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I. INTRODUCTION
1A, Phenomenological Approaches

Much progress haas been made in underatanding'the molecular
origins of the mechanical behavior of gases and liquids. In contrast
the equivalent déacﬂption of fhe plaétic behavior of crystalline solids |
in terms of atomic mechanisms of deformation has only recently been
initiated and progress has been slow. The reason for this fact cannot
be attributed to a lack of interést. the failure to pursue the problem,
a deficiency of highly qualified'scientiﬁé talent, or any one;of a mxmb‘@’x
of similar possibilities, Rather it is intimately associated with the
complexity of the prdbleni._ The relaxation thﬁes for molecular proc-
esses in gases and most liquids are usually so short that théy'are almost
always in a well-defined state of complete equilibrium, Consequently
the molecular structure of gases and liquids are not dependent on their
past histories. In contrast the relaxation times for some significant
atomic processes in cxfystals. as we shall see later, are so long that
complete equilibrium is seldom if ever achieved. It is for this reason
that metals exhibit the desirable feature of strain hardening, 28 shown
in Fig. 1.1, (_1’ For if the relaxation times for all processes weire short,
the structure would recover almost immediately to its equilibrium con-
dition and a constant streass for plastic flow would reéﬁi.t regordless of
the extent of the deformation, |

If the reloxation times for all substructural modifications that
are Aéduced as a result of straining were infinitely long, however, a

mechanical equation of state

gz alEsT) a.1)
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might be expected to be valid, Accordingly the flow stress, d » would

" then be a unique function of the instantaneous values of the strain, E

the strain rafe.’, é ~» and the test temperature.T, regardleas of the

‘previous strain history; ~ But it {8 well known that tension tests conducted

at high temperatures, B of Fig. 1.1, begin to give stress-strain curves
that approximate C of Fig. 1,1. Consequently at high temperatures,

at least, the relaxation times for some substructural modifications

- become significantly short. Under these circumstances recovery of

the substructure will continue, even during interruption of the test, so
that, if the test were ahbsequently restarted, the substructure would no
longer be a unique funcﬂon of the strain alone and Eq. 1.1 would be |

invalid, » _
As shown in Fig, 1. 3(2) Eq. 1,1 158 also h_wa‘li(d' féi‘ tests con-

“ducted at low temperatures.' Whéreas the stréss«-strain curire AED

was_obtalnéd excluéively st 78°K, ABCF was obtained by straining to B

at 292°K whereupon the test was cdntin:zad at 78°K, If Eq. 1.1 wére
valid, pdiixt C would have coineided with D, whereas segment CF actually
coincides much better with E'D. Ewven this éomparison is approximate |
since CF has a iali'ghtiy‘ greater sioéé than ED. Obviously less drastic

substructural changes are introduced at the same strains for the higher

'temperatuie ‘test_.:‘ This suggests that higher rates of recoverj' éccompany
" the higher temperature test. But, when a specimen prestrained from A

to B is unloaded and held at 2982°K, even for very long times, it will,

upon reloading, again give the stress-strain curve BH showing that no
recovery took place. Therefore the recovery that took place during

tensile testing must have occurred as a result of the effect of stresa on
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the activation energy for recovery; »anibly m va ghall o,
| to cross slip of dislocations. Dislocation climb, usually ,oniy observed
above one-half of the melting temperature, represents another dynamic
recovery process, . | |

We now see that the. mechanical equation of state, aa expmdsed
by Eq. 1.1 I8 seldom valid., In fact .there i3 only one known example of
the validity of Eq. 1.1 and this concerns the plastic behavior of single
erystals of FCC metals at very low femp_eratures and then only over
Stages 1 and II of easy gn«de. and linear hardening. In theée regions ihe
deformatidi; mechanism has been ascribed to the thermally activated
intersection of disldcations(a"g) as will be discussed in détéll later, .'
Once the stress becomes high enough to induce parabolic strain hardén-
ing, dynamic recovery due to crésa slip takes place, and Eq. 1.1 {8 no

(11,12) process at low tem~

longer applicable, Of course the Pelerls
pératures, which will be discussed later, may also obej' Eq; 1. 1; but
théré is a8 yet no definitive exp'eriméntal evidence for the operation of
the Pelerls mechanism. | ) |
o Although Eq. 1.1 48 usually invalid, each thermally activated
c.léfc.)‘lrmation mechanism can' always be described in terms of the genéral

phenomenological expression

o w
f’tf_._.f}e-‘]ﬁ:" - - 1.2)

[/

where / referstothe | ™ kind of mechenism and
'a} the shear strain rate
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£i= f;’ {7‘; ‘[) s‘z“r} s a frequéncy fgcfor that eqﬁals the strain
| per activation per second
L (Jt-a [j& { 7; T-) St‘r} = the energy of activation per unit
' ‘ process
?& .

T

7= the eppled shear stress

éth

the Boltzmann constant

the absolute tempeiature

| | stre the significant substructural details.

- As shown by Eq. 1.2, the substructure rather than the strain' is the
sigxiiﬁcant variable that determines the piastic behavior of erystalline
materials, Coxisequently, only for those processes for' which str, {8 a
unique single-valued function of the strain, does the universally valid
expression for therrnally activated flow, givén by Eq. 1.2, reduce to

Eq. 1.1, In géneral éeveral different processes may be operative at

one time. If they are sequential, such that C follows B which follows

A, the strain rate that is observed will refér. under atéady ata‘fe con-
ditions, exclusively to the slowest process. But when the mechanisms
are independent the total stxfain rate will be giyen by ' f/}’ -Z ?Z .
Appropriately' high thermal fluctuations, needed to activate inigh activa-
tion energy processes, will be too mfrequem to contribute much to the' |
strain'rate at low temi)eratures. ' Conséquenﬂy only the -more eaéily'
activated procevsses having low activation energies can cdntribute to the
strain rate at low temperatures, At higher temperatures, however, the
lower activation processes will occur almost instantly and further o
deforfnatlon will therefore depend on activatio.n of the more difficuli,

higher activation energy, processes. Consequently, in general; the

activation energy for - deformation: will increase with increasing temperature,
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When only one mechaniam 'srcadmniuat? g, the activation energy can be

very clogely estimated by the effect of an abrupt change in temperature with

gtrain rate as given by

a,uéﬂm“ ~ A e - |
o A(“E‘?') . Y N § 8

ag shown by differentiating Wq. 1. 2 and neglecting the txu)y newlir*ible change

in ‘fi with T .

The fapplication of the experimental proceadure for obtainivg the apparent

(13)

- actlva i’ian energy for creep of Al {a f-,hovm in Fig. 1.3. Qver region Ao B

the cresp rate decreases with strain in gpite of the fact that all of the external
variablea of stress and tempefatura were held congtant, Consequently this
reducttcm {n the creep rate must be ascribed to the substructural changes taking
Aplace during creep., When the tc*mpe*r ature .is decreased at B the creep rate

decreages as demaudod for thermally activated procesges, and when the original

temperature ig again rea‘mred crmap again proceeds at the faster r‘ate; In thia -

_example, the segment CD is uherely a continuation of AB suggesting that the

substructural changes taking place from B' to C "'were the same as thoge which™

would have occurred from B to C had the original temperature been held pOtlmiqmt_n,.

_This observation holds quite frequently, especially at high feinpefatﬁres a-nd for

. small changes in temperature. The apparent activation energy obtained by

applying Eq. 1> S to these data is ghown in Fig. 1.3,

When the apparent activatmn energy for crecp is determined< over
the euntire range of intersectmff thpez‘amre.;. results such as those |
(14) for Al are obtained. The expected 'trend, of

incr\,a inv appareut activation enerpgies with increasing temperatures

is obtained. It is significant however, that these testa were conducted

for creop rates of_ about 107° per second., As will be shown later, for such

conatant strain rate conditions certain procegses ({e.g., intersection and

the tharr umlly activated motion of jog screw dislocations) wherein _
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the activation energy is a function of the stresé, will give activation
‘energies that increase lnearly with the abgolute temperature, There
can 'be no doubt that various mechah;lsms 6f deformation are operative
‘over the various temperature regions, _Wg might tentatively suggest
“the following: | S : o

-A.\ Intersection of dislocations |

* B. Transition from intersection to cress slip !
] C Cross slip =~
D. Principally motion'of jogged a.crew dislocations with some
.‘cross 8lip and some climb
- E. Climb 6_{ dislocations

Only those mechanisms for which the activation energy is less
than about 80kT can occur frequently enough to contribute effectively to
the strain rate. There ar% a number of important processes that have
much grester activation energies; and such processes must be induced
to operate almost exclusively mechanically by applying sufficiently high
stresses, Amoxig these are the fo'nowing:

A, Generation of dislocations either at a Frank-Read source or

at points of high stress concentration
- B. Separation of recombined dislocations
C. Motion of dislocationa through long-range streas fields
- induced by other dislocations |

D. Motion of dislocations through short-range ordered alloys

E. Activation pf Suzuki-locked dislocations

An example of the effects of long-range back stresses and |

posasibly a small amount of effects of gshort-range order are illustrated,
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~for a dilute alpha solid solution alloy of 0.554 at. % Mg in AL, in

Fig. 1.6. (15) Over region AB the fipw stress decreases with Increas-

~ ing temperature as required by thermally activated processes, the
o “mechanism in t_hia case being intersection. But over region BC the .
flow stress is almost independent of the temperature, as required when

_ the process is not stimulated by thermal fluctuations, In this region

intersection is 80 facile because of its low activation energy, that it

- . occurs without delay, And the stress must, without the aid of thermal
_', __"“fluctuationa. force dislocations through the short-range ordered alloy

‘and oier the long-range stress flelds. Over the higher temperature

range, deformation again is conti*olled_by the more diffic;.ult thermally
activated mechanisms of cross slip, motion of jogged screw dislocations
and, over the highest teﬁzpex?atuie renge, climb of dislocations,

_ Another example of an athermal proce.ss {s shown by the single'
crystal data given in Fig. 1.6, “6_) The critical _revsolv'ed shear stress

for slip is practically independent of temperature up to about half of the

" melting temperature and it increases slghtly with an increase in tem-

perature as the melting temperature is approached. Furthermore the

;" eritical resolved shear stress for slip increased only slightly when the
- strain rate was increased about ),Ot,3 times, This insensitivity of the

yield stress to the strain rate is another characteristic of athermal’

mechanisms. As will be shown later, these results are ascribable to

~ the activation of Suzuki-locked dislocations,

It 18 also desirable to point out at this time that there are
several thermally activated mechanisms of deformation in polycrystal-

line aggregates that are not directly ascriboble to dislocation processes.
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At very hiyh temperatures and low values of the applied stress, creep
can occur by the Nabarrou M mechanism of generation of vacancies at
" grain boundaries normal to the applied tensile streas, followed by |
volume diffusion to sinks in the groin boundaries parallel to the direc-
tion .o{ tensile streseing, Atomas, of course, migrate in the counter-
current direction résuiting, therefoie. in creep. This process, however,
“only becomes significant within about 60°C or ieea of the melting tem~
perature, During creep at high temperatures, high engle grain bound«
arfes do migrage. Such miggrationa might be equivalent to a recovery
process because the newly formed volumes of grains over which the
boundaries have migrated are probably rather free of :dislocationé. The
migration'of such high angle boundaries does not require dislocation
mechanisms for its operation, Graun boundary shearing also occurs
during high temperature creep. But since its activation encrgy sppears
to agree with that for climb and because the amount of grain boundary
shearing is linearly related to the totél strain, it is now generally
believed that such grém boundary shearing may be controlled by inter-
actions with dislocation mechanisms, -

Although dislocations play a significant role in many different
types of solid state phenomens, the major objective of dislocation theory
is the rationalization of the plastic behavior of crystalline materials in
terms of atomistie m@chanlsms of deformation. The concept of dis-
locations was first announced by prandt118) ang D@hlingeru?) and
subsequently the first detailed theoretical discussions were given by

(20)

orowan?? and Taylor. Y Over about the first twenty years many

false ideas were promulgated, primarily because of the veréatiiity of
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" the theory, and dislocation concepts were frequently discredited, But
‘substanﬁi.al progress has been made over the past fifteen years, and

' ‘the theory now rests on a gound foundation, However, many phenomena

dependent upon dislocations yet resist clear interpretation, And

several ;Sreviously held concepts concerning dislocations have had to

" be abandoned as é result of mcent di_rect observations of dislocations,

" especially by tranamission electron microscopy, It can be expected

" that most of the remaining general concepts of dislocation theory will

be fairly completely explored and characterized within the next fifteen

years,

1B. The Need »for Diglocations

| - When metal single crystals are stressed, they deform plastically
o by glide on prescribed cryfatallographic planes and in prescribed crystal-
| lographic direétions of ahe‘;a.r as chown in Fig. 1.7. Entire blocks of

the crysfal shear relative tﬁ other blocks, th;e operative slip system
bemg that on which the resolved shear stress,’ 7‘; » on the slip plane

" in the slip direction(s) is & maximum. Ats deformation proceeda higher
stresses must be applied émd intervenixig slip planes begin to operate,
Each elip band, which conélsté of & series of closely spaced slip linea,
may also continue to add more lines to the band as deformation continues,
A typical resolved shear stress versus resolved shear strain curve ié
.-shown in Fig. 1.8, (22) Stage 1, known vas.easy glide, exhibits only a
minor amount of strain hardening; Stage II, called lnecar hordening,
e:&hibits a great Unear increase in flow stress with strain; whereas in
Stage III, parabolic hardening, a smaller rate of strain hardening

applies, At higher test temperatures, the strain range of easy glide
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decreases, and the flow stress also decreaaea ;) iexpeéted fora. . ..

| thermally activated mechanism, The slope of the Unear hardening

range, however, {8 almost independent of the temperatura, . But para-. 3

bolic hardening begins at lower values of the flow 9tre‘nsj in the higher

temperatﬁre tests, illustmung that the mechaniam operative hare also

dependa on thermal activation, As the original crystal orientation ep-

proaches more closely those for duplex slip, the strain range of easy

~ glide decreases, the rate of lnear hardening increases, and parabouc

hardening occura at smaller strah‘wﬁ. ~ Face centered . cubic crystals .
oriented #o that the tension axes coincide with the [111} direction,
slip aixhuitaneously on six systems; they do not exhibit ‘e@y glide, they
undergo high rates of unear hardening, md proceed almost directly to

parabolic hardening giving streas-stram curves slmilar to those for |

_ polycrystalline metals.

. The commonly obaerved anp aystama m metals are as follows:

. .. . Crystal o Sup Directmn Sip Plan
Face Centered Cubjc . 1) - 111)
© Hexagonal Close Packed =~ (1120} . (0001)
. Body Centered Cuble . "nu, 110
- o 111] “(112)
E2S YO . 123)

Under special conditiona. however. other eup systems become Operativc;.
Exc_luding rare exceptions, slip in metals always takes plage in the
direction of greatest :atof‘r_xié." packing and usually, but not always, 'on .
the planes most widely separated from their neéreat parallel neighﬁoxl-s.
Any acceptabfe theory of Plastic deformation of crystalline matedélé .

must a‘atisfactoﬂly,"acconﬁt not bnly for all of these facts but mixst | :
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equally pérmit Eq. 1.2 to be expuéitlyléipressed in terms of the
appropriate mechanistic details for all conditions of deformation for
“all crystalline materialé under }‘all posaible states of aggregé.tion. '
 Neglecting their thermal vibrmon. the atoms of an ideal crystal

are arranged in a regular threé-«dimenaioxial array, as shown in

Fig. 1.8A, If a shear stress wereQ epplied to the single crystal, as
shown in Fig. 1,98, a shear displacemén't,} X , of the upper plane
relative to the lower plane would occur, As a result of the periodicity

of the lattice, however,

X

(1.4)
b

Ta7stn21
where ];' refers to the critical shear streas required to cause perma-
nent plastic straining. For Emgu strains the sine term reduces to its

argument and Hooke's law applies, so that
X aom X S |

where (3 is the shear modulus of elasticity._ Consequently the shear

stress required to cause plastic deformation {8 about

- G Q |
[ A :

T 33 L S ¢ N

Whereas this value {8 somewhat above 106 psi, the value observed in

real crystals is only about 102 psi as shown in Fig. 1.8, Some im-~

provement in the estimate given by Eq. 1.8 ils possible by taking the
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FIGURE 1.9, IDZAL CRYSTAL UNDER SHEAR.
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compressibility of the atoms into congideration, But even Wh}evrll this is
done, the theoretical value of ‘(; for most ideal metal crystalé remains
above 108 pei. Since the theoretical calculation, although cruda, gives " -
the correct order of magnitude of T, for ideal crystals, it must be
evident that the single crystals, as usually prepared, are highly non- .
{deal. On the other hand, many mefal whiskers do not deform plasti-
 cally until the theoretical value of T for ideal crystals {s approached,
fllustrating that they are at least nearly ideal, Attem;its to grow large
crystals having the strength of whiskera are intriguing b_ut thus far have
failed. Except. perhaps for special applications, tha poasible utility of
" such higﬁh ‘strengm ideal cryétallme materials 18 questioﬁaﬁle because
they could not be machined or formed into shape without making them
non-ideal and soft., We shall Beé, however, the versatility of disloca~
tion theory which will show that those imperfections which {in modest
concentration, permit a ﬁxetal to be ensily deformed, v}m, in sufficiently
high concentration, lead to strengthéning which in special cases and under
special conditions begins to approach within about one-half of the theoreti~
cal strength,

Since imperfections are reapqﬁsible for the observed plastic
‘behavior of most real crystalline materials, we need to determine what
J kind of hnperfectiona could poasibly be res-ponaible for the observations,
And zince crystals are geoinetric'objecta, the»possible types of imper-
fections are limited to point imperfections, line imperfections, and
surface imperfections, Point imperfections appear either at lattice
sites which are supposedly occupied by the atoms of the crystal or at
interstitial sites that are supposedly unoccupied. Random mixing of
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_“vat‘ious atomic species in solid so_lutioh alloys does not constitute point

" imperfections, Typical examples of point imperfections, vacencies,

" and interstitials, ere shown in Fig. 1,10, There are two major reasons
why such imperfections cannot be responsible for the pla?atic shear |
~ deformation of crystals, First, they cannot undertake exten,si\m mass
B migration ag a result of a shear stress, Secondly, even if they did
. move large distances, they could not account for slip on a siip plane in |

a sup direction, Furthermore. s we shall see later, the various

auri‘aco imperfectiona that arise in real erystals can a.u be aacribed io

: lne imperfections. And therefore line imperfections must be thought

" to be the primary factors reaponsibie for the plastic deformmion of -
: crystals, Such line imperfeciions are called dislocations. |

_',n.. THE BTRUCTURE AND NATURE OF DISLDCA’I‘IONS ) _:-
2A.  The Viewppint to be Acbpted

From & detailed analytical vie\m point. dialocation theory eppears

" to be a rather i’ormi_dable subject, having many complex facets and
_,presenting many complicated maihematical problema. ,. It 18 not the
o objective here to elaborate on such vfeatures of the 's_objectv." Rather, I
| propose to discuss dislocation theory, not in the full rigor of high sophis-
‘tication, but with vigor and clarity to provide ihe neoohyte with a lucid -

picture of some of the major issues. Several factors permit such an
elementary approach, :Firat. dislocations ere simple geomotric imper- |
fections and second. the major phenomena can often be desoribed in
terms ot a few interacting dislocationa without requiring a complete

statistical formulation of the problem.
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2B, 'Ihe Edge or Taylor Dislocation

| ' Consider the ideal single erystal shown in Fig, 2,14 and leta
v, B _ disloc ation be produced. by shearmg the upper left-hand section of the
' orystal one -atomic apa_cmg. f.e., ohé ,Burgera véctor,- 5, along a
| slip plane. Since slip will not, in this visualization, be permitted to
- .proceed over tha éntire siip piane, the. atomid configuration ﬁxa& is ob~
tained for a simple cubic lattice 15 as shown in Fig. 2. 1B. The plane |
- ABCD reprementa the extra half plzma of etoma (aaaoctated with the
edge dislocation) that was crowded into the lattice., The edge dislocation
mmif is given by the line AB, To determine the Burgers Qector, B,

" we loo‘k along the dislocation from A to B end formulate the circuit

cdefg in the clockwise dlrenction. making equal numbers of lattice spacing

steps downward (c to d) to the left (d to e), upward (e to f), and to the

right ( to g). Where the crystal {s ideal, or cé_ntaine only interstitials
and vacancies, tﬁia Burgers circuit will cloge, ABut whexi the circuit is-

made around a dialocatidn; such a8 AB, it .'iailsvtb close by g to ¢, The
Burgers vector, b, of the dislocation gWeé the failure to close in terms

. of the‘ lattice apacing in the ideal crystal, The same failure to cloae,'

. B, 1s obtained for circuits anywhere along the length of AB, When the

Burgers circuit daéem not include the dislocation line but does extend |

| across the extra half pléne, it nevertheless clbées. Consequently,

. exceptmg for elastic lattice distoruona, the crystal is 1deml in this
region and no special significance, excepting that of geometric conven-

ience, can be ascribed to the extra half plane. The only 1mper£ection

. present {a the dislocation line AB*

-~
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FIGURE 2.I. AN EDGE OR TAYLOR DISLOCATION.
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As we can réadily see, the characteristic of an edge dislocation
line reéides in the féct that it is perpendicular to its Burgers vector.
Since the edgé dislocation and ifs Burgers vector are perxiéndicuiar to
each other, they c_leﬂrie a plane. The plane so defined is the slip plane
on which theveﬂge dislocation is constrained to mov§ when diffusion {a
prohibited. Since slp has taken place over the area «A'AB 'B of the alip
pléme. ‘the dislocation is the lne aepar‘ating the aliypad from the unslipped |
portion of the aiip plime.j Since thia 16 génerany true for all dislocations,
a dislocation line cannot'end in the center of a erystal; it must eithér end
on the surface, aé shown at points A and B, or it must form 8 closed |
100p in the crystal |

"When an appmpriate shear stress is applied to the crystal. the
dislocauon will move as shown m Fig. 2,2, As the dislocation moves |
forward one Burgers vector only a Bmall atdmic adjustment is required
in the vicinity of the dislocation core, Along the entire dialocation line
atoms "'C" which are shown below "B" in Fig. 2.2A move one Burgers
vector so0 that they are below "A" as shown in Fig. 2. 213;' "P'roceeding
atep by step, the dislocation can leave the cx*ystal as ehown in Fig. 2.2C
-reaulting in a shear diaplacement of the upper section of the dislocation
one Burgers vector relative to the lower section. . |
| ~ The motion of a dislocation thro,ugh the latttcé. as shown in
- Fig. 3.2, is quite different from the uniform shear displacement required
to cause plastic deformation of an fdeal crystal, .shown m Fig, 1.8, In
the ideal crystal high stresses wers required to cause a shear diapimeu
ment because the entire slip plane wag aheared as a unit, But in th'@

dmlocatmn process only srmall atomic ﬂdjuutmﬁmtﬂ are requireci near
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the core of the moving disiOcatioia and consequently thg stress required
to induce flow {s small. | e

‘ When the dislocation moveé forward one ﬁurgers vector the -
boﬁd angles of the Iatoma in the vi.cinity of the core must change, The
bond energy of covalent)\y bonded atoms changea appreciab]y with the
- bond angle, Con&zequently high atressea are required to move disloca-
tioma in such crystals as diamond. In contrast jonic crystals are bonded
prin¢ipally by radial forces and therefora dislncations are somewhat
more readily moved in these materials. But metals, being bbnded by
the Fermi energy of the electron gas, have bond strengthe that are -
practically independent of the bond angle, Conaeque_nt'ly- disloéatious '
begin to '_niove at extremely low stresses in metals; Disfocations not
' only account for the low sh_e’ar stresses for ‘Qlip but-alsoi‘f.or the fact

~ that slip occurs on a slip ﬁlane and in a slip direction.
|

3C. The Screw or Burgers Dislocation

' If a stress is applied to induce the deformation mhovm in I‘ig. 2 3A
a screw dislocation is produced sup was permitted to take place by a
shear deformation o!’ b, one. Burgers vector,over only a part of the
slip plane. namely A'B'AB. The line AB that demarka the slipped i’rom
the unslipped region is. in this case, a screw dielocation.
The characteristica ofa screw dislocation ere x‘evealed by making
a Burgors circuit about the dislocation line. Using Fig. 2 3Basa guide
we prog:eed as follows m a cloc}mtse direction: start;np,r above the slip .
plane at atom "a" we go down two etoms, to the‘l;efi frohx "a'" to "b" to
" and up two atoms at "c" to "'d" and thenlto " ". The circuit doéa

not close by "'e" to "a" which 1s the Burgers vector b, Whereas m the
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(b) PLAN VIEW OF SLIP PLANE -

O ATOMS ABOVE: SLIP  PLANE -
"'+ ATOMS BELOW SLIP PLANE

 FIGURE 23 A SCREW OR BURGERS
- - DISLOCATION. " o
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edge dialocation, the dislocation line was perpendieular to the Burgers
vector, in the screw dislocation the dislocation line is parallel to the
Burgers vector, And whereas the edge dislocation, being perpendicular
to its Burgers vector, defines a unique.sup plane, no such unique alip
‘plane {s defined by & screw dislocation since the ne and Bu}gers vector
of the dislocation are parallel, Thus, edge dislocations are ¢Onf$ned

to slip on their unique slip planes, whereas gcrew dislocations may
erosa-alip on any facile slip plane' in which the Burgers vector, or dis-

location line, les,

24D, Dislocations in General

A general dislocation {8 shown in Fig, 2.4, Slp was nducedto
take place on a slip plane over the crosshatched region only up to line '
ABCD. This line, which demarks the slipped from the unslipped region
18 a single dislocation line, Tc reveal this we ma& take a Burgéra_ |
eircult around the line, looking along the line from A to B to C to D.
No matter where the circuit i3 taken the Burgers vector, b, is always
the same, as identified in the figure. The dislocation line segment AR
is perpendicular to the Burgers vector, b, and it is thercfore pn edgze
segment of the dislocation line, The }éegment CD, however, is parallel
to the Burgers vector and it {s, therefore, a sct‘ew segment, Between
| B and C, the dislocation line has both screw and edge components, a‘s
shown by the broken lines in Fig. 2.4B, | S

As shown in Fig. 2.6 there are two kinds of dislocauons, called
positive and negative dislocations, Under the applied stress shown, the
positive dislocation moves to tbé right whereas the negative dislocation

moves to the left. If the dislocations of oppbsite sign were on the same
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(@) POSITIVE AND NEGATIVE EDGE
' DISLOCATIONS.

. 4
-~ ) . - J
—EEEE

R
- -
v

W
(b) POSITIVE AND NEGATIVE SCREW
DISLOCATIONS.

T—‘IGUREY 2.5. POSITIVE AND NEGATIVE .
DISLCCATIONS,
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slip pléme the elastic strain energy of the crySt'al wOuld be lowered if
they combined ’znd. annihileted each other, 'I‘heréZOré-diélocations
having \mlihe sigxw attract each other. As two dislocationra having the
same Bigns are brought together, the elastic strain energy mcreases.
Thua dislocatio{ns of the same aign repel each other,

I Fi:g.— 3.6 is tumed upuida ‘down the signs of tha dimlocatious
_'wnl change, Thus dis)ocation sigms have unique values only relative _‘
" to fixed orientations, Suppose we introduce the square_ ‘dislocation Joop
shown in Fig., 2, '6 by éheérinig’ the priam above the loop one Bﬁrgers
vector in the slip direction. | The positive direction of the diralocation
.v line will be teken from A to B to Cto Dto A, The entire line has the
single Burgers vector, 5. But the signs of the line must then be taken
" ms shown in Fig. 2. 6. y this dohvention the Burgers vector of a dis§
‘ location is constant all along the dislocation lina. | | |

In general dislocations in real cryotals form a three-dimensional

network. On occasions they form two-dimensional arrays of tilt or twist

o boundarilesv. There are many reported ex&mples of netwbrksf in the

uteramré. The poiht of ju}.n‘c.tion of dislocation aegments of the networks
“as shown in Fig. 2.7 are .k‘nown es nodes, -'i‘he'Burgex;é vectors were
~ obtained by looking along AN, NC, and NE, The §ector. 1 refers to
the difference in slip betweea regions "a" and "¢", But b, + 53 also
refers to this difference. Therefore 5'1 » 52 + 53. If, however,

(22)

Franlkts convention is ado'pted. all Bufgers vectors are dé:’termixied
by lookin toward the node. Here the signs of B' and B will be ne«ative. '

'I‘hen lookinn into the node Z b =0
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FIGURE 2.6 POSITIVE AND NEGATIVE
DISLOCATIONS IN A SQUARE LOOP.
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2E. Force on-a Dislocation

The prmc'ip-l-e of 'vu-tualx work will be invoked to'cmume the =

| force, F, per unit 1ength of a dislocation as a msult of a shear straag
T, acting in the curection of the Burgers vector. As shown in

Fig. 2.1 the dislocation moves m tha direction of W unc}or the action.

~ of the stress, Althoagh_it moves in the direction of the ctrees nnd the |

Burgers. vécto'r. it is more aignmcant to mté that it moves 611 the slip

plane in a direction normal to its length. ~Since the force per unit lengrth

a . 19 F, the length L and the diatance moved to traverse the cryatal W, the

work done is FLW, This work is done by the stress, T' + acting over_
| _tirea. LW, and the force, 7 LW, acts through a distance, b, as thé
dislocation traverses the crystal. Therefore, FLW"'- | 7 WLb or
i Tb S {2.1)
acting normal to the dislocation line. | o -
The force acting on a screw dislocauon can be detcrmmed by
.the same procedure, Again on_ly the component of the shear streas,
T , in the direction of the Burgers vactoi éﬁuaes 'deformation"ae
" shown 1n Fig. 2.3. The serew dislocation, however. moves at right
angles to the Burgers vector. that is normal to 1tself. Agnin Eq. 2.1
is obtained Consequently Eq. 3. 1 g'lvea, in general the force acting
normal to a dislocation and forcing it to move in ita enp plme. “And
therefore, in general dislocatlon segments that are acted upon by
. shear stresses on the slip plane in the directio_n of the Burgers vectér;

move {n their slip planes in a direction that {3 normal to the dislocation
line, - o | |
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2F. Stress Fields Around Dislocations .

Dislocations are lines representing the cores of internal strain
) discontinumes in crystala. These strain ﬁelda and their associated

v straas fields move with the dislocationa. In this sensé dislocation

theory describes the plastic behavior of erystalline materials in terms
~ of the theory of’-e'l.asticity' as appled to statie a’ndmo’vinginter:iai strain
and etr_eés tields, Although the full trea’trhent'of this subjeét can become
. very mathematical. .‘vit 18 possible to obtain alucid physical insight into
the saﬁen_t tééti;reis from very simple appréaghe}z.': o
. As {llustreted in Fig.' 3.3 & acrew dislocation constats of &
‘spiral ramp of atoms that?'éclvances one Burgers vector per circuit sbout
the dialocétioxi.' This‘ is alao shown in Fig. 3.8 for a screw dislocation
lying along the Z axis. Using cylindrical coordinates. it is immediately
seen that all strains are zero excepting E 67 which {8
S

For Y 2= b , Hooke's law applies and

%, G 1’ | - 2.3)
. where G is the shear modulus of elasticity, and for the sake of simplicity,
elastic {sotropy ie essumed. Thua the shear stresées around a screw
di_slocatibn are inversely proportional to the distance from the core of

the dislocation, For r<,b , however, Hoo_ké 's law no longer applies

‘and special diffic_ult analyses are required m order to define the details
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" FIGURE 2.8. SCREW DISLOCATION LYING ALONG

7 AXIS. |



'nt the core, Such detatled knowledgea however. 18 only required for

~ certain special problems and need not be conaidered hera. For future

o }reference we will refer the atress field around & screw dislocation to

- the Cartesian coordinate system. Uamg the Mohr circle analysia, or B

| applying the tenaor transformation

o y=0ig Lir Ge
"~ where the f'a are curection cosines, we find that
dxx 1 "G:zz xg“o T :Cé,' 9
n
= Lo ﬂxz 92 +/sz j){g Crze - T2I7T S’
ccS&‘

0%7 ﬂza dﬁz* 22 "{w G5 = 27rr

Therefore, the stresses for a screw dislocation lying along the Z axis

. are:

N s R
o __GbX_ R
97 27’(;(‘2 93) ETRRR - @s

The stress ﬂeld around an edge dislocation is slightly more:
difﬂcult to determine. For an edga dislocation lying along the Z axis

- the streeses are given 1n polar coordinates by

2 beg G
A = T
O;’é::' G‘b @056 o . '. | e

2T -] T
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‘where L is Poisgon's ratlo, and by

—_ (/(WW!) RN
._O;‘X" 27'(/ Ll) (K;e,,yzj.z - o (2.8)

Gb y(:x?—;y@) o
»67‘{ ZTT(I»-,u) (Xzfyg).z,;ﬁ S (3.9)

%2=M(Qg+q7)»< "wjm

G4 7<(><‘2 ?2) |
7“1 277(] ,u.} {X.!,f,?z -1.

(2.11)

; in Cartesia’m coordihates. ‘Eqs. 2.6 and 2, 7 reveal that the stress fleld
‘around an edge dislocation also varies with the reciprocal of the distance
from the dislocation core. But #s shown by Eqs. 2.8 to 2, 10, dilatational
vatrescea are present around an edge dislocation, Therefore edge dis=
locations wiu int'cract with cente‘rs of volumctrtc strai’ning as wen as
shear straining whereae screw dislocations react only with centers of

shear straining.

2G. Energy of Dislocations

~ The strain energy of the lattice due to the presence of a dislocation
is known ns the energy of the dislocation, We will consider the geometry
in Fig. 2.8 to calculate the energy of a screw dislocation that is 1 em
long. Since the shear strain and shear stress are -given _by Eqs_.j 2,2

- and 2.3, the strain energy per unit volume &t & distance ;* from the
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_ dislocation core is:

w 7 e boa

™ @

where P is the total energy per uni.t lcn«rth of the screw diqlccation.

~ As seen by rig 2,8, the elemem of volume ia dv s 277'x'd1- and thcre-o

fore

,c;g’ vdr stz e
'CM;"?QUN' 27TY‘0’?” = 2 v (2.13)

. Since Eq. 2. 13 s based on Hobke'vs.law which {s fnvalid for r < b, the

integmi is written as

G(] f d g¢ ;@;é“ /g’?“z‘g“" foe (3.‘14) |

where V’Q is thé radiﬁs of the cryétal; énd Y;,n is the energy per unit
length of the core from { =) | | t‘o_'.\f' -::-b . Ccnéequeiatl_y the line enérgy
does not have a unique valge 'since it depénds on the radius of the cryatal, |
Y‘Ci . But since the radius of the crystal enters the energy expression
| in a logax'ithmic term, large mcreases in Y produce only modmt
‘chanpns in V Furthermore in a real crystal, disloc'ﬁ,iona of opposite
.81{:'1’1 result in canccllqtion of stress f;elda at large distonces from the
dislocation cores. In this event Y\g can be approximatﬂd by ebout the
- mean spacing between dislocations, t»:ay = 10 é . » "
Mo accurate calculation of the core enerry rc; , of a dmlomtion

in metals has yet been made. Since the core rcpresems; a reglon of
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severe disordering of the atoms, Bragg suggested that the core energy
might be estimated by the product of the number of atoms per»unit length
in the core and the latent heat of fusion, Slightly more st)phisticated‘ |
estimates based on ‘extenaions of elastic behavior to large strains sug-
gest that F SC. <N 2 . Concmquently. |

4 . |
| 2. 2 - "
G*“‘;@"é‘{ﬂﬂ{‘ﬁ Gb -

'and therefore

(2.16)

. B

Se Tr
vBy an analogous erchniqué lnvolﬂng a s'lightly more complicated analyais,
the energy of an edge dislocation can be shown to be sught\v greater than

- that for a screw dislocation. namel,y,

[l

£ (I"M)' _‘ (2.1?) |
The contribﬁtions of a dislocation ung to the configurational and
| thermal entropy are small, as shown by Friedel, Consequéntly the free
energy of a dislocation lne Jdiffers rather inaensiblw from the energy of
the line., The probabuity of torming a dislocation line of length i as
& result of thermal fluctuations is given vye~ &r , wherer' W b2 Gj)
Taking the values of Gz 4x10u dynes/cm . bzt 2x10 cm end Lﬂoaﬂl
the probabinty of forming a centimeter long dislocation {82 ™ "“'-f-:""' ’
where k._tha Boltzmenn constant, is 1,4x%10 -16 ergs/deg, Thus |
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-._dislocations cfmnot be produced as a result of thermal fluctuations, |
) They are formed either in the crystal during its preparation, or they _
are produced a8 a result of shear atressing Since the ehear atress
'necesaary to produce a dislocation begms to approximate the thcoretical
: 4-'shear atreaa for ellp in an 1dea1 crystal a8 given by Eq. 1.6, dialoca— . |
v,gtions can only be formed at points of high -stmss concen.traticns, at
surfaces, grain boundaries. precipitates or varioua other discontinuities,
Althou gh the energy of : long. not too rapidly curving dislocation
une can uaually be approximated by the value given in Eq, 2 15, the
cuslocation can o_ccaaionany have ene;'gies letss.than this -valua dependent
. on"_.»tt'a surroundings, its 1gngth and rédi’ué of -cuﬁature. "As; va dislocation
 approaches the mr.faém of a crystal, its ﬁneigy dbviously -decréas‘és, and
therefore dislocations near a mrféce_ are attracted to it. A continuous
 dislocation loop of x;adius, r, has a. stress field that becomes negligible
at diatané'ea greater thahv about 2r from the line due to the mutual can-
cellation 6! the stresses arising from the positive and negative dislocation

segments, Cc_inseq’uéntly its energy 18 about
erri=2mr & /A 2 7 .16

which s appreciably less than that given by Eq. 2.15 for a straight . .
dislocation line when r << r o+ Sharp kinks and jogs shown in Fig, 2.9
have only shout the core energy, amcé their stress fields extend only

to r, = b, v | |
Although the energy of a dislocation line is notr uniquely defined,

and the currently used encrgies are epproximations, good pyogross has
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A. BURGERS VECTOR LONG KINK:
THE KINK SHOWN HERE AS A SHARP KINK
WILL STRAIGHTEN OUT UNDER THE LINE

- TENSION. WHEREAS THE LINE IS AN EDGE
DISLOCATION, THE KINK IS IN SCREW ORIENTATION.

B. A UNIT JOG WHICH EXTENDS FROM ONE
SLIP PLANE TO THE NEXT PARALLEL
SLIP PLANE: N T

THE JOG IN THIS CASE IS AN EDGE JOG..

FITGURE 2.9. KINKS AND JOGS.
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nevertheless been made in characterizing, in fair quantitative detail,

!

- various interesting dislocation reactions.

AH. Dislocation Line Tension

The energy of & dislocation of length /. A8 given by ;
U= r 4 7 ,' (3.19)

whero P io the energy per unit length, Therefore, there is a line
tension equal to - - R
A u , \ - o
T dr T r - B (3. 20)

acting along the dislocation line and attempting to shorten it. Consequently,
- a dislocation line s lke o stretched string having a constant internal
force acting so as to shorten the string. Therefore.' dislocations that
are free toc move always have straight aegmente between pinned points
when under zero stress. | | '

If r io not too small, o dislocsiion loop, oe shown in Fig, 2,10,

has the energy S o
U=2mr T @

- when we neglect the small differences in afrmrgiau of edge and screw
dislocations. In the absence of a stress the energy, (L, would decrease
to zero ond the dislocation would vanish, This ia the result of the mutual
attracuoné of the positive and negative edge (E) and screw (S) dislocations
comprising the loop. In order to maintain the loopy o stress must be
applied. We let the local shear stress on the slip plane in the direction
of the Burgers vector be Z’ Z‘* where 'C 18 the externally applied stress
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end. T_{ia a local back stress, to be described in more detail later,'
due to stress fields arising from other nearby dislocations, To deter- |
mine the equilibrium radius of curvature of the loop under the local
stress wé will invoke the prineiple of virtual work, "I’he change in the
line energy oﬁtaincd by increasing the radius of curvature from its-

equiltbrium value of r to o velue r + dr is
dU =2m [ dy N -

The work done by the local stress, as shown in Section 3E, on increasing
tho radiue dr is (T — T*)b times the area swept out by the dislocation or

dW (T *r)bzma/r L | (2. 23)

. Since all ot this work io converted into nne energy dw o dU. and.
theriefore. at equilibrium, '

v —19e

; - (2.24)

4Tharefora. under zero local stress, the dislocations will have infinite
radii of curvature and will, therefore, be straight lines, The higher the

local stress, the smaller will be the radius of curvature,

3], Dislocations Impeded at Points

A free dislocation moves normal to itself under the actionof a ,
local siress (T‘-WT*) acting on the slip plane in the direc;tion of the
Burgers vector. If the motion of the dislocation is arrested at points
along its length, it wili bow out, as shown in Fig, 2.11, between the |
points at which it {s arrested. These points might be nodal points, jbgs
in screw dislocgtioha. points where forest dislocations thread the slip
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(T' T*)bds
(T— T*bds cose

> X

_FIGURE 2.1I. DISLOCATION UNDER A LOCAL STRESS‘
| HELD UP AT POINTS.
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plane, fine precipitates, etc. It {8 easy to reaffirm that the radius of '
curvature of each arc is the same as that given by Eq. 3,24 regardléss
of the distance between points,

‘The two sources of forces acting on the arc segment extending
from -972 to +9’/2 are the line tensions, [" , and the forces
acting on the dislocation segment, The component in the X direction

from the line tension is:

F~~2rsm 9/2

And the component of the force due to the local stress acting on segment
- *

ds in the X direction ia (T"T )b cos 9 ds. Thereiore. the total force

in the x direction, arising from the local stress {a: /

Ge
FK [ (T T#}b Cc oS Gds‘(f’ft)brf éo&BJB
: e

- (r-T¥br2 sén972

the radius of curvature being constant over the amall range -'19?2 =4 '-'-‘972.
Therefore, under equilibrium cocnditions (le +Fy,° 0) Eq. 2.24 is
again obtained. |

The formation of a laxjge number of dialocagtons over A narrow
range of slip planes may be achieved by successive generation of dia-
~ locations at potpts of stress concentration, the multiplication of dig~
locations by cross-slip or by the operation of a Frank-Read source,
The Frank-Read(M) source mechenism, depicted in Fig. 3.12, will
operate only if the dislocation segments are not locked by precipitates
or otherwise immobilized. ..



R S . UCRL-10455

FIG. 2.12 ‘A FRANK - READ SOURCE.
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The dislocation segment A between the nodal points P‘. and P,
of a dislocation network is a straight line under zero local stress, As
the stress is increased the radius of curvature decreases as shown by

Eq. 2.24, At stage D the radius of curvature {s L/2 and

(T~ I‘?cz-}-){?*é | | (2. 28)

Any infinitesimal increase in stressa .wm induce a further displacement
of the dislocation arc, But as a result of the geometry indiced by having
the dislocation pinned at the ngdal points P, andP,, the arc now acquires"
successively greater radif of curvature, The maxirn'm:‘n‘ stress required
to operate the Frank-~Read source is, therefora. given by Eq. d4.25. The.
- dislocation, therefore, continues to move normal to itself giving stage F.

| As motion continues the +F and - T dislocation segments of opposite

- sign annihilate each other by pinching together, If the dislocation seg-
ments are on different slip planes due to the presence of jogs, however,
they will not be able to annihilate each othei. unless they are in screw
orientation and can cross slip. Thus, dislocations Gl and (}3 are formed.'
Whereas Gl is now free to sweep through the crystal, Gg can repeat the
procesé. Therefore, a single active source can produce mnuinerable v
dislocations, at least until the back stress f* becomes Bo large as to
j)revént further operation of the source, Those sources for which .
( 7‘“ T‘?)L is the greatgst will operate first. Thus, the number of sources
operating af & given stress level yill cdepend on the distribution of source
gizes (L) and the local back stresses ( Tﬁ.v |

(25)

Orowan applied the concepts of the Frank-Read source, with

eppropriate modification, to the theory of dispersion strengthening of
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alloys. The solid points of Fig.2.13 represent hard incoherent pre-
cipitates, through which, of course, the dislocations éannot pass. " If,'

ag s the usual casé in a dispersion hardened alldy, tlj‘ie modull of

elasticity of the precipitate is higher than that of the iﬁatrix, the dislocation
energy will ln_creas'e as the dislocation approaches eabh particle. There-
fore, it willvnot enter the surface of the precipitate. EAfa_'che local stress ‘

(T-7% 18 Increased, the first dislocation will bow out between the

particles as shown in (b). And when

(7 T*/)c.— b Lm/2 | (2.26)

-the positive and ﬁegative gegments of adjacent loops will coalesce per-

m{tting the dislocation to move forward. Eq.2.26, therefore, reveals
that the yleld strength of a dispersion hardened alioy increases with
| decreasing distances between the dispersed particles, that is for finer
dispersions. The closed’idislocation loops left behind provide: higher
back strésses,'?*, for the next dislocatlon and were thus agsumed to
be responsible for the higher rates of straln hardening observed in the
initial stages of cold .woz;king dispersion hardened alloys. ‘Recent.

(26)

investigatiqns have shown, however, that‘ the greater rate‘s of strain
hardening are probably attributable to the very high density of the dis- -
locgtions in entanglemer;ts that occur about the particles, the theory

| beihg more éomplicated than so nalvely depicted in Fig,2.13, Further-
more, the slower rates of strain hardening of dispersion strengthened
alloys in the high stfain range i8 not due to fracturing of the di'spversed

(27)

particles, as suggested by Fisher, Hart and Pry. Electron micro-

scopic observations have revealed that the leveling off of:the flow stress
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FIG. 2. I3A. FORCE AT A POINT DUE TO A STRESS.
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frequently occurs before any fracturing can be detected, Most ukely

this leveling off of the flow stress can be attrlbuted to relief of the back

stresses by cross slip. o

. | .When the local stress is less than the critical value; (Fﬁ

the dislocation segments will bow out between any arreating points as

shown for a aymmetrlcal case in Fig. 3.18, The force in the X direction

ot P1 due to the line tensions is

o F 2[1(05 (J(, 5’/2) 2//0&50((056/g+5z/70(5(/15/j
Therefore, the maximum force is 27 , whereas the minimum force is

- eero., By application of Eq. 2,24

B L (=T

'[.'Suzz-: —7 amr/
cos 2= LF- (’-/z)é’ [r (L)‘/ / (z‘z*"/z 4
Therefore, . o |

/(2/"'/2-(Z’ Z‘*j[ 5/7 CoSX 7‘(2’ Z/Zém,( (2, 37)

Actuany the force wul be aomewhat higher than this value. since the
near beétnwts have opposite stgns and will sttract each other, As
0( - O the force lncrea.ses. In general for random poamoning of the
points and aasuming L to be the average distance between points, the
nverage value of F, is usually estlmated to be about |

£ (rls
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" This force aids the thermally activated process of intersection and
motion of jogged screw dislbcations. to be discuased latl'er. If the
thermally activated processes qt ‘PZ or 13’3 are easier thon at Pl‘ the |
dislocation will move forward at these points causing 'O( to decrease,
thus introducing higher forces to activate the slip process at Pl' This
somewhat justﬁﬁes the uée of I’q 3. 28 as the average valﬁe of the force.
If the process at P,; cannot be activeted, even at the highest
sBtresses one of two possible mechanisms con occur. If the two bowed
segments Qf the dislocation are on the same slip plane, they will join,
as previously deccribed m the Crowan theory for disp@rmoh hardening, ) ‘
leaving a dislocstion ring at Py. But if the two bowed dislocation sepments
lie on different parallel slip planes, as i3 obtained when Pl' is the point
of a jog in a screw dislocation, branches of the two bowed segments will
attract each other and form a dipole, éaéhown in Fig, 2,14, BSuch |
dipoles, usually initiated at superjogs, are often cbserved in electron
microngaphs of cold worked metala,
| If the superjogs at Pl and Pl' are very far apart, they may play
a very small role in strain hardening, since the stress fields from super-
jogs .only a few slip planes in height are quite small and local and since -

the two arms are composed of dislocations of opposite sign,

2J . Flastic Interactions Petween Dislocation Pairs

As described in Section 2E, when they are long distances apart,
dislocationa of the same sign repel and dislocaticns of opposite sign
attract each other with forces that depend on the reciprocal of the distance
betweer_x the dislocations. When the two dislocations are nearby, however,

the result is slightly more complicated, especially for edge dislocations.
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FIGURE 2.14., SUPERJOGS P, AND .P,
- FORMING DIPOLES. |
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| We will consider the two dislocations of the same sign lying" _on'
. tWo slp planes separated by a distance Y., 8s shown in Fig, 2. 18, and
we will calculate the force due to the dislocation at the origin on a unit
léngth of the otherf dislocation, Since the disiocationa have edge com-. |
- ;}onents, they are confined to move on their Blip‘ planes. | |

_ The stresses due to the screw component of the dislocation lying
et the origin aie given by Eqs. 2.4 and 2. 5, and those due to the edge
| ,cdmponent are given by Eqs. 3.8 to 2.11, Since the force per tinit
length of the dislocation is given by the resolved shear stress on the alip

plane in the direction of the Burgers vector times the Burgers vector, |

| /C)-(—::: O-Z‘f Aj"/' G;(fj bé- . . (3.\439)
where the stresces refer to those due to the stress field of the dislocation
at the origin acﬁng 6n'the .second disioc’ation. Sﬁxcé the Bﬁfgera vec’:tora.
of the two dislocations are identical, in this case, there is no interaction
between the screw and edge components of the two dislocations, Con; |
2 sequently, the effects of the aéréw_and edge. components'.cmi be treated
s_eparately. o

. The force acting in the x direction of: the second dislocation due
to the screw components is, thercfore, |
- | G X e
F =27 Xl_/.d(i) 5 o - {2.30

and is shown by the soldd ‘curve of Fig. 2.16 in termas of units of

Gl) / + It has extreme values at dE‘S = Oglving a maximum
and a m/uumum valie at x @ b‘o and Xto -}o. respectively. The maxi- -

mum force, given by mtroducmg Xe yo into Eq. 2.30, is
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'FIG. 2.15 INTERACTION BETWEEN TWO
| | DISLOCATIONS.
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, - ;
SX May — 77((:.7[37.- S f! | (2.81) -
It the second disslocation had Y negative gign, the signs of Eqs. 2.30
: and 2. 31 would have been negative and the result shown by the broken
curve in Fig, 2,16 would have been obtained, Thuf.a. for dislocations'of
* the same sign, the second dislocation will be acted upon by & positive
force when % is poaﬂtive and a negmtive foree when X is negative, whereas
Iif the second dialocation has & negativo sign it wiu be attra.cted 50 as to
:come to rest direct!y above the first dislocation, .
‘ When a shear atreus S 19 applied to a crystal contalning two |
acrew dislocutione, as depicted in Fig. 2,518, the posttive dimlocation
1 will move to the right and tbe negative dislocation will move to the loft

‘1

'undcr the force Syzbs Aa rshown by the broken curve m Fig. & 16.

they will not pasa each otl?er until

[ : -
5326 ‘3‘;/"7'5"‘ | o ‘tz.éa)

‘This requirement leads to etrain hardening ns ‘Yo decrenses with strain,

On the other hand, other screw dislocations, as we shall see later, cen '

- 'pue up against the leading one to introduce a sufficiently high stress |

concentration to- {orce the paasage. Furthermore, pure screw disloca-
tiqns. if undissociated might cross slip and annihilate each other.

~As shown by Eq. 2,29, the force due to one edge dislocition on
& parallel dislocation on a parallel slip plane, Yo sbove the first is
 given by
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G‘Ad‘ X(Xz . y?} | : .
/:x:: VAR (xz.;cy )~ -

The force, merefore. is zeroat x o - § ~¥ 3 0; Y; & eand since it

is a continuous function of x, it must have four extreme values, The
extreme valuea found by the usual proccdum of placlng o) F E/d X =0
are given by x® 302 {(3x2 V—). And Fyi. hes its maximum value,
-using the positive sign,of '
w'- G4s
, IC" e <
X&pax . L7 (/..,(,()0%
which is juef slMghtly less thax; the volue given in Eq, 2,31 for screw
dislocations, The force, given by Eq. 2.33, is shown in Fig. 2,17, |

42, 34)

.When the second dislocation Mes {n the range -Yo <x%< ¥o it is attracted
to the first and, in the absence of any other local stress, will come to
rest at x o 0. This {s the basis for the formation of tilt boundaries.
But if the second dialbcation is tn the range -m<x<-Y6 or Yo<x< oo
two edge dislocations of the same sign will repel each other. Cne edge
dislocation will pacs enother only if an auxiliary shear stress Sy is
fmposed on the pair when ’ ' '
. P4 ' ,
S [) 2 G & (2. 35)
& gr ( / “‘/u) j’o

The force between edge dislocations having opposite signs s shown by

the broken curve of Fig, 2. 17. Such dislocations will come to‘rest at

X o % YQ in the absence of sn sppled stress, If en applied stress sxy

less than that given by the condition of Eq. 2.35 s applied, the equilibrium
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FIGURE 2l7 THE FORCE ACTING BETWEEN TWO EDGE D!SLOCATIONS
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value of x will be given by 2 , _
| b, = G éf X(xZr 4.5)
y PT~) (xl+(72)

whare x 18 positive.

(3 38)

3K. Dislocation Arrays on Slip Planes

_ When dialocations from o common Source are subjected to an
applied shear stress, they may pile 'up egainst barriers, Such pile ups
aro frequently observed {n crystals with low stacking fault energies.

Tho barriers may ba precipitates, grain boundaries, low angle bounda~ -
ries, sessile dislocations, locked dislocations, or Lomer-Cottrell(za)

, dislocations, A typical examploe of o piled-up array is illustrated in

Fig. 3.18 where the X-2Z ple_me is the slip plane and the barrior {s parallel
" to the Z nxie. Under the applied sheer stress in the direction of tho

Burgers vector

(Z*Z) éfg (’05‘97* 55), Sm&' (2.37)

the dislocations pil@ up over a distance L. a8 shown, paraliel to the ba.i-

rier, The forces acting on each dislocstion of the array, excepting the

last, arise from three factors, (1) the applied stress, {(3) the interaction

of the screw compox:nenm. and (3) tha'im‘,eracuon of the edge coniponents.

Tho n*h dislocation i8 acted upon by the forces duo to the applied stress

~ and the sums of the effects of all other dislocations in the array, ita

' mbtion being arrested by the barrier which is: here assumed to have a

gshort-range stress field tnt.araction only with the leading dislocation of
the array. -

The total force, therefore, acting on e unit length of they, th

- dislocation (1 ¢ n) i3 as follows:
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(é) From the applied stress, and long-range stress fields -
(-4

(b) From the screw components of tha remaining dialocaﬂons of

the array

Z” Gbs s

,Zt 2//(}( ! "‘XJ )

edge components of the dislocations {n the array
L Gb

e KT =) (%~ K)

5 . Under e’quiubrium{’& ditions. the sum of the forces acting on each dis«

[ L‘L

| (c)' ¥From th

- Jocation {s zero; hence

‘ O, ‘
(Z Z*)A’L C s 7L(/&/4) Zw—k )O(a %)

o J.‘tc
For convenience we let

X, = X'A‘ : P ‘ ' (3,389)
'S , ‘ ‘ ; o '
- ond rewrite the equilibrium equation tor each dislocation of the array as

o (B=T%)bL -
T_‘“‘ Cézf(’oszgf“s"' 51] ,{T ,... ‘) (3. 40)

, An exact solution of Eqa. a. 40 has been given by Eachelby. Frank, and

Nabarm.(zg) Inasmuch as thia solution {8 lengthy and involves rather
sophisticated mathematics, we will be content here to undertake an
approximate solution that reveals the physical content of the problem.'

| Equattons 2.40 apply to each dislocation, For the fir«t < .3 (gidon,
{o}, and | |
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T::-——“‘—/-J-- R ¢ ./ + / ‘ (2.412)
X3 Xn-,. X"l .

Since the XJS_ are fractions, s given by the definition of Iq. 2,38, T

i{s equal to a sum of raciprocala of fractibns,— and, therefore,

H-1 | |
7 -/ "‘" —
( ) anra &’

or (2.42)

(/;-/)g p<7";.. 2TAL (- Z"“)

Sri £ L
Cofcosp+ F2F

which demands that the number of Zuiocetions in the array ingreases‘
| Lavarly with the length of thé array, L, and the average applicd shear
stréss, Z’-—-Z‘ . A lttle reflection will revesl that 1/2<{<1, The
more sophisticated malysis shows that O< depends on the number ~{
dislocations in the array where 0( A 3/4 is. generall,y, a pood |
_ approximation.
To complete the analysis we now write Eqs. 2.40 for all e*:cepting

the laat dislocation as !ouows:

A o
<‘ )T"“" 2*""' ,+. * )'(n C o zate)

/ [, ]
/= 2) T- Lyt v 4 + — o
( l X3 "")":L Xh.’- Xz 'Xn _Xz (2.41b)
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oy A | | /
(6=3); T=—T-——+ oot +—
- X3 X3~ X, Xy Xs | Xn-T"3+ X~ Xa (2. 41e]
- — /
-("’2)17_ """"x +““'+ /_ +~\/_._
h-2 n.z z X _,-—)(,1_2 )‘n"xh-L (2.41p)
(l h-l) T.—.——..L. — / e / ' /

X"l d X,‘-rk)_ .Xn-—_-kih)_ Xu")(_n-/ ‘

Tt is an easy - matter to see that when the n-1 Eqs. 2.41 are added,
_ terms caneel 50 that | ,
L /
(”*—,) 7-.= X . + X -y + L N ] (2.43)
B I

The total local stress acting on the nth

dislocation is, of
course, zero, Thus, the barrier reaction stress equsls the applied
stress plus the sums of the stresses "duey to all the remaining disloca-
A-tion”s in the array_." The local stress on the n'" dislocation, due exclu-
sively to the remaining dislocation of the array, is
2= o femtor S .
(/ IL) Xn )( )( Xh ¥t

- as suggested prevmusly, or

(2. 44)

f/h’& gl !/
wl + -——-— _f— ' -
/;/72. [ 6+ Ko Xu~X2 Xn=¥iue
_ Introductng Eq. 2.40 for the flI‘ot bracketed term and Eq. 2. 43 for the

second bracketed term, reveals that
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%

7‘ ; / > 7% ' * (2. 46)
, - 2,

S /w (1 =(n '/(4 - )

' Adding the spplied shear sirvase €/7‘-~f ),, to Z} reveals that the local

) ahear stress, due to the nresy sad ihe applied shear stre esu, acllig on

the nth d;sbcattoh of the nrray 18

L=n@2Y e

~ Consequently, piled-up arrays generate a stress concentration factor

proportional to the number of dislocations in the array. On occasions

' this factor might exceed 100 or go, proddcing very great local stresses,
~ When Eq. 3,42 18 introduced into Eq. 2,48, the focal stress s

given by

Z— 20X L (?’*Z‘“)‘?
]

Gé/c"éu"?ﬁ% S//c“’é’
/ =) |
Thus, for a given length of array, the local stress increases as a func« -

(2.47)

tion of the square of the applied streas,
" When the grain bdundary constitutes the principal barrier, L can
be assoclated with the grain diameter. D. Then, the applied stress ‘

(30) _ |
F=7) 1% (2.48)

o 2 | 2 (2. 4d)
/’é_,: C)é { Cosig Sm &
- RTA 7 —)

becomes

wherae
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/ : :
If Z‘Jeis assoclated with the local stress necessary to induce slip on

five slip systems in the adjacent grain, a requirement suggested by

von Mises(31) in order to preserve continuity at the grain boundary, the

applied shear-stréss for deformation should increase linearly with D'vlvlz.

There is extensive correlation with this suggestion, a typical example

of which is given in Fig.2.19. 30

The préceding analys{s describ‘eé the state of stregs at the 'rith

dislocation of the arréy. For distances greater than L away from the

array, the stress field is equal to that of a single dislocation at x=3/4

having a Burgers vector nb. Over intervening ranges, as shown by

h(32) the stress field is approximately given by

, 5=\I—E//:- S, TC(B) R (’2.50);

th

Stro

where r 1g the distance from the n dislocation, and S,.1s the

applied shear stress.

2L. Superdislocations

For the supverlattice AB shownin Fig, 2.20A the Burgers vector

is 2b, that ig twice the usual Burgers vector appropriate for a random -

solid solution of the alloy AB for the same crystal structure. But the

supérdislocation will dissociate into two unit dislocations as shown in

Fig.2.20B. This dissociation must occur because the energy decreases

- ag it takes place. Considering only the interaction energy between the

dislocations, the change in energy when the superdislocation dissociates

completely (i. e., when the two dislocations are separated an infinite

~ distance) is
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| STRENGTH OF METALS. '

[8)]



-71-

A-TYPE ATOMS
‘O B-TYPE ATOMS

SUPERDISLOCATION

'(Cl) ARROWS INDICATE A BURGERS CIRCUIT WHICH |
' FAILS TO CLOSE BY -2b. | '

(b) DISSOCIATION ‘_OF A SUPERDISLOCATION AND
FORMATION OF AN ANTIPHASE BOUNDARY.

FIGURE 2.20. A SUPE.RDISLOCATION.
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2
Aa..g(Gé)-— C“{ZA) — _Céz - (2.81)
since the energy of a dislocation is about one-half of the shear modulua
| times the square of its Burgers vector. Because the energy decreases, ‘l
the reaction wtn take place; but it cannot go to completion‘yielding
infinitely aepdi'atéd dislocations, because s the dislocations move apart
they increase the antiﬁhase boundary, shown in Fig, 3,20B, Therefore,
- the two dislocations will remain somewhat essociated at anl equilibrium
distance of separation equal to d. | -
In order to determine the aeparauon distance. d. consider the
unit-long dislocations shown in Fig. 2.21 where the dislocation line
" mekes an angle § with the Burgers vector, The force due to the first
dislocation on the second will be o S |
le 7 G‘UZ}E | E | '(25'53)‘
where U 2 snd (y " are the. stresses at the aecond dislocation due
to the first dislocation. Introducmg Eqs. 2.6 and 2, 11 (for ye 0)
" reveals that - o
,C[" } Cé’z + G é
~?/"X 7] (/-/t«))(

Cézl (105?54 .S//?"é? /v

"7 -4,

If }C‘ is the surface energy per cma of antiphase boundary, the total

(2.53)

surface energy is [/ [ %Q . Therefore, the force due to the
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anttphas'e‘boundary acting 6n the second dislocatloq is

£ = éus — Ya_ , (3. 54)
LX d X .
Consequentky. equmbrium is obtained when le + FZx Ostxodor

2
d__ G Cos‘?@-,t sm o (2,56

AT, T4,

3M. Partial Dislocations end Staekingj’aults'

The normal stacking of atoms in the hexagonai close~packed system
is shown in Fig. 3.32A where the atoms in the third basal plane are di-
- rectly above those in the first and those in ihe‘fou‘rth' directly above thoae
in the second, etc, The stackmg'sequence 18 described as ABAB - - - -
The stacking sequence for ‘the (111) planes of the face- centered cubic
system as shown in Fig. 2.22B, however, 18 ABCABC <= ««, These
two atacking aequences differ- m only a minor way from each other: The
basal (0001) plane of the close-packed hexagonal (HCP) crystal ia made
up of an hexagonal array of atoma. which can be repreaented as spheres
that touch each other like cued-up billiard balls, Preciaely the same geo-
metry applies to the atomic arrangement on the (_111') plaﬁe’of the face«
centered cubic (FCC) crystal. Whéreas the B layers of-atoms are oveé
the same alternate depréssio_ns in the ﬁfat layez; in both the HCP and FCC
crystals, the thifd layér of atoms in the HCP is over the A layér b‘ut‘the
third layer of atoms in the FCCI éystexﬁ is over the alternatepbsitions |
known as C; and the fourth layer in the FCC is directly sbove the firat or
A layering. True HCP crystals, namely those .having the ideal axial
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A. STACKING OF (ooon) 'B. STACKING OF (i) PLANES

- PLANES ALONG THE CALONG THE [1H] AXIS 1IN
[000!] AXIS OF HCP R - FCC CRYSTALS. o
CRYSTALS. - - | | 3
FIGURE 2.22. ATOM LAYER STACKING IN' HCP AND FCC CRYSTALS
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ratio of c/a = 1,633, differ relative to second nearest neighbors f.x;o;.n

' FCC crystals, Consequently, ‘the free ehergiés 'for”‘H'C.P énd FCC Eijs-

tals cannot be greatly different since most of the bonding energy arises '
from nearest-neighbor effects and these are identical for the two. typea of
crystals, -

Slip occurs between the B tmd A layers of atoms on the (111) plane o
of the FCC lattice in the direction of the Burgers vector b o ald (ilol as
shown in Fig. 2,23, But when such a slip is prOpagated »the B atoms

 must pass near the A atoms, the resulting distortion being severe, It

appears that slip would be easier by the path G‘:v + B ' 'ﬂ'ﬁ because by this .

: path the atoms would pass over the saddle pointa between the A atoms. |

In order to ascertain whether this conjecture 15 correct. we will deter~
mine whether the dislocation having the Burgers vector b can dissociate
into the two partials. often called Shockley dislocations, 5 and B

' In Fig 2. M. the various aignificant vectors are tdentified The

vector equation for the prOposed dissociation 18. therefore. ;

- “-/2 [/ 0] = a—/@[z//]+ 4/4,[12/] @ 57».

Since the .Vector_ components of the products. equal the Vectpr, components V
of the réactant. the dislocation equation is balanced ‘yectdx"i'all_y.‘ The
change in energy for the reaction of Eq. 2,57 per unit length of disloca-

tions {a ... ... . . P L e
u=Shbthb=bb

Executihg the dot vector préducts givms
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FIGURE 2.23. PLAN VIEW OF

THE (111) PLANE IN THE FCC

LATTICE.

UCRL-10455
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b= oy [Ti0]
b. =  °/3 [1 '/g ] = s [211]
b= U3 [V21 2] = o [12]]

- FIGURE 2.24. BURGERS VECTOR FOR
- 'SHOCKLY PARTIALS.
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(2.59)

— Ga.’? /f

Slncg the dislocation energy decreases when dissociation into partials |
takes place, the suggested reaction will ocecur,

If no other factor were involved the partials would separate com=
pletely. But es in the case of the dissociation of a superdislocaﬁon, a
surface energy again intrudes into the anal\yéia for the dissociation re-

- action of Eq. 2.57. | A plan view of the (|11 1) slip plaﬁe showing the two
. partial dislocations Bl and 53 is illustrated in Fig. 4.25. To the left of
the first, and to the right of the second partial, the stacking of atoma
is that appropriate to an ideal FCC structure, But betwéen the two
_p@rtials a different sequence is obtained, Whereas the first layering is
A, the Becond layering of atoms is in the C position, In the third layer,
not shown in fig. 2,25, the displacement of the atoms is the same as in
the second layer, Therafgre. as & result of the Bux‘geré vector 51. the
atoms of the third layer have moﬁed from C to A positions, And the
atoms of the fourth layer which were originally in A positions have
moved tb R poezit:lmia. Therefore, o2 a result of the splitting of & total
dialocation intc the two partials, the stacking sequence between the

partinle has donged pa follows:



, FIGURE 2.25. SEP/—\RAT!ON OF PART[ALS 8Y SLIP
' BETWEEN A AND B LAYERS

708;’

66301-THON
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Former New ~Frank's ‘
Layer Stacking ptacking Index Structure
" below the Firat  no change ' uo change no change TCC
1 A A A HCP
2 ' B - C v
-3 C A v
b ' B Cc

above the Fifth gimilarly no chahge

Frank's {ndex can be used to designate the stacking order. If the |

order {s the usual A_ECA, the symbol v will be uged. DBut if the stacking
{s AC or another biniv‘erted 6rder, v,phev;"symbol A appllesx'. Ag shown
a'bove, there are two 1nvésﬂons of atacking oﬁder betweén the partials.
Each lnvesfi;)n repregents a stacking fault. And the at;-icking fault
between the partials cionslatsvof a planar 'reglon that is .tmvo-atornic

layers highi, which has the stacking appropriate to the HCP phase.

Since the FCC phase is stable, it has the lower free energy. Therefove,
~ the free enérgy of the system'increas’(es as the partlal dislocations move
apart. When thé {ncrease in stacking fault energy equals the decroaue
in the interac_tion energy qf the two_part_tdi?s. eqﬁllibrium_ in eatablished |
and the tWo partialg r’emain, if otherwise uhdiatrubed, the équvilibri,um

- distance, d, apart. A similar analysis a,p‘pilies to the bavsal plané
stacking for the HCP gystem. In tﬁl@ eveont the staclking fault consists
of two layers that have the aequence_mf stacking- appropriate for the I«“CC
structure. Dislocations lying on other planes than the baszl plane cannat
dissoclate. | 4
: In FCC metals the staching fault energy is about twice the twin
boundary energy. This arices from tie foct that, ln FCC rr;.étals, twﬁz-

ninz takes place by the twin dlsplacement vector of L)Z: ali [I TQJ o
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the (1115 p"‘lane.. the ehear-dimpia"cement being pro;aort;onal to the distance
of the atoinic plane from the twin plane, The twin veotor and the tho
plane are shown in Fig. 2.286, /\ssumtn _that the ﬂrat layer and all below :
{t remain unch;ax;ped, the aecond layer shifts an amount\‘n' from B to
-G The third atom layer shifts 2\"?_. from C to B ond the fourth atom
layer e&-ﬂfﬁus "I]l from A to A, ‘Therefore'. the otaclcmg gequence for

a \n' = a/6 [112] twyﬂn on tho (111) plane is a8 followa:

Former New . Frank's

‘ Layer - Stachiap Stacking ' ' 'Index ! Structure
below the First © no change = no change no change FCC
1 A A A; HCP

\' ‘2 B B C o A L -
.3 .. C. B . FCC
4 A A A R B

above the fourth aimilarlfy no change _
Consequently a twin bounaary exhibtta 8 alngle lnversion ln Franl"a index
and 1t is represented by a sln le layer ‘of atoms havmg the hexagonal
stacking. Therefore, the stackm fault energy is appro,dmately twice the
'twln boundary enercry. Alloya that twin readuy, such as Co-Ni composlttona :
near the transition from I‘CC to HCP structures, have e'{tremely low twin
'boundary energies. As the electronzlatom r;atio of Cu .alloys decreaees. the
twin boundary energy incrcosea va'ndv twyinvning ig lega préiralent. e l‘hnd ity
alloys have high twln boundary enerdies and rarely exhlbit twlns. ‘Stacking

g fault enerp'ies follow the same sequence.

2N. Separation Of Partials and T‘ecombination T«‘nerrles

The problem of determining the equilibrium separa‘tion dimtané_e '

‘between two partisl dislocations is analoggoué to that, which has already
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TWIN PLANE (i)
A = % [T12]

 FIGURE 2.26. TWIN PLANE AND VECTOR.
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A MOVEMENTS OF THE . B. MOVEMENT OF THE

© FIRST TWIN LAYER = SECOND TWIN LAYER
~ FROM_B TO C. = - FROM C TO B.
n =94 [Ti2] = ny = 2n,

C. MOVEMENT OF THE. THIRD
"TWIN LAYER FROM A -TO A. -

. .'”3 =3n,

FIGURE 2.27. LAYERING SHIFTS DUE TO TWINNING.
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" been reviewed, of calculating the equilibrium distance between the two
halvés of a 'dissociat’ed s'uperdislocation.l' Consid‘ér unit lengths of the
two partial dislocations shown in Fig. 2. 28 separated a distance x. The
stacking fault energy between the two dislocations is \Q per cm2 and
the stacking faglt energy is therefpga U, = \ 3’)( , ‘Bssuming that the
first p'artial_is. fixed, a force o o
ax 0

acts on the second partial due to the stacking fault. The force acting on

(2.60)

a unit lgngth. of the s'ec_ond' p"_artial is gi‘ven by'

 Chib.  Ghebs
Fx"‘“‘«zﬁxf '2/7(/%/)( SRR

Itis readily evident fro:n Fig. 3,28 that

'b,s ﬁ605(9f30)~ -—-—/é 605(9+3o)

W&m(&fao) rsm{ﬁ +30)
[925-—//——6?05(9 30)«--—@//— cos (6- 30)
b= ,//Z;é sin (,9~3o)~-/— 5//2(9 3.:>)

where 0 is the _angle the total Burgers vector b makes with the dislocation
line. Therefore the force due to the interaction of the first dislocation on

a unit length of the second dislocation {3

sen(8430) 5176 ~30)

' Ga* . .' :
Y — Cas( 6+30)cos(B=—30) -
a (b17g)eosto=s0)+ ——"2

/277X
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FIGURE 2.28. - SEPARATION OF TWO
. PARTIAL DISLOCATIONS.
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»Whlch reduces to - f ' I : 4_ ,
2

= 42% /( /"‘/4 @529 7=~ )S/" f?e o)

At equilibrium F,+ F 5 ® 0 and therefore, letti'ng d o x at equilibrii_im,_

2 5 — 25. (2. 63)
- JCOS E +[7Z /)Scﬂ /7
5 45//5/ ﬂ/ o /4) T2

Consequently the separation of the partials is somewhat dependent on the
orientation, 0, of the total dislocation. For the intereating caee, where

_the total. dislocation is in screw orientstion, 0= 0 end
L a2 -3 | G—a;‘ ed o
c/ @a.( / /%]N,g‘/ﬂ'vy (2.64)
,?i/ 7 s

| taking /L - / . Therefore the partial dislocations will be more widely

separated as YQ decreases,

If dislocation 2 of Fig. 2, 28 encounters a barrier 80 that it can’

" no longer move in the poaitive x direction. and if a local stress, ZL‘tﬁ'/ , :

18 applied parallel to the Burgers vector of the first dialocation, the re-
sulting force Z; /- 6, , will t‘oroe the first dislocation to epproach the
second thereby reducing the separation oi the partials. The net force

acting in the positive direction on the first partial is -
| F; 1~ Zz:/ J + s

whereas the repulsion force on the first partial due to the second is

e aa )
p=- ZATR (7
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as seen from ©q. 2. 62 for 8 =0, " Lettiag the’.new“‘eqmlibrlum apacing
between the partials be d-x = dg-for a -3tres§s~z;~,‘~,-4givés

zl/b"‘_')%" ,’2"‘774;’- 4. |  (a.65a)

or

- zm*(zz/b,ﬂg) Coe 3b)
| The recombination energy ig the work that must be doue to
coal,_esée.the two partials into the total di.éloéation. ‘V»’e-‘wi‘ll-consider
| lhere, .that a local stress, Z;I has been applied to the fivrsit dislocation
- and ascertam what. additlo.nal w‘ork_ need be done to bring the partials
fbgefher. This 'worlv; is | T L
I t_._,.zw_/“x o 5o T e/ z" /- |
o 2 RV U - N1 I
The first two tei'mts refer to the work done to bring tlme.tﬁb partials from
g toa distancg' b apart, and the last two terms refer to the wdrk that
~-need be dbné_ to coalesce the cores. fz refers to the ¢ore energy of the
: tofal dislocation and/¢cp to the core energy of e_ach partial dislocation

per unit length. In.tegi*ating Eq. 2. 66 and ,iﬁtroducing Eq 2. 65b gives

\ﬁ’=@{ﬂ§£3&1 3y GaR
2470 77 'f”‘”-‘be(Z'b;ana%)“
o | | C(2.87)

HE-20gp
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R then is the energy that must bé suppvlied by & thermal fluctuation in
order to effect the recombination per unit lenvg,fth-of two partial dislocé-
tions, when the recombination is stréss aided, 'Eut since the stress
-enters the energy expression as part 6f' a logarithmidtezrm, the recom-
" bination enérgy is insensitive to the applied _Gtress. An alt'e_rnate equiva~
lent expressioh for the recombination energy is | |
oy Gat , [ -
P = T T I 2 F Z } | (2.67b)
24 T |
Therefore whend = eb, the recombination en'ergy valvés énly the |
'bracketed term of Eq. 3. 67. But the recombinatian energy increases as
the distance d > between the partials increases or as the staclcing fault
energy decreases. | |
When two partial dislocations are forced togethex' at a point, as
shown in Fig. 3.28, a constriction is formed. By a detailed calculation,
| Stmh(34) has shown that the constriction encrgy is

2, |
) Ue = Gé’od@" (/[lm e //2 o (2. 68)

where dZ" depends on the applied stress as shown by Eq. 2.65b.

3. SOME THERMALLY ACTIVATED DISLOCATION MECHANISMS

3A. Introduction
Whereas the emphasis in Section 2 wag oh diclocation statics, we
will concentrate in this section on the dynamic behavior of dislocations
- with special emphasis on thermally activated dislocation motion, ’I‘home
dislocation mechanisms thot have activation energics above about SOKT

ara activated 50 infrequently that they contribute in only a minor way to
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FIG. 2,20  CONSTRICTION.
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the stram'i‘ate. But mechanisms having activatibn energles lesa than _.

about 50kT have appreciable probabilities of occur'rencé and contribute

B effectively to the strain rate, Since the probability for activation is

exp. { -free energy of activation +k'r} only those processes that have

low activation energiee can be activated at low temperatur_ea. At hlghex_'
temperaturea fhese processes, such. as those which occur in the initial
straining when a creep specimen is first stressed, take place 80 rapidly
that they are almost instantaneous, ’ During such initial straining, dis-
locations move up to barriers that demand operation of higher activation
energy processes, Conééquentily. the gctivation éxiergy for the strain
_’rate' will, in general, ba. expécted to increase wiﬁ: an‘inc'r\ease in tempeia-
~ ture. 'For most disldé.ation 'Aprocesses, the free energy of activation de-

~ creases as the stress ts lncreased It 1a possible on occasions to tsolat@.
experimentally, reglons of temperature and stresa where the measured .
strain rate is predomlnantiy tha result of a single mechanism. But dis-
location theory has not yet matured to that stage of completenesa where

- the ranges of operation of specified mechanisma cen be prescribed
theoretically. Therefore, the experimental data must still always be
cdmpared with theoretical deductions in an attempt to identify operative
niechm_isms. Only a few examples a‘re currently availeble where the
coriélationa between experiinental evidence and théoi-etlcal predictions

are sufficiently close to permit confidence in the identity of the mechanism.
Some experimental data are ditficult to ra{toné.uze. »atvp'r‘esent. becaixsé

of the simultaneous operation of several mechanisms, And there are

several rather well documented pleces of experimental evidence that

\ .

- .suggest the operation of only one mechanism but yei cannot be appropriately
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correlated Mthv existing théory. Obvious!y dislocation theory does "not'

yet embrace all possible mechanisms, In spite of tho versatility and - -

| complexity of dislocation theory. substantial progress has nevertheless

been made m formulating the basic tenets of tho problem. And additional

" progress can be expected in the near future that wi_ll ampl_ify existing ,

theories and forznulate new poosiblo mechoxxisms of defox‘n:aiion-. The |

future theoratical developments can be expected to rely more heavily on

| more preciae mechanical data. better planned experiments, and more |

. detailed correlationa with pertinent tranamission electron xnie:-oscOpical R

observations. T | S SR ,
A completa ourvey of all of the known thermany aottvated dialocatlon

mechaniams will not be attempted here, Rather only a few repreaentativo

examples of the known mechnnisma will be d:lscussed to provtde a back~ |

ground for approaching other thermany activatad dislocatton motion pro«

cesses, The selection ,o! only the intersection, eross sup. motion of

~ jogged screw dislocation and climb of edge dislocation inoohanioms for

inclusion in this report wna based prlmarﬂy on the taof 'thot in oooh of
those casea there 19 at least a modeat amount of correlative widence to -

' oonﬁrm the possible operatlon of theae mechanisxna. PRI

SB. The Geometgy of lntersection e

Simple examplos ot a gudo dislocauon AA' on a gude plane. lntor~ o

| secting a torest dialocation BB' are shown in Fig s. l,.v The fouowing

~ rules can be seen to apply R ‘

| 1, Sinco dislocations cannot terminate in the center of a orystal

_ they must remain continuoua following intersecuon. .

A The forest dislocation always mcreaaes m length by the Burgoro o
vector of the glide dislocation. ' |
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(@) INTERSECTION OF TWO EDGE' DISLOCATIONS
PRODUCING -SCREW KINKS AT (a) AND (b).

| (b)'INTERSECTION "OF TWO EDGE DlSLOC/-\fIONS
| PRODUCING.(O) AN EDGE JOG.

(C) INTERSECTION OF AN EDGE DISLOCATION BY -
A SCREW DISLOCATION PRODUCING (a) AN EDGE
JOG, AND (b) AN EDGE KINK.

| o s
/f, ‘\’7/ /O\“J
T L |
| B B

(d) INTERSECTION OF TWO SCREW DiSLOCATlO'\!S
PRODUCING (a) AN EDGE KINK AND (b) AN EDGE JOG.

FIG. 3.1 SIMPLE CASES OF INTERSECTION IN SIMPLE CUBIC
: LATTICE.
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The glide dislocation always incresases in length by the Burgex"é
vector of the forest dislocation, ' K' .

If the increased length Mes in the slip plane of the dislocation,
it 15 called & kink. Kinks will soon straighten out;due to the
line tension. Lo | I

If the increased length extends from one slip plane to an

. adjacent ﬁarallel alip plane it is called & jog. In the case of

edge dislocations, 'jbgs are always clearly distinguishable from

©  kinks, But {n the case of undisaociated serew dislocations, |

- jogs and kinks are only distinguishable from each other when

6.

the slip plane is arbitrarily defined, This ambiguity does not ..
exist | in the case of dissociated screw dislocations because

here the edge components of the partials define the slip plane,
Because dislocetions zgfetlonger as é result of intersection,

work equal to the mcr}eased energy of the dislocation must be |
done in order to cauae' intersection. As described in Seetion 2G,
the energy of a jog is approximately %ﬁ- A (lie core energy.
Although a sharp kink has the same energy as a jog, kinks

straighten out due to the line tension, Therefore, somewhat

less work is expended in producing a kink than in producing; a
jog during intersection, Consequently, the energy required to
effect intersection depeonds on the detailed geometric conditiona

that apply, On the average it s approximntely

+ where U:j is the jog energy.
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The geometric details of intersection of dislocations in FCC
metals are incomparably more complicated than that depicted in Fig, 3.1,
Dependent upon their orientations in their slip planes and on their Burgers :
vector, intersecting dislocations in FCC metals may either attract or
repel each oth¢r. These details have been described by Saada(ss’ and

cannot be i-evi.ewed here. In general the repulsion interaction is
I =xGb/L o (3.2)

where 0< is a constaht. and L {8 the mean distance between points at
which the dislocations intersgct or are otherwise held up,

Additional complications also arise beéause dislocations {n IfCC |
metals are dissociatved into their.partials. .Tﬁe Burgers vector of a
partial dislocation does not correspond with a translational vector between
near atoms in the erystal, Therefore, the eunergy to form a jog”eqixai to.
the Burgers vector of a partial would result 1n e:?treine crowding of atoms
and would have correspondingly high energy, Consequently the saddle of
the reaction path foi- intersection is obtained when the two partials of both
the -glide and forest dislocations are first conétricted. as discussed in |
Section 2N, follo.wing which the jogs are easily .produced. Therefore the

“total energy for intersection, Ui‘ is of the order of magnitude of

wi=U +2u =t C6 c/f«( )% o

. as given by Eqs, 3.1 and 2,68, Consequently the intersection energy

increases s the stacking fault energy decreases,
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3C. Thermally Activated Intersection

' The intersection mechanism has been discussed by Mott, (3)

Cottrell (36) Friedel,(s) Seeger.(e) Basinaki, (37 Thornton and Hirsch, (38)
and other investigators. In all of the approachea that have been used

thus far, smeared averaga valueo have been adopted for the activation
energy, diatahcea_ between dislocationg. back stress fields, area swept
.o_u't. and nurﬁbér ‘of intersecting dislocations per unit volume, Since the
detailed statistics cannot at p'rasent ’b'ev extracted from the experimentél _ |
data for verification, this method of anraging“wm 'also be adopted ‘here.

| 'An' idealized pla.n .irie‘w‘ot a slip plané is shown in mg. 3.2, The
dislocation AA' o acted upon by the stress 2' ZA here Z‘ is the applied
stress and Z' are internal back etressas acting in the direction of the
Burgers vector. Under the action of the streas, all 3ussile dlslocationa
| move 80 &8 to contact. at least elasucany. the forest dialocations thread-
ing the slip plane, as shown at the open circles in the tigura. ‘Let N be |
~ the numb’er_of such contacts per unit volume 'of‘*tbe cry'stal. The force

acting at the point of mtersection. as given by Eq. 2. 28 is
F'——(Z'--Z“*)Lé B 9 R

~We 'will be concerned only with the in'stancaa where this force is not
great enough to effect mtéraection per se. Consequently intersection will
téka place only when a thermal fluctuaﬁon of sufficient magnitude alds
the local force. During this‘pro'cea.n'of thermal activation, the dialocétion ‘
sweeps through the doubly crosshatched area. After this it contiﬁuea to
move under the action of the local stress until it impinges on the next set ...

of forest dislocations, Thus, it sweeps out the total crosshatched area; " L
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FIG. 3.2 PLAN VIEW OF A SLIP PLANE

 SHOWING A GLIDE DISLOCATION AA"

UNDER A STRESS HELD UP AT FOREST
DISLOCATIONS.
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A, per sctivation, This takes place at each point of contact betweer the
glide and forest dislocationa. Consequently the strain rata)y, is given by

N=NAY e

where'ﬂ is tha trequency of activation. o ,

Let F, va. n be the torca dtaplacement diagram for completion of
i.ntarsectlon at the absoluta zero of tempemture a8 shown achematically
m Fig. 3. 3. The diagram ta to be mmrpreted as louows: As the gnde
dlslooatton epproaches the lorest dialocaﬂon. x decreaaea. When contact :
is made between the leading partial of the gnda dislocation and the first
~ partial of the forest disloca.tion, constriction begins and F, increases,
. When x decreaaes to b the pamals have been completely conetrlcted In
order to complete Mtersection. the jog must now be produced. The {orce
necessary to produce the jog 13 taken to be j over the region 0<x < b,
'I‘ha total area under the F -X curve is therefore the energy for inter-
sectton U'j at the absolute zero as app:ox@mafed by Eq. 3.8, The curve
shovm is appropriate to high stacking fault energy cryata_.le. The processes
- of constricting and jogging are unearly-rélated' to the. ehear-modulﬁq of |
elasticity., Therefore the force F at a témparafuré where 'the'sh‘é.ar' modu-

lus of elasticity is G, as shown by the broken curve in Fig. 3.3 is given by
= F G
= C”
where G, is the shéa.r modulua at the ebsolute: zero. |
When a force Fe (ZL Z JLDb is applied at the point of imminent

. .-
v

interaection, the ehergy equal to the crosshatched area under the F - x
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# - , | _—
curve {from (Z' -f JLbto F ] must be supplied by a thermal fluctuation to

!

U= [ xdF . e
S -tLb | I

Since the natufal frequenby of vlbraﬁon at the point of intersection is

complete intersection. This energy ie given by

about the Debye frequency, 7/ the traquency for a aingle auccessful

"“Z/ ye : B )

4

thermal fluctuation s

. using the Boltzmann condition, Therefore the strain rate due to Mtér-

07/
Yo'f—"‘- /V/’%We / | (3.9)

. pection {8

where U‘ is defined by Eq.‘ 3.17.

3D. Segger'a Approximatlon

lt is advisable to discuss nrat the simple case where the dia-
locationa are undissociated Since no constriction is involved in this |

| example, the total activation energy fox- intersection is the jog enerw. B

| I

" 'Ihe work done by the local stress in this case 18 ( f Z G/G )Lb“3

(3. 10)

| And consequently the energy that must be supplied by a thermal fluctua-

~ tion to complete intersection is

= U‘jo G/Go “‘(Z‘*Z‘: G'/Go)éé‘? (3.11)
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Therefore for this simpliﬂcation.

U lable. | (282 /c-)w N
Y= /Vﬂéﬂe AT e O RT T s

The flow atresn_ 1s,therefore’ given by

Z'. C““ Z‘*./. l( o A’TCLL /VAZ:W (3.13)
| G "7 52 | T
Slnce the thermal fluctuation only assists in overcommg Ujo‘ Eq. 3. 13

5 KT Go , NAbY |
o In 7~ ‘I' "+ For temperatures where

aucceaeml thermal ﬂuctuations are lmmecnate

. only appnea when Uj

v < ¥TGo 1 N.fsbz)

Z‘__G...f’.. = Z-# o o Gaa
The critical temperature T, at which the flow stress changes from that

given by Eq, 3.13 to that in Eq. 3. 14 is given by | |
"‘,.£7' [ ,&u /}/,4.67 | (3.18)
and t_he;temperature. T o therefore {8 independent of the activation volume

| .Lba. Introducing Eq. 3.15 xntb Eq. 8.12 gives

Z’G Z+Lbz /7.6 7"47- (swa)”

'a,pd

=Tl TOT oW
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THERMALLY """"“i"" ATHERMAL S

- ACTIVATED i

| FIGURE 34 STRESS TEMPERATURE RELATION;H!P
| ' FOR INTERSECTION.
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where the thx-ee quantities Z‘ : . U /Lbz and T are directly determinable
| from exparimental data. _Whereas the mdependent externally controllable
_variables are Y’ end T énd the dependent measurable Variable is Z‘

the internally significant quantities are four in number, namely, 2': ' “

L, U, end (NA). Obviously these four internal quantities cannot be

deduied from the three measurable external variables, Therefore an "
| additional independent experimental measurement is required. In order
to obtain the needed quantity. we define the experimentally determinable
quantity B as ”

A ¥) o L4
ﬁ Iy t’ Z“-?‘:" (3.17)

the last equauty resulting from the differentiation of Eq. 3.13. The
method of determining B e:fperlmentally from e tension test is illustrated
in Fig. 3.54°®) for the case of Al single crystals at 77°K. The activa-

" tion volume Lb? e BKT is shown as a function of the flow stress at 77°K
in Fig. 3.6B, (8) As the single Al crystal strain hardens, the activation
volume and therefore L decreases, illustrative of the fact that additional
dislocations are introduced durmg straining or that the significent existing
- dislocations are more closely spaced as would occur in forming the en-
tanglements to be described later. The added information on Lb? now
perinits all of the quantities 2::‘ ., L, Ujo and NA to be determined, The
deduced quantities for Al are in good agreement with those suggested by
the intersection mechanism. This is significant inasmuch' as othér

- mechanisms can also give flow stress that decreases linearly with tem-

perature as suggested by Eq. 3.16a,
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7 .

' (A) SCHEMATIC OF TENSION TEST ON SINGLE
Al .CRYSTALS SUBJECTED TO A CHANGE IN
| STRAIN' RATE. o

N
O -
I :

)KT, (inb3)

AlnY
AT
le)
b

ob— 1 R T  |5. R ST
200 3C0 . 400 500 600 700 800
T77°% | =

KT =Lb% = (

(B) ACTIVATION VOLUME.

FIGURE 3.5. DETERMINATION oF g.®
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BCC metals also exhibft almost a linear decrease in ?‘ with an in-

. ¢ : ,
- creasing T at low temperatures, But the 2“ « T curve {8 much steeper

than that for Al, I mtersectioxi controls the déforma_tion of BCC metals

UJ ILsz “must be muéh greater for these metals than for Al, But T,
is about the same. in both cases and Uj for BCC metals can only ba about

~ twice that for -Al. _ Consequently, L must be much smaller in BCC metals}
~ than in Al, This d;e‘dﬁction is confirmed by the experimental fact that

BkT = Lbz-:’-‘r 20b3 to 40b3 for Fe, giving L=z 20b to 40b, If intersection

is the 'controlling r‘nechanism the experimental yalue of U‘10 for Fe is cal-

12 45 2.26 x 10 12 orgs.

culated to be about 1.13 x 10"
It is yet commonly beueved that the extremely low value of L is
inconsistent with the average density of dislocations that are usuallyv
present in annealed Fe. The assumption has been made that perhaps the
'defox"mation of BCCA metals at loyv téniperature‘a arises from thé activa-
tion of the Peferls mechanism, In this ‘mechatxism. dislocations lying in
their potenttal'energy valléyé bow out and advance oné Burgers Vectof to
the next Valléy. This is accompnshed by the formation of two kinks and
has a theoretical activation energy of approximately U, - ( Z" -& ’s ﬂ b“,
where Uk is the kink energy and ﬂ is about 10b, Several factors. how -~

ever, suggest that Pelerls mechanism cannot account for the plastic de-

formation of BCC metals. First 2Uk is estimated theoretically to be
' b

much smaller than the value deduced for this quantity experimentdily.

Second, the observed activation volume is usually several times the

~ estimated 10b3. The most pertinent evidence that serves to disqualify

the Peferls mechanism i the fact that dislocations in mildly cold worked
BCC metals do not lie along the potential energy troughs, as would be
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necessary if the Pelerls mechanism were valid, but have irrevgularl
shapes illustrating that they are already geverely k_inkéd.

* Recently Schoeck(39) suggested that the plastic’ @eformation of
‘BCC metals ot low temperatures might' bé 'controil'ed.by the thermally .
activated'motion of jogged screw dislocations, His arg{xment stems from
the thought that stnce the a/2 {111] dislocations in BCC metals are un-
dissoclated. their jog energy is very amau. Consequently such disloca-
uone would be severel,y jogged, As will be described in more detail later.
when a Jogged screw dislocation moves, it leaves either a trail of vaca_n;iea
or a‘trail of mterstitiala in its wake, lri thia evenf th'e‘leaet possible ‘.
activation energy is Uf - (2_ - ),ﬂ b” where Ut {s the energy of formation
" of a vacancy and f ia the mean distance batween jOga. There are aeveral fv
difficulttes in accepung thia interpretation. Firat, the experimentally
’ evaluated value for U‘ is much lesa than the energy of tormation ofa ;
vacancy, and eecondly. it thls were the mechanism. it should also be
| Operaxive ina high etacking fault FCC metal such aa Al. Because the con;
B trictlon energy in Al is small, the value o{f for Al should not be much
differ_ent from tha_t in BCC metals. Conaequent),y,. the exact mechanism '
of low temperature deformation in BCC metals is not yet well u‘n‘dersto'éd'. |

“Until it was rationalized by Basinskl.(sn

one experimental fact
regardlng the activation volume of FCC metals embarrassed the theory. :
The experimentally determined activation volumes' Lb_ o B_k’r. for these
metals; particularly EJ' which has the lower stacking fault éner@. in-

- creased with inérle'asmlg temperatureksi. '_ Theoretically; smce L is con-
stant for a gii/eri strain-hardened state, the activation volume for that

state shéuld therefore have been Mdependenf of the temperature, As we 3 .

| wiflldemor}xétrate in:the; following secfion, this appareﬁt anomal_yv is resolved

.



T 'UCRL-10455

" When the _céﬁéirictibn enérgjr"of dislocations that are separated into thelr
. partials invtaken into consideration.- o |
| The lntersectwn theory aBsumes that the strain hardened state is

described in terms of the variables Z :. L and NA, Various strain hard-
éned states, however, give about the same value of T#’ for the same strain
rate, ‘Refe’ren@e to Eq. 3.18 revealﬁ that the product NA therefore does
not change sufficiently during strain hardening to influence the analyiis. .
= This i‘esult' might have.bieen expected because, first, 'I‘c is only logarith~
mically related to NA and second, ‘because as N increases, A can be
expected to decrease. For -thése.reasoris, the assumption _that NA does
not vary materially during strain hardening is justified, '
_ ~ Since, however, L and Z appear in the exponential term of I:q.
“3 13, their changes durlng strain hardening have a pronounced effect on

~ the t’low stresa. This is {llustrated schematically in Fig, 3.6 where

Z" G, /G vs, T curve at the same YL is shown for two different strain

~ hardened states a end b, During atrain hardening Z increases and L
decreases. but '1‘ remains approximately constant. Therefore strain-
hardening causes a more rapid decrease of 2“ G /G with an increase in T
overtherange 0<T<T. l '
The actual activation energy for intersection muat mcx:ease unearly
.with the absolute temperature according to | g | | o
WAL -
U= A Tf«« TR | (3. 18)
for tests 4<.:onducted at a constant straiﬁ rafé. The vexpérimentally det;er-

| minablé ';apparent activatiqn energy qi for mtevrsection, i’however. as de~

fined by Eq. 1.3 of Section 14, i3
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L= U, + = (L QU (3,10
2 %T&ﬁ L_'-- d'T' -

where —3—%- plays the role of the entropy of activation and q‘ {8 cor-

relatable with the free energy of activation, When the dislocations are o

undissociated Eq. 3.11 applies and ‘ e
QU (L(JOG- . . Lé"@) (a G—)
c\'T G G, T . {3.20)

= Z;-mz)(av) IR,
’"‘;Tii el &E)) TR ) '

7 /VAéW 2 77 3& a
N L ( ],éw mf( )

'l L

Since ( - AG ) is always positive q‘ > U‘ and tncreases more rapldly than' '-

lineérly with the temperature. '

3E Intersection Theory as Applie

The idealized intersection’theory described in the preceding
sactibm assumed that the dislocations were undissociated. When diéloca-;’.
tiona are dissociated as in the case of dislocations on the (111) plane of |
FCC metals or on the basal planes of HCP metals, the F - x curve for

' lntersection is no longer rectangular but has the shape given ln Fig. 8.3.

__é(»*\ﬁ__ -/ éac"" @.22)

3t AT AT

In this case :
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as' shown by Eq. 3.89. But m tefme of Eq. 3. 7

QS(M | ”KLE : | .(3.'v28v)‘

and therefore, the activation volume is given by '
XLE ﬁ»féT o (3.29)

At low temperaturee. eay 4°K, Ui is sman elnce it is directly propor- '
tional to T for a constant strain rate test, ae required by Eq. 3.8.
Reference to Fig. 3. 3 r_eveale that in this range x =b and therefore the
ecti_#atioh volume appioxhha-tes Lb2. But for the same strain rate, U
' increaeee'.: linearly with T. Consequently x increases with T as U1 in-
| creases with T as deduced from Fig. 8., 8. Therefore, in agreement with
_ “the experimental facte, the activation volume for intersection of disso- .
ciated dislocetione increaees as the temperature increases.

We will now eonsider the detei‘mihetion of the smeared ,as'rerage
F,-x 'c.ux;ve vfor‘ the intersection mechahi"sm in Al from ‘deductions heeed |

voinex'perimental facts, 'T he data to be described were obtained by Mitra

Osborne. and Dorn(B) from Al single crystals, all having the intial orienta~

: tion shown in the unit stereographic triangle given in Fig. 3.17. ’I‘he experi-

-mentel'proced}.xte involved ccneieted of prestraintng one of a eeries of

: eingle ci'ystals to one of a eeriee of s’t'raixx;hardened etates otrer-the easy )
glide and linear hardening rangee at 77°K, Each such state is, of couree,
‘characterized by a Z‘*and an L value, NA, as diacussed previouely.
being mgeneitive to the straining. The test temperature wasg then changed o

-

to a new value and 8 was determined'as a function of etrain V(or stress).
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(b)

(a)

FIGURE 3.6. EFFECTS AOF STRAIN HARDENING ON
THE FLOW-STRESS TEMPERATURE RELATIONSHIP
ACCORDING TO THE INTERSECTION MECHANISM.
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The value of 3 waa then extrapolated to the value it had at the new teet |
temperature et gero additional etratn at that temperature. Thus BkT and |
%’G IG could be determined for a prescribed work- hardened state, at.l
| each of a series of temperatures., The resulte BO obtained are ehown tn
Fig. 8. 8.(8) Each solid curve refers toa epecmo stralmhardened etate.
and each broken curve Joine the series of teste for various etrain~ |
hardened otates made et a gtven temperature. The curves for higher -
etratn—hardened etatee reveal a more raptd decreaee in ZJG /G with BkT
At a given test temperature tJ1 is conatent, since V' is oonetent. There-
" fore, F and X are eleo conetant. ao noted iIn g, 8.3. Theretore. the |
decreasing value of BkT o be with strain hardening along a'constant
temperature curve must be aecribed princtpelly to decreeeee in L. At ; .
the lowest test tempereturee. however. Uite very small and o' approaches
b, Coneequently for the 4°K valuee be~ l..t:::'3 | 'tIn this way L can be |

| determined for each otrain -hardened etate. 'I‘he values of 1/L so obtalned
are documented in th. 3. 9(8) asa function of the strain at 77’K. Over o
" easy glide 1/L remaine eubstanttally conetant whereee it increaeee al-
most ltnearly with strain In the linear hardening regions:.

Knowlng the values of L tor each etate as gtven in th. 8. 9 the

values of x for each point m Fig. 8.8 are determtnable from & @ E-I
'I‘hererore. the data recorded in Fig. 3.8 could be recast in terme of
t'G IG Lb vs x as shown in th. 3.10 for Al. The fact that these curves
are identical, except ae regards a vertical dieplacement. ia in complete V
: harmony with the intersection theory. For a 51ven velue of x, the velue

-of F is constant as ehown in Fig.» 3.3 and frorn Eq. 3. 4

Z“ G /@LA {xﬁ?"u

(3.25)
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whereas F {x}is only a function of x, the value of ZoLb depends
e 3
uniquely on the strain~hardened state. Therefore, the difference in
vertical displacement of the 'curves in Fig. 3.10(8) for two states d

and a is

(tG Lé) (me LL (ZL*L E) ‘(tlé(s 26)

Therefore, Z’: could be determined for the various states provided Z‘
~were known at one state, say the initiai yeild strength

It is possible that Z.”can arise from two sources such that

Pr ')5 - : _‘
t,*f + o o (3.27)

4 | _
~where z‘;‘;results from local repulsions of intersecting dislocations,

and Z;: ar.ises from longer range back stress due to othef dislocations
than the specific pair involved in intersection. At initial yielding, however, .

Zt‘o‘[ must be negligibly small and Zﬂmust result almost exclusively
from Zé,& . But as discussed previously in Section 3B,.

whered“‘o 04 as obtained by using the lowest datum value of Z‘G /G Lb
. for initial yielding that 1s given in Fig. 3.10. 'On this basis the values -

~of and (T shown in Fig. 3. 11/ were obtained. The total back stress

oL
by this approach appears to be almost equally due to the local interaction
and the long-range stress fields. For the Al s‘ingle crystal tested here
H

oL also varies almost linearly with 1/L. For Cu single crystals a

vertical displacement between the various work-hardened states {s also
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obtained. The Fo - % curve for Al, obtalned by nubtracting the entimated
valuen of ( £,/ + o,z )Lb from Z’(G IG)Lb nccording td

(tG /G)LA ( ” +Z’4)Lb (3. 20)

" 1o chown n Pig. 8. m.‘“’

. Becnuad' of ito high otacking foult onergy, tho two partial dioloco«
‘tiono in Al aro nef:aratéd only qbdut 3b. Therefors, tho valuc of Fo might
‘ havb been expected to bo gero ot nbout x 2= 8b, In contract, bowovor; it
qo’ﬁti'nuen to decreasa slowly for # > 38b, | Thio io due to the fact that
thermal activation can aseist in ovérooming aomé of tho interaction back
otressen ot pqints, and under the geometric conditions, where those are
" small, | | | -
‘_ In hic 1961 Instituto for }wetam Lééiure, Mott {40 suggested that
 moot of the ﬁtrain hardening du{rin'g léw temperature deformation might
' ariso from the reotrainto to motion of jogs on acrow dislocations. He
. .ﬁrgued that inasmuch asn dislocation entangléments are obherved and nho
~arrayo of pﬁed-up dinlocationo aré noted in deformed Al of C‘:'ﬁ;} there
can be no lcng-range back atressém. But the abuence ot ptled-up dtnloca-
tton arrayo does not conntltuto proof of the absence of long-rango baclk
otreneoa‘. Such otresses can also arise ao a result of concentrationo of
. diglocationo of tho same oign in one regioﬁ._ Furthermore, dislocation
'cntanglementu arc probably produced becauge tho energy of thg entanglo- )
ment w’lower than tho enerﬁy of other possible configurations, There-r i
fore. when o dislocation segment ia forced to leave an entanglemant, worh" “
must be done against the attractive forces arioing from the remalnlng

diolocations in the entanglem’ent. The net result is, therefore, equivalent'
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to a long~-range back stress. ' Seeger -and Mader““- have demonstrated
‘the praoenca of long-range back stresses in ferromagnetic motals by - .
dotormining the effact of cold work on magnetic saturation. Thio pro-
porty io not affacted by local interactions and therefore conotituteo rathor
good proof of the preaenco of long-ranga back otrepses in pold-work'ed
“motal. | ‘ | o
" Mitra nnd 'Dorn'® havo aloo detectod tho eftect of long mnge back
- atrenoea from analyoes of data obtalned during tho detarmination of B in |

o ninglc tenﬂion teot. mnco the temperature ond o.varage otrain rato

'woro held conotant, Ui wna enaentially conotant. and, thoretore, F nnd

% must aloo havo remained constant throughout tho tent. . The data obtained

- are ghown' plotted on o log-log graph as chown in Pig. 8. 18.(8) But

t G / = ( = ""'*XG 5+ Z *(3. 30)

K Il 0::were zero, therefore, over the range trom the mnm yield |
otréngth at (a) to higher work-hardened stateo, tho log«log plot of Z‘ G la”
vo BKT would have been given by the broken line at 45" Thexrefore.
long-ranse back stresscs arc prese:t that are not related linq(arly to th§
reciprocal of Lb. The valueu of 0.4 &8 o function of xLb ctin bo obtained -
..directly ao shown in Fig. 8 12. Uning tho valuoc of x appropx'lam for tho
otrain rate and teot temporaturo that wago employed givea thq uamq vnluea
- of pr that wero deduced from the alternate procedure omplbyed lu

~ dotermining tho F - @ curve ao ora already recorded in Fig. e u.

Since the camo F = x® curven are obtninad in Stngo 1 of qnoy gudo _

nnd Btage I of linear hnrdaning, plaotic flow 1n thano rogionn muot be.
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| nucrlbed to the same thermnlly activated proceso.’ 'During Stage 1, i/ L B
and therefore the local lnteracuon ntressoa change slowly whercaao tho
long-range back streassen nppear to build up almont immediately and olé
most, but not quite, linearly with 1/L. During the transition trom Stage !
| to Stage II the valueu ol 1/L mcreaca, promoting tn incraaue in tha local .
lnteractlon otressea. Thia tranaition lo algo reflected in the transmon of -

the Cottrell-Stokeu“z)

ratlo. as chown in Fig. 8. M, m going from enpny
gnde to lmear hardenmg. Over the linear hardening range the Cottrelle
' Stokea rntlo ia aubstanuauy constant, Solving ‘Eqo, 3.1, 3. 18 and 3.28
| oxpucitly for the flow streso, and (ormulatmg the Cottrell»Stoken ratio,

A givea | o , . :
| g Z;ch/c 1 8- /,47,%» M/.A?]
& 0y Gy %@6 B WIRT, /W)W]]

_The substantial constancy of thia ratio with atram dem;ndn either that

0 L
7) y) vary approximately linearly with 1/L or that Z'OL be zero.“tn which -

N ? 81)

cage all'back stresses arise from local interactions between intersecting )

" dislocations. ~Whereas several lnveaugators have emphasized the pecond
- alternative, . the firat is oupported by the analyses made here. ..lif'tiﬂ'her T
confirmation of this mtémally sau-conalistent separation of local ﬁxter-’
action and long~range back stresseo will be given in the discusoion on
polycryotalline Al covered in the following section.

Whelan et 31(43) have observed that glide dislocat!ons can combine -
with some forest dielocntionu over d length /gnu shown in Flg 8.18, )
This occurs only for thoae geometric conditions which lead to a decreaso
in energy when combinations take place. Saada hao shown that an nVe_rage
stress Z;:‘glven by
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FIG. 3.15 . COMBINATION OF A FOREST
DISLOCATION, ABCD," WITH A GLIDE
DISLOCATION, A’BCD;, YOVER.LENGTH 1.
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A

Z‘/:é' G/G'o: %G;é B _\'(s'm

1& rGQuirod to oeparatoe the combined dislocations where all terms hhvd
 their usual meaning and @ ~-0.20, Thus e iz more than the a deduced
| “oxperiuient'ally_ for the local interalct}onb. Since Hiroch's _‘obéorb'a'tionb"_ .
on combinations and Saada's theory are highly reliable, it bedomes

. vti’e_ceséar'y to rationalize these factors in termo of the previous discuoaion,

.- . Buch combinations must occur and contribute to otrain hardening, ’i?h"'at»

if thermal fluctustions as'silsted the appiied stress vgo overcome the coms« |
: vbii:atibn .'energy oo as to complete htersection, the F = x curves for all
FCC metalo ehould be identical, But the F ~ x curve tor Cu ia oub= B ,
otantially dmerent from that for Al in juat the way that woutd be expeoted ‘
" for the previounly described intersectim mechnniam in terms of the :
tlower atacking fautt energy of Cu and the resulﬂng higher constriction

~ ,,,energies. Conaequently the strongly combined dlslocations da not cone
tribute-to the thermally activated flow at loyv temperatures. Bgforo ,
‘com“binétion canA take place constriction "xnustl be completed: Afso[ it 19
quite poasible that the thermal fluctuaucms required to complete the '}
"“conatricuon lntroduces conditions more {avorable to a reaction path that
: proceeds directly to Mteraection rather than one that hag the mtervening ’
stage of combinatlon. Consequently the possiblllty of combinntionn doea

not disqualify the simple internection model preaented here,

3F, Intersection Theory Applied to Pure

s

The same experimental procedures for analysia of the mteraoction

: -mechanism in aingle crystala. which were described in the preceding
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gection, have also beéu uced to study the intersection m.echanism in
-polycrystalline Al, ® polycrystalline alpha-golid solutions of Mg in Al(s) -

and dispersions of CuM2 in an Al plus 0. 19 atomic percent Cu matrix. (26)

(31) requiroment demanded the

In opite of the fact that the von Mises

~ operation of at least fivo olip systems in the polycrystal. gnd in opite of

the fact that the otress levels were higher than those neceasary to pro«

| u‘mto cross sui). the ¥ ~ x curve deduced from tho polycrystalline Al
data coincided exactly with that proviously obtained tor singlo crystals

| in the easy glide and linear hardening lrangao. Obviously the otatistical |

dlambﬁuoﬁ of tho local interaction strenses muat have beén about tho

pamo reg@rdleau of the major differencas in the amounts ‘of j:otyuup in

the two canea,’ Furthermoro. sroso slip, which must have been very

" pravalent in the pb‘l&c“:’&swlimo dggregaio. pédbably funetionin“g*:to:z rélieve

tho back ottessen, thun promoting furthor operntion of the rato controlling

intersoction machanlom, Under these conditions tho strain rate duo

to crogn alip c'é»i‘xi‘d have been directly equated to tho otrain rate due to

interaection; ahd the analysio could have becn mado in tormo of either

mechanism, | |

| v'rhe F, = x curves that wera obtained from the Al'-M'g alpha-~-golid

~ solution alloys and the Cu-Al dispersion-hardened alloyé differed bnly- :

.-vary'slightly from that obtained for pure Al in a way that suggested these

alloya exhibited slightly lower otacking fault energiea and olightly higher =

constriction energies.than pure aluminum, | |

- Although the initial effective spacing of the foreat diélocatloﬁo |

was about the same for the single and polyprjbtalline opecimens of pure

Al, lll L was greater for‘ the AleMg alloys and yet greater for the Al-Cu

dispersion alloys as shown in Fig. 3.18. The values of 'l.l L increased
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' most rapidly with strain for the dispersion-hardened Cu-Al alloys a_hd '.
‘least for the Al single crystals, The local interaction stress Zj’}‘éo. OGGob/L.“
increases linearly with I/L and is also shown in Fig. 3.18, The éftect of |
otrain on the long’;range back .stresses Zzz is shown in Fig. 8.17. “The
pronounced differences between the trends of the local Mteraction atreaeeo
Z’;‘ ond the long-range back stress tlelds Z oq leave no doubt ao to the
ueparaie origiri and trends of these two separable quantities.

Polycrystalline aluminum strain hardens more rapidly than single

cryotale for the f&lldwing three reasons:

| 1. .Tho von Mises reqﬁirement for the operation of at leave five -
slip systeins in ‘polycryatallin"e Al causes the foreat density to
increase more rapidly thmi in single crystals, |

-2, The aame factor results in correspondingly higher. values of

the local interacuon stressges, Z‘ ¥ .

8. The long-range back stress fields, Z‘ ;. are much greatar for '
the polycrystalline Al, As shown in Fig. 8.18, the total flow
stress O-(p) for polycrystals ia about 3. IOZ“ (s) that for
‘single crystalas at the same value of 1/L ao suggested by
Taylor's theory for polycrystalline aggregates,

_The slightly higher initial values of 1/L for the Al-Mg solid-
bolutioﬁ alloys may have Ireuulted from the stabilization of higher disloca~
tion densities in these alloyo as a result of Cottrell(“) and Suzuki(“)
locking plus short-range ordering effecta. These factors may also have

contributed to the higher initial vaiues and greater increases in both the
local interaction stresses and the long-range back stresses with atraining.

(25)

 Orowan's theory for the efrects of incoherent dispersions on

the yield strength of precipitation-hardened alloys was discussed in
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POLYCRYSTALLINE Al
0.97 % Mg~ Al
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FIGURE 3.I7. EFFECT OF TRUE STRAIN ON THE LONG
RANGE BACK STRESSES. |
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Section 2I.. Fisher, Hart and. Pry(27) extended Orowan's theory to include

the effecte of strain hardening. They assumed that as dislocations passed

,the dispersed particles they left leops -about each particle which contributed -

: to the strain hardening, prima'rily by increasing the long-range back
stresses. Reférehce to the data.recorded in Fi’gs.,.a 16.and 3.17, however,
reveals that the major contribution to strain hardening of dispersion
) etrengthened alloys arises not from og. but from ;: «* Electron micro-
| ,e,cropi‘e_opservatigne show_thet dislocation entanglements form about the

dispersed particles and that the observed valuesa of L can be associated

_ with dislocation segments in the entanglements. Furthermore the leveling

v #
off of “at the higher values of the strain is probably due to the relief

oL
of the back stresses due to crose slip.

| - 8G. Nucleation of Cross Sup

Dialocationa in BCC metals undertake extensive crose slip, whereae
'~ cross slip of dislocations in FC_C metale be.comeavmore mfre_quent as the
sieeking fault edefgy decreaees_ . Uddisebciated dislocations can cross
slip a8 soon as they aie in screw orientation sin‘ee the activation energy
N fof ceose suﬁ of complete dislocations is zero. vB»ut dissociated disloca~
tipne in screw orientation must Vrecovmb@ne and form constrictions before
they can cross slip. The activation energy for cross slip is equal to the
recombination and constriction energies. Among the several theories
" for cross 'Blip that h‘ave'beed proposed only Friede‘l'a(ée) which, will be
.reviewed here, is eatle{actorﬂy formulated ’

We will consider first slip on the prismatic plane of HCP metals.
Die locatione in the priam planes are undisaociated but thoee lylng in the

basal p_lanee dissoclate intoA partials as previously described in Section 2M.

-+
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Consequently when a diswcﬁtion on a prism plane moves into screw |

| ‘orientation it will spontaneously dissociate into .vlts .two partigls on the basal
plane with a corresponding decréase in energy. Consequently any exténsiire |
prismatic slip must involve regeneration of dislocations on the prismatic
plane by thermal activation of cross olip.' The pdth.for nucleation of cross
slip is illdstra;éd in Fig. 3.180, The two partials li:‘s1 and Bz’ on the basal
plane recombine over a length L and produce one constriction. The recom« \
bined seg’mentvbowa outlto P on the prismatic_plane under the acubn of t\hre
applied atress. Consequently the activation energy_tor cross slip, Ux' is

given by - ' ‘ .
[.LXI:: Ueo T lé,f ‘/'A U, — V‘éb ‘ (3. 39

'wh'ere U c is the "conatrict'ion ehergy, UR ia the récomblnation energy, AUL
is the increase in the line énqrgy due to bdwlng ot} the dislocation, and Wz,
is the workt done by the local strees, (-7 8 acting on the prismatic plane
in the direction of the Burgéra ve’cg‘or. | If /—' equals 'tlie line energy per .

- unit length of the tbtal dislocation, and R ‘is the r.e'combinatvion energy,‘ ‘
s C : o y ~7
Uy =UAH(RRdinb) R 1 (208 ~RR5178)[7
| _, #5 - e,y (3.3
(-1 ) [;;'*"‘77. (77/02 —~2RSinbCes6f
where the last term in the brackets is the area swept out by the dislocation
_on the prismatic plane as a result of bowing. Both U . and R will depend
on the local resolved shear stress on the baéal plane as shown by Eqgs.
2.68 and 2.67b, But in ’slngle crystals 80 oriented ihat the resolved shear

stress on the basal plane is zero, these quantities depend only on the elastic

constants and the stacking fault energy. | ?’“ie also negligible for single
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FIG. 3.19- NUCLEATION OF CROSS SLIP
AS A RESULT OF RECOMBINATION OF
THE PARTIALS B; AND By ON THE
BASAL PLANE ALONG LENGTH L AND
BOWING OUT OF THE 'RECOMBINED
- SECTION P ON THE PRISM PLANE.
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crysetals, Furthermore the radius of curvature of the bowed dislocation

is given by the well-known expression

N
"

Under these circumstances the only unspecmed quantity 1n Eq. 8.34 is 6/

(8. 35):

As 0 Increases the recombined length increases, the line energy increases
"and more wo:-k is done by ’the applied s’tr‘ess. At & critical value of 0= Bé.
however, U acquirea a maximum value. Any thermal ‘!fluctuation greater
than this crlucal value will nucleate crosa slip. Applying c)U Iae 0 1n

order to ascertain the critical value of 0 gives
_C‘OS.EC f"‘ / = /‘f//.1 " (3.30)

But R < [", therefore expanding cos 9 mto a Taylor 8 aerles reveals that

49 7..,,{) ‘ (37'57) ',

Since 8, is small, 'Eq._ 3. 35_101' the actlfgiion enérgy becomes
[(x_'.g U 1ZNE, R  (3.38)

the remaining terms being negligibly small, Thérefére, introd\icing'
Eqs. 3. 34 and 3. 37 into Eq. 3.38 gives
3
< (IR

b

The critical length L that must be recombined in order to nucleate cross

slip is
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/‘7
L Z/z, S/m ;é/—' gc = Zg; /?) 3. 40)

Tharefore the higher the stress is, the shorter is the length that mpst

recombine and the lower is the activation energy for cross slip.

Let N be the total number of screw segments of dislocations. each
ha_vlng an av;erage length Ls' 1n a un;t volume of the crystal, Then the
total _number of segments of length L o per unit volume of the crystal is

crudely about NE sl Lc_..VA The frequency with which each segment L

' where 7) is approximately the Debye frequency. If then, A 19 the average

vibratea is

area swept out by the dislocatton following each succéasful tlucmation. ‘the
o .
strain rate due to cross slip, Y; » will be given by

, e
Y= Ab Z—é e %(QT

- (3.42)
L" N c
Introduoing Eqs. 8.40 and 8. S;rfor L and U gives
) g p2 —fUe +2(2/"/?3) |
Y; =NLsAb ﬂt 2'1’4’7‘ - (8.49)

8rR

Obviously there is no simple relationship between the flow stress
and température for cross slip as was observed previously for 'inie”r'sectiqn.'
Perhaps the most easily adapted method of analysis is obtained by rewriting
Eq. 3.43 as - | |




-136- | UCRL-10455

| o 46 4 A/LMA"?/)
T 2erp)E T\ N8R

% fp/{’él) A/Z‘, éac |  (3.44)

2rR)%E T RRIR)RT
which suggesta that, neglectmg the variation in ﬁ\\_t‘
s '..... <3 o (3. 45)

Z’T T | |
where Cl and C o bU /2 (2 F'R ) 3 1/2 are constants, A t‘y‘pical result

) where 4 ,FT- ‘da-

creases linearly with 1/T when prismatic slip takee place. From the

of such a correlation is shown for Mg in F‘ig. 3. 20, (4

clope of this plot. one deduces

e = /50 C/";Z/A ne (.40
["’/2 K3/g | e 7 o :
"This expression will subseQUéntly Se used to estimate the separatidn of
the partial dislocations on the}basal plane in Mg. | |

| When the activat.on energy decreasea‘lineaﬂy with the stress, as
in the case pf mtéraéétion. BkT is the activation volume, But when. the ‘
activation energy tor a mechaniam is not such a simple function of the
stress, as in the case of cross slip, this interpretation 13 no longer valid.

It is nevertheless useful, in such cases. to call ﬂkT the apparent activa- '

tion volume. Therefore, from Eq. 8.43

Y’ | 2 /é-,T 3
/@/&‘T— 4@7—( 3k = = 2(22/;2? ) (3.47)

or

(ﬁ..;_)/‘é-]-: T =:. .--Z-:-a . '(3.4_3)
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-PRISMATIC -
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FIGURE 3.20. EFFECT OF TEMPERATURE ON THE: YIELD
STRENGTH OF Mg SINGLE CRYSTALS ORIENTED FOR
PRISMATIC SLIP. “n




o13ge- | UCRL-10455

A typical experimental result {s shown in Fig. 8. 21 for priamatic'sﬂp of

Mpg. As given by Eq. 8.48 the alope of Fig. 3.21 is 2(2 ["R®) b, there- -

fore, using the axpresslon(“)

- R o Z - . (8.40h)
T /e L
the separation of the partiala on the basal plane was estimated to be

,d""‘ 2.3b. Also U & Cp Cs. hence from the expresaion(M)

U= EZ5 (L ")/‘2

. ¥l .

and the data of Fig. 20 (Eq. 8.46) the separation of the partials was.

estimated tobed B 6b which io in good agreement with that estimated
from the data of Fig. 8.20. ,
The activation energy fop cross slip in FCC metals differs sughtly
| from that in HCP metals as revealed In Fig. 3. 22, 'As the dislocation
cross slips, it dissociates into its paétiaté on the cx"osa‘ slip plane, Con-
sequently the activatlon energy for erosa slip is about twice the constric-
tion energy (1. 8., 2U ). and the aegment of the dislocation over whlch
this occurs is about 4d, where d is the eeparation distance of the partials. '

Therefore.

\” (N (2/6) - ’erc . f (3.400)

where both d and Uc v‘ara dépendent on the local stresses as previously
described. Up to the preéent there has been no completely aatisfactory
experimentat verification of the cross-slip mechanlam in FCC metals.

As previously described however, ln the range of conditions where cross
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FIG. 322 CROSS SLIP IN FCC METALS.
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slip merely relieves the back stresaes so that dislocations can proceed
-to undertake intersection, YL \ , and the analyais can be more reedily .

made in terms of the intersection mechanism,

SH. Energy of Formation and‘Motion of Vacancies' |

| '_ As the test temperature is increased, the lower activation energy
mechanisms such as intersection and cross slip take place with increaeed
!aciiity eo that they no longer serve as barriera to the rotion of disloca~
tions. At this stage additional creep takes place by thermal activation
of more dii’i’icult processes. and the experimentally determined activation -
energy begins to upproximate those for self diffusion. A brief review of
diffusion witl be given here in order to provide the basis i’or deacribing

such mochaniema. " o ' o '

D'iffuaion can take place by several mechanisms, As documented

(49-51) on this subject, however, the volume

ina number of recent reviews
- diffusion in pure metals, nnd substitutional alloys as well, is now known
to occur principally by the vacancy mechanism as shown in Fig. 8. 23. |
The rate at which the radioactive ntome (shown by ¢) move 1s directly
related to the number of vacanciea that are preaent. The equilibrium
number of 8: ngle vacancies in a crystal is eaeily deduced from statietical
_therr_nodynamica. (63~ ?4) Since the equiiibrium number of vacancies are |
| independent oi’ the mechenism whereby ihey are produce'd it is pei‘mis-
sible to view their production as given in the traneition from (&)’ to 'Bb)
of Fig.3: 23When an atom is removed trom the near center of a crystal, |
the bonde_ with the adjacent coordinated atoms must be broken and when

that atom is placed on the surface one-half of these bonds are restored.

The total work i_nvolved in making a \fncency. therefore, is the work Ut
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of breﬁklr‘xg one-~-half of the atonﬁc bonds ;plus the work pﬂ ¢ dons against
the surroundings where p is the pressure and D_ £ is the volume expansion
per vacancdy produced, a quantity almost equal to the atomic volume. The
atoms adjacent to the vacancy now have a lower frequency of vibration
than before. Consequently the vibrational entropy changes an amount B¢
per vacancy produced and the work that must be done to produce a single

vacancy at & given site is

ﬂ = U,C L QL - TS‘C - (3.400)

where ff is the free energy of formation of a vacancy. On the other hand,
the total increase in free energy upon introduction of 7y independent and

noninteracting vacancies at random amongyj, atoms is

a1
: a0

F ﬂ& /{TL‘L (3.50)
where the last term arises from the configurational entropy of random
mixing of 7, vacancies among— A atoms, Therefore, the average work
that must be done in adding a vacancy to a random mixture of 71 vacancies

and G _atoms'is

% F- C /;Q T/(’l 1 (Diﬁﬁ o (3. 51)

én N

‘Since the frea energy is a minimum at equilibrium; the equilibrium

- number of vacancies, n , in a solid is given by (c‘ ¥/ c)yﬂn =) = 0 and
o

consequently |
- 4// 1

L /H | (3.52)
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whereTi =Tl , +Ti the total number of lattics sites,
The extra work that must be done in creating a vacancy in a crystal
that contains T vacancies as referred to one that contéms_ the equilibrium

number of vacancies < - - .- ib given by the chemical work

,qu_jm A (3.53).

m | (A F ) .'

e AN /i éYl N,
Thie 18, therefore, the constant ’preasure isothermal work that a system |
which is supersaturated with vacancles can do. | | _ .

Difft.xsivion is a random wa'lk‘phenome:n‘on and, in the si_mple case

of self diffusion, it can be described in termalot the mass migrafion of
tagged, radioactive atoms. When the concentration éf such tagged atoms

" is uniform, their random walk cduseé xio het mass transfer; But when‘ |

| the aituation ia as shown in Fig. 3.24, a masa migration will take place
~ in the direction opposite to the concentratlon gradient, Here N is the
number of tagged atoms per cm2 of a crystal plane, and /\ is the jump
diatance. Since all atoms are chemically identical each atom jumps _

~ with the same frequency‘ﬂ_ in any one fixed direction, Therefore, the
increase in thé‘ number ot‘ taggéd atoms on the plane at x in time 5 t ' l_s

given by

SN*= [/v (x-N)+N (x+/\ --Z/V"]fc?t

,°"‘. . - ;Nx | @ .
| /v* - 3 . - R

D :-.ﬂ/)\z | | | (e8|

where
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is the diffusivity as defined by Fick's second law for diffusion,

The frequency 7/ /depend on the mechanism of diffusion that
takes place., For the vaé&ncy mechanism of diffusion the frequency is
given by the frequency Z} of an atom adjacent to a vacancy times the pro-

bability that it has enough energy to move mto a vacant site,

..JM/&-T‘ — m""i—r =S T

e

times the probability that the atom is moving in a given direction @, times

the probabﬂity‘n /ﬂs that a vacancy i8 in that direction, Therefore,

\ 2 n - u’“ -+ /O—O—m"" }S‘W\T,
D= AN y"ff; = RT (3. 56)

For the simple cublc lattice the factor @, giving the probability of motion
in any one of the six possible directions {8 1/6, The same type of analysis

reveals that the diffusivity of a vacancy 18

o . 5 ' ZI"' 7‘-/0-[)- m;m SM\T ,
-Dy:.: d)\ j & M/< ) | (3.57)

where the subscript m refers to the valuee of the vavr;iabiea pertaining to
the motion of a vacancy which is of course identical to those for the
motion of an atom. |

When the difmsivity is determined under conditions where the con-
centration of vacancies is given by thermal equilibrium, the value /‘ha

in Eq. 3.56 must be replaced by N I, of Eq. 3.52, Therefore, .

o S fx,,,, e + Wt PO+, Y
=X )\ 7/ = _f.. C,. i . ﬁ_/‘\T((L_. ........ )}

s —lteny e
= o\ /Jc: 1 =




A

‘The first, originally conceived by Nabarro
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 where the subscript d refers to the values for diffusion. Consequently

- the activation enthalpy for diffusion, Udj +p f)d is equal to the sums of

the enthalpies of formation and motion of vaduncies. The fact that the
acti‘vation enthalpies for high temperature cr'eep begin to approximate
those for self- diffusion, strongly suggests that this creep is dictated by

atomistic mechanisms that involve the formation and migration of vacancies.

Three different theories for high temperature creep that are based

~om the formation and mig'ration of vacancies have now been postulated.

L (17)

and elaborated upon by

- Herring, (_55) is know.n as stress directed diffusion of vvacancies. It is |

applicable_at very high temperatures, those approaching the melting
temvperature‘s, and at \.rery- low stre'sses,v presumably below those which

are required to ope’rate a Frank-Read dislocation source or to g.enerate
dislocations by other means. The theory is quite accurately and completely.
formulated. It concerns the formation.of vacancies under an applied

stress at the grain boundaries.normal to the applied stress and migra-

tion of the vacancies through the grain volume to the boundaries parallel

to the applied stress. Atoms, of course, migrate in the opposite direction
to the vacancies and thus provide the permanent strain. Several investiga- ‘

tions give creep rates that are in good agreement with the theory. In view

" of the fact-, however, that this mechanism of creep is not dependent on

dislocation processes, it will not be presented in detail here.

The remaining two theories, (a) thermally activated motion of jogged
screw disloc‘ations, ‘and (b) the climb\of_’_edge_ dislocations are limited to
crystalline materials and both dep‘end on dislocation -

p.rocesses._ The applicability of these theories
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to creep i8 not nearly so well establishéd ag that for the stress~directed
diffusion of vacancies; and consequently attempts are continuing to isolate

these mechanisms experimentally for individual study.

31, Creep Due to the Motion of Jogged Screw Dislocations

2%

Jogs in edge dislocations do not materially restrain the motion of
an edge dislocation because the jogs also lie in slip planes. But jogs on
screw dislocations are edge jogs, and if the screw dislocation is forced
- to move, such jogs must move from one slip plane to the next adjacent
s.lip plane. This is only possible as a result of atom transfer known asa
climb, Two types of unit jogs are shown in Fig. 3. 235. ﬁnder the applied
stress, the screw dislocat_ion. shown dissociated ifxto its 'p!ariials, will

bow out, és shown, and move to the right. If the upperf jog also moves to
the right one atomic plane, it wiil have to form a vacancy V, at the lower
part of the extra half planefof atoms A comprising the"edge Jog. ~When
the lower jog moves to the !right, ‘it must leave the last atom B, of the
half-plane in an interstitial position, | Whéréas the uppér jog. for the con-
figuration shown, is a vacancy forming jog, the lower jdg is 'an' interstitial
forming jog. | .'

| Jogs can form by means of a number of mechanisms: As we hava |

seen when a glide screw dislocation intersects a forest screw dislocation,
uiit jogs are produced; when a screw dislocation cross slips from plane
Al to some other slip. plane B and then back to A2' ‘which is pafallel to
Al' supei‘jogs of many planes In height are formed by the dislocation -
segments left in plane B; when the two nodal points of a dislocatioh seg~
ment 'Ue on different slip planes this segment must contain superjogs.
SinceA the free energy of a jog in dissociated dislocations is equal to the A

jog energy ‘U:l plusthe constriction energy UC, the equilibrium distance

[
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between jogs is gtven by the Boltzmarm expression

| L(J + U, - o
b//@ = e KT S (3.59)"1_

Jogs can be created by ébsorption or liberation of vacancies.
Jogs in screw dislocaflone can‘ glide on their slip pianas parallel
to the screw diél'ocafion. T.hué interétitiai énd vacancy jogs can vannihilate
each other or they can _glide to the nodes. Jogse on edge dislocations can
be eliminated by climb resulting from absorption or liberation of vacancles,
The thermaily ACtivated: tnotioh of Jogged_ecrewﬂdvlqvloéations has been -
described by Mott, (56)»Séeger. (57 Friedefl(aa) and van Buereh. (58) The
following analysis is taken, with minor moditications, principally from
~ the recent investigationa by lesch and Warrington., (60)
As shown in Fig. 3. 25  screw dislocation eegménts bow out between
the jogs under an average local stress ZL" ZL , the dislocation being held
- up at the jogs. In view of the high en'ergy. however. of t‘orming inter=
‘gtitials, the operative process of creep must depend primarﬂy on the

vacancy mechanism. At both "a" and "b" a torce ( Z“ "’Z ) 1,02 is opera=

3
tive where lJ is the mean distance betweep the jogs. If the jog at "a" is
to move forward one Burgers vector,' an atom must occupy position Vl.
and liberate a vacancy. Consequently point "a" is a source of vacancies, -

"b" to move forward, a lattice vacancy must exe

In order for the jog at
change with the atom at B 1 Consequently point "b" is a vacancy sink.
Throughout the lattice there are many sources and sinks. For example,
edge dislocations and grain boundaries can also serve as sources and

| sinks for vacancies.

X
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The question now arises as to how vacancies, generated at sourcea.

(61) recently suggested

difiu_se to the,neerby sinks, For example, Lothe
that inaeniucn as the energy to'.form a vacancy on a dislocation is smaller
than that to form a vacancy some distance from a dislocation, and inaamuch
as pipo dii’fusion along the dislocation is so much more rapid than volume
diffusion. pipe diffusion muet controi the procesa. Although such a
mechanism undoubtediy contributes to the all-over process, there are
eyerai factors that _suggeat it may not be important. First, pipe diffu~

~ sion wouid lead to an activation entheipy for_.creep thnt:is;. coneiderabiy
below that‘ior vioiume delf-diffusion, | Secondiy.' pipe diffusion must .take
place along the singl-eato’mic path colncident v)ith the dislocation line,

o - Svherea’s 'voiume difi‘usion tnay proceed aiong xnany‘paths', .a factor which

' compensates for the higher activation 'energy of voiume diffusion. Fvurther?
more, ‘the osmotic work that can be done by’ aupersaturation in the vicinity
of a vacancy forming jog may be eufi‘icient to cause large numbers oi’ '
vacancies to leave the disiocation pipe to undertake volume diffusicn.

- . For superjogs having a height of h atomic planes, the average
 force acting on each atomic height oi the jog is ( 2‘-——2”3 1jb2Ih. The
energy that must be supplied by a thermai fluctuation in order to forma
vacancy is, therefore. f - ( Z’«Z* ljbzlh where i’t is the free energy of
the formation of a vacancy ard the last terms represent the work con-
tributed mechanicauy by the force acting at the jog. But to provide a per-
manent forward motion; of lthe jog, the vacancy so oroduced 'will have to
with which a vacancy-

+
v/

forming superjog moves forward one Burgers vector is given by

| — 1 C/,‘Z"‘,éb .
VV7J"€='7'4-63 — K-'T) /kze ,(/T(“o)

move away. Consequently the frequency

4l



C159- UCRL-~10455

“where 2. " is only slightly less than the Debye frequency, and Z is the -
cdordination number. Having so jumped forward, the jog may now jurxxgp'
back again. This frequency depénds on tt;e pfoﬁability that a 'vacancy is
next tovthe last atom on the jog times the probability that it will exchange
with that atom and thus return the jog to {ts original position. Con.sequently,

the frequency < VJ for the reverse action is

nt - M/éT

._ iy n*
ﬂyjz’/’:z © - (8.8D)

where ﬁ'+/‘n a is the actual probabllity of finding a vacancy adjacent to a

-~

vacancy-{orming Jog. But

t/ hof  _
MYy = "o ‘/ns = ""fe .

VoL

And therefore the net frequency of the forward motion of a vacancy-

o ‘...f o
7)},3%28 4/@7‘{6 AT T WD Goen

The forwéfd freduency of motion for an interstitial-forming jog-
ia obtained by the‘ same type of analysis. Since the interstitial-forming |
Jog is a vacancy sink the probability of finding a vacancy adjacent to the
‘terminal atom on the jog tsT/n g Therefore, the net frequency for the

forward motion of the interstitial forming jog is

(&L ’%%

) "
#J:Z’Ze ] he < —I

(3. 64)
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Egs. 3. 63 and 3. 64 suggest, at fi‘rst that the intersfitiai—fofinihg ..
Jog might lag behind the vacancy forming jog smceﬂ /T? >1, and )
o n /h <1, Butitis easily ahown}that ag one jog moves ahead of the . o
other, thé Ior'_ée;s: acting on 'the':v jdgs 80. réa_djﬁst t_héinselvee thét the two
jogs will move' with the same velocity, Conéequently, either Eq. 3.63 or
3.64 gives a good estimate of the frequency of the forward motion of a

108- The strain rate, \'{q . s given by ) |
° '. a - : 2 ‘ o | N .
st: ‘B‘ (,QJA)Z: 7/vj = 6 by "ﬂl(/ . (3.69)

where ﬁ. 18 the total length of screw dislocations per cm » P /ﬁ )

is the number of jogs per cm3 on screw dialocations. and ( ljb) is the area

] swept out per activation.

Excess vacancies have a very short lifetime even below atmospheric:

té_lmperatures‘ At higher temperatures, where jogged screw dislocations

._mvight move, the lifetime- of a vacancy is so short that a superééiurati§n of

vacancies is difﬂcﬁlt to mainfain. Therefore, ﬁ'+/n o S&n be approximated

| by unity. It is difficult in this case to piescribe,é priori, whether vthe long~

range back stresseé Z'* will be significant or not. In cases where the :

stacking fault energy is high or even intermediate. screw dislocations will

cross slip with relative ease. Furthermore, screw dislocations may also

enter twist boundaries which exhibvit”only very local stress fields and inay

not thereforé contribute significantly to Z’ * . Piled up edge dialocations,‘

however, may introduée long-range back stresses, The creep rate, re«

taining the back stress term, is given by | . |

ﬂ_ztzaél__ (200, 854
_2_ e | (f ZT .86)
[% 2 e e = Je -/

@
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b' | ’-When (2""2") 1 b%/h >> KT, the flow stress becomes _

_L(d+7bﬂd | '.__“ 447- A( Azﬂe%/&)(steﬁ,
7 AAL |  _¥§ 

‘Z’:Zf*fl-.

and it decreasés linearly with the absolute temperaturé, An alterrtate s

viewpoint is aléo boésible; namely that the 'presence' of 1oéal‘b§ac_k o
- . v .
stresses reduces the number of operative screw dislocations to FS <ﬂ$' .

Then

SR Z N 2y /)

“The only satisfactory experlmental confirmation of the possible ' }

' operation of the jog screw dislocation mechanism for deformation was

| presented ina report by Hirach and Warrington. They contended that
below about one-half of the' meltmg temperature, where diffusion rates
are negligibly slow, motion of jogged screws resulting in the formation '
of vacancies is an athermal process. Therefore, the flow stress is in~

~ dependent of the temperature and strain rate being givenfby "

zﬂ..; fo__ _UetPAT
'a" l‘éZﬂL ﬁj 62/%1 forT(T

Consequently Z‘ is less than Tat low temperatures and Z' = Z.‘ at the

5.69)

critical temperature T ot when

Ut 2D i Ut T AT . (85]

%A/A TS

- awm-ﬂ ) /g(:y .

e
pl
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giving R . o
L : Sy ’ .6’ b2z
am'f' fﬂm""/dm'z: ::-"44 ZAQ N (3. 70)

S

‘The.refore. : ' ' | | .
Z.. /!4'/‘70—(14 /4/7— (U, “/‘7(’..(2 o 7—(3 "
G\ g JE ¢

 where the entropy and work terms are small. The activation volume ia

| for T)T

BKRT = 1 b2/h.

_ jA schematic’ diagram ‘of the expected results are shown in Fig.

3. 26 and actual data fm‘” Al are reproduced in Fig, 8.27, The experi-
 mentally determined flow stress for a specified strain-&_hardened state
decreases almost lirieariy with an increase in‘temper.aturev asr suggested
by this theory. The range of temperatures for whicvh the flow stress de~
creases almost llneariy with the temperature, coincides closely with that
shown over region D of Fig, 1.4 whgre the activation energy for creep
increases almost linearly with the absolute temperature.. This relation~
shii:‘ alsd follows from Eq. 3.668.for tests at different temperatures when:

\a' ‘is about constant, But in spite of these conﬁrmations of the theory,
several questions must yet be answered before it can be assumed opera-

tive for the case in question, The major issue concerns whether or not

vacanclies can be produced athermally over the lower temperathre range,

3J. Creep as a Resuit of Climb of Edge Dislocations

. The theory for creep due to élix‘r‘x_b of edge dislocations is much

more difficult to formulate accurately thﬁn that due to the motion of a
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jogged screw dislocation. Thie arises from the fact that the rate at which
édge dislocations climb depends intimately on the geometric detalls of
dislocation patterns that are produced ﬁndef stresa in the vicinity of the
climbing dislocation, These patterns have not yet been sufficiently well
documented to provide unambiguous guides to formulation of the climb
précess in deta.il._ The following analysis, based on a 'spedfic model,
therefore, can only suggest the general trends. The theory for climb of

(56, 62) Seegef (63)

dislocations has been discussed by Mott, (64)

and Weertman.
Recenﬂy Christy(ss) has elaborated on the model, but.masmuch as his
approach is only a minor variation on the same theme presented in detail

by Weertman, the following analysis with the exceptions of minor innova~

" ~tions, will be based on Weertman's formulation.

| The process for climb, as illustrated in Fig, 3. 28_.—‘,“ is somewhat .
analogous to the motioﬁ of jogged screw disiocations.- | As shown under
a tensile stress normal to the extra half 'blane and atom can jump into.
position at the bottom of the extra half plane, leaving a vacancy, 0  .‘
in its former site, T\his. of course, can only happen easily at a jog,
because of geometric and energetic considerations, When the Vacancy
migrates away from the core of the dislocation by diffusion, a unit climb -
will have resulted. Under compression stresses, climb will take place
in thé opposite direction. But in either case the formation 6r the
absorption of a vacancy can only occur with relative eése at a jog.

As seen, climb involves the formation of a vacancy at a jog under

the action of a stress U):X followed by its migratiori awayv from the dis~
location. Therefore the frequency_ for climb in the positive direction

({. e., under:a tensile stress) is
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| R | "‘r%T"“"“‘% ,,%é
2 _-.-.y_g.[ e e (Z /)6 j (3.72)

where —ﬂ is almost equal to the Debye frequency, pj is the probability 8

-tp/KT 05&-9-/ KT

jog is present, ¢ is the probability of having enough

thermal energy to form a vacancy (where(n is the work done by the

local stress and -Q- {8 the atomic volume) efm/k'r

is the probability of
a sufficiently 4.high thermal fluctuation to move the yccancy. Z is the
coordination number and (Z-1) i‘aAtheJ number of d.irectior}s_thc yacancy
can move yylthout reversing the climb. If, however, a vacancy exchanges
positions with the terminal atom on the extra half plgnc, the ;:iirection of
climb will be reversed. Since vacancies are be'ing produced at the jog,
the probability of finding a vacancy adjacent‘ to the chg vla_.(Zn-l) ’771‘"/'1”.1s

whcx_'e n* is the total number of vacancies on TRS atomic sites in the near

vicinity of the jog, Therefore, the frequency of reversed climb fs

. Nt =EnhT
%—.:: y@ (Z”"/) % e 'v (3.173) -

But {..
£
n*/::'f’:_'}:_-‘lie" /”{?T
| hs hy ng Mo | o (3.74)

a8 shown by Eq. 3V. 52, Consequent}y

'ﬂ y (2~ /)6 = (. 75)
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“The net rate of pmh‘iw climb ’VC' where_
7/ c

7/<:,-- 7)(2-— /) f € {;'/’67-[ ’ﬁ?? R B

no

’.&: 1. Aund since the atomlc volume

But as previoualy discussed n+ ,h
| —-O- ia 80 very small tlw value of (r'athat can he achteved is also

small relative to kT . Therefore. expandtng the exponen"gi.al in terms

a Taylor series gives ' v ' ' .

| - - l(a 7"[{_(14 -
A

.y 7/(2-/) -———-—--f € / 24 (3.77)

V.Z’.hereas >the abové analySis is quite feliabie for any climb mech-
aniam, in the following details oﬁly one of a geries (if posaible fnodels
” will be analyzed. We will agsume that‘dislocafions fbrmed at two uhspnci-
fied sources on slip plane.s a dtstance h apart are arrested as shown
in Figf. 3. 29 If h is greater the h v as shown ln uection 2J ‘the
dislocatlons will pass each other. But if h s _le;;s than thig critical
_'value, additional motion of the dialocaﬂons can only occur \;vhen the two
~ leading dislocations of the array climb together so as vtoann‘lhilate each
other. The rate of climb, of coursge, depends on q:‘ . Since the applied.
stress {g usually quite small, the major coutribution to G;x arises from
the stress concentration factors from. the plled-up arrays of dislocations
as discussed previously in Section 21, |

. . o
' Lett}ing‘j be the rate of climb in the vertical direction,

‘j.:b-ﬂc- o | (3. 78)
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FIGURE 3.29. ARRESTED ARRAYS OF EDGE DISLOCATIONS.
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A brief reflection on the stress Q‘;‘ wm reveal that the two leading dis-
’locations climb toward each other. each c.limbing a height h/2 before they

i
can annihilate each other. Therefqre, ‘the time for climb is

| ?."

[

Zg | 2197)

(3. 79)

1f N are the number of such paire of arreated'aft‘ays per unit volume, the

creep rata due to climb is given by

NE8)h zw/s@)zf
tc. | ,A o (?..80)

o
v;_
or, introducing ﬂ

ZI,{ +2

"“Z/V(‘"S) Azﬂ Z*/)%__ % - T._(3.81)

Thus, in ordér to complete the formél pﬁi{ﬁt of tﬁe’ émalysis, ébme measure
of how G}x and 1/ depend on thevapblie_d stress must be estimated.
o . o . " o\
~ In accord with the deductions made by Eschelby, Frank \e\nd

(28)

Nabarro, as discussed in Section 27, G;Q( is given by

E_es
=2z 27 (1 ~H)4

where the factor 2 arises from the two arrays !’ A is approximately

the stress concentration, and 18 the stress’ field
f?f/‘(/-ﬂ 5 G“‘ )

of the leading dislocation of the array., Furthermore, as shown by Eq

2. 42 in Section 2J, the number of edge dislocations in the array is given by.

¢ lr—4) o (3.83)
4G4

h=
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| giving a local shear stress at the leading dislocation of the array of I?‘Z‘

7 L7 G-)
“Qb6

when this stress is equal to the repulsion stress due to dislocations in the

other array the dislocations arrays will be arreated. Therefore, k

é”’(g Z.z(/""‘/’{) Z— (3.84)
o - YCs | , Ain o
Consequently, |
G243
% /Ci‘ ﬁa,e 5 Z'Z/‘A)Z (3_' 85)

Since arrays wm be separated all heights between 0 <h<h mt Ve will
crudely let h = hm/ 2 in order to obtain a reasonable average value_. o

_ Cahsequently. | S S
O _ 8 /ZG-A _aw 4 '835 T
kTR e f-ft

(3.86)

D’ e,
¥ = 7t00n WT{G/O—M}‘@Q% a B

Sherby(Be) has attempted to justit‘y this version of the dialocation '
climb theory as shown by the data assembled in Fig, 8.80. In general
" the creep rate for many metals follows the Z law a8 shown. But this

"analysis ngglects the possible effect of stress on NS 5.
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FIGURE 3.30. STEADY-STATE CREEP RATE PROVIDED BY
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~166- - ' . UCRL~10455%

The -activation energies for high temperature creep have beeo
shown in a number of cases to be insensitive to the applied stress as sug-
gested by Eq. 3,.86. And, as shown in Fig, 8,31, they are approximately
equal to that for self diffusion. But, at the high temperatures and olow
strain rates for creep, it is expected that the equilibrium number of jogs
is approximated and ijeM Consequently the theoretically |
estimated activation energy for climb equals Ud + U‘1 +U ot 8 quantity that
is always somewhat greater than the expérimentally determined value of
U d* Although the general correlations for high temperature creep appear
to agree with the theory for climb, the lack of detailed agreement between
theory and experiment need yet to be rationalized, ‘

Other factors that are gignificant in high temperature creep con-
| cern subgrain formation, grain boundary migration and grain boundary
shearing. These have beeo discussed elsewhere and will not be reviewed

here.

4. SOLUTE ATOM STRENGTHENING
4A., Introduction

In general, aolld-aolution alloys are stronger than the base metals
from which they é_re prepared.; Empirical correlations suggest that such
strengthehing might be related to the differences in atomic radii and
valency of the solute ond solvent atomic specieas, Such empioical obgervas~
tions, fxowever, must be rationalized {n terms of dislocation tﬁéory.

Solid-solution effects can be classified into two major categories.
First, additions of solute atoms can introduce perturbations“of: the aetails
of the same mechanisms of deformation that apply to pure metals. And
_ second soud-solution alloying can introduce new mechaniama of

. strengthening
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Solid-solution alloying generélly causes a decrease in the modulus
of elastiqity which, of course, 18 reflected in apprbpriate small changes.
in the activation energies and flow stresses for all of the previously dis=
cussed mechanisme of deformation. Furthermore, as described in
Section 3F, alloying can also increase the density of dislocation in annealed
metals, undoubtedly as a result of operation of>one or more of the several
unique interactions to be discussed later. It appears, at present, thai in
specific alloys much of 'strengthening found in the low temperature deforma-~
tion of FCC metals ar-ises from this fact, "Bolid-solution alloying also
changes the sfacking fault energy and thereby modifies the constriction |
and recombination energies of dissociated diclacntions,

Several uniquelj different interacéimm nlao result from solid-
~ solution alloying, At high temperatures, solute atoms can inhibit climb,
motion of jogged screw dislocations and introduce a diffusion controlled
viscous drag on moving dislocations. At lower temperatures, solute
-atoms can interact with strain energy ﬂ.elds of dislocations (Cottfelt |
locking(44)) 6r provide chemical interactions with stackirig faults (Suzuki
locking(45) ). or result in short-range order strengthenh’xg(Fiéher hard-
ening(m) ). We shall be content here to review only the last three men~ -

tioned mechanisms,

4B. Cottrell Locking
‘ Substitutional atoms that have atlomic radii that differ from the
solvent species, introduce local dilations and contractions in ‘the lattice.
Such strain centeré can interact elastically with the hydrostatic téri‘pion
stress fields of dislocations. As shown by Eqs. 2.3 and 2, 10,:1-the mean

hydrostatic tension stress fleld due to an edge dislocation is ..
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O‘H*G‘ + /744 (/ )6-’6 nP -
VVA. 6o ( )( +(]“9) ;ﬁ(/,j:)/g 4.1

and therefore edge dislocations will interact with -ubstltutional solute
atoms. A small interaction, ‘which will be neglected here, also ax‘lsee
from electronic effects. But the mean hydrostatlc tenslon atress arising
from screw dislocations is zero. Nevertheless a screw dislocation seg- -
ment near a- solute atom can reorlent aomewhat to acquire a small edge |
compqnent whichvwill-_then interact with the solute atom-..

Ihterstitial atoms not only cause local increases in volume but also
introduce local shear distortions. Conséquently interatitials interact .
; elastically'wlth both édge and screw cdmponenls and for this reason give
mich hlgher locking effects than substltutionals. . |

The interactlon of interstltlals with dislocatlons has been analyzed
. by Cochard;, Schoeck, and Welderslghfﬁe) But we shall be content here

~ to review the interaction of substitutional Alloying élementa with disloca-
tions as ﬁrst described by Cottrell.(44) v | |
| _ Consider an atom at r and 0 from the coré of an edge dislocation
_whefe the meah hydrostatié tension is givén by qu. 4.1, In order to as- |
certain the strain»énergy between a solute atom al this point and the |
dislocation we consider blowing the atom up from a rédlus'R corresponding
to that of the radius of solvent atom to a size R, appropriate for the radius
of the solute. Work must be done during thi> process against the constant
mean hydrostatic tension glven by Eq. 4. 1. This work ‘iaequal to the

pressuré times the change in volume, Therefore, assuming R; -R is not

too large



-oor

-170- UCRL-10455

| Gt T+, ) '
= pA\= an 06 =z TTRE(R ~F (4.2
U ,=PAV =l 4N R-R)
When the strain due to the differences in atomic radlus is given by

‘("" (ﬁ/""vf?)/ﬁ s

the interaction strai“n‘ energy reduces to |

Ueo=

< G’d;rq‘%_) 5‘/7f3£|‘-_ | “49

a

l'_x‘xtroducinngq. 4.1 givés

= {f/ /?3 /7"“ Céj:ﬂ 2 (4. 5)

The above derivation, however, neglécts the compressibility of the solute

atom. When this is taken into consideration, as suggested by Bilby, (69)

Ucb——ﬁ&nd-_.s‘ A"J Cé 5///0< (4. 6)

Introducing _carteéian coordinates rz L xz + y2 and sin a = y/r, '

Eq. 4,6 can be written as

X+ 42— — 3.—:0 B (4.7)
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Each constént pOténtial energy, therefore, is reptesented by a circle

‘that is tangent to the line y* 0 and is centered on the line x = 0 as shown

in Fig. 4.1, The interaction torce to which the atom is subjected there~
fore, acts normal to the equiponential lines in the directlon of the con-

Jugate set of circles shown as broken curves. Consequently at tempera=-

'tures whera diffuaion can take place Bolute atoms will migrate along the

broken ctrcles toward the core of the dislocation. Solute_atoms larger

.-than the host wil‘l'migrate in the direction shvo_v_vn by the arrow to the lower

or extended part of the dislocation. Solute haﬂng a smauer atomic radius
than the host will migrate in the opposite direction. In either case such
migration results in a decrease in the free nnergy of the system.

It was suggested at one time that the dislocation core becomes

~ saturated when the éblute atoms satisfy its strain Iield. On this basis

it was believed that the dislocation could accommodate only a single line
of solute atoms along its core., A brief review of how the preéeding cal-

culation was made will reveal that this concept simply is not true. The

» interaction between a dislocation and a solute atom is unmodified by the

'presence of other solute atoms. Of course, the other solute atoms can

independently react with the one under consideration. And therefore an
equilibrium atmosphere is produced when the chemical potential gradient
hlong the broken circle is equal and opposite to the potential energy

gradient arising from the presence of the dislocation. ‘Consequently

- Cottrell atmospheres are much bi‘oader than originally visualized. And

in some cases, e.g., when there is an excess of N and C in steels, the
chemical potential gradient never completely countermands the elastic

interaction energy. For this reason, as shown so clearly in electron



~172- UCRL-10455

Y CIRCLE Aoy
a ' |
b 2
c 3
a’ -1
b’ -2
c’ -3

FIGURE 4.1. CIRCLES OF CONSTANT
INTERACTION ENERGY.
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| microscopic inveatlgations.' the solute atoms continue to feed 1nt6, the
,disiocation core produ'c!ng precipltﬁteé of nitrides and carbides on the
_dlslocauons. ‘ ’

When a dialocation is moved away from its atmosphere, the energy
of the aystem must be increased. Early considaratlon of slngle atom |
atmospherea nluatrated that this energy was not excesslve and therefora
solute atom locked dislocations could be moved from their atmosphara
"~ with th‘e'aid of ihermal ﬂucjtuationa. It was thdugh’t that once a dislocation -
segment were _so.unlocked it w'ould, multiply, impinge on other locked dlé-
locations and thus initiate an avalanche which would result in a Luders
band. But it can now be shown that tlll_e. locking is in general so severe
that locked dislocations do not move. Therefore the \iaual yield point
" phenomena musf’bé associated with the generation arid',multiplication of
new unlocked dislocatibns. This model is in complete agreement with
the observations thaf the activation energies for the preyield creepvetrains',' _
delayed'yieldmg. and the propagation of Luders bands agree well ,v'/ithA .
the activation energy for deformation per ae, |

Precipitates on dislocations, of course,l block the motion of newly
formed dislocations. When a dislocation i separated from a mild atmoa-
phere, the stmosﬁhere will lnteract with other moving dislocations. In
these ways Cottrell atmospheres cause strengthenlng even when new dis-

locations are 1ntroduced.

4C. Suzukl Interactions

As we have seen in Section 2M, dislocations on the (111) plane in
FCC metals on those on the basal planes of HCP metals dissociate into
partials leaving a strip of‘aitacking fault 2 atomic layers high between

them. Whereas the stacking fault in FCC metals conaists of two atdmic
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layers of CPH stacking, .that ln CPH metulu consists of t‘uvo atomic layers
of FCC stacking, When a metul containing stacking ‘t“a.ult‘s is heated into

| the temperature range where diffusion can talcc place, tlxe aolute atomsa
will rédiatribute theniselves between the stacking l’aulté and tliev ideal
crystal Durlng such redlstrlbutlon the sepamtion of the partlals will in—f
crease allghtly because the stacking fault energy decreasea. : Slnce the
volume occupied by the stacklng faulta is small the mole fraction of solute
atoms remains about equal to the average composltlon in the.crystal c,’

| whereas the mole fraction of the faulted region becomes cf |

_ The situation then la as shown in I‘lg. 4 2. If then a unit length of
the dislocation is moved a distance 5 . assumed to be identical for both
partials in this approximatlon. the wox‘k done is (f Z )b5 This worlc |

: must equal the increase in chemical free energy. In moving the partial
dislocations an amount 5 3 the volumes of the phases changed 2115 for |
the l‘lrst dislocatlon this volume of the matrix phase was produced at a

| composition Cg resulting ln the disappearance of the same atacl:lng fault )
| volume of the same compositlon, and at the second dislocation this volume
of the stackmg fault was produced resulting in the di@appearance of the ‘

' ’same volume of the matrix phase at the composition c. Consequently

(Z‘ Z*),é,g.; ZAE[(F ;F)+(F7c F)} .8

‘where V is the molar volume. assumed identical regardless of stacking,
F is the free energy per mole of the matrix, Fe the free energy per mole
of the faulted region, and the subécripts Ce and ¢ refer to thé compositions

~ at which the free energies must be evaluated, Therefore

(? Z”“/ /(F"/-) ~(F* F/} e
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In general both (ZE“f - 1‘:")c aamd(F‘t - F), are poaittve as, e.g., in the case
4

of Ni-Cu alloys where the etable phase 18 always FCC, the faulted region

having the higher free energy regardless of composition But

(pf

- lE“)cf < (F - F) since the composition Cp Was obtained as a result
of equilibrium. Consequently the total term in the braces of Eq. 4.9 I8
always positive. | a - |

An addttional relationship between the variables of Eq. 4.9 13
obtained by invoking quasi-equilibrium conditions between the matrix
'~ phase and the t‘ault';e_d‘ region, Complete ecjuiltbrium. of course, i8 never
achleved inasmuch as this would demand the disappearance of the faulted
regions, We cohsidor, therefore. opon 'matrtx and faultéd phases for

which, at equilibrium, the virtual change in free energy 5 F; for the

" total aystem is : ;
£
SF= ( 5:4 aF )5»« +(C§F 5;4 Méﬁ-* on'
d hg, anf [P
where F' refers now to the free energy of the matrix containing n, "a"
atoms and n "b" atoms, etc. The partials derivatives are therefore the
chemical potentials. At equilibrium, 83" » for the total system 1is zero, -
To arrive at the equilibrium condition we let 8 n= 8"&"’"“5 y\b Shb" gq‘
This s merely the expression for conservation of mass which yet permits
atom species transfer of g h atoms of type "a" from the fault to the matrix

“and S N atoms of type "b" from the matrix to the tault. For equilibrium,

therefore,

’ ,‘ 'L I. : _' | o
éf__éf:__ JF #_*_Qf_f_____ (4. 10)
AN, 4, A”i é“i
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In general, the thermodynamic data that are needed to achieve a
aimultane’bns -sohit.ion of Eqs. 4.9 and 4.10 are_' not available, Further-
r'nor.e.v theories on the ihermodynamii:s of solid 'so_lutiona have not yet
.beén wéll venough developed to.prqvide reiiable' anavlyses of the tﬁefrmo-—
dynamics -of unstable golid solutions. (e. g., hexagvonal‘ Cu-Ni alloys). But
in order to obtain an initial concept of possible trends, the régular golu=~
tlon'-laws_; mighi_be .invoked._. To simplify the analyais this will be done not.

- only for the mabtrlvaut equally for the faulted voiume. 1n spite 6f the fact’
that the stacking féulf region should be.ti'eated as alaurfa.ce.
o The free’e.nervgy of an open regular solution consisting of.n_ !
_ ’atoms_ and n, "b" atoms can be written as _
1 Ny Fa L?_Q_F; +(hd*ﬂé“‘)AH ___'é,T/g‘h (n4+mb);/ (4. 11)
N X o TETE hadAnl

i ———

where N is Avogadro's number, F_ and F, are the free energies per mole
of pure "a" and pure "b", AH 1 18 the change in enthalpy upon mixing a
" mole of "a" and "b" atoms and the last term refers to the contribution of
the entropy for random mixing, A gimilar expresaion applies to the -
faulted region.” When C is defined as
\ nb -

C= oen, o | (4.12)

Eq. 4.11 written for one mole of the alloy)reduces to

| /:;‘:</__C),r_(zf+c ry #A H’?i(c)'l-#ATz%vji“C,*(/*C)fht(/“ﬂé}i (4.13)
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with similar expressions for the remalning free energies in Eq. 4.8.

Then

(F-F); (/-C)(F F)+C_(FF E )+ -AH )4 "
where the entrppy terms vanish, Also

(Ft /-') (= XESE) e (57 JHBR=AM,),, v

Introducing Eqs 4.14 and 4.15 into 4. 8 gives
(2-t4= 4 fic c/ Le)-(E" F]v‘(AH’C AH,)
(KA H,,;

(4. 18)

For equilibrium conditions, we apply Eqs 4. 11 etc. to the condi-

tion given by Eq. 4.10. For example

/74"’“& AL\H»\ +éTﬁw tathe (0 17

| AFI,, 4 '
g;\‘«w N”.‘_T * /V éc a. | h“~
and | '

AF F AH o hethy MM Yo g |
b an Ng+h
é“b /V | /V ' /V dc énb ’& ﬁk “b =

Recalling that

5@ __‘ ___'i‘_s_'____ d éc_ - | h, 2 (4. 18)
e (et Y dn, fathy "~ (nathy)
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and similarly for the faulted region
1 ? —f
6F 4+ 2 éF - “F;~__L(JAH£1 -",/T'é”' (4. 20)
| oy Jnf AN Y =

‘ ' - Consequently the equilibrium condition, obtained by introducing Eqs. 4.18

and 4. 20 into 4. 10 is given by

_Ef_,;/-—fggxpf*#/(‘/‘:‘ /-‘) (=~ F/+(JA 64“)} (4. 21)

/=G

Eqs. 4. 16 and 4,21 therefore comstimte'the solution to the problem.

An 'e-::plicit expression fork:f {a not obtainable from Eq. 4. 21 since

B

exponontial term will be po&itive and therefore ce will be som@wh_ét

(AJ ) also depends on Cpo But the quantities in the braces of the

smaller than c. This difference will be greatest at the absoluta zero and
as the temberature increases Cp will increase very slowly to approach ¢,
When the‘ solution is ideal the Mm's are zero and Eqs. 4.16 and

4,21 reduce to the simple expressions, respectively, of

(Z“-Z‘)._. (c cf)AF

: | AF
¢ o =T
[—Cq, /—C | (4. 23)

(4. 22)
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where
A P*—(_Fj"‘Fb)“(FaJ‘ F&) R

\ﬂb and \/‘«'being the stacking fault energies in pure b and a, There-
tore (Z' --Z‘ #) can vary mildly with temperature depending on the variation
| in at'avckin‘g fault energies of pure a and bure b with temperature, |
Exceptinngheh the Qtacking fault. width is only a few Burgers
' vegtore, Suzuk{ locked alloys cannot be thermally ac_tivatéd. An example
of fhe ;nbenaitivity of the flow ntreaav‘tb strain rate and temperature is
ehown in Fig. 1,6, These results cannot be ascribed to Cottrell locking
since the aiomic radii of Ag and Al are almost identical. Furih'erm&e
short-range order hérdening would hav‘eres'ult‘ed in decreasing flow streas
with increasing fempera‘ture. The increase in flow stress with temperature
and the presence of 6 yieid,po‘int :coul‘d‘ only be rétion@liied in terms of

Suzuki locking, .

4D, Fisher Stt‘éng’thening_

When A and B atome are mixed to produce a solid solution alloy

the bond reaction

| //2 A“A + //25‘8 —=AB o (;.26)
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takes place, The change in energy of the system 18 given by

.g::gﬁﬁ-—- '/é,g/m.* y2£ﬂa . ' e

per A-B boxid produced. Consequently if E is negative the reaction

will tend to go fo the 'z.-ight. Undef these coﬁditiona the atoms in the alloy
will so arrange themselves that the lérgest number of A~B bonds will be ..
produced. "Consequedtl,& the number of A atoms about a B atom or the
number of B atoms about an A atom will B&‘f&me greater than that appro-
'priatei for an ideal solution. Such an aﬂoy exhibits short-range ordéﬁng.
Conversely, if the energy £ increases, there will result more A - A

and B,-B bonds than in a random’ solufibn. Such an alloy is said to cluster,
" But ordering and clustering are only different facets of the same problem.
Such ordering and ciusterif;g can only apply to near neighbors because the
golution, as a whole, must have the averagé composition. In fact to a

good first approximation oﬁ-ly inter'actioné between the atoms and their
immediate nefghbors need be considered., At greater atomic distances

the alloy is random.

We will employ Cowley's!’?

analysis for order here limiting our
discusqion only to {nteraction effects between nearest neighbors., Let a
be the degree of order, and p AB the probability that an A atom is next to

a B atom. By definition of o -

70, = " (/-o() - | (. 28)

where m A is the mole fraction of A atoms., When the golution is random,
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PAB must be equal to m,. When a is positive there are fewer than the-
average number of A atoms and about a B and the alloy exhibits clustering;
when a i8 negative there are more than the averaga number of A atoms
about a B atom and the alloy éxhibita' gshort-range ordering. Thus for an
ordered alloy both £ and a are negative whereas for a clustered alloy
both are positive. The product €. a is always positive or, in a random
solid solution, zero. The range of « is limited, When p Ap ® O @ has ita
" maximum value of 1 -, and when p AB is 1 , o has its minimum value
ofanl-« mi va B - » The probabilities for ihe remaining

A ma Ma
arrangements, shown below, follow directly from the definition given in

Eq. 4.28a, namely,

— P = e = Pg 17
7%5"‘/-7/)?/ / /?%7‘/”,,0{ 87 o( (4.280)

M@A = /?7&_(/."'0() (4, 28¢)

/4 ,:(/'“ 7.;4) - /'7*/,4—1-/“77&0( | (4. 28d)

We now consider an alloy containing N atoms in a structure that

has a coordination number Z, In this alloy there are a total of NZ bonda

2
and we plan to express the total energy of the alloy in terms of the degree

of order a as

fraj= Bigpg e
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where & {a} 4s the average energy per bond in an alloy that has order
a. The total energy of the alloy is the sums of the énergies of the A - A,
the B - B and the A - B bonds; which is

E/*]é(/’u ZA/')ﬁA'C; _,_(/7;6 ZN f &,

b4 /I/ | (4. 30)
] 7
+ (/77,4 /0 CYRYY +(ﬁ é‘/m
Wh.en Eqé. 4.‘28 are introduced, and Eq. 4. 29 {8 solved,
T R 4
E{"(?w & IC(':M 1, C(;ﬂe'f'z/”ﬂ Mg $as
o | (4. 81)

1"" 2/7//;/77@ Q/E

wheres is given by Eq. 4.27. Sincea and £ always have the same
eign,E { g? is always less than the average energy of a bond in the ran-
domly arranged alloy where avﬂ 0, |

When a diélocation moves through the lattice it displaces i{ts nearest
nieghbors across the slip plane and replaces them by next nearest neighbors,
But next nearest nelgh‘bora are almost random. Consequen.tlly if twoor
more dislocations pass, th_é alloy becomes prhctically comhletely disordered
across the slip hl#ne. The average increase in energy per bond that ié

broken is

= &jof— Cc_f°‘]=2/’7,4 A E s

In order to illustrate. the determination of th‘ev flow stress, we will

~consider as shown in Fig. 4.3 slip on the (110) plane in the [111] of a BCC
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(® ATOMS BELOW
O ATOMS ABOVE

WHEN ATOM A ABOVE SLIP PLANE

© MOVES TO A/, IT IS NO LONGER CO-

ORDINATED WITH ATOMS C AND B

BELOW THE SLIP PLANE, BUT WITH

ITS FORMER NEXT NEAREST NEIGH-
" BORS B’ AND C' “

FIGURE 4.,3. CHANGE IN NEIGHBOR
ARRANGEMENT DURING DEFORMATION
OF A SHORT RANGE ORDERED ALLOY,

0%
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crystal, ' The dislocation line of length CD moves one b breaking the
former bonds of A with B and C and making new bonds with B' and C".

Therefore, the work done
aw V3, VZ 42 o=
(2',"‘[ )Zd -2--61 = 2¢ (4. 39)

Therefore, | |
/6y 1y AL

(F-2%) = ear | w

~ This can indeed be quite a large quantity.

. It has been shown that the equilibrium degree of order a, is given

2T

by (71 |
=& | (4.35)

(g 1105 ) (gt i, o, )

Therefore, at sufficiently high temperatures, where diffusion is possible,

the absolute valué_ of the degree of order a, ‘decreases slowly' with in-
creasing temperatures, Below this temperature, however, the flow stress
( Z’—Zﬁ‘) is dependent on the "frozen in" degree of order a and therefore

is insensitive to the temperature, Ah example of the effect of short-range
order hardening.is shown in Fig. 4.4 where short range ordering con-

trols the deformation over Region II.
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