVEMENTS OF THE . B. MOVEMENT OF THE 
FIRST TWIN .LAYER SECOND TWIN LAYER 

FROM 8 TO C. · FROM C . TO B. 

n1 ~ 0/s [Ti2] n 2 = 2 n 1 

C. MOVEMENT OF THE THIRD. 
TWIN LAYER FROM A TO A. · 

n3 = 3n 1 

FIGURE 2·.21. LAYERING SHIFTS DUE TO TWINNING. 
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been reviewed, of calculating the equilibrium distance between the two 

halves of a dissociated superdislocation. Consider unit lengths of the 

two partial dislocations shown in :Fig. 2. 2U separated a distance x. The 

staddng fault energy between the two dislocations is 'fs. per cm2 
and 

the stacking fault energy is therefore U
8 

• \\X , ·assuming that the 

first partial is fixed, a force 

(2. 60) 

acts on the second partial due to the stacking fault. The fore a acting on 

a unit length of the s'econd partial is given by 

t. ' ) . -I Gb,,r ·6,u-
2ll(i-P)X 

It is readily evident from Fig. 3. 28 that 
! 

4s=f«'cos($f3o)= !-f""T cos(tNao) 

b,E=@ .s;n(fN3o)-fth s/n(8+.3o) 
' . 

h25=M cos ( e-Jo)= fj ff cos (e -3o) 

b.;r=f£;Ji. sm (f)-3o)= f/i"" :s;/z.( fJ-3o) 

' 

(2. 61) 

where Q is the angle the total Burgers vector o makes with tbe disloc~tion 

li.ne. Therefore the force due to the interaction of the first dislocation on 

a unit length of the second dislocation is 

• 
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which reduces to 

G a2 /(3 'I ) . l.. {: 3 . ) . ~ . r::- = .,.. · 3- · C!JS S + l-h -1 Sin B (2. t>a) 
1X. 9877X l-p ~ · . 

At equilibrium F x + F
5

. a 0 and therefore, letting d " x at equiUbrium, 

'9-. = Gal- ~. ;-0- _L lctJ.:/& +(.! _11 s,F/G? 12.631 
1~ 'IBli'd l 4 ~ lf'·V I .;JJ. 'I J 

Consequently the separation ot the partials is somewhat dependent on the 

orientation, 9, ot the total dts·location. For the interesting case, where 

the totaldislocation is in screw orientation, 9 • 0, and 

d = G-a2 J 1-. 3)~} z:· Ga._" (-$:-) 
. £'1 il')~ ~-~·/-p... .· 2 Y1i~ 

(2. 64) 

taking )'- ~ J{. The~ore the partial d1alocat1ond w111be more widely 

s~parated as ~~ decreases. ·. 

It dislocation a of Fig. 2. 28 encounters a barrier so that it can 

. no longer move in the positive x direction, and it .a local stress, lbl ~ 
is applied parallel to the Burgers vector of the first dislocation, there­

sulting force '4, b1 , . will ·force the first dislocation to approach the 

second, thereby reducing the separation of the partials. The net force 

acting in the positive direction on the first partial is 

F;
1 
= (;

1 
b, + )>ls 

whereas the repulsion.force on the first partial due to the second is 



as seen from "Cq. 2. G2 for 9 = 0. Lettiu1::~· the new equilibri~m spacint.~ 

between the partials be d ... x = dt' for a otress-2;1-,...:gtves 

(2. 65a) 

or 

(2. 6l>b) 

The recombination energy is the work that must be done to 

coalesce,the two partials into the total df.slocation. ·We will consider 

. here,. that a local stress; 'C;, has been applied to the f;rst dioloca.tion 

and ascertain what additional work need be done to bring the partials 

toR:rr ~~~ G-~1(-~ f:/){) - (· ~ J , ,g_ V J· -6 t . 
. .·. J~ . .2~P'.)c . . .. • · .. · {.. b/ Di + T(. /1.' ~ ,. 'J . 

+ (!;. - ~ r;p)~ ('fb, "' + '1-,)b . .. (2.66) 

The first two terms refer to the work done to bring the two partials from 

c.~ to a distance b apart, and the last two terms refer to the work that 

need be done to 'coalesce the cores. rc refers to the core energy ot' the 

total dislocation and f; p to the core energy of each partial dislocation 

pe.r unit lenrh, Integrating Eq, 2. 66 arid Introducing Eq. 2. 65b gives 

_ R= 011 c;.qz ~. !/t Q.t:i< ~ . 
;2~,. · · · Kl 1T'he(?; b~t-i1-) 

bl f ~ 
(2. 67) 

-r.[n -2 f! } ~ · CP 
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R then is the energy that must be supplied by a thermal fluctuation in 

order to effect the recombination per unit lene;,rth of two partial disloca­

tions, when the recombination is stress aided. But since the stress 

enters the energy expression as part of a logarithmic term, the recom­

bination energy is insensitive to the applied stress. An alternate equiva .. 

lent expression for the recombination energy is 

_ 3/'f G-a.f'-A dt:-' 
!?- z~11 eb (2. Q7b) 

Therefore when d • eb, the recombination energy involves only the 

bracketed t.erm of Eq. 2. 6 7. But the recombinatio~t. energy increases as 

the distance d t' between the partials increases or as the st.ncldng fa~lt 

energy decreases. 

When two partial dislocations are forced together at a point, as 

shown in Fig. 2. 29, a constriction is formed. By a detailed calculation, 

Stroh (S4) has shown that the constriction energy is 

(2. 68) 

where dt" depends on the applled stress as shown by Eq. 2. 65b. 

3. SOME THER1\1ALLY ACTIVATED DISLOCATION MECHANISMS 

3A. Introduction 

\Vhereas the emphasis in Section 2 was on dislocation sta.t!cs, we 

will concentrate in this section on the dyna..'TI.ic behavior of dislocations 

· with spocial emphasis on thermally activated dislocation n1oU.on. *!'hose 

dislocation m.echa.nisms thnt have activaHon energies above about 50kT 

nra activated so infrequently that they cont.t.·ihut~~ in. only a mh:KH." way to 

• 
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FIG. 2.29 CONSTRiCTION. 
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the strain rate. But mechanisms having activation energies less than 

about 50kT have appreciable probabilities of occurrence and contribute 

effectively to the strain :rate. Since the probability for activation is 

eip. {·free energy of activation + kT] on]y those prooesses that have. 

low activation energies can be· activated at low temperatures. At higher-/ 

temperatures these processes, such as those which occur bi the initial 

straining when a creep specimen ls first stressed, take place eo rapidly 

that they are almost instantaneous. ·During such initial straining, dis· 

locations move up to barriers that demand operation ot higher activation 
' . 

energy processes. Consequently, the activation energy for the strain 
'' 

rate will, in general. be expected to increase with an increase 1n tempera• 

ture. For most dislocation processes, the free energy of activation de• 

creases as the stress .is increased. It is possible on occasions to isolate. 

experimentally, regions of' temperature ~d stress where the measured 
. I 

strain r~te is predomtnant~ tht!t :result ot a single mechanism. But dis-

location theory has. not yet matured to that stage of completeness where 

the ranges of operation of specified mechanisms can be prescribed 

theoretically. Therefore, the experimental data must still always be 

compared with th~oretical deductions in an attempt to Identity operative 

mechanisms. Only a few examples are current]y available where the · 

correlations between experir:.1ental evidence and theoretical predictions 

are sufficiently close to permit confidence in the identity ot the mechanism. 

Some experimental data are difficult to rationalize, at present, because 

. of the simultaneous operation of several mechanisms. And there are 

several rather well documented pieces of experimental evidence that 
\ 

· suggest the operation of only one mechanism but yet cannot be appropriately 

• 
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correlated with existing theory. Obviously dislocation theocy does not 

yet em~race aU possible mechanisms. In spite of th& versatlllt;Y and ' 

complexity of dislocation theory, substantial progress has nevertheless 

been made in formulatirtg the basic tenets of the problem. And additional 

' progress can be eXpected in' the near future that will ampUfy existing .i 

theories and formulate new possible mechanisms of deformation. The 

future' theoretical developments can be expected· to rely more heavily on 
. . i' 'I I 

. '•' \ 

more precise mechanical data. bette'r planned experiments, and more 
. . \ ' . 

. detailed correlations with pertinent transmission ele.ctron microscopical 

observations • 

. ·A. complete survey of all ot the known thermalb' .ietlvated dJ.slocatlon 

mechanisms wiU not be attempted here, Rather only a few representative . 
' ' I ' j . ' . ' 

examples of the known mechanisms wiU be discussed to provide a back• , . 
. ' • I • ' ,· , ' 

sround for approaching other thermal]f activated dislocation ptoUon pro• 

ceases, The selection .of .on]f the lnter.section, ·cross slip, motion of 
• l • ' 

" ' 

· .Jogged screw dislocation and climb of edge dislocation mechanloms for 
:•,t• ,; ·~·· •, : ' ' , , 1 • I·,<, • 1 ' + '' .. ' • ' , ' , 

inclusion in this report was bued prlmarU,y on the fact that. in each: o! 

thea~ ·cases there is at ·lea&t a modest amount of correlaUvo evidence to 

confirm the possible operation of these mechanisms• 

. SB~ The Geometry of Jnter~ection · 

Simple e:Xamples ot a glide dislocaUdn AA t on a gUde plane, tnter• 
. . , 

secting a forest dislocation BB•, .u-e shown 1n Flg. S.l •. The following 

rules can be seen to apply: 

1. Since dislocations cannot terminate in .the center of a ceystal, 
. . 

they must remain continuous following intersection. 

· J·. The forest dislocation always inc.reaae~ in length. by the Burgers · 

vector of the glide dislocation. 
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{a) INTERSECTION OF TWO EDGE DISLOCATIONS 
PRODUCING SCREW KINKS AT {a) AND (b). 

{b) INTERSECTION . OF TWO EDGE DISLOCATIONS 
PRODUCING (a) AN EDGE JOG. 

o/1 . . 
b21:_ 1_~,=-' ____, 

I -- I /;-"'-

- I %1 ~~b)_....,.,·- bt 
b2T 1 (a)_jl : 

I I I 1 

~~----~~~~--- I I s s' ~ · 
(c) INTERSECTION OF AN EDGE' DISLOCATION BY 
A SCREW DISLOCATION. PRODUCING {a) AN EDGE 

) JOG, AND' {b) AN EDGE KINK. . 

B' I . 
,_.(o-)~-_1 li 

I 
I 

B 8 

(d) INTERSECTION· OF .TWO . SCREW DISLOCATIONS 
PRODUCING (a) AN ·EDGE KINK, AND (b) AN EDGE JQG. 

FIG. 3.1 SIMPLE CASES OF INTERSECTION IN SIMPLE CUBIC 
LATTICE~·-----------------------
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s. The glide dislocation alweys increases in length by the Burgers 

vector ot the forest dislocation. 

4. It the increased lengtl'~ Ues in the slip plane ot the dislocation, 
... 

it 1s called a kink. Kitllts wUl soon straighten out due to the 

Une tension. . .. \. J 

~ 6. lt the increased length extends. from one slip plene to an 

adjacent parallel eUp plane it is called 11 jog. ln the case of 

edge dislocations, · j 0gs are always clearly distinguishable from 

kinks. But in the case ot undissociated screw dislocations, 

jogs and kinks are on~ distinguishable from each other when 

the slip plane ls arbitrari~ defined •. · This ambiguity does not .. , 

exist:; in the case of dissociated screw dislocations because . 

here the edge components of the partials define the slip plant~. 
' . 

6. Because dislocations get longer as a result of intersection, 
I 

work equal to the 1ncr~aaed energy qt the dieloc~tion must be · 

done in order to cause tntersection. As described in Section 20, 

the energy of a jog ·11 approximately ~ ~ the cor& energy. 

Although a sharp klnk hna the same energy as a jog, kinks .,. 

straighten o~t due to the line tension. Th~refore, somewhat 

less work Is expended in producing a kink than in producing a 

jog during intersection. Consequently,, the energy :required to 

effect lntarsection dependa on the detailed geon·uiltric co1,dit1ons 

that ap1~ly. On the average it ls approximate~ 
-~ I !J 

(j_ J ,t__ ~~· - (3,1) 

· where Uj is the Jog energy. 

•. 
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The geometric details of intersection of dislocations in FCC 

metals are incomparably more complicated than that depicted in Fig. 3. 1. 

Dependent upon their orientations in their slip planes and on their Bur.gers 

vector, intersecting dislocations in FCC metals may either attract or 

repel each other. These details have been described by Saada(JS) and 

cannot be reviewed here. In general the repulsion interaction is 

(3. 2) 

where o< is a constant, and L is the mean distance between points at 

which the dislocations inters,ct or are otherwise held up. 

Additional complications also arise because dislocations in FCC 

metals are dissociated into their partials. .The Burgers vector of a 

partial dislocation does not correspond With a translational vector between 

near atoms ln the crystal. Therefore, the energy to form a jog equal to 

the Burgers vector of a partial would result 1n extreme crowding of atoma 

and would have correspondingly high energy. Consequently the saddle of 

the reaction path for intersection is obtained when the two partials of both 

the glide and forest dislocations· are i'irst constricted, as discussed in 

Section 2N, following which the jogs are easily produced. Therefore the 

total energy for intersection, u1, is of the order of magnitude of. 

tJ.. /_ tJ ~ + 2 1J = G:i~1·+ G lfcl't(-' 4 . c./21)·.. . Yz ·1<3 ~> 
l -"'"I (.,. /2.' -- _).: .. ft'\.. -..:.. . I • 

..,; ~· . I .5- D . 
as ,given by Eqs. 3. 1 and J. GB. Consequently the inter:.:;cction energy 

increases us the stackinG fault energy decreases. 
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3C. Thermally Activated 'Intersection 

' The intersection mechanism has been discussed by Mott, (S) 

Cottrell,(SB) Friedel, (5) Seeger, (B) Basinski, (ST) Thol'nton and Hirsch, (SB) 

and other inveatlflators. In all of the approaches that have been used ··' 

thua far,. smeared average valueD have been adopted for the activation 

energy, dlatanceo between dislocations, back stress fields,· area swept 

out and number of intersecting dislocations per unit volume. Since the 

detailed statistics cannot at present be extracted from the experimental 

data for verification,. this method of averaging will also be adopted here. 

An idealized plan view of a aUp plane is shown in P'is. 8. 2. The 

dislocation AA t lo acted upon by the stress t-~here /:is the applied 

stress and l~re 1ntemal back stresses acting In the direction of the 

Burgers vector. · Under the action of the stress, all slissile dislocations 
' 

moV'e ao as to contact, at lea~t elastically, the forest dislocations thread• 

ins the sUp plane, as shown at the open circles m the figure. Let N be 

the number ot such contacts per unit volume of the crystal. The force 

ncting at the point of lnterilectlon, as slven by Eq~ 2. 28 is 

. ' . . 

F= {t--t*) L/, (3. 4) 

· We 'will be concerned only with the instances where this force is not 

great enough t() effect inte.rsection per se. Consequently intersection will 

take place only when a thermal fluctuation of sufficient magnitude aids 

t~e local force. During this process of thermal activation, .. the dislocation 

sweeps through the doubly crosshatched area. After this it continues to 

move under the action of the local stress until lt Impinges on the next set · ·• .. , 

of forest dislocations. Thus, 1t sweeps out the total crosshatched area; · . · · · 

... 
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FIG~3.2 PLAN VIEW.OF A SLIP PLANE 
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DISLOCATIONS. 



·98- UCRL•10455 

A, per activation. This takes place at each point ot contact between the 

slide and forest dislocations. Consequently the strain rate;'¥, is given by 

) •. 

(3. 6) 
I 

. ' I . . , .... 

where V ls the frequency of activation. 
: ' ; ~ ., ', I ' lo 

, . Let F 
0 

vs. n be the force displacement diagram tor eomp1etlon of 
• I ~ ' • ! I ,. ' I ' ' ' . . 

intersection at the absolute zero of temperature, as shown schematically 
. ' : . ·) : ' ' ' ., . 

in Fig. 3. a. The diagram ls to be interpreted as follows: As the glide 
I I ·, I ~ ! 01 • ,.; ' ' • I 

dislocation approaches the .torest dislocation, a decreases. When contact 
.. 

ls made between the leading partial of the glide dislocatiqn and the ttrst 

. partial of the forest disloc,ation, constriction b~gin~ and F 0 increases. 

When x decreases to b the partials have been completely constricted,' In 
I ' ,. • ,., ~ 

order to complete intersection, the jog must now be produced. The force 

necessaey to produ~e th~ jog is taken to .be F0 j o~er the region 0 < x < b. 

The total area under the F 
0 

• x curve .is therefore the energy tor inter· 
' ' . ' ., , . . . 

sectlon.U'jo at the absolute zero as approxima~ed by Eq. s. s. The curve 

shown is appropriate to high stack~g f'ault .energy crystals. The processes 

ot constriCting and jogging. are linear~ a-elated to the shear modulus of 

elasticity. Therefore the force Fat a temperature where the ·shear mQdu• 

lus of elasticity is 0, as shown by the broken· curve in Fig. s. 3 ls given by 

(3. 6) 

where 0
0 

is the shd.ar modulus at the absolute· zero. '; 
'r 

. I ~ . 

When a torc·e F a (1;- l, )Lb is applied at the point of imminent 
. J ' • 

1nters~ction, the eh0rgy,equal to the crosshatched area under the F • x 
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~ . . . 
curve from ct -!·) Lb to F J must be supplied by a ther~al fluctuation to 

complete intersection. This energy ls given by 

f 
Fj . 

tJ. ·=· xdF ( . 

'f-.. 't~)Lb 

(3. 7) 

Since the natural frequency of vibration at the point of intersection is 

about the Debye frequency, 7), the frequency for a single successful 

thermal fluctuation is 11 • 1/. . 
- tAt;J:?T 

. ·P-z) '= ·-z) e . (3. 8) 

using the Boltzmann condition. Therefore the strain rate due to inter· 

oectlon 1e 

(3. 9) 

where U 1 ls defined by Eq. 3. '1. 

. . 

3D. Seeger's Approximation 

It is advisable to discuss first, the simple ease where the dis­

locations are undissoeiated. Sine~ no constriction is involved 1n this 

example, the total activation energy for intersection is the jog energy. 

. G 
Ll· = {lj·o ~ 

j . . ~0 
(3 I 10) 

. ' *' I 

The work done by the local stress in this ease is ( t -CcG/G
0

)Lb2• 

And consequently the energy that must be supplied by a thermal fluctua­

tion to complete intersection is 

(3. 11) 
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Therefore for this eimplification, . · 

. o . - llJ·oG IG-o + (c-ct G/c;o) ~1:/~ 
. 'f= #/}/; 7Je. ,[;T . e -kT - (3.12) 

The flow atresa f.a theretoro given b)' 

l: f.::.= t: + ~·c._ktC • .& AIA~V (3.13) 

G - 'L62 Lb~G . f' 
Since the thermal fluctuation only assist~ in overcoming Ujo' Eq. 3. 13 

, onq applies when U Jo > kT0 °0 1n ~b , For temperatures where 

( . U jo < kT0°P In N~:tl successful thermal fluctuations are lmn>edlate 

and in this rango 

t Go ~- t# 
G o 

(3. 14) 

Tho critical temperaturo T c at which the flow stress changes from that 

_ given b)' Eq. 3. 13 to that tn Eq; 3. 14 is given by 

U· =.AT,. G. A /'IAhV (3,16) 
. Jl> . c: G7c. . y 

and the temperature, T c• therefore Ia independent of the activation volume 
a . . . 

_ Lb • Introducing Eq. 3.15 into Eq. 3. 13 gives 

0 ' ' ... ;j tJ -- . /c. ;. . ' '. . - G _.-t:*. k· [ 1·- _.· T_ G_--]·-

t G 7 · .. "' f 'Li).i •. "0. ,: GJ.' .· · .. T< Tc (3, l6a) 

and 

T>k (3. lt>b) 
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~* a . . 
. where the thre:e quantities (, C? , Ujc/Lb and T c are directly deter~,tnable 

from exp~rimenta1 data. Whereas the independent externally controllable 

variables are 'f. and T ~~---~e dependent measurable variable is t , 
. the internally significant quantities are tour in number, namely, Z:: . ~­
L, U Jo' and (NA). Obviously these four internal quantities cannot be 

deduced from the three measurable external variables. Therefore an 

additional independent experimental measurement is required. In order 

to obtain the needed quantity, we define the experimentally determinable 

quantity fj as 

p=(cltt~)T L ~:,z 

~T 
(3. 17) 

the last equality resulting from the differentiation of Eq. 3.13. The 

method of determlning 13 ~perlmentally from a tension test is illustrated 
I 

in Fig. 3. 5A'· (B) tor the ca:se of Al single crystals at '17°K. The activa• 
I a . 

tion volume Lb o fJkT is shown as a function of the flow stress at 7'1°K 

in Fig. 3. 5B.(S) As the single Al crystal strain hardens, the activation 

volume and therefore L decreases, illustrative· of the fact that additional 

dislocations are introduced during straining or that the significant existing 

dislocations are more closely spaced as would occur in forming the en-
. 3 

tanglements to be described later. The added lntormatton on Lb now 
1L* . 

permits all of the quantities (.,{) , L, Ujo and NAto be determined. The 

deduced quantities for Al are 1n good agreement with those suggested by 

the intersection mechanism. This is significant inasmuch· as other 

mechanisms can also give flow stress that decreases linearly with tem­

perature as suggested by Eq. 3. loa. 
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(A) SCHEMATIC . OF TENSION fEST . ON SINGLE 
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BCC metals also exhibft almost a Unear decrease 'in t with an in~ 
· creasing T at low temp~ratures. But the f: .. T curve is much steeper 

than that tor Al. If intersection controls the deformation of BCC metals 

UJ
0

/Lb3T
0 

must be much greater for these metals than for Al. But T0 

is about thtf same ln both oases and Ujo tor BCC metals can only be about 

twice that for Al. Consequently, L must be much smaller tn DCC metals 

than tn At. This deduction ts confirmed by the experimental fact that 

f3kT • Lb
2

-dr 2ob
3 to 40b

3 tor Fe, giving L.o:::: 20b to 40b. It intersection 

ls the controlling ine·chanism the experimental yalue of Ujo tor Fe is cal­

culated to be about 1. 13 x 10~~·~ t.o 2~ 26 x 10-12 ergs. 

lt is yet commonly belleved that the extremely low value of Lis 

inconsistent with the average density of dislocations that are usually 

present in annealed Fe. The assumption has been mad~ that perhaps the 

aeformation of BCC metals at low temperature's arises from the activa­

tion of th~ Peierls mechanism. JD this mechanism. dislocations lying in 

their potential energy valleys bow out ond advance one Burgers vector to 

the next valley. This is accompllshed by the formation of two kinks and 
' 

has a theoretical activation energy of approximately JUk .. ( t-t~ 4,bJ, 

where Uk is the ~ink energy and fp ls about lOb. Several factors, bow-. 

ever, suggest that Peierls mechanism cannot account for the plastic de· 

formation of BCC metals. First 2Uk is estimated theoretically to be 
, } 

much smaller than the value deduced for this quantity experimentally. 

Second, the observed activation volume is usually several times the 
3 . , 

estimated lOb • The most pertinent evidence that serves to disqualify 
' ' 

the Peierls mechanism is the fact that dislocations in mildly cold worked_, 

BCC metals do not lie along the potential energy troughs. as would be 
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necessary if the Pe1erls mechanism were valid, but have irregular 

shapes illustrating that they are already severely kinked. 

·. Recently Schoeck (a g) suggested that the plastic defot-mation of 
. ' '" 

BCC metals at low temperatures might be controlled by the thermally . 

activated motion of jogged screw dislocations. IUs argument stems from 

the thought that since the a/d ·[1111 dislocations in BCC metals are un­

dissoclated. their jog energy is very small.' Consequently such disloca· 

tiona would be severely jogged, As will be described 111 more detail later, 

when a jogged screw dislocation moves •. it leaves either a trail of vacancies 

or a· trail of interstitials in its wake. ln this event the least possible 

activation energy is u, • (l: ... t1JJb3 where u, is the energy of formation 

of a vacancy and f j is the mean distance b~tween jogs. · There are s•veral: .· 
• • • • # • 

difficulties in accepting this interpretation. First, the experimentally 
I 1 • ·'. 

evaluated value fdr u1 is ~uch less than the energy of formation of a 
. , . . I . • . 

vacancy, , and secondly, if this were the mechanism, it should also be 

operativ& in a high stacking fault FCC metal such as Al. Because the con­

$tr1ct1on energy in Al is small, the value otf J for Al should not be much 

different from that in BCC metals. Consequently,. the exact mechanism 

of low temperature deformation in BCC metals is not yet well unders~ood. 

Until it was rationalized by Basinski, (3 ?) one experimental_ fact 

regarding the activation v.olume of FCC metals embarrassed the theorY. 

The experimentally determined activation volumes Lb3 al3kT, for these 

metals• particularly Cu which has the lower stacking fault energy, in­

creased with increasing temperatures. Theoretically, since Lis con .. 

stant for a given .strain-hardened state, the activation volume for that 

state should therefore have been independent of the temperature. As we 

will demo~strate in the following section, this apparent anomaly is resolved 
,, ' 
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.. ··~ . . 

when the constriction energy' of dislocations that 'ate s'eparated into their 

partials ls taken into consideration. 

· ' ThE~ intersection theory assumes thA't the strail1 hardened· state is 
"}..If . 

described ln ter.rn.s of the variables f.. 0 , Land NA~ Various strain hard-

ened states, however,· give about the same value of T 
0 

for the same strain 

rate• 'Reference to Eq. a. 16 reveals that the product NA therefore does 

not change sufficiently during strain hardening to Influence the analysis. 

··'' , Thta zoesult might have been expected because, first; T c is onzy logarith·. 

mlcally related to NA and second, becauae as N increases, A can be 

expected to decrease. For these reasons, the assumption that NA does 

not vary material~¥ during strain hardening is justified. 

t* . 
Since, however, Land ~appear in the exponential term of Eq. 

3.1a, their changes durlng strain hardenin'g have a pronounced effect on 

the flow stress. This is illustrated schematically in Fig. 3. 6 where 

.,·. 'ta0 /G vs. T curve at the same Y Is shown for tw: ill.fferent strain 

hardened states a and b., During Qtra!n hardening 'to increases and L 

decreases, butTe remains approx1matezy constant. Therefore strain­

hardening causes a more rapid decrease ot 1: G
0

/G with an increase in T 

over the range · 0, < T < T c~ . i 

: The actual activation energy for intersection rnust increase linearly 

with the absolute temperature according to 

/'1 A b v ---
1- (3. 18) 

· for tests conducted at a constant strain rate. 'I' he e>:parimentally deter­
\ 

minable apparent active.tt~n energy q1 for intersection; 'however. e.s de• 

fin_~d by Eq. 1. 3 ot Section 1 A~ is 
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· · . 1 J u~ · · \ , 
q , = tJ, • + ::. J I I - T 0 u., (3. 19) 
{)' t .J; T \ ' V<..(., . . . . . CAJfr . ' dT 

whoro d Ut plays the role of the entropy of activation lhd q{ la eor• 
dT 

relatable with the tree energy of. activation, When the dislocations are 

undiseoclated Eq, 3. 11 applies and 

Since ( • }TG ) 1.11 alvr8)'a positive q1 ::;> u1 and Increases rnore Z.aptdly than 

Unearq with the temperature;-

SE.- Intersection Theory as Applied to 
Cqstals Containing DissQciated Dlslocationg 

The idealized intersection theory described in the pre~edlng 

aacti~as~umed tbat the dislocatlons were undiss~ciat~d. , When disloca·' 

tiona are dissociated,. as in the case of dislocations on the (111) plalle of 
.. • j 

FCC metals or on the 'basal planes of HCP metals, the F - x' curve for 

intersection is no longer rectangular but has the shape given in ·.Fig. 3. 3. 

In this case: 

(3. 22) 
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a·s·shown by Eq. 3. 9. But in terms of Eq. 3. 7 

JUJ=--~Lh 
dt ' ' ' 

and therefore, the activation volume is given by 

UCRL-10455 

(3. 23) 

(3. 24) 

At low temperatures, say 4°K, t11 is small. since it is directly propor­

tional to T tor a constant strain rate test, as required by Eq. 3. 9. 

Reference to Fig. S. 3 reveals that in this range x :::.-b and therefore the 

activation volume approximates .Lb2• But for the same strain rate, u1 

increases linearly with T, Consequently x increases with T as Ui in· 

creases with T as deduced from Fig. 3. 3. Therefore, in agreement with 

the experimental. facts, the 1 activation volume for intersection of disso• . 
' ! ' 

. . I 

elated dislocations increases as the temperature increases. 

We will now consider the determination of the smeared average 

F
0 

- x curve for the intersection mechanism in Al from 'deductions based 

on experimental .facts. ·The data to be described were obtained by Mitra 

Osborne, and Dor~ (B) from· Al single crystals, all having the intial orienta• 

tion shown in the unit stereographic triangle given in Fig. 3. ?. The expert· 
' ' ' 

mental proced~re involved ccnsisted of prestraining one of a series of 

single crystals to one of a series of strain-hardened states _over the easy 

glide and linear hardening ranges. at 770K. Each such state is, of course, 

characterized b; a 'l;~and an L value, NA,. as discussed previ~usly, 
' ' ' 

being insensitive to the straining. The test temperature was ·then changed 

to a new value and 8 was determined as a function of strain (or stress). 
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The value of .B was then extrapolated to the value it had at the new test 

temperature at zero additional strain at that temperature. Thus tikT and 

~ Q /G could be determined for a presc~ibed work• hardened state, at.i..l 
0 ' 

each of a series of temperatures. The results so obtained are shown in 

Fig •. S. 8.(8) Each solid curve refers to a speclfio strain•hardened state, 

and. each broken curve joins the series of tests for various a train • 

hardened atates made at a given temperature. The curves tor higher 

strain-hardened ~tatea .. reveal a more ,rapiddecrea,ae tnt 0
0
/G with akT. ·. 

At a given t«tst tempetrature u1 is constant, since V"' is constant. There• 

tore, P' and k' are also constant, ao noted 1n :Fig. S. 3. Therefore, the 

decreasins value of tlkT o xLb with strain hardening along a·conatant 

temperature curve must be ascribed principally to decreases in L. At 
' . 

the lowest. test temper~tures, however,, tJ'i is very small and X approaches .. 

b. Consequently for the 4°k values x Lb~ Lb2• In tbi. way L can be 
. I . 

determined for each ctrainlhardened state. The values of 1/L ao obtained 
I 

are documented 1n Fig. 3. e<8> as e function ot the strain at 1'1-K. Over 
' 

. ; . 

easy glide li'L remains substantially constant whereas it increases .al• 

most linearly with strain 1n' the linear hardenufs regionkl. 

Knowlnj t~e values ·of Lfor each state as given in Fig. s. 9, the 

. W.1ues of x for each point in P'is. 3. 8 are d~terminable from n a t~ . · 
• Therefore, the data recorded in Fis. 3. 8 could be recast in terms Of 

t~0/0 Lb v~ x as shown in Fig. 3. 10 for Al •. The fact that· these curves 

are identical, exc-ept as regards a vertical displacement. is in complete . 

. harmony with the intersection theory. For a given value of x, the value 

of F 
0 

is constant as shown ,in Figv 3. 3 and from Eq. 3. 4 

(3. 25) 
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whereas F 
0 

( x J is only a function of x, the value of ~b depends. 

uniquely on the strain-hardened state. Therefore, the dlffere.nce in 

ve.rtical displacement of the curves in Fig. 3.10 (8) for twp states d 

and a is .. 

( t £ Lb 1-( t ~ L b) a.==( t*L b)d -{ti.t)ts_26, 

Therefore, 'f:. could be determined for the various states provided "~--* D . Go 
,,were known at one state, say the initial yeild strength. 

It is possible that t: can arise from two sources __ such that 

. t: = t: + c:e . . (3.27) 
. -JI . 

' where ~iresults from local repulsions of intersecting dislocations, 

and ~ arises from longer range back stress due to other dislocations 

than the specific pair involved in inters.ection. At initial yielding, however, 

t()~ must be negligibly small and t: must result almost exclusively. 
~~ ' 

from '-'t>e: • But as discussed previously in Section 3B,. · 

.rX ~" 4-'~ ' 
l-lt;i = . L . . . (3.28) 

whered~o.o4 as obtained by using the lowest datum value of t'a /G Lb 
0 ' 

. for initial yielding that is given in Fig. 3.10. On this basis the values 
' .,..,~ ' 1Uf- (8) ' ' 
of voiand (,aqshown in Fig. 3.11 were obtained. The total back stress 

by this approach appears to be almost equally due to the local interaction 
I. . 

and the long-range stress fields• For the· Al single crystal tested here ¥ ~-., ' 
~A. also ~aries ~lt,;ost line~~ly with 1 iL. For Cu single crystals a 

vertical displacement between the various work-hardened states is also 
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obtained. The F 
0 

• x curve for Al, obtained by aubtre.ctlng the eotimnted 
~ ~ ~ . I 

valueo of ( t;l + ~..£ )Lb from <., (0
0

/0)Lb nccording t~ 
! 

Fo-=(t'Go/G) Lh -(td + toj)£ b cu91 
' 1 

lo ohovm tn P'itJ. s. 11. (~~) 

. Becouso of ito hisb otnchins fnutt onorgy. tho two partial dioloca• 

. tiono ill Al oro oeparated only ~bout 2b. Tborofore, tho veluo of I' 
0 

might 

bnvo boea expected to bo soro at about n:::: lb. In contract,· bowovo1•, 1t 

cohtinueo to decreaoo mlowty for :tt > Sb. Thto io due to thG feet that · 

thermal activutlon can o.ssiot in overcomins oomo ot tho interaction bach 

otressea at pointe, and under the geometric conditions. where those are 

small •. 
·'. 

In blo 1981 Institute tor ~etalt11 Locture. Mott(40) ausseoted that 

moat ot the otraln hardening durtns low temperature deformation might 
( 

nrtoo from the reotralnto to motion of jogs on screw dislocations. He 

. argued that inasmuch ac dislocation entanglcaments a~o observed and no 

orrnyo of piled•up diolocationa are noted in deformed Al or Cu~ thero 
' I ' -~· < 

can bo no long• range bo.ck stress em. But the abaenco Of ptted!up disloca• 

tlon orrayo doetJ not constitute proof ot the absence of iong•rango bach. 

otreo·aoc. Such otreaaea can nloo arise ao e. result of concentre.tiono ot 

•.• ,.~.,.;.,.j 

. d1olocot1ono of tho same algn 1n one resion. Furthermore, dialoe&tion 

ontanslomentc aro probnblf produced becauoe tho onerlJY of the entanslo• 

ment 1o lower than tho enersy of other possible contlgurationo. There• 

fore, when n dislocation oesment ia forced to leavo en entanglemont, .worl:t · · 

muct bo done against the attractive forceo arioing from t~e remamins 

diolocotions ln the entanglement. The net result is, therefore, equivalent 
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' (411) . . . 
tt> a ·lontJ•range back stresa.' Seeger:and· Mader · havo demonstrated· 

·tho preoance of long•ranse back etresseliJ tn ferromapettc motala by .: · 

dotorm!nlng the effect of cold work on magnetic onturatlon. Thio pro• · 

porty lo not nffGcted by loce.llnteract1ono Md therefore conotituteo rather 

tJood proof of tho proaencG of long-rango back ctreaseo in cold•worlted 

mot&t.· 

' M.ltrn b.nd Dorn (B) bavo aloo detoctod tho effect ot long roDIJ~ ·bach . 
. . . 

otreaoeo from analyoeo of data. obtained durlntJ tho determino.tion of If f.n . · .. 
' • ' ' ' I ' I ' '• 

ri olnslo tenalon toot. Sinco the temperature tmd o.verage otraln rato· 
' j I ' ' •< ' ' ' ' ' 'I ' \, J 'I ' 

voro held conatant, u1 was; essentially ·aonotant, and. tboref~re, I' 
0 

o.nd · 
. ' ' . ' . 

:rc muat alao·hnvo remainod constant throughout the teat.·. -The data obtained 

oro ohown ·pto.ttod ·on £L los•log graph ao ohown 1n FitJ. 8. ~a. (S) ·But 
. ' . 

i 

U t;;_ were aero, therefore, over the ~anse from the inlt~:~ ;ield 

otrengtb nt (a) to higher work•hardened stateo, tho log~log plot of Z"-o Ia·· 
. . . ; . 0 

. I 

VI tJkT .would have been given by the broken Une at -65° , The~efore, 
' I ,' I ' ,I ~ \I ' , ! ' ' 

long-ranse back .-treaaoo aro present that are not related lin~a.tl;y to tho · 

reciprocal of Lb. The valueo of 0;~ all a function of x Lb c~;, ~ obtained ·.· 
. ' ' . . 

.dlroctly ho mhown in Fig. S. 12. Using tbo valuo of n approprlat~ for tho 
'. 

otre.in rate and toot tempor~turo that wnc emplo;yod slvoa thq oam~ .va.luoo 

of l'~ .that wero deduced from the alternnto procedure ompl~ed In,. · · 
. .. ' II 

. dotormining tho F 
0 

• n curve ao oro nlready rocorded in Fig<._S. 11.-

Sinco tho camo F 
0 

• · x curves nro obtnined in Stngo I ot q~cy. slid~ 
. , ' . . ' I 

and StAge n ot. u.Dear hardening, plaotic now in the do rogiono '11\~0t bo 
. ' \ 
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fiacribed to the same thermally netlvated proceso.; ·During Statte l, ·~ /L 
' ; 't 

and therefore tho local interaction atreases change alowly whercaao tho 
' I . . \ 

long-range back atresaec nppear to build up elmoot immedla.~ely and nl~ 

most, but not quite, linearly with 1/ L. During the transition from Stage I 

to Stase li the valuers of 1/L lncreaoe, promoting l'ln incroa~o in th~ local . 
' , ' ~ ' ! ! ' I ' ' 

interaction otroasec. Thio transition ic aloo reflected in tbo tranattlop ot ' ,. 
I I ( , . • • , 

the C~ttroll-Stokeb(42) ratio, as obown in 11'18. S •. 1~, ·ln soing from eno1 
I • ' t 

trllde to U.nenr b&rdening, Ovor the linear bnrdenlng ra.n8e tl~ca Cottroll• 
I \, I , 

Stokeo rntio; io substantially constr:mt •. Solvf.n((Eqo, 3. 7, 8. 18, and s •. aa 
' . . . 

expllcltly for the flow otrooo, nnd formulating the CottreU•Stokea rat~o. 
' ' 

(S, Sl) 

The substantial ~onstancy of thitJ ratio wlth strain demando ·either that 

'· t'0~ var:v approximately linearly with 1/L or t..;,t l'~bezero.;ln Which , 

case all, back stresses arise from local interactions between intersectlns · 

dlslocatlons •. Whereas several·lnveoUgatora have emphasized the second 

nlternatf.ve,. the first is oupported· by the analyoem made here. Further.·. 
\ " ' ' 

confirmation of this internally sell•consistent separaUon of local inter• 

action and long•range back atreaseo will be given in the discusolon oo 
,, 

polycryota.Uine ·Al covered 1n the following oectlon. 

Whelan et at<43) have observed tbnt glide dislocations can combine 

with so~e forest dislocationo over ri length ~o.o shown in P'lg. 8. 15. . 

This occuro only for those geometric conditions which lead to e. decreaao 

f..n energy when combinations tako place. Saada hao shown that o.n o.verage 

streso lA,~tven by 

·,' 



Q5~----~----~----~----~----~----~----~--~ 
o o.ot o:o2 o.o3 o.o4 o.o5 o.oG o.o7 o.oa 

Y, RESOLVED SHEAR STRALN 

FIGURE 3.14. COTTRELL-$TOKES RATIO FOR SINGLE- Al 
CRYSTALS. 

i( 



-124- UCRL-10455 

-FIG. 3.15. COMBINATION 0~ A FOREST 
DISlOCATION, ABCD,- WITH A GLIDE 
DISLOCATION, A'BCD: OVER LENGTH l. . . 
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. (3. 32) 

t,.,· requirod to oepnrato the combined dialocilttona where aU temng hfiyo 

their usual meaning and a~ o. 20. Thua a~ la more than the a 'deduced 

experimentally for the local intcaractiono. Since Hirach'o observationa' 

on combblaUono and Saada'a theory are hiahly reliable. it bedome9 

nttcessary to rationalize these factors in termo of the pr.vlouo cHscuaalon. 
' . " • I . . . , 

I ' ' Such comblnatiorii must occur and contribute to otraln bardentng~ Firat . '' 

it tbermal fluctuations assisted the applied otresa to overcome the com• 

blDation energy ao as. to complete intersection, the F 
0 

.. ~ curves for all 

FCC metala shoulc,t be identical. But the F 
0 

• x curve for c'u is. oub• 

ctantially different f~om that for Al. in juat the wa7 that w~ulcl be eXpected . 
' . 

for tho previouoly described lnteraectiori mechailiam 1n terma of the 
. . .' ' . ' . 

lower stacking fault energy of Cu and the resulting higher conatrletion 

. ,.41merglea1 Consequently the strongly combined dislocations do not con~ 

tribute-to tho thermatiy activated flow at low temperatures. · Be,foro .· 

. combination can take place constriction must, be completed •. A(ao• it is 

quite poasible thAt the thermal fluctuations required to complet~'1 the 
i 

. constriction introduces conditions more favorable to a reaction ~th that . 

proceeds directly to intersection rather than one that baa the int«ai~enlng 

. stfise of combination. Consequently the ,possibility of combination~ does 

not disqualUy the simple intersection m~el presented hero. 

SF. · Intersection Theory AJ)plted to Pure 
Polycrystals. Alpha-Solid Solutions and Dispersions 

The same experimental procedurem for analysis of the intersection 

mechanism in single crystala, which were described in the preceding 
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aection, have also been uaed to study the lnteraectton m.echaniam tn· 

· polycryatalline Al, (S) polycrystalUne o.lpha•aolid aolutlons of Mg ln Al (S) 
' (28) 

and dlspersions of CuAt2 in an Al plua o. 19 atomic percent Cu matrix• 

In spite of the fact that the von Miscas(Sl) requiroment demanded the 

operation of at least fivo oUp systems in the polycryatal, and ln aplte of 

the fact that the otreaa levels were higher than those neceaaary to pro• 
' . 

moto cross sUp, the F 
0 

• x curvo deduced from tho polyceyetnlllno Al 

data coincided exaetly with that previously obtained for olnglo crystalo 

1n the easy slide and linear hardening range£1. Obviously tbt otatisUco.l 
. . . 

dlotribuUon of tho loeal interaction atreooeo muat bavo been about tho 

oa.mo rogardloso of the major dltferencoo·in' tho amounto ·at polyoUp iD 

the two caooo.' Jl'urthormoro, croao allp, which must he.vo been YO'f7 

provalent in th• polycr)'otalhno c.\ggresato, probably tunctlonlri'gttoa~cUieve 
tho baciC· otteoaeo,' thuo promoting turthor oporntlon of tho rato controlling 

intersoctlcm mecilanlam• Under theoe conditlona tbe ·otraln rate duo 
1 

II 1 ( 4
1 

\ 

to crotaa altp could h4vo been directly equated to tho atrain rato due to 
I . 

intersect1on4 ahd tho analyaio could havo beon made ln tormo of either 

mec~anlam. 
\. 

The F 
0 

• ~ curves that were ·obtained from the Al·Mg alpha•solld · 

solution alloys and the Cu•Al disperslon•hardened alloyo differed enly· 

very slightly from that obtained for pure Al in a wny that suggested theso 
. \' . . . 

o.lloya exhibited allghtly lower stacking fault energieo and c;sUghtly hlsher . 
\ 

· constriction energies. than pure aluminum. 

Although the initial effective spacing of tho forest dislocationo 

was about the same for the aingle and polycryataUine specimens of pure 

Al, 1/L was greater for the All-Mg alloys and yet greater for tho Al•Cu 

dispersion alloya ao shown in Fig. 3. 18. The values of 1/L increased 
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· most rapidly with strain tor the dispersion-hardened Cu-Al alloys and 

... least for the Al single crystals. The local interaction stress t;1 ~ 0. 040 b/L, ·: 
'·' . 0 ..... , .-'.,!: 

increases linearly with 1/L and io also shown in Fig. S. 16. TtJe eftect of 

otrnin on the long-range back stresses ~~is shown in Fig. 8. 1?. The 

pronounced differences between the trends of the local interaction stresseo 

t:,, ond the long-range back stress fields fo1leave ~o doubt ao to the 

oeparate origin and trends of these two separable quantities. 

Polycrystalline ·aluminum otrain hardens more rapidly than ainglo 

cryatala for the following three reasonal 

1. The von Mises requirement for the operation of at leave five 

sUp systems in polyorystallirie Al causes the -forest density to 

increase mora rapidly than in single crystals. 

2. The same factor results in corresporidinsly higher .. values ot 
1-* . 

the local interaction stresses, f..l)/ • 

3. The long-range back stress fields, t;;, are much greater for 

the polycrystalline Al. As shown in Fig. S. 18, the total flow 

stress <f (p) for polycryatals ia about 3. lot (s) that for 

single crystals at the same value of 1/L ao suggested by 

Taylo_r's theory for polycrystalline aggregates. 

The slightly higher initial values of 1/L for the Al•Mg solid· 

oolutlon alloys may have resulted from the stabilization of higher disloca• 

tlon densities in these alloyo as a result of Cottreu<44) and Suzuld(45) 

lockins plus short•range ordering affects. These factors may aiso have 

contributed to the higher initial values and greater increasaliJ in both the 

local interaction stresses and the long-range back stresses with straining. 

Orowan 's (2S) theory for the effects of incoherent diapersi~s on 

the yield strength of precipitation-hardened alloys was discussed in 
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Section 21·._. Fisher, Hart and Pry(2T) extended Orowan's theory to. htchlde 

the e.tfecta of ... train hardening. They ,assumed that aa dislocations passed 
- . 

the dispersed particles they Lett loops about each particle. which contributed 

to the strain hardening, primarily by increasing the long-range back 

stresses. Ref~rence to the data .recorded in Figs. 3. 16 and 3. 17, however, 

reveali!J that the major contribution to. strain hardening of dispersion 

strengthened alloy~ a.ri~es not- from .to1 but from 4i _ . , Electron micro• 

a,copic obsex-vat1911s show that dislocaticm entanglements form about the 

dispersed particles and that the observed values of L can be associated . . ' . . 

with dislocation segments in the entanglements. Furthermore the levelins 
~~ . 

ott of t.. 0.~, ·at the higher values of the strain ia probably due to the relief 

of the back stresses due to cross slip. -

30. Nucleation of Cross SUp 

Dislocations in BCC metals undertake e'xtensive cross slip, whereas 

cross •lip of dislocations ln FCC metals becomes more infrequent as the 

stacking fault energy decreases • , UndissociatE!d dislocations can cross 

slip as soon as they are in acrew orientation since the activation energy 

for cross sUp of complete dislocations is zero. But dissociated disloca­

tions in screw orientation must recombine and form constrictions before 

they can cross s'Up. The activation energy tor cross slip is equal to tbe 

recombination and constriction energies. Amona the several' theories 

for cross 'slip that have bee~ proposed, only Friedel 'a (4. 6), which. will be 
. ~ . . 

reviewed here, is satisfactorily formulated. 
. . ' ... 

. -

We will consider first sUp on th~ prism~tic plane of HCP metals. 

Dislocations in the priam planes are undissociated but th9se lylnfJ in the 

basal planes dissociate into partials-as previously described in Section 2M. 
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Consequently when a dis~cation on a prism plane rnoves into screw 

orientation it will spontaneously dissociate into its two partial& on the basal 

plane with a corresponding decrease in energy. Consequently any extensive 

prismatic sUp must involve regeneration of dislocations on the prismatic 

plane by thermal activation of cross olip.' The pd:th .for nucleation of cross 

slip is illustrated in Fig. 3. 19. The two partials s 1 and B 2 on the basal 

plane recombine over a length Land produce one constriction. The recom• 

bined segment bows out to P on the prismatic plane under the action of ~he 

applied stress. Consequently the o.ctlvation energy tor cross sUp, U , is 
X 

given by 

(3. 33) 

. where Uc ls the constriction energy, UR is the recombination energy, AUL 

is the increase in the line energy due to bowing of the dislocation, and W t" 

is the work done by the focal stress, .( t-t1 acting on the prismatic pb1rie 

in the direction of the Burgers vec~or. If r equals the line energy per 

unit length of the total dislocation, and R is the recombination energy, 

LJ. }( ==tid ( ~/l. 4/n. I?)/( f {2A.Il- l:/1. S/~@) /' 

. + (t--z~)/; [j#(71A.9-k;:S/n@(t>Si] (3. 34) 

where the last term in the brackets is the area swept out by the, dislocation 

. on the prismatic plane as a result of bowing. Both U c and R will depend 

on the local resolved shear stress on the basal plane as shown by Eqa. 

2. 68 and 2. 67b. But in single crystals so oriented that the resolved shear. 

stress on the basal plane is zero, these quantities depend only on the elastic 
. *. . 

constants and the stacking fault energy. ~ is also negligible for single 
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FIG. 3.19 · NUCLEATION OF' CROSS SLIP 
AS A RESULT OF RECOMBINATION OF 
THE PARTIALS 8 1 AND 82 01\J THE 
BASAL PLANE ALONG ·LENGTH L AND 
BOWING OUT OF THE. ·RECOMBINED 
SECTION P ON THE PRISM PLANE. 

.. 
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crystals. Furthermore the radius of cur.vature of the bowed dislocation 

Is given by the well-known expression 

!L=, r ch (3. 35)': 

Under these circumstances the only unspecified quantity ·in Eq~ s. 34 is 9/ 
' . 

As 9 increases the .recombined length increases, the line energy increases 

·and tnore work is do~e by the applied st~ess •. At a· crltlcal value ~f 9 'a 9 
0

, 

however,· U 'acquires a maximum value. Any thermal .·fluctuation greate.r 
X . . . 

than this critical value will nuc,leate 'eros·~ slip. Applytrig "dux/ d9 ~ 0 in 

order to ascertain the crttlc'al value or 9 gives· . c 

(3. 36) 

But R < r; therefore expanding cos 9 c into a Taylor's series reveals that 
.. , , . , I~ .. 

l'l ...,... (2 R ) 2 . oc:: -. r; . (3.37) 

Since 9c ie small, Eq. 3. 35 for the activation energy becomes· 

(3. 38) 

the remaining terms being negligibly small, Therefore, introducing 

Eqs .• 

(3. 39) 

The critical length L that must be recombined in order to nucleate cross 

slip is 



·135· UCRL•10455 

Therefore the higher the stress is, the shorter is the length that must 

recombine and the lower is the activation energy for. cross sUp. 

Let N be the total number of screw segments of dislocations, each 

havlng an average length L 1 ln a unit volume of the crystal. Then the 
. ' ~ 

total number of segmen~s ot length L c per unlt volume of the crystal is 

crudely about N J;;
8
/Lc' Thetrequency with which ea.ch segment L

0 

vibrates is · 

(2. 41) 

where -z} is approximately the Debye frequency. It theg, A is the average 

area swept. out by the dislocation following each succ~ssful fiuctuation, 
• 

strain rate due to cross slip, ~ • will be given by 

Y.~(N '-'s) Ab (7J6) - tl.y.j;T · 
. x . L . J ·. e 

~· ~~ . 

Introducing Eqa. 3. 40 and 3. 39 for L and U gives .J 
· - C X ~ 

N1 A , 11_1t 2 -{.fu.. + 2(zr~) _'l7 
~ = t..IJ o v e J(-r -c"~er 1 

- x 8r~ · 
l ' 

(3. 42) 

(3. 4S) 

the 

Obviously there is no simple relationship between the flow stress 

and temperature for cross slip as was observed previously tor intersection, 

Perhaps the most easily adapted method of analysis ls obtained by rewriting 

Eq. 3. 43 as 
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(3. 44) 

(3. 45) 

. . . 
' .· . . 3 1/2 

where c 1 and c2 a b Uc/2 (2 rn ) are constants. A typical result 

of such a correlation is shown for Mg in Fig. 3. 20, <47> where ,ft de• 

creases linearly with 1/T when prismatic slip takes place. From the 

olope of this plot, one deduces 

(3. 46) 

· This expression will subsequently be used to estimate the separation of 

the partial dislocations on the basal plane in Mg. 

When the activat.on energy decreases 'linearly with the stress, as 

ln the case of intersection, /3kT is the activation volume. But when the 

activation energy for a mecl)anism is not such a simple function of the 

stress, as in the case of cross slip, this interpretation is no longer valid. 

It is nevertheless useful, in such cases, to call t)kT the apparent actlva• 

tlon .volume •. Therefore, from Eq. S. 43 

~kr z(zr;r3)~ 
?: + t.z6 (:!. 471 ,k · ,k .. T( cik )~ ) _ 

P T . . -= -dt" . 
T 

(3. 48) 
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A typical experimental result is shown 1n Fig. 8. 21 for prismatic slip of 

Ms. As given by Eq. 8. 48 the slope of Fig. 3. 21 is 2(2 r R3) b, there· 

fore, us ins the expression <48) 

i 

R ·:.·~ . .. : I ·L. . . d - """"'-' -r -;(o eb 

...... 

(8. 498.) 

the eeparation of the partials on the basal plane was estimated to be 

d~ 2. 3 b. ~lao'(] c e c2 c3, hence from the expression (34) 

IJ = Gb;!d. (~ .Q) ~· 
' G sO h · 

and the data of Flg. 20 (Eq. 3. 46) the separation of the p~rtials was 
' 

estimated to bed 
1 B. 6 b which lo in good agreement with that estimated 

. from the data of ;Fls. 3. 20. 
' I ', 

- . . 

The activation energy foo cross slip In FCC metals_ differs slightly 

from that In HCP metals as revealed 1n Fis. 3. 22 •. As the dislocation 

cross slips, it dissociates into its partlala on the cross slip plane. Con· 

sequently the activation energy for cross slip is about twice the constric• . . . 

tion energy (i.e., 2 U 0 ), and the segment of the dislocation over which 

this occurs is about 4d, where d ls the separaUon distance of the partials. · 

Therefore, 
2 llc_ 

. ~ =(N #})Ab (-v;1) e- -hr (3. 49}:>) 

where both d and U are dependent on the local stresses as previously c . . . 

described. Up to the present there has been no completely satisfactory 

experimental verlficatlon of the cross-slip mechanism In FCC metals. 

As previously described,. however, 1n the range of conditions where cross 
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FIG. 3.22 CROSS SLIP IN FCC METALS. 
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slip merely relieves the back stresses so that-dislocations can proceed 
.· . • "'l . . . . 

. to undertake intersection, 'fx.::: )·z , and the analysis can be more readily 

made in terms of the intersection mechanism. 

SH, Energl of Formation and Motion of Vacancies 

As the test temperature is increased, the lower activation ener8Y 

mechanisms such as intersection and cross slip take place with increased 

facUlty so that they no longer serve as barriers to the motion of disloca• 

tiona. At this stage 11.dcht1onal creep takes place by thermal activation 

ot more difficult processes, and the experimentally determined activation 

,, energy begins to approximate those for self diffusion. A brief review of 

diffusion will be given here in order to provide the basis for describing 

such mechanisms, 

Diffusion can take place by .several mechanisms. As documented 

in a number of recent reviews<49•Sl) on ·this subject, however, the vol~me 
f 

diffusion in pure; metals, and substitutional alloys as well, is now known 

to occur principally by the vacancy mochanism as shown in Fig. S. 23. 

The rate at which the radioactive atoms (shown by O) move is directly 

related to the number of vacancies that a~e present. The equilibrium 
. ' l -

number of s ;ngle ·vacancies in a crystal is easily deduced from statistical 

thermodynamics. (·52• 34) Since the equilibrium number of vacancies a~e 

independent of the mechanism whereby they are produced, 1t is permls­

slble to vt'ew their production as given in the transition from '(a)' to 'tb) 

of Fig.3:.:23oWhen an 11.tom is removed rrom the near center of a crystal, 

the bonds with the adjacent coordinated atoms must be ·broken and when 

that atom is placed on the· surface one•halt of these bonds are restored. 
. . : '! 

The total work involved In making a vac~ncy. therefore, is the '!()rk Uf 
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FIGURE 3.23. VACANCIES i-\ND .DIFFUSION. 
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o! breaking one-half of the atomic bonds plus the work p.[l r don,,~ against 

the surroul'ldings where p is the pressure and [l f is the volume expansion . 

per vacancy produced. a quantity almost equal to the atomic volume. The 

atoms adjacent to the vacancy now have a lower frequency of vibration 

than before. Consequently the vibrational entropy changes an amount sf 

per vacancy produced and the work that must be done to produce a single 

vacancy at a given site is 

(3. 49'c) 

where ff is the free energy of formation of a vacancy. On the other hand. 

the total increase' in free energy upon introduction of 1l independent and 

noninteracting vacancies at random among11 A atoms is 

F== (3. 50) 

where the last term arises from the configurational entropy of random 

mixing ofn vacancies among11A atoms. Therefore. the average work 

that must be done in adding a vacancy to a random mixture of ·n vacancies 

and {)A a toms .is 

(3. 51) 

Since the free energy is a minimum at equilibrium~ the equilibrium 

· number of vacancies, Y) 
0

, in a solid is given by (d F I dn ln. •1) 
0 

• 0 and 

consequently r /; -
;-+;r,'l 

n c/~·1 
s 

e (3. 52) 
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where"M •71A +n the total number of tattles sites. s . 
The extra work that must be done in creating a vacancy ln a crystal 

that contains 11 vacancies as referred to one that contains the equilibrium 

number of vacancies ·:, , . ·.is given by the chemical work 

(dF) · (dF )· _ fLT fi ~·1· W,---- --·- -f( ~-
c..- d)'1 .V1 ~ Yl . y)

0 
. ha 

(3. 53) 

This is, therefore, the constant pressure isothermal work that a system 

which is supersaturated with vacancies can do. 

Diftusion is a random walk phenomenon and, in the simple case 

of self diffusion, 1t can be described in term• of the mass migration or 

tagged, radioactive atoms. When the concentration of such tagged atoms 

is uniform, their random walk causes no net mass transfer. But when 
' ' . 

the situation is as shown in Fig. 3. 24,· a mass migration will take place 
' . 0 

in the direction opposite to the concentration gradient. Here N is the 

number of tagged atoms per cm2 of a crystal plane, and A is the jump 

distance. Since all atoms are chemically identical, each atom jumps 
/ . 

with the same frequency -zJ in any one fixed direction. ·Therefore, the 

increase in the n~mber of tagged atoms on the plane at x in time 8 t ·is 

given by · · 

;sN*-{N*(x-A)rtJ*(x-t-A)-z!V"]{ cit. 

I~) N_'~~) 
\. ~x~-. 

or (3. 54) 

5t 
D 

where 

. (3. 55) 

. . . 

r . . \ 
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is the diffusivity as defined by Fick's second law for diffusion. 
/ 

The frequency -zJ depends on the mechanism of ditfusion that 

takes place. For the vacancy mechanism of diffusion the frequency is 

given by the frequency V of an atom adjacent to a \tacancy times the pro• 

bability that it has enough energy to move into a vacant site, 
. 'J n1 /k f - - U. m. + p J1.r, - $ mT . 

e .· :::. e ~T 

times the probability that the atom is moving in a given direction a, times 

the probability n /n
8 

that a vacancy is in that direction. Therefore, 

._ U • .,1 -t --f IL ~- s"l'T . 
. \.2-Jn 

· D= .cJ.. 1\ v n e . --AT cs. 56) s 

For the simple cubic lattice the factor a; giving the probability ·of motion 

in any one of the six possible directions is 1/6. The same type of analysis 

reveals that the dif'fusivlty of a vacancy is 

Llh, -t la.Jl ~"'"- 5~, T 
.. ------· 
~f~T (3. 57) 

where the subscript m refers to the values of the variables pertaining to 

the motion of a vacancy which is of course identical to those for the 

motion of an atom. 

When the diffusivity is determined under conditions where the con-

centr_ation of vacancies is given by thermal equilibrium, the value il/il
8 

in Eq. 3. 56 must be replaced by il Ill of Eq. 3. 52. Therefore, 
0 9 

D ==o< A2 ·-zJe ~~s~l e·)- [ LtF .. ~.~!.':.~=!~~.:!?..(~,~ +:Q:.!:~)7 
o /\ ·t'\ .... /kT J 

L·l + ./~) Q (3. 58) 
,1 I ·- --1 ~ L • 

.-kT 
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where the subscript d refers to the values for diffusion. Consequently 

the activation enthalpy for diffusion, U d + p .n d is equal to the sums of 

the enthalpies of formation and motion of vadnncies. The fact that the 

activation enthalpies for high temperature creep begin to approximate 

those for self-diffusion., strongly suggests that this creep is dictated by 

atomistic mechanisms that involye the formation and migration of vacancies. 

Three different theories for high temperature creep that are based 

on the formation and migration of vacancies have now been postulated. 
. . (17) . 

·The first, originally conceived by Nabarro · and elaborated upon by 

Herring, <55) is known as stress directed diffusion of vacancies. It is 

applicable at very high temperatures, those approaching the melting 

temperatures., and at very low stresses, presumably below those which 

are required to operate a Frank-Read dislocation source or to generate 

dislocations by other means. The theory is quite accurately and completely: 

formulated. It concerns the formation of vacancies under an applied 

stress at the grain boundaries normal to the applied stress and migra­

tion of the vacancies through the grain volume to the boundaries parallel 

to the applied stress. Atoms, of course, migrate in the opposite direction 

to the vacancies and .thus provide the permanent strain. Several investiga­

tions give creep rates that are in good agreement with the theory. In view-

of the fact, however, that this mechanism of creep is not dependent on 

dislocation processes, it will not be presented in detail here. 

The remaining two theories, (a) thermally activate~ motion of jogged 

screw dislocations, and (b) the climb of edge dislocations are limited to 
l I -:o: ' 

crystalline materials and both depend on dislocation 

processes. The a p p 1i cab i 1i t y of these the o ri,re s 
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to creep is not nearly so well established ae that for the stress-directed 

diffusion o( vacancies; and consequently attempts are continuing to isolate 

these mechanisms experimentally for individual study. 

31. Creep Due to the MoHon of ,JoL~aed Screw Dislocations 

Jogs in edge dislocations do not materially restrain the motion of 

an edge dislocation because the jogs also lie in slip planes. But jogs on 

screw dislocations are edge jogs, and if the screw dislocation is forced 

to move, such jogs must move from one slip plane to the next adjacent 

slip plane. This is only possible as a result of atom transfer lmm,vn as 

climb. Two types of unit jogs are shown in Fig. 3. 25. Under the applied 

etreas, the screw dislocation, shown dissociated into its partials, will 

bow out, as shown,. and move to the right. If the upper jog also moves to 

the l"ight one atomic plana, it will have to form a vacancy v 1 at the lower 

part of the extra half plana: of atoms A comprising the' edge jog. -,When 

the lower jog moves to the ,right,, it must leave the last atom B 
1 

of the 

half .. pla.ne in an interstitial position. Wheroae the upper jog, for the con­

figuration shown, is a vacancy forming jog, the lower jog is an interstitial 

forming jog. 

Jogs can form by means 'of a number of mechanisms: As we have 

seen when a glide screw dislocation intersects a forest screw dislocation,. 

unit jogs are produced; when a screw dislocation cross slips from plane 

A 1 to some other slip plane B and then back to A 2,, which is parallel to 

A 1, superjogs of many planes in height are formed by the dislocation 

segments left in plane B; when the two nodal points of a dislocation seg­

ment lie on different slip planes this segment must contain superjogs. 

Since the free energy of a jog in dissociated dislocations is equal to the 

jog ,energy ·u j plus the constriction energy U c' the e<lUilibrium diotance 

. . 
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between jogs is given by the'Boltzmann expression 

_ .LLj -t Ue-

b /R.. = e -RT 
J . 

(3. 59) 

., . 

Jogs can be created by absorption or liberation of vacancies. 

Jogs in screw dislocations can glide on their slip planes parallel 

to the screw dislocation, T.hus interstitial and vacancy jogs can annihilate 

each other or they can glide to the nodes. Jogs on edge dislocations can 

be .eliminated by climb resulting from absorption or liberation of vacancies. 

The thermally activated motion of jogged screw dislocations has been 

described by Mott. (~ 6) ·Seeger, (S7) Friedel <58) and van Buer.en. (Se) The 

following analysis is taken, wlth minor m.odificatlons,· principally from 

the recent investigations by Hirsch and Warrington. (60) 

As shown in Fig, 3. 25, screw dislocation segments bow out between 

the jogs under an average local stress "f- f*.· the dislocation being held 

up at the jogs, In view of the high energy, however, of forming inter• 

stitiala, the operative process of creep must depend primarily on the 

vacancy mechanism. At both "a" and "b" a force ( t -t) t
3
b2 is opera• . 

tlve where lj is the mean di~tance between the jogs. U the jog at "a" is 

to move forward one Burgers vector, an atom must occupy position V 1 
and liberate a vacancy. Consequently point "a" is a source of vacancies, 

In order for the jog at "b" to move forward, a lattice vacancy must ex• 

change with the atom at B 1• Consequently point "b" is a vacancy siitk. 

Throughout tlie lattice there are many sources and sinks, For example, 

edge dislocations. and grain boundaries can also serve as sources and 

sinks for vacancies. 

. . 

.···' 

.. 



. .. 

·151- UCRL·l045d 

The question now arises as to how vacancies, generated at sources, 

diffuse to the nearby sinks. For example, Lothe(Sl) recently suggested 

that inasmuch as the energy to form a vacancy on a dislocation is smaller 

than that to form a vacancy some distance from a dislocation, and inasmuch 

as pipe diffusion along the dislocation is so much more rapid than volume 

ditfusif.on, pipe diffusion must control the process. Although such a 

mechanism undoubtedly contributes to the all-over process, there are 

several factors that suggest it may not be important. First, pipe diftu• 

sion would lead to an activation enthalpy for creep that is considerably 
I . . . 

below that for V.olume self·diffusion. Secondly, pipe diffusion must take 

place along the s~gle atomic path coincfdent with the distocation line, 
; 

whereas volume diffusion may proceed along many paths, . a factor which 

compensates for the higher activation energy of volume diffusion. Further• 

more, the osmotic work that can be done by supersaturation in the vicinity 

of ·a vacancy forming jog may be sufficient to cause large numbers of 
. i 

vacancies to leave the disloGation pipe to undertake volume diffUsion. 

For superjogs having a height of h atomic planes, the average 

force acting on each atomic height oi the jog is ( ?: ...... t ~ ljb 2/ h. The 

energy that must be supplied by a thermal fluctuation in order to form a 

vacancy is, therefore, ff • ( (:- l*> ljb2/h where r1 is the free energy of 

the formation of a vacancy and the last terms represent the work con• 

tributed mechanically by the force acting at the jog. But to provide a per-

manent forward motion of the jog, the vacancy so produced will have to 
. -- 1 + 

move away. Consequently the frequency VvJ with which a v,acancy• 

forming superjog moves forward one Burgers vector is given by. 
f+ -(t:-Z1ij bz;~ _{,.~~I··, 

.,{·T z e 'IJ?T <s.&o> 
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where V .· is only slightly less than the Debye Crequency, and Z is the 

coordination number. Having so jumped forward, the jog may now jutx).p 

back again. This frequency depends on the probability that a vacancy is 

next to the last atom on the jog times the probability that 1t will exchange 

with that atom and thus return the jog to fts original position. 

the frequency VvJ:- for the reverse action is 
' - fMJf. 

· . 7l n + /kT 
v-.=-Z fl e 

VJ -4_ .1 

Consequently, 

(3. 61) 

where tf+ /ti is the actual probability of finding a vacancy adjacent to a s . . 

vacancy-forming j9g, But 

n%-l = n"1no h'fns = 
(3. 62) 

' . 

And therefore the net frequency of the forward motion of a vacancy• 
..., Jt - . . 

forming jog, 'Yv/' 11J• -~· , to (t _ 2- J (}' b ~ (A 
- 1 . £, / I: p:.-J ;..; 

-u.=:!!..ze-d/}{Tr...e· ~Jr 
YJ /{. . (3. 63) 

The forward frequency of motion for an interstitial-forming jog· 

Is obtained by the same type ot analysis. Since the interstitial-forming 

jog im a vacancy sink the probability of finding a vacancy adjacent to the 

terminal atom on the jog is n·/n 
8

• Therefore, the net frequency for the 

forward motion of the interstitial-forming jog is 

-) -z) 
VcJ==rze 

r1ir n- (t- t*}li~} - e .f..~ r ·-I (3. 64) 
flo 

. . 
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Eqs. 3. 63 and 3. 64 suggest, at first, that the interstitial•forming 
. . . + 

. jog might lag behind ·the vacancy forming jog since r1 In 
9 

> 1, and 

n•tn·
0 

< 1. But it is easily shown that as One jog moves ahead of the . 

other, the forces acting on the jogs so readjust themselves that the two 

jogs will move with the same velocity. Consequently, either Eq. 3. 63 or 

3. 64 gives a good estimate of the frequency ot the forward motion of a 

jog. The strain rate, )P , ia given by 

V = Jl (f.·b)b V. = 0 bs2 ~J 
. s . fij · ~ _ . VJ Is 

(3. 65) 

where. fs is the total length of screw dislocations per cm3, (. !/./~·) . 
is the number of jogs per em~ on screw dislocations, and (ljb) is the area 

swept out per activation. 

Excess vacancies have a very short lifetime even below atmospheric 

temperatures. At higher temperatures,· where jogged screw dislocations 

might move, the lifetime· of a vac~ncy .is so short that a supersaturation of 
' . + 

vacancies is difficult to maintain. Therefore, n /n
0 

can be approximated 
. . , 

by unity. It is difficult in this case to prescribe, a priori, whether the long• 

range back stres~es z-~ will be significant or not~ In cases where the 

stacking fault energy is high or even intermediate, screw dislocations will 

cross slip with relative ease. Furthermore, screw dislocations may also 

enter twist boundaries which exhibit only very local stress fields and may 

not therefore contribute signiticantly to 't'if. Piled up edge dislocations, 

however, may introduce long-range back stresses. The creep rate, re• 

taining the back stress term, is given by 

lid tf12cl (t-t1{·6f!_J 
--~<· r f -h r (3. a a> e , -1 

~ 
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and it decreases linearly with the absolute temperature. An alternate 

viewpoint is also possible. namely that the presence of local back 

stresses reduces. the number of operative screw dislocations to f/ < fs • 
Then 

\ ' I , •\• 

(3. 68) 

·The only satisfactory experimental confirmation of the possible 

operation of the jog screw dislocation mechanism for deformation was 

presented in a report by Hirsch and Warrington. They contended that 
' 

below about one-half of the' melting temperature, where diffusion rates 

are negligibly slow, motion of jogged screws resulting 1n the formation 

of vacancies is an athermal process. Therefore, the flow stress is in• 

dependent of the temperature and strain rate being given by · 

llp+;Dfle-;J;.~T. 
' (3. 69) 

forT( T ,e,i I:J2/JL ; '· ,' .. c 

Consequently 1: D. is less than '!:at low temperatures and ~::::stat the 

critical temperature T • when . c 
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giving , 
.. . /)1 ., . . . ' . ' ' / . r~ "~ v· 

....... IJ.,., -1- ?.fl..,- .-Jm?;. =: _,4, 7;. A., 1 ~ . (3. ?0) 

Therefore, 

\·~ 

where the entropy and work terms are small. 'fhe activation volume is 

SlcT e lj b2/h. 

A schematic· diagram ·ot the expected results are shown in Fig. 
~ -~' . ~ 

3. 26 and actual data rof.:Al are reproduced in Fig. 3. 27. The experl• 

mentally determined flow stress.for a specified strain•hardened state 

decre·ases almost linearly with an blcrease in temperature as suggested 

by this theory. The range of temperatures for which the flow stress de• 

creases almost linearly with the temperature, coincides ·closely with that 

shown over region D of Fig., 1. 4 where the activation energy for creep 

increases almost linearly with the absolute temperature. This relation• 

ship also follows from Eq •. 3. 66,for tests at dirterent temperatures when 

·~ . l~ ·is about constant, But in spite ot these confirmations of the theory, 

several questions must yet be answered before it can be assumed opera• 

tive for the· case in question. The major issue concerns whether or not 

vacancies can be produced athermally over the lower temperat~re range. 

3J. Creep as a Resuit of Climb of Edge Dislocations 

The theory for creep due to clhnb of edge dislocations is much 
\ 

more difficult to formulate accurat~ly than that due to the motion .of a 
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jogged screw dislocation. This arises from the' fact that the rate at which 

edge dislocations climb depends intimately on the geometric details of 

dislocation patterns that are produced under stress in the vicinity of the 

climbing dislocation. These patterns have not yet been sufficiently well 

documented to provide unambiguous guides to formulation of the climb 

process in detail. The following analysis, based on a specific model, 

there!ore, can only suggest the general trends. The theory for climb of 

dislocations has been discussed by Mott~66• 62) Seeger, (G 3) and Weertman~64) 
. ' (65) 

Recently Christy has. elaborated on the model, but inasmuch as his 

approach is only a minor variation on the same theme presented in detail 

by Weertman, the following analysis with the exceptions of minor innova• 

tions, will be based on :We~rtman's formulation. 

The proce$s for climb, as illustrated in Fig. 3. 28, is somewhat 

analogous to. the motion of jogg_ed 'sc_rew dislocations •. As shown under 

a tensile stress normal to the extra half plane and atom can jump into 

position at the bottom of the extra half plane, leaving a vacancy, 0 . , 
in its former site. T~is, of course, can only happen easily at a jog, 

because of geometric and energetic considerations. When the vacancy 

migrates away from the core of the dislocation by diffusion, a unit climb 

will have resulted. Under compression stresses, climb _will take place 

in the opposite direction. But in either case the formation )'J. or the· 

absorption of a vacancy can only occur with relative ease at a jog. 

As seen, climb involves the formation of a vacancy at a jog under 

the ·action of a stress CJ;.x followed by its migration away from the dis• 

location. Therefore the frequency for climb in the positive direction 

(1. e.' under< a tensile stress) is 

.... 
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where Vis almost equal to the Debye frequency, pj is the probability a 

. • f /kT q;..fl./kT 
jog ls present, ei f e is the probability of having enough 

: ' 

thermal energy to form a vacancy (where ~)C..Cl is the work done by the . ll . , ' I; 

local stress and ls the atomic volume) e fm/kT is the probability of 

a sufficiently ;.high thermal fluctuation to mo;e the vacancy, Z is the 
' ' f ! ' 

coordination number and (Z •1) is the number of directions the vacancy 
' ' ' I 

can move without reversing the climb. It, however, a vacancy exchanges 
• j • • : 

positions with the terminal atom on the extra half plano, the direction of 
' ' . 

climb will be reversed. Since vacancies are being produced at the jog, 
' ' ' '+ 

the probability of finding a vacancy adjacent to th"' jog ls (Z -1) n /n 
' . ' ' ' . '' ' . ' 13 + . ~ 

where n is the total number or vacancies on n atomic sites in the near . . . . s ' 

vicinity of the jog. Therefore, the frequency of reversed cli'rnb is 

. · . . ,\ n-+ - f~JT 
z.{= V!j (2"--:1; n; e <s. 7s>. 

But 

- f,:;,_T 
- ~ e /rR --

e.s shown by Eq. 3. 52. Consequently 

- (3. 75) 
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The net rate of pof:iitlve climb ~ where 

t-Tl. (3. 70) 

no 
H + . 

But as previously discussed 'r +; ~ 1. And since the atomic volume 

Jl. is so very small, the value of cr;jt that can be achieved is also 

small relative to kT .. · Therefore, eJtpanding the exponen~~al in terms 

a Taylor series gives 

Whereas the above analysis is quite reliable for any climb mech-
,. 

anism, in the following details only one of a Sel"'iea of possible models 

will be analyzed. We will assume that dislocations formed at two unspeci· 

fled sources on slip planes a distance h apart are arrested as ahown 
' • . l. ~ ' ' ' 

. ' 

in Fig. 3.29. If h is greater the h
1
'1

1
, aEJ shown in Section 2J, the 

dislocations will pass each other. But if h is less than this critical 

value, additional motion of the dtslocaiions can only occur when the two. 

leading dislocations of the array climb together so as to annihilate each 

other. The rate of climb, of course, depends on~. Since the applied 

stress is usually quite small, the major contribution to ~)C. arises from 

the stress concentration factors from the plle~-up arrays of dislocations 

as discussed previously in Section 2F: • 
• 

Lettl~g ~ be the rate of climb in the vertical direction, 

(3. 78) 



-162- UCRL-10455 
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FIGURE 3. 29. ARR-ESTED ARRAYS OF EDGE DISLOCATIONS. 
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. . 

A brief reflection on the stress <1;c~ wi'l reveal that the two leading dis· 
~ ·, . . . 

locations climb toward each other, each ~Umbing a height h/2 before they 
l 

can annihilate each other. Therefore, the time for climb is 

--
I 
i 

. I 

(3. 79) 

It N are the number of such pairs of arrested arrays per unit volume, the 

creep rate due to climb is given by 

(3. 80) 

·. I 

Thus, in order to complete the formal part of the analysis, soxpe measure 

of how <J';x .and 1/~ depend ori the applied stress must be ~stimated. 
' \ 

In accord with the deductions made by Eschelby, Fr~nk a._nd . . 
Nabarro, (29) as discussed in Section 2J, Cf" )C,lc. is given by 

1 W G6 ' · (3. a2> . 
<r;:x = 2 Y A: R 1l (1 -~)It_ 

where the factor 2 arises from the two arr..ya (fl is approxbn&iely 
Gh . ~ 

the stress concentration, and £l/' (t-P)£ 1~ the stress 'field v.Jc.
1

Jt. ·, 

of the leading dislocation of the array. Furthermore, as shown by E~. 

2. 42 1n Section 2J • the number of ~dge dislocations in the artay is giv;en by 

(3 •• Us> 
·., -- . 
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giving a local shear stress at the leading dislocation of the array of 

or 

when this stress is equal to the repulsion stress due to dislocations in the 

other array the dislocations arrays wlll be arrested. Therefore, 

(:,1}-cJ ttl( I-ff) 

~G-.6 

Consequently. 

,i' 
.. 

(3 .• 84). 

' (3. 85) 

Since arrays will be s.eparated all heights between 0 < h < hm• we will 

crudely let h • hm/2 in order to obtain a reasonable average value. · 

COnsequently, 

(3. 86) •' 

(66) ' 
Sherby has attempted to justify this version of the dislocation 

climb theory as shown by the data assembled in Fig. 3. 30.. In general. . . ts 
· the creep rate for many metals follows the .· law as shown. But this 

' analysis neglects the possible effect of stress on NS 5• 

• .I 
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ro- 6 ro- 5 ro- 3 
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FIGURE 3.30. STEADY-STATE CREEP RATE PROVIDED BY 
DIFFUSION RATE vs. CREEP STRESS DIVIDED BY ELASTIC 

MODULUS FOR VARIOUS PURE METALS,<~::::) 
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The activation energies for high temperature creep have been 

shown in a number of cases to be insensitive to the applied stress as sug .. 

gested b,y Eq. 3. 86. And, as shown in Fig. 3. 31, they are approximately 

equal to that for self diffusion. But, at the high temperatures and slow 

strain rates for creep, it is expected that the equilibrium number of jogs 

is approximated, and pj ~ e · •Uj + Uc • Consequently the theoretically 
· kT 

estimated activation energy !or climb equals Ud + Uj + Uc, a quantity that 

is always somewhat greater than the experimentally determined value of 

tid. Although the general correlations for high temperature creep appear 

to agree with the theory tor climb, the lack ot detailed agreement between 

theory and experiment need yet to be rationalized. 

Other factors that are significant in high temperature creep con• 

cern subgrain formation, grain boundary migration and grain boundary 

shearing.. These have beeti discussed elsewhere and will not be reviewed 

here. 

4. SOLUTE ATOM STRENGTHENING 

4A. Introduction 

In general, solid-solution alloys are stronger than the base metals 

from which they are prepared. Empirical correlations suggest that such 

strengthening might be related to the differences in atomic radii and 

valency of the solute and solvent atomic species. Such empirical observa• 

tiona, however, must be rationalized in terms of dislocation theory. 

Solid-solution etfects can be classified into two major categories. 

First, additions of solute atoms can introduce perturbations o,f'.the details 
•'· 

or the same mechanisms of deformation that apply to pure metals. A.nd 

second, solid -solution alloying can introduce new mechaniemfJ ,ot 

. strengthening. 
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0 
a- Fe 

80 
LlH FOR CREEP, f~ col/ mole 

FIGURE 3.31. ACTIVATION ENERGIES FOR HIGH 

TEMPERATURE CREEP AND SELF-DIFFUSION. 
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Solid-solution alloying generally causes a decrease in the moduius 

ot elasticity which, o! course, is reflected in appropriate small changes. 

in the activation energies and !low stresses for all of the previously dis .. 

cussed mechanisms of deformation. Furthermore, as described in 

Section 3F, alloying can also increase the density of dislocation in annealed 

metals, undoubtedly as a result of operation of one or more of the several 

unique interactions to be discussed later. It appears, at present, that in 

specific alloys much of 'strengthening found in the low temperature deforma· 

tion of FCC metals arises from this fact. $olid•solution alloying also 

changes the stacking fault energy and thereby n~~Ufies the constriction 

and recombination energies of dissociated dirJhr.:·ttions. · 

Several uniquely different interactionr.,~ a lao result from solid­

solution alloyingo At high temperatures, solute atoms can inhibit climb, 

motion of jogged screw dislocations and introduce a diffusion controlled 

viscous drag on moving dislocations. At lower temperatures, solute 

atoms can interact with strain energy fields of dislocations (Cottrell· 

locking<44)) or provide chemical interactions with stacking faults (Suzuki 

locking<45) ), or result in short-range order strengthening ·(Fisher hard· 

ening(G7) ). We shall be content here to review only the last th~ee men­

tioned mechanisms~ 

4B. Cottrell Locking 

Substitutional atoms that have atomic radii that differ frOm the 

solvent species, introduce local dilations and contractions in 'the''lattice. 

Such strain centers can interact elastically with the hydrostatic terif!ion 

stress Cields of dislocations. As shown by Eqs. 2. 6 and 2. 10, ,'the mean 

hydrostatic tension stress field due to an edge dislocation is • 

• . I 
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and therefore edge dislocations will interact with substitutional solute 

atoms. A small interaction, which will be neglected here, also arises 

from electronic effects. But the mean hydrostatic tension stress arising 

from screw dislocations is zero. N everthelees a screw dislocation seg• 

ment near a solute atom can reorient somewhat to acquire a small edge 

component which will then mteract with the solute atom· •. 

Interstitial atoms not only cause local increases in volume but also 

~ntroduce local shear distortions. Consequently interstitials interact 

elastically with both edge and screw components and for this reason give 

milch higher locking effects than substitutionals. 
' 

The interaction of ii'tterstitials with dislocations has been analyzed 

by Cochardt, Schoeck, and Weidersich~68) But we shall be content here 

to review the interaction of substitutional alloying elements with disloca-
. (44) 

tiona as first described by Cottrell. 

Consider an atom at r and e from the core of an edge dislocation 

where the mean hydrostatic tension is given by Eq. 4. 1. In order to as­

certain the strain energy between a solute atom at this point and the 

dislocation we consider blowing the atom up from a radius R corresponding 

to that of the radius of solvent atom to a size R 1.appropriate for the radius 

of the solute. Work must be done during thi? process against the constant 

mean hydrostatic tension given by Eq. 4. 1. This work is equal to the 

pressure times the change in volume. Therefore. assuming R1 - R is not 

too large 
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• J. 

Whan the strain due to the differences in atomic radius is given by 

• 

£= (1?,-R)jff (4. 3) 

the interaction strain energy reduces to 

Introducing Eq. 4. 1 gives 

(4. 5) 

The abo'o'e derivation, however, neglects the compressibility of the solute 
. . (69) 

atom. When this is taken into consideration, as sugg'ested by Bilby, 

. 2 2 2 
Introducing cartesian coordinates r. ax + y and sin 01 a y/r, 

Eq. 4. 8 can be written as 

or 

(4. 7) 
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Each constant potential energy, therefore, ls represented by a circle 

that is tangent to the line y • 0 and is centered on the line x • 0 as shown 

in Fig. 4. 1. The interaction force to which the atom is supjected,. there• 

fore, acts normal to the equiponential lines in the direction or the con• 

jugate set of circles shown as broken curves. Consequently at tempera• 

tures where diffusion can take place solute atoms will migrate along the 

broken circles toward the core of the dislocation. Solute atoms larger 

than the host will migrate in the direction shown by the arrow to the lower 

or extended part of the dislocation. Solute having a smaller atomic radius 

than the host will migrate in the opposite direction. In either case such 

migration results in a decrease in the fre61 «:mergy of the ·system. 

It was suggested at one time that tb;,a dislocation core becomes 

saturated when the solute atoms satisfy its strain field. On this basis 

it was believed that the dislocation could accommodate only a single line 

of solute atoms along its core. A brief review of how the preceding cal­

culation was made will reveal that this concept simply is not true. The 

interaction between a dislocation and a solute atom is unmodified by the 

presence of other solute atoms. or course, the other solute atoms can 

independently react with the one under consideration. And therefore an 

equilibrium atmosphere is produced when the chemical potential gradient 

along the broken circle is equal and opposite to the potential energy 

gradient arising from the presence of the dislocation. Consequently 

Cottrell atmospheres are much broader than originally visualized, And 

in some cases. e. g., when there is an excess of N and C in steals. the 

chemical potential gradient never completely c~untermands the clastic 

interaction energy. For this reason, as shown so clearly in electron 
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microscopic investigations, the solute atoms continue to feed into the · 

dislocation core producing precipitates of nitrides and carbides on the 

dislocations. 

When a dislocation is moved away from ita atmosphere. the energy 
I 

of the system must be increased. Early consideration of single atom 

atmospheres illustrated that this energy was not excessive amd therefore· 

solute atom locked dislocations could be moved from their atmosphere 

with the aid of thermal fluctuations. It w:as thought that once a dislocation 

segment were so unlocked 1t would multiply, impinge on other locked dis• 

locations and thus initiate an avalanche which would result 1n a· Luders 

band. But 1t can now be shown that the locking ls in general so severe 

that locked dislocations do not move. Therefore the usual yield point 

phenomena must be associated with the generation and .multlpUcation of 

new unlocked dislocations. This model is in complete agreement with 

the observations that the activation energies for the preyield creep strains, 

delayed yielding, and the propagation of Luders bands agree well with . 

the activation energy for deformation per ae. 

Precipitates on dislocations, of course, block the motion of newly 

formed dislocations. When a dislocation is separated from a mild atmos• 

phere, the atmosphe~e will interact with other moving dislocations. In 

these ways Cottrell atmospheres cause strengthening even when new dis­

locations are introduced. 

4C. Suzuki Intera<aions 

As we have seen in Section 2M, dislocations on the (111) plane in 

FCC metals on those on the basal planes of HCP metals dissociate into 

partials leaving a strip of stacking fault 2 atomic layers high between 

· .them. Whereas the stacking fault in FCC metals consists of two atomic 
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layers of CPH stacld11g, that in CPH metals consists of two atomic layers 

of FCC stacking. \Vhen a metal containing stacking faults is hented into 

the temperature range where diffusion can take place, the solute atome 

will redistribute themselves between the stacking faults and the ideal 

crystal. During such redistribution the separation of the partials will in-· · 
crease slightly because the stacking fault energy decreases. Since the 

·. volume occupied by the. stacking faults is small. the ~ole fraction of solute 

atoms remains about equal to the average compo:gition in the crystal c,· 

whereas the 'mole fraction of the faulted region becomes cr·· 

The situation then is as shown in· Fig. 4~ 2. If then a unit length or 

the dislocation is moved a dis~ance, 0 · • assumed to be identical Cor both 
. . . . . . . . A , .. 

partials in this approximation, the work done is <f-l ) bS . This work 

must equal the increase in chemical free energy. In moving the partial 

dislocations an amount ~ , the volut~es of the phases chang~d 2l~ ; for 

the tirst dislocation this volume of the matrix phase was produced at a 

composition cf resulting in the disappearance of the same stacking fault 

volume of the same composition; and at the second dislocation this volmue 

of the stacking Cault was produced resulting in the disappearance of the 

same volume of the matrix phase at the composition c. Co11sequently 

where V is the molar volume, assun1ed identical regardless of stacking, 

F is the free energy per mole of the matrix, F f' the free energy per mole 

of the faulted region, and the subscripts cf and c refer to the compositions 

at which the free energies must be evaluated. Therefore 

(4. 9) 

. .... 
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FIG. 4.2 · STfACKING FAULT IN SUZUt-<1 
LOCKED ALLOY. 
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In general both (Ff • F) and(Ff • F) are positive as, e. g •. , in the ·case c c1 
,of Ni•Cu alloys where the stable phase is always FCC, the faulted region 

having the higher free energy regardless of composition. But 

(Ff • F) c .~ (Ff - F) c since the composition cf was obtained as a result 
f 

of equiUbrium. Consequently the tot~~ term in the braces of Eq. · 4, 9 is 

always positive. 

An additional relationship between the variables of Eq. 4. 9 ls 

obtained by invoking quasi•equiUbrium conditions between the matrix 

phase and the faulted region. Complete equilibrium, of course, is never 

achieved inasmuch as this would demand the disappearance of the faulted 

regions. We consider, therefore, open matrix and faulted phases for 

which, at equilibrium, the virtual change in free energy 8 F! .for the 

· total system is 

J F 
1

) (dF') . (JF't_) . ( \ f'+)· . 8(=( dMa. 811/~t1~· On1+ dnt.JSn:+ ~- d11: 

where F' refers now to the free energy of the matrix containing na "a" 

atoms and nb "b" atoms, etc. The partials derivatives are therefore the 

chemical potentials. At equilibrium, q Ft, for the total system is zero. · 

To arrive at the e~uilibrium condition we let~)\-= dr\~-== -d V\&-== ~hf:: b{ 
ThiS is merely the expression for conservation of mass which yet permits 

atom species transfe~ of ~ h atoms of type "a" from the fault to the matrix 

·and S J1 atoms of type "b" from the matrix to the fault. For equilibrium, 

therefore, 

(4. 10) 

. .,;' 
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In general, the thermodynamic data that are needed to achieve a 

simultaneous solution of Eqs. 4. 9 and 4. 10 are not available. Further• 

more, theories on the thermodynamics of solid solutions have not yet 

been well enough developed to provide reliable analyses of the thermo ... 

dynamics of unstable solid solutions (e. g., hexagonal Cu•Ni alloys). But 

1n order to obtain an initial concept of possible trends, the regular solu• 

tion laws might be invoked •. To simplify the. analysis this will be done not 

only for the matrix but equally for the faulted volume, ill spite of the fact 

that the stacking fault region should be treated as a surrace. 

The free energy of an open regular solution consisting of na "a" 

atoms and nb "b" atoms can be written as 

where N is Avogadro's number, Fa and F b are the free energies per mole 

of pure "a" and pure "b", aim is the change in enthalpy upon mixing a 

mole of '"a" and "b" atoms and the last term refers to the contribution of 

the entropy for random mixing. A similar expression applies to the · 

faulted region. When C is .defined as . 

c = (4, 12) 

Eq. 4. 11Jwritten for one mole of the alloy>reduces to 

(4. 11) 
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with similar expressior).s for the remainina free energies in Eq. 4. 9. 

Then 

where the entropy terms vanish. Also 

Introducing Eqs. 4. 14 and 4. 15 into 4. 9 gives 

(t- t*):: {j:(rc -y Jjff_J::)- ( tf. f_ f.j}f (4 Ht- L\ H ... t 
-(J H! -LHI.;)c 

I f 

(4. 16) 

For equilibrium conditions, we apply Eqs, 4, 11 etc. to the condi• 

tion given by Eq, 4. 10. Foli" example 

and 

(4. 17b) 

Recalling that 

?Jnd 

. . v 

• 
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Emd similarly for the faulted region 

Consequently the equilibrium condition; obtained by introducing Eqs. 4. 19 

and 4. 20 into 4. 10 is given by 

Eqs. 4. 16 and 4. 21 therefore constitute the solution to the problem. 

An explicit expression for. cf is not obtainable from Eq. 4. 21 since 

. _d_ (&I~) also depends on cf' But the quantities in the br·eces of the dcf . 
exponential term will be positive and therefore cf will be somewhat 

smaller than c. This difference will be greatest at the absolute zero and 

ae the tempel:."ature increases cf will increase very slowly to approach c. 

When the solution is ideal the t.Hm's are zero and Eqs. 4. 16 and 

4. 21 reduce to the simple expressions, respectively, of 

(4. 22) 

·-c e -- /-C (4. 23) 
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where 

(3. 24) 

and 

(3. 25) 

Ya, and y.~belng the stacking fault' energies in pure band a, There• 

fore <t"-7;#) can vary mildly with temperature depending on the variation 

in stacking fault energies of pure a and pure b with temperature. 

Excepting when the stacking fault width ta only a few Bu11gers 

vectors, Suzuki locked alloys cannot be thermally actlvnted. An example 

of the ~sensitivity of the flow atress to strain rate and temperature is 

shown in Fls. 1, 8. These results cannot be ascribed to Cottrell locking 

since the atomic radii of Ag and At are almost identical. Furthertnore 
' ' 

short•range order hardening would have resulted ln decreasing now stress 

with increasing temperature. 'the increase in tlow stress with temperature 

and the presence of a yield. point could only be rationalized in terms of 

Suzuki locking. 

· · 4D. Fisher .Strengthening 

When A and B atoms are mixed to produce a solid solution alloy 

the bond reaction 

~A-A+ Vz 8-13 ~A B (4. 26) 

• 

·-
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takes place. The chang~ in energy of the system is stven by 

(2. Z1) 

per A • B bond produced. Consequently lf G is negative the reaction 

will tend to go to the right. Under these conditions the atoms in the alloy 

will so arrange themselves that the largest number of A- B bonds will be 

produced. Consequently the number of A atoms about a B atom or the 

number 'of B atoms about an A atom w11i b;c~ine greater than that appro­

priate: for an ideai solution. Such an alloy eXhibits short•range orde~ing. 

Conversely, 1f the energy £ increases, there will result more A ·A 

and B • B bonds than 1n a random· solution. Such an alloy is said to cluster. 

But ordering and clustering are only different facets of the same problem. 

Such ordering and clusterlrtg can only apply to near neighbors because the 

solution, as a whOle, must1 have· the average composition. :In fact to a 
good first approximation only interactions between the atoms and their 

immedi~te neighbors need be considered. At greater atomic distances 

the alloy is random. 

We will e~ploy Cowley's (?O) analysis for order here limiting our· 

discussion ·only to interaction effects betwe!ll nearest neighbors. Let· a 

be the degree of order, and pAB the probability that an A atom is next to· 

a B atom~· By definition of a 

(4. 28ti) 

where mA is the mole fraction of A atoms. When the solution is random,. 
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pAB must be equal to mA. When a is positive there are fewer than the 

average number of A atoms and about a B and the alloy exhibits clustering; 

when a is negative there are more than the average number of A atoms 

about a B atom and the alloy exhibits short .. range ordering. Thus for an 

ordered alloy both f. and a are negative whereas for a clustered alloy 

both are positive. The product <C. a is always positive or, ln a random 

solid solution, ·zero. The range of a is limited, When p AB • 0, a has its 

maximum value of 1 , and when pAB is _1 , a has its minimum value 
m .. 1 m · 

ot a a 1 • _!_ a A 111----.!!.. • The probablUUes for the remaining 
mA mA mA 

arrangements, shown below, follow directly from the definition given in 

Eq. 4. 28a, namely, 

(4. 28b) 

(4, 28c) 

(4. 28d) 

We now consider an alloy containing N atoms in a structure that 

has a coordination number z. In this alloy there are a total of ~ bonds . 2 

and we plan to express the total energy ot the alloy in terms of the degree 

ot order a as 

(4. 29) 

.. 

·..-:.: 
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where e {a] 1s the average energy per bond in an alloy that has order 

a. The total energy of the alloy is the sums of the energies of the A ·A, 

th~~~:d(:AA~/;);:~;~(kc ~N)~e~e 

When Eqs. 4, 28 are introduced, and Eq. 4. 29 ls solved, 

£ [ o~.] ~ m/£A,. -+ 111s ~ c;~ + z /??A mlJ EA8 

- 2/1111 mtJ cl £ 

(4. SO) 

(4. 31) 

where C ls given by Eq. 4. 27. Since a and E. always have the same 

slgn,cf tf is always less than the average energy of a bond in the ran­

domly arranged alloy where a a 0, 

When a dislocation moves through the lattice it displaces its nearest 

nleghbors across the sllp plane and replaces them by next nearest neighbors. 

But next nearest neighbors are almost random. Consequently if two or 

more dislocations· pass, the alloy becomes practically completely disordered 

across the slip plane. The average increase in energy per bond that is 

broken is 

(4. 32) 

In order to illustrate. the determination of the flow stress, we will 

. consider as shown in Fig. 4. 3 sUp on the (11 0) plane in the ('111) of a BCC 
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WHEN ATOM A. ABOVE SLIP PLANE 
MOVES ~ro A', ·IT IS NO LON.GER CO­
ORDINt).TED VJITH ATOMS C AND 8 
BELOW THE SLIP PLANE, BUT WITH . 
ITS FORMER NEXT NEAREST NEIGH­
BORS 8' AND C'. 

FIGURE 4. 3. CHANGE IN NEIGHBOR 
..n.RRANGEMENT DURING DEFORMATION 
OF A SHORT RANGE ORDERED ALLOY. 

.~ ... 
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crystal. · The dislocation Une of length CD moves one 1) breaking the 

former bonds of A with B and C and making new bonds with B' and C'. 

Therefore, the work done 

(4. 33) 

Therefore, 

(t-t-1 = (4. 34) 

This can indeed be quite a large quantity • 

. It has been shown that the equilibrium degree of order a
0 

is given 

by(71) 

(;;,A f lb8 c{~) ( i?Ja -tln11 olo) 
i?/11 /nLJ ( 1- o(o.) 1-

e (4. 35) 

Therefore,. at sufficiently high temperatures, where diffusion is possible, 

the absolute value of the degree of order a
0 

decreases slowly with in- . 

creasing temperatures. Below this temperature, however, the now stress 

( c-t"~~> is dependent on the "frozen in" degree or order a and therefore 

is insensitive to the temperature. An example of the effect of short-range 

order hardening is shown in Fig. 4. 4 where short range ordering con­

trols the deformation over Region II •. 
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may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor . 
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