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Mapping Potential Malaria Vector Larval Habitats for Larval Source Management in Western
Kenya: Introduction to Multimodel Ensembling Approaches

Guofa Zhou,1* Ming-Chieh Lee,1 Xiaoming Wang,1 Daibin Zhong,1 Andrew K. Githeko,2 and Guiyun Yan1
1Program in Public Health, University of California, Irvine, California; 2Centre for Global Health Research, Kenya Medical Research Institute,

Kisumu, Kenya

Abstract. Identification and mapping of larval sources are a prerequisite for effective planning and implementing
mosquito larval source management (LSM). Ensemble modeling is increasingly used for prediction modeling, but it lacks
standard procedures. We proposed a detailed framework to predict potential malaria vector larval habitats by using mul-
timodel ensemble modeling, which includes selection of models, ensembling method, and predictors, evaluation of vari-
able importance, prediction of potential larval habitats, and assessment of prediction uncertainty. The models were built
and validated based on multisite, multiyear field observations and climatic/environmental variables. Model performance
was tested using independent field observations. Overall, we found that the ensembled model predicted larval habitats
with about 20% more accuracy than the average of the individual models ensembled. Key larval habitat predictors in
western Kenya were elevation, geomorphon class, and precipitation for the 2 months prior. Additional predictors may be
required to increase the predictive accuracy of the larva-positive habitats. This is the first study to provide a detailed
framework for the process of multimodel ensemble modeling for malaria vector habitats. Mapping of potential habitats
will be helpful in LSM planning.

INTRODUCTION

Malaria is still the most serious mosquito-borne infectious
disease in the tropics, especially in Africa.1 The scale-up of
indoor interventions such as long-lasting insecticidal nets
(LLINs) and indoor residual insecticide spraying (IRS),
together with effective treatment, has led to a substantial
reduction in the malaria burden.1 Nonetheless, malaria con-
trol faces increased challenges due to vector resistance to
insecticides and outdoor residual transmission.1,2 Larval
source management (LSM) has become a viable choice for
further reducing malaria transmission and is recommended
by the WHO for use under certain conditions for malaria con-
trol and elimination.3,4 Larval control complements LLINs
and IRS and controls both indoor and outdoor transmis-
sion.3,5,6 Previous studies in several countries where malaria
is endemic prove that larval source reduction and larviciding
can significantly reduce both indoor and outdoor vector den-
sity and malaria infections.5,7–10 Several African countries
have adopted LSM as a key vector control tool parallel to
LLINs and IRS or as a supplementary strategy.11–13 For
example, the Kenyan government has planned to target all
larval sources for LSM by 2023, although the plan is overam-
bitious.11 Because larval sources can be anywhere after rain,
the currently recommended LSM strategy is targeted LSM
with environmental management and larviciding.3 Large-
scale implementation of LSM requires a carefully designed
strategy and effective planning, especially the identification
and mapping of larval sources prior to any field opera-
tions.11–14 However, effective larval habitat identification and
mapping are lacking.
Many climate- and environment-based models have been

used to predict the potential distribution of malaria vector
larval habitats, for example, ecological/environmental niche
models,15,16 logistic regression,17–19 and machine learning
methods such as artificial neural network and random forest
models.17,18 Clearly, different modeling methods are likely

to produce different results and select different risk fac-
tors.17,18,20 With so many models available, it will be difficult
to find the robust model with the best predictions. More
importantly, since different models end up with different
groups of risk factors, how should the key risk factors be
determined?
Recently, multimodel ensemble approaches have been

used increasingly for predictions in various field studies.21–28

According to Kotu and Deshpande, “Ensemble modeling is a
process where multiple diverse models are created to pre-
dict an outcome, either by using many different modeling
algorithms or using different training data sets. The ensem-
ble model then aggregates the prediction of each base
model and results in one final prediction for the unseen
data.”29 The reasons for employing ensemble methods in
building a model are to enhance the overall performance of
the model, minimize the error rate that can be caused by
using individual models, and reduce the overall uncertainty
of predictions.22,29,30 There are different ways to ensemble
the models, including most votes, simple average, weighted
average (linear or nonlinear), boosting, and stack-
ing.22,24,27,31–33 In mosquito studies, ensemble modeling
has been used to predict the global expansion of Aedes
mosquitoes and the invasion of Anopheles stephensi in
Africa.26,34,35 Very recently, ensembled modeling techniques
have also been adopted to predict potential mosquito larval
habitats.20,25,36 For example, Wieland et al. used the average
of dry/wet/normal year predictions as the ensembled predic-
tion, which makes sense biologically for reducing over- or
underestimation due to variations in precipitation,36 although
we do not know whether the dry and wet years have similar
intensities (negative/positive) of impact on larval habitat
availability and productivity. In studies by Rhodes et al. and
Beeman et al., the final ensembled model was fitted using
only those models with area-under-curve (AUC) scores of
$ 0.7, and each model was weighted proportionally to its
AUC score.20,25 The assumption is that only models with
AUC scores . 0.7 are considered to be well-performing
models, and better-performing models should be given
higher weight.20,24,25,27 These methods lack a biological
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(and/or statistical) basis for both the model and weight
selections; the selection of an AUC . 0.7 is somewhat arbi-
trary, and the weight selection may not lead to robust esti-
mations. More importantly, feature importance or risk factor
analysis is essential for larval habitat prediction and for
LSM.21,36 Bose et al. used rank order (i.e., most votes) for
feature selection.21 Rhodes et al. and Sinka et al. did not
specify how the variables were selected for the ensembled
model.25,26 Beeman et al. displayed the variable importance
for each individual model but not for the ensembled model.20

Overall, no standard method currently exists for variable
selection and relative importance evaluation for ensembled
models.24,27,29,37

The aim of this study was to build a habitat prediction
model using historical observations of aquatic and larva-
positive habitats in western Kenya and weighted multimodel
ensembling. We used recent field observations and observa-
tions from different areas to test the model. Finally, we pro-
posed a method to assess risk factors and to measure the
uncertainty of model predictions. The predicted map of habi-
tat and larval distribution in western Kenya will be beneficial
for LSM planning.

MATERIALS AND METHODS

Study area, field data collection, and data assignment
for modeling. Field aquatic habitats and mosquito larval
surveys were conducted in four sentinel sites in Kakamega
(Iguhu site) and Vihiga (Mbale, Emakakha, and Emutete sites)
counties in western Kenya (Figure 1). Western Kenya is the
last malaria transmission hot spot persisting in Kenya.38–43

The study sites included places with seasonal malaria
transmission. Malaria larval distribution, larval ecology, and
parasite transmission in these sites have been studied

extensively over the past 20 years.38–52 The elevation in the
study area ranges from 1,420m to 1,670m. The study area
has two rainy seasons: a long rainy season that usually starts
in March and lasts until June, and a short rainy season
between October and November, with two dry seasons in
between.43 Annual precipitation reaches around 1,400mm.
Aquatic habitats and mosquito larval infestations were sur-
veyed in 2002, 2003, 2005, 2008, 2010–2012, 2017, and
2018 (Figure 1). In most years, field habitat surveys were car-
ried out in February (dry season), May (long rainy season),
August (dry season), and November (short rainy season).
Global positioning system (GPS) locations of all habitats
were recorded, the sizes of habitats were measured, and the
availability (yes/no) of immature Anopheles mosquitoes was
checked in most years. Overall, we surveyed about 50,000
aquatic habitats, and Anopheles larval infestation status was
available in about 40,000 habitats (Supplemental Table S1).
Since all aquatic habitats had water at the time they were

surveyed, to identify predictors of aquatic habitats, we artifi-
cially generated about 13,500 pseudohabitats in randomly
selected locations with known residential houses and no
habitats whatsoever25,36 (Supplemental Table S1). Pseudo-
habitats were selected at least 50m away from any known
aquatic habitats. These pseudohabitats will always have an
aquatic status of “no water” regardless of sampling season.
The pseudohabitats were generated using ArcGIS 10.0
(ESRI, Redlands, CA).
We used 2002–2012 field observations to train and vali-

date the models. A 70:30 random splitting of data was used
for model training and validation (Supplemental Table S1).
To produce an unbiased evaluation of the final model, we
used field data collected from the same area in 2017 and
2018 as testing data, i.e., an independent data set.53,54

About two-thirds of the pseudohabitats were randomly

FIGURE 1. Study sites (left) and distribution of observed aquatic habitats (2003–2018) and pseudohabitats in the four study sites in western
Kenya (right).
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assigned (with equal probability) to February, May, August,
and November 2012 samples, and one-third were assigned
as 2017 samples.
Climatic and environmental data. Climatic and environ-

mental data included about 220 variables and were
described in a previous study.43 Briefly, environmental data
included altitude, topographic/geomorphologic features
(e.g., slope, aspect, land surface roughness, etc.), land use
land cover, and tree coverages from different years. Climatic
data included monthly average temperature and cumulative
precipitation. Satellite image-derived data included normal-
ized difference vegetation index, normalized difference water
index, land surface temperature, and evapotranspiration,
among others. Climatic and satellite image-derived data
were all monthly based and covered the study period from
2000 to 2019. To account for the time-lagged effect, we
selected only the data from the 6 months prior to the habitat
surveys, assuming that the habitat aquatic status and larval
availability were affected only by climatic conditions during
the last 6 months.
The assignments of climatic and environmental data to

each survey point were done using ArcGIS 10.0.
Modeling process. In this study, we used 2002–2012

data for model training and validation and 2017–2018 data
(serving as independent data) for model testing. After data
dimension reduction, we separated the two data sets, i.e.,
training/validation and testing (Figure 2). Once models were
validated, all models were subjected to testing. After model
testing, the combined data set was used to build the final
models for ensemble modeling (Figure 2). Data dimension
reduction was done using principal component analysis and
was described in previous studies.29,43 Individual model
training/validation, testing, and prediction are rather straight-
forward; however, there is no standard method for model
ensembling or risk factor determination in ensemble
modeling.20,25,26,29,30,36,55

Model specification and modeling process. Many mod-
els can be used to identify mosquito larval habitats.17,18,20,25

There is no standard method for model selection in ensem-
ble modeling. Many studies have used the R package
biomod2 for model selection and ensembling.20,25,26 In
principle, model diversity and independence are key to
ensemble modeling29,37 because models built using similar

methods may perform similarly (for example, gradient-
boosted logistic and gradient-boosted tree models), so
ensembling them may provide limited additional and possi-
bly biased information for risk factor analysis and limited
improvement in model performance due to redundancy.
Including conventional models such as logistic and decision
tree models and modern machine learning methods such as
neural network increases model diversity. We selected 10
models for classification analyses in this study: five of them
are conventional methods (ordinary logistic regression,
Bayesian logistic regression, regular classification tree, naïve
Bayes tree, k-nearest neighbor [kNN] classifier), and five are
machine learning methods (gradient-boosted [GB] logistic
regression, support vector machine [SVM] logistic regres-
sion, extreme gradient-boosting [XGB] tree, random forest,
regular neural network [NNW] tree) (Supplemental Table S2).
Two of the 10 models require careful prior specifications:

Bayesian logistic regression and NNW. For Bayesian logistic
regression, one needs to specify a joint distribution for the
outcome(s) and all the unknown parameters, which typically
takes the form of a marginal prior distribution for the
unknowns multiplied by a likelihood for the outcome(s) con-
ditional on the unknowns. In this study, since we had yes/no
outcomes, we used a conditional binomial model with a logit
link function. Since we had little a priori confidence that the
parameters would be close to zero, we chose to use Stu-
dent’s t distribution as the prior distribution for parameter
estimation, i.e., heavier tails than the normal shape. For
the NNW model, we used a logistic activation function for
the output layer and tangens hyperbolicus for the hidden
layer(s). We also tested different hidden layer structures for
the NNW, ranging from one to three layers and two to five
neurons for each layer. All models need some prior specifi-
cations, but most of the settings are straightforward and
likely do not severely affect the classification results, for
example, the number of repeats of cross-validations (10 in
this study) and the number of trees (as long as we specify a
large number).
We used stepwise variable selection in ordinary logistic

regression and projection predictive variable selection in
Bayesian logistic regression.56,57 Variable selection for other
models was based on either a significance test (P , 0.05) or
relative importance score (, 1%).29 In addition to using a

FIGURE 2. Flowchart of the modeling and habitat prediction process. GBM 5 gradient-boosted machine; kNN 5 kth nearest neighbor tree;
Logistic5 logistic regression; SVM5 support vector machine; XGB5 extreme gradient boosted.
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separate data set for validation, to further reduce predictive
bias and uncertainty (i.e., variance of performance esti-
mates), we used 10-fold cross-validation for the training of
all models except NNW, since we had a large training data
set.29,53,58,59

For aquatic habitat identification, we used both field-
observed aquatic habitats (yes) and pseudohabitats (no). For
the identification of larva-positive habitats, we excluded the
pseudohabitats.
Comparisons of model performance. We used several

criteria to evaluate the performance of different models. The
overall prediction accuracy was calculated for each model
using both validation and testing data sets. Validation was
done using the original model built on the training data set.
Prediction accuracy of the final model was assessed using
the testing data set, and the model was calibrated using the
validation data set. Since we had binary outcomes, we also
calculated the sensitivity, specificity, AUC, positive/negative
likelihood ratios, and positive/negative predictive values for
each model.37,59,60 Agreement between observed and pre-
dicted records was measured using the kappa statistic.61,62

To assess other differences in model performance, we
checked the relative importance of variables selected for
model predictions. Variable relative importance was mea-
sured using scaled relative importance ranging from 0 (least
important) to 100 (most important).
Ensembling of models. Since different models may

select different variables for predictions (i.e., harness differ-
ent aspects of the data), the models likely do not contribute
equally to the ensembled model. To obtain robust predic-
tions, the ensembling process can be treated as a classic
case of simplex optimization. Assuming pi is the output from
each model and wi is the weight for each model such thatPn

i51wi51, where n is the total number of models, the pre-
dicted value using the ensembled model is

p5
Xn

i51

wipi:

The objective function is a maximum likelihood function
(MLF), i.e.,

Maximize
Y

pyð12pÞ12y,

where y is the response flag for the observations. This is a
classic logistic regression type of MLF. Thus, the weights,
wi, can be estimated using logistic regression analysis. We
also examined the weight estimates by using the simple
average (equal weight for all models), the most votes (predic-
tions by the most models), and neural network models (to
measure potential nonlinearity).
The ensembled model used predictions based on all data

sets; i.e., models were calibrated by all data sets rather than
the training data set alone.
Ensembling of risk factors. Currently, there is no stan-

dard method for examining variable importance in
ensembled models.20,25,29,60 We proposed the following
approach. For each model, the top 20 most important (by
relative influence) risk factors (predictors) were selected. For
any model (e.g., logistic regression) that ended up with , 20
significant risk factors after variable selection, only the signif-
icant risk factors were selected. The risk factors were ranked
based on the votes of the models (i.e., how many models

selected each risk factor), and the top 20 ranked risk factors
were selected as the important risk factors. The variable
importance (RI) was measured as the weighted average of
the relative influence from each individual model:

RI5
Xn

i51

wiRIi,

where RIi was the standardized (scaled) relative importance
RIi from model i, i.e.,

RIi5
RIi2mini RIi

maxi RIi2mini RIi
:

The weights, wi, were the same as estimated by the
ensembled model.
Assessing prediction uncertainty. Model prediction

uncertainty has also been less studied or not mentioned in
most previous studies. We proposed to use the square-
rooted mean squared error against the ensembled model
predictions to measure the prediction uncertainty,29,37 i.e.,

MSE25
Xn

i51

ðpi2pÞ2=n

where p was the probability predicted by the ensembled
model and pi was the probability predicted by each individ-
ual model.
All data analyses were conducted using R 4.0.3 (The R

Foundation for Statistical Computing, Vienna, Austria). The
following packages were used in this study: caret for training
and validation data splitting and for the kNN tree; factoextra,
Rcpp, FactoMineR, ggplot2, Hmisc, and reshape2 for data
dimension reduction; dplyr, ROCR, caTools, mlbench,
MLmetrics, MASS, plyr, and tidyverse for logistic regression;
mboost, gbm, and cvAUC for GBM logistic; arm, logicFS,
LogicREG, and mcbiopi for SVM logistic; GGally, bayesplot,
rstanarm, loo, projpred, and reportROC for Bayesian logistic;
party, rpart, and pROC for decision tree; randomForest for
random forest; Metrics and xgboost for XGB tree; neuralnet,
devtools, and usethis for NN models; deepnet for DeepNN
models; e1071 for Naïve Bayes classifier; and vip for mea-
suring variable importance. The above-mentioned packages
are listed in the order in which they appeared in the code.
Some packages were used for multiple models; for example,
caret was used for data partitioning and in logistic regres-
sion, SVM logistic, GBM tree, and XGB tree, among others.

RESULTS

This study collected data from 49,261 aquatic habitats, of
which 38,693 had larval survey results (Supplemental Table
S1). For aquatic habitat identification, about 42,600 aquatic
habitat records were used for model training and validation
and 6,600 were used for model testing. For larva-positive
habitat identification, about 32,000 records were used for
model training and validation and 6,000 were used for model
testing.
Prediction accuracy. For aquatic habitat identification,

prediction accuracy for the testing data varied substantially
among different models (Figure 3A); the overall prediction
accuracy varied from 58% (neural network) to 82%
(ensembled model) (Supplemental Table S3). For predicting
the aquatic habitats, the ensembled model (accuracy,
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89.7%) produced the best accuracy, although it was only
5% better than that of the Bayesian logistic model (Figure
3A). For the overall prediction of aquatic habitats, logistic
regression ensembling outperformed simple average, most-
votes, and neural network-ensembled models (Figure 3C).
Similarly, for larval infestation identification, prediction

accuracy varied substantially among different models (Figure
3B), and all models had , 60% prediction accuracy for the
testing data except the ensembled model (accuracy, 68%)
(Supplemental Table S4). The logistic regression ensembled
model overperformed other models (Figure 3B). Similarly, logis-
tic regression ensembling overperformed simple average, most-
votes, and neural network ensembled models (Figure 3D).
On average, the logistic regression ensembled model had

about 20% greater accuracy than each individual model for
the prediction of aquatic and larva-positive habitats (Figure
3, Supplemental Tables S3 and S4).
Agreement between observations and predictions. For

the aquatic habitat identification, prediction sensitivity of the
10 models ranged from 33% to 100%, specificity ranged
from 0% to 99%, and the overall kappa agreement was
low (, 0.6) for all models (Supplemental Table S3). The
ensembled model had a kappa of 0.62 (i.e., moderate agree-
ment), 88% sensitivity, 73% specificity, and 80% AUC,
that is, reasonably good accuracy compared with that
of pure chance (AUC of 0.5) (Supplemental Table S3).

The ensembled model had about 30% higher sensitivity than
the average of individual models.
For the larva-positive habitats, all models had relatively

low sensitivity and specificity, and all had an AUC , 60%
(Supplemental Table S4). Kappa agreement between the
observed and predicted larva-positive habitats was poor
(, 0.2 for all). The ensembled model had a sensitivity simi-
lar to the average of individual models (�50%), but the
ensembled model had 50% higher specificity than the
average of individual models (Supplemental Table S4).
For the final model, aquatic habitat prediction had an AUC

of 97.9%, a kappa agreement of 0.81 (95% CI, 0.805,
0.822), a sensitivity of 95.6%, and a specificity of 85.0%. For
the larva-positive habitat prediction, the AUC was 74.1%,
the kappa agreement was 0.35 (95% CI, 0.334, 0.365), the
sensitivity was 50.4%, and the specificity was 83.2%.
Identification of risk factors. In most cases, different

models selected different groups of important risk factors
because of the difference in variable selection algorithms
(Supplemental Tables S5 and S6). In some models, a few
risk factors had clear, high relative influences, for example,
the GBM logistic and XGB tree models for identifying aquatic
habitats (Supplemental Table S5). In other models, many
factors influenced the model predictions, for example, ran-
dom forest for the prediction of larva-positive habitats
(Supplemental Table S6).

FIGURE 3. Accuracy of predictions of different models. (A) Prediction of aquatic habitats by different models. (B) Prediction of larva-positive habi-
tats by different models. (C) Ensembled models for the prediction of aquatic habitats. (D) Ensembled model for the prediction of larva-positive
habitats.
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If we take the ensembled model as the final model, the
digital elevation model (relative influence [rel.inf], 100%),
geomorphon class (relative influence scaled to 0% to 100%
[rel.inf], 72.9%), and the amount of precipitation 2 months
prior to the survey (rel.inf, 45.9%) were the top three risk fac-
tors determining the aquatic habitats (Table 1). The relative
influence of the other factors was significantly lower than
that of the top three (Table 1). Although many factors may
have affected larval infestation (Table 2), the top three risk
factors were maximum temperature 4 months prior to the sur-
vey, the amount of precipitation 3 months prior to the survey,
and the distance to the river/streams; however, northness and
other factors also had high influence (Table 2). Regardless, the
top 10 risk factors were all related to temperature and precipi-
tation with the exception of northness, which is somewhat
related to the amount of sunlight received (Table 2).
Mapping potential larval habitats and uncertainty

assessment. Risk mapping is rather straightforward. Figure
4 showed the ensembled model-predicted probability of
potential aquatic habitats and larva-positive habitats in the
study area and the uncertainty of the predictions measured
as mean squared error. Prediction of real (not pseudo)
aquatic habitat had the lowest uncertainty in the Iguhu area,
while the Mbale area had the lowest uncertainty for the pre-
diction of larva-positive habitats (Figure 4).

DISCUSSION

Larval source management is a potentially viable supple-
ment to the currently implemented first-line malaria control
tools for use under certain conditions for malaria control and
elimination.1,3,4 The WHO has recommended LSM, and a
number of African countries where malaria is endemic have
adopted LSM as a key vector control tool parallel to LLINs
and IRS or as a supplementary strategy for malaria control
and elimination.3,4,11–14 Implementation of LSM requires a
carefully designed strategy and effective planning; identifica-
tion and mapping of larval sources is a prerequisite for

LSM.11,12,14 The use of climatic/environmental data, espe-
cially satellite monitoring data and mathematical models, is a
common approach for larval source identification.17–20,25,36

Ensemble modeling provides high-accuracy larval source
predictions; however, standard procedures are lacking,
especially for the ensembling method and risk factor selec-
tion and evaluation. Here, we proposed a framework for
larval source prediction using multimodel ensemble
approaches, including methods for model selection, model
ensembling, risk factor selection and evaluation, model pre-
diction assessment, larval source mapping, and uncertainty
analysis. To illustrate the procedure of the proposed
approach, we used 10 years of multisite field observations of
larval habitat surveys for model training and validation and
independent field data for model testing. Using ensembles
of 10 models, we identified three major predictors of aquatic
habitat in western Kenya: elevation, geomorphon class, and
amount of precipitation 2 months prior. We provided a map
of potential malaria vector larval habitats in the study area.
The aquatic habitat risk map will be valuable for LSM
planning.
Model selection in ensemble modeling. Data mining

scientists recommend using diverse and independent mod-
els for ensemble modeling.29,37 Most medical and biological
application studies have not mentioned how individual mod-
els were selected for ensemble modeling.20,21,24–26,32,60

However, model selection may affect the eventual predic-
tions of the ensembled model. For example, in this study, we
tested both GBM logistic and GBM classification models.
The two models selected exactly the same group of vari-
ables with minimal difference in variable importance and
very similar prediction results (results not shown); note that
the two models utilize almost exactly the same algorithm for
variable selection. If we included both models in the
ensembled model and used accuracy or AUC as the
weight,24,25 we would likely overweight (create bias toward)
these models. Indeed, stepwise selection selected only the

TABLE 1
Relative influence of top 20 risk factors for prediction of

aquatic habitats

Variables Votes* Raw.inf Rel.inf

Altitude 9 21.81 100
Geomorphon classes 9 16.51 72.9
Precipitation 2 months prior 4 11.24 45.9
Minimum temperature 1 month prior 4 7.62 27.4
Soil adjusted vegetation index 6 6.90 23.7
Maximum temperature 2 months prior 4 5.99 19.0
Land surface temperature daytime quantile 4 4 5.96 18.9
Land surface temperature daytime quantile 2 4 5.15 14.7
Distance to river 5 5.09 14.4
Modified soil adjusted vegetation index 7 4.69 12.4
Maximum temperature 1 month prior 4 4.45 11.1
Normalized difference built-up index 4 4.20 9.9
Curvature 8 4.13 9.5
Average enhanced vegetation index 6 3.99 8.8
Minimum temperature 4 months prior 5 3.64 7.0
Minimum temperature 2 months prior 5 3.61 6.8
Normalized difference vegetation index 5 3.30 5.2
Population density 4 3.19 4.7
Land surface temperature daytime quantile 3 6 2.82 2.8
Distance to major road 5 2.27 0

Raw.inf 5 original weighted relative influence of the 10 models; Rel.inf5 relative influence
scaled to 0% to 100%.

*Votes, number of votes over the 10models.

TABLE 2
Relative influence of top 20 risk factors for prediction of

larva-positive habitats

Variables selected Votes* Raw.inf Rel.inf

Maximum temperature 4 months prior 5 54.4 100
Precipitation 3 months prior 5 39.0 69.1
Distance to river/stream 7 35.0 61.2
Northness 6 33.2 57.6
Average daytime land surface temperature 6 30.1 51.3
Precipitation 2 months prior 5 29.4 49.9
Maximum temperature 5 months prior 5 26.9 45.0
Precipitation 4 months prior 5 24.1 39.3
Nighttime land surface temperature S3 6 22.1 35.3
Precipitation variability in February 8 17.2 25.5
DEM 8 14.7 20.5
Minimum temperature 3 months prior 6 14.3 19.6
Maximum temperature 2 months prior 6 12.7 16.6
Daytime land surface temperature S2 5 11.4 13.8
Average enhanced vegetation index 5 9.6 10.3
Normalized difference vegetation index 5 7.2 5.6
Maximum temperature 1 month prior 5 6.3 3.7
Valley bottom flatness 7 5.8 2.7
Daytime land surface temperature S4 5 5.1 1.4
Precipitation 1 month prior 5 4.4 0

S1 to S4 means quantile 1 to quantile 4. DEM 5 digital elevation model; Raw.inf 5 original
weighted relative influence of the 10models; Rel.inf5 relative influence scaled to 0% to 100%.

*Votes, number of votes over the 10models.
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GBM logistic model (results not shown); i.e., the GBM classi-
fication model may be redundant. In addition, if we used
accuracy or AUC. 0.7 for model selection in this study,24,25

we would actually end up with no model for larva-positive
habitat prediction. This is a reminder that the combination of
artificially selected weights/models may severely affect the
results of the ensembled model.
Relative importance of risk factors. Currently, there is

no standard method in ensemble modeling for selecting the
important predictors and estimating the relative influence of
these predictors.29,37 In cancer research, Liu et al. used the
sum of relative importance across all models,60 which is
equivalent to the simple average over all models, i.e., treat-
ing all models equally. Bose et al. used “frequency of
occurrence” for variable selection,21 which is essentially the
most-votes method. In many other studies, researchers
have listed the variable importance of all models but have
not provided an overall measure of the relative influence of
predictors.18,20,24,25,36 Because different models perform
quite differently in risk prediction and in variable selection,
the most-votes method is a viable way to select the impor-
tant variables, as most models selected these variables.

Similarly, we may not want to treat all models equally in eval-
uating variable influence; i.e., unequal-weight weighted aver-
age of relative importance may be more reasonable. In this
study, we found that logistic regression-estimated weights
outperformed simple average and most-votes methods in
terms of prediction accuracy. It is important to note that
the significance of variables as determinants of larval habi-
tat suitability may vary depending on the landscape
settings.25,43

Number of risk factors. The selection of the top 20 risk
factors in this study was arbitrary. In our previous study of a
multi-indicator approach for assessing malaria risks, we
started with . 200 variables, and the final GBM logistic
model selected only 19 significant variables.43 Similarly, in a
study by Zheng et al. assessing monthly distributions of
Aedes albopictus in China, the authors started with a similar
. 200 variables and the final model used only 17 variables.63

Risk analyses by Solano-Villarreal et al. using boosted
regression also ended up with 18 significant variables.64

Several other disease risk analysis studies selected , 20
predictors in their final models.65,66 Practically, if we want to
find the key risk factors, we should limit the number of

FIGURE 4. Predicted probability (top panels) and mean squared error (MSE) (bottom panels) of aquatic habitats (left panels) and Anopheles
larva-positive habitats (right panels).
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candidate factors. In this context, we think the top 20 candi-
date predictors may be enough. In this study, each model
selected 20 variables, and there were about 50 candidate
predictors in the ensembled model, but not all of them were
equally important. In fact, in several models, such as the
SVM logistic and XGB tree models, there were fewer than
five key predictors based on their relative importance in the
model, and the ensembled model had only three to five key
predictors of habitats. Practically, selecting the top 20
important variables may be enough.
Larva-positive habitat identification. The accuracy of

larva-positive habitat predictions and the kappa agreement
between predictions and observations were low in this
study. This is likely due to the selection of predictors at the
initial stage. We used climatic and satellite-observed envi-
ronmental variables to predict the larva-positive habitats.
However, the presence of larvae in a habitat depends on two
major factors: attractants for female breeding and food and
environment for larval survival and development. Physical
and chemical cues allow female mosquitoes to assess the
suitability of potential larval habitats for breeding and hence
influence the acceptance of oviposition sites.67–71 Physical
cues originate from vegetation (land cover type and density),
water temperature, sunlight, and texture of the substrate,
and other biotic factors such as the existence of certain
algae are crucial for larval development.72–76 For example,
Munga et al. found that land cover type affects Anopheles
female oviposition.49 Sumba et al. found that A. gambiae ovi-
position may be regulated by the daily light-dark cycle.77

Eneh et al. found that water temperature also affects female
oviposition site selection.78 Factors such as vegetation
cover, light-dark cycle, and water temperature may be moni-
tored by ground observations or satellite monitoring.73,74

However, studies also found that certain biotic cues such as
habitat microorganisms (e.g., bacteria) and volatile profiles
(e.g., grass volatiles) affect female oviposition habitat selec-
tion.77–81 These factors cannot be monitored through satel-
lite monitoring or simple ground measurements. Biotic
variables such as bacteria and grass types may vary from
habitat to habitat and change over time. Therefore, it is
entirely possible that while a certain aquatic habitat is suit-
able for female oviposition and larval development at this
time, it will not be attractive for female oviposition and/or not
be suitable for larval development next time. Thus, predict-
ing larva-positive habitats is more difficult than predicting
aquatic habitats. In fact, very few studies have conducted
larva-positive habitat prediction.19

The major limitation of this study is the selection of models
for ensemble modeling. We do not have a strategy for model
selection, although data mining experts suggest selecting
diverse and independent models for ensemble modeling.29,37

We used diverse models in this study.17,25,26 However, it was
difficult to decide which models were independent or, more
loosely, unrelated. We tried to select models that were not
related to each other; we may also want to include other less-
related models such as multiple adaptive regression splines,
among others.25,26 The second limitation is the selection of
sites using field observations. Ideally, we should include
diverse study sites. However, it is difficult to cover a wide
variety of aquatic habitats with different ecological back-
grounds because of the scope of scientific research; census-
style surveillance may include more diverse ecological

settings. Including more diverse ecological areas may
increase the accuracy of model predictions and the general-
izability of the model. For example, in western Kenya, most
areas are hilly, and therefore elevation and valley bottom flat-
ness are key factors in determining the suitability of larval
habitat, as shown in our results. However, in plain areas, ele-
vation and topographic factors may not be as important as in
hilly areas.43 Future modeling needs to consider balanced
samples across different ecological settings. Models need to
be recalibrated and revalidated when landscape setting
changes or data from other settings are included, but the
modeling process can be the same as described in this
study. The third limitation is the determination of predictor rel-
ative importance in ensemble modeling. As mentioned earlier,
there is no standard method for calculating the relative impor-
tance in ensemble modeling. The method we described here
was purely empirical, and further refinement of predictor
selection and relative influence assessment methods as well
as standardization are required.
In conclusion, this is the first study to provide a detailed

framework for the process of multimodel ensemble modeling
for malaria vector habitats, including selection of models,
estimation of model weights (statistically optimized), deter-
mination of key predictors (most votes), evaluation of the
relative influence of key predictors, risk mapping, and
prediction uncertainty assessment, including several key
components of ensemble modeling that have not been
addressed in previous studies. We hope the modeling pro-
cess we have proposed will be useful for other studies.
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